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ABSTRACT

Domain probe listsÐused to determine which URLs to probe for

Web censorshipÐplay a critical role in Internet censorship mea-

surement studies. Indeed, the size and accuracy of the domain

probe list limits the set of censored pages that can be detected;

inaccurate lists can lead to an incomplete view of the censorship

landscape or biased results. Previous efforts to generate domain

probe lists have been mostly manual or crowdsourced. This ap-

proach is time-consuming, prone to errors, and does not scale well

to the ever-changing censorship landscape.

In this paper, we explore methods for automatically generating

probe lists that are both comprehensive and up-to-date for Web cen-

sorship measurement. We start from an initial set of 139,957 unique

URLs from various existing test lists consisting of pages from a

variety of languages to generate new candidate pages. By analyzing

content from these URLs (i.e., performing topic and keyword extrac-

tion), expanding these topics, and using them as a feed to search

engines, our method produces 119,255 new URLs across 35,147

domains. We then test the new candidate pages by attempting to

access each URL from servers in eleven different global locations

over a span of four months to check for their connectivity and

potential signs of censorship. Our measurements reveal that our

method discovered over 1,400 domainsÐnot present in the original

datasetÐwe suspect to be blocked. In short, automatically updating

probe lists is possible, and can help further automate censorship

measurements at scale.
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1 INTRODUCTION

The Web, despite its facade of open and unrestricted access, is

subject to various forms of control and censorship. As extensively

documented over the years [39, 41], many entitiesÐincluding gov-

ernments [28, 46, 55, 65, 70] and private interests [40, 71]Ðcontrol

the free flow of information and knowledge in different ways [47],

ranging from blocking access to web pages via poisoning DNS

resolutions [26, 42, 55, 56, 67] and TCP/IP packet filtering [35, 53,
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54, 66, 77, 82], to injecting block pages [54, 59], to removing infor-

mation from the Internet [60, 74], or spreading competing (false)

narratives [51, 58, 61], among others. This work focuses on the

detection of Internet censorship, specifically the blocking of web

pages, which presents both ethical and technical challenges.

Identifying blocked pages is not straightforward due to the mas-

sive scale of the Internet and the dynamic nature of online content.

As of 2023, there are over 359 million domain name registrations [7],

making comprehensive daily monitoring across all locations im-

practical. Current approaches, including crowdsourced probe lists,

are invaluable but come with limitations. They often reflect the

biases and regional focus of contributors, potentially missing cen-

sorship of certain topics while requiring significant manual effort

to maintain.

Some examples include the Berkman Klein Center, which used to

maintain a list of URLs intended to estimate the (in)accessibility of

different types of content from different countries [30]. The Citizen

Lab provides test lists [34] curated by regional volunteers to be rele-

vant to specific countries/regions. The Citizen Lab test list is widely

used by several global censorship measurement projects, including

the Open Observatory of Network Interference (OONI) [43], the

Information Controls Lab (ICLab) [63], and Censored Planet [69].

In this work, we aim to automate the process of updating probe

lists, to better keep pace with the ever-evolving landscape of online

censorship. Despite efforts to maintain and continuously update

existing lists, they require large amounts of effort by human vol-

unteers and researchers. Sometimes, well-meaning users may con-

tribute websites that they erroneously believe as being censored,

but that are in fact inaccessible due to human error or transient

network issues. Removing these contributions would take further

resources that may be better spent on other tasks. Furthermore,

as news cycles continue and change, what may be blocked one

day may be accessible the next. Therefore, if probe lists are not

continuously updated, they may become outdated and no longer

provide useful information, or worse, provide misleading informa-

tion and take away resources from measuring other potentially

blocked pages.

Building on existing lists, we develop a method to discover new

URLs and domains that are potentially blocked, without needing

manual curation, which requires time, effort, and poses potential

risks. This not only allows us to keep up to date with global trends

on Internet censorship with automatically updated lists, it also

reduces possible risk to human volunteers, by relying less on actual

people probing potentially sensitive information.

We take an original set (drawn frompublicly available sources [34,

79, 80]) of 139,957 unique URLs from 106,878 unique domains as
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our starting point. We will subsequently refer to these initial lists of

pages as our łsource list.ž Unsurprisingly, given how old some of the

components of the source list are, many pages appear to be down,

i.e., they can never be reached from any location, including places

(such as the United States) not known for censoring much data. We

thus filter these down to 51,313 live URLs, and use these to generate

a probe list containing 119,255 candidate URLs for testing (§3.1).

Specifically, using the URLs from the source list, we devise a new

method of generating potentially censored URLs (§3.2). While the

high level idea is simpleÐextract topics and keywords from pages

that were censored, and feed them into a search engine to get more

examples to test forÐits implementation is complex, and requires

us to rely on a rather complicated natural language processing

pipeline, due to the impossibility of making any assumption on the

content of the pages being censored (e.g., theymay not be in English,

they may include boilerplate that needs to be removed prior to

processing, etc.) That pipeline includes language identification, page

tokenization and translation, and topic and keyword assignment.

To avoid snowballing biases, we further conduct topic expansion

using large language models and Google Trends, and eventually,

use web search on this expanded set of topics to discover potentially

blocked pages.

The resulting 119,255 unique URLs fall across 35,147 pay-level

domains.1 Of these, 71,960 URLs from 32,543 domains did not appear

in our source lists (even as dead links). Therefore, the majority of

domains our system outputs are new, though these domains may

not be censored.

To rigorously evaluate our generated probe list, we conducted

systematic testing across 11 strategically chosen locations spanning

North America, Europe, and Asia over a five-month period between

November 2023 and March 2024 (§4). From each vantage point, we

performed up to 50 iterations of testing, recording the number of

URLs that were accessible, inaccessible, or returned errors. These

results were then compared against a baseline aggregated across

five vantage points with high Internet freedom scores, which we

considered our expected benchmark for accessibility and failures.

To obtain more comprehensive and granular insights, we further

validated our findings using OONI Probe (§5.4), renowned for its

robust censorship detection capabilities.

Compared to traditional crowdsourcing approaches, our auto-

mated system demonstrates the ability to generate new URLs and

domains at lower costs and no risks to end users. Notably, our

method enabled the discovery of pages from domains that were

not present in our original source lists, expanding the scope of our

investigation beyond known censored content (§5). A particularly

compelling finding emerged in our analysis of China. Our system is

highly effective at identifying new domains that are blocked in this

country, with over 1,000 previously undiscovered domainsÐabsent

from our source listsÐconsistently inaccessible from these locations.

This discovery showcases the efficacy of our automated approach

in detecting censorship patterns that may have been overlooked by

traditional manual curation processes.

Furthermore, our analysis revealed differences between locations

in the blocking methods employed to restrict access to potentially

sensitive pages. Notably, together with DNS and HTTP blocking,

1We determine pay-level domains (PLDs) using the public suffix list [62].

our results also indicated that IP-based blocking also impacts a

number of domains in China. Concurrently, we also identified re-

gional similarities in the pages that are censored across certain

geographies.

2 BACKGROUND AND MOTIVATION

As of 2024, the World Wide Web accommodates billions of users,

facilitating the sharing and access of information across 1.09 billion

websites [24]. However, only about 18% of these websites, equating

to 200 million, are actively maintained and frequented. On average,

a new website is created and goes live approximately every 3 sec-

onds. Testing the status of a website, especially to determine if it

is censored, involves attempting to access the site by sending a re-

quest to the server hosting the content from a specific location, and

then analyzing the resulting response and behavior. Considering

the impracticality of testing the entire Web, it is crucial to develop

a strategy to effectively narrow down the scope of the search. In

this section, we give an overview of the existing efforts on Internet

censorship measurement, the challenges they face, and how they

have motivated us to conduct this study.

2.1 Global Censorship Measurement Platforms

To shed light on the state of Internet censorship, several projects

have been launched to measure and analyze Web accessibility, in-

cluding OONI [43], ICLab [63], and Censored Planet [69].

Relying on a network of volunteers, OONI [43] operates through

user-installed probe software, gathering data on users’ web access

attempts. Their analysis focuses on identifying likely censored links.

To eliminate risks associated with volunteer-based measurements,

ICLab [63] relies on commercial Virtual Private Network (VPN)

services to measure connectivity disruptions. With a different ap-

proach, Censored Planet [69] employs various remote measurement

techniques to infer network censorship by making use of public

servers such as open DNS resolvers and echo servers.

