
The Multiple Millionaires’ Problem:
New Algorithmic Approaches and Protocols

Tamir Tassa

The Open University

Ra’anana, Israel

tamirta@openu.ac.il

Avishay Yanai

Soda Labs

Tel Aviv, Israel

avishay@sodalabs.xyz

ABSTRACT
We study a fundamental problem in Multi-Party Computation,

which we call the Multiple Millionaires’ Problem (MMP). Given a

set of private integer inputs, the problem is to identify the subset of

inputs that equal the maximum (or minimum) of that set, without

revealing any further information on the inputs beyond what is

implied by the desired output. Such a problem is a natural extension

of the Millionaires’ Problem, which is the very first Multi-Party

Computation problem that was presented in Andrew Yao’s seminal

work (FOCS 1982). A closely related problem is MaxP, in which

the value of the maximum is sought. We study these fundamental

problems and describe several algorithmic approaches and proto-

cols for their solution. In addition, we compare the performance

of the protocols under several selected settings. As applications

of privacy-preserving computation are more and more commonly

implemented in industrial systems, MMP and MaxP become im-

portant building blocks in privacy-preserving statistics, machine

learning, auctions and other domains. One of the prominent advan-

tages of the protocols that we present here is their simplicity. As

they solve fundamental problems that are essential building blocks

in various application scenarios, we believe that the presented so-

lutions to those problems, and the comparison between them, will

serve well future researchers and practitioners of secure distributed

computing.

KEYWORDS
multi-party computation, millionaires’ problem, themaximum prob-

lem, privacy-preserving computation

1 INTRODUCTION
Whenever the notion of Multi-Party Computation (MPC) is men-

tioned, it is almost always followed by a citation of Andrew Yao’s

seminal work from 1982, entitled “Protocols for secure computa-

tion" [31]. Yao presented there the first MPC protocol; the problem

solved by that protocol was the Millionaires’ Problem (MP): given
two parties, 𝑃1 and 𝑃2, each one holding a private nonnegative

integer – 𝑥1 and 𝑥2, respectively, determine whether 𝑥1 < 𝑥2 or

not, without revealing any further information on 𝑥1 and 𝑥2.
1

1
This problem is sometimes referred to as the Greater Than problem.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(4), 784–796
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0141

As MP is an essential building block for a vast array of MPC

problems, many studies have presented over the years additional

solutions to it, e.g. [3, 7, 9, 13, 14, 18, 20, 22, 26, 27]. We proceed to

define a natural extension of MP:

Definition 1. Let 𝑥1, . . . , 𝑥𝑁 , where 𝑥𝑛 ≥ 0 for 𝑛 ∈ [𝑁], be
private integers that are held by 𝐾 > 1 distrusting parties. Let𝑀 :=

max{𝑥𝑛 : 𝑛 ∈ [𝑁]}. Then the Multiple Millionaires’ Problem (MMP)
is the MPC problem of determining all indices 𝑛 ∈ [𝑁] for which
𝑥𝑛 = 𝑀 .2 The Maximum Problem (MaxP) is the MPC problem of
computing𝑀 = max{𝑥𝑛 : 𝑛 ∈ [𝑁]}.

In Definition 1 above we distinguish between the number of

inputs, 𝑁 , and the number of MPC parties, 𝐾 . For example, if the

MPC parties are the owners of the inputs, where party 𝑃𝑘 holds 𝑛𝑘
private inputs, then 𝑁 =

∑𝐾
𝑘=1

𝑛𝑘 . In another possible scenario, the

𝑁 inputs are held by external clients who distribute shares in them

to 𝐾 servers who act as the MPC parties.

As we show later, the two problems in Definition 1 are related:

MMP can be reduced to MaxP with an additive overhead of linear size

and constant depth (see Definitions 2-3), while MaxP can be reduced

to MMP with an additive constant overhead of both size and depth.

The desired output in MMP is the identities of the “richest" mem-

bers in some group of 𝑁 parties (“millionaires"), and the goal is to

carry out that computation in a manner that prevents those par-

ties from learning any further information on the inputs of their

peers, besides what they may infer from their own input and the

computed output.

For the sake of convenience we focus here on the case of target

functions that need to be maximized. However, our discussion also

includes the case where the target function needs to be minimized.

Namely, any algorithm for MMP can be easily used to find all indices

𝑛 ∈ [𝑁] for which 𝑥𝑛 = 𝑚 := min{𝑥𝑛 : 𝑛 ∈ [𝑁]}, and any

algorithm for MaxP can be easily converted to an algorithm that

computes the minimum𝑚 rather than the maximum𝑀 .

Identifying a set of indices that maximize (or minimize) some

target function is a fundamental problem that is most useful in statis-

tical analysis of data. In particular, it is an essential building block in

machine learning, as many machine learning algorithms, such as 𝑘-

means clustering [5, 24], 𝑘-nearest neighbors [8, 21], or fingerprint-

matching [4, 19] include the identification of a subset of points in an

Euclidean space that are closest to a given point in that space. (Note

that the problem of finding the closest point is equivalent to MMP,
by replacing each of the distances, say𝑤 , with𝑊 −𝑤 , where𝑊 is

2
We note that MMP treats all 𝑁 inputs similarly, while MP does not. Hence, when 𝑁 = 2,

MMP coincides with MP only when 𝑥1 ≠ 𝑥2; if, however, 𝑥1 = 𝑥2 , then MP will issue a
negative answer that implies that 𝑥1 ≥ 𝑥2 , while MMP will issue the accurate answer
that 𝑥1 = 𝑥2 .

784

https://orcid.org/0000-0001-9681-8824
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0141

The Multiple Millionaires’ Problem Proceedings on Privacy Enhancing Technologies 2024(4)

some upper bound on all distances.) For example, in 𝑘-means clus-

tering one is given a set of 𝑘-meansM := {𝑚1, . . . ,𝑚𝑘 } ⊂ R𝑑 , and
a set of observations X := {𝑥1, . . . , 𝑥𝑁 } ⊂ R𝑑 , and for each given

observation 𝑥𝑛 ∈ X, it is needed to find the mean (or means) in

M that minimize the distance to 𝑥𝑛 . In privacy-preserving machine

learning, and in particular in federated (collaborative) learning, the

observations need to remain secret; in such a case, all computations

must be carried out in a privacy-preserving manner and, therefore,

one has to solve an instance of MMP. In the 𝑘-nearest neighbors

algorithm, on the other hand, the goal is to find the 𝑘 points out

of a set of 𝑁 points, X = {𝑥1, . . . , 𝑥𝑁 } ⊂ R𝑑 , that are closest to a

new observation 𝑦 ∈ R𝑑 ; namely, the sought-after points here are

the 𝑘 points that issue the smallest values for the target (distance)

function, 𝑓 (𝑥) := ∥𝑥 −𝑦∥. When the 𝑘-nearest neighbors algorithm

has to be applied in a privacy-preserving manner, the computa-

tional problem that it has to solve may be reduced to a sequence

of instances of MMP. Specifically, we run MMP once, and identify the

points in X that are closest to 𝑦. Assume that this execution of MMP
identified ℓ ≥ 1 such points. If ℓ ≥ 𝑘 we are done. Otherwise, We

remove those ℓ points from X and repeat the process until we have

found 𝑘 points in X that are closest to 𝑦.

A different application where MMP plays a crucial role is that of
privacy-preserving (sealed-bid) auctions. There too, it is needed to

identify a set of parties (bidders) that maximize a target function

(the bid), without revealing any further information on the inputs

(bids). See the seminal work of Naor et al. [25] and the recent survey

[2] and the references therein.

The cost of privacy-preserving computation can be roughly sep-

arated into two metrics: communication and latency (being the

time interval from submitting the inputs until obtaining the out-

put). Typically, there is a tradeoff between the two, as expressed

by the solutions presented in this paper (see Section 7.3). Specifi-

cally, we study the tradeoff between the size of a protocol and its

depth (see Definitions 2-3). The communication-latency tradeoff is

relevant in particular to GMW-style MPC protocols [16], in which

the parties interact for every non-linear gate, and to leveled fully

homomorphic encryption (FHE) based protocols, in which circuit

evaluation is done over ciphertexts. In the former, the latency is

affected mainly by the depth of the protocol, as the parties interact

in every non-linear operation. In the latter, the depth has an impact

on the length of the keys with which the inputs are encrypted, as

well as on the computation time for every operation. Indeed, deep

circuits imply larger encryption keys, what implies larger cipher-

texts, which are presented as polynomials of larger degree, and,

consequently, multiplying polynomials incurs larger runtimes.

1.1 Our contributions and outline
Even though MMP is a very natural extension of the (two-party) Mil-

lionaires’ Problem, very few studies so far devised MPC protocols

for solving it or other related problems (see the survey of related

work in Section 8.) In this study we propose several algorithmic

approaches towards its solution as well as concrete protocols.

We begin with a discussion of essential preliminaries in Section

2: in Section 2.1 we present a commonly used abstraction method

that allows us to present and analyze secure computation protocols

in a general context that is indifferent to the underlying setting

and the implementation details; then, in Section 2.2, we present

the complexity measures for assessing the performance of such

protocols. In Section 3 we present a classical binary-tree-based

protocol (Protocol 1) and a generalization to any degree (Proto-

col 4); these protocols are based on a “tournament" between the

“candidates" (inputs) to determine the “winners" (maximal inputs),

through several rounds of comparisons. To the best of our knowl-

edge, the general-degree tree-based protocol (Protocol 4) is new,

whereas the binary-tree based-protocol was already proposed and

used in the literature, e.g. [12, 24]. In Section 4 we present novel

constant-depth protocols for solving MaxP and MMP (Protocols 5

and 6) that are tailored to cases where the inputs are drawn from

a small domain. Then, we present in Section 5 protocols that are

based on the inputs’ decomposition into bits (Protocol 7) or into

digits in larger bases (Protocol 8). In Section 6 we present Protocol

11 for solving MaxP and MMP. It is inspired by the protocols of [1]

for finding the 𝑘-th ranked element in a union of private datasets

(namely, the value in the 𝑘-th entry in the unified dataset when

it is sorted in an increasing order). We evaluate the performance

of all of those protocols in Section 7; the analysis is based on an

implementation of passively secure MPC protocols, which allows

ignoring ‘noisy’ costs, like consistency checks of inputs, that are

typically added to actively secure protocols. Furthermore, the as-

ymptotic analysis of the cost of passively secure protocols captures

the actively secure ones as well, as there are efficient compilers

from passive to active security (e.g., [15]). We review related work

in Section 8 and conclude in Section 9.

A prominent advantage of the presented protocols is their sim-

plicity. Since MaxP and MMP are essential building blocks in impor-

tant applications, the introduction of novel algorithmic approaches

and protocols for those problems, and the comparison between the

presented solutions, will serve well future researchers of MPC and

practitioners of secure distributed computing.

