
Computational Differential Privacy for Encrypted Databases
Supporting LinearQueries

Ferran Alborch Escobar

Applied Crypto Group, Orange Innovation

Caen, France

ferran.alborch@orange.com

Sébastien Canard

LTCI, Télécom Paris, Institut Polytechnique de Paris

Paris, France

sebastien.canard@telecom-paris.fr

Fabien Laguillaumie

LIRMM, Université de Montpellier, CNRS

Montpellier, France

fabien.laguillaumie@lirmm.fr

Duong Hieu Phan

LTCI, Télécom Paris, Institut Polytechnique de Paris

Paris, France

hieu.phan@telecom-paris.fr

ABSTRACT
Differential privacy is a fundamental concept for protecting individ-

ual privacy in databases while enabling data analysis. Conceptually,

it is assumed that the adversary has no direct access to the data-

base, and therefore, encryption is not necessary. However, with

the emergence of cloud computing and the «on-cloud» storage

of vast databases potentially contributed by multiple parties, it is

becoming increasingly necessary to consider the possibility of the

adversary having (at least partial) access to sensitive databases.

A consequence is that, to protect the on-line database, it is now

necessary to employ encryption. At PoPETs’19, it was the first time

that the notion of differential privacy was considered for encrypted

databases, but only for a limited type of query, namely histograms.

Subsequently, a new type of query, summation, was considered at

CODASPY’22. These works achieve statistical differential privacy,

by still assuming that the adversary has no access to the encrypted
database.

In this paper, we take an essential step further by assuming that

the adversary can eventually access the encrypted data, making

it impossible to achieve statistical differential privacy because the

security of encryption (beyond the one-time pad) relies on compu-

tational assumptions. Therefore, the appropriate privacy notion for

encrypted databases that we target is computational differential

privacy, which was introduced by Beimel et al. at CRYPTO ’08. In

our work, we focus on the case of functional encryption, which

is an extensively studied primitive permitting some authorized

computation over encrypted data.

Technically, we show that any randomized functional encryption

scheme that satisfies simulation-based security and differential pri-

vacy of the output can achieve computational differential privacy

for multiple queries to one database. Our work also extends the

summation query to a much broader range of queries, specifically

linear queries, by utilizing inner-product functional encryption.

Hence, we provide an instantiation for inner-product functionali-

ties by proving its simulation soundness and present a concrete ran-

domized inner-product functional encryption with computational

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(4), 583–604
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0131

differential privacy against multiple queries. In terms of efficiency,

our protocol is almost as practical as the underlying inner product

functional encryption scheme. As evidence, we provide a full bench-

mark, based on our concrete implementation for databases with

up to 1 000 000 entries. Our work can be considered as a step to-

wards achieving privacy-preserving encrypted databases for a wide

range of query types and considering the involvement of multiple

database owners.

KEYWORDS
Encrypted databases, Differential privacy, Functional encryption.

1 INTRODUCTION
Differential privacy is a data analysis paradigm proposed by Dwork

et al. in [19, 21] to guarantee the privacy of individuals. In broad

terms, the objective is to ensure that the presence or not of an

individual’s data in a database does not significantly impact the

results of a data analysis. This is done by blurring the results with

some noise, all the while having a precise notion of the trade-off

between privacy of the individual and accuracy of the data analysis.

To implement this, the concept of privacy mechanism is used: a ran-

domized algorithm that takes as input a database and some query

and outputs a string. The objective is for this output to be a noisy

statistic, where some noise has been added to the real value such

that the distributions of the output from the mechanism applied

to two databases differing in only one individual are very close.

The usefulness of this concept can be seen in the vast amount of

academic literature written on the topic (according to the recent

survey in [17] over 200 variants of the concept have been proposed

so far). On top of that, it is also already deployed in real life appli-

cations: examples include the US Census Bureau [14] supporting

analysis on travel patterns through their OnTheMap project [32],

Google training next-word prediction models [42], or Microsoft

collecting telemetry data privately [18]. Despite the obvious inter-

est in the discipline, there are still some largely unexplored areas,

e.g. its interaction with encryption, the potential limitation of an

adversary’s computational power or even a wider range of privacy

mechanisms.

This paradigm was conceptualized to be used in a setting where

a database owner who is storing a database wants to release some

privacy preserving statistics to untrusted analysts. As such, it was

583

https://orcid.org/0002-3563-9133
https://orcid.org/0001-6464-1139
https://orcid.org/0003-1136-4064
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0131

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

defined as a statistical property, i.e., that holds even against a com-

putationally unbounded adversary. However, due to the recent rise

in popularity of cloud computing and especially cloud storage of

vast databases, this model is today not sufficient to deal with all

practical cases. What if the data owner wants to delegate the stor-

age to an external cloud storage service (mainly for cost reasons)

while permitting untrusted analysts to make queries?

Differential privacy and encrypted database. To better handle

these situations, the concept of encrypted private databases has

been introduced by Agarwal et al. in [4], where the database owner

and the database holder (the cloud storage server) need not be the

same entity. In this case, the first step consists, for the data owner,

in encrypting its database before sending it to the storage server.

Then, when an external analyst wants to ask a query to the database,

it negotiates with the database owner for a token which can be

used with the storage server to obtain a noisy (differentially private)

response without further need of the database owner, as can be

seen in the diagram of Fig. 1. As a concrete example of the utility

of such a model, already highlighted in [4], the US Census Bureau

could securely outsource the storage and management of its On-
TheMap data to an external cloud (AWS, GoogleCloud, etc.), while

maintaining the ability for analysts to perform private data analysis

over it. More generically, this model is useful for entities looking

to outsource their data to some external and untrusted clouds, like

SMEs (small medium enterprises) or local/national authorities that

do not have such a storage infrastructure.

However, Agarwal et al., and the subsequent works on the subject
[9], rely on standard (statistical) differential privacy arguments,

needing to make the assumption that the untrusted analyst has no

direct access to the encrypted database.

We take an essential step by assuming that a malicious adver-

sary could potentially gain access to such an encrypted database,

for instance, by colluding with the storage server. In fact, if the

adversary is not allowed to access the encrypted data, then the

encryption serves little purpose. In this scenario we consider that

the privacy mechanism we need to evaluate through differential

privacy must output all the information accessible by such a col-

luding adversary: the encrypted database, the access token and the

noisy response. Coming back to the US Census Bureau use case, it

would be inappropriate to assume that there cannot be an internal

threat to the storage cloud, an attack on the cloud’s servers, or even

an agreement between the cloud provider and an outside actor to

obtain more information than what has been authorized by the US

Census Bureau. This need is all the more important in the case of

an SME which, by this means, has stored sensitive data that it does

not wish to see divulged to a competitor.

However, encryption schemes (beyond the one-time pad) are

only proven secure against computational adversaries. Therefore,

when targeting adversaries with access to the encrypted database,

the mechanism, whose output contains the encrypted database,

cannot be differentially private in the statistical sense. To address

this, our solution is to constrain us to the computational approach

to differential privacy for our mechanism and use a noisy response

that satisfies differential privacy as a building block to prove com-

putational differential privacy of our mechanism.

Database

Database Owner Encrypted

Database

Server

Query

Analyst

1.

2. Negotiation

3. Noisy

response

Figure 1: Diagram of interactions.
A database owner wants to outsource a database to a (honest but

curious) server so that private data analysis can still be performed

on it. As such, an encrypted database is sent to the server (step 1),

and when an analyst wants to perform a query over the database,

some negotiation takes place with the database owner which

results in a token being received by the analyst (step 2). This token

enables the analyst in conjunction with the server to obtain a

differentially private noisy response (step 3).

To ensure the security and privacy of this model, we rely on a

two-party adversary composed of (1) the analyst who can choose

which queries to ask and (2) the server who can answer requests

from the analyst without having access to the database but only

with access to the encrypted database and functional keys. This two-

party adversary, rather than a single adversary integrating both

functionalities, matches the real-world example given in Figure

1, while a single adversary may be relevant in cases where the

delegation of the encrypted data does not appear.

Computational Differential Privacy. The concept of computa-

tional differential privacy, introduced by Beimel et al. in [10] and

Mironov et al. in [35], has been extensively used in private multi-

party computation, i.e., differentially private data analysis over a

database owned by more than one entity. The main interest is that

in such setting, it gives much more useful mechanisms than using

statistical differential privacy. Indeed, the required noise scales at

a much lower rate with the number of clients in the multi-party

setting [33]. However, in the so-called “client-server” setting, where

there is only one database owner, the situation has been less stud-

ied, and is not so clear. It was shown by Bun et al. in [13] that

there exists a task for which there is a computationally differen-

tially private mechanism but any statistically differentially private

mechanism will forcibly be inefficient. More recently, Ghazi et al.
showed in [24] that there exists a non-natural task using strong

cryptographic assumptions for which a computationally differen-

tially private mechanism exists but has no statistically differentially

private mechanism.

584

CDP for Encrypted Databases Proceedings on Privacy Enhancing Technologies 2024(4)

In the domain of computation over encrypted data, three main

paradigms exist: multi-party computation (MPC), fully homomor-

phic encryption (FHE), and functional encryption. MPC addresses

the most general form of computation, but it has the shortcoming

of requiring a high level of interactions between the parties. This re-

quirement is not practical for specific types of queries on a database.

The problem with FHE is that decrypting a ciphertext provides “all

or nothing” information. Consequently, when responding to queries

from an analyst, the database owner must be the one to recover

the encrypted database from the server, decrypt it and compute

the corresponding noisy result for each query and send it to the

analyst. Then there will need to be interaction between the server

and database owner for every query while being no meaningful

interaction between the server and the analyst. This violates the

requirement to achieve independence for the database owner from

interacting with the server for each query from the analyst. For

a more detailed discussion see Appendix C. Hence, our idea is to

study the case of (randomized) functional encryption, which seems

to be the most appropriate in the setting given by Figure 1.

Randomized functional encryption. Functional encryption is a

cryptographic concept in which any user in possession of a ci-

phertext, related to a plain message 𝑥 , and a functional key 𝑠𝑘𝑓
for a function 𝑓 , can obtain in clear the evaluation 𝑓 (𝑥). In our

context, we only need secret-key functional encryption as the data-

base owner manages both the encryption and the key generation

processes in contrast to public-key functional encryption where

anyone can encrypt messages.

In the case of randomized functional encryption, the function 𝑓

could be probabilistic, which permits us, in our setting, to manage

the noise inherent to differential privacy. Such possibility was first

defined by Alwen et al. in [8] and Goyal et al. in [26] to extend

the concepts of functional encryption towards randomized func-

tionalities. More specifically, a randomized functional encryption

scheme takes a description of a randomized (probabilistic) function

over a plaintext and randomness space, and generates a functional

decryption key. When a ciphertext is decrypted with this functional

key an evaluation of the probabilistic function is obtained, with

different randomness for different ciphertexts. In the diagram in

Fig. 1, what we propose is that the database is encrypted using

randomized functional encryption (step 1), and the negotiation be-

tween the Database Owner and the Analyst involves the former

computing a functional key for the latter (step 2). With this key

and a query made to the Server, the Analyst can obtain statistical

information of the database with some differential private noise,

using the functional decryption procedure (step 3).

More specifically, Goyal et al. in [26] give an instantiation for

randomized functional encryption for polynomial-sized circuits

which was then used by Garg et al. in [23] to construct fully secure

functional encryption for all circuits, based on multilinear maps.

These works were furthered by Komargodski et al. in [30] and

Agrawal and Wu in [7] where they give a generic transformation

to transform any deterministic functional encryption to a random-

ized version, the former in the secret-key setting and the latter

in the public-key setting. Those three works [7, 26, 30] mention

that randomized functional encryption could be used to perform

(computational) differentially private analysis on sensitive data, but

fail to give a formal analysis of this extension. In this work, we

provide a formal analysis.

1.1 Our Contributions
Given the preceding context and motivations, we present four main

contributions in this paper regarding randomized functional en-

cryption and its relation to differential privacy.

1. An efficient randomized inner product functional encryption
scheme. In Section 4, we give an instantiation for randomized inner

product functional encryption, and we prove its simulation sound-

ness for one ciphertext. Our construction is based on any generic

(deterministic) inner product functional encryption scheme used

as a black-box and uses any generic probability distribution.

2. A generic transformation from randomized functional encryption
to a differentially private mechanism. In Section 3, we provide a dif-

ferentially private mechanism in the context of an encrypted static

database which uses a generic randomized functional encryption

scheme. We give a reduction from the computational differential

privacy of the randomized functional encryption scheme to the

computational differential privacy of the output. The definition of

the privacy mechanism allows us to prove this privacy against a

possible collusion between the analyst and the server in contrast to

previous proposals. This result formalizes and proves the intuition

given in [26] about the relation between randomized functional

encryption and computational differential privacy.

3. A new formalization for private functional encryption. In Sec-

tion 2.4, we present a new formalization for differentially private

encrypted databases based on functional encryption schemes. Fo-

cusing on static databases, we give formal correctness and security

notions, taking into account the collusion between an honest-but-

curious server and a malicious analyst.

4. A computationally differential private encrypted database sup-
porting linear queries. We provide a solution for computationally

differentially private encrypted database supporting linear queries,

which is the main objective of this work. To achieve it, we apply

the result from Section 3 (computational differential privacy for

generic randomized functional encryption) and Section 4 (instanti-

ation of randomized inner product functional encryption scheme)

to obtain a private inner-product functional encryption scheme

as formalized in Section 2.4. To the best of our knowledge, this

is the first proposal of an encrypted database supporting several

inner product differentially private queries and collusion between

a malicious analyst and server.

Finally, we provide an implementation of the scheme, proving

its practical efficiency for databases with up to 1 000 000 entries.

1.2 Related Works and Comparisons
The first encrypted and private database was proposed by Agarwal

et al. in [4]. They proposed a solution for histogram queries based on

several differentially private encrypted counters under continuous

observations, one per bin of the histogram. This result is based

on the work by Chan et al. [15] which is instantiated making use

of structured encryption. In general terms, a differentially private

counter was instantiated for each of the bins of the histogram and

585

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

encrypted through homomorphic encryption while the structured

encryption scheme is used by the database owner to be able to

curate the database.

The second one is a proposal by Bakas et al. in [9] which in-

stantiates a summation of vector coordinates for a database under

continuous observation. For that, they a private counter in each

coordinate using homomorphic encryption, and for a subset of

coordinates being added their corresponding keys are added to

generate the access token. Regarding the privacy mechanism, they

use similar methods to [4] but only encrypt a counting mechanism

for each coefficient, without making use of structured encryption,

which no longer allows the database owner to curate the database.

In comparison to those two works, we enhance the state of the

art in this domain as follows. Firstly we give a concrete scheme for

the larger family of linear queries. Linear queries and how to se-

cure databases under them has been a well studied subject [31, 40].

The most notable cases are predicate counting queries (e.g. his-

tograms, marginal queries and group-by queries) and weighted

sum queries (e.g. weighted averages, differences and evaluation

of linear regression models). Secondly, through our mechanism

definition comprising the encrypted database and the use of com-

putational differential privacy we are able to guarantee the privacy

of the database even when the analyst colludes with a dishonest

server and therefore has access to the database. Finally, we use

the fact that our randomized inner product functional encryption

scheme is constructed from a non-randomized encryption scheme

to give the database owner the ability to curate the database.

A summary is given in Table 1.

Table 1: Comparison with related works on differential pri-
vacy in encrypted databases.

Proposal Query type Access to DB DP type

(via collusion)

[4] Histogram ✗ Statistical

[9] Summation ✗ Statistical

Our work Inner product ✓ Computational

1.3 Organisation
In Section 2 , we provide the formalizations of the considered prim-

itives. In Section 3 we give the generic result of computational

differential privacy for randomized functional encryption. In Sec-

tion 4 we present our randomized inner product instantiation and

prove its correctness and security. In Section 5 we present our pro-

posal for computationallly differentially private encrypted database

supporting linear queries. In Section 6 we give some more concrete

results and the implementation of our proposals. Finally, in Section

7 we give some discussions for future works.

2 FORMALIZATIONS
In this section we will recall the classical definitions and introduce

our new definitions.

2.1 Notations
One-dimensional elements (such as those inX, Z,G...) will be noted
as lower-case letters (𝑥,𝑦, . . .), while multi-dimensional elements

(such as those in Xℓ
, Zℓ , Gℓ ...) will use bold lower-case letters

(𝒙,𝒚, . . .). For a natural number 𝑞 > 0 we denote as [𝑞] the set

{1, . . . , 𝑞}. Let 𝐷 be a probability distribution, 𝑥 ← 𝐷 means the

element 𝑥 is sampled from the distribution 𝐷 , while for any set

Y, 𝑦 $←− Y means that 𝑦 is sampled uniformly at random from Y.
Finally, a function 𝑓 is said to be negligible over 𝑛 (𝑓 = negl(𝑛)) if
for all 𝑘 ∈ N>0, there exists 𝑛0 ∈ N>0 such that for any 𝑛 > 𝑛0,

|𝑓 (𝑛) | < 1/𝑛𝑘 .

2.2 Differential Privacy
Differential privacy is a private data mechanism property first pro-

posed by Dwork et al. in [19, 21] as a way to guarantee in a precise

manner the privacy for the data of an individual in a pool of data.

In broad terms, the way this is ensured is by adding some noise

to the statistic computed over the dataset in such a way that the

probability of getting the same result with two different databases

(one with the individual’s data and one without) is essentially the

same. This notion of privacy soon became the main paradigm, and

more than 200 variants have been defined since then, as by the

survey made by Desfontaines and Pejó in [17].

A basic concept needed to properly define differential privacy is

that of neighbourhood between databases. This concept specifically

delineates what is the difference in the database between adding an

individual’s data or not. In our case we will say that two databases

are neighbouring if their ℓ1 distance is at most one. The standard

definition for this property is (𝜖, 𝛿)-differential privacy for static

databases as stated below. In this work we will constrain ourselves

to the study of static databases. From this section onward we will

considerX to be a database space, R to be a randomness space, S to

be an output space contained in the multidimensional real numbers

and F a family of deterministic functions 𝑓 : X → S representing

the queries to obtain the plain statistics.

The original definition is statistical, in the sense that it takes into

account the distribution of all possible outputs, however, when try-

ing to combine them with cryptographic concepts, we find that this

would correspond to playing against computationally unbounded

adversaries. As such, combination of these more statistical (and

more standard) variants of differential privacy with well-known

cryptographic primitives and methods proves to be sometimes

unfeasible and/or unrealistic. Therefore it is natural to consider

relaxations on the definition of differential privacy to allow for

bounding the adversary to being computationally efficient. This is

what Mironov et al. proposed in [35], which we adapt to our needs.

