
Raising the Bar: Improved Fingerprinting Attacks and
Defenses for Video Streaming Traffic

David Hasselquist
Linköping University, Sweden

Sectra Communications, Sweden

Ethan Witwer
Linköping University, Sweden

August Carlson
Linköping University, Sweden

Niklas Johansson
Linköping University, Sweden

Sectra Communications, Sweden

Niklas Carlsson
Linköping University, Sweden

ABSTRACT
Despite the clear dominance of video streaming traffic on the Inter-
net and the significant ramifications of disclosure of which videos
users are streaming, video fingerprinting has received relatively
little attention compared to other traffic analysis domains. Exist-
ing attacks are tailored to undefended traffic and mostly rely on
a few manually crafted features. Meanwhile, potential defenses
are ad hoc, often impractical, and typically only mentioned briefly.
Drawing from progress made on website fingerprinting, we aim
to improve current standards for attacks and defenses for video
streaming traffic while highlighting a critical and underexplored is-
sue on today’s Internet. We show that directional and timing-based
attacks that leverage CNNs are competitive with state-of-the-art
video fingerprinting attacks, in many cases with far less training
data. We also provide the first extensive study of potential defenses,
which considers performance against attacks, overheads, and user
QoE; andwe present a novel defense design that boasts both broader
applicability and greater efficacy than existing proposals.

1 INTRODUCTION
In a world increasingly reliant on online video and where disclosure
of which videos users are streaming can have significant ramifi-
cations, the potential misuse of users’ viewing habits extends far
beyond individual privacy. Despite this, video fingerprinting, where
an attacker eavesdropping on the encrypted connection between
a client and video server tries to determine what content is being
streamed, has received limited attention and almost no defenses
have been proposed or evaluated for this attack scenario.

The status is quite different with website fingerprinting, where
many traffic analysis research efforts have been invested in the last
decade. These works typically consider a local, passive adversary
that monitors a victim’s connection to an encrypted tunnel, such
as a VPN or Tor [19], with the goal of identifying the websites they
are visiting. In this area, progress includes powerful attacks that
leverage various deep learning architectures with automatic feature
extraction [6, 56, 59, 62, 63]; many different defense approaches [9,
17, 22, 24, 26, 31, 34, 45, 46, 48, 52, 55]; public datasets that allow fair

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(4), 167–184
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0112

head-to-head comparisons [45, 52, 59, 63]; as well as several other
theoretical and practical contributions [10, 28, 35, 41, 67, 68, 72].

Status of video fingerprinting research: Meanwhile, other
domains, such as video fingerprinting, have seen relatively little
advancement, with attacks typically employing heuristics or ma-
chine learning techniques on a few manually crafted features and
potential defense schemes often being infeasible or only mentioned
in passing. For example, despite several video fingerprinting at-
tacks having been proposed and shown effective under some set
of assumptions [3, 20, 21, 27, 42, 57, 60, 73, 74, 77], little work has
been put into defenses. Existing suggestions [12, 60, 66, 76] often
highlight a single feature, such as segment size or intervals be-
tween segments, overlooking other critical features exploitable in
attacks; and implementing them would demand extensive modifi-
cations from system designers, highlighting the need for practical
defense techniques that can be deployed seamlessly on existing
infrastructure without burdensome efforts from service providers.

Other limitations of current state of the art: Two other large
limitations with current video fingerprinting works are that most of
them do not share the source code or datasets used for evaluation.
Finally, to be practically applicable, we note that defenses must
consider the tradeoff between the level of privacy protection they
offer and the impact that they may have on the user’s quality of
experience (QoE). Despite utility being a central concept in privacy-
enhancing technologies, the QoE has garnered almost no attention
in the development of traffic analysis defenses thus far.

Design and evaluation of practical defenses: In this paper,
we take several steps to address the above gaps and limitations.
First, we turn our attention towards network-layer defenses. These
operate independently below the application layer, shaping the
flow of packets – a common strategy in the website fingerprinting
setting. This has the benefit of removing the burden from service
providers and providing more generalized protection for different
implementations and setups. Second, we set out to adapt existing
website fingerprinting defenses to video streaming traffic and de-
velop a new tailored defense that is demonstrably successful against
video fingerprinting. Third, to better evaluate the effectiveness of
the defenses we test, we adapt attack and security estimation tech-
niques from the website fingerprinting domain to work for video,
and we show that the attacks often contend with the state-of-the-
art while having far lower observation times. Fourth, we develop a
large-scale evaluation framework that captures both the strengths
of the different defenses and their impact on the user’s QoE. Fifth,
source code and datasets are shared with the paper. Finally, our

167

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0112

Proceedings on Privacy Enhancing Technologies 2024(4) Hasselquist et al.

evaluation provides the first comprehensive analysis of, and practi-
cal insights into, the effectiveness of different attacks and defenses
in the video streaming context. Our results indicate that website
fingerprinting defenses can be modified to provide some protection
against video fingerprinting, but a targeted strategy can achieve
much better results with lower overhead and QoE impact.

Overall, our contributions can be summarized as follows:
• We apply directional and timing-based website fingerprint-
ing attacks to video traffic and show that they rival the state-
of-the-art with far less training data.

• We implement video fingerprinting attacks from prior work
and thoroughly evaluate them against our defenses.

• We develop a live evaluation framework and use it to collect
LongEnough, a large-scale dataset containing both network
traffic and QoE metric data in varying network conditions.

• We adapt two website fingerprinting defenses, FRONT and
RegulaTor, to work with video traffic and assess their effec-
tiveness with both simulations and live deployments.

• We develop and test a new targeted defense, Scrambler,
which achieves competitive results against all evaluated at-
tacks with moderate overhead and low QoE impact.

• We evaluate our defenses under variable bandwidth condi-
tions, providing an indication of how poor network quality
impacts the relative strengths of different types of defenses.

• We advocate for higher standards for video fingerprinting
and pave the way for future defense work by releasing the
source code and datasets used in the paper.

Outline: Section 2 provides background on traffic analysis and
streaming standards. Section 3 outlines our data collection process,
followed by Section 4, which presents our attacks. We then bench-
mark the constant-rate defense in Section 5; detail our adaptations
of the website fingerprinting defenses FRONT and RegulaTor in
Sections 6 and 7, respectively; and introduce our proposed defense,
Scrambler, in Section 8. We conclude the paper in Section 9.

2 BACKGROUND AND RELATEDWORK
2.1 Traffic Analysis
Traffic analysis refers generally to inferences made via observable
patterns in (encrypted) communications, with prior work focusing
primarily on using leaked information to harm user privacy. The
most prominent example is website fingerprinting.

Website Fingerprinting: In website fingerprinting (WF), an
adversarymonitors traffic from some vantage point between a client
and an anonymous communications service. This encompasses a
broad range of potential actors, including malicious users on the
same local network as the victim and the victim’s Internet service
provider, among many others. The attacker visits web pages of
interest and collects the resulting packet traces – these observations
comprise the monitored set and are used to train a classifier. He can
then gather traces from a victim’s connection for classification.

Attacks are typically evaluated in either the closed world, inwhich
it is assumed a user will only visit pages in the monitored set; or
the more realistic open world, requiring the adversary to determine
if the visited page is in the monitored set before classifying further.
These settings also apply to video fingerprinting. Since our main
goal is to evaluate defenses, we opt for the closed world to provide

an advantage to the attacker and approach an upper bound on attack
accuracy. This is typical in WF, though other settings, such as the
one-page setting [68], can provide improved worst-case analysis.

WF attacks: Early WF attacks used heuristics and manually
crafted features, sometimes in combination with machine learn-
ing [30, 32, 33, 49]. However, over the past few years, researchers
have shown that deep learning models such as CNNs [6, 56, 59, 62,
63] and Transformers [18, 37] offer greatly improved performance,
especially against defended traffic, while eliminating the need for
manual feature engineering. Techniques such as augmentation [4]
have also been shown to improve attack performance. Even so,
researchers have only recently shifted their focus to evaluating the
severity of the WF threat in real-world conditions [11, 36], which
pose challenges beyond those presented by artificial datasets.

Since deep learning-based WF classifiers make use of low-level
features common to all types of traffic, such as packet sequences,
directions, and timing, they can be adapted to domains beyond
WF. To evaluate the effectiveness of WF classifiers against video,
we adapt DF [63] and Tik-Tok [56], which we describe in more
detail in Section 4. Notably, these attacks rely on packet sequences,
allowing us to evaluate the utility of packet sequences for video
identification. They are matched only by RF [62] (which has strong
similarities with a video fingerprinting attack we test in terms of
both input format and model structure) and Transformer-based
attacks that are tailored to multi-tab browsing scenarios [18, 37].

WF defenses:Many defenses against WF have been proposed
and scrutinized. Though some employ other techniques [17, 31, 43],
most are network-layer defenses. These directly shape the flow of
traffic by either (1) delaying packets or (2) introducing padding
packets that are indistinguishable from those carrying real appli-
cation data. Several approaches exist to do this, such as random
padding [24, 38, 52], regularization/constant-rate traffic [9, 22, 34],
imitation/supersequences [48, 69, 70], and adversarial machine
learning [26, 46, 55]. Each one supposes a unique tradeoff between
effectiveness, overhead, and other requirements [45].

Even though deep learning classifiers for WF need few modifi-
cations to be effective against video traffic, different defenses are
required due to the continuous and periodic nature of video stream-
ing, as opposed to discrete webpage downloads which consist of
a single instance of back-to-back resource requests and responses.
We evaluate two WF defenses that employ random padding and
regularization, respectively, with changes to make them suitable for
protecting long-lived video streams. FRONT [24] is a padding-only
defense that has the goal of masking useful features that are present
near the beginning of a webpage download trace. RegulaTor [34],
on the other hand, regularizes traces by specifying a more rigid
traffic pattern. We adapt FRONT and RegulaTor to video traffic and
also design a new defense, which adopts a hybrid approach.

Frameworks: Research in traffic analysis has traditionally been
an arms race, with attacks and defenses succeeding each other
regularly – this has inspired the development of frameworks that
provide a platform for defenses. Tor contains a “circuit padding
framework” [50], and Gong et al. [25] propose WFDefProxy, which
allows defenses to be deployed with the aid of Tor bridges [51].
Pulls andWitwer present the standalone Maybenot framework [53],
which uses a probabilistic finite state machine model inspired by
Tor’s circuit padding framework to support network-layer defenses.

168

Raising the Bar: Improved Fingerprinting Attacks and Defenses for Video Streaming Traffic Proceedings on Privacy Enhancing Technologies 2024(4)

0
20

0
20

0
20

0
20

0
20

0
20

Th
ro

ug
hp

ut
 (M

bp
s)

0
20

0
20

0
20

0 100 200 300 400 500 600
Time (s)

0
20

Figure 1: Throughput of 10 video streams using MPEG-DASH

It manages machines which operate on events related to a channel,
such as packets sent or received, and produce actions as output –
e.g., block/delay outgoing traffic or inject padding. In this work,
we use Maybenot to implement all defenses and also provide the
corresponding machines. We perform simulations via theMaybenot
simulator [53] and integrate Maybenot with our deployments.

Other types of traffic analysis: Traffic analysis has also been
shown to pose a significant privacy threat in other settings. For
example, a local, passive adversary can determine smartphone app
usage with high accuracy [13, 40, 65]; identify live streamed content,
VoIP services, and voice assistant traffic including fine-grained
usage details [1, 2, 8, 29, 39, 71]; and determine administrators,
group members, and usage from instant messaging traffic [5, 23].

2.2 HTTP-Based Streaming
MPEGDynamicAdaptive Streaming overHTTP (MPEG-DASH) [64]
is a widely adopted standard for streaming recorded and live video,
with prominent providers such as Netflix [58] and YouTube [77]
employing variations of the protocol. With MPEG-DASH, a content
provider encodes a video file with several different bitrate settings
and then splits each version into a number of segments, which
typically have a fixed duration of a few seconds.

To stream the video, a client must first download a Media Pre-
sentation Description (MPD) containing information about the seg-
ments stored by the server. Using this information, the client can
then request the segments individually using HTTP(S). To achieve
smooth playout and improve robustness in unfavorable network
environments, the client can vary the quality of the requested seg-
ments based on factors such as buffer status and perceived network
conditions, a technique known as adaptive bitrate streaming.

Variable bitrate: To further save bandwidth, video streams are
typically encoded using variable bitrate (VBR) encoding. With VBR,
the bitrate of a video stream is adjusted based on the complexity
of each scene in the video. Scenes with minimal motion or static
images require lower bitrates, as they can be compressed more ef-
fectively without sacrificing quality, whereas action-packed scenes
and those with intricate details demand higher bitrates.

Consequently, when streaming videos over a network, the through-
put needed varies depending on the streamed content. To illustrate
this concept, Figure 1 shows the throughput of 10 different streamed
videos. Even though the traffic is encrypted, it is clear that an at-
tacker can distinguish video streams by their network patterns.