2 PRELIMINARIES
2.1 The Arithmetic Black-Box (ABB)
Practical protocols for secure computation use a circuit representa-

tion of the functionality that they compute. The gates in the circuit

may be arithmetic, where computation is carried out by addition

and multiplication gates over an agreed upon field, or Boolean,

where computation is carried out by AND and XOR gates. Note

that Boolean gates adhere to arithmetics over Z2, thus, they can

use the arithmetic notation (‘+’, ‘·’) as well.
Typically, privacy-preserving protocols abstract out the underly-

ing techniques through an abstraction called an “Arithmetic Black

Box" (ABB). An ABB is an ideal functionality that can be realized

in many ways, depending on the setting (e.g., network topology

and synchrony assumptions) and the security needs (i.e., semi-

honest/malicious, static/adaptive adversaries, with/without abort,

perfect/statistical/computational security, and different collusion

scenarios). The privacy-preserving protocol directly inherits these

properties from the sub-protocol that realizes the ABB. This way,

it is possible to describe a privacy-preserving protocol that can

fit several settings at the same time, given a suitable realization

of the ABB functionality in the protocol. Furthermore, by relying

785

Proceedings on Privacy Enhancing Technologies 2024(4) Tassa and Yanai.

on the ABB functionality, one does not have to analyse the com-

munication and computation complexity of its operations, as they

depend on the specific realization. The ABB ideal functionality is

given in Functionality 1. Abstraction using an ideal functionality

is a common practice in the art of secure protocol design, which

enables focusing on the logic of the application rather than on the

underlying infrastructure.

In the beginning of the protocol the parties initialize the ABB

functionality with the field F over which all computations take

place. We assume hereinafter that F = Z𝑝 for a sufficiently large

prime 𝑝 that is greater than all inputs of the MMP problem. After that

initialization the parties may use any interface listed in Function-

ality 1 as many times as needed, as part of the privacy-preserving

protocol. See [6] for the syntax and usability of ideal functionalities

and [10] for the introduction of the arithmetic black-box.

In Functionality 1 we use the term handle. A handle can be seen

as a public pointer to the secret held by the ABB, so that the parties

can relate to it in their calls. A possible instantiation of a handle

is as follows. On inputting a secret or a public value 𝑥 , the ABB

picks a unique identifier (e.g., a long random string) and outputs it

as 𝑥 ’s handle. In addition, when the parties invoke a computation

on the secrets represented by handles ℎ1, . . . , ℎ𝑘 the ABB performs

the computation on the secrets and picks a new unique identifier

for the result.

In a protocol description, instead of explicitly mentioning that

the parties send some message through the ABB interface, it is

convenient to use a shorthand. Specifically:

• instead of writing that party 𝑃𝑛 calls (PrivateInput, 𝑛, 𝑎) and
all other parties call (PrivateInput, 𝑛) so that all parties ob-

tain [𝑎], we write simply [𝑎] ← (PrivateInput, 𝑛, 𝑎).
• instead of writing that all parties call (Add, [𝑎], [𝑏]) and
obtain the handle [𝑐], we write [𝑐] ← [𝑎] + [𝑏];
• a call to (Multiply, [𝑎], [𝑏]) is written [𝑐] ← [𝑎] · [𝑏];
• a call to (Duplicate, [𝑎]) which returns to all parties a handle
[𝑏] with the same value as [𝑎] is written [𝑏] ← [𝑎];
• a call to (AffineComb, [𝑎1], . . . , [𝑎𝑘], 𝑐0, 𝑐1, . . . , 𝑐𝑘) is written
[𝑐] ← 𝑐0 + 𝑐1 · [𝑎1] + · · · + 𝑐𝑘 · [𝑎𝑘];
• a call to (Inverse, [𝑎]) is written [𝑐] ← [𝑎−1];
• a call to (Compare, [𝑎], [𝑏]) is replaced with the handle that

it returns, i.e. [1𝑎<𝑏].3
• a call to (Equal, [𝑎], [𝑏]) is replaced with the result 1𝑎=𝑏 .

• a call to (OR𝑚, [𝑎1], . . . , [𝑎𝑚]) is written [𝑐] ←
∨𝑚
𝑖=1 [𝑎𝑖].

There are plenty of potential instantiations for the ABB func-

tionality, depending on the number of parties (e.g., it is common

to have more efficient protocols for a small number of parties, say

𝑁 ∈ {2, 3, 4, 5}), the adversarial model (e.g., protocols that protect

against a semi-honest and static adversary who can corrupt only

a few parties are obviously simpler and more efficient than those

protecting against an active and adaptive adversary who may cor-

rupt almost all parties), the network topology (e.g., it is easier to

communicate over a full mesh rather than over a sparse network),

and the underlying setting.

We conclude by noting that some of the interfaces in the ABB

functionality could be realized by other ones (see more on that in

[30, Appendix A.1]).

3
If P is a predicate then 1P is a bit that equals 1 if the predicate holds and 0 otherwise.

FUNCTIONALITY 1.

(
Arithmetic Black-Box

)
Initialize. On input (Init, F) from all parties, store the field F.

Public Input. [PuI] On input (PublicInput, 𝑎) from all parties,

where 𝑎 ∈ F, store 𝑎 and return a handle [𝑎] to the parties.

Private Input. [PrI] On input (PrivateInput, 𝑛, 𝑎) from party 𝑃𝑛 ,

where 𝑎 ∈ F, and input (PrivateInput, 𝑛) from all other parties,

store 𝑎 and return a handle [𝑎] to the parties.

Public Output. [PuO] On input (PublicOutput, [𝑎]) from all par-

ties, reveal 𝑎 to all parties.

Private Output. [PrO] On input (PrivateOutput, 𝑛, [𝑎]) from all

parties, reveal 𝑎 to party 𝑃𝑛 .

Random. [Rnd] On input (Random) from all parties, sample 𝑟 ← F
uniformly and return the handle [𝑟] to the parties.

Addition. On input (Add, [𝑎], [𝑏]) from all parties, compute 𝑐 =

𝑎 + 𝑏 in F and return a handle [𝑐] to all parties.

Multiplication. [Mul] On input (Multiply, [𝑎], [𝑏]) from all par-

ties, compute 𝑐 = 𝑎 · 𝑏 in F and return a handle [𝑐] to all parties.

Duplicate. On input (Duplicate, [𝑎]) from all parties, the function-

ality generates a new handle [𝑏] to a secret 𝑏 where 𝑏 = 𝑎, and

returns the handle [𝑏] to all parties.

Affine combination. On input (AffineComb, [𝑎1], . . . , [𝑎𝑘],
𝑐0, 𝑐1, . . . , 𝑐𝑘) from all parties, compute 𝑐 = 𝑐0 +

∑𝑘
𝑖=1 𝑐𝑖𝑎𝑖 in F

and return a handle [𝑐] to all parties.

Inverse. [Inv] On input (Inverse, [𝑎]) from all parties, where 𝑎 ∈
F \ {0}, compute 𝑐 = 𝑎−1 and return a handle [𝑐] to all parties.

Equality. [Eq] On input (Equal, [𝑎], 𝑏) from all parties, compute

and return 𝑐 ← 1𝑎=𝑏 .

Comparison. [Com] On input (Compare, [𝑎], [𝑏]) from all parties,

compute 𝑐 ← 1𝑎<𝑏 and return a handle [𝑐] to all parties. (We focus

here on prime-ordered fields F = Z𝑝 in which 𝑎 < 𝑏 means that 𝑎 is

smaller than 𝑏 when both 𝑎 and 𝑏 are viewed as integers.)

Or. [Or] On input (OR𝑚, [𝑎1], . . . , [𝑎𝑚]) from all parties, if 𝑎𝑖 ∈
{0, 1} for all 𝑖 ∈ [𝑚], compute 𝑐 ← ∨𝑚

𝑖=1 𝑎𝑖 and return a handle

[𝑐] to all parties; otherwise, return ⊥ to all parties.

2.2 Measures of protocols’ complexity
Hereinafter, when analyzing the complexity of a given MPC pro-

tocol we will refer to the protocol’s size and depth, where the size
addresses the protocol’s communication complexity and the depth
addresses its round complexity. Each MPC protocol induces a tree

of calls to the ABB functionality. Let I be the set of all interfaces in

the ABB Functionality 1. Then each node in the tree that is induced

by a given protocol is labeled by some A ∈ I. All nodes in the same

distance from the root node represent calls that can be executed in

parallel. On the other hand, a pair of a father node with a son node

represents a pair of calls to the ABB functionality where the latter

call depends on the completion of the former.

Definition 2 (Protocol’s size). Given an MPC protocol Π we
let 𝑐A be the number of invocations of the intereface A ∈ I during
Π’s execution. Then the size of protocol Π is defined as size(Π) =∑
A∈I 𝑐A · size(A), where size(A) is the message complexity of the

invocation of A in a specific implementation of the ABB functionality.

786

The Multiple Millionaires’ Problem Proceedings on Privacy Enhancing Technologies 2024(4)

Definition 3 (Protocol’s depth). Let 𝑤 := (A1, . . . ,A𝑑) be
a path in the tree of calls that protocol Π induces. Its depth is de-
fined as depth𝑤 :=

∑𝑑
𝑖=1 depth(A𝑖), where depth(A𝑖) is the round

complexity of the invocation of A𝑖 in a specific implementation of
the ABB functionality. Then the depth of protocol Π is defined as
max𝑤 depth𝑤 where the maximum is over all paths in the tree that
Π induces.

In our analysis, we break the depth of the implementation of each

interface A to its part that is independent of the input and its part

that does depend on the input. For an interface A, we call the former

the preprocessing depth and denote it by preDepth(A), while the lat-
ter is called the online depth and is denoted onDepth(A). Similarly,

the depth of a protocol Π is also split into a preprocessing depth

and an online depth, depth(Π) = preDepth(Π) + onDepth(Π).
Note that if protocol Π invokes a set of interfaces J ⊆ I, then
preDepth(Π) = max{preDepth(A) : A ∈ J} because the prepro-
cessing part for all interface invocations can be done simultaneously.

As for the online depth, the exact depth depends on the invocation

pattern in each protocol.

When analyzing the size and depth of our protocols, we use

abbreviated notations as listed in Functionality 1. So, for example,

the notation [Com] denotes the size of the Compare interface, when
speaking about the size of a protocol, while it denotes the prepro-
cessing depth (resp., online depth) of the interface when discussing

the protocol’s preprocessing depth (resp., online depth). In such

analysis we ignore calls to Add,AffineComb and Duplicate, since
they incur no communication at all.

3 TREE-BASED PROTOCOLS
In this section we present protocols that solve MMP by decomposing

the original problem, that involves many inputs, into a hierarchy

(tree) of smaller instances of MMP, each one consisting of a smaller

number of inputs. In Section 3.1 we describe a protocol due to

[12, 24] that is based on a binary tree; in that protocol, each smaller

instance of MMP involves just two inputs. Then, in Section 3.2, we

present a generalized protocol in which the smaller MaxP instances

involve up to 𝑁 ′ (where 2 ≤ 𝑁 ′ ≤ 𝑁) inputs.

3.1 A binary tree-based protocol
Here we present a basic MMP protocol that reduces the Multiple

Millionaires’ Problem into the (Two) Millionaires’ Problem MP. Pro-
tocol 1 is executed by the parties 𝑃1, . . . , 𝑃𝑁 towards identifying all

maximal inputs. The protocol uses a binary tree based comparison

in order to compute the maximal value.

Initially, all parties input their secret inputs, 𝑥1, . . . , 𝑥𝑁 (Lines

1-2). The computation that follows is performed in 𝐿 rounds, where

𝐿 = ⌈log𝑁 ⌉ (hereinafter, unless otherwise stated, log = log
2
).

Denote by 𝑁ℓ the number of candidates in the ℓ-th round, ℓ ∈
[𝐿], and let 𝑥 ℓ

1
, . . . , 𝑥 ℓ

𝑁ℓ
be those candidates. In the first round the

candidates are 𝑥1𝑛 = 𝑥𝑛 , 𝑛 ∈ [𝑁], so 𝑁1 is initialized to 𝑁 (Line 3).