Definition 2.1 (Adapted from Definition 3, [35]). Let ^ ∈ N be a

security parameter, 𝑄 be an integer andM : X × F × R → S
a randomized algorithm. Then, for a stateful PPT algorithm A
the attack game works as follows. The challenger C selects a bit

𝑏
$←− {0, 1} and proceeds with experiment 𝑏 (Figure 2) where the

oracle O(𝑥𝑏 , ·) denotes the evaluation of the mechanismM(𝑥𝑏 , ·; 𝑟)
for some 𝑟 ← R.

We say thatM provides (𝑄, 𝜖^)-indistinguishable computational
differential privacy ((𝑄, 𝜖^)-IND-CDP) if for any PPT adversary A

586

CDP for Encrypted Databases Proceedings on Privacy Enhancing Technologies 2024(4)

Figure 2: Experiment 𝑏 for (𝑄, 𝜖^)-IND-CDP.
Experiment 𝒃 :
1: (𝑥0, 𝑥1, st) ← A1 (1^) with 𝑥0, 𝑥1 ∈ X neighbouring

2:
˜𝑏 ← AO(𝑥𝑏 , ·, ·)

2
(st)

Output: ˜𝑏

limited to accessing O 𝑄 times the following advantage is negligible

AdvM,𝑄

DP,𝜖^
(A) =

���Pr [
˜𝑏 = 1|𝑏 = 0

]
− 𝑒𝜖^ · Pr

[
˜𝑏 = 1|𝑏 = 1

] ��� .
There are several changes from Definition 3 in [35]. First of all,

we have adapted the definition of randomized function to be in line

with the standard in randomized functional encryption, and as such

have added the specific randomness seed as an input. Secondly, we

have explicitly added which query 𝑓 ∈ F the mechanismM is

protecting. This is also for ease of notation further down the line,

when considering several different queries and relating to the key

generation in the randomized functional encryption scheme. Also,

the inequality has been rewritten as an advantage to ease the con-

nection with the advantages from encryption schemes. Apart from

this, we also consider a PPT adversary instead of a Turing machine

with polynomial sized advice string since, as mentioned before, the

computational power of the adversary needs to be the same when

considering privacy as when considering security. Finally, despite

the fact that we could consider the query space as F𝑄
to expand to

handling 𝑄 queries, we are interested in allowing for adaptivity in

the choice of query for the adversary. As such, we have considered

a stateful adversary.

There is one important thing to note about this definition. Were

the adversary A allowed to be computationally unbounded, then

this only says that for any fixed ^ the mechanismM is (𝜖^ , 𝛿^)-DP
for a negligible 𝛿^ and any set of 𝑄 queries. This means that any

mechanism that satisfies (𝜖^ , 𝛿^)-DP for all sets of 𝑄 queries and

𝛿^ negligible on ^, will also satisfy 𝜖^ -IND-CDP.
Note that to prove a one-query mechanism adaptive for several

queries in statistical differential privacy, the property of sequential

composition is required, which is claimed to hold for computational

differential privacy [35]. In our case, since we will be reducing the

computational differential privacy of the randomized functional

encryption scheme to the statistical differential privacy of the out-

put, the adaptivity of this output guarantees the adaptivity of the

scheme.

2.3 Randomized Functional Encryption
Given that our objective is to mix functional encryption with dif-

ferential privacy (which inherently uses randomness to blur the

information) it is clear that we need to introduce some randomness

into the functional encryption. To do so, we will follow the para-

digm set by Goyal et al. in [26] for general randomized functional

encryption. In this section we will consider X to be a database

space, R to be a randomness space, S to be an output space and F
a family of randomized (probabilistic) functions 𝑓 : X × R → S,
where 𝑟 ∈ R is understood as the seed for the probabilistic sam-

pling of the randomized function 𝑓 and as such, as true randomness

completely unknown to the adversary. The reason for this is to be

able to ensure that for any database 𝑥 ∈ X, 𝑓 (𝑥 ; 𝑟) is computed

always with the same random seed, otherwise the security could

be compromised by sampling the random function with multiple

different seeds using an averaging attack. We will focus on the

secret key variant of randomized functional encryption, which is

defined as follows.

Definition 2.2 (Adapted from Section 2, [26]). Let ^ ∈ N>0 be a
security parameter. We define a secret-key randomized functional
encryption scheme supporting the family of randomized functions

F the following tuple of PPT algorithms:

• SetUp(1^ , F): given the security parameter and family of

functions as an input, it outputs some public parameters

param and a master secret key msk. We will assume the

public parameters as inputs in all other algorithms.

• Enc(msk, 𝑥): given the master secret key msk and some

plaintext 𝑥 ∈ X as inputs, it outputs a ciphertext 𝑐𝑥 .

• KeyGen(msk, 𝑓): given the master secret key msk and a

description of the randomized function 𝑓 ∈ F as inputs,

it outputs a functional key 𝑠𝑘𝑓 .

• Dec(𝑐𝑥 , 𝑠𝑘𝑓): a deterministic algorithm that given a cipher-

text 𝑐𝑥 and a functional key 𝑠𝑘𝑓 as inputs, it outputs a string

𝑠 .

There is a correctness notion linked to this definition of encryp-

tion scheme, however it is not as straightforward as in standard

functional encryption due to the randomization of the output. Be-

cause of this, we need to assure the computational indistinguisha-

bility of the output string from the Dec algorithm with the func-

tionality output. Our definition is as follows.

Definition 2.3. Let ^ ∈ N>0 be a security parameter and RFE =

(SetUp, Enc, KeyGen,Dec) be a secret-key randomized functional

encryption scheme supporting the family of randomized functions

F . We say it is correct if for any plaintext 𝑥 and any set of functions

𝑓 1, . . . , 𝑓𝑄 ∈ F the following distributions are computationally

indistinguishable:

• Real(1𝜿 ,F) := {𝑠𝑖 ← Dec(𝑐𝑥 , 𝑠𝑘𝑓 𝑖)}𝑖∈[𝑄] , where
(param,msk) ← SetUp(1^)
𝑐𝑥 ← Enc(msk, 𝑥).
𝑠𝑘𝑓 𝑖 ← KeyGen(msk, 𝑓 𝑖) for all 𝑖 ∈ [𝑄].

• Ideal(1𝜿 ,F) := {𝑓 𝑖 (𝑥 ; 𝑟 𝑖)}𝑖∈[𝑄] where 𝑟 𝑖 ← R.
This definition differs from the one in [26] because it is stated

for only one plaintext instead of several. The difference lies in

the fact that their constructions are both for several simultaneous

plaintexts and in the public key setting so the adversary can obtain

as many ciphertexts as it wants. By considering several plaintexts

in the definition it ensures that the randomness in the output is

independent for different ciphertexts and different functional keys.

More specifically, it is required that for one same functional key,

different ciphertexts give independent outputs and analogously for

one functional key and several ciphertexts. Also note that simply

having some randomness in both encryption and key generation

does not satisfy the condition since they could simply not be used

for the randomness in the output. The encryption scheme of our

proposal in Section 4 is an example of this behaviour.

However, in this workwe are interested in the case of randomized

functional encryption as a means of constructing a differentially

587

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

private mechanism supporting several queries to one database and

we are in the secret key setting. As such, it makes sense to consider

this relaxation of the definition so as to allow solutions which do

not have independent noise for different ciphertexts, since we will

only be considering one.

In case of security definitions, the same distinction between selec-

tive and adaptive adversaries can be done in the randomized setting

as in the deterministic one, as well as both the indistinguishability

and simulation based security and their non-equivalence. For more

detail on these distinctions see Appendix B. For the purpose of

this work we have slightly changed the simulation-based security

definition to add a condition on how the key generator simulator

works. In our case we are interested in the particular case of ran-

domized functional encryption schemes implementing differential

private data analysis, and there are some schemes that satisfy the

definition in [26] that very clearly will not be differentially private.

For example, let FE = (SetUpFE, EncFE,KeyGenFE,DecFE) be a
functional encryption scheme and 𝐷 be a probability distribution.

We define a simple randomized functional encryption schemeRFE =

(SetUpRFE, EncRFE, KeyGenRFE,DecRFE) as follows:
• SetUpRFE(1𝜿 ,F) :

(mskFE, 𝑝𝑎𝑟𝑎𝑚FE) ← SetUpFE (1^)
Output (mskRFE, 𝑝𝑎𝑟𝑎𝑚RFE) = (mskFE, 𝑝𝑎𝑟𝑎𝑚FE)
• EncRFE(mskRFE, 𝒙) :
𝑐𝑥 ← EncFE (mskFE, 𝑥)
Output 𝑐𝑥
• KeyGenRFE(mskRFE, 𝒇) :
𝑒 (𝑟 𝑓) ← 𝐷

𝑠𝑘𝑓 ← KeyGenFE (mskFE, 𝑓)
Output 𝑠𝑘RFE

𝑓
= (𝑒 (𝑟 𝑓), 𝑠𝑘𝑓)

• DecRFE(𝒄𝒙 , 𝒔𝒌RFE𝒇
) :

𝑓 (𝑥) ← DecFE (𝑐𝑥 , 𝑠𝑘𝑓)
𝑠 ← 𝑓 (𝑥) + 𝑒 (𝑟 𝑓)
Output 𝑠

It is clear that this scheme cannot be differentially private since

the noise is leaked in full through the functional key and thus

can be extracted from 𝑓 (𝑥) − 𝑒 (𝑟 𝑓). However, if FE is simulation

sound against one ciphertext, this scheme will also be simulation

secure against one ciphertext following the definition in [26]. By

substituting the FE algorithms for their respective simulators we

get the simulators for the RFE scheme. More details can be found

in Appendix D.

This situation means that the definition given in [26] is not

enough to characterize randomized functional encryption for differ-

ential privacy: we need a stronger definition. To obtain it, we make

use of a characteristic of the standard definition, where the key

generation simulator algorithm has access to the ideal functionality

KeyIdeal. This ideal functionality takes as input a randomized func-

tion 𝑔 and for the challenge 𝑥 it outputs 𝑣𝑔 = 𝑔(𝑥 ; 𝑟𝑔) with some

chosen randomness 𝑟𝑔 from the randomness space.

For our new stronger definition, we will ask an extra require-

ment from the key generation simulator algorithm: the simulator

to query the KeyIdeal and to output a simulated functional key 𝑠𝑘∗𝑔
which should satisfy that for the simulated ciphertext 𝑐∗𝑥 the de-

cryption algorithm’s output is Dec(𝑐∗𝑥 , 𝑠𝑘∗𝑔) = 𝑣𝑔 . The importance

of this KeyIdeal is two-fold, since it models having access to the

inherent leakage of the functionality to simulate the functional

key. Firstly, it allows us to program the output in the simulation to

prove differential privacy as a black-box reduction. Secondly, this

is what allows us to ensure that no extra information about the

noise is leaked other than what can be directly inferred from the

output, since the ciphertext and functional key can be simulated

only using the information from KeyIdeal and the description of the
randomized function. Furthermore, we show that our instantiation

for randomized inner product satisfies this requirement so it is not

an unattainable condition. We have also adapted the definition to

the secret key setting.

Definition 2.4. Let ^ ∈ N>0 be a security parameter and RFE =

(SetUp, Enc, KeyGen,Dec) be a secret-key randomized functional

encryption scheme for the randomized function family F . For any
PPT simulator Sim = (EncSim,KeyGenSim) and ant PPT adversary
A = (A1,A2), we define the experiments in Figure 3, where the

oracles are described as follows.

(1) Real Experiment: O1 (msk, ·) refers to the non-simulated

key generation oracle KeyGen(msk, ·).
(2) Ideal experiment: Õ1 (st′, ·) denotes the simulated key gen-

eration algorithm KeyGenSim(st′, ·) that has oracle access
to the ideal functionality KeyIdeal(𝑥, ·). The functionality
KeyIdeal accepts key queries 𝑓 and returns 𝑣 𝑓 = 𝑓 (𝑥 ; 𝑟 𝑓) for
some chosen randomness 𝑟 𝑓 ← R. We require that for sim-

ulated ciphertext 𝑐∗𝑥 and simulated key 𝑠𝑘∗
𝑓
the decryption

value is as such 𝐷𝑒𝑐 (𝑐∗𝑥 , 𝑠𝑘∗𝑓) = 𝑣 𝑓 .

We say RFE is one selective simulation secure (1-SEL-SIM) against

𝑄 functional key queries if there exists a simulator Sim such that for

any PPT adversaryA limited to accessing O1 𝑄 times the following

advantage is negligible.

Adv𝑄RFE =

���Pr[1← Exp𝑟𝑒𝑎𝑙A (1^ , F)] − Pr[1← Exp𝑖𝑑𝑒𝑎𝑙A (1^ , F)]
��� .

In this definition we only consider the case for one challenge

ciphertext, since that is all we need for our results. However, the

“strengthening” of the definition is easily extendable to several

ciphertexts. Also note that for our definition we do not consider a

decryption oracle where the adversary can input a ciphertext and

a function to obtain the function applied to the ciphertext. This is

due to the fact that we focus in security against chosen plaintext

attacks instead of chosen ciphertext attacks.

2.4 Private Functional Encryption
The end goal is to instantiate a private encrypted database support-

ing linear queries. Agarwal et al. gave in [4] a formalization as to

what properties such an object should satisfy. In their formalization

they consider them as private structured encryption schemes for

dynamic databases, in this work we adapt their paradigm to private

functional encryption scheme for static databases. Let us give the

definition for which we take Definition 4.1 in [4] as a reference.

Definition 2.5. Let ^ ∈ N>0 be a security parameter, 𝜖 > 0 a

privacy parameter and 𝑄 ∈ N>0 a positive integer. We define a

private functional encryption scheme for static databases supporting
the family of queries F with error distribution 𝐷𝜖 as the following

tuple of polynomial time protocols:

588

CDP for Encrypted Databases Proceedings on Privacy Enhancing Technologies 2024(4)

Figure 3: Real and ideal experiments in 1-SEL-SIM security for RFE.
Exp𝑟𝑒𝑎𝑙A (1^ , F)
1: (𝑥, st1) ← A1 (1^ , F) where 𝑥 ∈ X
2: (param,msk) ← SetUp(1^ , F)
3: 𝑐𝑥 ← Enc(𝑥,msk)
4: 𝛾 ← AO1 (msk, ·)

2
(𝑐𝑥 , st1)

Output: 𝛾

Exp𝑖𝑑𝑒𝑎𝑙A,Sim (1
^ , F)

1: (𝑥, st1) ← A1 (1^ , F) where 𝑥 ∈ X
2: (param, 𝑐∗𝑥 , st

′) ← EncSim(1^ , F)
3: 𝛾 ← A Õ1 (st

′, ·)
2

(𝑐∗𝑥 , st1)
Output: 𝛾
text

• SetUp𝑫𝑶,𝑺,𝑨((1^ , 1𝜖 , 𝑥);⊥; (𝑓 1, . . . , 𝑓𝑄)): is a three-party pro-
tocol involving the database owner 𝑫𝑶 , server 𝑺 and analyst
𝑨. The database owner inputs the security and privacy pa-

rameter ^, 𝜖 as well as the database 𝑥 , the server inputs noth-

ing and the analyst inputs the set of 𝑄 queries they want to

ask 𝑓 1, . . . , 𝑓𝑄 ∈ F . As output, the database owner receives
a master secret key msk, the server receives an encrypted

database 𝑐𝑥 and the analyst receives a set of functional keys

𝑠𝑘𝑓 1 , . . . , 𝑠𝑘𝑓 𝑄 . Everyone receives a set of parameters param.

• EQuery𝑫𝑶,𝑺 ((msk, 𝑔); 𝑐𝑥): is a two-party protocol involving
the databases owner 𝑫𝑶 and the server 𝑺 . The database

owner inputs the master secret key msk and a query 𝑔 ∈ F ,
while the server inputs the encrypted database 𝑐𝑥 . As output,

the database owner receives a response 𝑠 and the server

receives nothing.

• PQuery𝑨,𝑺 (𝑠𝑘𝑓 𝑖 ; 𝑐𝑥): is a two-party protocol between the

analyst 𝑨 and the server 𝑺 . The analyst inputs a functional
decryption key 𝑠𝑘𝑓 𝑖 , while the server inputs the encrypted

database 𝑐𝑥 . As output, 𝑨 receives the response 𝑠𝑖 while 𝑺
receives nothing.

Note that in this definition, to keep in line with the definition

from [4] we have decided to put the queries asked as an input to

the setup phase. This way the setup remains a three-party protocol

between all the entities and the private query a two-party protocol

between the analyst and the server. Despite this, the functional

encryption paradigm offers us more flexibility and another way of

conceiving the protocols may be considered. For example, by allow-

ing the analyst adaptivity on their query requests the setup phase

becomes a two-party protocol between the database owner and the

analyst and the private query phase becomes a concatenation of

two two-party protocols, one between the analyst and the database

owner and one between the analyst and the server. This alternative

definition may seem more appropriate for some cases and makes

full use of the adaptivity for computational differential privacy in

Definition 2.1.

As usual, this new object needs a correctness definition where,

differently than in [4] we consider that both types of queries should

be considered in this analysis. Our definition is based on Definition

4.2 in [4].

Definition 2.6. Let ^ ∈ N>0 be a security parameter, 𝜖 > 0 a

privacy parameter, 𝑄 ∈ N>0 a positive integer and PFE = (SetUp,
EQuery, PQuery) be a private functional encryption scheme for

static databases supporting the family of functions F with error

distribution 𝐷𝜖 . We say it is correct if for any database 𝑥 and any

set of queries 𝑓 1, . . . , 𝑓𝑄 ∈ F the following distributions are com-

putationally indistinguishable:

• Real(1𝜿 , 1𝝐) := {𝑠𝑖 ← PQuery𝑨,𝑺 (𝑠𝑘𝑓 𝑖 ; 𝑐𝑥)}𝑖∈[𝑄] where,
(msk; 𝑐𝑥 ; (𝑠𝑘𝑓 1 , . . . ,
𝑠𝑘𝑓 𝑄)) ← SetUp𝑫𝑶,𝑺,𝑨((1^ , 1𝜖 , 𝑥);⊥; (𝑓 1, . . . , 𝑓𝑄)).
• Ideal(1𝜿 , 1𝝐) := {𝑓 𝑖 (𝑥) + 𝑒𝑖 }𝑖∈[𝑄] where 𝑒𝑖 ← 𝐷𝜖

and for any database 𝑥 and query 𝑔 ∈ F the following probability

holds

Pr

[
𝑠 ← EQuery𝑫𝑶,𝑺 ((msk, 𝑔); 𝑐𝑥) ≠ 𝑔(𝑥)

]
= negl(^)

where the probability is taken over (msk; 𝑐𝑥 ; (𝑠𝑘𝑓 1 , . . . , 𝑠𝑘𝑓 𝑄)) ←
SetUp((1^ , 1𝜖 , 𝑥); ⊥; (𝑓 1, . . . , 𝑓𝑄)).