Video
server

Encrypted
stream

Internet
Advers

ary

Client

Figure 2: Video fingerprinting threat model

In our work, we use the MPEG-DASH standard with variable
bitrate encoding when streaming videos. When encoding a video,
we do so using an average bitrate throughout the video.

Quality of Experience: One significant aspect of our work is
its focus on quality of experience (QoE). As the name suggests,
this refers to the user’s perception of the quality of the video play-
back. Though some works have endeavored to provide a unified
quantitative definition of QoE, taking into account multiple factors
(e.g., [44]), these are more useful in the context of optimization,
whereas player-reported metrics are more informative when evalu-
ating the utility of a system, as they are indicative of specific causes
of poor streaming quality. The metrics include buffer size (amount
of data temporarily stored to ensure uninterrupted playback during
streaming), live latency (delay between recording and playback for
live streams), playback rate (video content speed), and bitrate (video
quality). We also extract occurrences of video player wait (small
temporary pauses while buffering data), stall (playback halting due
to a complete lack of data), seek (playback jumping to a different
point), and quality switch (dynamic quality adjustments of DASH).

2.3 Video Fingerprinting
Threat model: The goal of video fingerprinting is to discern which
video a user is watching by monitoring their encrypted connection
to a video server. Figure 2 shows the threat model for this setting.
Similar to WF, we assume a local, passive adversary able to observe
all packets on the network and that the packet payload is secure.
We note that the threat remains relevant regardless of whether a
direct connection is employed: while an adversary could most likely
use the destination IP address to identify the service provider, this
does not reveal the specific videos being watched.

Attacks: In contrast to web traffic, it is not strictly necessary
to have sample traces for a monitored set of videos. Though some
attacks, particularly deep learning-based ones, do use sample traces,
a few attacks are based on the notion that the possible sequences
of segment sizes for any prerecorded video can be computed ahead
of time and matched against the observed segment downloads.

Reed et al. [57, 58] propose to build a k-d tree with keys based
on segment size statistics to identify candidate videos, with further
matching performed using the correlation coefficient. Gu et al. [27]
present a comparable attack that uses burst size differentials instead
of raw values. They compute these for each reference video and
extract them from captured video streams with a heuristic based on
packet times; identification is done using a modification of Dynamic
Time Warping. In this work, we compare our attacks with those by
Reed and Klimkowski [57] and Gu et al. [27] since they are represen-
tative of different heuristic approaches to video fingerprinting and
provide useful insights. We note that a plethora of similar attacks
that use segment sizes have also been proposed [20, 73–75, 77].

Finally, some attacks use collected traces to build a training set.
Dubin et al. [21] test nearest-neighbor classifiers and a support

169

Proceedings on Privacy Enhancing Technologies 2024(4) Hasselquist et al.

Browser

network ns.

eth1

eth0eth0

Maybenot
defense

Browser

network ns.

vnMaybenot
defense

eth1v1

Client Server

nginx

network ns.

v1 Maybenot
defense

nginx

network ns.

vn Maybenot
 defense

Figure 3: Overview of our data collection framework

vector machine, reporting high accuracy with features representing
similarity between sets of segment sizes. Schuster et al. [60] use a
CNNwith time series of bytes/packets per second or average packet
sizes as input. Li et al. [42] follow up on this work, employing similar
features with several deep learning architectures against sniffed
wireless traffic. Bae et al. [3] similarly propose a CNN with a time
series of traffic volumes to identify videos on LTE networks. We
implement Schuster et al.’s [60] attack as a point of comparison.

Defenses: Existing mentions of possible defenses mostly relate
to the modification of segment sizes. Two common suggestions
are to store videos with a constant bitrate (CBR) encoding or to
constrain the VBR encoding [57, 60], resulting in a high QoE impact.
It has also been proposed that segments should be requested at
varying intervals [57, 60], but this would likely be ineffective against
modern attacks. One promising proposition is to pad segments [21,
60, 77] – randomly or to some maximum size – but even this could
likely be defeated on its own in the face of timing-based attacks [56].

Zhang et al. [76] evaluate adversarial machine learning to defend
video traffic, showing that adversarial samples are not a robust
solution. They also consider two Y-differential privacy approaches:
d*-privacy is effective, but at very high overheads; as such, the
Fourier perturbation algorithm is their most promising proposal.
However, it has an unclear impact on QoE, does not address packet
timing, and requires machinery beyond Maybenot. Vaskevich et
al. [66] propose using conditional GANs to generate traffic traces
and shaping streams to match them, but this too has an unknown
effect on QoE and presents significant deployment challenges.

3 DATA COLLECTION
3.1 Framework
Due to the lack of (1) public video fingerprinting traffic datasets and
(2) fingerprinting datasets containing QoE metrics, we collect new
datasets containing both of these andmake them publicly available.1
Figure 3 shows an overview of our data collection framework, which
uses two physical machines to represent the client and server.

On the client side, we launch 𝑛 data collection instances in par-
allel, each isolated in its own network namespace behind a virtual
interface (v1,v2,...,v𝑛). We use the dash.js [16] reference client im-
plementation of MPEG-DASH, allowing us to retrieve QoE metrics,
a key consideration when evaluating defense proposals. Each data
collection instance contains a browser operated using Selenium [61]
that receives a live low-latency stream via dash.js. In addition, each
instance may contain a defense implemented with the Maybenot
framework [53], adding or delaying packets; in the case of no de-
fense, the browser sends packets directly to the virtual interface.
1https://github.com/trafnex/raising-the-bar

0 1000 2000 3000
Segment size (kB)

0.00

0.04

0.08

0.12

PD
F

1 Mbps
2 Mbps
4 Mbps

(a) Probability density function (PDF)

1 Mbps 2 Mbps 4 Mbps0
500

1000
1500
2000

Se
gm

en
t s

ize
 (k

B)

(b) Box plot
Figure 4: Segment size distribution for each quality level

On the server side, we use corresponding network namespaces
for each data collection instance. Here, each namespace contains
an instance of an nginx web server [47] that serves video content
and, as needed, a server-side defense implemented with Maybenot.

Our two machines each have two physical network interfaces,
one of which (eth0) is connected to a management network to
control the data collection; the other (eth1) directly connects the
two machines. Packets from each namespace on one machine are
routed to the corresponding namespace on the other machine over
the interface that directly connects them (eth1). Furthermore, we
add a 5 ms delay on each packet exiting a network namespace. This
results in a round-trip time (RTT) of about 11 ms, with 10 ms of
these added virtually. We also cap each virtual interface at 100 Mbps.

Due to our machine limitations, we run five data collection in-
stances in parallel. Both machines run Ubuntu 22.04 on an 8-core
Intel CPU (Xeon E3-1230 v6 @ 3.50 GHz) with 16 GB RAM and
each network interface supporting 1 Gbps full duplex.

3.2 Datasets
Evaluation of WF attacks and defenses is typically done with a
closed world of around 100 websites [9, 24, 34, 38, 56, 62, 63]. Using
a similar setting, we collect the new LongEnough dataset containing
both network data and QoE metrics. To consider a wide variety of
videos, we select the first 100 available movies on YouTube from
the playlist “The Best Free Movies on Youtube” [7].

We obtain the first 10 minutes of each movie and encode it using
MPEG-DASH [64] into two-second segments with three average
bitrates {1, 2, 4} Mbps. Figure 4 shows the segment size distribution
for each quality. We observe an overall mean of 604 kB across all
three quality levels and that segment size is proportional to bitrate:
doubling the bitrate roughly doubles the segment size. Average
segment sizes are 260 kB with 1 Mbps bitrate, 518 kB with 2 Mbps,
and 1033 kB with 4 Mbps, though some may be smaller (e.g., still
scenes) or larger (action-packed scenes). We refer to Appendix A
for further analysis of video characteristics in our dataset.

After encoding, the segments are made available on our nginx
server. Using a dynamic MPD file, we serve the live stream as
described previously. Similar to current public WF datasets [45, 52,
59], we store packet timing, directions, and sizes as observed over
the network for each trace. In addition, and in contrast to previous
works, we collect QoE metrics for the stream as reported by dash.js.

For undefended traffic, we stream the 100 videos using 10 differ-
ent starting points for the stream and collect 10 samples per video
and starting point. This results in a total of 100 × 10 × 10 = 10 000
samples. We stream up to 10 minutes for every sample but offset
the starting points by one minute, giving a total of 10×∑10

𝑖=1 𝑖 = 550
minutes per video. Combined, our undefended dataset results in
100 × 550 = 55 000 minutes ≈ 917 hours of streaming.

170

https://github.com/trafnex/raising-the-bar

Raising the Bar: Improved Fingerprinting Attacks and Defenses for Video Streaming Traffic Proceedings on Privacy Enhancing Technologies 2024(4)

0
20

0
20

0
20

0
20

0
20

0
20

Th
ro

ug
hp

ut
 (M

bp
s)

0
20

0
20

0
20

0 100 200 300 400 500 600
Time (s)

0
20

Figure 5: Throughput of same video with different offsets

To illustrate our concept of offset, Figure 5 shows the throughput
of the same video, collected independently 10 times using different
offsets. This represents a scenario in which users start the same live
stream at varying points; we highlight that the observed network
traffic is still similar across the independent data collection sessions.

Other user behavior, such as pausing the stream and seeking
to different points, may require modifications to attacks to avoid
performance decreases. Since our goal is to approach a worst-case
evaluation of the defenses we test, we leave such considerations to
future work and instead focus on streams that a user begins watch-
ing at a certain point and continues watching until completion.

While we mostly simulate defenses to quickly estimate perfor-
mance, we also collect defended traces from our physical machines
to obtainQoEmetrics, resulting in the LongEnough-defended dataset.
For each of the 28 defense configurations described later (1 for con-
stant rate, 9 for Adapted FRONT, 9 for Adapted RegulaTor, and 9
for Scrambler), we stream each video once, without any offset. This
results in 28 × 100 × 10 = 28 000 minutes ≈ 467 hours of streaming.

In addition, to better capture the impact of real-world network
effects, we collect the LongEnough-variable dataset by streaming
videos under variable bandwidth conditions. This dataset contains
an additional 917 hours of data – we perform further evaluations of
the defenses we present throughout the paper using it and present
the results and analysis in Appendix B.

Combining both our undefended and defended datasets, and
including the dataset with variable bandwidth conditions, Long-
Enough contains 2 300 hours of streamed network and QoE data.

4 ATTACKS AND UNDEFENDED TRAFFIC
We aim to provide a benchmark for the defenses we present through-
out the paper by adapting WF attacks to video, evaluating them
against undefended traffic, and testing prior video fingerprinting
attacks that are based on a variety of identification strategies.

4.1 DF and Tik-Tok
We adapt DF [63] and Tik-Tok [56] – which use the same CNN
trained on directional and directional time sequences, respectively –
to video traffic. In the directional case, −1 is an incoming packet
(to the client) and +1 an outgoing packet, for the first 𝑁 packets
in a trace; zero padding is used for shorter traces. Directional time
is derived by multiplying each directional value by a timestamp.
Also, we employ DeepSE-WF [67] to measure Bayes error rate and
information leakage of the latent feature spaces of the two attacks.

Table 1: Attack accuracy and security estimation for different
input sizes 𝑁 and corresponding observation times

𝑁
Time (s)
` ± 𝜎

Attack accuracy Security est.
DF Tik-Tok BER MI

5 000 15 ± 3 0.831 0.916 0.041 6.509
10 000 22 ± 9 0.928 0.951 0.024 6.603
15 000 29 ± 13 0.944 0.960 0.019 6.627
20 000 35 ± 16 0.962 0.966 0.016 6.646
25 000 40 ± 17 0.963 0.970 0.014 6.650
30 000 43 ± 17 0.966 0.970 0.013 6.660

With DF and Tik-Tok, each video is considered a unique class,
and its 100 traces are individual data points. We truncate each trace
to consider only the last 60 seconds of data transmission, and the
first 𝑁 of these packets are used as input to the classifiers. Though
in practice an attacker may begin monitoring a stream at different
points in time, using a constant offset represents an advantage
for the attacker, which is desirable when evaluating defenses as it
moves us closer to an upper bound on their protection. We use a
0.8/0.2 train-test split and 5-fold cross-validation for both models.

Hyperparameters: We find the default DF hyperparameters to
be appropriate for video traffic, with the exception of input size:
the canonical choice is 5k in WF, but given the distinct nature of
video traffic, higher values can be far more effective. We show this
by running the attacks and DeepSE-WF with 𝑁 = {5k, 10k, ..., 30k}.
Table 1 shows the attack accuracy as well as Bayes error rate (BER)
and mutual information (MI) using different input sizes 𝑁 . Longer
packet sequences are strongly correlated with better attack perfor-
mance and security estimation: DF’s accuracy is only 83.1% with
𝑁 = 5k, but it rises by nearly 10% when 𝑁 is increased to 10k, with
further improvements at higher values. Though Tik-Tok has bet-
ter baseline performance, its accuracy also increases with 𝑁 , from
91.6% with 𝑁 = 5k to 97.0% with 𝑁 = 30k. Since the sharpest in-
crease is seen between 𝑁 = 5k and 10k with both attacks, we adopt
𝑁 = 10k for analyzing defended traffic in subsequent sections.