As mentioned, the computation of the maximal value𝑀 is done

in 𝐿 rounds (Lines 4-10). In the ℓ-th round every two consecutive

candidates, 𝑥 ℓ
𝑘
and 𝑥 ℓ

𝑘+1, are compared (Line 6). The comparison

result is used in order to compute the maximum of those two can-

didates using the equality max{𝑎, 𝑏} = 𝑎 + 1𝑎<𝑏 · (𝑏 − 𝑎); it is then

stored in [𝑥 ℓ+1(𝑘+1)/2] and percolated to the next round (Line 7). If

the number of candidates in the ℓ-th round, 𝑁ℓ , is odd, then the last

candidate (𝑥 ℓ
𝑁ℓ

) is directly percolated to the next round (Lines 8-9).

Finally, the number of values in the next layer is updated (Line 10).

After completing the 𝐿 rounds, the maximum𝑀 is the single value

in the (𝐿 + 1)-th layer (Line 11). The protocol ends with a testing

the equality of each of the inputs to the computed maximum (Lins

12-13) and outputting the indices of all maximal inputs.

Protocol 1: A binary-tree-based protocol for MMP

Parameters: 𝑁 - number of inputs; 𝐿 = ⌈log𝑁 ⌉.
Private Inputs: 𝑥1, . . . , 𝑥𝑁 ∈ F.

1 forall 𝑛 ∈ [𝑁] do
2 [𝑥1𝑛] ← (PrivateInput, 𝑛, 𝑥𝑛)
3 𝑁1 ← 𝑁 .

4 forall ℓ = 1, 2, . . . , 𝐿 do
5 forall Odd 𝑘 s.t. 𝑘 < 𝑁ℓ do
6 The parties compute [1𝑥 ℓ

𝑘
<𝑥 ℓ

𝑘+1
].

7 [𝑥 ℓ+1(𝑘+1)/2] ← [𝑥
ℓ
𝑘
] + [1𝑥 ℓ

𝑘
<𝑥 ℓ

𝑘+1
] · ([𝑥 ℓ

𝑘+1] − [𝑥
ℓ
𝑘
]).

8 if 𝑁ℓ is odd then
9 [𝑥 ℓ+1(𝑁ℓ+1)/2] ← [𝑥

ℓ
𝑁ℓ
].

10 𝑁ℓ+1 ← ⌈𝑁ℓ/2⌉.
11 [𝑀] ← [𝑥𝐿+1

1
].

12 forall 𝑛 ∈ [𝑁] do
13 The parties compute 1𝑥1𝑛=𝑀

.

Output :The indices 𝑛 ∈ [𝑁] for which
𝑥𝑛 = 𝑀 := max{𝑥𝑖 : 𝑖 ∈ [𝑁]}.

The protocol consists of𝑁 calls to PrivateInput (Line 2), followed
by 𝑁 − 1 calls to Compare andMultiply (Line 7). Afterwards, the
protocol performs 𝑁 calls to Equality (Line 13) and PublicOutput.
Note that all calls to PrivateInput occur in parallel, as well as the

calls to Equality and PublicOutput. In addition, all calls toCompare
and Multiply occur in ⌈log𝑁 ⌉ iterations. Therefore, the size and
depth of Protocol 1 are:

size(Protocol 1) = 𝑁 · [PrI] + (𝑁 − 1) · [Com]+
(𝑁 − 1) · [Mul] + 𝑁 · [Eq] + 𝑁 · [PuO] ,

preDepth(Protocol 1) = max([PrI], [Com], [Mul], [Eq], [PuO]) ,
onDepth(Protocol 1) = [PrI] + ⌈log𝑁 ⌉ · ([Com] + [Mul]) +

[Eq] + [PuO] .

3.2 A protocol based on higher degree trees
Here we present Protocol 4 for solving MMP. That protocol is also
based on a comparison tree, only that here the degrees of all nodes

are (at most) some parameter 𝑁 ′ ≥ 2. The depth of Protocol 4 is

⌈log𝑁 ′ 𝑁 ⌉. If we take 𝑁 ′ = 2 we restore Protocol 1. If, on the other

hand, we take 𝑁 ′ = 𝑂 (1)√
𝑁 , we get a shallow tree with a depth of

𝑂 (1).
Before presenting Protocol 4, we present two sub-protocols that

it invokes, for solving MMP and MaxP in constant depth. Sub-protocol
2 securely computes the indices of the maximal value. It receives as

input handles to 𝑁 ′ candidate values. First, it computes in parallel

the comparison bits between every pair of inputs (Line 1-2). It

787

Proceedings on Privacy Enhancing Technologies 2024(4) Tassa and Yanai.

then uses those bits to compute a bit for each input that indicates

whether that input is maximal (Lines 3-4).

Sub-protocol 2: An all-to-all-comparison protocol for MMP

Inputs: Handles [𝑥1], . . . , [𝑥𝑁 ′] where 𝑥𝑖 ∈ F.
1 forall 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁 ′ do
2 [𝑏𝑖, 𝑗] ← [1𝑥𝑖<𝑥 𝑗].
3 forall 𝑖 ∈ [𝑁 ′] do
4 [𝑏𝑖] ← 1 −∨𝑗 ∈[𝑁], 𝑗≠𝑖 [𝑏𝑖, 𝑗].
Output :The handles ([𝑏1], . . . , [𝑏𝑁 ′]).

Sub-protocol 3 computes the maximal value. It too receives as

input handles to 𝑁 ′ candidate values. It then invokes Sub-protocol

2 and gets hanldes to the bits [𝑏𝑖], 𝑖 ∈ [𝑁 ′], that inidcate the

maximality of each input (Line 1). It then proceeds to add up all

maximal inputs into �̂� and count them into �̂� (Lines 2-3). The

maximum is obtained by multiplying �̂� with the inverse of �̂� .

Sub-protocol 3: A sub-protocol for MaxP

Inputs: Handles [𝑥1], . . . , [𝑥𝑁 ′] where 𝑥𝑖 ∈ F.
1 ([𝑏1], . . . , [𝑏𝑁 ′]) ← MMP([𝑥1], . . . , [𝑥𝑁 ′]).
2 [�̂�] ← ∑

𝑖∈[𝑁 ′] ([𝑏𝑖] · [𝑥𝑖]).
3 [�̂�] ← ∑

𝑖∈[𝑁 ′] [𝑏𝑖].
4 [𝑀] ← [�̂�−1] · [�̂�].
Output :The handle [𝑀] to𝑀 = max{𝑥𝑖 : 𝑖 ∈ [𝑁 ′]}.

We now turn to Protocol 4. Lines 1-3 in it are the same as in

Protocol 1. Lines 4-7 are equivalent to Lines 4-10 in Protocol 1,

with the only difference being the fact that in the ℓ-th iteration,

1 ≤ ℓ ≤ ⌈log𝑁 ′ 𝑁 ⌉, the 𝑁ℓ candidates are grouped into groups

of at most 𝑁 ′ candidates in each (instead of 2 in Protocol 1) and

then the maximum of each such group is percolated to the next

iteration. The conclusion of the protocol (Lines 8-10) is similar to

the conclusion of Protocol 1 (Lines 11-13 there).

Note that if we wish to solve MaxP rather than MMP, we can run

Lines 1-8 in Protocol 4 and then output𝑀 .

We conclude with analyzing the costs of those protocols. Sub-

protocol 2’s size is ((𝑁 ′)2 − 𝑁 ′) · [Com] + 𝑁 ′ · [Or]𝑁 ′ , where the
subscript 𝑁 ′ in [Or]𝑁 ′ denotes the number of operands in the Or

operation. Sub-protocol 2’s preprocessing and online depths are

max([Com], [Or]𝑁 ′) and [Com]+ [Or]𝑁 ′ , respectively. These costs
of Sub-protocol 2 imply that the costs of Sub-protocol 3 are:

size(Sub-protocol 3) = ((𝑁 ′)2 − 𝑁 ′) · [Com] + 𝑁 ′ · [Or]𝑁 ′+
(𝑁 ′ + 1) · [Mul] + [Inv] ,

preDepth(Sub-protocol 3) = max([Com], [Or]𝑁 ′, [Mul], [Inv]) ,
onDepth(Sub-protocol 3) = [Com] + [Or]𝑁 ′ + 2[Mul] + [Inv] .

Letting [MaxP] denote the costs of Sub-protocol 3, we have

size(Protocol 4) = 𝑁 · [PrI] +𝑇 (𝑁, 𝑁 ′) · [MaxP] + 𝑁 · [Eq] ,

where 𝑇 (𝑁, 𝑁 ′) = ∑𝐿′
ℓ=1 ⌈𝑁ℓ/𝑁 ′⌉ and 𝑁ℓ is defined recursively in

Lines 3 & 7. (Note that if 𝑁 = (𝑁 ′)𝐿′ the tree is regular, in the

Protocol 4: A general-tree-based protocol for MMP

Parameters: 𝑁 - number of inputs; 𝑁 ′, where 2 ≤ 𝑁 ′ ≤ 𝑁
- number of inputs that are compared in one

call to Sub-protocol 3 (MaxP); 𝐿′ = ⌈log𝑁 ′ 𝑁 ⌉.
Private Inputs: 𝑥1, . . . , 𝑥𝑁 ∈ F.

1 forall 𝑛 ∈ [𝑁] do
2 [𝑥1𝑛] ← (PrivateInput, 𝑛, 𝑥𝑛)
3 𝑁1 ← 𝑁 .

4 forall ℓ = 1, 2, . . . , 𝐿′ do
5 forall 𝑘 s.t. 𝑘 = 1 mod 𝑁 ′ and 𝑘 ≤ 𝑁ℓ do
6 [𝑥 ℓ+1

1+(𝑘−1)/𝑁 ′] ←
MaxP([𝑥 ℓ

𝑘
], [𝑥 ℓ

𝑘+1], . . . , 𝑥
ℓ
min{𝑘+𝑁 ′−1,𝑁ℓ }).

7 𝑁ℓ+1 ← ⌈𝑁ℓ/𝑁 ′⌉.
8 [𝑀] ← [𝑥𝐿′+1

1
].

9 forall 𝑛 ∈ [𝑁] do
10 The parties compute 1𝑥1𝑛=𝑀

. (Recall that 𝑥1𝑛 is the 𝑛-th

input).

Output :The indices 𝑛 ∈ [𝑁] for which
𝑥𝑛 = 𝑀 := max{𝑥𝑖 : 𝑖 ∈ [𝑁]}.

sense that all non-leaf nodes have an out-degree 𝑁 ′, and then

𝑇 (𝑁, 𝑁 ′) = 𝑁−1
𝑁 ′−1 .) Protocol 4’s depths are:

preDepth(Protocol 4) = max([PrI], [MaxP], [Eq]) ,
onDepth(Protocol 4) = [PrI] + 𝐿′ · [MaxP] + [Eq] .

4 CONSTANT-DEPTH PROTOCOLS FOR
SMALL DOMAINS

We begin this section by presenting a constant-depth protocol for

solving MaxP (Section 4.1). Then we use that protocol as a basis for

a constant-depth protocol for solving MMP (Section 4.2). The size

of the protocols is proportional to the underlying field size and,

therefore, they are relevant in cases where there is a small known

upper bound on the inputs.