Finally we need to discuss the security notion. In [4] they de-

scribe three types of adversary: persistent, statistical and snapshot.

The first one refers to an adversary corrupting permanently the

server, the second one refers to an adversary corrupting the analyst

and the third one refers to an adversary corrupting the server at

only one point in time. A security definition for each one of them is

given, however, the possible collusions between these adversaries

are not formally handled. In our case we give a single definition

containing the two properties (security and privacy) where the

collusion is handled by considering a privacy mechanismM con-

taining the ciphertext 𝑐𝑥 , the functional keys 𝑠𝑘𝑓 𝑖 and the noisy

response 𝑠𝑖 .

Definition 2.7. Let ^ ∈ N>0 be a security parameter, 𝜖 > 0 a

privacy parameter, 𝑄 ∈ N>0 a positive integer and PFE = (SetUp,
EQuery, PQuery) a private functional encryption scheme for static

databases supporting the family of queries F with error distribu-

tion 𝐷𝜖 . We denote 𝐹 as the set of 𝑓 1, . . . , 𝑓𝑄 ∈ F . For any PPT
simulator Sim = (SetUpSim, EQuerySim) and any PPT adversary

A = (A1,A2), we define the experiments in Figure 4, where the

oracles are described as follows and can only be accessed sequen-

tially.

• Real Experiment: O1 (·, ·), on inputs 𝑔 ∈ F and 𝑐𝑥 , exe-

cutes the encrypted query protocol EQuery𝑫𝑶,𝑺 (msk, ·; ·)
and outputs a response 𝑠 to the challenger and nothing to

the adversary. O2, on inputs 𝑠𝑘𝑓 and 𝑐𝑥 , executes the private

query protocol PQuery𝑨,𝑺 (·; ·) and outputs a response 𝑠 to

the adversary.

• Ideal Experiment: Õ1, on inputs𝑔 ∈ F and 𝑐∗𝑥 , executes the
simulated encrypted query protocol EQuerySim𝑫𝑶,𝑺 (st′,
·; ·) and outputs a response 𝑠 to the challenger and nothing to
the adversary. Õ2, on inputs 𝑠𝑘∗

𝑓
and 𝑐∗𝑥 , executes the private

589

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

Figure 4: Real and ideal experiments in 1-database security for PFE.

Exp𝑟𝑒𝑎𝑙A (1^ , 1𝜖)
1: (𝑥, 𝐹, st1) ← A1 (1^) where 𝑥 ∈ X and 𝐹 ∈ F𝑄

2: (msk; 𝑐𝑥 , 𝑠𝑘𝑓 1 , . . . , 𝑠𝑘𝑓 𝑄) ← SetUpC,A (1^ , 1𝜖 , 𝑥 ; 𝐹)
3: 𝛾 ← AO1 (msk, ·, ·),O2 (·, ·)

2
(𝑐𝑥 , st1)

Output: 𝛾

Exp𝑖𝑑𝑒𝑎𝑙A,Sim (1
^)

1: (𝑥, 𝐹, st1) ← A1 (1^) where 𝑥 ∈ X and 𝐹 ∈ F𝑄

2: (st′; 𝑐∗𝑥 , 𝑠𝑘∗𝑓 1 , . . . , 𝑠𝑘
∗
𝑓 𝑄
) ← SetUpSimC,A (1^ , 1𝜖 ; 𝐹)

3: 𝛾 ← A Õ1 (st
′, ·, ·),Õ2 (·, ·)

2
(𝑐∗𝑥 , st1)

Output: 𝛾 text

query protocol PQuery𝑨,𝑺 (·; ·) and outputs a response 𝑠 to

the adversary.

We say PFE is 1-database secure and (𝜖,𝑄)private if the two follow-

ing conditions are fulfilled.

• There exists a PPT simulator Sim such that for any PPT
adversary A the following advantage is negligible,

Adv𝑄PFE =

���Pr[1← Exp𝑟𝑒𝑎𝑙A (1^ , 1𝜖)] − Pr[1← Exp𝑖𝑑𝑒𝑎𝑙A (1^ , 1𝜖)]
��� ,

• The mechanismM defined as follows

M(𝑥, 𝑓 𝑖) =

𝑐𝑥 ,

𝑠𝑘𝑓 𝑖 ,

𝑠𝑖 ,

(1)

where (msk; 𝑐𝑥 ; (𝑠𝑘𝑓 1 , . . . , 𝑠𝑘𝑓 𝑄)) ← SetUp𝑫𝑶,𝑺,𝑨((1^ , 1𝜖 ,
𝑥);⊥; 𝐹) and 𝑠𝑖 ← PQuery𝑨,𝑺 (𝑠𝑘𝑓 𝑖 ; 𝑐𝑥) for 𝑖 ∈ [ℓ], satisfies
(𝑄, 𝜖)-IND-CDP (Definition 2.1).

3 CDP FOR RANDOMIZED FUNCTIONAL
ENCRYPTION

In this section we provide our results for a differentially private

mechanism supporting randomized functional encryption for the

private queries in encrypted databases.

3.1 Overview
Following the notation of Fig. 1, we would have that the encrypted

database is 𝑐𝑥 in the form of a functional encryption ciphertext (step

1); the negotiation between the database owner and the analyst

(step 2) consists in the analyst sending a function 𝑓 and the database

owner responding with the functional key 𝑠𝑘
ˆ𝑓
; and the noisy re-

sponse (step 3) consists on a string of the form 𝑓 (𝑥) +𝑒𝑓 , computed

by the server with 𝑐𝑥 and 𝑠𝑘
ˆ𝑓
, using the decryption procedure of

the functional encryption.

More precisely, letM ′ be a classical differentially private mech-

anism such that for a plain database 𝑥 and a function 𝑓 it out-

puts the value 𝑓 (𝑥) + 𝑒𝑓 for 𝑒𝑓 sampled from some distribution

𝐷𝜖 that renders the mechanism statistically differentially private.

Our idea is to then obtain a randomized functional encryption

RFE = (SetUp, Enc,KeyGen,Dec) such that the output of the de-

cryption algorithm Dec(𝑐𝑥 , 𝑠𝑘 ˆ𝑓
) is distributed as

ˆ𝑓 (𝑥) = 𝑓 (𝑥) +
𝐷𝜖 , where msk ← SetUp(1^), 𝑐𝑥 ← Enc(msk, 𝑥) and 𝑠𝑘

ˆ𝑓
←

KeyGen(msk, ˆ𝑓).
The next step is to properly define the privacy mechanismM

that most accurately represents our problem. It is clear that the

mechanism must incorporate the noisy response and the functional

key, since both are received by the analyst at some point during

the interaction. If the server was to be trusted, those two values

would suffice as a DP mechanism. However, since the objective

is to deal with an honest but curious server, the database encryp-

tion process should also be considered in the privacy mechanism.

Therefore, when looking at all three steps, considering the three

values (ciphertext, functional key and noisy plaintext) within the

DPmechanism, we are capable to cover for a collusion between the

server and the analyst. As such, our DP mechanismM on input

a database 𝑥 and query 𝑓 outputs 𝑐𝑥 , 𝑠𝑘 ˆ𝑓
and Dec(𝑐𝑥 , 𝑠𝑘 ˆ𝑓

). Note
that the value Dec(𝑐𝑥 , 𝑠𝑘 ˆ𝑓

) is redundant since it can be computed

from 𝑐𝑥 and 𝑠𝑘
ˆ𝑓
. However, we put it in to keep coherence with

the analysis given in Figure 1 and to emphasize the information

available through both the analyst (the functional key) and the

server (encrypted data).

Given this DP mechanism, it is obvious that the standard statis-

tical definition of differential privacy is no longer adequate, since

an adversary with unlimited power can always break the under-

lying encryption and get all the information about the database.

Therefore our proof below is done using the above defined (𝑄, 𝜖^)-
IND-CDP (see Definition 2.1), hence using the simulators of our

new security definition for randomized functional encryption (see

Definition 2.4).

Remark 1. In this work, we focus on the setting where the server is
honest but curious, while the analyst may be malicious. In addressing
a malicious server, a layer with a zero-knowledge proof should be
added to guarantee the verifiability, but it would reduce the efficiency
of the scheme and we do not consider it particularly meaningful in
our scenario. Additionally, in our scheme, even against a malicious
server, confidentiality, i.e, the security of the database, still holds due
to the security of the RFE scheme.

3.2 Formal Analysis
Let F be a family of deterministic functions such that ∀𝑓 ∈ F , 𝑓 :

X → S. LetR be a randomness space and let 𝑒 : R → S be a sample

generation function over a pre-defined distribution 𝐷𝜖 with values

in S. From that, we define the family
ˆF of randomized functions

such that ∀ ˆ𝑓 ∈ ˆF , ˆ𝑓 : X×R → S and
ˆ𝑓 (𝑥 ; 𝑟) = 𝑓 (𝑥) + 𝑒 (𝑟), where

𝑟 ← R is used as a seed to sample 𝑒 (𝑟) ← 𝐷𝜖 . Such definition

permits us to formally define mechanismM ′ : X × F × R → S
such thatM ′(𝑥, 𝑓 ; 𝑟) = ˆ𝑓 (𝑥 ; 𝑟). This corresponds to a classical DP

mechanism for a function 𝑓 ∈ F . Our purpose in this section is to

generically transform it into an equivalent DP mechanism for an

encrypted database.

For this purpose, we consider RFE = (SetUp, Enc,KeyGen,Dec)
a secure secret-key randomized functional encryption scheme for

590

CDP for Encrypted Databases Proceedings on Privacy Enhancing Technologies 2024(4)

the family of randomized functions
ˆF . Therefore, using the struc-

ture given in Figure 1, and based on the notions and notations given

in Section 2, we define the following.

(1) The encrypted database corresponds to 𝑐𝑥 ← Enc(msk, 𝑥)
where 𝑥 ∈ X is a plain database, and where (param,msk) ←
SetUp(1^ , ˆF) as previously been executed once for all by

the database owner;

(2) the negotiation is done for a set of queries represented as

functions
ˆ𝑓 1, . . . , ˆ𝑓𝑄 ∈ ˆF and gives, for all 𝑖 ∈ [𝑄], 𝑠𝑘

ˆ𝑓 𝑖
←

KeyGen(msk, ˆ𝑓 𝑖);
(3) the noisy response phase executes, for all 𝑖 ∈ [𝑄], 𝑠𝑖 ←

Dec(𝑐𝑥 , 𝑠𝑘𝑓𝑖) which is obtained by the analyst.

From the correctness of the used RFE, we obtain that ∀𝑖 ∈ [𝑄],
𝑠𝑖 is computationally indistinguishable from the value

ˆ𝑓 𝑖 (𝑥 ; 𝑟𝑖) =
𝑓 𝑖 (𝑥) + 𝑒 (𝑟𝑖), where 𝑟𝑖 ← R.

Let us now focus on our new DPmechanismM for an encrypted

database. As we consider that both the server and the analyst could

be corrupted. Such a DP mechanism must include all the infor-

mation available to both, namely 𝑐𝑥 , 𝑠𝑘 ˆ𝑓
and Dec(𝑐𝑥 , 𝑠𝑘 ˆ𝑓

) for one
specific query. But we now need to take care of the used random-

ness, and be more precise on where it comes from. To be as generic

as possible, we consider that the randomness space is divided into

two parts. Hence, R = R𝑥 × R𝑓 and ∀𝑟 ∈ R, 𝑟 can be written as

𝑟 = (𝑟𝑥 , 𝑟 𝑓), where 𝑟𝑥 ∈ R𝑥 (resp. 𝑟 𝑓 ∈ R𝑓) is the seed for the

randomness sampled in the encryption (resp. key generation) al-

gorithm to compute 𝑐𝑥 (resp. 𝑠𝑘
ˆ𝑓
). Then our DP mechanism for

encrypted databaseM : X × F × R → S is defined as follows.

M(𝑥, 𝑓 ; (𝑟𝑥 , 𝑟 𝑓)) =

𝑐𝑥 ← Enc(msk, 𝑥 ; 𝑟𝑥)
𝑠𝑘

ˆ𝑓
← KeyGen(msk, ˆ𝑓 ; 𝑟 𝑓)

𝑠 ← Dec(𝑐𝑥 , 𝑠𝑘 ˆ𝑓
)

(2)

for (𝑟𝑥 , 𝑟 𝑓) ← R, where Enc and KeyGen denote the algorithms

taking 𝑟𝑥 and 𝑟 𝑓 as seeds for their randomness respectively.

From all that, we can now proceed to our main result of this

section.

Theorem 3.1. Let RFE be a 1-SEL-SIM secure randomized func-
tional encryption scheme against 𝑄 functional key queries andM ′
be a (𝑄, 𝜖^)-IND-CDP mechanism. Then the mechanismM defined
in Equation 2 is (𝑄, 𝜖^)-IND-CDP.

In other words, for any PPT adversary A we can construct a PPT
adversary B playing the 1-SEL-SIM security game for RFE and a
PPT adversary C playing the IND − CDP game forM ′ such that

AdvM,𝑄

DP,𝜖^
(A) ≤ AdvM

′,𝑄
DP,𝜖^

(C) + Adv𝑄RFE (B) .

For the proof of this theorem, we refer to Appendix E.

Remark 2. Note that only computational differential privacy of
the output is required but, as said in Section 2.2, statistical differential
privacy implies its computational counterpart. Therefore, we can build
our mechanism M in equation 2 using a statistical differentially
private outputM ′ as a building block.

Remark 3. Theoretically, we can obtain an RFE scheme from a
FE scheme in a generic manner [7]. However, this approach results
in inefficient constructions. In the following section, we show that an

efficient construction can be achieved for the class of inner-product
functions.

4 RANDOMIZED INNER-PRODUCT SCHEME
In this section we present our instantiation of a randomized inner-

product functional encryption scheme using an arbitrary IPFE
scheme and prove its security.

The most important concept to take a hold of is the fact that the

noise must be sampled during the key generation phase since it

must be different for every query while at the same time it must

be hidden to satisfy differential privacy. The naive idea is then to

use function-hiding inner product functional encryption [11] to

hide the noise. However, it would need to be used as a building

block towards constructing a RIPFE scheme, and would only result

in a pairing-based scheme (very expensive with respect to expo-

nentiations), since achieving function-hiding for inner products

without pairings is a well-known open problem. To circumvent

that, we expand on the ideas by Hamdi in [27], using the concept

and the construction of a multi-input functional encryption scheme

for inner product introduced in [2]. More precisely, the function

we want to implement is seen as a two-input function:

• one is the message 𝒙 padded during the encryption phase

with a long-term key 𝒖, as 𝒅 = 𝒙 +𝒖. To manage the fact that

a ciphertext can be used several times with several differ-

ent functional key queries, we then encrypt such one-time

ciphertext using a standard IPFE ; and

• one is a DP noise 𝑒𝒚 padded during the key generation phase

with an ephemeral key 𝑢 ′𝒚 , as 𝑑
′
𝒚 ← 𝑒𝒚 + 𝑢 ′𝒚 .

Next, our functional key generation generates (i) one functional

secret for the vector 𝒚 using the master secret key of the basic

IPFE, and (ii) one functional key related to the two-input function

encryption of [2], as 𝑧𝑘𝒚 ← ⟨𝒖,𝒚⟩ + 𝑢 ′𝒚 . Finally, using the IPFE
decryption and the property of the two-input functional encryption,

we can easily recover ⟨𝒙,𝒚⟩ + 𝑒𝒚 .
The final detail we must be careful with is the use of one-time

pads and which finite group we are using them in. To be able to

apply exactly our previous description, the base IPFE scheme would

need to take inputs from a finite group, and have its outputs on the

exact same finite group so as to be able to subtract the one-time pads

out. There exist some instantiations that satisfy this, for example

the ones in sections 4.2 and 5.2 in [6]. However, most efficient

instantiations take bounded inputs inside Z which makes the use of

the one-time pad non-trivial to implement. Despite that, by using a

property which most of current instantiations of IPFE satisfy called

two-step decryption (first defined in [2]) we can overcome this issue.

The basic idea is that the bounded integer inputs are encoded into

finite group where the operations of the scheme are performed and

then the results are decoded back into Z. It is in this intermediate

finite group where the one-time pad is performed.

Remark 4. To construct a RIPFE scheme from a deterministic IPFE,
one could hard-wire the noise as an extra input for any function 𝒚.
This method would then require the function-hiding property, since
knowledge of the functional key in standard functional encryption
does not protect the function, thus leaking the noise and breaking
privacy. However, function-hiding is a very strong security notion. We
will show that we do not need its full functionality. Instead, we only

591

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

need a different form of hiding: only the noise 𝑒𝒚 should be hidden. As
a result, we can achieve a much more efficient construction without
pairings, while in contrast, all existing group-based function-hiding
functional encryption requires the use of pairings.

4.1 Formal Description of the Scheme
Now we can give the formal description. Let ℓ, 𝑋,𝑌 ∈ Z>0 and

F ℓ,𝑋,𝑌
be the family of inner products such that 𝒚 ∈ F ℓ,𝑋,𝑌

means that 𝒚(𝒙) = ⟨𝒙,𝒚⟩ for any 𝒙 ∈ Zℓ with ∥𝒙 ∥∞ < 𝑋 and

𝒚 ∈ Zℓ with ∥𝒚∥∞ < 𝑌 . As in the previous section, we define the

family
ˆY of randomized functions such that ∀𝑦 ∈ ˆF , 𝑦 (𝑥 ; 𝑟) =

⟨𝒙,𝒚⟩ + 𝑒 (𝑟), where 𝑟 ← R is used as a seed to sample 𝑒 (𝑟) ← 𝐷𝜖 .