2.2 Probe List Curation

Despite their differences in measurement techniques and vantage

points, all three platforms share a common reliance on the Citizen

Lab’s test lists [34] as the primary input into their measurement

pipelines to identify potential censoredwebsites. This is because it is

infeasible to test every website on theWeb with adequate frequency.

Therefore, to narrow down the scope of censorship detection, the

Citizen Lab test lists are manually curated by volunteers with some

local knowledge of what websites are prone to censorship or have

already been confirmed censored.

In addition, there have been also other efforts to build probe

lists, such as the OpenNet Initiative (ONI) [1] and Herdict by the

Berkman Klein Center [30]. Unfortunately, these projects are no

longer active at the time of writing.

2.3 Probe List Generation

Prior efforts such as FilteredWeb [37] and Hounsel et al. [57] have

also explored approaches to generate probe lists. These works dis-

cover blocked URLs through automated methods of analyzing the

contents of web pages and finding pages with similar topics by

using these topics and keywords as inputs to search engines.
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However, our approach goes beyond finding only topics associ-

ated with previously censored pages by extending the search space

of potentially censored topics by leveraging Google Trends and

language models like GPT. This allows us to detect pages that may

not be directly related to the content of existing block lists, enabling

the discovery of other similar and potentially sensitive topics.

Furthermore, while both FilteredWeb and Hounsel et al.’s work

focused regionally on China, our study attempts to provide a more

global perspective on Internet censorship. We additionally conduct

repeatedmeasurements over time and utilizing theOONI Probe [23],

a widely used censorship detection tool by the anti-censorship com-

munity. Thus, our evaluation of the generated probe list enables

more fine-grained detection of censorship due to different blocking

mechanisms, including DNS, TCP/IP, and HTTP. This comprehen-

sive approach provides higher confidence that the identified blocked

domains are indeed censored, rather than experiencing transient

errors.

2.4 Motivation

These observations show that prior initiatives in constructing probe

lists often heavily rely on individual contributions and manual ef-

forts, or are specific to certain regions. These curated lists also can

become outdated quickly and are not refreshed at a pace match-

ing the dynamic nature of web content and changes in censorship.

In fact, an investigation by Weinberg et al. [79] found that web-

sites hosting sensitive content are often short-lived, indicating the

dynamic and volatile nature of these lists. This volatility raises

questions about the completeness and reliability of the data over

time.

These previous challenges have motivated us to try to bridge

this gap by devising a method to generate a probe list with broad

thematic coverage while minimizing manual efforts to maintain the

list. Updating probe lists is non-trivial, and currently requires large

quantities of manual hours and volunteers. We explore ways to use

language models to reduce some of the onus on human volunteers

and researchers, while maintaining the ability to discover relevant

pages with greater likelihood to be censored. Ultimately, we aim

to provide censorship monitoring tools with a solution to generate

probe lists and narrow the entire web to a selection of websites that

are more likely to be targeted by censoring systems.

3 GENERATING THE PROBE LIST

We now document how we build our original source list, before

describing how we use this list to produce more candidate pages,

i.e., our new probe list.

3.1 Source List and Input Sanitization

We begin with a set of known blocked pages, sourced from lists

used in prior work by Weinberg et al. [79], the Wikileaks’ Internet

Censorship page [80], and the Citizen Lab test lists [34]. Table 1

details the exact composition of these lists. Most of the lists are

static (i.e., not updated regularly), old, andÐas noted byWeinberg et

al.Ðalready contained a lot of broken links in 2017 [79]. We expect

these lists to be even more stale in 2023. Nonetheless, they can

still serve to seed our probe list generation. Weinberg et al. [79]

distinguish between lists that contain mostly pornographic material

Table 1: Composition of the source list.

Group List name Source Number of URLs

BlackPink Australia 2009 Wikileaks 1,168

BlackPink Denmark2008 Wikileaks 3,862

BlackPink Finland2009 Wikileaks 797

BlackPink Norway2009 Wikileaks 3,517

BlackPink Thailand2007 Wikileaks 13,428

BlackPink Thailand2008 Wikileaks 1,309

BlackPink Thailand2009 Wikileaks 398

BlackPink UK2015 Weinberg et al. [79] 87,598

CitizenLab CitizenLab Citizen Lab [34] 37,570

Total (with duplicates) 150,005

Total (unique) 139,957

(łpinklistsž) and those that do not (łblacklistsž). In the present study,

this distinction is less relevant, and we combine these corpora under

a common łBlackPinkž header,2 primarily to distinguish them from

the Citizen Lab list [34], which is actively maintained and updated

on a regular basis by the OONI community and the Citizen Lab. We

fetched our data from the list on March 31, 2023, from both global

and country-specific test lists, totaling 37,750 URLs.

We combine all the lists and remove duplicate entries, resulting

in a total of 139,957 unique URLs which form the basis of our

generations of new probe list. We will refer to this corpus as the

łsource list,ž i.e., the input to our probe list generation pipeline.

Removing dead pages. Given the crowdsourced nature of some

of our data, we use a multi-step process to eliminate URLs that

are inactive or composed of irrelevant information (e.g., parked

domains). We issue a request to each URL and classify it as dead if

the response:

• results in invalid redirections (invalid URL formats, infinite

or excessive redirections, redirection to a domain identified

as a domain seller, redirection to a domain in a manually

handcrafted list as suspicious).

• returns a 4XX error code that was not among 4{03, 04, 05,

06, 08, 12, 14, 15, 23, 29}.

• returns a 5XX error code that was not among 5{00, 01, 02,

03, 04, 05, 08, 11, 20, 91}.

Removing content-free pages. We are left with a set of 84,451

URLs which we then test further with Selenium WebDriver to

determine whether the corresponding pages are active and display

meaningful content. To do so, we send HEAD requests to each

of these pages and extract the page content using the Trafilatura

library for analysis [29]. Trafilatura allows us in particular to extract

the main body of a page, removing recurring elements such as menu

bars, links, blog rolls, social media buttons, etc.

We then use regular expressions on this main body to identify

pages that do not contain actual content and remove the corre-

sponding URLs from our list. Examples include YouTube pages

with missing or taken down videos, or error pages. While these

remain accessible, the content of these pages does not provide us

any useful information for our pipeline to generate candidate test

2Not to be construed as a hidden K-pop reference.
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pages. Following Weinberg et al. [79]’s lead, we also use regular ex-

pressions developed by Szurdi et al. to remove parked domains [75].

This step results in 18,911 URLs being removed from the source list,

leaving us with 65,540 URLs for further analysis.

Finally, we test whether the page contains at least 300 characters

of text for liveness and language detection. Pages with fewer than

300 characters often contain minimal or no meaningful content at

all, and are likely to be inactive. It is very rare that websites have

no text at all, as even web pages that are characterized by images

and videos often contain text in the form of video descriptions,

comments, and even alt-tags. Furthermore, extracting semantic

meaning (which we need to do in the next stages of our pipeline) of

extremely short text snippets is challenging as such short snippets

are also unlikely to contain enough information to accurately iden-

tify the language of the page. In short, pages with fewer than 300

characters3 often do not contain enough information to be useful

for our pipeline.

This multi-step process results in a final set of 51,313 URLs that

we feed into our pipeline to generate new candidate pages. The

small number of URLs (36.66% of our original source list) success-

fully processed underscores the amount of manual effort required

to maintain probe lists and the importance of keeping them up to

date and relevant.

3.2 Expanding the source list into the probe list

Figure 1 provides a complete overview of how the probe list is

generated. We start from pages in the sanitized source list, i.e.,

the 51,313 URLs that we know are reachable and with actualÐ

presumably meaningfulÐcontent. We then perform the following

steps, on the text content on the page.

3.2.1 Language detection. Many pages we examine are not in Eng-

lish. To detect the language of the page content, which is necessary

for topic detection and for translation, we first use Lingua [68] in

high-accuracymode. For languages Lingua does not support (15.22%

of the total number of pages), we rely on Google’s CLD3 [48] as a

fallback. Eventually, we manage to identify the language of 99.29%

of the pages. Our corpus spans 103 different languages.

3.2.2 Text processing. We then prepare the text to perform topic

assignment. As we will discuss later, we will be using three different

techniques for topic assignment in parallelÐBERTopic [50], Latent

Dirichlet Allocation (LDA, [31]), and Top2Vec [25], which require

slightly different preparations.