4.1 A protocol for solving MaxP
Protocol 5 starts with each 𝑃𝑛 , 𝑛 ∈ [𝑁], submitting its input, which

is an integer 𝑥𝑛 ∈ [0, 𝑄), for some publicly known upper bound 𝑄 ,

in the form of𝑄−1 bits𝑦𝑛,𝑖 that represent it (Lines 1-3). Specifically,
each input 𝑥 ∈ [0, 𝑄) is represented by a sequence of 𝑄 − 1 bits in
which the first 𝑥 bits are 1 and the proceeding ones are all 0; it is that

form of input encoding that restricts the scope of this protocol to

small domains. Then, the parties compute a similar representation

of𝑀 into the vector z = (𝑧1, . . . , 𝑧𝑄−1), using the
∨

operator (Lines

4-5). The

∨
operator can be computed by a constant-depth sub-

protocol (see [30, Appendix A.2.3]). Finally, the maximum 𝑀 is

computed by adding all entries in z (Line 6).
The protocol performs 𝑁 (𝑄 − 1) parallel invocations of Pri-

vateInput (Lines 1-3) and 𝑄 − 1 parallel invocations of Or (Lines
4-5). Hence, its costs are:

size(Protocol 5) = 𝑁 (𝑄 − 1) · [PrI] + (𝑄 − 1) · [Or]𝑁 ,
preDepth(Protocol 5) = max([PrI], [Or]𝑁) ,
onDepth(Protocol 5) = [PrI] + [Or]𝑁 .

788

The Multiple Millionaires’ Problem Proceedings on Privacy Enhancing Technologies 2024(4)

Protocol 5: A monotone-representation-based protocol for

MaxP
Parameters: 𝑁 - number of inputs; 𝑄 - an upper bound on

the inputs (each input is in [0, 𝑄 − 1).
Private Inputs: 𝑥1, . . . , 𝑥𝑁 ∈ [0, 𝑄).

1 forall 𝑛 ∈ [𝑁] do
2 forall 𝑖 = 1, . . . , 𝑄 − 1 do
3 [𝑦𝑛,𝑖] ← (PrivateInput, 𝑛,𝑦𝑛,𝑖), where 𝑦𝑛,𝑖 = 1𝑥𝑛≥𝑖
4 forall 𝑖 = 1, . . . , 𝑄 − 1 do
5 [𝑧𝑖] ←

∨
𝑛∈[𝑁] [𝑦𝑛,𝑖]

6 [𝑀] ← ∑𝑄−1
𝑖=1
[𝑧𝑖]

Output :A handle [𝑀] to𝑀 := max{𝑥𝑛 : 𝑛 ∈ [𝑁]}.

4.2 A protocol for solving MMP
Here we present Protocol 6 – an MMP protocol that is based on

the MaxP Protocol 5. It starts with an invocation of Protocol 5 to

compute the maximum𝑀 of all inputs (Line 1). Then, the parties

go over all inputs and test their equality to 𝑀 (Lines 2-3). The

protocol’s output identifies all inputs that equal𝑀 .

Protocol 6: A monotone-representation-based protocol for

MMP
Parameters: 𝑁 , 𝑄 - two positive integers, denoting the

number of inputs and an upper bound on

them.

Private Inputs: 𝑥1, . . . , 𝑥𝑁 ∈ [0, 𝑄);
1 The parties compute [𝑀] ← [MaxP{𝑥1, . . . , 𝑥𝑁 }].
2 forall 𝑛 ∈ [𝑁] do
3 The parties compute 1𝑥𝑛=𝑀 .

Output :The indices 𝑛 ∈ [𝑁] for which
𝑥𝑛 = 𝑀 := max{𝑥𝑖 : 𝑖 ∈ [𝑁]}.

Protocol 6 consists of a call to Protocol 5 to compute𝑀 , followed

by 𝑁 parallel procedures of testing the equality of each input to𝑀

(Lines 2-5). Hence, its costs are as follows:

size(Protocol 6) = size(Protocol 5) + 𝑁 · [Eq] + 𝑁 · [PuO] ,
preDepth(Protocol 6) = max(preDepth(Protocol 5), [Eq], [PuO]) ,
onDepth(Protocol 6) = onDepth(Protocol 5) + [Eq] + [PuO] .

By plugging the size and the preprocessing and online depths of

Protocol 5 as derived in Section 4.1, we arrive at the final size and

depths of Protocol 6:

size(Protocol 6) = 𝑁 (𝑄 − 1) · [PrI] + (𝑄 − 1) · [Or]𝑁 +
𝑁 · [Eq] + 𝑁 · [PuO] ;

preDepth(Protocol 6) = max([Pri], [Or]𝑁 , [Eq], [PuO]) ,
onDepth(Protocol 6) = [PrI] + [Or]𝑁 + [Eq] + [PuO] .

5 PROTOCOLS BASED ON THE INPUTS’ DIGIT
DECOMPOSITION

Here we present two protocols for solving MMP that are based on the

digits of the inputs’ representation in some number base. We begin

with Protocol 7 (Section 5.1) that uses a binary representation of

the inputs. We then present Protocol 8 (Section 5.2) that reduces

depth by considering a representation of the inputs in a 2
𝑑
-base,

for some 𝑑 > 1.

5.1 Binary representation of inputs
Protocol 7 gets as inputs 𝑁 integers, 𝑥1, . . . , 𝑥𝑁 . As stated earlier,

we assume that all inputs are smaller than some prime 𝑝 , where

the underlying field is F = Z𝑝 . Hereinafter we let 𝐵 = ⌈log 𝑝⌉
denote the number of bits in the binary representation of elements

in F. Hence, the input 𝑥𝑛 , 𝑛 ∈ [𝑁], has a binary representation

by 𝐵 bits, (𝑥𝑛,𝐵−1, . . . , 𝑥𝑛,0), meaning that 𝑥𝑛,𝑏 ∈ {0, 1} and 𝑥𝑛 =∑𝐵−1
𝑏=0

𝑥𝑛,𝑏2
𝑏
. In addition, we define 𝑥𝑛,𝐵 = 1 for all 𝑛 ∈ [𝑁]. The

protocol outputs an 𝑁 -dimensional Boolean vector that identifies

the maximal inputs.

The protocol starts by submitting all input bits (Lines 1-3). It

then iterates over the input bits from bit number 𝑏 = 𝐵−1, the MSB,

to bit number 𝑏 = 0, the LSB (Lines 4-7). We refer to the collection

of all bits in the same bit position, {𝑥𝑛,𝑏 : 𝑛 ∈ [𝑁]}, as the 𝑏-th
bit column. For each of those bit columns the protocol computes

𝑠𝑏 :=
∨
𝑛∈[𝑁] (𝑥𝑛,𝑏+1 · 𝑥𝑛,𝑏) (Line 5). If 𝑠𝑏 = 1 then there is at least

one input 𝑥𝑛 for which 𝑥𝑛,𝑏 = 1 and, in addition, the current value

of 𝑥𝑛,𝑏+1 (after it may have been updated in the previous iteration)

also equals 1; in that case, the protocol updates each entry in that

column to equal the product of that entry and the preceding one.

Otherwise, if 𝑠𝑏 = 0, the protocol updates the 𝑏-th bit column to be

the same as the preceding bit column. This computation is done in

Lines 6-7. (Note that all computations are done in Z2 so that the

minus and plus operations are just XORs). At the conclusion of this

loop, the protocol outputs the bits in the 0-th bit column (Line 8)

since those bits identify all maximal inputs, as we claim next:

Lemma 4. 𝑥𝑛,0 = 1 if and only if 𝑥𝑛 = 𝑀 = max{𝑥𝑖 : 𝑖 ∈ [𝑁]}.
Proof. For each𝑏 = 𝐵−1, . . . , 0 define 𝑥𝑛 |𝑏 =

∑𝐵−1
𝑖=𝑏

𝑥𝑛,𝑖2
𝑖
; namely,

𝑥𝑛 |𝑏 is the value that is obtained from 𝑥𝑛 by zeroing its 𝑏 least

significant bits, 𝑥𝑛,𝑏−1, . . . , 𝑥𝑛,0. We prove, by induction on 𝑏 =

𝐵 − 1, . . . , 0, that at the completion of the protocol 𝑥𝑛,𝑏 = 1 iff

𝑥𝑛 |𝑏 = max{𝑥𝑖 |𝑏 : 𝑖 ∈ [𝑁]}. The case 𝑏 = 0 coincides with the

statement of the lemma since 𝑥𝑛 |0 = 𝑥𝑛 .
The statement for the base case 𝑏 = 𝐵 − 1 is easily proven. There

are two cases to consider:

• If 𝑠𝑏 = 1 then at least one of the inputs has a 1-bit in this

column and, therefore, max{𝑥𝑖 |𝐵−1 : 𝑖 ∈ [𝑁]} = 1. Hence,

after updating the shares in 𝑥𝑛,𝐵−1 in Line 7, 𝑥𝑛,𝐵−1 equals
the product between 𝑥𝑛,𝐵 = 1 and the original value of

𝑥𝑛,𝐵−1. That means that 𝑥𝑛,𝐵−1 remains unchanged in this

case and, consequently, 𝑥𝑛,𝐵−1 = 1 iff 𝑥𝑛 |𝐵−1 = max{𝑥𝑖 |𝐵−1 :
𝑖 ∈ [𝑁]}.
• If 𝑠𝑏 = 0 then, because 𝑥𝑛,𝐵 = 1 for all 𝑛, all inputs have a 0-

bit in this column and, therefore, max{𝑥𝑖 |𝐵−1 : 𝑖 ∈ [𝑁]} = 0.

Hence, after updating the shares in 𝑥𝑛,𝐵−1 in Line 7, 𝑥𝑛,𝐵−1
would equal 𝑥𝑛,𝐵 = 1, for all 𝑛 ∈ [𝑁]. Indeed, in this case, as

all bits in that column are zero, then 𝑥𝑛 |𝐵−1 = max{𝑥𝑖 |𝐵−1 :
𝑖 ∈ [𝑁]} for all 𝑛 ∈ [𝑁].

We proceed by induction to prove our claim for 𝑏 = 𝐵 − 2, . . . , 0.
Namely, we assume that 𝑥𝑛 |𝑏+1 = max{𝑥𝑖 |𝑏+1 : 𝑖 ∈ [𝑁]}, and then

prove that 𝑥𝑛 |𝑏 = max{𝑥𝑖 |𝑏 : 𝑖 ∈ [𝑁]}. Here too we distinguish

between two cases:

789

Proceedings on Privacy Enhancing Technologies 2024(4) Tassa and Yanai.

• If 𝑠𝑏 = 0 then all inputs have a 0-bit in this column or in the

preceding column (that was already updated in the previ-

ous iteration). We claim that in this case argmax𝑛{𝑥𝑛 |𝑏 } =
argmax𝑛{𝑥𝑛 |𝑏+1}; namely, that all inputs that maximize

𝑥𝑛 |𝑏+1 are exactly those that maximize 𝑥𝑛 |𝑏 . Indeed, if 𝑖 ∉
argmax𝑛{𝑥𝑛 |𝑏+1} then clearly 𝑖 ∉ argmax𝑛{𝑥𝑛 |𝑏 }. If, on
the other hand, 𝑖 ∈ argmax𝑛{𝑥𝑛 |𝑏+1} then, by the induction
hypothesis, 𝑥𝑖,𝑏+1 = 1 and therefore, because 𝑠𝑏 = 0, 𝑥𝑖,𝑏 = 0.