Let IPFE = (SetUpIPFE, EncIPFE,KeyGenIPFE, DecIPFE) be an inner-

product functional encryption scheme for the family of functions

F ℓ,𝑋,𝑌
that satisfies the following property: two-step decryption.

Property 1 (Adapted from Property 1, [2]). An inner-product
functional encryption scheme IPFE = (SetUp, Enc,KeyGen,Dec) sat-
isfies the two-step decryption property if there exist PPT algorithms
SetUp′,Dec1,Dec2 and a function E such that:

(1) For all ^, ℓ, 𝑋,𝑌 ∈ Z>0, the algorithm SetUp′(1^ , F ℓ,𝑋,𝑌)
outputs (param,msk) where param contains a bound𝐵 ∈ Z>0
and a description of a commutative group G (with operation ◦)
of order 𝐿 > ℓ · 𝑋 · 𝑌 , defining the function E : Z𝐿 × Z→ G.

(2) For all (param,msk) ← SetUp′(1^ , F ℓ,𝑋,𝑌), 𝑐𝒙 ← Enc
(msk, 𝒙) and 𝑠𝑘𝒚 ← KeyGen(msk,𝒚) we have

Dec1(𝑐𝒙 , 𝑠𝑘𝒚) = E(⟨𝒙,𝒚⟩, noise(𝑐𝒙 , 𝑠𝑘𝒚))

for some noise function. Furthermore, it holds for all 𝒙,𝒚,
Pr[noise(𝑐𝒙 , 𝑠𝑘𝒚) > 𝐵] < negl(^). Note that we are assuming
that the encryption algorithm works for inputs greater than
the bound.

(3) Given any 𝛾 ∈ Z𝐿 and param, E(𝛾, 0) can be efficiently com-
puted.

(4) The function E is linear, more specifically for any 𝛾,𝛾 ′ ∈ Z𝐿
and any noise, noise′ ∈ Z, we have

E(𝛾, noise) ◦ E(𝛾 ′, noise′) = E(𝛾 + 𝛾 ′, noise + noise′) .

(5) For all 𝛾 < ℓ ·𝑋 ·𝑌 , and noise < ℓ ·𝐵, Dec2(E(𝛾, noise)) = 𝛾 .

In other words, the decryption is done in two steps, where only

the second one is affected by the bound on the inputs and its inverse

can be computed efficiently only knowing the public parameters.

The basic example are schemes based on the DDH assumption

(Section 3 in [5]), where the function E(𝛾, noise) = 𝑔𝛾 with 𝑔 being

the generator of the cyclic group G stated in the public parameters.

It is proven in [2] that LWE and DCR based constructions also

satisfy this property (for example Section 4 in [6] and Section 4 in

[5]). It is for the inclusion of instantiations based on approximate

encryption like LWE that the noise is incorporated to the function

E.
With this property defined, we proceed to describe our random-

ized scheme. Let 𝐷𝜖 be a probability distribution over Z and ˆF ℓ,𝑋,𝑌
𝜖

as defined in Section 3. Then we define our randomized inner prod-

uct functional encryption scheme RIPFE = (SetUpRIPFE, EncRIPFE,
KeyGenRIPFE, DecRIPFE) for the family of functions

ˆF ℓ,𝑋,𝑌
𝜖 as pre-

sented in Figure 5.

SetUpRIPFE (1^ , ˆF ℓ,𝑋,𝑌
𝜖) :

Choose distribution 𝐷𝜖 over Z
Choose 𝛼 such that Pr[|𝐷𝜖 | ≥ 𝛼] = negl(^)
Choose 𝐿 > ℓ · 𝑋 · 𝑌 + 𝛼 , 𝒖 $←− Zℓ

𝐿

(paramIPFE,mskIPFE) ← SetUpIPFE (1^ , F ℓ,𝑋+𝛼/(ℓ ·𝑌),𝑌)
Output (paramRIPFE,mskRIPFE) =

= ((𝐿, 𝐷𝜖 , paramIPFE), (𝒖,mskIPFE))

EncRIPFE (mskRIPFE, 𝒙) :
𝒅 ← 𝒙 + 𝒖 (mod 𝐿), 𝑐𝒅 ← EncIPFE (mskIPFE, 𝒅)
Output 𝑐𝒅

KeyGenRIPFE (mskRIPFE,𝒚) :

𝑒 (𝑟𝒚) ← 𝐷𝜖 , 𝑢
′
𝒚

$←− Z𝐿 , 𝑑 ′𝒚 ← 𝑒 (𝑟𝒚) + 𝑢 ′𝒚 (mod 𝐿)
𝑠𝑘𝒚 ← KeyGenIPFE (mskIPFE,𝒚)
𝑧𝑘𝒚 ← ⟨𝒖,𝒚⟩ + 𝑢 ′𝒚 (mod 𝐿)
Output 𝑠𝑘RIPFE𝒚 = (𝑑 ′𝒚 , 𝑠𝑘𝒚 , 𝑧𝑘𝒚)

DecRIPFE (𝑐𝑑 , 𝑠𝑘RIPFE𝑦) :
E(⟨𝒅,𝒚⟩, noise(𝑐𝒙 , 𝑠𝑘𝒚)) ← Dec1IPFE (𝑐𝒅 , 𝑠𝑘𝒚)
𝑠 ← Dec2(E(⟨𝒅,𝒚⟩, noise(𝑐𝒙 , 𝑠𝑘𝒚)) ◦ E(𝑑 ′𝒚 − 𝑧𝑘𝒚 , 0))
Output 𝑠

Figure 5: Randomized inner-product functional encryption
scheme RIPFE. The IPFE scheme has a bigger input bound
(𝑋 + 𝛼/(ℓ · 𝑌) instead of 𝑋) to account for the extra space
needded for the noise in RIPFE.

Remark 5. Note that in our RIPFE construction from Figure 5,
when one sets the distribution 𝐷𝜖 as the zero distribution, our con-
struction reduces exactly to the multi-input construction from [2,
Section 3.1 Figure 4] for the parameter 𝑛 = 1. Giving the adversary
access to ⟨𝒖,𝒚⟩ + 𝑒 (𝑟𝒚) (mod 𝐿), at a first glance, seems to harm
the confidentiality of the secret key 𝒖 and therefore the database 𝒙 .
However, due to the fact that 𝒖 is used as a one-time pad for 𝒙 , any
information gleamed from ⟨𝒖,𝒚⟩ + 𝑒 (𝑟𝒚) (mod 𝐿) translates to in-
formation gained about ⟨𝒙,𝒚⟩ + 𝑒 (𝑟𝒚) (mod 𝐿). Since outputting
⟨𝒙,𝒚⟩ + 𝑒 (𝑟𝒚) (mod 𝐿) is the intended functionality, the confiden-
tiality of the database 𝒙 is not harmed.

4.2 Correctness and Security
First we need to verify that this is a correct randomized functional

encryption scheme for
ˆF ℓ,𝑋,𝑌
𝜖 .

Proposition 4.1. TheRIPFE scheme defined in Figure 5 is a correct
randomized functional encryption scheme for ˆF ℓ,𝑋,𝑌

𝜖 .

For the proof of this Proposition we refer to Appendix F.

We will now prove the simulation soundness of our scheme by

lifting the security guarantee form the base IPFE scheme to the

randomized version.

Theorem 4.2. Let IPFE be a 1-SEL-SIM-secure inner product func-
tional encryption scheme against 𝑄 functional key queries, then our

592

CDP for Encrypted Databases Proceedings on Privacy Enhancing Technologies 2024(4)

Table 2: Generic efficiency estimates for RIPFE.

msk 𝑐𝒙 𝑠𝑘𝒚

Size IPFEℓmsk + |seed| IPFEℓ𝑐𝒙 IPFEℓ
𝑠𝑘𝒚
+ 2 log(𝐿)

SetUp Enc KeyGen Dec

Comp. time IPFEℓSetUp + ℓ · 𝑡𝑈𝑠𝑎𝑚𝑝𝑙 IPFEℓEnc + ℓ · 𝑡𝑎𝑑𝑑
IPFEℓKeyGen + 𝑡𝐷𝑠𝑎𝑚𝑝𝑙 + 𝑡𝑈𝑠𝑎𝑚𝑝𝑙+
+ℓ · 𝑡𝑝𝑟𝑜𝑑 + (ℓ + 1) · 𝑡𝑎𝑑𝑑

IPFEℓDec + 𝑡𝑎𝑑𝑑 + 𝑡𝑠𝑢𝑏𝑠

construction RIPFE in Figure 5 is a 1-SEL-SIM-secure randomized
functional encryption scheme against 𝑄 functional queries.

In other words, for any PPT adversary A we can construct a PPT
adversary B such that

Adv𝑄RIPFE (A) ≤ Adv𝑄IPFE (B).

For the proof of this theorem, we refer to Appendix F.

Remark 6. Note that our proof is a blackbox reduction from RIPFE
to IPFEwith the same amount of functional key queries. This means
that we inherit from IPFE the restriction of the number of queries
𝑄 < ℓ , otherwise the inherent leakage of the functionality gives out the
whole database by solving the determined linear system of equations.

4.3 Efficiency Considerations
For a generic IPFE, our RIPFE scheme needs no extra inner-product

slot to handle the noise, in other words, it is constructed with little

overcost (both in storage and computation time) in respect to the

base IPFE scheme. More in detail, in storage this overcost consists in

the extra one-time pad key 𝒖 in the master secret key, which since

it is generated uniformly we only need to store the randomness

seed for a suitable pseud-random generator, and two extra integers

(namely 𝑑 ′𝒚 and 𝑧𝑘𝒚) in the functional decryption key. This means

that the storage overcost does not depend on ℓ .

In computation time the overcost consists: during the SetUp the

sampling of 𝒖, in Enc an extra ℓ additions and the sampling of 𝒖
from the seed, in KeyGen sampling 𝒖 from the seed, 𝑒𝒚 and 𝑢 ′𝒚
and 𝒖 together with an inner product and two extra additions and

in Dec there is an extra addition and substraction as well as the

computation of the function E. All those elements are summarized

in Table 2. In regards to the notation on this table, the integer^ is the

security parameter, and we denote as IPFEℓ𝑠 the size or computation

time (depending on what the string 𝑠 makes reference to) of the

base IPFE scheme for ℓ coefficients.

5 PRIVATE ENCRYPTED DATABASE
In this section we describe our full system for a computationally

differentially private encrypted database supporting linear queries,

following the model given in Section 2.4. Our system is based on

the randomized inner product functional encryption scheme given

in the previous section, and the generic DP mechanism described

in Section 3. We prove that such system is secure and private even

against a collusion between the analyst and the server, using the

security results of the two previous sections. We finally give some

words about a practical deployment of such system.

SetUp𝑫𝑶,𝑺,𝑨((1
𝜿 , F̂

ℓ,𝑿,𝒀
𝝐 , 𝒙);⊥; (𝒚1 . . . 𝒚𝑸)) :

1. 𝑫𝑶 computes the following

a. (mskRIPFE, 𝑝𝑎𝑟𝑎𝑚RIPFE) ← SetUpRIPFE (1^ , ˆF ℓ,𝑋,𝑌
𝜖).

b. 𝑐𝒙 ← EncRIPFE (mskRIPFE, 𝒙) .
c. 𝑠𝑘RIPFE

𝒚𝑖 ← KeyGenRIPFE (mskRIPFE,𝒚𝑖) for 𝑖 ∈ [𝑄].
2. 𝑫𝑶 keeps mskRIPFE secret.

3. 𝑺 receives 𝑐𝒙 .
4. 𝑨 receives 𝑠𝑘RIPFE

𝒚1
, . . . , 𝑠𝑘RIPFE

𝒚𝑄

EQuery𝑫𝑶,𝑺 ((mskRIPFE, 𝒈); 𝒄𝒙) :
1. 𝑫𝑶 computes 𝑠𝑘 IPFE𝒚 ← KeyGenIPFE (mskIPFE,𝒈).
2. 𝑫𝑶 receives 𝑐𝒙 from 𝑺 .
3. 𝑫𝑶 computes 𝑟 ← DecIPFE (𝑐𝒙 , 𝑠𝑘 IPFE𝒈) − ⟨𝒖,𝒈⟩.

PQuery𝑨,𝑺 (𝒔𝒌RIPFE𝒚 𝒊 ; 𝒄𝒙) :

1. 𝑺 receives 𝑠𝑘 IPFE
𝑦𝑖

from 𝑨.

2. 𝑺 computes E(⟨𝒅,𝒚𝑖 ⟩, noise(𝑐𝒙 , 𝑠𝑘𝒚𝑖)) ← Dec1IPFE (𝑐𝒅 , 𝑠𝑘𝒚𝑖).
3. 𝑨 receives E(⟨𝒅,𝒚𝑖 ⟩, noise(𝑐𝒙 , 𝑠𝑘𝒚𝑖)) from 𝑺 .
4. 𝑨 computes

4. 𝑠 ← Dec2(E(⟨𝒅,𝒚𝑖 ⟩, noise(𝑐𝒙 , 𝑠𝑘𝒚𝑖)) ◦ E(𝑑 ′
𝒚𝑖 − 𝑧𝑘𝒚𝑖 , 0)).

Figure 6: Private functional encryption scheme supporting
inner product queries PIPFE

5.1 Description of the System
Let𝑫𝑶 be a Database Owner, 𝑺 be an external server that stores sen-
sitive databases, and let 𝑨 be an analyst wanting to make requests

on the stored databases. The overall idea of our system is to use the

randomized inner product scheme to cover the private queries from

the analyst, and to get advantage of the non-noisy IPFE scheme

embeded into the randomized version (see the previous section for

details) to answer the queries from the database owner, thanks to

some non-noisy keys. Indeed, following the formalization given

in Section 2.4, the EQuery from 𝑫𝑶 are only based on the IPFE,
while the PQuery from 𝑨 are based on the RIPFE. The latter is

divided into two parts: the SetUp and the KeyGen are executed

during the system setup and the Dec is done during the query part.

Let us now formally describe the private encrypted database.

Let 𝐷𝜖 be a distribution over Z, let IPFE = (SetUpIPFE, EncIPFE,
KeyGenIPFE,DecIPFE) be a generic inner product functional encryp-
tion scheme for the family of functions F ℓ,𝑋,𝑌

satisfying two-step

decryption and let RIPFE = (SetUpRIPFE, EncRIPFE,KeyGenRIPFE,
DecRIPFE) be the randomized inner product functional encryption

593

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

scheme described in Figure 5, defined using the same IPFE. This is
essentially that the same IPFE scheme is used both alone for the

EQuery from 𝑫𝑶 and as the underlying primitive for the RIPFE
scheme used for the PQuery.

Our private encrypted database supporting inner product queries

over a static database PIPFE = (SetUp, EQuery, PQuery) is then
given in Figure 6.

Remark 7. In our PIPFE construction (Figure 6), the noise is added
during the key generation phase, while this was during encryption
in related work [4, 9]. This permits us to manage EQuery requests
in a more efficient way. Indeed, such requests by the Data Owner
do not need any noise for the answer (as opposed to the response
to the PQuery from Analysts). Hence, with our proposal, a unique
version of the encrypted database is necessary to manage both kinds
of queries, since it does not contain any noise. If the request comes
from an external Analyst, the noise is simply added in the functional
key.

In contrast, the constructions in [4, 9] add the differentially private
noise to the database before encrypting while leaving the access keys
without noise. As such, they are not able to provide an EQuery protocol
without duplicating the encrypted database, once without noise to
perform the EQuery protocol and once with differentially private noise
to perform the PQuery protocol.

5.2 Correctness, Security and Privacy
We need to prove the full security of our PIPFE scheme.

Theorem 5.1. Let IPFE be a correct inner product functional en-
cryption scheme and let RIPFE be as described in Figure 5. Then the
PIPFE described in Figure 6 is a correct private functional encryption
scheme for static databases supporting the inner product family of
queries with distribution 𝐷𝜖 .

For the proof of this theorem, we refer to Appendix G.

Theorem 5.2. Let IPFE be a 1-SEL-SIM-secure inner product func-
tional encryption scheme and let RIPFE be as described in Figure 5.
Then our construction PIPFE described in Figure 6 is a 1-database
secure and private functional encryption scheme for static databases
supporting the inner product family of queries with distribution 𝐷𝜖 .

For the proof of this theorem, we refer to Appendix G.

6 IMPLEMENTATION CONSIDERATIONS
6.1 Differential Privacy Considerations
The first choice is what distribution will be used for the privacy

mechanism. Since the distribution 𝐷𝜖 must be over Z, we take for
the DP mechanismM ′ the geometric distribution, as described in

[25]. More specifically, the mechanismM ′ with error distribution

sampled from 𝐷 ∼ Geo(exp(−𝜖/Δ)) is a (𝜖, 0)-DP mechanism,

where Δ is the ℓ1-sensitivity of the family of functions F andGeo(·)
refers to the two-sided geometric distribution.We refer to Appendix

H for the proof. For the sampling of this two-sided geometric we use

the fact that a two-sided geometric distribution is the substraction of

two one-sided geometric distributions as shown in Proposition 3.1

in [29], while the one-sided geometric is sampled through the same

algorithm as the NumPy library [37] rewritten in C. Having the

precise distribution allows us also to make estimates about utility,

which in broad terms measures how close the noisy response is to

the actual value.

It follows that the utility of our mechanism is𝑂

(
1

𝜖

)
·Δ · log

(
2

𝛿

)
for any fixed 𝛿 (for the proof we refer to Appendix H). This means

that there is a linear relation between the sensitivity of our family of

queries and the size of the noise. As such it would be ideal to control

this sensitivity. In the case of the inner product functionality, the

sensitivity of any query is bounded by the maximum coefficient

𝑌 . Therefore, taking Δ = 𝑄 · 𝑌 ensures through the property of

sequential composition (see Appendix A) ensures that our adaptive

mechanism is (𝜖, 0)-DP. So, in general the bigger the coefficient the

bigger the noise, which makes sense since the purpose of this noise

is to blur the statistic, and bigger coefficient generally means bigger

difference between neighbouring databases. In comparison to the

work by Bakas et al. [9], given that they add noise to each coefficient,

their utility depends on the size of the database ℓ instead1.

6.2 Implementation Specifics
For a concrete implementation we have opted for the IPFE scheme

over the ring Z from [6] (the scheme is shown in Appendix I), which

is proven to be simulation sound under the DDH assumption [5].