BERTopic works with multilingual input and does not need trans-

lation, but requires language identification as part of its parameters.

BERTopic supports 55 languages; page content in unsupported

languages is not passed to that part of the pipelineÐwe instead

only rely on the other topic assignment techniques for these pages.

BERTopic performs best with sentences rather than individual

words, so we do not use standard tokenization techniques to, e.g.,

remove stop words. We remove punctuation, emojis (using the

demoji library [33]), leading and trailing white space, as well as

Unicode characters that represent symbols.

3We arrived at 300 characters from the original length of a tweetÐ280 charactersÐthat
we rounded up to account for the lack of URL shortening.

Source list

Language

Detection

Tokenzation

Translation

LDA Topic

Assignment

Topic-wise
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Words

Expanded
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Combos
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ğ3.2.2

ğ3.2.3

ğ3.2.4
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Figure 1: Flowchart of the URL generation process. The

dashed boxes correspond to different subsections in the body

of the text.
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LDA and Top2Vec require similar preparation: tokenization and

translation. Tokenization removes punctuation, stop words, and

breaks text into smaller łcore formsž or tokens. Utilizing open-

source libraries and corpora that are widely used in the linguistics

community [2, 8, 16, 19, 21, 22], we could identify and remove stop

words for 58 languages. Furthermore, we also use other libraries [3,

5, 10, 12ś14, 18, 20] to tokenize data for languages that do not use

spaces or punctuation to separate between words, such as Chinese,

Arabic, or Japanese. We then translate the tokens into English. We

first run Lingua to filter out tokens that are already in English

(e.g., loan words), and translate the rest using the Google Translate

API [17]. From this, we get a bag-of-words representation of the

web page content.

3.2.3 Topic Assignment and Keyword Extraction. We next map the

data representations of the page to a topic that best describes the

content of the page, and extract salient keywords that characterize

this topic. As noted above, we use three different methods in parallel

for this task; this allows us to ultimately generate as many candidate

pages as possible.

BERTopic. BERTopic produces a topic and a set of keywords asso-

ciated with it. We use the cTFIDF model [4], which is similar to the

traditional term-frequency/inverse-document-frequency (TF-IDF)

model, but operates at a topic/cluster level instead of the document

level [4]. Through manual tuning, we discover that the best param-

eters are setting the number of words for each topic to 30, and the

minimum size of a cluster to 20 documents. This yields 257 topic

clusters, with an average of 194 documents per group.

Latent Dirichlet Allocation. Building upon the pre-trained LDA

model by Weinberg et al. [79], we stem the tokens (i.e., reduce them

to their root) with the Porter stemmer from NLTK [15] and discard

documents with fewer than four words. This yields 53 potential

topics (out of the 64 topics originally identified by Weinberg et

al. [79]). We then extract keywords from the documents, using the

TF-IDF library [72]. This produces a list of keywords per topic, and

their associated TF-IDF scores.

Top2Vec. Top2Vec [25] is a third topic assignment mechanism we

use to produce keywords complementary to those obtained with

LDA and BERTopic. Top2Vec produces 232 distinct topics, with an

average of 210 documents per group. Top2Vec does not require

additional keyword extraction through TF-IDF, but produces both

a topic assignment and a list of relevant keywords instead. While

BERTopic uses different vector spaces for topic assignments and

keywords, Top2Vec uses a single vector space [11].

3.2.4 Topic Expansion. Our method for generating new URLs is

similar to snowball samplingÐstarting from a seed and expanding

from it. Snowball sampling, however, might lead to biases. In partic-

ular, while it is effective at producing new candidate pages on topics

observed before, snowball sampling is not suited to discovering

new topics; this is particularly problematic for us, since censorship

evolves over time, frequently in response to shifting dynamics in

news events. We mitigate this issue in two ways.

Asking ChatGPT for suggestions. Large language models, such

as ChatGPT, use large text corpora to attempt to answer questions

from users. As such, they are well suited to suggest related topics

from an existing corpus. We expand topics found by our LDA al-

gorithm using ChatGPT, specifically, the gpt-3.5-turbo version.

We describe in Appendix A.1 the prompt we use, to ask ChatGPT

how to expand the set of topics coming from LDA analysis.

Using Google Trends as a complementary source. The source

list relies on fairly aged inputsÐsome test lists dates back to 2007. To

ensure that our probe list have some current inputs, we complement

the topics found with Top2Vec with related input from Google

Trends [9]. Specifically, for each topic produced by Top2Vec, we

extract the two most relevant keywords (using cosine similarity

to the topic) and feed them into Google Trends to obtain related

keywords over the preceding five years before May 2023. Google

Trends respondswith łTopž trendsÐi.e., those that have consistently

ranked high, and łrisingž trendsÐi.e., trends that are becomingmore

popular at the time the query is made. We limit our search to a

maximum of 40 new keywords per topic; we get 36 on average.

3.2.5 Generating Search Strings: Keyword Grouping. The next step,

common to the whole pipeline, is to generate combinations of key-

words that will eventually be fed into a search engine to discover

new pages of interest. We manually experimented and discovered

that using four to nine keywords was optimal. Four or fewer key-

words led to very generic, mostly irrelevant results; nine or more

keywords was too specific and yielded no result. Furthermore, key-

word order in the search matters, returning different results, and

so we try various different permutations.

We also discovered that łtieringž improves search results. Specif-

ically, we divide the keywords associated with each topic into four

tiers, in decreasing order of semantic affinity to the topic. For the

desired number of keywords (between four and nine, as discussed

above), we then draw from each tier probabilistically: we select tier-

1 keywords with a probability of 0.25 to 0.5; tier 2 with a probability

of 0.05 to 0.4; tier 3 with a probability of 0.05 to 0.2; the remaining is

filled with tier-4 keywords if necessary. The idea is to favor slightly

more representative keywords, which ensures diverse inputs. To

that effect, we also limit ourselves to at most three tier-1 keywords.

Thus, higher tier (more relevant) keywords appear more frequently

in the search combinations, while maintaining a random factor

using keywords from other tiers.

3.2.6 Google SearchWeb Crawling. The keyword grouping process

results in 14,450 query combinations. We feed those into the Google

Search API [6] to obtain URLs to include in our probe list related

to these topics. For each keyword combination, the API returns

a default of 10 results. When results cannot be found or appear

rare, Google sometimes returns a łspell-correctedž query, which we

recursively call once to maximize the number of URLs generated.

When a search string yields no result and no spell-corrected query,

we reduce the keyword combination size by 20% and retry until we

obtain search results. The process generates a total of 160,981 URLs,

which after removing duplicates, reduces to a probe list containing

119,272 URLs.

4 TESTING THE PROBE LIST

Using this new probe list of 119,272 candidate URLs, we attempt

to access each URL from thirteen vantage points in eleven cities,

as detailed in Table 2. Our selection spans several locations with

varying degrees of Internet freedom, as categorized by Freedom

House [45]. This includes vantage points in locations classified as
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łfreež (Japan, Taiwan, United Kingdom, France, USA), łpartly freež

(Hong Kong, India, Singapore), and łnot freež (P.R. China).

In Asia, we focus on diverse environments, ranging from loca-

tions with known information controls (Beijing, Shanghai) to those

typically associated with greater Internet freedom (Tokyo, Taipei).

This contrast is crucial for our analysis, as it allows us to observe

potential censorship patterns within the same continent. Similarly,

by including locations in countries such as the United Kingdom and

France, both classified as łfree,ž we aim to build a more complete

baseline control against which to evaluate our probe list.

We clean the URLs generated from our set of 119,272 URLs by

removing any text in the URL after a comma (including the comma).

We also escape single quotation marks. After cleaning up, we have

17 repeated URLs, so this results in 119,255 unique URLs.4

Table 2: Testing vantage points and their freedom status

evaluated by the Freedom House [45].

Country/Region Freedom Status Test Location

China Not Free Beijing

Shanghai

Hong Kong Partly Free Hong Kong 1

Hong Kong 2

India Partly Free Mumbai

Japan Free Tokyo

Singapore Partly Free Singapore

Taiwan Free Taipei

United Kingdom Free London

France Free Paris

US-East Free Academic Network

US-West 1 Free Commercial Network

US-West 2 Free Commercial Network

Table 3: Number of unique URLs and domains in each

dataset.