Observation time: Given that observation time has traditionally
been used to determine the amount of data provided to a video
fingerprinting attack (since this determines the number of seg-
ments captured), we also analyze the relationship between packet
sequence lengths and elapsed time. Table 1 showsmean observation
time and standard deviation over different input sizes 𝑁 . With the
default DF input size of 5k, the mean observation time is about 15
seconds. However, the required capture time and standard devia-
tion increase with input size: the mean time to reach 10k packets is
about 22 seconds, and for 30k packets, 43 seconds of observation
is needed on average. Despite this, more than 25% of videos still
reach 30k packets in less than 30 seconds. In all cases, the expected
observation time remains lower than in most previous attacks.

Summary: With only 15 seconds of observation on average,
Tik-Tok can reach 91.6% accuracy on undefended traffic. Moreover,
accuracy increases with observation time: this is especially true for
DF, with a near 10% increase (from 83.1% to 92.8%) with a mean of
just 7 seconds of further observation. Note that these values apply to
the case of two-second segments, and different segment durations
may yield different results. However, the primary takeaways are
universal: high accuracy can be achieved in relatively little time, and
an attacker who can observe for longer is at a significant advantage.

171

Proceedings on Privacy Enhancing Technologies 2024(4) Hasselquist et al.

4.2 Comparison with Other Attacks
We also evaluate some previously presented video fingerprinting
attacks [27, 57, 60]; as we could not obtain the code from the authors,
we implement the attacks ourselves and share the code publicly.

Leaky Streams: We implement the Leaky Streams attack by
Reed and Klimkowski [57], with some slight modifications, as a
representative attack that uses features based directly on segment
sizes. When building a video’s fingerprint, we include only the
last 90 seconds (45 segments), both for performance and since any
matches found earlier would be false positives anyway. During
testing, we take the last 60 seconds of each trace as input, with a
slight offset when needed to align with two-second periods. This
allows for better comparison among attacks and eliminates the need
to account for different possible alignments of segment boundaries.

We also find that the thresholds used by Reed and Klimkowski
for the k-d tree range search give low accuracy with our dataset. To
account for this, we tune the attack by fixing the correlation needed
for a match at 0.9 and testing different thresholds on one randomly
selected trace per video (consistent across runs). By searching the
space [0.01, 0.1] for the first threshold and [0.0001, 0.9] for the
second, we see the best settings are {0.07, 0.08, 0.09, 0.1} and 0.03.
All combinations yield 91.0% accuracy; we select 0.07 for the first
threshold since it is the most restrictive and should thus minimize
false positives. We further evaluate this choice with 100 traces per
video: similarly, accuracy is 90.8%. Note that fast mode is never
invoked: two windows cannot overlap by more than five segments
for this to occur, so it is not possible with our setup.

WallsHave Ears:We also implement theWalls Have Ears attack
by Gu et al. [27] due to its use of segment size differentials. We use
only the final 90 seconds (45 segments) of a video in its fingerprint
and the last 60 seconds of each trace for evaluation. To better reflect
the alignment of segment boundaries, we modify the estimation
of segment sizes (Algorithm 1 in [27]) to count backwards from
the end of a trace. We also constrain the P-DTW algorithm to only
allow matches between subsequences of the same length; this is
reasonable for undefended traffic since segment transmissions in
steady-state streaming typically do not exceed two seconds. Finally,
we omit the false rate threshold used by Gu et al. and only use the
predicted label. With 100 traces per video, we attain 95.9% accuracy.

Beauty and the Burst: Lastly, we implement the CNN-based
Beauty and the Burst attack by Schuster et al. [60] using Keras
and TensorFlow v2.15.0. This attack differs from DF and Tik-Tok
in that it uses coarse-grained time series as input instead of packet
sequences. From preliminary testing, we select 500 epochs and
a learning rate of 0.001. Using the same 0.7/0.3 train-test split as
Schuster et al., we obtain 99.9% test accuracy with their PPS (packets
per second) features over the last minute of each trace.

5 CONSTANT-RATE DEFENSE
Ignoring overhead and impact on QoE, the constant-rate defense,
in which packets are simply sent at a constant pace, is provably
optimal and can be considered the maximal defense [9, 22]. Thus,
we evaluate it to provide a baseline for other defenses.

In theory, the defense leaks no timing information – the inter-
packet delay is a fixed value – and since the videos in our dataset all
have the same duration, the number of packets per trace will also be

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(a) Simulated using the Maybenot simulator

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(b) Collected over physical machines using a Maybenot implementation

Figure 6: Throughput using constant-rate defense

the same. Note that we additionally pad all packets to the MTU of
1 500 bytes, which prevents packet sizes from leaking information.

Given that the rate selected does not affect the defense’s theo-
retical properties, we elect to send at 2.4 Mbps on the client and 24
Mbps on the server. Though more precise tuning may be desirable
in a real-world deployment scenario to decrease overhead, these
settings are sustainable on our 100 Mbps links and allow all but a
few colossal segments to be sent within their two-second windows.

Evaluation with CNNs: With an input size of 10k packets, DF
has 1.0% accuracy and Tik-Tok achieves only 0.9% (close to random).
Here, BER is 0.867 and MI only 0.119 bits. Similarly, Beauty and the
Burst achieves only 0.67% test accuracy with the PPS features. This
aligns well with our expectations: no information is leaked by the
constant-rate defense, and any amount of observation should yield
no benefit to the attacker. This makes the constant-rate defense an
optimal choice for users seeking the best possible protection, as
long as its QoE impacts and high overhead (462.45% receive and
518.47% overall bandwidth overhead) are considered acceptable.

Note that the BPS (bytes per second) features for Beauty and the
Burst are equivalent after normalization since we pad to MTU; for
the same reason, the PLEN (average packet size) features do not add
any value. Thus, we focus on PPS for the remainder of the paper.

Evaluation with heuristic attacks: The Leaky Streams attack
achieves 1.0% overall accuracy. This is also the case withWalls Have
Ears, even after relaxing the condition that a query sequence can
only be matched against reference sequences of the same length
in P-DTW. Instead, we enforce that reference sequences should be
greater than or equal to the length of the query sequence: adding
padding between segments can collapse multiple segments into one
period during Algorithm 1 in [27], but the opposite is not true.

Comparison to simulated traces: Figure 6 shows the defense’s
throughput for (a) the simulated case in Maybenot and (b) when
run over physical machines. Here, the simulated case represents the
theoretical defense, sending packets at an exact rate with equal size.
However, we see some small differences during deployment. First,
we note that throughput is about 4 Mbps lower due to Maybenot
not accounting for code execution time. Second, we note some
small variations in the sending rate. It is important to clarify that
these arise from machine-specific performance fluctuations and are
not correlated with packet contents. Therefore, we claim that our
constant-rate implementation does not leak any useful information.

We also observe a significant deviation in the ratio of real packets
to padding packets, primarily at the beginning of a trace. When

172

Raising the Bar: Improved Fingerprinting Attacks and Defenses for Video Streaming Traffic Proceedings on Privacy Enhancing Technologies 2024(4)

0

15

30

Th
ro

ug
hp

ut
(M

bp
s) Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 7: Throughput and video player QoE metrics for an
undefended trace

0

15

30

Th
ro

ug
hp

ut
(M

bp
s)

Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 8: Throughput and video player QoE metrics using
constant-rate defense

there is real traffic to send, the simulator sends it at a maximum pace
and sends no padding packets; in contrast, on physical machines,
we see padding being sent despite there being real packets available.
This is due to congestion control, which tries to better control the
entry of packets into the network and avoid congestion collapse.

Quality of Experience: To better understand how the user is
affected, we also study the QoEmetrics reported by the video player.
For comparison, Figure 7 shows throughput and QoEmetrics (buffer
size, live latency, playback rate, and bitrate) for an undefended trace.
We see that (1) throughput again varies over time; (2) buffer size
fluctuates just below the targeted live latency of 3 seconds; (3) the
playback rate is set at 100% after some initial adjustments; and
(4) the only quality switch occurs at the beginning due to many
segments being sent over an initially low congestion window.

On the other hand, Figure 8 shows throughput and QoE metrics
when using the constant-rate defense. At the top, we again observe
content-independent throughput drops. In the middle, we see peri-
ods with a temporary pause in playback while the player buffers
more data (gray background) intermingled with periods in which
playback has stalled (red), indicating a more severe issue: playback
has completely stopped due to a lack of available data. After these
periods, live latency increases and buffer size shortly follows.

With the increase of live latency, we also observe the playback
rate increase to its maximum (110%), pushing the live latency down
towards its target of 3 seconds. As live latency decreases, so does
playback rate, eventually reaching 100%. With the exception of
three quality switches in the beginning because of initial buffering,
quality remains at the maximum of 4 Mbps, even with the occur-
rences of playback temporarily stopping throughout the stream.

Defense summary:While the constant-rate defense provides
good protection, it comes at the cost of high bandwidth overhead,

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

Figure 9: Throughput using FRONT defense with padding
budget 𝑁 = 25 000 and padding window𝑊 = 14

START

PADDING1

...

PADDING𝜓

NonPaddingSent

NonPaddingRecv

Lim
itRe

ach
ed

PaddingSent
LimitReached

LimitReached

PaddingSent

Figure 10: Adapted FRONT machine

and the user QoE is negatively impacted by short time periods in
which the video player is paused, waiting for an additional buffer.

6 ADAPTED FRONT
FRONT is a padding-based defense againstWF attacks [24]. Its oper-
ation consists of sampling time values from a Rayleigh distribution
and sending padding at those times relative to download start. This
results in a high volume of padding in the first few seconds, with
the goal of masking useful features near the “front” of a trace.

Before a download, the client and server both sample a padding
count from a discrete uniform distribution: 𝑛𝑐 = 𝑈 ([1, 𝑁𝑐]), 𝑛𝑠 =

𝑈 ([1, 𝑁𝑠]). 𝑁𝑐 and 𝑁𝑠 are parameters of the defense, representing
the client and server’s respective padding budgets. Also, both sides
sample a padding window from a continuous uniform distribution:
𝑤𝑐 ,𝑤𝑠 = 𝑈 ([𝑊𝑚𝑖𝑛,𝑊𝑚𝑎𝑥]), where𝑊𝑚𝑖𝑛 and𝑊𝑚𝑎𝑥 are parameters
that determine the range of possible windows for both parties.

After this, the client and server sample 𝑛𝑐 and 𝑛𝑠 values from
Rayleigh distributions with 𝜎 = 𝑤𝑐 and 𝜎 = 𝑤𝑠 , respectively. By
subsequently sending a padding packet at each of these time offsets
relative to download start until the download has finished, FRONT
introduces randomness to the traffic flow to confuse classifiers.

Adapting FRONT: Due to the nature of website downloads and
WF classifiers typically being trained on the initial part of a trace,
one-shot defenses such as FRONT can provide effective protection
in that context. However, video streaming presents different chal-
lenges: the adversary may have access to much more training data
and, consequently, options regarding which part of a trace to use as
input to a classifier. This renders such defenses useless over time.
As an example, Figure 9 shows the throughput of a video when
applying FRONT. The defense produces no padding or perturbation
whatsoever after around 25 seconds, even with a high value of 𝑁 .

To account for this, we test a straightforward modification of
FRONT called Adapted FRONT, which simply repeats the defense
throughout a stream; Figure 10 shows its Maybenot machine. We
leverage an existing implementation, Maybenot FRONT [53], that
uses a pipeline of PADDING states to approximate the Rayleigh
distribution. Its parameters are 𝑁 , corresponding to the padding
budget;𝑊 , which is the maximum padding window; and 𝜓 , the
number of PADDING states. We adapt Maybenot FRONT to video by
replacing the last transition PADDING𝜓 → StateEndwith PADDING𝜓
→ PADDING1 so that the machine continues to pad indefinitely.

173

Proceedings on Privacy Enhancing Technologies 2024(4) Hasselquist et al.

Table 2: Evaluation with selected parameters for Adapted FRONT defense

Quality of ExperienceParameters Bandwidth overhead Attack accuracy Security
estimation Occurrences Activity per quality

𝑁 𝑊 Se
nd

(M
bp

s)

R
ec
ei
ve

(%
)

O
ve

ra
ll

(%
)

D
F

T
ik
-T
ok

B
ea
ut
y

B
ER

M
I

W
ai
t

St
al
l

Se
ek

Q
.s
w
.