The DDH-based constructions are actually the most efficient cur-

rently known for IPFE schemes. Note that the decryption algorithm

will only be able to recover the value when computing the discrete

logarithm is efficient, therefore the response needs to be smaller

than some bound 𝐵 = poly(^). Then, by using the baby-giant steps

algorithm presented in [39] we can recover the discrete logarithm

in �̃� (𝐵1/2). For the practical implementation we will consider 𝐵 to

be ≈ 2
40
, so that the discrete logarithm is computed in ≈ 0.4s.

Using our notation, the query result will be at most ℓ · 𝑋 · 𝑌 + 𝛼
with probability 𝛿 where𝛼 represents the noise size and is computed

as in Proposition H.2 in Appendix H, so we can take 𝛼 = (𝑄 ·𝑌)/𝜖 ·
log(2/𝛿). We will assume the number of queries asked 𝑄 = 16, the

bound for these queries 𝑌 = 2
7
and the parameters 𝜖 = 0.1 and

𝛿 = 2
−100

all constant, and variate the amount of database entries

ℓ with the bound these entries 𝑋 , while putting a lower bound of

16 bits to 𝑋 . Note that these values can be changed while keeping

ℓ ·𝑋 ·𝑌 +𝛼 ≈ 2
40

or increased if we can assume a longer computation

time for the discrete logarithm and therefore decryption time. In

the case of very large number of entries, the discrete logarithm

computation time is no longer the dominating factor so the bound

𝐵 could be increased without notable effects on the decryption

computation time, this is the reason why the lower bound to |𝑋 |
makes sense. With the objective of being as generic as possible we

will consider no specific structure for the database.

The implementation was written in C and using the library

CiFEr [16]. Some optimization was done, given the fact that we use

a secret-key scheme instead of a public-key one, which allows us

to reduce computations during setup given that the secret key can

be used in the encryption and the adversary has no access to this

encryption key, therefore, precomputations for fast exponentiations

can be performed during set up. More concretely, we apply the

fixed-base comb method for fast exponentiations [34, Chapter 14,

Section 14.6.3 iii] in the exponentiations used during the encryption

(with precomputations done during set up) and the wNAF-based

1
Note that the sensitivity of the summation query is 1.

594

CDP for Encrypted Databases Proceedings on Privacy Enhancing Technologies 2024(4)

Table 3: Efficiency values for RIPFE instantiation based in [5].

ℓ |𝑋 | msk 𝑐𝒙 𝑠𝑘𝒚

Sizes

100 21 96 B 38 KB 1 KB

1 000 18 96 B 375 KB 1 KB

10 000 16 96 B 3 MB 1 KB

100 000 16 96 B 36 MB 1 KB

1 000 000 16 96 B 366 MB 1 KB

ℓ SetUp Encrypt KeyGen Decrypt

Comp. time

100 2.0431 s 0.1461 s 0.0010 s 0.4177 s

1 000 2.0464 s 1.4362 s 0.0017 s 0.4784 s

10 000 2.0367 s 14.3370 s 0.0099 s 0.8420 s

100 000 2.0354 s 143.1491 s 0.1090 s 3.4425 s

1 000 000 2.0956 s 1421.3589 s 1.0733 s 18.3102 s

interleaving exponentiation method for fast simultaneous multiple

exponentiation [36, Section 3.2] for the multiple exponentiations

during the decryption algorithm.

We give in Table 3 the resulting values when run for different

values of ℓ for 128-bit security (assuming a 3072 bit RSA modu-

lus, as recommended by the NIST). The code was executed with

Intel® Core™ i7-1365U (3.9GHz). Note that due to the form of the

construction (see Appendix I) the encryption algorithm is easily

parallelisable, so the timings could be easily reduced by using more

cores. The timings grow linearly with the number of entries of the

database ℓ for all algorithms, which is a lower bound for inner-

product functional encryption schemes, so the overcost to obtain

computational DP is quite low. In the case of the decryption and

the set up algorithms the linear growth is overshadowed for small

ℓ by computations that are constant by choice of the parameters.

In case of the decryption algorithm this is the discrete logarithm

computation for ℓ < 100 000 while in case of the set up it is the pre-

computations for the fixed-base comb algorithm for ℓ < 1 000 000.

With these values we show the practical utility of our construction.

7 CONCLUSIONS
Our results may inspire follow-up works on the subject.

Reducing the requirements for the reductions from simulation-

based security to indistinguishability-based security would be an

intriguing challenge. Moreover, it would tackle the issue of multiple

ciphertexts, as in the indistinguishability setting, security for one

ciphertext usually implies security for multiple ciphertexts.

Another direction is to extend these results to the dynamic data-

base setting, which would vastly open the implementation possi-

bilities. However, due to the nature of dynamic databases, where

the analyst can reuse the functional key to retrieve the noisy re-

sponse from the updated database, adaptive simulation security

for an unbounded number of ciphertexts might be required. In the

case of inner product functional encryption, this is not possible, as

mentioned in [5]. Furthermore, most efficient privacy mechanisms

for dynamic databases rely on adding noise for each change to

the database. As a result, some form of homomorphism must be

implemented in conjunction with our design.

ACKNOWLEDGMENTS
We thank Bastien Vialla, Nicolas Desmoulins and Maxime Bélair for

their help with the implementation of the scheme and its evaluation.

We also thank the anonymous reviewers for their helpful insights

and advice. This work was funded by the France 2030 ANR Project

ANR-22-PECY-003 SecureCompute, the French ANR Project ANR-

21-CE39-0006 SANGRIA, the French ANR project ANR-19-CE39-

0011-04 PRESTO and the French ANR Project ANR-23-CE39-0009-

06 TRUST.

REFERENCES
[1] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. 2015.

Simple functional encryption schemes for inner products. In Public-Key Cryp-
tography – PKC 2015, Jonathan Katz (Ed.). Springer, Berlin, Heidelberg, 733–751.

https://doi.org/10.1007/978-3-662-46447-2_33

[2] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. 2018.

Multi-Input Functional Encryption for Inner Products: Function-Hiding Realiza-

tions and Constructions Without Pairings. In Advances in Cryptology – CRYPTO
2018, Hovav Shacham and Alexandra Boldyreva (Eds.). Springer International

Publishing, Cham, 597–627. https://doi.org/10.1007/978-3-319-96884-1_20

[3] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. 2017. Multi-

input inner-product functional encryption from pairings. In Advances in Cryptol-
ogy – EUROCRYPT 2017, Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.).

Springer, Cham, 601–626. https://doi.org/10.1007/978-3-319-56620-7_21

[4] Archita Agarwal, Maurice Herlihy, Seny Kamara, and Tarik Moataz. 2019. En-

crypted databases for differential privacy. Proceedings on Privacy Enhancing
Technologies 2019, 3 (2019), 170–190. https://doi.org/10.2478/popets-2019-0042

[5] Shweta Agrawal, Benoît Libert, Monosij Maitra, and Radu Titiu. 2020. Adaptive

simulation security for inner product functional encryption. In Public-Key Cryp-
tography – PKC 2020, Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and

Vassilis Zikas (Eds.). Springer, Cham, 34–64. https://doi.org/10.1007/978-3-030-

45374-9_2

[6] Shweta Agrawal, Benoît Libert, and Damien Stehlé. 2016. Fully secure functional

encryption for inner products, from standard assumptions. In Advances in Cryp-
tology – CRYPTO 2016, Matthew Robshaw and Jonathan Katz (Eds.). Springer,

Berlin, Heidelberg, 333–362. https://doi.org/10.1007/978-3-662-53015-3_12

[7] Shashank Agrawal and David J Wu. 2017. Functional encryption: deterministic

to randomized functions from simple assumptions. In Advances in Cryptology –
EUROCRYPT 2017, Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.). Springer,

Cham, 30–61. https://doi.org/10.1007/978-3-319-56614-6_2

[8] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S Dov Gordon,

Stefano Tessaro, and David A Wilson. 2013. On the relationship between func-

tional encryption, obfuscation, and fully homomorphic encryption. In Cryp-
tography and Coding, Martijn Stam (Ed.). Springer, Berlin, Heidelberg, 65–84.

https://doi.org/10.1007/978-3-642-45239-0_5

[9] Alexandros Bakas, Antonis Michalas, and Tassos Dimitriou. 2022. Private Lives

Matter: A Differential Private Functional Encryption Scheme. In Proceedings
of the Twelfth ACM Conference on Data and Application Security and Privacy.
Association for Computing Machinery, New York, NY, 300–311. https://doi.org/

10.1145/3508398.3511514

595

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.2478/popets-2019-0042
https://doi.org/10.1007/978-3-030-45374-9_2
https://doi.org/10.1007/978-3-030-45374-9_2
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-319-56614-6_2
https://doi.org/10.1007/978-3-642-45239-0_5
https://doi.org/10.1145/3508398.3511514
https://doi.org/10.1145/3508398.3511514

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

[10] Amos Beimel, Kobbi Nissim, and Eran Omri. 2008. Distributed Private Data

Analysis: Simultaneously Solving How and What.. In Advances in Cryptology –
CRYPTO 2008, David Wagner (Ed.). Springer, Berlin, Heidelberg, 451–468. https:

//doi.org/10.1007/978-3-540-85174-5_25

[11] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. 2015. Function-hiding

inner product encryption. In Advances in Cryptology – ASIACRYPT 2015, Tetsu
Iwata and Jung Hee Cheon (Eds.). Springer, Berlin, Heidelberg, 470–491. https:

//doi.org/10.1007/978-3-662-48797-6_20

[12] Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional encryption: Defi-

nitions and challenges. In Theory of Cryptography, Yuval Ishai (Ed.). Springer,
Berlin, Heidelberg, 253–273. https://doi.org/10.1007/978-3-642-19571-6_16

[13] Mark Bun, Yi-Hsiu Chen, and Salil Vadhan. 2016. Separating computational and

statistical differential privacy in the client-server model. In Theory of Cryptogra-
phy, Martin Hirt and Adam Smith (Eds.). Springer, Berlin, Heidelberg, 607–634.

https://doi.org/10.1007/978-3-662-53641-4_23

[14] Population Reference Bureau, the U.S. Census Bureau’s 2020 Census Data Prod-

ucts, and Dissemination Team. 2020. Why the Census Bureau Chose Differential

Privacy. Census Briefs.

[15] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. 2011. Private and Continual

Release of Statistics. ACM Trans. Inf. Syst. Secur. 14, 3, Article 26 (nov 2011),

24 pages. https://doi.org/10.1145/2043621.2043626

[16] CiFEr. 2021. CiFEr- Functional Encryption library. https://github.com/fentec-

project/CiFEr

[17] Damien Desfontaines and Balázs Pejó. 2020. Sok: differential privacies. Pro-
ceedings on privacy enhancing technologies 2020, 2 (2020), 288–313. https:

//doi.org/10.2478/popets-2020-0028

[18] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting

telemetry data privately. Advances in Neural Information Processing Sys-
tems 30 (2017). https://proceedings.neurips.cc/paper_files/paper/2017/hash/

253614bbac999b38b5b60cae531c4969-Abstract.h

[19] Cynthia Dwork. 2006. Differential privacy. In Automata, Languages and Pro-
gramming, Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener

(Eds.). Springer, Berlin, Heidelberg, 1–12. https://doi.org/10.1007/11787006_1

[20] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Gen-

eration. In Advances in Cryptology - EUROCRYPT 2006, Serge Vaudenay (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 486–503. https://doi.org/10.1007/

11761679_29

[21] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cal-

ibrating noise to sensitivity in private data analysis. In Theory of Cryptogra-
phy, Shai Halevi and Tal Rabin (Eds.). Springer, Berlin, Heidelberg, 265–284.

https://doi.org/10.1007/11681878_14

[22] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differ-

ential Privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407. https://doi.org/10.1561/0400000042

[23] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. 2014. Functional

Encryption Without Obfuscation. Cryptology ePrint Archive, Paper 2014/666.

https://eprint.iacr.org/2014/666 https://eprint.iacr.org/2014/666.

[24] Badih Ghazi, Rahul Ilango, Pritish Kamath, Ravi Kumar, and Pasin Manu-

rangsi. 2022. Separating Computational and Statistical Differential Privacy

(Under Plausible Assumptions). https://doi.org/10.48550/arXiv.2301.00104

arXiv:2301.00104 [cs.CR]

[25] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. 2009. Universally

Utility-Maximizing Privacy Mechanisms. In Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing. Association for Computing Machinery,

New York, NY, USA, 351–360. https://doi.org/10.1145/1536414.1536464

[26] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. 2015. Functional

encryption for randomized functionalities. In Theory of Cryptography, Yevgeniy
Dodis and Jesper Buus Nielsen (Eds.). Springer, Berlin, Heidelberg, 325–351.

https://doi.org/10.1007/978-3-662-46497-7_13

[27] Adel Hamdi. 2021. Functional encryption for blind external data processing. Ph. D.
Dissertation. Université de Lyon. https://theses.hal.science/tel-03500313/

[28] Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna, Arjun Narayan,

Benjamin C. Pierce, and Aaron Roth. 2014. Differential Privacy: An Economic

Method for Choosing Epsilon. In 2014 IEEE 27th Computer Security Foundations
Symposium. IEEE, Vienna, Austria, 398–410. https://doi.org/10.1109/CSF.2014.35

[29] Seidu Inusah and Tomasz J. Kozubowski. 2006. A discrete analogue of the Laplace

distribution. Journal of Statistical Planning and Inference 136, 3 (2006), 1090–1102.
https://doi.org/10.1016/j.jspi.2004.08.014

[30] Ilan Komargodski, Gil Segev, and Eylon Yogev. 2018. Functional Encryption for

Randomized Functionalities in the Private-Key Setting from Minimal Assump-

tions. Journal of Cryptology 31, 1 (2018), 60–100. https://doi.org/10.1007/s00145-

016-9250-8

[31] Chao Li. 2013. Optimizing Linear Queries Under Differential Privacy. Ph. D.

Dissertation. University of Massachusetts Amherst. https://doi.org/10.7275/9seb-

w353

[32] Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke, and Lars

Vilhuber. 2008. Privacy: Theory meets Practice on the Map. In 2008 IEEE 24th

International Conference on Data Engineering. IEEE, Cancun, Mexico, 277–286.

https://doi.org/10.1109/ICDE.2008.4497436

[33] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar,

and Salil Vadhan. 2010. The limits of two-party differential privacy. In 2010 IEEE
51st Annual Symposium on Foundations of Computer Science. IEEE, Las Vegas, NV,
81–90. https://doi.org/10.1109/FOCS.2010.14

[34] Alfred J Menezes, Scott A Vanstone, and Paul C Van Oorschot. 1996. Handbook
of Applied Cryptography. CRC Press, Inc., Boca Raton FL, USA.

[35] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Computa-

tional differential privacy. In Advances in Cryptology - CRYPTO 2009, Shai Halevi
(Ed.). Springer, Berlin, Heidelberg, 126–142. https://doi.org/10.1007/978-3-642-

03356-8_8

[36] BodoMöller. 2001. Algorithms forMulti-exponentiation. In Selected Areas in Cryp-
tography, Serge Vaudenay and Amr M. Youssef (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 165–180. https://doi.org/10.1007/3-540-45537-X_13

[37] NumPy. 2023. NumPy v 1.26. https://github.com/numpy/numpy/tree/main

[38] Adam O’Neill. 2010. Definitional Issues in Functional Encryption. Cryptology

ePrint Archive, Paper 2010/556. https://eprint.iacr.org/2010/556 https://eprint.

iacr.org/2010/556.

[39] J. M. Pollard. 2000. Kangaroos, Monopoly and Discrete Logarithms. J. Cryptol.
13, 4 (jan 2000), 437–447. https://doi.org/10.1007/s001450010010

[40] M. D. Schwartz, D. E. Denning, and P. J. Denning. 1979. Linear Queries in

Statistical Databases. ACM Trans. Database Syst. 4, 2 (jun 1979), 156–167. https:

//doi.org/10.1145/320071.320073

[41] Maryam Shoaran, Alex Thomo, and Jens Weber. 2012. Differential Privacy in

Practice. In Secure Data Management, Willem Jonker and Milan Petković (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 14–24. https://doi.org/10.1007/

978-3-642-32873-2_2

[42] Yuanbo Zhang, Daniel Ramage, Zheng Xu, Yanxiang Zhang, Shumin Zhai, and

Peter Kairouz. 2023. Private Federated Learning in Gboard. https://doi.org/10.

48550/arXiv.2306.14793 arXiv:2306.14793 [cs.CR]

A DEFINITIONS FOR STANDARD
DIFFERENTIAL PRIVACY

For the purpose of this section, we will consider X to be a data-

base space, R to be a randomness space, S to be an output space

contained in the multidimensional real numbers and F a family

of deterministic functions 𝑓 : X → S representing the queries to

obtain the plain statistics.

Definition A.1 (Adapted from Definition 2.4, [22]). Let 𝜖, 𝛿 be two

real numbers. A randomized algorithm for 𝑓 ∈ F ,M𝑓 : X×R → S
is (𝜖, 𝛿)-differential private ((𝜖, 𝛿)-DP) if for all 𝑆 ⊆ S, every pair of

neighbouring databases 𝑥, 𝑥 ′ ∈ X and 𝑟, 𝑟 ′ ← R

Pr

[
M𝑓 (𝑥 ; 𝑟) ∈ 𝑆

]
≤ 𝑒𝜖 · Pr

[
M𝑓 (𝑥 ′; 𝑟 ′) ∈ 𝑆

]
+ 𝛿.

There are two slight changes from Definition 2.4 in [22]. First of

all, we have adapted the definition of randomized function to be in

line with the standard in randomized functional encryption, and as

such have added the specific randomness seed as an input. Secondly,

we have explicitly added which query 𝑓 ∈ F the mechanismM is

protecting. This is also for ease of notation further down the line,

when considering several different queries and relating to the key

generation in the randomized functional encryption scheme.

Note that this definition handles only one query at a time, and we

would be interested in the property for 𝑄 queries. However, since

the output space S must be contained on the multidimensional

reals, one can consider the query space as F𝑄
and each query

for the mechanism as the conjunction of 𝑄 queries. That way this

definition allows for analysis for multiple queries.