Hence, for all 𝑥𝑖 ∈ argmax𝑛{𝑥𝑛 |𝑏+1} we have 𝑥𝑖 |𝑏+1 = 𝑥𝑖 |𝑏 .
Therefore, all inputs that maximize 𝑥𝑛 |𝑏+1 also maximize

𝑥𝑛 |𝑏 . Hence, since the computation in Line 7 updates the

shares in 𝑥𝑛,𝑏 so that it equals 𝑥𝑛,𝑏+1, the a-posteriori values
of the bits 𝑥𝑛,𝑏 identify the inputs that maximize 𝑥𝑛 |𝑏 .
• If 𝑠𝑏 = 1 then at least one of the inputs that maximized 𝑥𝑛 |𝑏+1
has a 1-bit in the 𝑏-th column. Therefore, argmax𝑛{𝑥𝑛 |𝑏 }
consists exactly of all inputs in argmax𝑛{𝑥𝑛 |𝑏+1} that have
also a 1-bit in the 𝑏-th column. Hence, since in the case

𝑠𝑏 = 1 the computation in Line 7 updates the shares in 𝑥𝑛,𝑏
so that it equals the product between 𝑥𝑛,𝑏+1 and 𝑥𝑛,𝑏 , the
aposteriori values of 𝑥𝑛,𝑏 identify the set argmax𝑛{𝑥𝑛 |𝑏 }.
That completes the proof.

2

Protocol 7: A bit-decomposition-based protocol for MMP

Parameters: 𝑁 - number of inputs; 𝐵 > 0 - the number of

bits in each of the inputs.

Private Inputs: 𝑥1, . . . , 𝑥𝑁 ∈ [0, 2𝐵); the bit decomposition

of 𝑥𝑛 is (𝑥𝑛,𝐵−1, . . . , 𝑥𝑛,0), 𝑛 ∈ [𝑁].
1 forall 𝑛 ∈ [𝑁] do
2 forall 𝑏 = 𝐵 − 1, . . . , 0 do
3 [𝑥𝑛,𝑏] ← (PrivateInput, 𝑛, 𝑥𝑛,𝑏).
4 forall 𝑏 = 𝐵 − 1, . . . , 0 do
5 Compute [𝑠𝑏] ←

∨
𝑛∈[𝑁] ([𝑥𝑛,𝑏+1] · [𝑥𝑛,𝑏]) .

6 forall 𝑛 ∈ [𝑁] do
7 [𝑥𝑛,𝑏] ← (1 − [𝑠𝑏]) · [𝑥𝑛,𝑏+1] + [𝑠𝑏] · [𝑥𝑛,𝑏 · 𝑥𝑛,𝑏+1].
8 The parties call (PublicOutput, [𝑥𝑛,0]) for all 𝑛 ∈ [𝑁].
Output :The indices 𝑛 ∈ [𝑁] for which 𝑥𝑛 = max𝑖∈[𝑁] 𝑥𝑖 .

We proceed to discuss the protocol’s complexity. Each party

breaks its input to 𝐵 binary bits and inputs each of them separately,

so that there are in total 𝐵𝑁 calls to PrivateInput (Lines 1-3). Then,
there are 𝐵𝑁 calls to Multiply followed by 𝐵 calls to Or (Line 5)
and 2𝐵𝑁 additional calls toMultiply (Line 7). Finally, there are 𝑁

calls to PublicOutput (Line 8). In summary,

size(Protocol 7) = 𝐵𝑁 · [PrI]+3𝐵𝑁 · [Mul]+𝐵 · [Or]𝑁 +𝑁 · [PuO] .
It implies that

preDepth(Protocol 7) = max([PrI], [Mul], [Or]𝑁 , [PuO]) .
As for the online depth, let us concentrate on one of the 𝐵 iterations.

All multiplications in Line 5 can be executed in parallel. Once they

are completed, the Or in Line 5 can be computed. Finally, all 2𝑁

multiplications in Line 7 can be also parallelized. In summary, we

conclude that

onDepth(Protocol 7) = [PrI] + 𝐵 · (2[Mul] + [Or]𝑁) + [PuO] .

Example. We conclude our discussion of Protocol 7 by exem-

plifying its operation. Assume that 𝑁 = 4 and that 𝑥1 = 11, 𝑥2 = 7,

𝑥3 = 10, and 𝑥4 = 11. In this case 𝐵 = 4 and the inputs’ bits are as

follows:

𝑏 = 3 𝑏 = 2 𝑏 = 1 𝑏 = 0

𝑛 = 1 1 0 1 1

𝑛 = 2 0 1 1 1

𝑛 = 3 1 0 1 0

𝑛 = 4 1 0 1 1

.

We begin with the MSB column, 𝑏 = 3. Here, 𝑠3 = (1 · 1) ∨ (1 · 0) ∨
(1 · 1) ∨ (1 · 1) = 1 (since 𝑥𝑛,𝑏+1 = 𝑥𝑛,𝐵 = 1 in all rows). Hence,

the update of bits in that column is 𝑥𝑛,3 ← 𝑥𝑛,3 · 𝑥𝑛,4 and, because
𝑥𝑛,4 = 1 for all 𝑛, the column 𝑏 = 3 remains unchanged.

↓
𝑏 = 3 𝑏 = 2 𝑏 = 1 𝑏 = 0

𝑛 = 1 1 0 1 1

𝑛 = 2 0 1 1 1

𝑛 = 3 1 0 1 0

𝑛 = 4 1 0 1 1

.

Next, we deal with 𝑏 = 2. Here 𝑠2 = (1 ·0)∨ (0 ·1)∨ (1 ·0)∨ (1 ·0) = 0.

Hence, the update rule is 𝑥𝑛,2 ← 𝑥𝑛,3. Therefore, when completing

this iteration we end up with the following table of bits:

𝑏 = 3

↓
𝑏 = 2 𝑏 = 1 𝑏 = 0

𝑛 = 1 1 1 1 1

𝑛 = 2 0 0 1 1

𝑛 = 3 1 1 1 0

𝑛 = 4 1 1 1 1

.

Moving to 𝑏 = 1we see that 𝑠1 = 1 and, therefore, the update rule is

𝑥𝑛,1 ← 𝑥𝑛,1 · 𝑥𝑛,2. As a result, we end up with the following table:

𝑏 = 3 𝑏 = 2

↓
𝑏 = 1 𝑏 = 0

𝑛 = 1 1 1 1 1

𝑛 = 2 0 0 0 1

𝑛 = 3 1 1 1 0

𝑛 = 4 1 1 1 1

.

Finally, we reach the LSB, 𝑏 = 0. Here too 𝑠0 = 1. Hence, after the

update 𝑥𝑛,0 ← 𝑥𝑛,0 · 𝑥𝑛,1 we get

𝑏 = 3 𝑏 = 2 𝑏 = 1

↓
𝑏 = 0

𝑛 = 1 1 1 1 1
𝑛 = 2 0 0 0 0
𝑛 = 3 1 1 1 0
𝑛 = 4 1 1 1 1

.

Indeed, the bits in the column 𝑏 = 0 identify the maximal inputs in

rows 𝑛 = 1 and 𝑛 = 4.

5.2 Reducing depth by using larger bases
The number of iterations in the main loop in Protocol 7 directly

determines its depth, since each iteration is computed by a constant-

depth sub-protocol. The number of iterations equals the number 𝐵

of bits in the representation of the inputs. Protocol 7 can bemodified

so that a larger base 2
𝑑
, 𝑑 > 1, is used. Such a modification yields

a smaller number of iterations – 𝐵/𝑑 instead of 𝐵 (for the sake of

790

The Multiple Millionaires’ Problem Proceedings on Privacy Enhancing Technologies 2024(4)

simplicity we assume that 𝑑 |𝐵). The generalization is described in

Protocol 8, which uses a constant-depth sub-protocol for computing

maxima (the same technique as used in Protocol 5).

Protocol 8: A digit-decomposition-based protocol for MMP

Parameters: 𝑁 - number of inputs in [0, 2𝐵); 𝑑 ∈ N s.t. 𝑑 |𝐵;
𝑄 := 2

𝑑
; 𝐷 := 𝐵/𝑑 is the number of base-2

𝑑

digits in each of the inputs.

Private Inputs: 𝑥1, . . . , 𝑥𝑁 ∈ [0, 2𝐵); the digit
decomposition of 𝑥𝑛 , 𝑛 ∈ [𝑁], is
(𝑥𝑛,𝐷−1, . . . , 𝑥𝑛,0), where 𝑥𝑛,ℓ ∈ [0, 𝑄),
0 ≤ ℓ ≤ 𝐷 − 1 (that is, 𝑥𝑛 =

∑𝐷−1
ℓ=0 𝑥𝑛,ℓ ·𝑄ℓ).

1 forall 𝑛 ∈ [𝑁] do
2 forall 0 ≤ ℓ ≤ 𝐷 − 1 do
3 forall 𝑖 ∈ [𝑄 − 1] do
4 [𝑦𝑛,ℓ,𝑖] ← (PrivateInput, 𝑛,𝑦𝑛,ℓ,𝑖), where

𝑦𝑛,ℓ,𝑖 = 1𝑥𝑛,ℓ ≥𝑖 .
5 Initialize [𝑟𝑛,𝐷] ← 1 for all 𝑛 ∈ [𝑁].
6 forall ℓ = 𝐷 − 1, . . . , 0 do
7 forall 𝑛 ∈ [𝑁] and 𝑖 ∈ [𝑄 − 1] do
8 [𝑦′

𝑛,ℓ,𝑖
] ← [𝑦𝑛,ℓ,𝑖] · [𝑟𝑛,ℓ+1]

9 ([𝑀ℓ,𝑄−1], . . . , [𝑀ℓ,1]) ←
MaxMonotone(𝑁,𝑄, {[𝑦′

𝑛,ℓ,𝑖
]}𝑛∈[𝑁],𝑖∈[𝑄−1]).

10 forall 𝑛 ∈ [𝑁] do
11 [1𝑀ℓ=𝑥𝑛,ℓ] =

EqualBits(𝑄, {[𝑦′
𝑛,ℓ,𝑖
]}𝑖∈[𝑄−1] , {𝑀ℓ,𝑖 }𝑖∈[𝑄−1]).

12 [𝑟𝑛,ℓ] ← [𝑟𝑛,ℓ+1] · [1𝑀ℓ=𝑥𝑛,ℓ].
13 The parties call (PublicOutput, [𝑟𝑛,0]) for all 𝑛 ∈ [𝑁].

Output :The indices 𝑛 ∈ [𝑁] for which
𝑥𝑛 = 𝑀 := max{𝑥𝑖 : 𝑖 ∈ [𝑁]}.

In Protocol 8 the parties decompose their inputs to digits in a 2
𝑑
-

base. Thus, if 𝑥𝑛 ∈ [0, 2𝐵), the number of 2
𝑑
-digits in it is 𝐷 = 𝐵/𝑑 ,

where the digit in the ℓ-th position is denoted 𝑥𝑛,ℓ , 0 ≤ ℓ < 𝐷 . Each

such digit is an integer in the range [0, 𝑄 − 1] where 𝑄 = 2
𝑑
. Then,

each digit is provided as an input to the protocol by its monotone

representation; i.e., the digit 𝑥𝑛,ℓ is represented by 𝑄 − 1 bits –

𝑦𝑛,ℓ,1, . . . , 𝑦𝑛,ℓ,𝑄−1 – such that 𝑦𝑛,ℓ,𝑖 = 1 iff 𝑥𝑛,ℓ ≥ 𝑖 . Therefore, the
representation is monotonically decreasing: 𝑦𝑛,ℓ,𝑖 ≥ 𝑦𝑛,ℓ,𝑖+1 for

every 1 ≤ 𝑖 < 𝑄 − 1. The input of all 𝑄 − 1 bits in the monotone

representation of all 𝐷 digits in all 𝑁 inputs is done in Lines 1-4.

