
Lightweight Two-Party Secure Sampling Protocol
for Differential Privacy

Masanobu Kii

NTT Social Information Laboratories

Tokyo, Japan

masanobu.kii@ntt.com

Atsunori Ichikawa

NTT Social Information Laboratories

Tokyo, Japan

Takayuki Miura

NTT Social Information Laboratories

Tokyo, Japan

Abstract
Secure sampling is a secure multiparty computation protocol that

allows a receiver to sample random numbers from a specified

non-uniform distribution. It is a fundamental tool for

privacy-preserving analysis since adding controlled noise is the

most basic and frequently used method to achieve differential

privacy. The well-known approaches to constructing a two-party

secure sampling protocol are transforming uniform random values

into non-uniform ones by computations (e.g., logarithm or binary

circuits) or table-lookup. However, they require a large

computational or communication cost to achieve a strong

differential privacy guarantee. This work addresses this problem

with our novel lightweight two-party secure sampling protocol.

Our protocol consists of random table-lookup from a small table

with the 1-out of-𝑛 oblivious transfer and only additions.

Furthermore, we provide algorithms for making a table to achieve

differential privacy. Our method can reduce the communication

cost for (1.0, 2−40)-differential privacy from 183GB (naïve

construction) to 7.4MB.

Keywords
multiparty computation, differential privacy, random number

generation, secure sampling, private sampling

1 Introduction
Data collaboration is one of the major goals of privacy-preserving

technologies. In typical data collaboration, all participants

contribute their data, gather it, analyze it, and all receive the

results.

In this setting, there are two types of privacy risks for any

individual providing information to participants in the data

collaboration: leakage during the collaboration, i.e., one may

observe another’s data directly, and leakage after the collaboration,

i.e., one may infer another’s data from the analysis result. There

are two known techniques for solving this problem: secure

multiparty computation (SMPC) and differential privacy (DP).

SMPC enables joint data analysis while protecting individual

privacy, and DP can prevent inferring inputs from the outputs.

The additive mechanism is a fundamental and effective tool to

achieve DP. It adds a noise that follows a non-uniform distribution

This work is licensed under the Creative Commons

Attribution 4.0 International License. To view a copy of this

license visit https://creativecommons.org/licenses/by/4.0/ or

send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(1), 23–36
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0003

to an exact analysis result. This approach has been well-studied and

well-used in the literature. Thanks to its results, we can achieve DP

with small noise in many cases.

When we use the additive mechanism, everybody is prohibited

from learning both the noisy value and any information (even very

limited information) about the added noise. This is because the

original value would be inferred from them acutely more than

expected. If this were to happen, the intended privacy guarantee

would not be achieved. In our setting, the noisy output is shared

with every participant of the SMPC protocol. Therefore, we must

sample noise without disclosing any information about the noise

to anyone. Secure sampling (private sampling) is an SMPC protocol

to realize this.

Prior Works. There are three approaches in prior works of

SMPC protocols realizing the additive mechanism, but each has its

shortcomings. The as-in-plaintext approach (or

computation-centric approach) basically emulates the noise

generation algorithm used in plaintext computation. In general,

this approach does heavy computations in SMPC. On the other

hand, the random table-lookup approach skips the computations

by table-lookup. However, it communicates a huge table, even for

mild privacy assurance. In a distributed sampling approach, SMPC

participants sample the noise in plaintext, and sum it in SMPC.

Since each participant knows a part of the generated noise, it

requires much larger noise than the minimum. In summary, the

prior methods incur a heavy computation cost, a heavy

communication cost, or a larger error value.

Our Aim. This paper aims to provide a secure sampling method

with a small computational cost, communication cost, and noise

magnitude (𝐿1
error). Moreover, we aim to prove that our method

can achieveDP guarantees at an arbitrary level (privacy parameters).

We focus on achieving rigorous DP of integer-valued (or valued in

finite-precision) queries because high-precision calculations under

SMPC are neither possible nor required at present.

Our Approach. To this end, we extend the random table-lookup

approach. Our approach picks out some numbers from a table

randomly and transforms them into a noise following a given

distribution with a little computation. The original random

table-lookup method only requires a small amount of computation

and amortized communication. The huge communication cost

could be reduced with just a little computation.

Our Contribution. In this paper, we provide a lightweight two-

party secure sampling protocol. Its computation in the online phase

consists of some random table-lookup with a small table and a

few additions. To achieve (1.0, 2−40)-DP, our method only needs

23

https://orcid.org/0000-0003-1323-0983
https://orcid.org/0000-0003-1323-0983
https://orcid.org/0000-0003-1323-0983
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0003

Proceedings on Privacy Enhancing Technologies 2025(1) Kii et al.

Figure 1: The as-in-plaintext approach (a) transforms some uniform random numbers with arithmetic or binary circuits,
and the random table-lookup approach (b) transforms a single uniform random number by table-lookup. Our approach (c)
transforms some uniform random numbers by table-lookup and then transforms them to a single noise by a small circuit.

the communication cost of just 7.4 MB, while a naïve construction

(Section 5.2) needs a communication cost of 183 GB. Furthermore,

we prove that our method can give DP of an arbitrary level with

a “sufficiently large" table and verify that the tables are small in

experiments. Our method does not require transcendental functions

to provide DP. However, the 𝐿1
error of the noise sampled by our

method is larger than those of existing methods, especially the

distributed sampling method. We believe that the reason for this is

the requirement to use the small table in our method. This paper

does not look for the optimal distribution (table) for the proposed

method, so whether this requirement is an intrinsic limitation of

the proposed method is not known. Our proposed approach has

the potential for further development, and we believe that the 𝐿1

error can be reduced in future works.

Structure of This Paper. After reviewing some common notations

and concepts in Section 3, we formalize and see details of our

problem in Section 4. In Section 5, we provide algorithms to generate

tables for naïve sampling method with random table-lookup only.

These algorithms tell us details of problems in the random table-

lookup method and help us understand our proposed method. After

that, we propose solutions in Sections 6 and 7. We propose two

algorithms to generate tables for our approach in Section 6, and

a two-party protocol for secure sampling in Section 7. To show

how our method works in practice, we provide an experimentally

compare it with several methods in Section 8. We conclude our

problem and solutions in Section 9.

2 Related Works
This section reviews prior works related to this study. There are

three approaches in prior works of SMPC protocols realizing

additive mechanisms.

As-in-plaintext approach. Since the pioneer paper [10], the

majority of prior studies on secure sampling [7, 10, 12, 13, 19, 30]

is based on the standard sampling method in plaintext. This

as-in-plaintext approach transforms uniform random numbers

with transcendental functions (e.g., the exponential or logarithm

functions) or binary circuits in SMPC. It can sample noise of

minimum error (this implies the maximum utility). However, its

computation cost is generally very heavy. Among prior studies,

methods on DP for real-valued queries [12, 30] must approximate

the transcendental function. Moreover, previous studies have not

analyzed the effect of this approximation on the DP guarantee.

Some studies on DP of integers and finite-precision numbers

[13, 19] address this issue. In contrast, this paper provides a

two-party SMPC protocol to achieve DP of integer-valued queries.

We refer to a protocol in Keller et al. [19] as the current state-of-

the-art in this approach. This protocol computes a binary circuit to

generate noise following the discrete Laplace distribution in Yao’s

garbled circuit scheme. The circuit has 1.86×10
7
(18.7 million) AND

gates. According to their experimental results, their method takes

993milliseconds and 429MBof communication per noise generation.

In our experiments, we compared ourmethodwith theirs, and found

24

Lightweight Two-Party Secure Sampling Protocol
for Differential Privacy Proceedings on Privacy Enhancing Technologies 2025(1)

that our method reduces computation costs by combining random

table-lookup with a few arithmetic computations.