Two additional key concepts, that we recall below, need to be

taken into account when considering the efficiency of concrete

constructions for differential privacy: the sensitivity, which is used

to measure accurately the size of the noise needed to privatize a

596

https://doi.org/10.1007/978-3-540-85174-5_25
https://doi.org/10.1007/978-3-540-85174-5_25
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-53641-4_23
https://doi.org/10.1145/2043621.2043626
https://github.com/fentec-project/CiFEr
https://github.com/fentec-project/CiFEr
https://doi.org/10.2478/popets-2020-0028
https://doi.org/10.2478/popets-2020-0028
https://proceedings.neurips.cc/paper_files/paper/2017/hash/253614bbac999b38b5b60cae531c4969-Abstract.h
https://proceedings.neurips.cc/paper_files/paper/2017/hash/253614bbac999b38b5b60cae531c4969-Abstract.h
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://eprint.iacr.org/2014/666
https://eprint.iacr.org/2014/666
https://doi.org/10.48550/arXiv.2301.00104
https://arxiv.org/abs/2301.00104
https://doi.org/10.1145/1536414.1536464
https://doi.org/10.1007/978-3-662-46497-7_13
https://theses.hal.science/tel-03500313/
https://doi.org/10.1109/CSF.2014.35
https://doi.org/10.1016/j.jspi.2004.08.014
https://doi.org/10.1007/s00145-016-9250-8
https://doi.org/10.1007/s00145-016-9250-8
https://doi.org/10.7275/9seb-w353
https://doi.org/10.7275/9seb-w353
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1109/FOCS.2010.14
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1007/3-540-45537-X_13
https://github.com/numpy/numpy/tree/main
https://eprint.iacr.org/2010/556
https://eprint.iacr.org/2010/556
https://eprint.iacr.org/2010/556
https://doi.org/10.1007/s001450010010
https://doi.org/10.1145/320071.320073
https://doi.org/10.1145/320071.320073
https://doi.org/10.1007/978-3-642-32873-2_2
https://doi.org/10.1007/978-3-642-32873-2_2
https://doi.org/10.48550/arXiv.2306.14793
https://doi.org/10.48550/arXiv.2306.14793
https://arxiv.org/abs/2306.14793

CDP for Encrypted Databases Proceedings on Privacy Enhancing Technologies 2024(4)

specific query; and the utility of a given mechanism, which essen-

tially tells how close the noisy response will be to the expected

non-noisy value.

Definition A.2 (Adapted from Definition 3.1, [22]). Let 𝑥, 𝑥 ′ ∈ X
be two neighbouring databases. The ℓ1-sensitivity of a function 𝑓 is

Δ𝑓 := max

∥𝑥−𝑥 ′ ∥1=1
∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥1 .

This can be naturally extended to the ℓ1-sensitivity of a family of

queries by taking the maximum over the family of queries.

Definition A.3 (Adapted from Definition 2.4, [15]). LetM : X ×
F × R → S,M(𝑥, 𝑓 ; 𝑟) = 𝑓 (𝑥) + 𝑒 (𝑟) for some database space

X, response space S, function space F : X → S and randomness

space R be a differentially private mechanism. We sayM is (𝛼, 𝛿)-
useful if

Pr [|M(𝑥, 𝑓 ; 𝑟) − 𝑓 (𝑥) | ≤ 𝛼] ≥ 1 − 𝛿

for any 𝑥 ∈ X, 𝑓 , ∈ F and 𝑟 ← R.

Finally, a very useful property of differential privacy to handle

adaptive queries is that of sequential composition, which we recall

below.

Proposition A.4 (Theorem 1, [20]). Let M be a mechanism
allowing 𝑄 adaptive queries to a mechanismM ′ : X × F × R → S
satisfying (𝜖, 𝛿)-DP. ThenM satisfies (𝑄 · 𝜖,𝑄 · 𝛿)-DP.

B DEFINITIONS FOR FUNCTIONAL
ENCRYPTION

Generic functional encryption schemes can be defined as private

key or public key. We will use the private key version to better

conform with the model presented in Figure 1. Since we are consid-

ering a sole database owner protecting their database outsourced to

the server, it makes little sense to allow for other entities to encrypt

over the database. For the purpose of this section we will consider

X to be a database space, S an output space and F a family of

deterministic functions 𝑓 : X → S.

Definition B.1 (Adapted from Definition 2.3, [1]). Let ^ ∈ N>0 be
a security parameter. We define a secret-key functional encryption
scheme supporting the family of functions F the following tuple of

PPT algorithms:

• SetUp(1^ , F) : given the security parameter as input, it

outputs some public parameters param and a master secret

key msk. We will assume the public parameters as inputs in

all other algorithms.

• Enc(msk, 𝑥) : given the master secret key msk and a plain-

text 𝑥 ∈ X as inputs, it outputs a ciphertext 𝑐𝑥 .

• KeyGen(msk, 𝑓) : given the master secret key msk and a

function 𝑓 ∈ F as inputs, it outputs a functional key 𝑠𝑘𝑓 .

• Dec(𝑐𝑥 , 𝑠𝑘𝑓) : given a ciphertext 𝑐𝑥 and a functional key 𝑠𝑘𝑓
as inputs, it outputs a string 𝑠 .

As usual with encryption schemes, there is a correctness no-

tion, which follows the standard definitions of correctness for en-

cryption: for any plaintext 𝑥 and function 𝑓 ∈ F , then Pr[𝑠 ←
Enc(𝑐𝑥 , 𝑠𝑘𝑓) ≠ 𝑓 (𝑥)] = negl(^) where the probability is taken over

(param,msk) ← SetUp(1^ , F), 𝑐𝑥 ← Dec(msk, 𝑥) and 𝑠𝑘𝑓 ←
KeyGen(msk, 𝑓).

Also, as with correctness, there are two main security definitions

analogous to those for encryption: indistinguishability and simu-

lation security. However, unlike in public key encryption, these

two definitions are not equivalent, specifically, indistinguishability-

based security does not imply simulation-based security. This was

already discussed by Boneh, Sahai and Waters in [12] and O’Neill

in [38] which leads to a plethora of different security definitions.

Another notable difference in the definitions is due to the appear-

ance of the functional keyswhich are independent to the ciphertexts.

As such there is a distinction in when the adversary is allowed to

ask for functional keys. We say an adversary A is selective if it is
only allowed to ask for functional keys after setting the challenge,

while we say A is adaptive if, on top of that, it can also ask for

functional keys before setting the challenge. There has been plenty

of study about possibility and impossibility of each type of security

(selective or adaptive, indistinguishability or simulation based) for

generic functional encryption with positive and negative results.

Therefore, it must be evaluated in a case by case basis for each type

of functionality. In the case of inner product functional encryption

it is well-known (as mentioned in [5]) that adaptive simulation

security for an unbounded number of ciphertexts is not possible.

In this work we focus on selective simulation security against

one challenge ciphertext for secret key functional encryption, so

let us give its definition.

Definition B.2 (Adapted from Section 2.3, [5]). Let ^ ∈ N>0 be a
security parameter and let FE = (SetUp, Enc, KeyGen,Dec) be a
functional encryption scheme for the function family F . For any
PPT simulator Sim = (EncSim,KeyGenSim) and ant PPT adversary
A = (A1,A2), we define the experiments in Figure 7, where the

oracles are described as follows.

(1) Real Experiment: O1 (msk, ·) refers to the non-simulated

key generation oracle KeyGen(msk, ·).
O2 (·, ·) refers to the decryption oracle Dec(·, ·).

(2) Ideal Experiment: Õ1 (st′, ·) refers to the simulated key

generation oracle KeyGenSim(st′, ·).
Õ2 (·, ·) refers to the decryption oracle Dec(·, ·).

We say FE is one selective simulation secure (1-SEL-SIM) against

𝑄 functional key queries if there exists a simulator Sim such that for

any PPT adversaryA limited to accessing O1 𝑄 times the following

advantage is negligible.

Adv𝑄FE =

���Pr[1← Exp𝑟𝑒𝑎𝑙A (1^ , F)] − Pr[1← Exp𝑖𝑑𝑒𝑎𝑙A (1^ , F)]
��� .

C DISCUSSION ABOUT OTHER PRIVACY
ENHANCING TECHNOLOGIES

Privacy enhancing technologies (PETs) are a compendium of tech-

nologies including both functional encryption as well as differential

privacy, so it begs the question whether other of these technologies

could be used to fulfill the model at discussion, more specifically

fully homomorphic encryption (FHE) and multi-party computation

(MPC).
FHE encompasses encryption schemes with the property that

one can operate on the ciphertexts with a ring structure while main-

taining the structure of the underlying plaintexts (i.e. the addition

597

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

Figure 7: Real and ideal experiments in 1-SEL-SIM security for FE.
Exp𝑟𝑒𝑎𝑙A (1^)
1: (𝑥, st1) ← A1 where 𝑥 ∈ X
2: (param,msk) ← SetUp(1^)
3: 𝑐𝑥 ← Enc(𝑥,msk)
4: 𝛾 ← AO1 (msk, ·),O2 (·, ·)

2
(𝑐𝑥 , st1)

Output: 𝛾

Exp𝑖𝑑𝑒𝑎𝑙A,Sim (1
^)

1: (𝑥, st1) ← A1 where 𝑥 ∈ X
2: (param, 𝑐∗𝑥 , st

′) ← EncSim(1^)
3: 𝛾 ← A Õ1 (st

′, ·),Õ2 (·, ·)
2

(𝑐∗𝑥 , st1)
Output: 𝛾 text

or multiplication of ciphertexts is a ciphertext of the corresponding

operation over the plaintexts). As most encryption schemes, let

them be public key or secret key, only the (private) secret key can

be used for decrypting any ciphertext (either pre or post computa-

tion) and this leads to an issue in our model from Figure 1, since

the decryption will need to be done by the database owner. The

scheme would be as follows for a database 𝒙 = (𝑥1, . . . , 𝑥 ℓ) and lin-

ear query 𝒚 = (𝑦1, . . . , 𝑦ℓ), the database owner sends the encrypted
database to the server (note that in this case the ciphertext will

need to be cut into pieces 𝑐𝑥1 , . . . , 𝑐𝑥 ℓ). Then whenever an analyst

has a query they send it to the database owner who encrypts to get

𝑐𝑦1 , . . . , 𝑐𝑦ℓ . The database owner sends the ciphertexts to the server

who computes 𝑐 ⟨𝒙,𝒚 ⟩ =
∑
𝑐𝑥𝑖 · 𝑐𝑦𝑖 and returns it to the database

owner. The database owner decrypts the ciphertext and samples

some noise before sending the noisy response to the analyst, as it

is shown in Figure 8.

𝑐𝑦𝑖 ← Enc(𝑦𝑖)

⟨𝒙,𝒚⟩ ← Dec
(
𝑐 ⟨𝒙,𝒚 ⟩

)
𝑒 ← 𝐷

Database Owner

Encrypted database

𝑐𝑥1 , . . . , 𝑐𝑥ℓ

𝑐 ⟨𝒙,𝒚 ⟩ =
∑
𝑐𝑥𝑖 · 𝑐𝑦𝑖

Server

Query 𝒚

Analyst

𝑐 𝑦𝑖

𝑐 ⟨𝒙,𝒚
⟩

𝒚

⟨𝒙,𝒚⟩ + 𝑒

Figure 8: Diagram of interactions for the FHE based solution.

Note that in this case there is no interaction between the server

and the analyst, thus defeating the purpose of FHE, since the data-
base owner could send an encrypted database through a regular

encryption scheme and for each query retrieve and decrypt the

ciphertext, to then compute the query and the noise for answering

the analyst.

MPC includes very general forms of computation, usually re-

volving around secret sharing and the computation of those secrets

under specific circumstances. The drawback of usingMPC is usu-

ally the high level of interaction between the several parties to

allow for the recovery of the secret. In this case, a 2PC protocol

could be conceived where one same secret share could be used to

recover different functions of the database when interacting with

different shares from the other party. In such position then, refer-

encing Figure 1, step 1 would be sending this “privileged” share

related to the database, while step 2 would entail the computation

of a share corresponding to the query. Finally step 3 would be the

2PC protocol mentioned before.

D A TRIVIAL SCHEME
In this appendix we give a trivial scheme that satisfies simulation

security by the definition in [26] but does not satisfy our definition.

This is due to the fact that the randomness is given out with the

functional key. Let F and
ˆF be defined as in Section 3 for some

distribution 𝐷 and FE = (SetUpFE, EncFE,KeyGenFE,DecFE) be a
functional encryption scheme for the family of functions F . We

define the following randomized functional encryption scheme

RFE = (SetUpRFE, EncRFE, KeyGenRFE,DecRFE) for the family of

randomized functions
ˆF . See Figure 9.

It is straight-forward to see that as long as FE is 1-SEL-SIM
secure, RFE will also be 1-SEL-SIM under the definition in [26].

The simulators are obtained by substituting the FE algorithms by

their simulators and, since the master secret key is only used in

those algorithms, the simulators will hold for RFE. Let SimFE =

(EncSimFE,KeyGenSimFE) be the simulators for the FE scheme,

we construct the following RFE simulators SimRFE = (EncSimRFE,

KeyGenSimRFE).
EncSimRFE(1𝜿) :
(param, 𝑐∗𝑥 , st

′) ← EncSimFE (1^)
Output (param, 𝑐∗𝑥 , st

′)

KeyGenRFE(st′, 𝒇) :
𝑒 (𝑟 𝑓) ← 𝐷

𝑠𝑘∗
𝑓
← KeyGenSimFE (st′, 𝑓)

Output 𝑠𝑘∗RFE
ˆ𝑓

=

(
𝑒 (𝑟 𝑓), 𝑠𝑘∗

ˆ𝑓

)
This counter-example is for 1-SEL-SIM security so that the ran-

domized function
ˆ𝑓 complies with the definition of randomized

598

CDP for Encrypted Databases Proceedings on Privacy Enhancing Technologies 2024(4)

SetUpRFE(1𝜿) :
(mskFE, 𝑝𝑎𝑟𝑎𝑚FE) ← SetUpFE (1^)
Output (mskRFE, 𝑝𝑎𝑟𝑎𝑚RFE) = (mskFE, 𝑝𝑎𝑟𝑎𝑚FE)

EncRFE(mskRFE, 𝒙) :
𝑐𝑥 ← EncFE (mskFE, 𝑥)
Output 𝑐𝑥

KeyGenRFE(mskRFE, 𝒇) :
𝑒 (𝑟 𝑓) ← 𝐷

𝑠𝑘𝑓 ← KeyGenFE (mskFE, 𝑓)
Output 𝑠𝑘RFE

ˆ𝑓
= (𝑒𝑓 , 𝑠𝑘 ˆ𝑓

)

DecRFE(𝒄𝒙 , 𝒔𝒌RFE
𝒇

) :

𝑓 (𝑥) ← DecFE (𝑐𝑥 , 𝑠𝑘𝑓)
𝑠 ← 𝑓 (𝑥) + 𝑒 (𝑟 𝑓)
Output 𝑠

Figure 9: Trivial RFE scheme

function. It can be extended to 𝑁 -SEL-SIM security by adding noise

to the encryption too.

However, this scheme is not 1-SEL-SIM under our definition

since the key generation simulator is unable to “extract” 𝑒𝑓 from

a value 𝑣 𝑓 received from KeyIdeal given the information it has

access to. The only way to obtain 𝑒𝑓 from 𝑣 𝑓 would be to know the

challenge plaintexts, but from Definition 2.4 it is clear that the key

generation simulator has no access to the challenges. Therefore,

any scheme which gives out the randomness in the functional key

will not satisfy simulation security under our definition, which is

desirable for our use-case. This means that no randomized func-

tional encryption scheme giving out the noise in the functional key

will be 1-SEL-SIM under our definition as we wanted.

E PROOF OF THEOREM 3.1
Theorem E.1. Let RFE be a 1-SEL-SIM secure randomized func-

tional encryption scheme against 𝑄 functional key queries andM ′
be a (𝑄, 𝜖^)-IND-CDP mechanism. Then the mechanismM defined
in Equation 2 is (𝑄, 𝜖^)-IND-CDP.

In other words, for any PPT adversary A we can construct a PPT
adversary B playing the 1-SEL-SIM security game for RFE and a
PPT adversary C playing the IND − CDP game forM ′ such that

AdvM,𝑄

DP,𝜖^
(A) ≤ AdvM

′,𝑄
DP,𝜖^

(C) + Adv𝑄RFE (B) .

Proof. We will prove this through a series of Games. Let A
be a PPT adversary playing the (𝑄, ·)-IND-CDP attack game for

mechanismM, let Sim = (EncSim,KeyGenSim) be the simulator

algorithms for theRFE scheme and let^ ∈ N be a security parameter.

Changes on Game 𝑖 are made over Game 𝑖 − 1.

Game 0. This is the attack game for (𝑄, ·)-IND-CDP and mecha-

nismM as seen in its definition, and we will refer to the challenger

as C.

Game 1. In this game we change the value obtained from the

decryption algorithm for an evaluation of the randomized func-

tion. As such, for the oracle O when receiving 𝑓 𝑖 , B samples

𝑟𝑖 = (𝑟𝑥𝑖 , 𝑟 𝑓𝑖) ← R and computes 𝑠𝑖 = 𝑓 𝑖 (𝑥𝑏) + 𝑒 (𝑟𝑖). Finally,
it sends to A the following response

O1 (𝑥𝑏 , 𝑓 𝑖 , 𝑟𝑖) =

𝑐𝑥𝑏

𝑠𝑘
ˆ𝑓 𝑖

𝑠𝑖 .

Game 2. In this game we simulate the ciphertext and functional

keys using the RFE scheme simulator. As such, after choosing the bit

𝑏, and receiving 𝑥0, 𝑥1 fromA, the challenger C uses EncSim(1^ , ˆF ;
𝑟𝑥) and obtains the simulated ciphertext 𝑐∗𝑥𝑏 and the state st′. It then
simulates the the oracle as follows. When receiving the function

𝑓 𝑖 , C executes the algorithm KeyGenSim(st′, ˆ𝑓 𝑖 ; 𝑟 𝑓 𝑖) substituting
the call to KeyIdeal for 𝑠𝑖 and receives the simulated functional key

𝑠𝑘∗
ˆ𝑓 𝑖
. Finally, it sends to A the following response

O2 (𝑥𝑏 , 𝑓 𝑖 , 𝑟𝑖) =

𝑐∗𝑥𝑏
𝑠𝑘∗

ˆ𝑓 𝑖

𝑠𝑖 .