The variables 𝑟𝑛,ℓ , 𝑛 ∈ [𝑁], ℓ = 𝐷, . . . , 0, are binary flags that

equal 1 iff the 𝑛-th input is still a candidate to be the maximal input

after scanning all inputs’ digits from the (𝐷 − 1)-th digit down to

the ℓ-th digit. Since initially, before the scan starts, all inputs are

candidates, those variables are initialized to 𝑟𝑛,𝐷 = 1 for all 𝑛 ∈ [𝑁]
(Line 5).

The main loop (Lines 6-12) scans the 𝐷 digits of all inputs, from

the most significant one (ℓ = 𝐷 − 1) to the least significant one

(ℓ = 0). First, the parties multiply the monotone bit representation

of the current bit in each of the inputs with the bit that indicates

whether that input is still a potential candidate to be the maximum

(Lines 7-8). Then, the monotone representations of the current digit

in each of the relevant inputs are used to compute the monotone

representation of the maximal digit in that position using the sub-

protocol MaxMonotone (Line 9). Then, we check the digits of all

inputs against the computed maximum (Lines 10-11) by calling the

sub-protocol EqualBits. Subsequently (Line 12), we update 𝑟𝑛,ℓ to

be 1 iff that input is still a candidate at this point (𝑟𝑛,ℓ+1 = 1) and

the current digit is maximal (𝑀ℓ = 𝑥𝑛,ℓ). At the conclusion of this

loop, the protocol outputs the bits 𝑟𝑛,0, 𝑛 ∈ [𝑁], that identify the

maximal inputs (Line 13). The proof of this protocol’s correctness

is very similar to that of Protocol 7, see Lemma 4.

We now turn to describe the sub-protocols that Protocol 8 in-

vokes. Sub-protocol 9 computes the monotone representation of

the maximum of inputs that are also given through their monotone

representation. It is called by Protocol 8 in Line 9. Sub-protocol

10, namely EqualBits(𝑄, {[𝑥𝑖]}𝑖∈[𝑄−1] , {[𝑥 ′𝑖]}𝑖∈[𝑄−1]), is given
handles to two bit-vectors and it outputs 1 iff they are equal in

every position. We rely here on the straightforward identity∧
𝑖∈[𝑄−1] (1𝑥𝑖=𝑥 ′𝑖) = 1 −

(∨
𝑖∈[𝑄−1] (𝑥𝑖 − 𝑥 ′𝑖)

2
)
. This sub-protocol

is called in Line 11 of Protocol 8.

Sub-protocol 9: MaxMonotone(𝑁,𝑄, {[𝑦𝑛,𝑖]}𝑛∈[𝑁],𝑖∈[𝑄−1])
Parameters: 𝑁 - number of inputs; 𝑄 - an upper bound on

the inputs (each input is in [0, 𝑄 − 1).
Inputs: Handles [𝑦𝑛,𝑖], 𝑛 ∈ [𝑁], 𝑖 ∈ [𝑄 − 1], such that

𝑦𝑛,𝑖 ∈ {0, 1} and 𝑦𝑛,𝑖 ≥ 𝑦𝑛,𝑖+1 for all 𝑖 ∈ [𝑄 − 2] and
𝑛 ∈ [𝑁].

1 forall 𝑖 ∈ [𝑄 − 1] do
2 [𝑀𝑖] ←

∨
𝑛∈[𝑁] [𝑦𝑛,𝑖].

Output :The handles ([𝑀𝑄−1], . . . , [𝑀1]) to the monotone

representation of

𝑀 := max𝑛∈[𝑁] {max𝑖∈[𝑄−1] {𝑦𝑛,𝑖 = 1}}.

Sub-protocol 10: EqualBits(𝑄, {[𝑥𝑖]}𝑖∈[𝑄−1] , {[𝑥 ′𝑖]}𝑖∈[𝑄−1])
Parameters: 𝑄 - determines the length of the two bit

vectors.

Inputs: Handles to two bit vectors, {[𝑥𝑖]}𝑖∈[𝑄−1] and
{[𝑥 ′

𝑖
]}𝑖∈[𝑄−1] .

1 [1𝑥=𝑥 ′] ← 1 −
(∨

𝑖∈[𝑄−1]] ([𝑥𝑖] − [𝑥 ′𝑖])
2
)
.

Output :The handle [1𝑥=𝑥 ′].

To analyze the complexity of Protocol 9 we start by analyzing

the complexity of the sub-protocols. The costs of MaxMonotone are:

size(Protocol 9) = (𝑄 − 1)[Or]𝑁 ,
preDepth(Protocol 9) = [Or]𝑁 ,

onDepth(Protocol 9) = [Or]𝑁 .

The costs of EqualBits are:

size(Protocol 10) = (𝑄 − 1)[Mul] + [Or]𝑄−1 ,
preDepth(Protocol 10) = max([Mul], [Or]𝑄−1) ,
onDepth(Protocol 10) = [Mul] + [Or]𝑄−1 .

791

Proceedings on Privacy Enhancing Technologies 2024(4) Tassa and Yanai.

Hence, Protocol 8’s costs are:

size(Protocol 8) = 𝑁𝐷 (𝑄 − 1)[PrI] + 𝑁𝐷 (𝑄 − 1)[Mul]+
𝐷 [MaxMonotone] + 𝑁𝐷

(
[EqualBits] + [Mul]

)
+ 𝑁 [PuO] =

𝑁𝐷 (𝑄 − 1)[PrI] + 𝑁𝐷 (𝑄 − 1)[Mul] + 𝐷 (𝑄 − 1)[Or]𝑁 +
𝑁𝐷

(
(𝑄 − 1)[Mul] + [Or]𝑄−1 + [Mul]

)
+ 𝑁 [PuO] =

𝑁𝐷 (𝑄 − 1)[PrI] + 𝑁𝐷 (2𝑄 − 1)[Mul] + 𝑁𝐷[Or]𝑄−1+
𝐷 (𝑄 − 1)[Or]𝑁 + 𝑁 [PuO]

preDepth(Protocol 8) =
max

(
[PrI], [Mul], [Or]𝑁 , [Or]𝑄−1, [PuO]

)
,

onDepth(Protocol 8) = [PrI]+
𝐷
(
[Mul] + [MaxMonotone] + [EqualBits] + [Mul]

)
+

[PuO] = [PrI] + 𝐷
(
3[Mul] + [Or]𝑁 + [Or]𝑄−1

)
+ [PuO] .

6 A PROTOCOL FOR MMP INSPIRED BY [1]
The study of Aggarwal et al. [1] presented a secure protocol for

finding the 𝑘-th ranked element in the union of private datasets.

It can be used to solve MaxP, and subsequently MMP, if we view the

input to those problems as 𝑁 private singleton datasets and take

𝑘 = 𝑁 . We proceed to describe such a protocol, for the sake of

comparing it with the previous protocols that were presented in

this study.

Protocol 11 computes the maximum by implementing a privacy-

preserving binary search over the interval [0, 2𝐵 − 1], where 2𝐵 − 1
is an upper bound on all inputs (Lines 1-15). The lower and upper

bounds of the search interval, denoted 𝑎 and 𝑏, are initialized in

Line 1. A binary flag 𝑓 is set to zero in Line 2; it will be set to 1

once the maximum is found. The binary search loop is given in

Lines 3-15. The contemplated value of the maximum,𝑀 , is set to

the middle of the current search interval (Line 4). Then, each of the

parties set two local flags, ℓ𝑛 and 𝑔𝑛 , that indicate whether its input

is larger or smaller than𝑀 (Lines 5-7). Subsequently, all determine

jointly whether there is at least one input larger than𝑀 (𝑢 = 1) or

not (𝑢 = 0), and whether all inputs are smaller than 𝑀 (𝑣 = 1) or

not (𝑣 = 0) (Line 8). This is done by computing the OR (AND) of the
private bits ℓ𝑛 (𝑔𝑛).

If 𝑥𝑛 ≤ 𝑀 for all 𝑛 (𝑢 = 0) and there exists at least one input

𝑥 𝑗 such that 𝑥 𝑗 ≥ 𝑀 (𝑣 = 0) then𝑀 is the sought-after maximum.

In that case 𝑓 is set to 1 so that the loop terminates (Lines 9-10).

Otherwise, if 𝑢 = 1 then there is at least one input larger than𝑀 so

that the sought maximum is at least𝑀 + 1. In that case we update

the search lower bound to that value (Line 11-12). Otherwise, if

𝑣 = 1 then all inputs are smaller than𝑀 and hence the search upper

bound is updated to𝑀 − 1 (Lines 13-14).
In the concluding stage, the protocol finds all private inputs that

equal the maximum (Lines 16-17) and outputs them.

7 CONCRETE EVALUATION
The goal of this section is to arm the reader with a methodology

of measuring and comparing the protocols presented in this paper

for a given implementation of the ABB functionality in a given

setting. To demonstrate the methodology, we pick the statistically

secure implementation of Damgård and Nielsen [11], in the setting

of semi-honest adversary, who statically corrupts a minority of the

parties (also known as the honest majority setting). In Section 7.1

we present an implementation of the ‘high-level’ interfaces based

on the implementation of the ‘low-level’ ones, as done by Damgård

Protocol 11: Solving MMP by binary search [1]

Private inputs: 𝑃𝑛 has 𝑥𝑛 ∈ [0, 2𝐵 − 1], 𝑛 ∈ [𝑁].
1 Set 𝑎 ← 0 and 𝑏 ← 2

𝐵−1

2 Set 𝑓 ← 0.

3 repeat
4 Set𝑀 ← ⌈(𝑎 + 𝑏)/2⌉
5 forall 𝑛 ∈ [𝑁] do
6 𝑃𝑛 sets ℓ𝑛 ← 1 if 𝑥𝑛 > 𝑀 and ℓ𝑛 ← 0 otherwise.

7 𝑃𝑛 sets 𝑔𝑛 ← 1 if 𝑥𝑛 < 𝑀 and 𝑔𝑛 ← 0 otherwise.

8 The parties set 𝑢 ← ∨
𝑛 ℓ𝑛 and 𝑣 ← ∧

𝑛 𝑔𝑛 .

9 if 𝑢 = 0 and 𝑣 = 0 then
10 Set 𝑓 ← 1.

11 else if 𝑢 = 1 then
12 Set 𝑎 ← 𝑀 + 1.
13 else if 𝑣 = 1 then
14 Set 𝑏 ← 𝑀 − 1.
15 until 𝑓 = 1.
16 forall 𝑛 ∈ [𝑁] do
17 The parties compute 1𝑥𝑛=𝑀 .

Output :The indices 𝑛 ∈ [𝑁] for which
𝑥𝑛 = 𝑀 := max{𝑥𝑖 : 𝑖 ∈ [𝑁]}.

and Nielsen [11]. Then we formulate the costs of all interfaces based

on the specific parameters of the Multiple Millionaires’ Problem

in Section 7.2. These parameters consist of the number of parties,

number of inputs and the bit-length of the inputs. Finally, in Section

7.3 we compare the performance of the protocol for a set of specific

parameters.

7.1 Interfaces
Here, we break down the high-level interfaces (like Equality and

OR) into their cost in terms of more primitive interfaces (like

PrivateInput and Multiply), and then derive their concrete costs,

for a specific setting that we selected. Such a detailed analysis is

necessary in order to enable a comparison between protocols and

in order to get a more precise estimate of the costs of a given pro-

tocol. However, we stress that such a breakdown analysis might be

different for different settings and, hence, it should be carried out

independently for each such setting.

The cost analysis of interfaces [PrI], [PuO], [Rnd], [Mul] is based

on the passively secure MPC protocol of Damgård and Nielsen [11];

the cost analysis of interface [Inv] is trivial and given in [30, Ap-

pendix A.2.1]; and the cost of interfaces [Com] and [Or]𝑚 is as

derived in [17] and [26], respectively.