Distributed sampling approach. Another line of work in secure

sampling [1, 8, 9, 17, 27, 28] employs the distributed sampling

approach. In this approach, SMPC participants sample random

noises in plaintext and sum them in SMPC. This approach gives an

information-theoretic DP guarantee, while another gives a

computational DP guarantee. However, the resulting error is much

larger than the minimum. Since they know the noise generated by

itself, the individual noise sampled by each participant must be

large enough to achieve DP. For example, Shi et al. [27] provide an

aggregation protocol whose output is the sum of the exact

aggregate and the two Laplace noises. Our approach also applies

i.i.d. noises for a single value, but since the individual noises are

hidden, our approach can achieve a smaller error than the methods

of the distributed sampling approach.

Random table-lookup approach. Froelicher et al. [14] and

subsequent researchers skipped complex calculations with

table-lookup. They sample a noise by looking up an encrypted

table with a uniformly random index. This approach is simple and

easy to implement. However, it requires huge communication cost.

In fact, their method requires sending the whole encrypted table

for each sample, and Froelicher et al. [14] proved that the number

of elements in a table for (𝜀, 𝛿)-DP is 1/𝛿 . It is usually 10
5
to 10

10
.

The communication amount of our method is twice that of a

plaintext table, and our method makes the table very small.

3 Preliminary
We introduce definitions of DP and integer-value random variables.

First, we define (𝜀, 𝛿)-DP with hockey–stick divergence. This

definition gives the explicit way to compute 𝛿 . After that, we

introduce the concept of probability generating function to deal

with the sum of random variables and some discrete probability

distributions and their 𝑁 -divisibility.

3.1 Differential Privacy
For a discrete probability distribution 𝐷 in Z, we denote the

probability mass functions (PMFs) of 𝐷 by 𝑃𝐷 (𝑘) (𝑘 ∈ Z). We also

denote the PMF of a random variable 𝑋 by 𝑃𝑋 (𝑘).

Definition 3.1 (Hockey–Stick divergence between

Integer-Valued Random Variables). Let 𝑋,𝑌 be two
integer-valued random variables. The Hockey–Stick divergence
between 𝑋 and 𝑌 with parameter 𝑒𝜀 is defined as

𝐷𝑒𝜀 (𝑋 ∥𝑌) :=
∑︁
𝑘∈Z

max {0, 𝑃𝑋 (𝑘) − 𝑒𝜀𝑃𝑌 (𝑘)} .

Note that it can be seen as 𝑓 -divergence for 𝑓 (𝑡) = max{0, 𝑡−𝑒𝜀 }.
If two datasets differ by only a single element, we call them

neighboring datasets and denote 𝑋 ∼ 𝑋 ′.

Definition 3.2 (Differential Privacy (DP) of

Integer-Valued Mechanism [2, 3, 11, 23]). Consider a
randomized function M : D → Z. Let 𝜀 (≥ 0), 𝛿 (∈ [0, 1)) be
non-negative real values and 𝑛 be a positive integer. We say thatM

Figure 2: An illustration of the Hockey–Stick divergence
𝐷𝛾 (𝑃 ∥𝑄) (cf. [23]). The privacy parameter 𝛿 is calculated via
the maximum value of the Hockey–Stick divergence.

achieves (𝜀, 𝛿)-differential privacy (DP) if
¯𝛿M (𝜀) := sup

𝑋,𝑋 ′
𝐷𝑒𝜀 (M(𝑋)∥M(𝑋 ′)) ≤ 𝛿. (1)

Here, sup𝑋,𝑋 ′ is a supremum over all pairs of neighboring datasets
𝑋,𝑋 ′ ∈ D𝑛 .

This function 𝛿M is called “privacy profile" in several studies

(e.g., [2]). The parameters 𝜀, 𝛿 are called privacy budgets or privacy

loss parameters. The smaller the values of the privacy budgets,

the better the privacy guarantee for each individual. For a better

privacy guarantee, one of the parameters 𝛿 must be a value close

to zero, e.g. 10
−5

to 10
−10

.

Rigorously, we should consider computational DP [4, 22, 24],

an analog of DP for computationally bounded adversaries. This is

because our protocol is not information-theoretically secure but is

computationally secure. Since any computationally secure SMPC

protocol realizing DP mechanism achieves computational DP, we

will not deal with it in detail.

The following theorem gives a concrete way to achieve

differential privacy. At the same time, it gives conditions that must

be satisfied by the noise distribution used. Most of the theory in

this paper is devoted to analyzing sufficient conditions for these

conditions.

Theorem 3.3. Let𝑞 : D→ Z be an integer-valued query (function)
on a database 𝑋 , and let 𝐷 be a discrete probability distribution. We
refer to Δ := max𝑋∼𝑋 ′ |𝑞(𝑋) − 𝑞(𝑋 ′) | as (𝐿1-)sensitivity of the query
𝑞.

A randomized function

M(𝑋) = 𝑞(𝑋) + 𝑍, 𝑍 ∼ 𝐷

gives (𝜀, 𝛿)-DP if the distribution 𝐷 satisfies
¯𝛿𝐷 (𝜀) := max

𝑠∈[−Δ,Δ]
𝐷𝑒𝜀 (𝑍 + 𝑠 ∥𝑍 ′) ≤ 𝛿, (2)

where i.i.d. random variables 𝑍, 𝑍 ′ ∼ 𝐷 .

Proof. It follows from Lemma 5 of [29], or Lemma 2.2 in [23].

□
25

Proceedings on Privacy Enhancing Technologies 2025(1) Kii et al.

Note that

¯𝛿𝐷 (𝜀) = max

𝑠∈[−Δ,Δ]

∑︁
𝑘∈Z

max {0, 𝑃𝐷 (𝑘 − 𝑠) − 𝑒𝜀𝑃𝐷 (𝑘)} .

If the PMF 𝑃𝐷 is unimodal (i.e., it has only one local maximum), the

sum on the right-hand side is maximal when 𝑠 = Δ.
We mainly consider probability distributions 𝐷 , whose support

set is bounded. In this case, the set 𝐴 = {𝑘 | 𝑃𝐷 (𝑘) = Pr[𝑍 = 𝑘] >
0∧Pr[𝑍 +Δ = 𝑘] = 0} is not empty, and one can see a lower bound

¯𝛿𝐷 (∞) := lim

𝜀→∞
¯𝛿𝐷 (𝜀) =

∑︁
𝑘∈𝐴

𝑃𝐷 (𝑘) ≤ ¯𝛿𝐷 (𝜀) (3)

for any 𝜀.

3.2 Probability Generating Function
In this paper, wewill treat functions of independent discrete random

variables. The concept of probability generating function (PGF) is a

convenient tool for dealing with such functions.

Definition 3.4. For a discrete random variable 𝑋 taking values
in Z and its PMF 𝑃𝑋 (𝑘) = Pr[𝑋 = 𝑘], the probability generating
function (PGF) of 𝑋 is

𝐺𝑋 (𝑡) =
∑︁
𝑘∈Z

𝑃𝑋 (𝑘)𝑡𝑘 .

We treat PGF as a formal power series i.e., we do not consider

its convergence.

The usefulness of PGF lies in the following fact.

Fact 3.5. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be discrete integer-valued random
variables, and 𝑎1, 𝑎2, . . . , 𝑎𝑛 be integer constants. Then the PGF of a
random variable 𝑆 :=

∑𝑛
𝑖=1

𝑎𝑖𝑋𝑖 is

𝐺𝑆 (𝑡) =𝐺𝑋1
(𝑡𝑎1)𝐺𝑋2

(𝑡𝑎2) · · ·𝐺𝑋𝑛 (𝑡𝑎𝑛) .