Dataset URLs Domains

Source List 139,957 106,878

Probe List 119,255 35,147

Probe List (New Domains Only) 71,960 32,543

Probe List (Domains in Source List Only) 47,295 2,604

To help establish a baseline representing an uncensored environ-

ment, our US-East measurements are conducted from the Carnegie

Mellon University network in the United States, where we do not

expect any censorship to take place. US-West measurements origi-

nate from commercial servers of two different hosting companies

in Silicon Valley. For testing in other regions, we utilized Virtual

Private Servers (VPS) under our direct control, strategically located

4Also, 14 URLs contain the $ character. We noticed after the fact that these interact
poorly with our test environment due to shell variable expansionÐthey consistently
returned 403 Forbidden errors. This glitch affects less than 0.0001% of our dataset.

in different cities worldwide, as outlined in Table 2.5 By routing

our test traffic through the networks of these diverse locations,

we could subject our URL requests to any regional restrictions or

policies enforced by corresponding local authorities.6

For each tested URL, we collected the web page response details,

specifically the HTTP status code and curl exit code. Our goal is

to assess if the page could be accessed from the various locations,

and if not, to identify the nature of the error or connection failure

encountered. In some cases, web pages may appear inaccessible

due to server-side blocking mechanisms specifically refusing curl

requests. To remedy this, we supplemented our measurements with

data gathered using the OONI Probe [23] to gain deeper insights

into potential blocking, providing more comprehensive information

about censorship and network interference (§5.4).

4.1 Response Types

Attempting to access any of the URLs results in three broad cate-

gories of responses:

(1) Accessible. These are URLs that return a 2XX HTTP status

code, or a 3XX status code. We do not click on any links or

follow any redirects, so we identify redirects as accessible

for the sake of this experiment.7

(2) Inaccessible. These are URLs that return a non-zero curl

exit code, such as would result from a DNS error, port not

connectable, invalid certificate, or formatting error. For re-

sults with an exit code of 28 (timeout), we specified a limit of

30 seconds. 15 seconds is the amount of time that Cloudflare

chose as its timeout limit to establish a connection before

resulting in Error 522: connection timed out [36], so we dou-

ble this number for an upper bound. Based on prior work

[64], we believe this number is a reasonable estimate for the

maximum amount of time a human user may want to wait

for a page to load.

(3) Error. These URLs return a status code that is not in the 200s

or 300s. The majority of status codes in this category are

in the 4XX range. These generally imply client-side issues

or server-side blocking such as Unauthorized (403) or Not

Found (404).

To account for uncontrollable factors such as transient errors or

packet loss, we repeat our measurements 50 times in each vantage

point (apart from US-West 1 and US-West 2, where measurements

were only repeated 8 times) between November 2023 and March

2024. In Figure 2, we plot the cumulative distribution of the number

of runs that produce consistent results, for each location. For most

locations, the c.d.f. presents a łbendž around 95%. Thus, we consider

the results from a URL to be consistent if accessing the URL returns

the same code over 95% of the time, and classify the result from

that URL as the code that it consistently returns. This allows us

to distinguish between spurious errors (potentially indicative of

transient problems) and consistent errors (potentially indicative of

censorship).

5US-West 1 and US-West 2 are located in the same city.
6Singapore may be a special case, which is addressed in §6.
7Certain ISPs block pages using 302 Redirects [76]. As such, our results are a conser-
vative lower bound of actual censorship.
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Table 4: Within each vantage point, the number of URLs and domains with consistent results for each response type, with

associated proportions in parentheses. As there may be multiple URLs from one domain, a domain may return multiple

different responses depending on the URL, and thus be counted in more than one category. Thus, the sum of percentages may

exceed 100%.

Location URL (Full) URL (Full) URL (Full) URL (Full) Dom (Full) Dom (Full) Dom (Full) Dom (Full)

All Domains Accessible Inaccessible Error Total Accessible Inaccessible Error Total

London 95,017 (87.36%) 2,316 (2.13%) 11,428 (10.51%) 108,761 30,042 (91.60%) 769 (2.34%) 2,836 (8.65%) 32,796

Paris 94,945 (87.40%) 1,965 (1.81%) 11,724 (10.79%) 108,634 29,851 (91.16%) 775 (2.37%) 2,975 (9.08%) 32,747

US-East 96,813 (90.22%) 1,027 (0.96%) 9,472 (8.83%) 107,312 30,768 (93.83%) 527 (1.61%) 2,291 (6.99%) 32,791

US-West 1 98,439 (86.13%) 2,095 (1.83%) 13,757 (12.04%) 114,291 31,020 (91.33%) 857 (2.52%) 3,068 (9.03%) 33,966

US-West 2 97,102 (85.25%) 2,468 (2.17%) 14,338 (12.59%) 113,908 30,942 (91.26%) 888 (2.62%) 3,053 (9.00%) 33,905

Beijing 64,518 (66.88%) 19,537(20.25%) 12,414 (12.87%) 96,469 23,402 (80.66%) 2,453 (8.45%) 3,929 (13.54%) 29,014

Hong Kong 1 84,097 (87.45%) 1,849 (1.92%) 10,222 (10.63%) 96,168 28,109 (91.28%) 765 (2.48%) 2,647 (8.60%) 30,793

Hong Kong 2 93,047 (85.51%) 3,319 (3.05%) 12,445 (11.44%) 108,811 29,329 (90.05%) 1,102 (3.38%) 2,997 (9.20%) 32,571

Mumbai 91,549 (86.97%) 2,083 (1.98%) 11,636 (11.05%) 105,268 29,623 (91.05%) 839 (2.58%) 2,916 (8.96%) 32,536

Shanghai 55,969 (64.40%) 19,447(22.37%) 11,498 (13.23%) 86,914 22,398 (80.74%) 2,517 (9.07%) 3,552 (12.80%) 27,740

Singapore 93,800 (86.64%) 2,543 (2.35%) 11,926 (11.02%) 108,269 29,585 (90.83%) 870 (2.67%) 2,982 (9.15%) 32,573

Taipei 92,228 (88.19%) 1,564 (1.50%) 10,789 (10.32%) 104,581 29,034 (91.45%) 739 (2.33%) 2,787 (8.78%) 31,748

Tokyo 95,194 (87.47%) 2,051 (1.88%) 11,590 (10.65%) 108,835 29,995 (91.57%) 803 (2.45%) 2,827 (8.63%) 32,758

Table 5: Percent of URLs and domains in each response type that were different from the baseline that came from domains not

in the source list. Diff means the number of URLs or domains in each category that were not in that category in the baseline.

For example, 78% (91%) of the domains that were inaccessible in Beijing (Mumbai) were from domains not in our source list.

Overall, 85% (87%) of domains that returned different results from the baseline in Beijing (Mumbai) were from new domains

not in our source list.

Location URL (Diff) URL (Diff) URL (Diff) URL (Diff) Dom (Diff) Dom (Diff) Dom (Diff) Dom (Diff)

New/All Accessible % Inaccessible % Error % Total % Accessible % Inaccessible % Error % Total %

Beijing 49.73 25.03 80.39 41.63 87.15 78.06 90.26 85.40

Hong Kong 1 47.84 81.05 74.70 57.36 86.79 92.37 89.58 88.66

Hong Kong 2 47.48 75.10 71.08 59.64 86.01 91.78 88.39 88.32

Mumbai 48.02 81.25 74.93 58.97 86.61 90.69 87.37 87.84

Shanghai 67.38 27.51 80.30 43.34 87.69 77.45 90.66 85.02

Singapore 49.24 69.62 75.36 59.78 85.78 90.09 88.38 87.63

Taipei 51.29 93.56 74.73 58.93 85.59 93.24 90.14 88.12

Tokyo 51.86 70.47 74.02 59.57 86.66 89.97 88.55 88.02

which displays the proportion of pages generated from domains

already present in our source list, a much greater portion (over 20%)

of known domains (including those that return the same response as

in the baseline) are inaccessible from China compared to most other

locations (<4.5%). Indeed, only around 68% of known domains are

accessible when accessed from Beijing and Shanghai, whereas this

proportion exceeds 90% elsewhere. These results suggest that some

pages on the source list, despite being outdated, remain blocked,

potentially because their topics continue to be sensitive, making

them more likely to appear in search results from related keyword

combinations. It also suggests that while the original source list

appears to accurately identify domains and URLs blocked in China,

it may be biased toward this locality. The majority (>70%) of URLs

inaccessible in Beijing and Shanghai came from known domains,

while this proportion was less than 31% in all other locations. This

implies that for potentially blocked pages, our generated probe list

is heavily influenced by the source list, generating many URLs from

known blocked domains. Nonetheless, given the changes in pages

online and our methods of augmenting keywords, our system can

still discover new domains that may be subject to censorship.