We examine a setting where the ABB is implemented by a pro-

tocol that guarantees statistical security in the presence of a semi-

honest adversary. We choose a semi-honest adversary in order to

avoid noisy costs that are typically added to ensure input consis-

tency when the adversary is malicious. These costs might distract

us from a clean and objective comparison between the protocols.

As stated in the Introduction, we distinguish between the num-

ber of inputs, 𝑁 , and the number of MPC parties, 𝐾 . We utilize

this distinction to get more accurate measures for the size of the

792

The Multiple Millionaires’ Problem Proceedings on Privacy Enhancing Technologies 2024(4)

presented protocols, being the communication complexity per MPC

party (the number of field elements it sends/receives).

The setting that we picked allows us to use the concrete costs

of Or and Equality (see [30, Appendix A.2]). In the following we

present the final costs, after integrating the concrete costs from [30,

Appendix A.2]. Let us first provide concrete costs to some of the

interfaces in Functionality 1:

• PrivateInput: Submitting a private input boils down to a simple a

secret sharing, in which the party who acts as the dealer sends 1

field element to every other party, in 1 round. Hence,

size([PrI]) = 1 , preDepth([PrI]) = 0 , onDepth([PrI]) = 1.

• PublicOutput is implemented by opening the secret to a single

designated party, who then announces the result to all other parties.

This translates into a communication of 2 field elements per party, in

2 rounds. The number of communication rounds may be reduced, at

the expense of increasing the communication cost, in the following

manner: each party sends its share in the output to all other parties;

that entails sending 𝐾 field elements in 1 round. We use the latter

protocol as the basis to our calculations, hence

size([PuO]) = 𝐾 , preDepth([PuO]) = 0 , onDepth([PuO]) = 1.

• Random: Generating a single secret random field element and

distributing shares in it entails communicating 1 field element (per

party) in 1 round. Hence,

size([Rnd]) = 1 , preDepth([Rnd]) = 1, onDepth([Rnd]) = 0.

• (Multiply, [𝑎], [𝑏]) is implemented by the DoubleRandom tech-

nique presented in [11]. The DoubleRandom procedure outputs

two handles, [𝑟] and [𝑅], to the same random field element, where

[𝑟] is a sharing of degree 𝑡 and [𝑅] is a sharing of degree 2𝑡 , and 𝑡

is an upper bound on the number of corrupted parties. The parties

locally compute [𝐶] = [𝑎] · [𝑏], in order to get a sharing [𝐶] of the
product 𝑎 · 𝑏 which is of degree 2𝑡 . Then they perform PublicOut-
put on 𝑐 ′ = [𝐶] − [𝑅] and locally compute [𝑐] = [𝑎 · 𝑏] = 𝑐 ′ + [𝑟].
DoubleRandom requires twice more communication than Random
and the same round complexity (which is one round). Overall, the

communication cost is 2 +𝐾 field elements per party, and 2 rounds,

where the DoubleRandom’s round occurs in the preprocessing

stage, whereas the PublicOutput’s round occurs in the online phase.
Then,

size([Mul])=2+𝐾 , preDepth([Mul]) = 1 , onDepth([Mul]) = 1.

• (Inverse, [𝑎]) can be computed by invoking Random,Multiplly
and PublicOutput (see [30, Appendix A.2.1]). The costs of that

computation are as follows:

size([Inv])=3 + 2𝐾 , preDepth([Inv]) = 1, onDepth([Inv]) = 2.

• (Equality, [𝑎], 𝑏) too (like Inverse) can be computed by invoking

Random,Multiplly and PublicOutput (see [30, Appendix A.2.2]).

Hence, its costs are:

size([Eq]) = 3+2𝐾 , preDepth([Eq]) = 1, onDepth([Eq]) = 2.

• (Compare, [𝑎], [𝑏]): We use the comparison protocol of Goss and

Jiang [17]. The costs of that protocol are:

size([Com]) = 2𝐵 + 5 log𝐵 + 23 ,

preDepth([Com]) = 0 , onDepth([Com]) = 4 .

• (OR𝑚, [𝑎1], . . . , [𝑎𝑚]): Nishide and Ohta [26] designed a protocol
for computing

[∨
𝑖∈[𝑚] 𝑎𝑖

]
in constant depth. (In [30, Appendix

A.2.3] we provide a description of their solution.) The costs of their

protocol are:

size([Or]𝑚) = 2𝑚 · [Rnd] + (3𝑚 − 1) · [Mul] + 2𝑚 · [PuO] =
= 2𝑚 + (3𝑚 − 1) (2 + 𝐾) + 2𝑚𝐾 = 5𝑁𝐾 + 8𝑚 − 𝐾 − 2.

In the preprocessing stage there are calls to Random, followed

by Multiply and then PublicOutput, which are dependent on each

other. Therefore, the preprocessing depth equals the sum of the total
depths of these interfaces, which is 4, because depth(Random) =
depth(PublicOutput) = 1 and depth(Multiply) = 2. However, note

that Multiply consists of an invocation of Random on its own,

which can be executed in the first round (rather than in the sec-

ond), and that saves one round. Overall, there are 3 rounds in the

preprocessing stage:

preDepth([Or]𝑚) = [Rnd] + [Mul] + [PuO] = 3 .

As for the online depth,

onDepth([Or]𝑚) = 3 · [Mul] + [PuO] = 4.

7.2 Protocols’ costs
Now we may proceed to derive the costs of the protocols. We

do so by taking the costs (size and depth) of the protocols as we

analyzed them in Sections 3–6 and plugging in them the costs

of the interfaces that they invoke, as given in Section 7.1. The

parameters that determine those costs are: 𝑁 - number of inputs, 𝐾

- number of MPC parties, and 𝐵 - number of bits for representing

all inputs. Due to page limitation we omit the detailed computation

of those costs and refer the readers to [30, Appendix B]. In Table

1 we provide a summary of those costs (where the size is shown

only asymptotically, while the preprocessing and online depths are

shown exactly).

size preDepth onDepth
Protocol 1 𝑂 (𝑁𝐵 + 𝑁𝐾) 1 5 · ⌈log𝑁 ⌉ + 4
Protocol 4 𝑂 (𝑁 ′𝑁𝐵 + 𝑁 ′𝑁𝐾) 3 3 + 12⌈log𝑁 ′ 𝑁 ⌉
Protocol 6 (2𝐵𝑁𝐾) 3 9

Protocol 7 𝑂 (𝑁𝐵𝐾) 3 2 + 6𝐵
Protocol 8 𝑂 (𝑁𝐵𝐾2𝑑

𝑑
) 3 2 + 11𝐵/𝑑

Protocol 11 𝑂 (𝑁𝐵2 + 𝑁𝐵𝐾) 3 8𝐵 + 4
Table 1: Analysis of the size, preprocessing depth and on-
line depth of the protocols presented in this paper, according
to Definitions 2-3 (see Section 2.2), when instantiated in a
setting of honest majority, semi-honest adversary and sta-
tistical security (See Section 7 for details). The size is given
asymptotically, while the preprocessing depth and online
depth are given exatcly. The parameters are: 𝐾 is the number
of parties; 𝑁 is the number of inputs; each input is drawn
from the domain [0, 2𝐵 − 1]; 𝑁 ′ ∈ [2, 𝑁] is the degree of the
general comparison tree in Protocol 4; 𝑑 is the bit-length of
digits in Protocol 8.

793

Proceedings on Privacy Enhancing Technologies 2024(4) Tassa and Yanai.

Figure 1: The size and depth the protocols presented in this paper.

7.3 Concrete costs in specific scenarios
We present the concrete cost for two scenarios: in the first (Figure 1,

top), the inputs𝑥𝑛 are drawn from a small domain, 0 ≤ 𝑥𝑛 < 256 and

so 𝐵 = 8; and in the second (Figure 1, bottom), the inputs are drawn

from a large domain, 0 ≤ 𝑥𝑛 < 2
32
, and so 𝐵 = 32. In the figure,

the protocols are distinguished by color and line style: Protocol

1 is presented by a solid black line; Protocol 4 has three versions,

each with a different setting of 𝑁 ′, presented by green lines (solid,

dashed and dotted); Protocol 6 is presented by a solid blue line;

Protocol 7 is presented by a pink line; Protocol 8 is presented by

orange lines, where the line style (solid, dashed or dotted) identify

the setting of 𝑑 , the digit length; and Protocol 11 is presented by

a solid cyan line. The two plots in the figure present the trend

of the costs as the number of inputs, 𝑁 , grows. We evaluate the

costs for 𝑁 ∈ {28, 216, 224, 232}, and each setting is presented by a

different marker (see the legend on the left side of each of the two

plots). For other scenarios, the reader may access the notebook with

the source code that we used to calculate these costs and change

the parameters accordingly, see https://colab.research.google.com/

drive/1yjEt0lhFteSIUb06ipjxCzKSnnE5PTfA?usp=drive_link.

When latency is at premium (e.g., when a system invokes MMP
repetitively) one would prefer using a low depth protocol. The

comparison in Figure 1 suggests that when the inputs are taken

from a small domain (e.g., 𝐵 = 8) then the monotone-representation-

based protocol (Protocol 6) performs best. If, however, the inputs

are taken from larger domains (e.g., 𝐵 = 32), Protocol 6 becomes

impractical and then one should consider Protocol 8 or Protocol 4,

with a suitable choice of their parameters (𝑑 and 𝑁 ′, respectively).
On the other hand, when bandwidth is at premium, the “naïve"

binary-tree-based protocol (Protocol 1) performs better than others.

794

https://colab.research.google.com/drive/1yjEt0lhFteSIUb06ipjxCzKSnnE5PTfA?usp=drive_link
https://colab.research.google.com/drive/1yjEt0lhFteSIUb06ipjxCzKSnnE5PTfA?usp=drive_link

The Multiple Millionaires’ Problem Proceedings on Privacy Enhancing Technologies 2024(4)

8 RELATEDWORK
While many papers considered the 2-party Millionaires’ Problem,

its multi-party generalization, MMP, is introduced and studied herein
for the first time (to the best of our knowledge). We review here

some studies that addressed problems similar to MMP and MaxP.
Liu et. al. [23] considered a problem that is related to MaxP. They

assumed that all inputs in 𝐼 := {𝑥𝑛 : 𝑛 ∈ [𝑁]} are distinct non-
negative integers that are bounded by a small integer 𝑄 . They

devised a protocol that outputs the set 𝐼 completely, while perfectly

hiding the mapping between 𝐼 and the set of parties {𝑃𝑛 : 𝑛 ∈ [𝑁]}.
While such a solution reveals the output of MaxP, it reveals far more

than what is desired in MaxP and MMP. In addition, the complexity

of their protocol scales linearly with 𝑄 (which is equivalent to our

2
𝐵
), what limits significantly its scalability.

The studies [28, 29] concentrate on the sequencing problem: the

setting in that problem is as in MMP and MaxP but the required output
is a set of ranks {𝑟𝑚 : 𝑚 ∈ [𝑁]}, where 𝑟𝑚 := |{𝑛 ∈ [𝑁] : 𝑥𝑛 >

𝑥𝑚}|, 𝑚 ∈ [𝑁]. Hence, all inputs 𝑥𝑚 for which 𝑟𝑚 = 0 are the

maximum. Here, as opposed to the above mentioned study of Liu

et. al. [23], the values of the inputs remain hidden. But the output

is still far more elaborated than what is desired in MMP and MaxP.
Aggarwal et al. [1] considered a setting with two or more parties

possessing large confidential datasets and designed secure protocols

for computing the 𝑘-th ranked element of the union of the datasets.