By the definition of PGF, one can obtain the PMF of 𝑆 as the coefficients
of 𝐺𝑆 (𝑡).

For a probability distribution 𝐷 and a natural number 𝑁 , we

denote by𝐷∗𝑁 the probability distribution of the sum

∑𝑁
𝑖=1

𝑋𝑖 (𝑋𝑖 ∼
𝐷), and we call 𝐷∗𝑁 the 𝑁 -th autoconvolution of 𝐷 . The PGF of

𝐷∗𝑁 is (𝐺𝑋1
(𝑡))𝑁 , and we obtain the PMF of 𝐷∗𝑁 by the above

fact. We also define 𝑁 -th autoconvolution for an integer sequence

𝑥 = {𝑥𝑖 }𝑖∈Z or an array (an ordered list) 𝐴 = [𝑎0, 𝑎1, . . . , 𝑎𝐿] in
similar way, and denote by 𝑥∗𝑁 .

Conversely, for a given 𝐸, we say that 𝐸 is 𝑁 -divisible if there

exists 𝐷 such that 𝐸 = 𝐷∗𝑁 . At this time, 𝐷 is called a component

of 𝐸.

3.3 Probability Distributions and its
Decomposition

In this section, we define several well-known discrete probability

distributions and describe their important properties.

Definition 3.6. The probability mass functions (PMFs) of discrete
Laplace distribution DLap(𝑝), geometric distribution Geom(𝑝), and
negative binomial distribution NB(𝛼, 𝑝) are given by the following.

Discrete Laplace distribution
𝑃DLap(𝑝) (𝑘) = 1−𝑝

1+𝑝 𝑝
|𝑘 | where 𝑝 ∈ (0, 1] and 𝑘 ∈ Z.

Geometric distribution
𝑃Geom(𝑝) (𝑘) = 𝑝𝑘 (1 − 𝑝) where 𝑝 ∈ (0, 1] and 𝑘 ∈ Z≥0

1.
Negative binomial distribution

𝑃NB(𝛼,𝑝) (𝑘) =
(𝛼+𝑘−1

𝑘

)
𝑝𝑘 (1 − 𝑝)𝛼 where 𝛼 ∈ R≥0, 𝑝 ∈ [0, 1] and

𝑘 ∈ Z≥0

2.

The discrete Laplace distribution is a discrete analog of the

Laplace distribution. Some prior works ([16], for example) refer to

it as the “two-sided geometric distribution".

If 𝑝 = 𝑒−𝜀/Δ, then DLap(𝑝) satisfies the conditions of Theorem
3.3. Specifically, the mechanism to add noise following DLap(𝑝)
to the query result satisfies (𝜀, 0)-DP [10, 16]. Additionally, this

mechanism achieves the minimum 𝐿1
error E[|𝑍 |] and (𝜀, 0)-DP if

the sensitivity Δ = 1 ([15], Section VI-C).

The following theorem states that discrete Laplace and geometric

distributions are 𝑁 -divisible.

Theorem 3.7 ([18]). Let 𝑌1, 𝑌2 be i.i.d. random variables following
the geometric distribution Geom(𝑝). Then, random variables 𝑌1 − 𝑌2

follow the discrete Laplace distribution DLap(𝑝).
Also, let 𝑁 be a positive integer and 𝑊𝑖 (𝑖 = 1, . . . , 𝑁) be i.i.d.

random variables following negative binomial distribution
NB(1/𝑁, 𝑝). Then,

∑𝑁
𝑖=1

𝑊𝑖 follow the geometric distribution
Geom(𝑝).

Hence, the discrete Laplace distribution is decomposable into the
geometric distribution Geom(𝑝) or the negative binomial distribution
NB(1/𝑁, 𝑝).

This theorem implies the following equations of PGFs holds.

𝐺DLap(𝑝) (𝑡)
=𝐺Geom(𝑝) (𝑡)𝐺Geom(𝑝) (𝑡−1)

=
(
𝐺NB(1/𝑁,𝑝) (𝑡)𝐺NB(1/𝑁,𝑝) (𝑡−1)

)𝑁
.

We can obtain the decomposition of DLap(𝑝) through expanding
the left-hand side of(

𝐺DLap(𝑝) (𝑡)
)

1/𝑁
=𝐺NB(1/𝑁,𝑝) (𝑡)𝐺NB(1/𝑁,𝑝) (𝑡−1).

The consequence is

𝑃DDLap(𝑁,𝑝) (𝑘) :=

(1 − 𝑝)2/𝑁𝑝𝑘
∑︁
𝑖− 𝑗=𝑘
𝑖,𝑗≥0

(
1/𝑁 + 𝑖 − 1

𝑖

) (
1/𝑁 + 𝑗 − 1

𝑗

)
𝑝2𝑖 . (4)

We define a distribution DDLap(𝑁, 𝑝) by this PMF. Note that this

is a special case of the skewed generalized discrete Laplace

distribution [26].

4 Problem Description
Our approach is secure sampling by emulating a procedure in Figure

4 in two-party SMPC.

Alice and Bob can not learn the query result 𝑥 nor the internally

used noise 𝑧.

Our first problem is to find suitable parameters of the

F 𝑞,𝑇0,...,𝑇𝑁 −1
,𝜙

DAM
that fulfill the following demands:

1
The standard definition of 𝑃

Geom(𝑝) (𝑘) is (1 − 𝑝)𝑘𝑝 , but the notation is changed to

fit the discrete Laplace distribution. See Theorem 3.7.

2
The same as the footnote in definition of Geom(𝑝) .

26

Lightweight Two-Party Secure Sampling Protocol
for Differential Privacy Proceedings on Privacy Enhancing Technologies 2025(1)

−15 −10 −5 0 5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6
DLap(p)
DDLap(N, p)

Figure 3: The PMF of the discrete Laplace distribution
DLap(𝑝) and the decomposed discrete Laplace distribution
DDLap(𝑁, 𝑝). In this example, we set parameters 𝑝 = 1/𝑒 and
𝑁 = 2.

Parameters: Let 𝑞 : D × D→ Y be a query function on two

databases, 𝑇0, . . . ,𝑇𝑁−1 be tables (arrays), and 𝜙 : Z𝑁 → Z be

an arithmetic function.

Functionality:
1. Receive values 𝐴 from Alice.

2. Receive values 𝐵 from Bob.

3. Evaluate the query 𝑞 and 𝑥 ← 𝑞(𝐴, 𝐵)
4. Draw elements 𝑧0, . . . , 𝑧𝑁−1 uniform-randomly and

independently from 𝑇0, . . . ,𝑇𝑁−1 respectively.

5. Compute 𝑧 ← 𝜙 (𝑧0, . . . , 𝑧𝑁−1) and 𝑦 ← 𝑥 + 𝑧.
6. Output 𝑦 to both Alice and Bob.

Figure 4: Ideal functionality F 𝑞,𝑇0,...,𝑇𝑁 −1
,𝜙

DAM
of distributing

additive mechanism

(G1) the randomized function (𝐴, 𝐵) ↦→ 𝑦 = 𝑞(𝐴, 𝐵) + 𝑧 achieves
DP in view of both Alice and Bob,

(G2) the total size of tables𝑇0, . . . ,𝑇𝑁−1 is small (this implies small

communication cost),

(G3) the arithmetic function 𝜙 is easy to compute (this implies a

small computation cost), and

(G4) the 𝐿1
error of the output E[|𝑍 |] is acceptably small

Note that the condition (G1) is equivalent to the distribution of the

noise 𝑧 satisfying the condition of Theorem 3.3.

Our second problem is to construct a two-party SMPC protocol

that emulates the ideal functionality F 𝑞,𝑇0,...,𝑇𝑁 −1
,𝜙

DAM
. The main

ingredient in this problem is hiding which elements in the table

are picked from Alice and Bob.