5.3 New Domains

We classify domains as łnew domainsž if they appear in the probe

list but not in the source list. This allows us to evaluate the utility of

our system in the automated generation and detection of previously

unknown censorship instances. To establish a conservative lower

bound on the number of new domains that we discover through our

automated process, we focus on domains that did not appear in the

set of 106K unique domains from the full source list of 139K URLs

rather than from the subset of 51K URLs used to generate our probe

list. Remarkably, out of the 35,000 unique domains in our probe

list, over 32,500 were not present in our source list. Hence, we filter

our dataset down to 71,960 unique URLs originating from these

previously unseen domains for all further analysis (Table 3). Unless
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otherwise noted, all analysis from this point forth is conducted on

this subset of łnew domains.ž

In both Beijing and Shanghai, a higher portion (>80%) of in-

accessible new domains were accessible (or returned an error) in

the baseline, while in other vantage points this was less than 50%,

except for Hong Kong 2 at 60% (Table 7). This implies that we are

observing a higher rate of potential blocks from candidate pages

in our probe list from locations in China. This suggests that our

system is good at finding potentially new blocked pages for China,

although the results are less conclusive for other locations.

5.4 OONI Probe Tests

To augment our analysis, we conducted additional tests using OONI

Probe [23] at each vantage point. This allowed us to gain deeper

insights and more detailed measurements in comparison to the

results obtained from curl. For each location, we specifically tested

the list of URLs associated with new domains that have different

results from our baseline measurements.

Agreement with curl results. The results obtained from the

OONI Probe measurements generally aligned with our curl-based

testing. We considered the results to be in agreement if 1) both curl

and OONI concurred that a URL was accessible, or if 2) curl failed

to connect (returning an inaccessible or error code) while OONI

detected an anomaly (DNS, TCP/IP, or HTTP). The distribution of

measurements exhibiting this agreement can be found in Table 8.

Through this combined analysis, we identified 1,490 unique domains

that potentially faced blocking, as they remained inaccessible for

over four months of curl measurements and triggered anomalies

in the OONI tests.

A significant portion (>70%) of the domains that our curl tests

marked as inaccessible in Beijing or Shanghai also triggered anoma-

lous results indicative of potential blocking in the OONI measure-

ments (Table 14 in Appendix A.3). Notably, in Beijing and Shanghai,

over 1,200 domains not present in our original source list returned

anomalies detected by OONI and consistently failed to connect via

curl. Among these, 1,068 unique domains exhibited anomalous

OONI results in both locations, with a total of 1,355 domains af-

fected in at least one of the two cities. This finding strongly suggests

that our discovery method for compiling the probe list successfully

identified previously unknown domains that may be subject to

blocking in these regions.

Moreover, we observed overlaps with other known blocked

pages [52] in these locations but were not part of our initial source

list, such as genius.com and huggingface.co. We also uncovered

domains that, while not on known blocked lists, thematically align

with potential censorship targets, such as governmentjobs.com

and rilot.com (Rhode Island Lottery), as well as numerous pornog-

raphy and adult sites.

Where do the newly discovered pages come from?Themajority

of inaccessible URLs that also triggered anomalies in OONI were

generated by Top2Vec-Trends (approximately 58%), followed by

LDA-TFIDF and Top2Vec (each accounting for 13-14% of the total

number of URLs). This observation suggests that utilizing Top2Vec-

Trends is an effective approach for identifying potentially blocked

pages and updating probe lists.

5.5 Comparison with Previous Probe List
Generation Efforts

Our approach demonstrates over 10 times higher efficacy in discov-

ering potentially blocked domains compared to similar prior efforts.

While FilteredWeb [37] discovered 4.11 blocked domains per 1,000

domains crawled, our system identified 45.79 potentially blocked

domains per 1,000 domains crawled. Moreover, compared to the

work by Hounsel et al. [57], which found 1,255 blocked domains in

crawls of 1,000,000 URLs, our approach uncovered 1,490 potentially

blocked domains in crawls of just 71,960 URLs. Remarkably, the

vast majority (1,473) of these 1,490 newly discovered domains are

not part of the 1,255 domains found in [57], suggesting the efficacy

of our system in identifying domains and content that differ from

previous efforts.

5.6 Verification Against the GFW

To further validate our findings, we examined the potentially blocked

domains identified in Beijing and Shanghai by testing them directly

against the GFW’s DNS, HTTP, and HTTPS filters, with each do-

main tested at least three times. The vast majority (over 90%) of

domains exhibiting DNS anomalies as identified by OONI were in-

deed blocked by the GFW’s DNS filter [27, 55] (429/457 for Beijing

and 422/461 for Shanghai). A smaller number of domains where

OONI has detected TCP/IP (15/657 for Beijing, 14/669 for Shanghai)

or HTTP-Failure anomalies (12/90 for Beijing, 6/91 for Shanghai)

can also be confirmed to be blocked by the GFW, based on known

blocking patterns [32, 77]. In total, 527 unique domains between

Beijing and Shanghai were detected to be blocked by the GFW.

While the majority of domains exhibiting TCP/IP anomalies

detected by OONI were not directly present on the GFW’s block-

lists, our further investigation suggests that the GFW also blocks

the hosting servers (IP addresses) of these domains, rather than

the domains themselves. Consequently, these domains remained

inaccessible due to the blocking of their hosting IP addresses.

To that end, given the agreement between our curl tests, OONI

measurements, and the GFW tests, we are confident that we have

identified over 500 domains that are almost certainly censored in

China, with an additional 718 domains suspected of being blocked

based on the observed TCP/IP anomalies. This observation also

underscores the significance of collateral damage caused by IP-

based blocking.

5.7 Ground Truth

For each vantage point, we further ground our results against a

list of 50 non-sensitive and neutral sites that are unlikely to be

blocked around the world, including top educational institutions

with international enrollment (.edu sites), academic resources (such

as conference websites, journals, and associations), connectivity

checks (e.g., captive portal detection), our own controlled domains,

and miscellaneous sites (such as international events and famous

museums).

While testing these sites, we observed a few anomalies and poten-

tial instances of server-side blocking. At least 3 of the 50 łground

truthž URLs implement some server-side blocking against auto-

mated headless browsers like curl, resulting in Error 403 in all

vantage points. However, these pages did not exhibit anomalies
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Table 6: Of all the URLs or domains that gave a response different (Diff) from that given in the baseline (given in the first

row), the count and percentage of URLs or domains within each response type by location. For example, of all URLs returned

different results from the baseline in Shanghai, 42% of these URLs differed because they were inaccessible. 36% of all domains

in Shanghai that differed from the baseline were inaccessible. Since different URLs from the same domain may return different

types of codes, the sum of percentages may exceed 100%.