Game 3. In this game, C will act as a challenger for the adversary

A in the (𝑄, ·)-IND-CDP attack game for mechanism M while

acting as an adversary for the challenger D in the (𝑄, ·)-IND-CDP
attack game for mechanismM ′. More concretely, when C receives

𝑥0, 𝑥1 from A it forwards them to D. Then, for challenge queries,

when receiving function 𝑓 𝑖 , B queries oracle O′ to D and receives

𝑣𝑖 =M ′(𝑥𝑏 , 𝑓 𝑖 , 𝑟 𝑖) for some 𝑟𝑖 ← R. It substitutes 𝑠𝑖 in Game 1 for

𝑣𝑖 and sends to A the following response.

O3 (𝑥𝑏 , 𝑓 𝑖 , 𝑟𝑖) =

𝑐∗𝑥𝑏
𝑠𝑘∗

ˆ𝑓 𝑖

𝑣𝑖 .

Analysis. Themain idea is to demonstrate that subsequent games

are computationally indistinguishable, and in the final game, the

mechanism is secure. To prove that Game 𝑖 and Game 𝑖 + 1 are

indistinguishable for any adversaryA ′. Let C′ be a PPT challenger

that chooses 𝑏 ∈ {0, 1} uniformly at random. If 𝑏 = 0 it interacts

with the PPT adversary A ′ as in Game 𝑖 , otherwise it interacts as

in Game 𝑖 + 1. At the end of the interaction,A ′ will make its guess

˜𝑏 ∈ {0, 1}. We define the advantage on distinguishing games Game

𝑖 and Game 𝑖 + 1:

Adv𝑖 (𝑖+1) (A ′) :=
���Pr [

˜𝑏 = 1|𝑏 = 0

]
− Pr

[
˜𝑏 = 1|𝑏 = 1

] ��� .
We say the two games are indistinguishable if for all PPT adver-

saries A ′, Adv𝑖 (𝑖+1) (A ′) is negligible over ^. We also denote by

Adv𝑖DP,𝜖^ (A) the advantage of the adversary A in Game 𝑖 .

From Game 0 to Game 1. Both Dec(𝑐𝑥𝑏 , 𝑠𝑘𝑓 𝑖) and 𝑓 𝑖 (𝑥𝑏) + 𝑒 (𝑟𝑖)
are computationally indistinguishable due to the correctness of

the RFE scheme, which means that for any PPT adversary A ′,
Adv01 (A ′) = 0.

599

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

From Game 1 to Game 2. The only change is swapping all the

non-simulated algorithms from RFE for their simulators. It is clear

that if a PPT adversary A ′ could distinguish between Game 1 and

Game 2 we can construct a PPT adversary B able to distinguish

the real and ideal experiments for the 1-SEL-SIM security game for

RFE with 𝑄 functional key queries. As such we get that

Adv12 (A ′) ≤ Adv𝑄RFE (B)

for any PPT adversary A ′.

From Game 2 to Game 3. The view for adversary A does not

change, since 𝑠𝑖 and 𝑣𝑖 are identically distributed by definition. This

means that for any PPT adversaryA ′,Adv23 (A ′) = 0. Furthermore,

given that C (as an adversary to D) has the same output as A we

get

Adv3DP,𝜖^ (A) = AdvM
′,𝑄

DP,𝜖^
(C) .

To conclude the proof, we note that the indistinguishability

advantages are for any PPT adversary A ′, so we get

AdvM,𝑄

DP,𝜖^
= Adv0DP,𝜖^ (A)

≤ Adv3DP,𝜖^ (A) +
2∑︁

𝑖=0

Adv𝑖 (𝑖+1) (A)

= AdvM
′,𝑄

DP,𝜖^
(C) + Adv𝑄RFE (B) .

□

F PROOFS OF SECTION 4
Proposition F.1. TheRIPFE scheme defined in Figure 5 is a correct

randomized functional encryption scheme for ˆF ℓ,𝑋,𝑌
𝜖 .

Proof. Let 𝒙 ∈ Zℓ with ∥𝒙 ∥∞ be any plaintext and �̂�1, . . . , �̂�𝑄 ∈
ˆF ℓ,𝑋,𝑌
𝜖 any set of randomized functions. Then for any 𝑖 ∈ [𝑄] we

get that 𝑠𝑖 ← Dec(𝑐𝒅 , 𝑠𝑘RIPFE𝒚𝑖) satisfies the following.

𝑠𝑖 = ⟨𝒅,𝒚𝑖 ⟩ + 𝑑 ′𝒚𝑖 − 𝑧𝑘𝒚𝑖

= ⟨𝒙,𝒚𝑖 ⟩ + ⟨𝒖,𝒚𝑖 ⟩ + 𝑒 (𝑟𝒚𝑖) + 𝑢 ′𝒚𝑖 − (⟨𝒖,𝒚𝑖 ⟩ + 𝑢 ′𝒚𝑖)

= ⟨𝒙,𝒚𝑖 ⟩ + 𝑒 (𝑟𝒚𝑖) .

This is clearly the same distribution as �̂�(𝒙 ; 𝑟) for 𝑟 ← R since 𝑒𝒚
is sampled from 𝐷𝜖 independently for every query 𝒚. □

Theorem F.2. Let IPFE be a 1-SEL-SIM-secure inner product func-
tional encryption scheme against 𝑄 functional key queries, then our
construction RIPFE in Figure 5 is a 1-SEL-SIM-secure randomized
functional encryption scheme against 𝑄 functional queries.

In other words, for any PPT adversary A we can construct a PPT
adversary B such that

Adv𝑄RIPFE (A) ≤ Adv𝑄IPFE (B).

Proof. Wewill prove the result through a series of Games. LetA
be a PPT adversary playing the 1-SEL-SIM security game for RIPFE,
and let ^ ∈ N be a security parameter. Changes on Game 𝑖 are made

over Game 𝑖 − 1. Let also SimIPFE = (EncSimIPFE,KeyGenSimIPFE)
be the simulator for the IPFE scheme.

Game 0. This is the 1-SEL-SIM security real experiment for

RIPFE as described below

Exp0A (1
^ , ˆF ℓ,𝑋,𝑌

𝜖)
1: (𝒙, st1) ← A1 where 𝒙 ∈ Zℓ , ∥𝒙 ∥∞ < 𝑋

2: (param,msk) ← SetUp0 (1^ , ˆF ℓ,𝑋,𝑌
𝜖)

3: 𝑐𝒅 ← Enc0 (𝒙,msk)
4: 𝛾 ← AO

0

1
(·),O0

2
(·, ·)

2
(𝑐𝒅 , st1)

Output: 𝛾

where SetUp0, Enc0, O0
1
, O0

2
are the regular RIPFE algorithms and

oracles.

Game 1. In this game we simulate the ciphertext. The experiment

develops into the following.

Exp1A (1
^ , ˆF ℓ,𝑋,𝑌

𝜖)
1: (𝒙, st1) ← A1 where 𝒙 ∈ Zℓ , ∥𝒙 ∥∞ < 𝑋

2: (𝐿, 𝐷𝜖 , paramIPFE,mskIPFE) ← SetUp1 (1^ , ˆF ℓ,𝑋,𝑌
𝜖)

3: (𝑐∗
𝒅
, st′) ← Enc1 (mskIPFE)

4: 𝛾 ← AO
1

1
(msk,st′,𝒙, ·),O1

2
(·, ·)

2
(𝑐∗
𝒅
, st1)

Output: 𝛾

Where the Enc1 and O1
1
algorithms are described below and SetUp1,

O1
2
are the same as in Game 0.

SetUp1(1𝜿 , F̂ℓ,𝑿,𝒀
𝝐) :

Choose distribution 𝐷𝜖 over Z
Choose 𝛼 such that Pr[|𝐷𝜖 | ≥ 𝛼] = negl(^)
Choose 𝐿 > ℓ · 𝑋 · 𝑌 + 𝛼 , 𝒖 $←− Zℓ

𝐿

(paramIPFE,mskIPFE) ← SetUpIPFE (1^ , 1ℓ , 𝑋 + 𝛼/(ℓ · 𝑌), 𝑌)
Output (𝐿, 𝐷𝜖 , paramIPFE,mskIPFE)

Enc1(msk) :

𝒅∗
$←− Zℓ

𝐿
st′ ← 𝒅∗

𝑐𝒅∗ ← EncIPFE (mskIPFE, 𝒅∗)
Output (𝑐𝒅∗ , st′)

O1
1(msk, st′, 𝒙, �̂�) :

𝑒 (𝑟𝒚) ← 𝐷𝜖

𝑢 ′𝒚
$←− Z𝐿

𝑑 ′𝒚 ← 𝑒 (𝑟𝒚) + 𝑢 ′𝒚 (mod 𝐿)
𝑠𝑘𝒚 ← KeyGenIPFE (mskIPFE,𝒚)
𝑧𝑘∗𝒚 ← ⟨𝒅∗,𝒚⟩ + 𝑢 ′𝒚 − ⟨𝒙,𝒚⟩ (mod 𝐿)
Output 𝑠𝑘1�̂� = (𝑑 ′𝒚 , 𝑠𝑘𝒚 , 𝑧𝑘∗𝒚)

Game 2. In this game we simulate the noise using the KeyIdeal
functionality described in Definition 2.4. The experiment changes

into the following.

600

CDP for Encrypted Databases Proceedings on Privacy Enhancing Technologies 2024(4)

Exp2A (1
^ , ˆF ℓ,𝑋,𝑌

𝜖)
1: (𝒙, st1) ← A1 where 𝒙 ∈ Zℓ , ∥𝒙 ∥∞ < 𝑋

2: (𝐿, 𝐷𝜖 , paramIPFE,mskIPFE) ← SetUp2 (1^ , ˆF ℓ,𝑋,𝑌
𝜖)

3: (𝑐∗
𝒅
, st′) ← Enc2 (mskIPFE)

4: 𝛾 ← AO
2

1
(msk,st′, ·),O2

2
(·, ·)

2
(𝑐∗
𝒅
, st1)

Output: 𝛾

Where the O2
1
algorithm is described below and SetUp2, Enc2 and

O2
2
are the same as in Game 1.

O2
1(msk, st′, �̂�) :

𝑑 ′∗𝒚
$←− Z𝐿

𝑣 ← KeyIdeal(𝒙, �̂�)
𝑠𝑘𝒚 ← KeyGenIPFE (mskIPFE,𝒚)
𝑧𝑘∗𝒚 ← ⟨𝒅∗,𝒚⟩ + 𝑑 ′∗𝒚 − 𝑣 (mod 𝐿)
Output 𝑠𝑘2�̂� = (𝑑 ′∗𝒚 , 𝑠𝑘𝒚 , 𝑧𝑘

∗
𝒚)

Game 3. In this Game we add a challenger C∗ playing the 1-

SEL-SIM security game for the IPFE scheme in the real world, with

the added change that in the decryption oracle, were it to fail to

compute the response due to the inputs being outside the bounds, it

returns Dec1(𝑐𝒙 , 𝑠𝑘𝒚) instead of nothing. As such, the experiment

changes into the following.

Exp3A (1
^ , ˆF ℓ,𝑋,𝑌

𝜖)
1: (𝒙, st1) ← A1 where 𝒙 ∈ Zℓ , ∥𝒙 ∥∞ < 𝑋

2: (𝐿, 𝐷𝜖 , paramIPFE, 𝑐∗
𝒅
, st′) ← Enc3,C

∗ (1^ , ˆF ℓ,𝑋,𝑌
𝜖)

4: 𝛾 ← AO
3,C∗
1
(st′, ·),O3,C∗

2
(·, ·)

2
(𝑐∗
𝒅
, st1)

Output: 𝛾

Where the Enc3, O3,C
∗

1
and O3,C

∗

2
algorithms are described below.

Enc3,C
∗

(1𝜿 , F̂
ℓ,𝑿,𝒀
𝝐) :

Choose distribution 𝐷𝜖 over Z
Choose 𝛼 such that Pr[|𝐷𝜖 | ≥ 𝛼] = negl(^)
Choose 𝐿 > ℓ · 𝑋 · 𝑌 + 𝛼
𝒅∗

$←− Zℓ
𝐿

st′ ← 𝒅∗

(paramIPFE, 𝑐𝒅∗) ← Exp𝑟𝑒𝑎𝑙IPFE (1
^ , F ℓ,𝑋+𝛼/(ℓ ·𝑌),𝑌

𝜖 , 𝒅∗)
Output: (𝐿, 𝐷𝜖 , paramIPFE, 𝑐𝒅∗ , st

′)

O
3,C∗

1 (st′, 𝒚) :

𝑑 ′∗𝒚
$←− Z𝐿

𝑣 ← KeyIdeal(𝒙, �̂�)
𝑧𝑘∗𝒚 ← ⟨𝒅∗,𝒚⟩ + 𝑑 ′∗𝒚 − 𝑣 (mod 𝐿)
𝑠𝑘𝒚 ← OC

∗
1
(𝒚)

Output 𝑠𝑘3
�̂�
= (𝑑 ′∗𝒚 , 𝑠𝑘𝒚 , 𝑧𝑘

∗
𝒚)

O
3,C∗

2 (𝒄𝒙 , 𝒔𝒌3𝒚) :

If DecIPFE works

𝑠 ← OC∗
2
(𝑐𝒙 , 𝑠𝑘𝒚)

Output: 𝑠 + 𝑑 ′∗𝒚 − 𝑧𝑘∗𝒚
Else

𝑠 ← OC∗
2
(𝑐𝒙 , 𝑠𝑘𝒚)

Output: Dec2(𝑠 ◦ E(𝑑 ′∗𝒚 − 𝑧𝑘∗𝒚 , 0))

Game 4. In this Game we add the simulators from the base IPFE.
The experiment develops into the following.

Exp4A (1
^ , ˆF ℓ,𝑋,𝑌

𝜖)
1: (𝒙, st1) ← A1 where 𝒙 ∈ Zℓ , ∥𝒙 ∥∞ < 𝑋

2: (𝐿, 𝐷𝜖 , paramIPFE, 𝑐∗
𝒅
, st′) ← Enc4,C

∗ (1^ , 1ℓ , 1𝜖 , 𝑋,𝑌)

4: 𝛾 ← AO
4,C∗
1
(st′, ·),O4,C∗

2
(·, ·)

2
(𝑐∗
𝒅
, st1)

Output: 𝛾

Where the Enc4, O4
1
and O4

2
algorithms are described below.

Enc4,C
∗

(1𝜿 , F̂
ℓ,𝑿,𝒀
𝝐) :

Choose distribution 𝐷𝜖 over Z
Choose 𝛼 such that Pr[|𝐷𝜖 | ≥ 𝛼] = negl(^)
Choose 𝐿 > ℓ · 𝑋 · 𝑌 + 𝛼
𝒅∗

$←− Zℓ
𝐿

st′ ← 𝒅∗

(paramIPFE, 𝑐𝒅∗) ← Exp𝑖𝑑𝑒𝑎𝑙IPFE (1
^ , F ℓ,𝑋+𝛼/(ℓ ·𝑌),𝑌

𝜖 , 𝒅∗)
Output: (𝐿, 𝐷𝜖 , paramIPFE, 𝑐𝒅∗ , st

′)

O
4,C∗

1 (st′, 𝒚) :

𝑑 ′∗𝒚
$←− Z𝐿

𝑣 ← KeyIdeal(𝒙, �̂�)
𝑧𝑘∗𝒚 ← ⟨𝒅∗,𝒚⟩ + 𝑑 ′∗𝒚 − 𝑣 (mod 𝐿)
𝑠𝑘𝒚 ← ÕC

∗
1
(𝒚)

Output 𝑠𝑘3
�̂�
= (𝑑 ′∗𝒚 , 𝑠𝑘𝒚 , 𝑧𝑘

∗
𝒚)

O
4,C∗

2 (𝒄𝒙 , 𝒔𝒌3𝒚) :

If DecIPFE works

𝑠 ← ÕC∗
2
(𝑐𝒙 , 𝑠𝑘𝒚)

Output: 𝑠 + 𝑑 ′∗𝒚 − 𝑧𝑘∗𝒚
Else

𝑠 ← ÕC∗
2
(𝑐𝒙 , 𝑠𝑘𝒚)

Output: Dec2(𝑠 ◦ E(𝑑 ′∗𝒚 − 𝑧𝑘∗𝒚 , 0))

Game 5. In this game we finalize the simulation. As such, the

experiment remains as follows.

Exp5A (1
^ , ˆF ℓ,𝑋,𝑌

𝜖)
1: (𝒙, st1) ← A1 where 𝒙 ∈ Zℓ , ∥𝒙 ∥∞ < 𝑋

2: (𝑐∗
𝒅
, st′) ← EncSimC

∗ (1^ , ˆF ℓ,𝑋,𝑌
𝜖)

3: 𝛾 ← A Õ
C∗
1
(st′, ·),ÕC∗

2
(·, ·)

2
(𝑐∗
𝒅
, st1)

Output: 𝛾

Where EncSimC
∗
corresponds to Enc4,C

∗
, ÕC∗

1
(st′, ·) immediately

calls O4,C
∗

1
(st′, ·), and ÕC∗

2
(·, ·) immediately calls O4,C

∗

2
(·, ·).

601

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

Analysis. LetC′ be a challenger that chooses𝑏 ∈ {0, 1} uniformly

at random. If 𝑏 = 0 it interacts with a PPT adversaryA ′ as in Game

𝑖 , otherwise it interacts as in Game 𝑗 . At the end of the interaction,

A ′ will make its guess
˜𝑏 ∈ {0, 1}. We define

Adv𝑖 (𝑖+1) (A ′) :=
���Pr [

˜𝑏 = 1|𝑏 = 0

]
− Pr

[
˜𝑏 = 1|𝑏 = 1

] ���
for 𝑖 = 0, 1.

From Game 0 to Game 1. In this change, we have swapped 𝒖 + 𝒙
for 𝒅∗ in encryption (since in key generation 𝒖 = 𝒅∗ − 𝒙). As
such, given that the secret key 𝒖 and the challenge 𝒙 are chosen

independently, 𝒖 + 𝒙 and 𝒅∗ are computationally indistinguishable.

Therefore for any PPT adversary A ′, Adv01 (A ′) = 0.

From Game 1 to Game 2. Analogously to the previous step, 𝑢 ′𝒚
and 𝑒𝒚 are chosen independently, so both 𝑢 ′𝒚 + 𝑒𝒚 and 𝑑 ′∗𝒚 are

computationally indistinguishable (and 𝑢 ′𝒚 = 𝑑 ′∗𝒚 − 𝑒𝒚). As such for

any PPT adversary A ′, Adv12 (A ′) = 0.