We will describe the distributions that can be sampled with

random table-lookup (the step 4. in Figure 4). We define a counting

function𝐶 (𝑘) for𝑇 as the number of integers𝑘 ∈ Z contained in the

table 𝑇 . In other words, we define by 𝐶 (𝑘) := #{𝑖 | 𝑇 [𝑖] = 𝑘}. Then
the PMF of the sampled integer is written by 𝑓𝐶 (𝑘) = 𝐶 (𝑘)∑

𝑛∈Z𝐶 (𝑛) .

Note that the denominator is the total number of elements in the

table. Furthermore, the support set of the 𝑓𝐶 (𝑘) is a finite subset of
the integers Z since the table is finite. Therefore, if a probability

distribution 𝐷 is realizable by random table-lookup, then its PMF

𝑃𝐷 satisfies the following conditions:

(R1) the PMF is proportional to a function 𝐶 (𝑘) that takes on non-

negative integer values, and

(R2) it has finite support, i.e., there exists an integer𝑤 and 𝑃𝐷 (𝑘) =
0 if |𝑘 | > 𝑤 .

The converse is also true. Therefore, instead of PMFs, we may

primarily consider functions 𝐶 (𝑘), which have a finite support set

and take non-negative integer values.

After sampling noises by random table-lookup independently,

our approach transforms them into a noise with an arithmetic

function 𝜙 (𝑇1,𝑇2, ...,𝑇𝑁) (the line 5. in Figure 4). If 𝜙 is a linear

sum, the above condition holds since PGF of random variable∑
𝑎𝑖𝑇𝑖 is a product of PGFs (cf. Section 3.2). The converse does not

hold in general. That is, for any distribution 𝐷 satisfying the

conditions and any linear sum 𝜙 , there does not necessarily exist a

decomposition 𝑇1, . . . ,𝑇𝑁 such that 𝜙 (𝑇1, . . . ,𝑇𝑁) follows a

distribution 𝐷 . A counterexample is the uniform distribution and

the sum 𝜙 (𝑇1, . . . ,𝑇𝑁) =
∑𝑁

𝑖=1
𝑇𝑖

3
. Therefore, we should fix 𝜙 first

and then look for a suitable PMF.

5 Naïve Algorithms for Random Table-Lookup
Approach

In this section, we look at a simple random table-lookup method

to understand our first problem. In other words, we consider the

case when the function 𝜙 in Figure 4 is the identity 𝜙 (𝑒) = 𝑒 . The

algorithms in this section are not practical because they generate

large tables. On the other hand, they can be seen as an archetype

of our proposed method and will help the reader to understand it.

5.1 Method I : Adjusting Known PMFs
If a distribution 𝐷 does not satisfy the conditions (R1) and (R2) in

Section 4, we can adjust it by truncation and rounding. That is,

we define a PMF 𝑃�̃� of an adjusted distribution �̃� as one that is

proportional to a counting function

𝐶�̃� (𝑘 ; 𝑠) :=

{
⌊𝑠𝑃𝐷 (𝑘)⌉ if 𝑘 ∈ {−𝑤, . . . ,𝑤}
0 otherwise

, (5)

where ⌊−⌉ means the function rounding to integers. Here, the scale

factor 𝑠 ∈ R≥0 and the width𝑤 ∈ Z≥0 are free parameters.

Let us explore how we can satisfy the condition
¯𝛿�̃� (𝜀) ≤ 𝛿 of

Theorem 3.3. To investigate the effect of rounding, we extract a

component from
¯𝛿�̃� (𝜀). We assume that �̃� is a unimodal

distribution, e.g., let �̃� be a discrete Laplace distribution. Then, a

3
This example cannot even be decomposed into an arbitrary discrete probability

distribution.

27

Proceedings on Privacy Enhancing Technologies 2025(1) Kii et al.

−20 0 20
k

0

1

2

3
1e10 (a) C ̃dLap(p)(k)

−20 0 20
k

0.0
0.2
0.4
0.6
0.8
1.0

(b) (table size)⋅ ̄δ ̃dLap(p)(k; ε)

Figure 5: (a) The adjusted PMF 𝑃�DLap(𝑝) (𝑘) of the discrete
Laplace distribution DLap(𝑝). (b) The values of (table size) ·
¯𝛿�DLap(𝑝) (𝑘 ; 𝜀). In this example, the parameters were set to
generate the smallest table that achieves (1.0, 10

−10)-DP. The
width was𝑤 = 24, the scale factor was ≈ 1.44 × 10

10, and the
number of elements in the table size was ≈ 6.78 × 10

10.

point-wise version of
¯𝛿�̃� can be defined below.

¯𝛿�̃� (𝑘 ; 𝜀) := max

{
0, 𝑃�̃� (𝑘 − Δ) − 𝑒

𝜀𝑃�̃� (𝑘)
}

(6)

=

(∑︁
−𝑤≤𝑘≤𝑤

𝐶�̃� (𝑘 ; 𝑠)
)−1

max

{
0,𝐶�̃� (𝑘 − Δ; 𝑠) − 𝑒𝜀𝐶�̃� (𝑘 ; 𝑠)

}
(7)

We have
¯𝛿�̃� (𝜀) =

∑
𝑘∈Z ¯𝛿�̃� (𝑘 ; 𝜀). Thus, if

𝑃�̃� (𝑘 − Δ)
𝑃�̃� (𝑘)

=
𝐶�̃� (𝑘 − Δ; 𝑠)
𝐶�̃� (𝑘 ; 𝑠) ≤ 𝑒𝜀 (8)

holds, then
¯𝛿�̃� (𝑘 ; 𝜀) = 0 and this makes

¯𝛿�̃� (𝜀) is smaller. The left-

hand side is close to

𝑃
�̃�
(𝑘−Δ)

𝑃
�̃�
(𝑘) when 𝑃�̃� (𝑘) is large or when 𝑠 is

large.

With these tools, we can see that it is difficult to create a

distribution �̃� with small
¯𝛿�̃� (𝜀) from an analytical PMF using this

naïve method. An example of applying this method to DLap(𝑝) is
shown in Figure 5. This figure displays the values of a counting

function of �̃� = �DLap(𝑝) (the adjusted DLap(𝑝)), and the values

of a function

(table size) · ¯𝛿�DLap(𝑝) (𝑘 ; 𝜀)(
= max

{
0,𝐶�DLap(𝑝) (𝑘 − Δ; 𝑠) − 𝑒𝜀𝐶�DLap(𝑝) (𝑘 ; 𝑠)

})
.

This function shows exactly the effect of rounding error since

𝑃DLap(𝑝) (𝑘 − Δ; 𝑠) − 𝑒𝜀𝑃DLap(𝑝) (𝑘 ; 𝑠) = 0. As this example shows,

this function exceeds one at many points 𝑘 , and this implies

(table size) >
(

¯𝛿�DLap(𝑝) (𝑘 ; 𝜀)
)−1

≥ 1

𝛿
.

The
1

𝛿
is usually required to be larger than 10

5
or 10

10
for privacy.

Moreover, it is difficult to predict the random behavior of the

function. Thus, it is also difficult to generate a small table with

small
¯𝛿�̃� (𝜀) from an analytical PMF using this naïve method.

5.2 Method II : Iterative Algorithm
We consider the reduction of

¯𝛿𝐷 (𝜀) from the sufficient condition

that it is small. As in Section 4, we construct a function𝐶𝐷 (𝑘) whose

values are non-negative integers and obtain a PMF by normalizing

it. From the discussion in the previous section, it is sufficient to

create an unimodal function𝐶𝐷 (𝑘) satisfying𝐶𝐷 (𝑘−Δ) ≤ 𝑒𝜀𝐶𝐷 (𝑘)
at each 𝑘 . If this condition is satisfied, then ¯𝛿𝐷 (𝑘) coincides with the
lower bound

¯𝛿𝐷 (∞). It is easy to determine iteratively the value of

the function𝐶𝐷 (𝑘) so that it satisfies this inequality. The algorithm
is described in Algorithm 1.