W
ai
t1

k

W
ai
t2

k

W
ai
t4

k

Pl
ay

1k

Pl
ay

2k

Pl
ay

4k

4 000 12 0.98 22.92 46.76 0.818 0.833 0.993 0.077 6.312 1 0 0 2 0.3% 0.0% 0.0% 0.2% 0.0% 99.4%
4 500 14 1.03 24.11 47.10 0.818 0.831 0.994 0.080 6.309 1 0 0 2 0.3% 0.0% 0.0% 0.2% 0.0% 99.4%
2 500 7 1.00 23.36 48.25 0.808 0.843 0.996 0.082 6.315 1 0 0 2 0.3% 0.0% 0.0% 0.2% 0.0% 99.4%
3 500 5 2.08 48.49 97.09 0.735 0.784 0.984 0.120 6.048 1 0 0 2 0.3% 0.0% 0.0% 0.2% 0.0% 99.4%
5 000 7 2.09 48.75 99.19 0.733 0.780 0.986 0.123 6.042 1 0 0 2 0.3% 0.0% 0.0% 0.2% 0.1% 99.4%
6 000 9 2.08 48.65 92.93 0.728 0.761 0.990 0.124 5.979 1 0 0 2 0.3% 0.0% 0.0% 0.2% 0.0% 99.4%
5 500 2 8.29 193.53 385.50 0.420 0.494 0.966 0.349 4.659 1 0 0 2 0.3% 0.0% 0.0% 0.2% 0.0% 99.4%
6 000 2 8.95 208.88 414.58 0.413 0.477 0.961 0.370 4.568 1 0 0 2 0.3% 0.0% 0.0% 0.2% 0.0% 99.4%
6 500 2 9.75 227.69 453.65 0.375 0.431 0.966 0.390 4.411 1 0 0 2 0.3% 0.0% 0.0% 0.2% 0.1% 99.4%

6.1 Tuning
To explore Adapted FRONT’s potential to defend video traffic, we
tune the defense by exhaustively searching through the parameter
space 𝑁 = {500, 1 000, ..., 6 500} and𝑊 = {2, 3, ..., 14}. We select the
ranges for 𝑁 and𝑊 based on prior work [24, 53] and preliminary
testing; 𝜓 is fixed at 30 in all cases, as this yields an acceptable
approximation of the Rayleigh distribution [53]. For each of the
resulting 169 settings, we simulate the defense 100 times and record
mean bandwidth overhead, attack accuracy, and BER/MI.

Evaluation: Given that the configurations we simulate result in
different tradeoffs between overhead and protection, we divide them
into three categories of roughly equal size for further analysis. Due
to our focus on QoE, we do this by way of the overall bandwidth
overhead, since it is the only metric from our simulations that
may predict user experience impact. We then select the best three
candidates from each group: low overhead (less than 50%),moderate
overhead ([50, 100)%), and high overhead (100% or more). We use
BER for this, as it has the best correlation with attack accuracies.

Table 2 shows the results of the tuning. Adapted FRONT appears
to be moderately successful against DF and Tik-Tok, but it only
excels with a prohibitive amount of padding. Over 385% overall
overhead is needed to increase BER to 0.35, and none of the best
three moderate configurations reduce accuracy to below 72.8%. In
fact, Tik-Tok even achieves 43.1% on the best configuration, whose
overhead nears 500%; BER remains below 0.40 and MI above 4 bits.

Note that we use 𝑁 = 10k to balance the effects of using too few
packets (underrepresenting an attacker’s maximal capabilities) and
too many packets (less apparent differences in accuracy). Consider-
ing the analysis in Section 4, this does not correspond to more than
a few seconds in an undefended trace, and with much padding, even
less observation is needed to capture the same number of packets.
An attacker could defeat even the best configuration by increasing
𝑁 : with 30k, DF’s accuracy rises to 76.2% and Tik-Tok’s to 83.2%.

Indeed, with Beauty and the Burst, we achieve a minimum of
96.1% accuracy across all configurations. Though this is due in
large part to longer observation time, it is clear that both packet
sequences and time series of packet volumes can be rather effec-
tive against padding-based approaches. We conclude that Adapted
FRONT is ineffective even with exorbitant amounts of overhead.

6.2 Further Evaluation and Discussion
Evaluation with heuristic attacks: For all nine configurations
in Table 2, we repeat the tuning of Leaky Streams, but with ev-
ery threshold setting, we find that it only achieves 1.0% accuracy.
Walls Have Ears is more effective, reaching 53.1% accuracy with the
lightest configuration and 59.1% with (𝑁 = 4 500,𝑊 = 14). This is
because small amounts of padding do not significantly alter segment
size differentials. Also, Walls Have Ears seems to perform better
against configurations with higher𝑊 , even when 𝑁 is increased
slightly: we attribute this to trace-to-trace randomness and the fact
that padding is more spread out over time with larger windows,
reducing the overall distortion of the sequence of segment sizes.
However, the attack degrades with more padding, with accuracy
reduced to 4.8% on the weakest moderate configuration.

Throughput: To better understand the behavior of Adapted
FRONT, Figures 11(a)–11(c) show the receive throughput for the
best configuration in each overhead category. The throughput peaks
corresponding to segment transmissions are still clearly visible with
low overhead (Figure 11(a)). In contrast, with high overhead (Fig-
ure 11(c)), the peaks are more hidden but still rather distinguishable.

Comparison to simulated traces:When comparing the through-
put of simulated traces vs. those collected over physical machines
(Figure 11(d) to 11(b)), we observe minimal differences that can
be accounted for by expected trace-to-trace randomness. That is,
FRONT follows a simple padding scheme that only depends on the
two sampled parameters 𝑛 and𝑤 and not the video being defended.

Quality of Experience: Table 2 also shows the QoE metric val-
ues of each configuration averaged over all videos. Overall, we see
that QoE is unaffected by the defense: playback is still at the highest
quality for over 99% of the streaming time. This is because FRONT
neither delays packets nor injects enough padding to exhaust our
100 Mbps link. Regardless of configuration, there is only one oc-
currence of wait, in the buffering period when initially loading the
stream. Furthermore, we see on average two quality switches at this
time; this is due to bulk segment downloads, as shown in Figure 7.

To illustrate this, Figure 12 shows the QoE for the best moderate
configuration (Figure 11(b)). As with undefended traffic, buffer size
fluctuates just below live latency and never reaches zero. Also, after
some initial adjustments, playback rate stays at 100% and bitrate

174

Raising the Bar: Improved Fingerprinting Attacks and Defenses for Video Streaming Traffic Proceedings on Privacy Enhancing Technologies 2024(4)

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(a) Padding budget 𝑁 = 2 500 and padding window𝑊 = 7

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(b) Padding budget 𝑁 = 6 000 and padding window𝑊 = 9

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(c) Padding budget 𝑁 = 6 500 and padding window𝑊 = 2

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(d) Simulated: padding budget 𝑁 = 6 000 and padding window𝑊 = 9

Figure 11: Throughput using Adapted FRONT collected over physical machines (a-c) and via simulation (d)

0

15

30

Th
ro

ug
hp

ut
(M

bp
s) Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 12: Throughput and video player QoE metrics using
Adapted FRONT with 𝑁 = 6 000 and𝑊 = 9

at 4 Mbps. For the best low- and high-overhead parameters (Fig-
ures 11(a) and 11(c)), we refer to Figures 23 and 24 in Appendix C.

Defense summary: The Adapted FRONT configurations we
test do not negatively impact user QoE. As the defense is padding
only, the same quality can be achieved as with no defense if there
is sufficient bandwidth. However, in all cases, the defense leaks
sensitive information and fails to adequately reduce attack accuracy.

7 ADAPTED REGULATOR
RegulaTor is a regularization defense tailored toWF against Tor [34].
As Tor traffic contains surges–spikes in packet volume surrounded
by periods of lower activity–the defense begins by sending data at
a high rate, which decreases until the number of queued packets
exceeds a threshold. Then, the rate is reset, and the process repeats.

On the server side, RegulaTor accomplishes this by maintaining
a sending rate of 𝑅(𝑡) = 𝑅0 ·𝐷𝑡 packets per second, where 𝑅0 is the
initial rate, 𝐷 is the decay parameter, and 𝑡 is the time elapsed since
the beginning of the current surge. The first surge begins when a
download starts, and a new surge begins whenever the number of
queued packets exceeds𝑇 ·𝑅(𝑡), where𝑇 is the threshold parameter.
On the client side, one packet is sent for every𝑈 packets received.

To reduce overhead, there are two exceptions to this basic model.
After a padding budget of 𝑁 packets has been exceeded, the server
will no longer send padding to reach the target rate. Instead, the rate
is merely limited by delaying real data. The client, in turn, sends
any packet that has been queued for over 𝐶 seconds immediately.

Adapting RegulaTor: We test the Maybenot RegulaTor imple-
mentation [53] with slight modifications to improve its practicality
and applicability to video traffic. Figure 13 shows our modified

STARTBLOCK

...SEND1 SEND𝜔

end
NonPaddingSent

BlockingBegin

LimitReached

PaddingSent

LimitReached

LimitReached

NonPaddingSent PaddingSent

Figure 13: Adapted RegulaTor server-side machine

version, Adapted RegulaTor. Given Maybenot’s current limitations,
RegulaTor’s optimizations cannot be implemented, but a heuristic
is included in Maybenot RegulaTor to approximate surge restarting.
To reduce overhead, we modify the heuristic so that, instead of
restarting probabilistically when non-padding packets are sent, the
server machine transitions with 100% probability if the current rate
is less than 200 packets per second (2.4 Mbps). We also omit BOOT
states to begin sending at the target rate immediately.

7.1 Tuning
With our modifications of Maybenot RegulaTor, the remaining
parameters are 𝑅0, 𝐷 ,𝑈 , and 𝜔 , which is the number of SEND states
used to approximate the decay function. We elect to set 𝑈 to a
constant value of 4, in line with settings tested in prior works [34,
53]. Similarly, we use a fixed value of 𝜔 = 20, which has been
shown to result in a suitable approximation of 𝑅0 · 𝐷𝑡 [53]. For
tuning, we search the parameter space 𝑅0 = {500, 600, ..., 2 000} and
𝐷 = {0.15, 0.25, ..., 0.95}, leading to 144 total test combinations.

Table 3 shows our tuning results for Adapted RegulaTor. As with
FRONT, we divide the tested configurations into three groups of
roughly equal size: (1) less than 62.5% overhead, (2) [62.5, 125)%
overhead, and (3) at least 125% overhead. We also consider latency
metrics, including the time to byte at various progress points, byte
at time at 250 ms intervals, and occurrences of spillage. However,
we opt not to use these values in determining categorizations as
they are correlated with bandwidth overhead. This is because of
RegulaTor’s fixed sending rate: if the rate is high, more padding
will be sent when no real packets are queued, but progress will be
made more quickly when data is queued. Thus, a lower QoE impact
may be expected from higher-overhead configurations.

Evaluation: Adapted RegulaTor reduces the attacks to random
guessing in nearly all cases, even with minimal overhead of about

175

Proceedings on Privacy Enhancing Technologies 2024(4) Hasselquist et al.

Table 3: Evaluation with selected parameters for Adapted RegulaTor defense

Quality of ExperienceParameters Bandwidth overhead Attack accuracy Security
estimation Occurrences Activity per quality

𝑅0 𝐷 Se
nd

(M
bp

s)

R
ec
ei
ve

(%
)

O
ve

ra
ll

(%
)

D
F

T
ik
-T
ok

B
ea
ut
y

B
ER

M
I

W
ai
t

St
al
l

Se
ek

Q
.s
w
.

W
ai
t1

k

W
ai
t2

k

W
ai
t4

k

Pl
ay

1k

Pl
ay

2k

Pl
ay

4k

500 0.75 0.03 0.70 25.83 0.008 0.010 0.007 0.870 0.117 5 7 0 324 0.4% 0.3% 0.2% 9.6% 75.4% 14.0%
500 0.45 0.02 0.61 25.71 0.008 0.010 0.006 0.878 0.112 2 4 0 357 0.4% 0.0% 0.0% 10.7% 74.1% 14.8%
500 0.25 0.02 0.45 25.51 0.009 0.010 0.207 0.878 0.116 2 4 0 352 0.4% 0.0% 0.0% 12.0% 73.8% 13.8%
1 400 0.95 3.19 74.82 118.46 0.008 0.010 0.081 0.784 0.123 10 11 0 294 0.4% 1.4% 0.4% 5.9% 36.5% 55.4%
1 300 0.95 2.89 67.55 109.38 0.010 0.010 0.255 0.790 0.112 9 10 0 319 0.4% 1.1% 0.2% 6.5% 39.7% 52.0%
1 000 0.95 1.75 40.78 75.91 0.007 0.010 0.006 0.796 0.121 7 8 0 363 0.4% 0.7% 0.1% 8.8% 47.1% 42.8%
1 500 0.85 3.52 82.26 127.75 0.008 0.010 0.097 0.776 0.118 11 19 0 255 0.4% 0.6% 0.8% 4.9% 25.1% 68.1%
1 600 0.95 3.89 90.99 138.66 0.007 0.010 0.063 0.777 0.121 11 11 0 265 0.5% 1.5% 0.4% 6.0% 34.6% 57.1%
1 900 0.95 4.93 115.15 168.85 0.007 0.010 0.053 0.787 0.120 11 12 0 238 0.5% 1.5% 0.4% 6.9% 30.5% 60.2%

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(a) Initial rate 𝑅0 = 500 and decay 𝐷 = 0.25

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(b) Initial rate 𝑅0 = 1 000 and decay 𝐷 = 0.95

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(c) Initial rate 𝑅0 = 1 900 and decay 𝐷 = 0.95

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50
Th

ro
ug

hp
ut

(M
bp

s) Real Padding Total

(d) Simulated: initial rate 𝑅0 = 1 000 and decay 𝐷 = 0.95

Figure 14: Throughput using Adapted Regulator collected over physical machines (a-c) and via simulation (d)

25%. This can be explained by its rigid sending rate: as long as
there are queued packets when the rate drops below 200 packets
per second, the server-side machine restarts. The only information
leaked is, thus, a bound on packets in the queue whenever a certain
SEND state is reached. Surprisingly, however, it appears that Beauty
and the Burst can sometimes capitalize on this information: though
three configurations of Adapted RegulaTor reduced its accuracy to
random guessing, we find that the attack achieves 25.5% accuracy
on the configuration (𝑅0 = 1 300, 𝐷 = 0.95), with varying success
against others. This occurs when 𝐷 is low (a bound on queued
packets is leaked more often) and when the initial rate 𝑅0 is high, in
which case a reset to the initial ratemay bemore informative (videos
with large segments or substantial variability; see Appendix A).