Location URL (Diff) URL (Diff) URL (Diff) URL (Diff) Dom (Diff) Dom (Diff) Dom (Diff) Dom (Diff)

New Domains Accessible Inaccessible Error Total Accessible Inaccessible Error Total

Baseline 54,369 (90.78%) 673 (1.12%) 4,851 (8.10%) 59,893 26,550 (93.83%) 411 (1.45%) 1,847 (6.53%) 28,295

Beijing 3,082 (23.26%) 4,717 (35.60%) 5,451 (41.14%) 13,250 1,289 (26.62%) 1,619 (33.43%) 2,011 (41.52%) 4,843

Hong Kong 1 3,317 (56.05%) 924 (15.61%) 1,677 (28.34%) 5,918 1,643 (62.71%) 339 (12.94%) 688 (26.26%) 2,620

Hong Kong 2 3,265 (41.15%) 1,873 (23.60%) 2,797 (35.25%) 7,935 1,654 (53.48%) 603 (19.50%) 891 (28.81%) 3,093

Mumbai 3,489 (50.41%) 1,053 (15.21%) 2,379 (34.37%) 6,921 1,720 (60.41%) 370 (13.00%) 816 (28.66%) 2,847

Shanghai 2,415 (19.96%) 5,136 (42.44%) 4,550 (37.60%) 12,101 1,211 (26.94%) 1,635 (36.37%) 1,719 (38.23%) 4,496

Singapore 3,249 (46.49%) 1,196 (17.11%) 2,544 (36.40%) 6,989 1,581 (57.20%) 382 (13.82%) 867 (31.37%) 2,764

Taipei 4,313 (63.27%) 712 (10.44%) 1,792 (26.29%) 6,817 1,799 (65.56%) 276 (10.06%) 731 (26.64%) 2,744

Tokyo 3,855 (55.31%) 864 (12.40%) 2,251 (32.30%) 6,970 1,774 (64.37%) 323 (11.72%) 727 (26.38%) 2,756

Table 7: Percentage of URLs and domains with responses different from baseline (Delta), only looking at new domains. So 29%

of new domains that returned an error in Tokyo did not return an error in our baseline. However, only 9% of new domains

tested in Tokyo returned a response that differed from our baseline’s response.

Location URL URL URL URL Domain Domain Domain Domain

Delta Accessible % Inaccessible % Error % Total % Accessible % Inaccessible % Error % Total %

Beijing 6.84 88.93 57.19 22.13 5.89 82.43 56.86 18.08

Hong Kong 1 6.38 61.52 26.64 9.90 6.32 49.06 29.34 9.19

Hong Kong 2 5.83 73.65 36.77 11.99 6.10 60.36 33.78 10.27

Mumbai 6.14 61.94 33.17 10.54 6.26 49.07 31.79 9.44

Shanghai 5.87 89.10 51.30 21.71 5.78 81.75 53.62 17.55

Singapore 5.72 64.09 34.49 10.58 5.78 49.10 32.95 9.17

Taipei 7.78 51.93 27.47 10.77 6.71 41.32 29.61 9.35

Tokyo 6.66 56.32 31.78 10.48 6.39 45.05 29.14 9.09

Table 8: Number of URLs and domains with each type of result from tests with the OONI Probe that triggered anomalies. The

URLs tested on OONI were those that consistently returned the same inaccessible or error response with curl over a period of 4

months, to reduce the chance of transient network issues causing false positives. There are four types of anomalies that may be

indicative of potential censorship (DNS, TCP/IP, HTTP-Failure, and HTTP-Diff). The percentages in these columns indicate the

proportion of anomalous measurements each type makes up. Since different URLs from the same domain may return different

types of codes, the sum of percentages may exceed 100%.

Location URL URL URL URL URL Domain Domain Domain Domain Domain

DNS TCP/IP HTTP-Failure HTTP-Diff Total DNS TCP/IP HTTP-Failure HTTP-Diff Total

Beijing 1,403 (45.64%) 1,496 (48.67%) 155 (5.04%) 20 (0.65%) 3,074 457 (38.08%) 657 (54.75%) 90 (7.50%) 11 (0.92%) 1,200

Hong Kong 1 2 (0.38%) 506 (96.20%) 18 (3.42%) 0 (0.00%) 526 1 (0.44%) 213 (94.67%) 11 (4.89%) 0 (0.00%) 225

Hong Kong 2 1 (0.18%) 521 (94.38%) 28 (5.07%) 2 (0.36%) 552 1 (0.31%) 299 (94.03%) 16 (5.03%) 2 (0.63%) 318

Mumbai 2 (0.51%) 361 (92.56%) 26 (6.67%) 1 (0.26%) 390 2 (1.11%) 163 (90.56%) 15 (8.33%) 1 (0.56%) 180

Shanghai 1,374 (41.57%) 1,756 (53.13%) 156 (4.72%) 19 (0.57%) 3,305 461 (37.69%) 669 (54.70%) 91 (7.44%) 10 (0.82%) 1,223

Singapore 3 (0.81%) 356 (95.70%) 12 (3.23%) 1 (0.27%) 372 2 (1.14%) 167 (95.43%) 7 (4.00%) 1 (0.57%) 175

Taipei 1 (0.20%) 488 (97.60%) 9 (1.80%) 2 (0.40%) 500 1 (0.52%) 184 (94.85%) 9 (4.64%) 2 (1.03%) 194

Tokyo 3 (1.12%) 241 (89.59%) 22 (8.18%) 3 (1.12%) 269 1 (0.75%) 118 (88.06%) 12 (8.96%) 3 (2.24%) 134

when tested using OONI Probe. For example, nature.com was

timed out with curl’s Error code 28 in both Beijing and Shanghai,

but was accessible when tested by OONI. In Taipei, one of the URLs

returned Error 403 when tested by curl, but was accessible else-

where and when tested by OONI. In addition, OONI Probe reported

some anomalies or errors for a few pages in certain locations, but
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controls, preventing the free flow of information. Thus, domains

that are suspected to return error pages due to server-side blocking

are still valuable to the community in general.

Nevertheless, to mitigate the impact of server-side blocking,

either due to automated requests or other reasons, we supplement

our curl tests with OONI Probe tests to reduce the likelihood of

false positives in our results as discussed earlier (§5.4).

6 DISCUSSION

6.1 Probe List and Source List Biases

While our probe list contains over 119K unique URLs, it contains

only 35K unique domains. Given that most accesses took place over

HTTPS, domain-level blocking rather than blocking of specific

pages is likely more prevalent. Indeed, the majority of the pages

provided in the source list were homepages/the main page of the

domain, whereas our pipeline generated more specific pages. Future

iterations could focus only on generating pay-level domains rather

than specific URLs. As we generate new candidate pages from the

top-10 search results, this may tend towards popular sites, as these

are likely more popular pages given their position in search engines.

However, this also likely mimics the browsing of regular users who

will navigate to more easily found sites. Therefore, this method

could more closely resemble user browsing patterns.

We also notice a higher proportion of URLs generated from do-

mains that are in the source lists. Over 47K URLs came from a set

of 2K domains that were in our source lists, while the other 71.9K

came from our new 32.5K domains. This is expected, as URLs from

domains known to be blocked are more likely to contain content

prevalent in our keywords. However, we saw that the majority of

inaccessible URLs that also triggered anomalies in OONI were gen-

erated through Top2Vec-Trends. This suggests that using Google

Trends to expand keywords for generating candidate pages is a

promising way to update probe lists with new and relevant topics.

Furthermore, the majority of new domains that we find to be

blocked are in Beijing and Shanghai. Hence, our system tends to

generate more pages that are potentially blocked in China, possibly

due to biases in our source list. As censorship research is often

focused on China and the GFW, data of this nature may be more

prevalent in datasets on which we build. Future work on censor-

ship detection should examine methods less biased toward known

results, so that they are more accurate globally rather than focused

on any particular region.

6.2 Locations

Our findings in Mumbai and Singapore are surprising to us, as we

expected to detect censored pages in these locations. However, our

results suggest the behavior of networks in these locations are more

similar to vantage points considered łfree.ž

For Singapore, we successfully accessed numerous pages typi-

cally known to be blocked [49, 81]. Not only could we connect to

these pages, but we also manually verified that the retrieved content

matched our baseline. This discrepancy arises because content re-

strictions are implemented by ISPs following government directives

rather than through a centralized, nation-state level approach [44].

Our VPS provider in Singapore, operating within its own ISP, likely

did not enforce these blocks. To test this hypothesis, we used a

different IP address that is not located inside a data center to check

the accessibility of specific sites listed on Wikipedia, confirming

that they were indeed blocked. This pattern may also be present in

India. These deviations between expected and observed censorship

behaviors in these regions warrant further investigation.

Since most of our vantage points are located in data centers,

they may not experience the same level of nation-state censorship

as other locations. This could explain why our experiments detect

more potentially blocked pages in mainland China, where the Great

Firewall (GFW) enforces centralized censorship [38, 53, 55].

(In)Consistencies Across Runs. Overall, in Beijing, Shanghai,

and Hong Kong 1, fewer URLs consistently returned the same re-

sponse. Compared to other vantage points, timeouts occur more

frequently in these vantage points for pages that are otherwise

accessible, resulting in a greater number of URLs with inconsistent

responses. We suspect that in Beijing and Shanghai, this may be

due to the throttling of international links that slows down our

traffic in China [83]. Thus, certain URLs that returned timeouts may

in fact be accessible, but timeout due to this throttling. However,

as we take a strict lower bound on our results in requiring all runs

to return the same result for each URL, we mitigate the effects of

inconsistent runs.