Input: Privacy budgets to achieve 𝜀 (> 0), 𝛿 (∈ (0, 1)), the
sensitivity of a query Δ(∈ Z≥1)

1 r← 𝑒𝜀/Δ

2

3 /* Set the initial value so that ⌊A0r⌋ > A0 */

4 if r ≥ 2 then A0 ← 1

5 else A0 ←
⌈

1

r−1

⌉
// Remark that 1 < r < 2 in here.

6

7

8 /* Main loop */

9 A← [A0]
10 for w ≥ 0 do
11 𝑚 ← ⌊rA[w]⌋
12 A← InsertCenter(A,𝑚)
13

14 /* Define a distribution 𝐷Alg1 */

15 Define a count function 𝐶𝐷
Alg1
(𝑘) := A[𝑘 + (w + 1)] for

𝑘 ∈ {−(w + 1), . . . , (w + 1)}

16 Define a distribution by a PMF 𝑃𝐷
Alg1
(𝑘) :=

𝐶𝐷
Alg1
(𝑘)∑

𝐶𝐷
Alg1
(𝑘)

17

18 /* Check if ¯𝛿𝐷Alg1
is small enough */

19 if (w > Δ) and ¯𝛿𝐷Alg1
(𝜀) ≤ 𝛿 then

20 return 𝑃𝐷Alg1
(𝑘)

21 end
22 end
Algorithm 1: An algorithm to generate scaled PMF which

can be used to achieve (𝜀, 𝛿)-DP

The function InsertCenter(𝐴, 𝑥) in Algorithm 1 takes an array

𝐴 =
[
𝐴[0], . . . , 𝐴[2𝑤]

]
of odd length and a value 𝑥 and gives a new

array

[
𝐴[0], . . . , 𝐴[𝑤], 𝑥, 𝐴[𝑤], . . . , 𝐴[2𝑤]

]
of length 2(𝑤 + 1) + 1.

Note that the middle element 𝐴[𝑤] of 𝐴 is duplicated.

Figure 6 shows an example of the output.

While the algorithm grows the array 𝐴, it follows a recurrence

relation

𝐴[𝑘 + 1] = ⌊𝑟𝐴[𝑘]⌋ = 𝐴[2𝑤 − (𝑘 + 1)] for 𝑘 = 0, . . . ,𝑤 − 1

where the length of 𝐴 is 2𝑤 + 1 and 𝑟 = 𝑒𝜀/Δ. This implies

¯𝛿𝐷
Alg1
(𝑘 ; 𝜀) = 0 for 𝑘 = 0, . . . , 2𝑤 − Δ. This always holds until

¯𝛿𝐷
Alg1
(𝜀) ≤ 𝛿 is satisfied and the algorithm finishes. Note that

Algorithm 1 becomes one that computes the PMF of the truncated

discrete Laplace distribution numerically if we do not use the floor

function. Additionally, we can see

𝐴[𝑘 + 1] = 𝐴[2𝑤 − (𝑘 + 1)] > 𝐴[𝑘] from the definition of the

28

Lightweight Two-Party Secure Sampling Protocol
for Differential Privacy Proceedings on Privacy Enhancing Technologies 2025(1)

−20 0 20
k

0.0

0.1

0.2

0.3

0.4

(a) PD(k)

−20 0 20
k

0

2

4

6

1e−11 (b) ̄δD(k; ε)

Figure 6: An example of discrete probability distribution
𝐷Alg1

generated by Algorithm 1. The input parameters were
𝜀 = 1.0, 𝛿 = 10

−10,Δ = 1. The resulting table size was 100.5 GiB
and ¯𝛿𝐷Alg1

(𝜀) ∼ 10
−10.1. In (b), the scale of the vertical axis is

10
−11, and the pink area is ¯𝛿𝐷 (𝜀).

initial value 𝐴0. Especially if 1 < 𝑟 < 2, we have

𝑟𝐴0 = 𝐴0 + (𝑟 − 1)𝐴0 ≥ 𝐴0 + (𝑟 − 1) 1

𝑟 − 1

= 𝐴0 + 1,

since 𝐴0
:=

⌈
1

𝑟−1

⌉
≥ 1

𝑟−1
.

In this way, we obtain a distribution𝐷Alg1 with
¯𝛿𝐷

Alg1
(𝜀) equal to

the lower bound
¯𝛿𝐷

Alg1
(∞). Moreover, the above algorithm allows

us to achieve (𝜀, 𝛿)-DP with near-optimal 𝐿1
error E[|𝑋 |]. Despite

these efforts, the algorithm makes large tables for strong privacy

guarantees. From the construction,
¯𝛿𝐷 (𝜀) can be evaluated from

below as follows.

(𝜀 =) ¯𝛿𝐷
Alg1
(∞) =

∑𝑤
𝑘=𝑤−Δ𝐶𝐷

Alg1
(𝑘)∑

−𝑤≤𝑘≤𝑤 𝐶𝐷
Alg1
(𝑘) (9)

≥ 1∑
−𝑤≤𝑘≤𝑤 𝐶𝐷

Alg1
(𝑘) =

1

the table size

(10)

Therefore, the table must be larger than 1/𝛿 (≥ 10
5) in this method,

for exactly the same reasons as in the previous section. This is why

the table for a simple random table-lookup method is huge.

6 Our Algorithm to Make Small Table for Our
Approach

6.1 Overview of Our Method
For tables made for the naïve random table-lookup method, we

considered the condition
¯𝛿𝐷 (𝜀) ≤ 𝛿 of Theorem 3.3 in the previous

section. We observed that a lower bound of
¯𝛿𝐷 (𝜀) :

¯𝛿𝐷 (𝜀) ≥ ¯𝛿𝐷 (∞) =
∑𝑤

𝑘=𝑤−Δ𝐶𝐷 (𝑘)∑
−𝑤≤𝑘≤𝑤 𝐶𝐷 (𝑘)

≥ 1

table size

. (11)

Thus, we concluded that the table must be larger than 1/𝛿 (usually

≥ 10
5
).

We address this problem with two ideas. Our first idea is to

decompose the noise into sums of random values (our second idea

is described in Section 6.3). In other words, the first idea is to use

the summation function

∑
𝑁 (𝑡0, . . . , 𝑡𝑁−1) =

∑𝑁−1

𝑖=0
𝑡𝑖 as a

transformation function in the functionality (Figure 4). This idea

reduces
¯𝛿𝐷 (∞) that is the lower bound of

¯𝛿𝐷 (𝜀) drastically. For
simplicity, we use a single table instead of 𝑁 different tables.

We use notations as in Section 4 and denote the distribution

of values sampled from the table 𝑇 by 𝐷 . The distribution of the

output of the functionality F𝑇,
∑
𝑁

DAM
is written by 𝐷∗𝑁 . Again, the

similar formula

¯𝛿𝐷 (𝜀) ≥ ¯𝛿𝐷 (∞) =
∑𝑤

𝑘=𝑤−Δ𝐶𝐷 (𝑘)∑
−𝑤≤𝑘≤𝑤 𝐶𝐷 (𝑘)

holds as well as the expression (11). However, unlike the case

where the sum is not considered, we can see

¯𝛿𝐷∗𝑁 (∞) =
𝑁𝐶𝐷 (𝑤)

(∑−𝑤≤𝑘≤𝑤 𝐶𝐷 (𝑘))𝑁
if Δ = 1. It decreases much more

rapidly than
¯𝛿𝐷 (∞) = 𝐶𝐷 (𝑤)∑

−𝑤≤𝑘≤𝑤 𝐶𝐷 (𝑘) . This suggests that a small

table can achieve the condition
¯𝛿𝐷∗𝑁 (∞) ≤ 𝛿 .