7.2 Further Evaluation and Discussion
Evaluation with heuristic attacks: As with FRONT, we tune
the Leaky Streams attack against all configurations in Table 3, and
the attack only reaches 1.0% accuracy with all tested thresholds.
Similarly, Walls Have Ears achieves 1.0% accuracy, plus some negli-
gible variance - the heuristic to determine segment boundaries is
rendered useless by Adapted RegulaTor’s strict traffic pattern.

Throughput: Figures 14(a)-14(c) show the receive throughput
for the best configuration in each of the overhead categories. In
contrast to Adapted FRONT, Adapted RegulaTor completely hides
individual segment transmissions due to its strict sending rate.

Comparison to simulated traces: When comparing the simu-
lated traces to those collected over physical machines (Figure 14(d)

0

15

30

Th
ro

ug
hp

ut
(M

bp
s) Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 15: Throughput and video player QoE metrics using
Adapted RegulaTor with 𝑅0 = 1 000 and 𝐷 = 0.95

to 14(b)), we again only observe slight variations in terms of total
throughput. Similar to the constant-rate defense, we see that the
simulator fails to account for the effects of congestion control.

Quality of Experience: Unfortunately, despite Adapted Regu-
laTor’s promise, it degrades QoE even more than the constant-rate
defense. Table 3 shows the QoE of each configuration. While the
number of occurrences of wait and stall is relatively high, the most
significant QoE impact is caused by quality switches: the player’s
estimation of throughput causes a quality switch several hundred
times during a 10-minute stream. We also see that the play percent-
age is no longer always dominated by the maximum quality.

Figure 15 shows the throughput and QoE for the best moderate-
overhead parameters. Here, we see the reverse “sawtooth” behavior
of the throughput and a few instances in which the buffer stops

176

Raising the Bar: Improved Fingerprinting Attacks and Defenses for Video Streaming Traffic Proceedings on Privacy Enhancing Technologies 2024(4)

START

L1 R1 MIN

BLOCK

L2 R2

NonPaddingSent

BlockingBegin

LimitReached

PaddingSent

Lim
itR
ea
ch
ed

PS

NonPaddingSent

Bl
oc
ki
ng
Be
gi
n

LimitReached

PS
NonPaddingSent

Bl
oc
ki
ng
Be
gi
n

PaddingSent
NonPaddingSent

PaddingSent

NonPaddingSent

(a) Machine #1/2

SIGNAL

L R

Lim
itR
ea
ch
ed

NonPaddingSent

BlockingBeginLimitReached

NonPaddingSent
BlockingBegin

Bl
oc
kin
gB
eg
in

(b) Machine #2/2

Figure 16: Scrambler server-side machines

playing, but most clear are the excessive number of quality switches
being requested. For the best parameters in the low- and high-
overhead categories, we refer to Figures 25 and 26 in Appendix C.

Defense summary: Adapted RegulaTor is highly successful
at reducing the accuracy of all attacks. However, it comes at the
cost of significant QoE impact: unlike Adapted FRONT, it conforms
video traffic to a target shape rather than adding random distortion,
affecting segment transmissions and the player’s ABR algorithms
that determine when to switch qualities. This highlights the impor-
tance of evaluating not only a defense’s performance but also its
effects on QoE, an aspect that many prior works fail to consider.

8 SCRAMBLER: A TARGETED DEFENSE
We aim to create a defense that is well suited to the periodic na-
ture of video traffic. Specifically, we leverage the typical pattern
in DASH streaming, where each period (in our case, every two
seconds) involves a small number of uplink packets requesting a
segment, followed by the server’s response burst. More critically,
we observe that inter-packet timing does not vary much within
segment transmissions, suggesting that timing information can be
perfectly concealed by maintaining a constant rate close to the
observed average. In any case, there should be no QoE impact as
long as each segment is transmitted in full without spilling over to
another window, as the client will still have buffered segments.

With no sensitive timing information leaked, the only remaining
property to conceal is segment size. However, volatile network en-
vironments and buffering periods must also be taken into account.
These considerations inform the design of Scrambler, our proposed
defense for video streaming traffic. During steady-state stream-
ing, its operation consists of (1) sending a configurable minimum
number of packets at a constant rate during each burst and (2) in-
troducing a random amount of trailing padding once all remaining

application data has been sent. As a consequence of Scrambler’s
design, padding overhead should be decreased during buffering,
and the minimum packet constraint is relaxed when spillage occurs.
On the client side, we run a simple 3 Mbps constant-rate defense.

Operation: Figure 16 shows Scrambler’s two machines, run con-
currently on the server side. Machine #1 (Figure 16(a)) encodes the
primary logic of the defense, while Machine #2 (Figure 16(b)) counts
the number of real packets sent during a segment transmission. If
a certain threshold is exceeded, a signal is sent to Machine #1 via a
BlockingBegin event. Transitions that occur simultaneously in both
machines due to signaling are indicated with blue arrows.

Machine #1 infers the start of a new burst when a non-padding
packet is sent. This results in a transition from START to BLOCK,
which enables infinite blocking of outgoing packets with the bypass
and replace flags set. bypass allows padding actions to ignore any
blocking in effect, and replace specifies that any queued application
data can be sent instead of padding; the combination of the two
allows a constant rate to be maintained. Once blocking starts, an-
other transition occurs to MIN, which sends a packet with a timeout
value of 𝛿 , a defense parameter specifying the inter-packet delay.
Repeated self-transitions will occur until 𝑁 packets (the minimum
per burst) have been sent, at which time a LimitReached event will
be triggered within the framework, causing a transition to R1.

L1 and R1’s actions are also to send a packet with timeout 𝛿 , but
any non-padding data sent while in these states causes a transition
from one to the other; thus, a new limit is sampled, and the tran-
sition back to START is delayed. On the other hand, if no further
data is queued, a number of trailing packets are sent – which cause
self-transitions via the resultant PaddingSent (PS) events – and the
machine will then restart. The limit for both L1 and R1 is sampled
uniformly from the range [𝑃𝑚𝑖𝑛 , 𝑃𝑚𝑎𝑥], which are parameters that
represent the minimum and maximum trailing padding count.

Two additional states, L2 and R2, are also included in Machine #1.
These are designed to further reduce the QoE impact of the defense
and improve its efficacy against attacks. When the number of non-
padding packets sent during a burst exceeds 1.25 · 𝑁 , Machine #2
causes a BlockingBegin event. If Machine #1 is in L1 or R1 at this
time, it transitions to L2 or R2, which are identical to L1 and R1
except for their limits: these are sampled from the range [𝑃𝑚𝑖𝑛/4,
𝑃𝑚𝑎𝑥/4]. Thus, less padding is sent following abnormally large
segments, reducing their apparent sizes towards typical ones.

In Machine #2, L and R count non-padding packets sent during a
single segment transmission (a cycle of Machine #1). They specify
zero-duration blocking without replace, so they are effectively no-
op states2. When a sufficiently small segment has been sent, a
transition occurs from L to R or vice versa, resetting the count; but
if the limit 1.25 · 𝑁 is reached, a transition to SIGNAL occurs. This
state sets infinite blocking with replace, causing a BlockingBegin
event. Afterward, counting resumes with a transition to R.

8.1 Tuning
We select the best parameters for Scrambler by exhaustively search-
ing the space 𝛿 = {120, 160, 200} `𝑠 , 𝑁 = {500, 700, ..., 1 500}, and
𝑃𝑚𝑖𝑛 = 𝑃𝑚𝑎𝑥 = {400, 700, 1 000}, excluding combinations in which

2Note that, in Maybenot v1, this requires a slightly modified integration: zero-duration
blocking actions without replace must not cause a BlockingBegin event.

177

Proceedings on Privacy Enhancing Technologies 2024(4) Hasselquist et al.

Table 4: Evaluation with selected parameters for Scrambler defense

Quality of ExperienceParameters Bandwidth overhead Attack accuracy Security
estimation Occurrences Activity per quality

𝛿 𝑁 𝑃𝑚𝑖𝑛 𝑃𝑚𝑎𝑥 Se
nd

(M
bp

s)

R
ec
ei
ve

(%
)

O
ve

ra
ll

(%
)

D
F

T
ik
-T
ok

B
ea
ut
y

B
ER

M
I

W
ai
t

St
al
l

Se
ek

Q
.s
w
.

W
ai
t1

k

W
ai
t2

k

W
ai
t4

k

Pl
ay

1k

Pl
ay

2k

Pl
ay

4k

160 500 400 1 000 3.01 120.36 190.58 0.163 0.176 0.817 0.663 2.093 4 2 0 14 0.7% 0.1% 0.4% 2.8% 4.3% 91.7%
200 700 400 1 000 3.01 120.27 190.48 0.123 0.137 0.700 0.689 1.752 5 2 0 14 0.7% 0.1% 0.4% 4.7% 4.3% 89.8%
160 700 400 1 000 3.01 124.06 194.27 0.128 0.142 0.769 0.693 1.823 4 2 0 14 0.7% 0.1% 0.3% 5.7% 6.1% 87.1%
160 1 100 400 1 000 3.01 163.93 234.13 0.061 0.065 0.005 0.762 1.155 4 2 0 14 0.7% 0.1% 0.4% 5.7% 3.3% 89.8%
120 1 100 400 1 000 3.01 165.57 235.77 0.064 0.072 0.386 0.770 1.120 4 2 0 16 0.7% 0.1% 0.3% 2.9% 2.5% 93.6%
200 1 100 400 1 000 3.01 159.86 230.06 0.061 0.056 0.313 0.773 1.127 4 2 0 15 0.7% 0.1% 0.3% 2.8% 5.1% 90.9%
200 1 500 400 1 000 3.01 211.98 282.17 0.042 0.029 0.007 0.808 0.864 4 2 0 14 0.7% 0.1% 0.3% 3.8% 5.2% 89.9%
160 1 500 400 1 000 3.01 215.43 285.62 0.042 0.040 0.007 0.808 0.895 4 2 0 14 0.7% 0.1% 0.3% 3.8% 7.0% 88.1%
120 1 500 400 1 000 3.01 213.82 284.00 0.039 0.041 0.182 0.814 0.898 4 2 0 14 0.7% 0.1% 0.3% 3.8% 5.2% 89.8%

𝑃𝑚𝑖𝑛 > 𝑃𝑚𝑎𝑥 . This results in a total of 108 configurations. The
ranges of 𝛿 and 𝑁 are based on the distributions of inter-packet
times within segment transmissions and the 4 Mbps burst sizes in
our dataset (Figure 4), and we test values for 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 that
seem reasonable with 100 Mbps and two-second segments.

Evaluation: Table 4 shows the best configurations in three sets
of similar size: (1) less than 200% overall overhead; (2) [200, 250)%
overhead; and (3) at least 250% overhead. We find that Scrambler is
highly effective above 120% receive and 190% overall overhead: the
weakest configuration reduces the maximum accuracy of DF and
Tik-Tok to 17.6% with 10k packets (BER 0.66, MI about two bits).
The best configuration we test (𝛿 = 120, 𝑁 = 1 500) achieves an
even further reduction to 4.1% accuracy (BER 0.81, less than one bit
of MI) with 214% receive and 284% overall overhead, a significant
overhead reduction compared to the constant-rate defense (462%
receive, 518% overall) while still achieving strong protection.

Beauty and the Burst is more effective, with up to 81.7% accuracy
on the three low-overhead configurations. However, accuracy drops
markedly with a slight 35-40% increase in overall overhead: (𝛿 =

160, 𝑁 = 1 100) reduces accuracy to 0.5%, and the other moderate
configurations still provide strong protection with a maximum of
38.6% accuracy. As expected, the heavy configurations are the most
effective, with 0.7%, 0.7%, and 18.2% accuracy, respectively.