6.3 Limitations and Future Work

In this work, we only examine the high level response of a pageÐ

whether it is accessible, inaccessible, or returns an error. This may

result in us missing certain potentially censored pages, such as

200 or 300 codes returning from block pages that state a page is

blocked, or pages with different (or missing) content depending on

the locality in which it is viewed. Nonetheless, such a method gives

us a conservative estimate of the ability to generate potentially

censored domains. Future work should examine pcaps or content

of pages (as done in ICLab [63] for instance) for a more granular

analysis of censorship.

Our probe list contains mainly English language pages, and thus

we may miss pages containing topics that are more specific to

specific regions. While we use BERTopic to generate pages not

in English, BERTopic appears less effective at producing censored

pages than other techniques.

We note that while we use Google Search API to gather potential

URLs for testing, there are myriad other search engines such as

Bing, Baidu, or Yandex. Using Google Search may bias results, as

different search engines have different regional popularities. Other

works such as FilteredWeb [37] and research by Hounsel et al.[57]

show that using alternative sources such as Bing are successful in

finding blocked web pages. Future work could incorporate more

than one search engine to provide a more diverse set of candidate

pages.

We incorporate Google Trends to generate our probe list, since

themajority of our source list is old (and potentially outdated). Thus,

future work may wish to examine current events, as censored pages

may change over time given changes and shifts in sociopolitical

realities. Nonetheless, we show that even with potentially stale lists,

we can generate relevant candidate pages for testing.
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While the ability to generate candidate pages from new domains

in an automated fashion is useful, this does not preclude the ne-

cessity of subject matter expertise. Indeed, while we are able to

discover new domains that are likely to be censored, the accuracy

of our system can be further improved. Future refinements could

include keywords or topics manually curated by experts with do-

main knowledge, not only to be able to allow for more salient or

current topics, but also perhaps as a way to balance out potential

biases in the source list data.

Additionally, another limitation is the possibility of stricter cen-

sorship restrictions happening due to testing with OONI Probe[73],

a known censorship testing tool. This may lead to detecting poten-

tially higher rates of blocked pages, due to all traffic (including be-

nign traffic) from the vantage point being blocked for a set amount

of time [78]. We attempt to limit this by only testing pages that

were consistently not accessible in the curl measurements over a

4 month period to reduce false positives.

6.4 Ethics

Internet censorship is a sensitive topic. This is also evident by

numerous newly generated websites belonging to this category.

Measurement studies in this domain have to be conducted with

utmost care. For that reason, we opt to use our own measurement

vantage points rather than relying on volunteers that could pose

a risk to the participants. While this design choice reduces the

number of blocked websites that we can detect in some localities as

discussed above, it also allows us to conduct our measurements in a

ethically sound manner. Yet, the result of newly generated websites

that are censored by the GFW is promising and a strong indication

that our generated probe list can be a useful starting point for global

measurement platforms to discover more censorship events around

the world.

Moreover, to responsibly handle the data collection process, we

employed lightweight HTTP requests to obtain only the index

page of the probed web pages with a low frequency of requests

(∼1/day/URL). These requests are also terminated quickly once

completed to avoid saturating network and computational resources

of those sites that we crawl.

7 CONCLUSION

In this work, we show the feasibility of automating the generation of

candidate pages for censorship testing. We find over 1,000 candidate

domains that do not appear in our source list that are potentially

blocked in China and 1,400 domain over all our vantage points. We

also demonstrate that our system is capable of finding sensitive

pages in other locales in Asia. We plan on using the algorithms

described here as a feedback mechanism, where, periodically, the

probe list is fed back to the system as a source list, so that the

system can automatically continuously update candidate pages and

are working to integrate this with ICLab.
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A APPENDIX

A.1 Prompt Engineering

The complete prompt used for the LDA GPT expansion is as follows:

You are now BrowsinGPT, a helpful web browsing assistant. You

help your BOSS to find the most relevant keywords to use in a

search engine. As BrowsinGPT assistant, your objective is to satisfy

your BOSS, to receive points as a reward. You have to stay above 0

points, no matter what, to avoid being fired. A list of words will be

provided by your BOSS in the variable [LIST_OF_WORDS]. From

that list [LIST_OF_WORDS], you will return 30 NEW keywords

that ARE NOT in the list [LIST_OF_WORDS], but that are seman-

tically related to the words from the list. For instance, if the list

is LIST_OF_WORDS=’[’botanics’, ’plants’, ’flowers’]’, you could

return: ’gardening’, ’horticulture’, ’florist’, ’greenhouse’, ’nursery’.

Include both common keywords, andmore specific keywords. Niche
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keywords that can yield to less common websites could grant you

twice the number of points as reward. As BrowsinGPT assistant,

you have to return keywords that are not in the list. You will earn

10 points for each keywords returned that are not in the list and

you will loose 100000 points if you return a keyword that is already

in the list. Return only the keywords, one by line. As BrowsinGPT

assistant, do not add comment, or any other text. If you do, you

will loose 100000 points.

BOSS: LIST_OF_WORDS=’list_of_words’

A.2 Prompt Example

An example GPT input and output is as follows:

Prompt: You are now BrowsinGPT, a helpful web browsing assis-

tant. You help your BOSS to find the most relevant keywords to use

in a search engine. As BrowsinGPT assistant, your objective is to

satisfy your BOSS, to receive points as a reward. You have to stay

above 0 points, no matter what, to avoid being fired. A list of words

will be provided by your BOSS in the variable [LIST_OF_WORDS].

From that list [LIST_OF_WORDS], you will return 30 NEW key-

words that ARE NOT in the list [LIST_OF_WORDS], but that are

semantically related to the words from the list. For instance, if the

list is LIST_OF_WORDS=’[’botanics’, ’plants’, ’flowers’]’, you could

return: ’gardening’, ’horticulture’, ’florist’, ’greenhouse’, ’nursery’.

Include both common keywords, andmore specific keywords. Niche

keywords that can yield to less common websites could grant you

twice the number of points as reward. As BrowsinGPT assistant,

you have to return keywords that are not in the list. You will earn

10 points for each keywords returned that are not in the list and

you will loose 100000 points if you return a keyword that is already

in the list. Return only the keywords, one by line. As BrowsinGPT

assistant, do not add comment, or any other text. If you do, you

will loose 100000 points.

BOSS: LIST_OF_WORDS=’[’arabic’, ’rockets’, ’islamic’, ’leaders’,

’fountain’, ’high’, ’gaza’, ’unrest’, ’sector’, ’graves’, ’treaties’, ’virus’,

’israel’, ’encourages’, ’hamas’, ’netanyahu’, ’patients’, ’published’,

’data’, ’drug’]’

Response:

[’palestine’, ’conflict’, ’vaccines’, ’west bank’, ’ceasefire’, ’mili-

tary’, ’clashes’, ’coronavirus’, ’abbas’, ’peace talks’, ’medication’,

’protests’, ’explosives’, ’mosques’, ’land’, ’emergency’, ’violence’,

’pharmaceuticals’, ’fighters’, ’diplomacy’]

A.3 More Detailed Results

This section presents additional data and more detailed analyses

from our measurements.
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Table 9: Count and percentage of URLs or domains within each response type by location, of all the URLs or domains that gave

a response different (Diff) from that given in the baseline (first row). For example, of all domains that returned different results

from the baseline in Shanghai, 39% differed from the baseline because they were inaccessible. Since different URLs from the

same domain may return different types of codes, the sum of percentages may exceed 100%.