Below, we consider a distribution 𝐷 that is feasible with random

table-lookup (see Section 4), and its 𝑁 -th autoconvolution 𝐷∗𝑁

gives DP of integer-valued queries.

Although the idea above is simple, it is not yet easy to make a

small table that satisfies the above conditions. A quick idea would

be to apply Method I (Section 5.1) to a distribution component that

achieves DP, e.g., the decomposed discrete Laplace distribution

DDLap(𝑁, 𝑝). However, as we saw in Section 5.1,
¯𝛿�̃� (𝑘 ; 𝜀)

becomes large in many points, resulting in the need for a large

table. The numerical behavior of
¯𝛿�̃� (𝑘 ; 𝜀) is shown in the

experiment in Section 8.

In this case, the major reason is the truncation (approximating

of the tail value by 0), rather than the rounding error. Since it

takes real numbers as values, adjusting as in Section 5.1 is still

required for actual use. To address this problem, we propose a PMF

having a finite support set in this section. After that, we propose a

method in Section 6.3 that approximates the PMF constructed in

the next section. This is similar to the relationship between Method

II (Section 5.2) and the discrete Laplace distribution.

Let us consider a sufficient condition for
¯𝛿𝐷∗𝑁 (𝜀) = ¯𝛿𝐷∗𝑁 (∞),

based on Section 5.2. The only difference in settings from Section

5.2 is that 𝐷 is changed to 𝐷∗𝑁 , thus we can obtain the sufficient

condition by just replacing the symbols in the formula in Section

5.2. The obtained sufficient condition is that the PMF of the

autoconvolution 𝑃𝐷∗𝑁 is a constant multiple of a unimodal

integer-valued function 𝐶𝐷∗𝑁 (𝑘) that satisfies the following

condition:

𝑒𝜀𝐶𝐷∗𝑁 (𝑘) −𝐶𝐷∗𝑁 (𝑘 − Δ) ≥ 0 (12)

for 𝑘 ∈ {−𝑁𝑤, . . . ,Δ} and 𝐶𝐷 (−𝑘) = 𝐶𝐷 (𝑘) for 𝑘 ∈ {−𝑤, . . . ,𝑤}.
If this difference on the left-hand side is small, the 𝐿1

error of

the distribution becomes small. This is a system of polynomial

inequalities with the value of 𝐶𝐷 (𝑘) as a variable. As such, it is

generally a very difficult problem for which to find even a single

solution.

Another important idea (or observation) for solving this next

problem is that a solution is easy to find for the “tail" part of the

system but quite hard to solve for the whole system. For 𝑘 ∈ {(𝑁 −
1)𝑤, . . . , 𝑁𝑤}, each inequality system (12) can be written in the

29

Proceedings on Privacy Enhancing Technologies 2025(1) Kii et al.

form:

𝑒𝜀𝑁 ·𝐶𝐷∗𝑁 (𝑤)𝑁−1 ·𝐶𝐷∗𝑁 (𝑘 − (𝑁 − 1)𝑤)+(
a degree 𝑁 polynomial of𝐶𝐷∗𝑁 (𝑘 − (𝑁 − 1)𝑤 +
1), . . . ,𝐶𝐷∗𝑁 (𝑤 − 1)

)
.

Thus, by setting the value of the initial term𝐶𝐷∗𝑁 (𝑤) and iteratively
solving the linear inequality for 𝐶𝐷∗𝑁 (𝑘 − (𝑁 − 1)𝑤), one can find

a solution for a part of the system (12) for 𝑘 ∈ {(𝑁 − 1)𝑤, . . . , 𝑁𝑤}.
In the next section, we analyze the distribution obtained by

solving the “tail" part of the equations system induced by the

inequality system (12). This shows that the solution of the “tail"

part satisfies the whole inequality system. Section 6.3 gives an

integer-valued function 𝐶𝐷∗𝑁 (𝑘) by rounding the solution to

integers while solving the same linear inequality sequentially.

Without this rounding, the algorithm in Section 6.3 becomes an

algorithm to compute the analytical solution given in Section 6.2.

Since what is obtained by this algorithm is an approximate

solution of the inequality system, it cannot be proved that all of

the inequality system (12) is satisfied. However, the results for the

analytical solutions in the previous section and the checks in the

algorithm guarantee that the output satisfies the system of

inequalities.

6.2 Approximate Decomposition of DLap(𝑝)
On the basis of this observation, we discovered that it is better to

consider a distribution 𝐷 (𝑝, 𝑁 ,𝑤) with the following PMF. This

PMF is related to the PMF of the negative binomial distribution.

Definition 6.1. Let 𝑝 ∈ (0, 1], 𝑁 ∈ Z>0 and𝑤 ∈ Z≥0. The PMF
of a distribution 𝐷 (𝑝, 𝑁 ,𝑤) is defined as

𝑃𝐷 (𝑝,𝑁 ,𝑤) (𝑘) =𝐶 ·
(
1/𝑁 +𝑤 − |𝑘 | − 1

𝑤 − |𝑘 |

)
𝑟𝑤−|𝑘 | ,

where 𝑘 ∈ {−𝑤, . . . ,+𝑤}. (13)

Here, 𝑟 := 1

𝑝
(≥ 1) and 𝐶 is the normalization constant.

One can see the following equations about geometric series:

(
𝑡0 + (𝑟𝑡)1 + (𝑟𝑡)2 + . . .

)
1/𝑁

=
(
1 − 𝑟𝑡−1

)−1/𝑁

=

∞∑︁
𝑘=0

(
−1/𝑁
𝑘

)
(−𝑟)𝑘𝑡𝑘

=

∞∑︁
𝑘=0

(
1/𝑁 + 𝑘 − 1

𝑘

)
𝑟𝑘𝑡𝑘 .

The PGF corresponding to 𝑃𝐷 (𝑝,𝑁 ,𝑤) (𝑘) can be made by cutting

and pasting this series. Thus the PMF of 𝑁 -th autoconvolution

𝑃𝐷 (𝑝,𝑁 ,𝑤)∗𝑁 (𝑘) coincides with 𝑃DLap(𝑝) (𝑘) in the tail part.

𝑃𝐷 (𝑝,𝑁 ,𝑤)∗𝑁 (𝑁𝑤 − 0) =𝐶𝑁
1

𝑃𝐷 (𝑝,𝑁 ,𝑤)∗𝑁 (𝑁𝑤 − 1) =𝐶𝑁 𝑟

. . .

𝑃𝐷 (𝑝,𝑁 ,𝑤)∗𝑁 (𝑁𝑤 −𝑤) =𝐶𝑁 𝑟𝑤

. . .

𝑃𝐷 (𝑝,𝑁 ,𝑤)∗𝑁 (−𝑁𝑤 +𝑤) =𝐶𝑁 𝑟𝑤

. . .

𝑃𝐷 (𝑝,𝑁 ,𝑤)∗𝑁 (−𝑁𝑤 + 1) =𝐶𝑁 𝑟

𝑃𝐷 (𝑝,𝑁 ,𝑤)∗𝑁 (−𝑁𝑤) =𝐶𝑁
1

Therefore, 𝛿 (𝑥 ; 𝜀) = 0 at |𝑘 | ≥ (𝑁−1)𝑤 for 𝑟 = 𝑒𝜀/Δ. Furthermore,

as shown below, 𝛿 (𝑥 ; 𝜀) = 0 in |𝑘 | < (𝑁 − 1)𝑤 as well.