From this, it appears that random guessing can be achieved by
only changing 𝛿 . However, we repeat the simulations and find that
Beauty and the Burst’s cross-validated accuracy is sometimes 1%
with everymoderate and high-overhead configuration, and accuracy
can be as low as 30.5% with low overhead: Scrambler’s randomiza-
tion is effective in the worst case, but it is often exceptional.

Note that all of the best configurations in Table 4 have 𝑃𝑚𝑖𝑛 = 400
and 𝑃𝑚𝑎𝑥 = 1000: this is the most permissive possible range of
trailing padding within the values we test and creates the most
variance. Thus, Scrambler’s success can be attributed in part to
the randomness it adds to segment sizes, which serves to reduce
the correspondence between undefended and defended segments.
Larger values of 𝑁 also lead to increased efficacy, since segments
can be more effectively concealed when their size is less than 𝑁 .

Finally, increasing the input size of DF and Tik-Tok does not
substantially improve an attacker’s performance against Scrambler:
with the strongest configuration (𝛿 = 120, 𝑁 = 1 500), DF and
Tik-Tok only achieve 6.2% and 6.0% accuracy, respectively, with 30k

packets - a marginal increase from their 10k-packet accuracy. With
the lighter (𝛿 = 160, 𝑁 = 500) setting, accuracy increases to 45.7%
for DF and 47.0% for Tik-Tok. Though this change is more notable
than with the best parameters, it suggests that well more than 43
seconds of observation (Table 1) would be needed, on average, to
have high confidence in the classifiers’ predictions.

8.2 Further Evaluation and Discussion
Evaluation with heuristic attacks:We again tune Leaky Streams
and find that it cannot reach more than 1.0% accuracy against
Scrambler. Similarly, Walls Have Ears achieves its highest accuracy
of 3.9% against the weakest configuration (𝛿 = 160, 𝑁 = 500), and
this decreases to random guessing with moderate overhead.

Throughput: Figures 17(a)–17(c) show the receive throughput
for the best Scrambler configuration in each overhead category. We
see that segment peaks are well hidden, and the defense operates
periodically with two-second cycles, except when spillage occurs.

Comparison to simulated traces: Comparing simulated traces
to those collected over physical machines (Figure 17(d) to 17(b)),
we see more segment spillage near the beginning of a trace, again
due to the simulator being able to model sending real packets at an
unlimited speed unbounded by congestion control.

Quality of Experience: As expected, Scrambler’s targeted de-
sign affords it a rather high QoE, as shown in Table 4. Here, regard-
less of configuration, the video is played at the highest quality the
vast majority of the time. In fact, for 75% of the videos in Long-
Enough, the highest quality is played over 96% of the time. While
we do experience some periods in which the video player waits for
more data, and some quality switches, these mostly occur at the be-
ginning of the trace and only last a few seconds. Figure 18 shows the
throughput and QoE for the best moderate-overhead configuration:
it is clearly visible that after some initial buffering at the beginning,
the video plays without any issues, and the defense does not impact
QoE. For the best configurations in the low- and high-overhead
categories, we refer to Figures 27 and 28 in Appendix C.

Defense analysis: Although we have a high degree of success
with Scrambler, a general approach based on random sampling will
always provide inadequate protection (with reasonable overhead)
for certain videos with sufficiently unique fingerprints. For example,
we observe that a few videos in our dataset contain unusually large
segments within the last 60 seconds; thus, classification accuracy

178

Raising the Bar: Improved Fingerprinting Attacks and Defenses for Video Streaming Traffic Proceedings on Privacy Enhancing Technologies 2024(4)

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(a) Delay 𝛿=160, burst size 𝑁=700, padding trail 𝑃𝑚𝑖𝑛=400, 𝑃𝑚𝑎𝑥=1 000

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(b) Delay 𝛿=200, burst size 𝑁=1 100, padding trail 𝑃𝑚𝑖𝑛=400, 𝑃𝑚𝑎𝑥=1 000

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(c) Delay 𝛿=120, burst size 𝑁=1 500, padding trail 𝑃𝑚𝑖𝑛=400, 𝑃𝑚𝑎𝑥=1 000

0 20 40 60 80 100 120 140 160 180
Time (s)

0

25

50

Th
ro

ug
hp

ut
(M

bp
s) Real Padding Total

(d) Simulated: delay 𝛿=200, burst size 𝑁=1 100, padding trail 𝑃𝑚𝑖𝑛=400, 𝑃𝑚𝑎𝑥=1 000

Figure 17: Throughput using Scrambler collected over physical machines (a-c) and via simulation (d)

0

15

30

Th
ro

ug
hp

ut
(M

bp
s) Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 18: Throughput and video player QoE metrics using
Scrambler with 𝛿 = 200, 𝑁 = 1 100, 𝑃𝑚𝑖𝑛 = 400, 𝑃𝑚𝑎𝑥 = 1 000

for these particular videos is greater than the average. In particular,
with (𝛿 = 120, 𝑁 = 1 500), most videos have nearly 0% accuracy, but
we observe values as high as 85% with DF and 73% with Tik-Tok.

This alludes to an inherent tradeoff between overhead and pro-
tection that has been discussed by many authors [3, 14, 15]: while
we could arbitrarily raise 𝑁 to achieve perfect protection with
Scrambler, this would imply prohibitive overhead and QoE reduc-
tion. Similarly, by reducing 𝑁 , 𝑃𝑚𝑖𝑛 , and 𝑃𝑚𝑎𝑥 , we could minimize
overhead, but trace patterns would not be well concealed. In sum-
mary, with Scrambler, and in fact with any defense that does not
take advantage of prior knowledge of the characteristics of indi-
vidual videos or sets of videos, we can only hope for an acceptable
balance between average-case protection, overhead, and QoE.

Despite this, we expect similar results to those we report for
Scrambler with any classifier, not just the attacks we test: it sim-
ply reduces the correlation between the original and defended se-
quences of segment sizes while concealing other features. Also, its
general applicability affords it greater possibilities for deployment
than, e.g., SMAUG [66], which requires significant extra infrastruc-
ture on the server side; and its minimal and predictable QoE impact
makes it more practical than defenses with significant variance
(such as [76]). Finally, we note that we use a 3 Mbps constant rate
on the client side to further reduce the accuracy of packet sequence-
based attacks, but Scrambler’s protection is mostly provided by
the server-side machines; thus, overall overhead could be further
decreased in practice while maintaining strong protection.

Defense summary: Our proposed Scrambler defense, targeted
for video streaming using MPEG-DASH, is successful in reducing

attack accuracy while maintaining high QoE. It represents a tradeoff
between the high overhead and limited efficacy of Adapted FRONT
and the prohibitive QoE impacts of Adapted RegulaTor. Though the
QoE is not as high as undefended traces (which we consider perfect),
the defense provides accuracy close to that of the constant-rate
defense, better QoE, and much lower bandwidth overhead.

9 CONCLUSIONS
We present the first rigorous study of video fingerprinting defenses,
considering attack performance, overheads, and QoE. Our compre-
hensive analyses provide a host of important insights, which we
hopewill accelerate future video fingerprintingwork and lead to the
development of practical defenses that provide adequate protection
while accounting for network impacts and user experience.

Attacks: We show that heuristic strategies and attacks based
on manually crafted features – of which there are many – degrade
significantly when confronted with defended traffic, regardless of
the defense technique. In contrast, attacks that leverage deep learn-
ing provide the best performance against both undefended and
defended traffic. As it is our intention to nudge video fingerprint-
ing research in the direction of potential defenses, we suggest that
future work should focus on such attacks, as they allow for better
estimation of the maximal protection defenses can provide. How-
ever, we note that heuristic attacks are more explainable and may
provide useful insights into effective defense strategies, particularly
those that do not alter the periodic nature of the original traffic.

Defenses: Our evaluations hint that naive padding-only ap-
proaches cannot provide acceptable protection with reasonable
overheads, yet strong regularization may have prohibitive impacts
on QoE. Our proposed defense, Scrambler, achieves a more accept-
able tradeoff; however, we identify weaknesses inherent to general
defense strategies that may be considered in future work. We also
note that factors such as code execution time and congestion con-
trol can cause real-world deployments to diverge from theoretical
defense behavior in unexpected ways; consideration of these issues
also represents a fruitful direction for future study. Overall, our
work underscores the need for more effective defenses that take
into account not only protection but also usability and practicality
under wide-scale deployment. As video streaming continues to
monopolize residential network traffic, it is crucial to address the
very real threat of identification of users’ viewing habits, which
can be accomplished by a number of relatively weak adversaries.

179

Proceedings on Privacy Enhancing Technologies 2024(4) Hasselquist et al.

ACKNOWLEDGMENTS
We would like to thank Matthias Beckerle and Tobias Pulls for help-
ful discussions that contributed substantially to the work presented
in this paper. This work was partially supported by the Swedish
Foundation for Strategic Research (SSF) and the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

REFERENCES
[1] Dilawer Ahmed, Aafaq Sabir, and Anupam Das. 2023. Spying through Your Voice

Assistants: Realistic Voice Command Fingerprinting. In Proc. USENIX Security.
[2] J.S. Atkinson, M. Rio, J.E. Mitchell, and G. Matich. 2014. Your WiFi Is Leaking:

Ignoring Encryption, Using Histograms to Remotely Detect Skype Traffic. In
Proc. IEEE Military Communications Conference (MILCOM).

[3] Sangwook Bae,Mincheol Son, DongkwanKim, CheolJun Park, Jiho Lee, Sooel Son,
and Yongdae Kim. 2022. Watching the Watchers: Practical Video Identification
Attack in LTE Networks. In Proc. USENIX Security.

[4] Alireza Bahramali, Ardavan Bozorgi, and Amir Houmansadr. 2023. Realistic
Website Fingerprinting By Augmenting Network Traces. In Proc. ACM CCS.

[5] Alireza Bahramali, Ramin Soltani, Amir Houmansadr, Dennis Goeckel, and Don
Towsley. 2020. Practical traffic analysis attacks on secure messaging applications.
In Proc. Network and Distributed System Security (NDSS).

[6] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. 2018. Var-CNN:
A data-efficient website fingerprinting attack based on deep learning. In Proc.
Privacy Enhancing Technologies (PETS).

[7] BigtimeFreeMovies. 2023. The Best Free Movies on Youtube. https://www.
youtube.com/playlist?list=PLm9l7EEbJuhzLTz8aVdDfYIn2TQ_X_-0S.

[8] Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, et al. 2007. Revealing
Skype traffic: when randomness plays with you. SIGCOMM CCR (2007).

[9] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In Proc. ACM Computer and Communications Security (CCS).

[10] Giovanni Cherubin. 2017. Bayes, not Naïve: Security Bounds on Website Finger-
printing Defenses. In Proc. Privacy Enhancing Technologies (PETS).

[11] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. 2022. Online website
fingerprinting: Evaluating website fingerprinting attacks on tor in the real world.
In Proc. USENIX Security.

[12] Thilini Dahanayaka, Guillaume Jourjon, and Suranga Seneviratne. 2022. Dis-
secting traffic fingerprinting CNNs with filter activations. Computer Networks
(2022).

[13] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song.
2013. NetworkProfiler: Towards automatic fingerprinting of Android apps. In
Proc. IEEE INFOCOM.

[14] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. 2018.
Anonymity trilemma: Strong anonymity, low bandwidth overhead, low latency-
choose two. In Proc. IEEE Security and Privacy (S&P).

[15] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. 2020.
Comprehensive anonymity trilemma: User coordination is not enough. In Proc.
Privacy Enhancing Technologies (PETS).

[16] DASH-Industry-Forum. 2024. dash.js. https://dashjs.org/.
[17] Wladimir De la Cadena, Asya Mitseva, Jens Hiller, et al. 2020. TrafficSliver:

FightingWebsite Fingerprinting Attacks with Traffic Splitting. In Proc. ACM CCS.
[18] Xinhao Deng, Qilei Yin, Zhuotao Liu, Xiyuan Zhao, Qi Li, Mingwei Xu, Ke Xu,

and Jianping Wu. 2023. Robust multi-tab website fingerprinting attacks in the
wild. In Proc. IEEE S&P.

[19] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In Proc. USENIX Security. 303–320.

[20] Meijie Du,Minchao Xu, Kedong Liu,Weitao Tang, Lijuan Zheng, and Qingyun Liu.
2023. Long-Short Terms Frequency: A Method for Encrypted Video Streaming
Identification. In Proc. Computer Supported Cooperative Work in Design (CSCWD).

[21] Ran Dubin, Amit Dvir, Ofir Pele, and Ofer Hadar. 2017. I Know What You Saw
Last Minute—Encrypted HTTP Adaptive Video Streaming Title Classification.
IEEE Trans. on Information Forensics and Security (TIFS) (2017).

[22] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.
Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail.
In Proc. IEEE Symposium on Security and Privacy (S&P).

[23] Yanjie Fu, Hui Xiong, Xinjiang Lu, Jin Yang, and Can Chen. 2016. Service usage
classification with encrypted internet traffic in mobile messaging apps. IEEE
Trans. on Mobile Computing (2016).