Their protocol template Find-Ranked-Element-MultiParty can

be translated into a protocol for solving MaxP. We presented that

protocol as Protocol 11 in Section 6. The solution to MaxP as issued

by Protocol 11 can be securely converted to a solution of MMP (as
we do in Lines 12-13 in Protocol 1). In Section 6 we also analyzed

the protocol’s size and depth, and included it in our comparison in

Table 1 and in Figure 1 in Section 7.3.

David et al. [12] and Mohassel et. al. [24] solved the MMP problem
as a building block for constructing privacy-preserving machine

learning protocols. The approach taken by these works is similar to

the binary-tree-based protocol (Protocol 1) and has the same costs.

Namely, they solve MMP by reducing it to a sequence of (two party)

MPs. In [12], they also mentioned a ‘flattened tree’ approach, in

which the tree’s height is 1. This means that each leaf is compared

to every other leaf at the same round. This approach is captured by

our general-tree-based protocol (Protocol 4) by setting 𝑁 ′ = 𝑁 .

Recall that our bit-decomposition and digit-decomposition based

protocols (Protocols 7 and 8, respectively) have depth linear in the

number of digits, 𝐷 (1 ≤ 𝐷 ≤ 𝐵). On the other hand, protocols that

solve the original (two-party) Millionaires’ problem have depth that

is only logarithmic in 𝐷 , see [9, 14, 27]. These protocols use the
following recurrence relation: to compare two numbers 𝑥 and 𝑦 of

𝐵 bits each, we can split them to the four integers [𝑥high, 𝑥low] and
[𝑦high, 𝑦low], where 𝑥high (resp. 𝑦high) is of 𝐵high bits, 𝑥low (resp.

𝑦low) is of 𝐵low := 𝐵 − 𝐵high bits, and 𝑥 = 𝑥high · 2𝐵low + 𝑥low
(resp. 𝑦 = 𝑦high · 2𝐵low +𝑦low). This splitting enables computing the

comparison bit 1𝑥<𝑦 through the equation

1𝑥<𝑦 = 1𝑥high<𝑦high ∨
(
1𝑥high=𝑦high ∧ 1𝑥low<𝑦low

)
, (1)

which leads to a binary tree of comparisons of depth log𝐷 . Let

us try to extend the above recurrence relation to MMP, and let us

consider the case 𝑁 = 3. Letting 𝑥,𝑦, 𝑧 be the three private inputs,

each consisting of 𝐵 bits, and each is split into lower and higher

parts, as described above, then the natural extension of Eq. (1) would

be as follows:

1𝑥=max(𝑥,𝑦,𝑧) = 1𝑥high=max(𝑥high,𝑦high,𝑧high)
∨
(
1𝑥high=𝑦high=𝑧high ∧ 1𝑥low=max(𝑥low,𝑦low,𝑧low)

)
.

However, it is incorrect. For instance, if 𝑥high = 𝑦high > 𝑧high and

𝑦low > 𝑥low, then a protocol based on that relation would output

both 𝑥 and 𝑦 as the maximal values, whereas the correct output is

only 𝑦. Therefore, it is not clear whether the two-party recurrence

relation can be extended to the multi-party setting.

9 CONCLUSION
We studied here two fundamental MPC problems — MMP and MaxP.
Those problems are natural extensions of Yao’s classical Million-

aires’ Problem [31]. As applications of privacy-preserving com-

putation are more and more commonly implemented in industrial

systems, MMP and MaxP become important building blocks in privacy-

preserving statistics, machine learning, auctions and other domains.

While some prior studies considered problems related to MMP
[1, 23, 28, 29], and others did solve MMP by reducing it to a se-

quence of MPs [12, 24], it appears that ours is the first study that

introduces this fundamental MPC problem and offers dedicated

solutions, of different approaches, and compares between them in

order to illustrate the tradeoff between the size and the depth of

the corresponding protocols.

A prominent advantage of our novel protocols is their simplicity.

As they solve fundamental problems that are essential building

blocks in important applications, our study of solutions to those

basic problems, and the comparison between them, will serve well

future researchers of MPC and practitioners of secure distributed

computing.

10 ACKNOWLEDGEMENTS
This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

795

Proceedings on Privacy Enhancing Technologies 2024(4) Tassa and Yanai.

REFERENCES
[1] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. 2010. Secure Computation

of the Median (and Other Elements of Specified Ranks). J. Cryptol. 23 (2010),

373–401.

[2] Ramiro Alvarez and Mehrdad Nojoumian. 2020. Comprehensive survey on

privacy-preserving protocols for sealed-bid auctions. Comput. Secur. 88 (2020).
https://doi.org/10.1016/j.cose.2019.03.023

[3] Ian F. Blake and Vladimir Kolesnikov. 2004. Strong Conditional Oblivious Transfer

and Computing on Intervals. In ASIACRYPT. 515–529.
[4] Marina Blanton and Paolo Gasti. 2011. Secure and Efficient Protocols for Iris and

Fingerprint Identification. In ESORICS. 190–209.
[5] Paul Bunn and Rafail Ostrovsky. 2007. Secure Two-Party k-Means Clustering.

IACR Cryptol. ePrint Arch. (2007), 231. http://eprint.iacr.org/2007/231

[6] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Proto-

cols. J. Cryptol. 13, 1 (2000), 143–202. https://doi.org/10.1007/s001459910006

[7] Yao-Jen Chang, Chia-Wei Tsai, and Tzonelih Hwang. 2013. Multi-user private

comparison protocol using GHZ class states. Quantum Inf. Process. 12 (2013),
1077–1088.

[8] Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya P. Razenshteyn,

and M. Sadegh Riazi. 2020. SANNS: Scaling Up Secure Approximate k-Nearest

Neighbors Search. In USENIX. 2111–2128.
[9] Geoffroy Couteau. 2018. New Protocols for Secure Equality Test and Comparison.

In ACNS. 303–320.
[10] Ivan Damgård and Jesper Buus Nielsen. 2003. Universally Composable Efficient

Multiparty Computation from Threshold Homomorphic Encryption. In CRYPTO.
247–264.

[11] Ivan Damgård and Jesper Buus Nielsen. 2007. Scalable and Unconditionally

Secure Multiparty Computation. In CRYPTO. 572–590.
[12] Bernardo Machado David, Rafael Dowsley, Raj S. Katti, and Anderson C. A.

Nascimento. 2015. Efficient Unconditionally Secure Comparison and Privacy

Preserving Machine Learning Classification Protocols. In ProvSec. 354–367.
[13] Marc Fischlin. 2001. A Cost-Effective Pay-Per-Multiplication ComparisonMethod

for Millionaires. In Topics in Cryptology - CT-RSA. 457–472.
[14] Juan A. Garay, Berry Schoenmakers, and José Villegas. 2007. Practical and Secure

Solutions for Integer Comparison. In PKC. 330–342.
[15] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer.

2014. Circuits resilient to additive attacks with applications to secure computation.

In STOC 2014, David B. Shmoys (Ed.). ACM, 495–504.

[16] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority. In STOC.
218–229.

[17] Ken Goss andWei Jiang. 2018. Efficient and Constant-Rounds Secure Comparison

through Dynamic Groups and Asymmetric Computations. IACR Cryptol. ePrint
Arch. (2018), 179. http://eprint.iacr.org/2018/179

[18] Dima Grigoriev, Laszlo B. Kish, and Vladimir Shpilrain. 2017. Yao’s Millionaires’

Problem and Public-Key Encryption Without Computational Assumptions. Int. J.
Found. Comput. Sci. 28 (2017), 379–390.

[19] Yan Huang, Lior Malka, David Evans, and Jonathan Katz. 2011. Efficient Privacy-

Preserving Biometric Identification. In NDSS.
[20] Ioannis Ioannidis and Ananth Grama. 2003. An Efficient Protocol for Yao’s

Millionaires’ Problem. In Hawaii International Conference on System Sciences
(HICSS). 205.

[21] Kimmo Järvinen, Helena Leppäkoski, Elena Simona Lohan, Philipp Richter,

Thomas Schneider, Oleksandr Tkachenko, and Zheng Yang. 2019. PILOT: Prac-

tical Privacy-Preserving Indoor Localization Using OuTsourcing. In European
Symposium on Security and Privacy, EuroS&P. 448–463.

[22] Hsiao-Ying Lin and Wen-Guey Tzeng. 2005. An Efficient Solution to the Million-

aires’ Problem Based on Homomorphic Encryption. In ACNS. 456–466.
[23] Xin Liu, Shundong Li, Xiubo Chen, Gang Xu, Xiaolin Zhang, and Yong Zhou.

2017. Efficient Solutions to Two-Party and Multiparty Millionaires’ Problem.

Secur. Commun. Networks 2017 (2017), 5207386:1–5207386:11. https://doi.org/10.

1155/2017/5207386

[24] PaymanMohassel, Mike Rosulek, and Ni Trieu. 2020. Practical Privacy-Preserving

K-means Clustering. Proc. Priv. Enhancing Technol. 2020 (2020), 414–433.
[25] Moni Naor, Benny Pinkas, and Reuban Sumner. 1999. Privacy preserving auctions

and mechanism design. In EC-99. 129–139.
[26] Takashi Nishide and Kazuo Ohta. 2007. Multiparty Computation for Interval,

Equality, and ComparisonWithout Bit-Decomposition Protocol. In PKC. 343–360.
[27] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya

Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-Party

Secure Inference. In CCS. 325–342.
[28] Yi Sun, Qiaoyan Wen, Yudong Zhang, Hua Zhang, and Zhengping Jin. 2013.

Efficient Secure Multiparty Computation Protocol for Sequencing Problem over

Insecure Channel. Artificial Intelligence and Its Applications (2013). Article ID
172718.

[29] ChunMing Tang, GuiHua Shi, and ZhengAn Yao. 2011. Secure multi-party

computation protocol for sequencing problem. Sci. China Inf. Sci. 54 (2011),

1654–1662.

[30] Tamir Tassa and Avishay Yanai. 2024. The Multiple Millionaires’ Problem. IACR
Cryptol. ePrint Arch. (2024), 5. https://eprint.iacr.org/2024/005

[31] Andrew C. Yao. 1982. Protocols for secure computation. In FOCS. 160–164.

796

https://doi.org/10.1016/j.cose.2019.03.023
http://eprint.iacr.org/2007/231
https://doi.org/10.1007/s001459910006
http://eprint.iacr.org/2018/179
https://doi.org/10.1155/2017/5207386
https://doi.org/10.1155/2017/5207386
https://eprint.iacr.org/2024/005

	Abstract
	1 Introduction
	1.1 Our contributions and outline

	2 Preliminaries
	2.1 The Arithmetic Black-Box (ABB)
	2.2 Measures of protocols' complexity

	3 Tree-based protocols
	3.1 A binary tree-based protocol
	3.2 A protocol based on higher degree trees

	4 Constant-depth protocols for small domains
	4.1 A protocol for solving MaxP
	4.2 A protocol for solving MMP

	5 Protocols based on the inputs' digit decomposition
	5.1 Binary representation of inputs
	5.2 Reducing depth by using larger bases

	6 A protocol for MMP inspired by AggarwalMP10
	7 Concrete evaluation
	7.1 Interfaces
	7.2 Protocols' costs
	7.3 Concrete costs in specific scenarios

	8 Related work
	9 Conclusion
	10 Acknowledgements
	References