Theorem 6.2. Let 𝑁,𝑤 be a positive integer and 𝑝 ∈ (0, 1). For
sufficiently large𝑤 ∈ Z>0 and 𝑘 ∈ {0, . . . , 𝑁𝑤 − 1},

𝑃𝐷 (𝑝,𝑁 ,𝑤)∗𝑁 (𝑘) ≤ 𝑟𝑃𝐷 (𝑝,𝑁 ,𝑤)∗𝑁 (𝑘 + 1).

Proof. See Appendix A. □

This fact implies
¯𝛿𝐷 (𝑝,𝑁 ,𝑤) (𝜀) coincides with the lower bound

¯𝛿𝐷 (𝑝,𝑁 ,𝑤) (∞) when 𝑝 ≥ 𝑒𝜀/Δ.

Theorem 6.3. Let 𝑞 : D→ Z be a function with 𝐿1 sensitivity Δ,
𝜀 (> 0) be a positive real value, and 𝐷 = 𝐷 (𝑒−𝜀/Δ, 𝑁 ,𝑤). Let 𝛿 be a
positive real number that satisfies

𝑁𝑤−Δ+1∑︁
𝑘=𝑁𝑤

𝑃𝐷∗𝑁 (𝑘) ≤ 𝛿 < 1.

Then, a randomized function

M(𝑋) = 𝑞(𝑋) +
𝑁∑︁
𝑖=1

𝑍𝑖 , 𝑍1, . . . , 𝑍𝑁 ∼ 𝐷 (14)

achieves (𝜀, 𝛿)-DP.

Proof. According to the previous theorem,

𝑃𝐷∗𝑁 (𝑘) ≤ 𝑟𝑃𝐷∗𝑁 (𝑘 + 1),

for 𝑘 ∈ {0, . . . , 𝑁𝑤 − 1}. By using it recursively

𝑃𝐷∗𝑁 (𝑘) ≤ 𝑟𝑠𝑃𝐷∗𝑁 (𝑘 + 𝑠),

for 𝑠 = 0, . . . ,Δ. Here, 𝑟𝑠 = 𝑒𝜀
𝑠
Δ . As a consequence, we have

¯𝛿𝐷 (𝑘 ; 𝜀) = 0 for 𝑘 ∈ {0, . . . , 𝑁𝑤}. From this and the symmetry

𝑃𝐷∗𝑁 (−𝑘) = 𝑃𝐷∗𝑁 (𝑘), the equality
¯𝛿𝐷∗𝑁 (𝜀) = ¯𝛿𝐷∗𝑁 (∞) holds.

Since the assumption of this theorem is

¯𝛿𝐷∗𝑁 (∞) =
𝑁𝑤−Δ+1∑︁
𝑘=𝑁𝑤

𝑃𝐷∗𝑁 (𝑘) ≤ 𝛿,

this theorem follows from Theorem 3.3. □
30

Lightweight Two-Party Secure Sampling Protocol
for Differential Privacy Proceedings on Privacy Enhancing Technologies 2025(1)

6.3 Iterative Algorithm
We have a distribution 𝐷 (𝑝, 𝑁 ,𝑤) that has a finite support set,

and its 𝑁 -th autoconvolution gives DP to integer-valued queries.

We can make it a constant multiple of an integer function as in

Section 5.1. Since the PMF 𝑃𝐷 (𝑘) values are small in the tail 𝑘 ∈
{(𝑁 − 1)𝑤, . . . , 𝑁𝑤}, the rounding error is larger than the original

value. This inaccuracy causes
¯𝛿𝐷 (𝑒−𝜀/Δ,𝑁 ,𝑤) (𝑘 ; 𝜀) > 0 in the tail.

From the observation discussed in Section 6.1, we can iteratively

determine the value of PMF that enjoys 𝛿 (𝑥 ; 𝜀) = 0 in the tail part.

Algorithm 2 is the detailed procedure.

Input: Privacy budgets to achieve 𝜀 (> 0), 𝛿 (∈ (0, 1)),
sensitivity Δ(∈ Z≥1), number of decomposition

𝑁 (≥ 1), and initial value A0 (if not specified, = 1)

1 A← [A0]
2 for w ≥ 0 do
3 A+𝑥 ← InsertCenter(A, 𝑥)
4 // The length of array A is 2(w + 1) + 1

5 A+𝑥 ∗𝑁 ← 𝑁 -th autoconvolution of the array A+𝑥
6 // See section 3.2 for the definition

7 𝑠 ← the solution of a linear equation of 𝑥 :

A+𝑥 ∗𝑁 [w] == 𝑒𝜀/Δ (A+𝑥 ∗𝑁 [w − 1])
8 // Left-hand side is a constant

9 A← InsertCenter(A, ⌊𝑠⌋)
10 A∗𝑁 ← 𝑁 -th autoconvolution of the array A
11 // The length of array A∗𝑁 is 2𝑁 (w + 1) + 1

12

13 /* Define a distribution 𝐷Alg2 */

14 Define a count function 𝐶𝐷
Alg2
(𝑘) := A[𝑘 + 𝑁 (w + 1)]

for 𝑘 ∈ {−𝑁 (w + 1), . . . , 𝑁 (w + 1)}

15 Define a distribution by a PMF 𝑃𝐷
Alg2
(𝑘) :=

𝐶𝐷
Alg2

(𝑘)∑
𝐶𝐷

Alg2

(𝑘)

16

17 /* Check if 𝐷Alg2 is unimodal and
¯𝛿𝐷

Alg2
(𝑘 ; 𝜀) = 0 */

18 if there exists 𝑖 ∈ [0, 𝑁 (w + 1)) that satisfies neither
A∗𝑁 [𝑖] > 0 nor A∗𝑁 [𝑖 + 1] ≤ 𝑒𝜀/ΔA∗𝑁 [𝑖] then

19 A0 ← A0 + 1

20 Restart this algorithm

21 end
22

23 /* Check if ¯𝛿𝐷
Alg2
(𝜀) ≤ 𝛿 */

24 if (w > Δ) and ¯𝛿𝐷
Alg2
(𝜀) ≤ 𝛿 then

25 return 𝑃𝐷
Alg2
(𝑘)

26 end
27 end
Algorithm 2: An algorithm to generate scaled PMF which

can be used to achieve (𝜀, 𝛿)-DP

For the definition of the function InsertCenter, see Section 5.2.

The algorithm generates a distribution that is symmetric and

satisfies
¯𝛿𝐴∗𝑁 (𝑘, 𝜀) = 0 in the tail 𝑘 ∈ {0, . . . ,𝑤 − 1} ∪ {2𝑁𝑤 −𝑤 +

1, . . . , 2𝑁𝑤}. The shape of the generated distribution is almost the

same as in Figure 6. As in the discussion above, the element𝐴∗𝑁+𝑥 [𝑘]
is a constant in the tail 𝑘 ∈ {0, . . . ,𝑤−1}∪{2𝑁𝑤−𝑤+1, . . . , 2𝑁𝑤},
and a polynomial of 𝑥 elsewhere. In particular, 𝐴∗𝑁+𝑥 [𝑘] is a linear
formula of 𝑥 for 𝑘 =𝑤 or 𝑘 = 2𝑁𝑤 −𝑤 , the one step inside of the

tail. This means that the inequality𝐶𝐴 (𝑘−1) ≤ 𝑒𝜀/Δ𝐶𝐴 (𝑘) is a linear
one at the two point. Thus, we can determine 𝑥 easily, such that the

inequality
¯𝛿𝐴∗𝑁 (𝑘, 𝜀) = 0 holds in the larger set {0, . . . ,𝑤}∪{2𝑁𝑤−

𝑤, . . . , 2𝑁𝑤}. By repeating this, the table can be made larger and

larger while satisfying the inequality.