[24] Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against
Website Fingerprinting. In Proc. USENIX Security.

[25] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2021. WFDefProxy:
Modularly implementing and empirically evaluating website fingerprinting de-
fenses. arXiv:2111.12629 (2021).

[26] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2022. Surakav: Gener-
ating Realistic Traces for a Strong Website Fingerprinting Defense. In Proc. IEEE
Symposium on Security and Privacy (S&P).

[27] Jiaxi Gu, Jiliang Wang, Zhiwen Yu, and Kele Shen. 2018. Walls Have Ears: Traffic-
based Side-channel Attack in Video Streaming. In Proc. IEEE INFOCOM.

[28] David Hasselquist, Martin Lindblom, and Niklas Carlsson. 2022. Lightweight
Fingerprint Attack and Encrypted Traffic Analysis on News Articles. In Proc. IFIP
Networking.

[29] David Hasselquist, Christian Vestlund, Niklas Johansson, and Niklas Carlsson.
2022. Twitch Chat Fingerprinting. In Proc. IFIP TMA.

[30] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In Proc. USENIX Security.

[31] Sébastien Henri, Gines Garcia-Aviles, Pablo Serrano, Albert Banchs, and Patrick
Thiran. 2020. Protecting against Website Fingerprinting with Multihoming. In
Proc. Privacy Enhancing Technologies (PETS).

[32] Dominik Herrmann, RolfWendolsky, and Hannes Federrath. 2009. Website finger-
printing: attacking popular privacy enhancing technologies with the multinomial
naïve-bayes classifier. In Proc. ACM Workshop on Cloud Computing Security.

[33] Andrew Hintz. 2002. Fingerprinting websites using traffic analysis. In Proc.
Workshop on Privacy Enhancing Technologies.

[34] James K Holland and Nicholas Hopper. 2022. RegulaTor: A Straightforward
Website Fingerprinting Defense. In Proc. Privacy Enhancing Technologies (PETS).

[35] Rob Jansen and Nicholas J Hopper. 2011. Shadow: Running Tor in a box for
accurate and efficient experimentation. (2011).

[36] Rob Jansen, Ryan Wails, and Aaron Johnson. 2024. A Measurement of Genuine
Tor Traces for Realistic Website Fingerprinting. arXiv:2404.07892 (2024).

[37] Zhaoxin Jin, Tianbo Lu, Shuang Luo, and Jiaze Shang. 2023. Transformer-based
Model for Multi-tab Website Fingerprinting Attack. In Proc. ACM CCS.

[38] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.
2016. Toward an efficient website fingerprinting defense. In Proc. ESORICS.

[39] Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and Eric Peta-
jan. 2017. BUFFEST: Predicting Buffer Conditions and Real-time Requirements
of HTTP(S) Adaptive Streaming Clients. In Proc. ACM MMSys.

[40] Jianfeng Li, Shuohan Wu, Hao Zhou, Xiapu Luo, Ting Wang, et al. 2022. Packet-
Level Open-World App Fingerprinting on Wireless Traffic. In Proc. NDSS.

[41] Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring Information
Leakage in Website Fingerprinting Attacks and Defenses. In Proc. ACM CCS.

[42] Ying Li, Yi Huang, Richard Xu, Suranga Seneviratne, Kanchana Thilakarathna,
Adriel Cheng, Darren Webb, and Guillaume Jourjon. 2018. Deep Content: Unveil-
ing Video Streaming Content from Encrypted WiFi Traffic. In Proc. IEEE Network
Computing and Applications (NCA).

[43] Xiapu Luo, Peng Zhou, Edmond WW Chan, Wenke Lee, Rocky KC Chang, and
Roberto Perdisci. 2011. HTTPOS: Sealing Information Leaks with Browser-Side
Obfuscation of Encrypted Flows. In Proc. NDSS.

[44] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proc. ACM SIGCOMM.

[45] Nate Mathews, James K Holland, Se Eun Oh, Mohammad Saidur Rahman,
Nicholas Hopper, and Matthew Wright. 2023. SoK: A critical evaluation of
efficient website fingerprinting defenses. In Proc. IEEE S&P.

[46] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2021. Defeating DNN-
Based Traffic Analysis Systems in Real-Time With Blind Adversarial Perturba-
tions. In Proc. USENIX Security.

[47] NGINX. 2024. https://www.nginx.com/.
[48] Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A BespokeWebsite

Fingerprinting Defense. In Proc. ACM WPES.
[49] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-

nen, et al. 2016. Website Fingerprinting at Internet Scale. In Proc. NDSS.
[50] Mike Perry and George Kadianakis. 2020. Circuit Padding Developer

Documentation. https://github.com/torproject/tor/blob/main/doc/HACKING/
CircuitPaddingDevelopment.md.

[51] Tor Project. 2024. Pluggable Transport Specification (Version 1). https://gitweb.
torproject.org/torspec.git/tree/pt-spec.txt.

[52] Tobias Pulls. 2020. Towards Effective and Efficient Padding Machines for Tor.
arXiv:2011.13471 (2020).

[53] Tobias Pulls and Ethan Witwer. 2023. Maybenot: A Framework for Traffic Analy-
sis Defenses. In Proc. ACM Workshop on Privacy in the Electronic Society (WPES).

[54] Darijo Raca, Jason J Quinlan, Ahmed H Zahran, and Cormac J Sreenan. 2018.
Beyond throughput: A 4G LTE dataset with channel and context metrics. In Proc.
ACM Multimedia Systems Conference (MMSys).

[55] Mohammad Saidur Rahman, Mohsen Imani, Nate Mathews, and MatthewWright.
2021. Mockingbird: Defending against deep-learning-based website fingerprint-
ing attacks with adversarial traces. IEEE TIFS (2021).

[56] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2020. Tik-Tok: The Utility of Packet Timing in
Website Fingerprinting Attacks. In Proc. Privacy Enhancing Technologies (PETS).

[57] Andrew Reed and Benjamin Klimkowski. 2016. Leaky streams: Identifying
variable bitrate DASH videos streamed over encrypted 802.11n connections. In
Proc. IEEE Consumer Communications & Networking Conference (CCNC).

180

https://www.youtube.com/playlist?list=PLm9l7EEbJuhzLTz8aVdDfYIn2TQ_X_-0S
https://www.youtube.com/playlist?list=PLm9l7EEbJuhzLTz8aVdDfYIn2TQ_X_-0S
https://dashjs.org/
https://www.nginx.com/
https://github.com/torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.md
https://github.com/torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.md
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt

Raising the Bar: Improved Fingerprinting Attacks and Defenses for Video Streaming Traffic Proceedings on Privacy Enhancing Technologies 2024(4)

0 20 40 60 80 100
Video

0
2
4
6
8

10
12
14
16
18

M
ax

. s
eg

m
en

t s
ize

 (M
B) 4 Mbps

2 Mbps
1 Mbps

Figure 19: Maximum segment size per
video for each quality level

0 20 40 60 80 100
Video

260
280
300
320
340
360

To
ta

l s
ize

 (M
B)

1.0
1.1
1.2
1.3
1.4
1.5
1.6

M
ea

n
se

gm
en

t s
ize

 (M
B)

Figure 20: Total size vs. mean segment
size per video at 4 Mbps bitrate

0 20 40 60 80 100
Video

102

103

Ab
s.

di
ffe

re
nt

ia
l s

um

Figure 21: Absolute differential sum per
video at 4 Mbps bitrate

[58] Andrew Reed and Michael Kranch. 2017. Identifying HTTPS-Protected Netflix
Videos in Real-Time. In Proc. ACM CODASPY.

[59] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. 2018. Automated Website Fingerprinting through Deep Learning. In Proc.
Network and Distributed System Security (NDSS).

[60] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2017. Beauty and the Burst:
Remote Identification of Encrypted Video Streams. In Proc. USENIX Security.

[61] Selenium. 2024. https://www.selenium.dev/.
[62] Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Liehuang Zhu, and Ke Xu. 2023. Sub-

verting Website Fingerprinting Defenses with Robust Traffic Representation. In
Proc. USENIX Security.

[63] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep Fin-
gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.
In Proc. ACM Computer and Communications Security (CCS).

[64] Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over
the Internet. IEEE MultiMedia (2011).

[65] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2018.
Robust Smartphone App Identification via Encrypted Network Traffic Analysis.
IEEE Trans. on Information Forensics and Security (TIFS) (2018).

[66] Alexander Vaskevich, Thilini Dahanayaka, Guillaume Jourjon, and Suranga
Seneviratne. 2021. Smaug: Streaming media augmentation using CGANs as
a defence against video fingerprinting. In Proc. IEEE NCA.

[67] Alexander Veicht, Cedric Renggli, and Diogo Barradas. 2023. DeepSE-WF: Unified
Security Estimation for Website Fingerprinting Defenses. In Proc. PETS.

[68] TaoWang. 2021. The One-Page Setting: AHigher Standard for EvaluatingWebsite
Fingerprinting Defenses. In Proc. ACM CCS.

[69] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. In Proc.
USENIX Security.

[70] Tao Wang and Ian Goldberg. 2017. Walkie-Talkie: An Efficient Defense Against
Passive Website Fingerprinting Attacks. In Proc. USENIX Security.

[71] Xinyuan Wang, Shiping Chen, and Sushil Jajodia. 2005. Tracking anonymous
peer-to-peer VoIP calls on the internet. In Proc. ACM CCS.

[72] Ethan Witwer, James K Holland, and Nicholas Hopper. 2022. Padding-only
defenses add delay in Tor. In Proc. ACM WPES.

[73] Hua Wu, Zhenhua Yu, Guang Cheng, and Shuyi Guo. 2020. Identification of en-
crypted video streaming based on differential fingerprints. In Proc. IEEE Computer
Communications Workshops (INFOCOM WKSHPS).

[74] Luming Yang, Shaojing Fu, Yuchuan Luo, and Jiangyong Shi. 2020. Markov
probability fingerprints: A method for identifying encrypted video traffic. In Proc.
Mobility, Sensing and Networking (MSN).

[75] Luming Yang, Yingming Zeng, Shaojing Fu, and Yuchuan Luo. 2020. Unsupervised
analysis of encrypted video traffic based on Levenshtein distance. In Proc. Security
and Privacy in Social Networks and Big Data.

[76] Xiaokuan Zhang, Jihun Hamm, Michael K Reiter, and Yinqian Zhang. 2019.
Statistical privacy for streaming traffic. In Proc. NDSS.

[77] Xiyuan Zhang, Gang Xiong, Zhen Li, Chen Yang, Xinjie Lin, Gaopeng Gou, and
Binxing Fang. 2024. Traffic spills the beans: A robust video identification attack
against YouTube. Computers & Security (2024).

A FURTHER ANALYSIS OF LONGENOUGH
We provide a top-down description of some of the most notable
properties of LongEnough in order to explain why certain videos
are identified more easily than others, starting from global statistics
and then moving to individual videos.

As shown in Figure 4, the distribution of segment sizes for each
quality level is roughly normal, and doubling the bitrate approx-
imately doubles segment sizes. Table 5 provides a more detailed

Table 5: Segment size statistics for each quality level

Average
bitrate

Mean segment
size (kB)

Segment size percentiles (kB)
0 25 50 75 100

1 000 260 3 178 229 292 12 508
2 000 518 4 346 458 588 16 151
4 000 1 033 6 713 937 1 185 17 071
All 604 3 255 451 809 17 071

characterization of these distributions. The main feature that is
more apparent here than in Figure 4 is that the maximum segment
size at each quality level is extremely large, resulting in a subtly
right-skewed distribution, as reflected by the mean segment sizes.

Maximum segment size: We find unusually large segments to
be particularly identifying: they are the primary reason that a few
videos are identified by DF and Tik-Tok despite the use of Scram-
bler, as described in the defense analysis in Section 8.2. Figure 19
shows that every video in fact has a unique maximum segment
size at all three bitrates—and much variation exists—making this a
particularly useful feature against the videos in LongEnough.

Total size and mean segments: Large segment sizes are not
the only feature that causes some videos to have rather distinct
fingerprints. Another factor is total size: each video in LongEnough
also has a unique size at all quality levels. Moreover, mean segment
size and total size are perfectly correlated for videos of the same
duration; though trivial, this relationship is exemplified in Figure 20
for the 4 Mbps bitrate. For videos without substantial temporal
segment size variation, then, an adversary may gain an advantage
by monitoring a stream for a limited period of time and recording
the average throughput or mean of the observed segment sizes,
which will be similar to the global mean over the entire video.

These observations help explain why FRONT fails: even with
a large amount of padding, videos are likely still distinguishable
to a certain extent by data volume, since the expected value of
padding is independent of the video being defended and depends
instead on the defense parameters. Similarly, the CNN classifiers
we test apparently learn to distinguish the predictable Rayleigh
distribution shape from the periodic segments that overlap it, but
data volume–especially over more time–may also prove useful.