From Game 2 to Game 3. Game 3 is a rewriting of Game 2 but us-

ing the real experiment for the base IPFEwith challenger C∗, where
the view of the adversary is not modified in any way. Therefore for

any PPT adversary A ′, Adv23 (A ′) = 0.

From Game 3 to Game 4. In this change we have swapped from

the real to the ideal experiment in the base IPFE scheme. As such,

the distinguishing game between Game 2 and Game 3 is the 1-SEL-
SIM game for the IPFE scheme with challenger C∗ and the same

number of functional key queries in both cases. Therefore, we can

construct an adversary B against IPFE which if A distinguishes

between Game 3 and Game 4, B can distinguish between the real

and ideal experiment for IPFE. As such for any PPT adversary A ′,
Adv34 (A ′) ≤ Adv𝑄IPFE (B).

From Game 4 to Game 5. Game 5 is a rewriting of Game 4, where

the view of the adversary is not modified in any way. Therefore for

any PPT adversary A ′, Adv45 (A ′) = 0.

Finally, adding it all up and considering that Game 0 is the real

experiment and Game 5 is the ideal experiment we get that

Adv𝑄RIPFE (A) =
4∑︁

𝑖=0

Adv𝑖 (𝑖+1) (A)

≤ Adv𝑄IPFE (B) .
□

Remark 8. Note that the simulation soundness in which we base
our result is against a challenger C∗ for the IPFE scheme who in case of
failure of the decryption algorithm outputsDec1IPFE (𝑐𝒅 , 𝑠𝑘𝒚) instead
of returning nothing nothing which is the response for the challenger
C in standard simulation soundness for IPFE schemes. However, we
argue that given the fact that our security model does not contemplate
a decryption oracle with inputs a ciphertext and a function (instead
of ciphertext and functional key) both challengers are equivalent.

Remark 9. From the KeyIdeal functionality, the simulator is given
the result of the decryption algorithm. Subsequently, we can simulate
the functional decryption key from the description of the randomized
function and the expected output, which is the inherent leakage of the

scheme. This means in particular that no extra information is leaked
about the noise than what can be inferred by knowing its distribution
and the noisy inner product, since they are the only inputs for the
KeyGenSim

G PROOFS OF SECTION 5
Theorem G.1. Let IPFE be a correct inner product functional en-

cryption scheme and let RIPFE be as described in Figure 5. Then the
PIPFE described in Figure 6 is a correct private functional encryption
scheme for static databases supporting the inner product family of
queries with distribution 𝐷𝜖 .

Proof. For EQuery, the correctness of the base IPFE gives us

that Pr[𝑠 ← Dec(𝑐𝒙 , 𝑠𝑘𝒈) ≠ ⟨𝒙 + 𝒖,𝒈⟩] = negl(^) as long as

these are distributed as follows (param,msk) ← SetUp(1^), 𝑐𝑥 ←
Enc(msk, 𝒙) and 𝑠𝑘𝒈 ← KeyGen(msk,𝒈), conditions satisfied by

the protocols SetUp and EQuery from PIPFE, which gives us the

expected equality between the output of EQuery and ⟨𝒙,𝒈⟩.
For PQuery, we need to prove that the output of PQuery(𝑠𝑘RIPFE

𝒚𝑖 ,

𝑐𝒙) is computationally indistinguishable from ⟨𝒙,𝒚⟩ + 𝑒𝑖 with 𝑒𝑖 ←
𝐷 for all 𝑖 ∈ [𝑄], when 𝑐𝑥 and 𝑠𝑘RIPFE

𝒚𝑖 are generated in SetUp. From

the SetUp defined in PIPFE, this comes from Proposition 4.1. □

TheoremG.2. Let IPFE be a 1-SEL-SIM-secure inner product func-
tional encryption scheme and let RIPFE be as described in Figure 5.
Then our construction PIPFE described in Figure 6 is a 1-database
secure and private functional encryption scheme for static databases
supporting the inner product family of queries with distribution 𝐷𝜖 .

Proof. First, for the simulation part of Definition 2.7 (Figure 4),

let us define the PPT simulator Sim = (SetUpSim, EQuerySim) as
follows where 𝒀 denotes the set of 𝑄 queries 𝒚1, . . . ,𝒚𝑄 ∈ F and

EncSim,KeyGenSim are the simulators for the RIPFE scheme. For

the exact formulation of these simulators we refer to the proof of

Theorem 4.2.

SetUpSimC,A (1𝜿 , F̂
ℓ,𝑿,𝒀
𝝐 ; 𝒀) :

1. C computes the following

a. (𝑐∗𝒙 , st′) ← EncSim(1^)
b. 𝑠𝑘∗

𝒚𝑖 ← KeyGenSim(st′, �̂�𝑖) for 𝑖 ∈ [𝑄]
2. C receives st′

3. A receives 𝑐∗𝒙 and 𝑠𝑘∗
𝒚1

. . . 𝑠𝑘∗
𝒚𝑄 .

EQuerySim𝑫𝑶,𝑺 ((st′, 𝒈); 𝒄∗𝒙) :
1. C retrieves 𝑐∗𝒙 from A

The indistinguishability between SetUp and SetUpSim comes di-

rectly from the indistinguishability of the EncSim and KeyGenSim
simulators, which is proven in Theorem 4.2, while EQuery and

EQuerySim are indistinguishable to the adversary since its view of

the protocol does not change.

Finally, for the privacy mechanism part of Definition 2.7, from

the definition of PIPFE, the mechanism in Equation 1 is the same

as the mechanism in Equation 2. Consequently, the privacy comes

directly from Theorem 3.1. □

602

CDP for Encrypted Databases Proceedings on Privacy Enhancing Technologies 2024(4)

Remark 10. Multiple queries in the context of differential private
mechanism has been studied in the literature, for the non-encrypted
case. Such existing work consider either adding noise proportional to a
query index [41], or managing the noise accordingly [28]. In any case,
our work does not introduce any new issue regarding this multiple
queries case, and any of the above method can obviously be adapted
to our result.

H PRIVACY AND UTILITY OF THE
GEOMETRIC MECHANISM

Proposition H.1. Let X be a database space, S = Z𝑄 , F be
a family of queries and let 𝒇 ∈ F𝑄 . Let 𝐷 be a random variable,
𝐷 ∼ Geo(exp(−𝜖/Δ𝒇)), where Δ𝑓 is as in Definition A.2. Then the
geometric mechanism defined as

M𝒇 (𝑥 ; 𝑟) := 𝑓𝑖 (𝑥) + 𝑒 (𝑟𝑖), for 𝑖 ∈ [𝑄]

where 𝑥 ∈ X and 𝑒 (𝑟𝑖) ← 𝐷 is (𝜖, 0)-DP.

Proof. Let 𝒕 ∈ Z𝑄 , then

Pr[M𝒇 (𝑥) = 𝒕]
Pr[M𝒇 (𝑥 ′) = 𝒕] =

𝑄∏
𝑖=1

Pr[𝑓𝑖 (𝑥) + 𝑒 (𝑟𝑖) = 𝑡𝑖]
Pr[𝑓𝑖 (𝑥 ′) + 𝑒 (𝑟𝑖) = 𝑡𝑖]

=

𝑄∏
𝑖=1

exp

(
−𝜖 · |𝑡𝑖−𝑓𝑖 (𝑥) |

Δ𝒇

)
exp

(
−𝜖 · |𝑡𝑖−𝑓𝑖 (𝑥 ′) |

Δ𝒇

)
≤

𝑄∏
𝑖=1

exp

(
𝜖

Δ𝒇
|𝑓𝑖 (𝑥 ′) − 𝑓𝑖 (𝑥) |

)
= exp

(
𝜖

Δ𝒇
∥𝒇 (𝑥 ′) − 𝒇 (𝑥)∥1

)
≤ exp(𝜖) .

Now adding for all 𝒕 ∈ 𝑆

Pr[M𝒇 (𝑥) ∈ 𝑆]
Pr[M𝒇 (𝑥 ′) ∈ 𝑆]

=

∑
𝒕 ∈𝑆 Pr[M𝒇 (𝑥) = 𝒕]∑
𝒕 ∈𝑆 Pr[M𝒇 (𝑥 ′) = 𝒕]

≤
∑

𝒕 ∈𝑆 𝑒
𝜖 · Pr[M𝒇 (𝑥 ′) = 𝒕]∑

𝒕 ∈𝑆 Pr[M𝒇 (𝑥 ′) = 𝒕]
= 𝑒𝜖

as we wanted. □

Note that Δ𝒇 can be changed by any bigger constant, so by using

Δ we eliminate the dependance on 𝒇 .

Proposition H.2. The Geometric mechanism as described in
Proposition H.1 is

(
𝑂

(
1

𝜖

)
· Δ · log

(
𝛿
2

)
, 𝛿

)
-useful.

Proof. Wewant to find for any given 𝛿 , the corresponding mini-

mum 𝛼 in regards to utility. As such we need to solve the inequation

for an 1 − 𝛿 , which is the same as inverting the inequality inside

the probability and compare to 𝛿 inverting the equality outside too.

Note that substracting 𝑓 (𝑥) to the mechanism will always leave us

just a sample of the geometric distribution 𝐷 ∼ Geo(𝜖/Δ).

Pr [|𝐷 | ≥ 𝛼] = 2 ·
∞∑︁

𝑘=𝛼

Pr [𝐷 = 𝑘]

= 2 ·
1 − exp

(−𝜖
Δ

)
1 + exp

(
− 𝜖
Δ

) ∞∑︁
𝑘=𝛼

exp

(−𝜖
Δ

)𝑘
= 2 ·

1 − exp
(−𝜖
Δ

)
1 + exp

(−𝜖
Δ

) · exp

(−𝜖
Δ

)𝛼
1 − exp

(−𝜖
Δ

)
≤ 𝛿

Which in turn gives us

𝛼 ≥ Δ

𝜖
·
(
log

(
𝛿

2

)
+ log

(
1 + exp

(−𝜖
Δ

)))
≈ 𝑂

(
1

𝜖

)
· Δ · log

(
𝛿

2

)
as we wanted to see. □

I IMPLEMENTED SCHEME
We present theDDH-based scheme first proposed in [6] and proven

simulation sound against selective adversaries in [3] and against

adaptive adversaries in [5]. This scheme is public-key, but we trans-

form it into secret-key by incorporating the master public key into

the master private key.

Encryption Scheme 1 (Adapted from Section 3, [5]).

• SetUp(1𝜿 ,Fℓ,𝑿,𝒀) : Choose a cyclic group G of prime order

𝑞 > 2
^ and two generators 𝑔, ℎ

$←− G. Then for all 𝑖 ∈ [ℓ]
sample 𝑠𝑖 , 𝑡𝑖

$←− Z𝑞 and compute ℎ𝑖 = 𝑔𝑠𝑖 · ℎ𝑡𝑖 . Define
param = (𝑋,𝑌, ℓ,G, 𝑔, ℎ)
msk = {𝑠𝑖 , 𝑡𝑖 , ℎ𝑖 }𝑖∈[ℓ]

• Enc(msk, 𝒙) : To encrypt a vector 𝒙 ∈ Zℓ𝑞 with ∥𝒙 ∥∞ < 𝑋 ,

sample 𝑟
$←− Z𝑞 and compute

𝐶 = 𝑔𝑟 , 𝐷 = ℎ𝑟 , {𝐸𝑖 = 𝑔𝑥𝑖 · ℎ𝑟𝑖 }𝑖∈[ℓ] .
Output 𝑐𝒙 = (𝐶, 𝐷, 𝐸1, . . . , 𝐸ℓ).
• KeyGen(msk, 𝒚) : To compute a functional decryption key
for the vector 𝒚 with ∥𝒚∥∞ < 𝑌 compute 𝑠𝒚 = ⟨𝒔,𝒚⟩ and
𝑡𝒚 = ⟨𝒕,𝒚⟩. Output 𝑠𝑘𝒚 = (𝑠𝒚 , 𝑡𝒚).
• Dec(𝒄𝒙 , 𝒔𝒌𝒚) : Given a ciphertext 𝑐𝒙 = (𝐶, 𝐷, 𝐸1, . . . , 𝐸ℓ) and
a functional decryption key 𝑠𝑘𝒚 = (𝑠𝒚 , 𝑡𝒚) compute

𝐸𝒚 =

∏ℓ
𝑖=1 𝐸

𝑦𝑖
𝑖

𝐶𝑠𝒚 · 𝐷𝑡𝒚
.

Finally compute 𝑠 = log𝑞 (𝐸𝒚) and output 𝑠 .

This scheme is proven correct and secure in [5] (Section 3, The-

orem 1), and satisfies the two-step decryption property (Property

1). More in particular, the function E is computing the power of

the generator E(𝛾, noise) = 𝑔𝛾 , therefore the PPT algorithm Dec2
is the baby-giant steps algorithm to compute the discrete logarithm

and the PPT algorithm Dec1IPFE is computing the value 𝐸𝒚 .

However, it is a public key scheme and for our construction

only a secret key scheme is needed. Therefore we can slightly

change it to reduce the amount of computations needed by using

603

Proceedings on Privacy Enhancing Technologies 2024(4) Alborch Escobaret al.

themaster secret key in the encryption algorithm. On top of that, we

implemented the fixed-base comb method for fast exponentiation,

and we consider the precomputations needed 𝐹𝑔 , 𝐹ℎ part of the

public parameters.

Finally, we take note that the master secret key is comprised of

three vectors in Z𝑞 with as many coefficients as entries in the data-

base, which would mean that we are storing something heavier than

the original database. However, these three vectors are uniformly

sampled, as such instead of storing the whole vector it suffices to

store the secure seed for the pseudo-randomness generator and

then reconstruct the vectors whenever we need them. Given that

the sampling is very efficient, the gain in storage is vastly superior

to the loss in efficiency. In the case of a database with 1 000 000

entries the size goes down from 1 GB to 96 B while the loss in

efficiency is around 0.6 s during encryption and key generation. As

such, the randomized encryption scheme we have implemented is

as follows.

Encryption Scheme 2.

• SetUp(1𝜿 , F̂ℓ,𝑿,𝒀
) : Define 𝐷𝜖 as Geo(−𝜖/Δ), and as such

𝛼 = (^ · Δ)/𝜖 . Choose a cyclic group G of prime order 𝑞 > 2
^

with operation ◦ and two generators 𝑔, ℎ
$←− G and compute

𝐹𝑔, 𝐹ℎ the precomputations for the fixed-base com method for
fast exponentiation. Choose a pseudo-random generator Φ(·)
that takes as input a seed and outputs a value in Zℓ𝑞 . Set 𝐿 = 𝑞

and sample seed𝒖 , seed𝒔 , seed𝒕 secure seeds for Φ. Define

param = (𝑋,𝑌, ℓ,G, 𝑔, ℎ, 𝐹𝑔, 𝐹ℎ,Φ)
msk = (seed𝒖 , seed𝒔 , seed𝒕)

• Enc(msk, 𝒙) : To encrypt a vector 𝒙 ∈ Zℓ𝑞 with ∥𝒙 ∥∞ < 𝑋 ,
reconstruct 𝒖 ← Φ(seed𝒖), 𝒔 ← Φ(seed𝒔), 𝒕 ← Φ(seed𝒕)
and compute 𝒅 = 𝒙 + 𝒖 (mod 𝑞). Then sample 𝑟

$←− Z𝑞 and
compute,

𝐶 = 𝑔𝑟 , 𝐷 = ℎ𝑟 , {𝐸𝑖 = 𝑔𝑑𝑖+𝑠𝑖 ·𝑟 · ℎ𝑡𝑖 ·𝑟 }𝑖∈[ℓ] .
Output 𝑐𝒅 = (𝐶, 𝐷, 𝐸1, . . . , 𝐸ℓ).
• KeyGen(msk, 𝒚) : To compute a functional decryption key
for a vector𝒚 with ∥𝒚∥∞ < 𝑌 , first reconstruct 𝒖 ← Φ(seed𝒖),
𝒔 ← Φ(seed𝒔), 𝒕 ← Φ(seed𝒕) and sample 𝑒𝒚 ← Geo(−𝜖/Δ),

𝑢 ′𝒚
$←− Z𝑞 . Then compute 𝑑 ′𝒚 = 𝑒𝒚 + 𝑢 ′𝒚 (mod 𝑞) and 𝑧𝑘𝒚 =

⟨𝒖,𝒚⟩ + 𝑢 ′𝒚 (mod 𝑞). Finally, compute 𝑠𝒚 = ⟨𝒔,𝒚⟩ and 𝑡𝒚 =

⟨𝒕,𝒚⟩ and output 𝑠𝑘𝒚 = (𝑑 ′𝒚 , 𝑠𝒚 , 𝑡𝒚 , 𝑧𝑘𝒚).
• Dec(𝒄𝒅 , 𝒔𝒌𝒚) :Given a ciphertext 𝑐𝒅 = (𝐶, 𝐷, 𝐸1, . . . , 𝐸ℓ) and
a functional decryption key 𝑠𝑘𝒚 = (𝑠𝒚 , 𝑡𝒚) compute

𝐸𝒚 =

∏ℓ
𝑖=1 𝐸

𝑦𝑖
𝑖

𝐶𝑠𝒚 · 𝐷𝑡𝒚
.

Finally compute 𝑠 = log𝑞 (𝐸𝒚 · 𝑔
𝑑′𝒚−𝑧𝑘𝒚) and output 𝑠 .

604

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works and Comparisons
	1.3 Organisation

	2 Formalizations
	2.1 Notations
	2.2 Differential Privacy
	2.3 Randomized Functional Encryption
	2.4 Private Functional Encryption

	3 CDP for Randomized Functional Encryption
	3.1 Overview
	3.2 Formal Analysis

	4 Randomized Inner-Product Scheme
	4.1 Formal Description of the Scheme
	4.2 Correctness and Security
	4.3 Efficiency Considerations

	5 Private encrypted database
	5.1 Description of the System
	5.2 Correctness, Security and Privacy

	6 Implementation Considerations
	6.1 Differential Privacy Considerations
	6.2 Implementation Specifics

	7 Conclusions
	Acknowledgments
	References
	A Definitions for Standard Differential Privacy
	B Definitions for Functional Encryption
	C Discussion about other Privacy Enhancing Technologies
	D A Trivial Scheme
	E Proof of Theorem 3.1
	F Proofs of Section 4
	G Proofs of Section 5
	H Privacy and utility of the Geometric mechanism
	I Implemented Scheme