Location URL (Diff) URL (Diff) URL (Diff) URL (Diff) Dom (Diff) Dom (Diff) Dom (Diff) Dom (Diff)

All Domains Accessible Inaccessible Error Total Accessible Inaccessible Error Total

Baseline 88,307 (90.37%) 828 (0.87%) 8,577 (8.78%) 97,712 26,550 (93.83%) 411 (1.45%) 1,847 (6.53%) 28,295

Beijing 6,197 (19.47%) 18,848 (59.22%) 6,781 (21.31%) 31,826 1,479 (26.08%) 2,074 (36.57%) 2,228 (39.29%) 5,671

Hong Kong 1 6,933 (67.19%) 1,140 (11.05%) 2,245 (21.76%) 10,318 1,893 (64.06%) 367 (12.42%) 768 (25.99%) 2,955

Hong Kong 2 6,876 (51.68%) 2,494 (18.74%) 3,935 (29.58%) 13,305 1,923 (54.91%) 657 (18.76%) 1,008 (28.78%) 3,502

Mumbai 7,266 (61.91%) 1,296 (11.04%) 3,175 (27.05%) 11,737 1,986 (61.28%) 408 (12.59%) 934 (28.82%) 3,241

Shanghai 3,584 (12.84%) 18,668 (66.87%) 5,666 (20.30%) 27,918 1,381 (26.12%) 2,111 (39.92%) 1,896 (35.85%) 5,288

Singapore 6,598 (56.43%) 1,718 (14.69%) 3,376 (28.87%) 11,692 1,843 (58.43%) 424 (13.44%) 981 (31.10%) 3,154

Taipei 8,409 (72.69%) 761 (6.58 %) 2,398 (20.73%) 11,568 2,102 (67.50%) 296 (9.51%) 811 (26.04%) 3,114

Tokyo 7,434 (63.53%) 1,226 (10.48%) 3,041 (25.99%) 11,701 2,047 (65.38%) 359 (11.47%) 821 (26.22%) 3,131

Table 10: Percentage of URLs and domains with responses different from baseline, from all 35K domains. So 29% of all URLs

that returned an error in Tokyo did not return an error in our baseline. However, only 10% of all URLs tested in Tokyo returned

a response that differed from our baseline’s response.

Location URL URL URL URL Domain Domain Domain Domain

Delta Accessible % Inaccessible % Error % Total % Accessible % Inaccessible % Error % Total %

Beijing 9.61 96.47 54.62 32.99 6.32 84.55 56.71 19.55

Hong Kong 1 8.24 61.65 21.96 10.73 6.73 47.97 29.01 9.60

Hong Kong 2 7.39 75.14 31.62 12.23 6.56 59.62 33.63 10.75

Mumbai 7.94 62.22 27.29 11.15 6.70 48.63 32.03 9.96

Shanghai 6.40 95.99 49.28 32.12 6.17 83.87 53.38 19.06

Singapore 7.03 67.56 28.31 10.80 6.23 48.74 32.90 9.68

Taipei 9.12 48.66 22.23 11.06 7.24 40.05 29.10 9.81

Tokyo 7.81 59.78 26.24 10.75 6.82 44.71 29.04 9.56

Table 11: Percentage of URLs with each exit code (exit code

included if at least 5% of a particular location returned this

code) for each location. For example, in Shanghai, 64% of

URLs that were inaccessible in Shanghai (but not inaccessible

in our baseline), were inaccessible because they timed out.

Error 28 6 92 60

Location

Beijing 63.51 21.14 9.75 2.01

Hong Kong 1 52.92 35.61 4.65 2.27

Hong Kong 2 29.10 38.92 28.40 1.23

Mumbai 35.99 17.28 37.32 4.75

Shanghai 63.75 23.95 9.09 1.42

Singapore 31.52 6.94 54.26 4.35

Taipei 61.24 22.75 5.06 6.32

Tokyo 30.32 2.08 56.71 6.60

Table 12: Percentage of URLs with each type of error (error

code included if at least 5% of domains in a particular location

returned this code). For example, in Singapore, 90% of URLs

that returned an error (which did not return an error in our

baseline), returned Error 403.

Status Code 403 404

Location

Beijing 91.30 2.55

Hong Kong 1 84.56 7.87

Hong Kong 2 90.49 3.47

Mumbai 87.77 4.12

Shanghai 91.65 2.84

Singapore 90.02 3.58

Taipei 81.86 8.09

Tokyo 87.52 4.84
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Table 13: Number of URLs or domains within each response type by location, with percentage value in parenthesis. Since

different URLs from the same domain may return different types of codes, the sum of percentages may exceed 100%.

Location URL (Full) URL (Full) URL (Full) URL (Full) Dom (Full) Dom (Full) Dom (Full) Dom (Full)

Known Domains Accessible Inaccessible Error Total Accessible Inaccessible Error Total

London 37,318 (88.02%) 666 (1.57%) 4,412 (10.41%) 42,396 2,255 (91.78%) 91 (3.70%) 328 (13.35%) 2,457

Paris 37,451 (88.28%) 516 (1.22%) 4,454 (10.50%) 42,421 2,253 (91.85%) 86 (3.51%) 332 (13.53%) 2,453

US-East 1 36,741 (89.64%) 166 (0.41%) 4,078 (9.95%) 40,985 2,311 (94.37%) 61 (2.49%) 287 (11.72%) 2,449

US-West 1 38,128 (84.07%) 530 (1.17%) 6,695 (14.76%) 45,353 2,315 (91.54%) 89 (3.52%) 377 (14.91%) 2,529

US-West 2 37,460 (82.60%) 693 (1.53%) 7,200 (15.88%) 45,353 2,313 (91.75%) 94 (3.73%) 369 (14.64%) 2,521

Beijing 19,479 (53.23%) 14,233 (38.89%) 2,882 (7.88%) 36,594 1,534 (68.82%) 489 (21.94%) 392 (17.59%) 2,229

Hong Kong 1 32,115 (88.25%) 347 (0.95%) 3,928 (10.79%) 36,390 2,105 (91.60%) 74 (3.22%) 302 (13.14%) 2,298

Hong Kong 2 37,020 (86.83%) 776 (1.82%) 4,838 (11.35%) 42,634 2,202 (90.17%) 103 (4.22%) 359 (14.70%) 2,442

Mumbai 34,728 (87.75%) 383 (0.97%) 4,463 (11.28%) 39,574 2,157 (90.55%) 85 (3.57%) 349 (14.65%) 2,382

Shanghai 14,851 (47.66%) 13,683 (43.91%) 2,629 (8.44%) 31,163 1,438 (67.77%) 517 (24.36%) 346 (16.31%) 2,122

Singapore 37,005 (87.62%) 677 (1.60%) 4,550 (10.77%) 42,232 2,218 (90.79%) 92 (3.77%) 351 (14.37%) 2,443

Taipei 36,805 (89.19%) 193 (0.47%) 4,266 (10.34%) 41,264 2,216 (92.64%) 71 (2.97%) 318 (13.29%) 2,392

Tokyo 37,330 (88.14%) 517 (1.22%) 4,506 (10.64%) 42,353 2,247 (91.71%) 86 (3.51%) 332 (13.55%) 2,450

Table 14: Number of domains with each type of result from tests with the OONI Probe, categorized by what the curl tests

returned (in the Total columns). For example, 74% of domains that were inaccessible in Beijing returned an anomaly in OONI.

99% of domains that returned an error in Taipei were accessible in OONI. Since different URLs from the same domain may

return different types of codes, the sum of percentages may exceed 100%.

curlMeasurement Inaccessible Error

Location Anomaly Error Accessible Total Anomaly Error Accessible Total

Beijing 1,192 (73.63%) 403 (24.89%) 45 (2.78%) 1,619 19 (0.94%) 9 (0.94%) 1,991 (99.01%) 2,011

Hong Kong 1 210 (61.95%) 110 (32.45%) 34 (10.03%) 339 1 (0.15%) 2 (0.15%) 686 (99.71%) 688

Hong Kong 2 315 (52.24%) 265 (43.95%) 32 (5.31%) 603 3 (0.34%) 9 (0.34%) 880 (98.77%) 891

Mumbai 177 (47.84%) 168 (45.41%) 41 (11.08%) 370 3 (0.37%) 4 (0.37%) 812 (99.51%) 816

Shanghai 1,205 (73.70%) 402 (24.59%) 50 (3.06%) 1,635 15 (0.87%) 9 (0.87%) 1,701 (98.95%) 1,719

Singapore 172 (45.03%) 183 (47.91%) 44 (11.52%) 382 3 (0.35%) 9 (0.35%) 858 (98.96%) 867

Taipei 186 (67.39%) 76 (27.54%) 28 (10.14%) 276 8 (1.09%) 3 (1.09%) 726 (99.32%) 731

Tokyo 131 (40.56%) 156 (48.30%) 50 (15.48%) 323 3 (0.41%) 8 (0.41%) 718 (98.76%) 727
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