Bitrate variability: Another notable difference between videos
is their bitrate variability: as mentioned in Section 2.2, we encode
videos with VBR such that a target average bitrate is achieved.
As such, some videos may have more pronounced differences in
size between adjacent segments or many segments of extreme size
compared to others encoded at the same bitrate. To quantify this, we

181

https://www.selenium.dev/

Proceedings on Privacy Enhancing Technologies 2024(4) Hasselquist et al.

Table 6: Evaluation with best configurations under variable bandwidth conditions

Bandwidth overhead Attack accuracy Security estimation

Defense Config. Parameters

Se
nd

(M
bp

s)

R
ec
ei
ve

(%
)

O
ve

ra
ll

(%
)

D
F

T
ik
-T
ok

B
ea
ut
y

B
ER

M
I

Undefended N/A N/A 0.00 0.00 0.00 0.911 0.932 0.988 0.032 6.555
low (𝑁 = 2 500,𝑊 = 7) 1.12 26.56 53.46 0.687 0.755 0.979 0.151 5.890

moderate (𝑁 = 6 000,𝑊 = 9) 1.93 50.66 97.20 0.529 0.619 0.976 0.272 5.021Adapted FRONT
high (𝑁 = 6 500,𝑊 = 2) 9.81 237.87 474.19 0.073 0.107 0.915 0.761 1.572
low (𝑅0 = 500, 𝐷 = 0.25) 1.51 45.35 81.62 0.033 0.044 0.206 0.761 0.333

moderate (𝑅0 = 1 000, 𝐷 = 0.95) 2.30 122.16 230.19 0.105 0.120 0.006 0.639 1.922Adapted RegulaTor
high (𝑅0 = 1 900, 𝐷 = 0.95) 0.97 3.29 96.90 0.081 0.126 0.056 0.637 1.975
low (𝛿 = 160, 𝑁 = 700) 3.01 529.54 602.88 0.030 0.038 0.454 0.897 0.416

moderate (𝛿 = 200, 𝑁 = 1 100) 3.01 390.36 462.75 0.029 0.037 0.473 0.900 0.388Scrambler
high (𝛿 = 120, 𝑁 = 1 500) 3.01 326.75 398.16 0.026 0.030 0.417 0.893 0.349

measure segment size differentials throughout the entire duration
of every video in LongEnough (as is done for the last part of a video
in Walls Have Ears) and calculate their distribution. The sum of the
absolute differentials for each video is shown in Figure 21.

Though many videos have relatively low bitrate variation, there
are a few that have substantial variation, indicating that adjacent
segments are often of very different sizes and/or that many very
large segments exist. Apart from resulting in a fingerprint that
is more distinctive in general (and thus more difficult to defend),
this partially explains the seemingly counterintuitive attack results
for RegulaTor presented in Section 7.1: with substantial bitrate
variation, a defended video may have a pronounced pattern of surge
restarts due to varying queue sizes, leading to easier identification.

Summary: The LongEnough dataset exhibits a high degree of
variability in terms of segment sizes, total video size, and the vari-
ability of segment sizes within videos, despite all videos being of the
same duration. This reflects the varying types of content included
by design in the dataset and results in a rich set of useful features
for classifiers, facilitating our objective of evaluating defenses in
conditions that are most favorable for an attacker.

B VARIABLE BANDWIDTH CONDITIONS
Data collection: To capture the impact of real-world network
effects, we also perform experiments under variable bandwidth
conditions. Using a real-world LTE sampled trace [54], we collect
the LongEnough-variable dataset where we vary the bandwidth ca-
pacity on client-side links. Figure 22(a) shows the original sampled
bandwidth trace over time as collected by Raca et al. [54], with the
average rate being 3.85 Mbps. Based on the original trace, we first
multiply the trace by a factor of 8 to better align the peaks with
the original 100 Mbps bandwidth capability, as we want to capture
the effect of the variability rather than focus on a low bandwidth
value. We then create randomized traces for each data collection
sample. Figure 22(b) illustrates an example of a unique randomized
bandwidth trace. To obtain these, we randomize the starting point,
loop the trace, and randomly multiply each bandwidth value by
±10%. This is done to ensure that the bandwidth trace becomes
unique but still includes periods of both low and high bandwidth.

0 100 200 300 400 500 600 700 800
Time (s)

0
4
8

12
16

Ba
nd

wi
dt

h
(M

bp
s)

(a) Original trace

0 100 200 300 400 500 600
Time (s)

0

50

100

Ba
nd

wi
dt

h
(M

bp
s)

(b) Example randomized trace

Figure 22: Variable bandwidth traces

Evaluation: To provide an indication of how variable bandwidth
conditions interact with the use of defenses, we perform attacks
and calculate overhead for the best tuned configuration from each
overhead category (low, moderate, and high) for Adapted FRONT,
Adapted RegulaTor, and Scrambler. Table 6 shows these results,
along with the undefended case for reference.

We find that QoE is impacted and highly dependent on the vary-
ing bandwidth conditions. As a reference, for the undefended case,
we observe the average number of wait, stall, seek, and quality
switch occurrences to be 8, 5, 0, and 17, respectively. The percent-
age of time spent waiting for data at 1k, 2k, and 4k bitrates is 0.4%,
0.0%, 1.3%, while the play percentages are 0.3%, 1.6%, 96.3%.

For attacks, we find that the accuracy of all CNN attacks against
undefended traffic is similar to the performance achieved with con-
stant bandwidth. The slight decrease (1–2%) can be accounted for
by the randomization of bandwidth traces, which causes segments
to be requested at different qualities more often during a stream.

With Adapted FRONT, which simply adds padding to the original
trace, there is a notable reduction in accuracy compared to the
constant bandwidth case, which is more pronounced with stronger
configurations: DF and Tik-Tok’s accuracy is about 10% lower with

182

Raising the Bar: Improved Fingerprinting Attacks and Defenses for Video Streaming Traffic Proceedings on Privacy Enhancing Technologies 2024(4)

low overhead, 15-20% lower withmoderate overhead, and 30% lower
with high overhead. Adapted FRONT’s simple padding scheme is
more effective at obfuscating packet sequences in the presence of
many quality switches, at least with relatively low 𝑁 ; however,
timing features apparently remain useful, as Tik-Tok still performs
better than DF against all configurations. In any case, Adapted
FRONT still fails to defeat Beauty and the Burst, with only a minor
(1–5%) reduction in accuracy compared to constant bandwidth
conditions. Overhead is largely unchanged, as the random padding
added during simulation has no effect on the underlying traffic.

In contrast, with Adapted RegulaTor, attack accuracy and over-
heads deviate significantly from the constant bandwidth evalu-
ations: this is to be expected when shaping traces with distinct
characteristics. The best accuracy is achieved by Beauty and the
Burst, with (𝑅0 = 500,𝐷 = 0.25), as surge restarts are more frequent
when the rate is low. However, its accuracy decreases markedly
with the other two configurations, since very few restarts happen
when streaming most videos due to an abundance of lower-quality
segments that are small compared to 𝑅0. Note that (𝑅0 = 1 000,
𝐷 = 0.95) is more effective than the high-overhead configuration:
this is likely because restarts are more informative when 𝑅0 is high,
as they signal the presence of large segments or queue buildup.

Surprisingly, DF and Tik-Tok perform better against the moder-
ate and high-overhead configurations of Adapted RegulaTor. This
is explained by more (smaller) segments being included in the 10𝑘-
packet input than under constant bandwidth conditions and surge
restarts being more informative with higher 𝑅0. Adapted Regu-
laTor’s overhead is higher than with constant bandwidth except
with the high-overhead configuration: less frequent restarts allow
a lower rate to be maintained for much of a stream.

In the case of Scrambler, attack accuracy is similar (ranging from
41.7% to 47.3%) across configurations. Since we tune all parameters
with 4 Mbps segments in mind, it appears that Beauty and the
Burst primarily takes advantage of the difference in size between
segments of different qualities, though DF and Tik-Tok are not able
to do so effectively due to their smaller input size: their accuracy is
around 2–4% against every configuration. Also as a result of tuning,
we observe much higher overhead in variable bandwidth conditions,
since lower-quality segments are more frequently downloaded.
These results primarily illustrate the importance of properly tuning
defenses for the conditions in which they will be deployed.

Evaluation with heuristic attacks:We repeat the tuning of
Leaky Streams against all tested configurations, as in previous sec-
tions. We find that Leaky Streams achieves 2% accuracy against
RegulaTor with (𝑅0 = 1000, 𝐷 = 0.95): the regulated traffic pattern
closely matches actual segment sizes for one video during the last
minute of streaming, so it is consistently identified. However, Leaky
Streams has only 1% accuracy with the other two Adapted Regula-
Tor configurations and against Adapted FRONT and Scrambler.

Against Adapted FRONT, Walls Have Ears achieves 16.68% accu-
racy with the low-overhead configuration, 10.13% with moderate
overhead, and 1.02% with high overhead: though the attack is not
entirely ineffective, its accuracy is lower under variable bandwidth
conditions due to (1) a modified sequence of differentials due to
interleaved segments of different qualities and (2) perturbation of
this sequence due to padding. Adapted RegulaTor is more effective

at concealing segment sizes, with 1.02%, 0.84%, and 1.03% accuracy;
as is Scrambler, with 2.08%, 2.44%, and 1.83% accuracy.

However, unlike in constant bandwidth conditions, the videos
identified vary, and identification does not appear to depend on any
specific characteristics. We conclude that, though variable band-
width conditions tend to reduce attack accuracy, requesting seg-
ments at varying qualities can in some cases provide additional
useful information to an attacker monitoring a stream.

Summary: Our preliminary evaluations show that both attack
accuracy and overhead are affected in many unexpected ways under
variable bandwidth conditions. Future defense proposals should
carefully consider the impact of network conditions on defense
operation; in the case of the defenses we test, our results demon-
strate the importance of tuning. We also note that improved tooling,
such as more realistic network models in the Maybenot simulator,
could aid future work by reducing the number of live deployments
required when testing new defenses and configurations.

C ADDITIONAL THROUGHPUT AND QOE
Figures 23 and 24 show the throughput and QoE for the low- and
high-overhead categories, respectively, using the Adapted FRONT
defense. As discussed in Section 6, we observe no QoE impact.

Figures 25 and 26 show the corresponding results for the Adapted
RegulaTor defense. Again, as discussed in Section 7, we see a high
QoE impact, especially in the form of many quality switches.

Finally, Figures 27 and 28 show the corresponding results for the
Scrambler defense. As discussed in Section 8, QoE is only slightly
impacted at the beginning during buffering and segment spills.

0

15

30

Th
ro

ug
hp

ut
(M

bp
s) Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 23: Throughput and video player QoE metrics using
Adapted FRONT with 𝑁 = 2 500 and𝑊 = 7

0

15

30

Th
ro

ug
hp

ut
(M

bp
s) Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 24: Throughput and video player QoE metrics using
Adapted FRONT with 𝑁 = 6 500 and𝑊 = 2

183

Proceedings on Privacy Enhancing Technologies 2024(4) Hasselquist et al.

0

15

30

Th
ro

ug
hp

ut
(M

bp
s) Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 25: Throughput and video player QoE metrics using
Adapted RegulaTor with 𝑅0 = 500 and 𝐷 = 0.25

0

15

30

Th
ro

ug
hp

ut
(M

bp
s) Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 26: Throughput and video player QoE metrics using
Adapted RegulaTor with 𝑅0 = 1 900 and 𝐷 = 0.95

0

15

30

Th
ro

ug
hp

ut
(M

bp
s) Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 27: Throughput and video player QoE metrics using
Scrambler with 𝛿 = 160, 𝑁 = 700, 𝑃𝑚𝑖𝑛 = 400, 𝑃𝑚𝑎𝑥 = 1 000

0

15

30

Th
ro

ug
hp

ut
(M

bp
s) Receive total

0
3
6

Va
lu

e
(s

) Buffer size Live latency

1
2
3
4

Bi
tra

te
 (M

bp
s)

0 100 200 300 400 500 600
Time (s)

90
100
110

Pl
ay

ba
ck

ra
te

 (%
)

Playback rate Bitrate

Figure 28: Throughput and video player QoE metrics using
Scrambler with 𝛿 = 120, 𝑁 = 1 500, 𝑃𝑚𝑖𝑛 = 400, 𝑃𝑚𝑎𝑥 = 1 000

184

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Traffic Analysis
	2.2 HTTP-Based Streaming
	2.3 Video Fingerprinting

	3 Data Collection
	3.1 Framework
	3.2 Datasets

	4 Attacks and Undefended Traffic
	4.1 DF and Tik-Tok
	4.2 Comparison with Other Attacks

	5 Constant-Rate Defense
	6 Adapted FRONT
	6.1 Tuning
	6.2 Further Evaluation and Discussion

	7 Adapted RegulaTor
	7.1 Tuning
	7.2 Further Evaluation and Discussion

	8 Scrambler: A Targeted Defense
	8.1 Tuning
	8.2 Further Evaluation and Discussion

	9 Conclusions
	Acknowledgments
	References
	A Further Analysis of LongEnough
	B Variable Bandwidth Conditions
	C Additional Throughput and QoE