The distribution generated by Algorithm 2 approximates the

PMF defined in the previous section. In fact, if we do not

approximate in line 9, Algorithm 2 becomes one that computes the

PMF 𝑃𝐷 (𝑁,𝑝,𝑤) (𝑘) numerically. Also note that when 𝑁 = 1, it

coincides with Method II (Section 5.2). However, this observation

alone does not guarantee that Algorithm 2 gives DP. Strictly

speaking, we must check that
¯𝛿𝐷 (𝑘 ; 𝜀) = 0 holds in the loop. The

following is the proof of this.

Theorem 6.4. Let 𝑞 : D→ Z be a function with sensitivity Δ, and
𝐷 be a distribution whose PMF is produced by Algorithm 2. Then,

M(𝑋) = 𝑞(𝑋) +
𝑁∑︁
𝑖=1

𝑍𝑖 , 𝑍1, . . . , 𝑍𝑁 ∼ 𝐷 (15)

achieves (𝜀, 𝛿)-DP.

Proof. Let 𝑃Alg2 be the output of Algorithm 2. By its

construction, 𝑃Alg2 has the following properties.

(1) it is symmetric about zero i.e. 𝑃Alg2 (−𝑘) = 𝑃Alg2 (𝑘).
(2) its support set is {−𝑤, . . . ,+𝑤}.
(3) 𝑃∗𝑁

Alg2
is monotonically increasing for 𝑖 ∈ {−𝑤, . . . , 0}.

(4) 𝑒𝜀/Δ𝑃∗𝑁
Alg2
[𝑖] ≤ 𝑃∗𝑁

Alg2
[𝑖 + 1] for 𝑖 ∈ {−𝑤, . . . , 0}.

Since the properties (1), (2) and (3), 𝐷Alg2 is a unimodal distribution,

so

¯𝛿𝑃∗𝑁
Alg2

(𝜀) =
∑︁

𝑘=−𝑤,...,+𝑤
max{0, 𝑃∗𝑁

Alg2
(𝑘) − 𝑒𝜀𝑃∗𝑁

Alg2
(𝑘 + Δ)}.

Also, from properties (1) and (3),
¯𝛿𝑃

Alg2
(𝜀) = ¯𝛿𝑃

Alg2
(∞). The

termination condition of the algorithm means that it is less than 𝛿 .

Therefore, the theorem is shown by Theorem 3.3. □

Our goal is to generate a small table, and our idea is toward it. A

theoretical evaluation of the table size is given below.

Theorem 6.5. Let 𝑃Alg2 be the PMF generated by Algorithm 2 and
𝛿 ′ be a positive real value. If

𝛿 ′ ≤ ¯𝛿𝑃
Alg2
(𝜀) (≤ 𝛿)

holds, then the table size 𝑆 :=
∑
−𝑤≤𝑘≤𝑤 𝐶 (𝑘) has an upper bound

𝑆 ≤
(∑Δ−1

𝑘′=0
𝑒𝑘
′𝜀/Δ𝑐

𝛿 ′

)
1/𝑁

,

where 𝑐 :=𝐶 (𝑤).

In most cases
¯𝛿𝑃

Alg2
(𝜀) is very slightly smaller than 𝛿 . Assuming

this, both sides are approximately equal.

31

Proceedings on Privacy Enhancing Technologies 2025(1) Kii et al.

Proof. As the previous theorem,
¯𝛿𝐷

Alg2
(𝜀) = ¯𝛿𝑃

Alg2
(∞). We can

see𝐶𝐷
Alg2
(𝑘) ≤ 𝑟𝑘+𝑁𝑤𝐶𝐷

Alg2
(𝑤) for 𝑘 ∈ {−𝑁𝑤, . . . ,−𝑁𝑤 +𝑤} and

for 𝑟 = 𝑒𝜀/Δby the construction. Therefore,

¯𝛿𝑃
Alg2
(∞) =

∑𝑤
𝑘=𝑤−Δ𝐶 (𝑘)∑
−𝑤≤𝑘≤𝑤 𝐶 (𝑘) ≤

∑Δ−1

𝑖=0
𝑟 𝑖𝐶 (𝑤)∑

−𝑤≤𝑘≤𝑤 𝐶 (𝑘) .

A straightforward calculation shows the desired result. □

7 Our Secure Sampling Protocol
So far, we can sample noises for DP with a small table 𝑇 and

summation

∑
𝑁 : (𝑡0, . . . , 𝑡𝑁−1) ↦→

∑𝑁−1

𝑖=0
𝑡𝑖 . This section provides a

two-party secure computation protocol that realizes distributing

additive mechanism functionality F 𝑞,𝑇 ,
∑

DAM
. The main challenge in

realizing the functionality F 𝑞,𝑇 ,
∑

DAM
is implementing the random

table lookup in SMPC. The selection of table elements must not be

learned by either party.

A combination of oblivious transfer and shuffle can solve this

problem. We use the additive secret sharing on the finite cyclic

group Zℓ (ℓ ∈ Z>0) as the secret computation scheme. Firstly, Alice

samples a random mask𝑚 ∈ Zℓ and a permutation 𝜋 on the indices

{0, . . . , #𝑇 − 1}, and makes a “doubly" masked table 𝑇 ′ as 𝑇 ′ [𝑖] =
𝑇 [𝜋 (𝑖)] −𝑚 ∈ Zℓ . Next, Alice inputs𝑇

′
as a sender, and Bob inputs

uniformly-random index 𝑐 as a receiver, to 1-out of-(#𝑇) oblivious
transfer. Then Alice’s random mask𝑚 and 𝑇 ′ [𝑐] = 𝑇 [𝜋 (𝑐)] −𝑚
received by Bob are additive shares of 𝑇 [𝜋 (𝑐)]. Obviously, neither
Alice nor Bob can know the chosen element 𝜋 (𝑐). The protocol is
described fully in Protocol 3.

In our protocol, we use the two-party secure function

evaluation functionality F 𝑞

SFE
for a function 𝑞 : D × D → Zℓ . It

receives databases 𝐴, 𝐵 from each party and outputs additive

shares of the evaluation result in 𝑞(𝐴, 𝐵) to each party, and neither

can obtain any other information. Note that the function evaluated

is public in our situation. This functionality can be realized by

secret shared function [5, 6], for example.

Furthermore, we use the 1-out-of-𝑛 oblivious transfer

functionality, as we mentioned above. We denote this functionality

F𝑛-OT.

Note that operations within the For-loop can be executed in

parallel. One can construct a batched version with batched OT, but

this paper does not prove its security.

The protocol can be scaled up with more participants by using

private information retrieval instead of oblivious transfer. Again,

in this case, the participants who generate the permutations and

the participants who choose the elements must be different. We

think this change may reduce the communication cost, but we do

not know about the computation cost.

7.1 Security
We prove the two-party protocol Π

𝑞,𝑇 ,
∑
𝑁

DAM
(Protocol 3) is secure in

the presence of a semi-honest adversary. We define the summation

function as

∑
𝑁 : Z𝑁 → Z; (𝑦0, . . . , 𝑦𝑁−1) ↦→

∑𝑁−1

𝑖=0
𝑦𝑖 .

Theorem 7.1. Protocol Π𝑞,𝑇 ,
∑
𝑁

DAM
(Protocol 3) securely realizes ideal

functionality F 𝑞,𝑇 ,
∑
𝑁

DAM
against a semi-honest adversary in the

(F 𝑞

SFE
, F𝐿-OT)-hybrid model.

Parameters: a query function 𝑞 : D × D→ Zℓ on two

databases, a table (an array) of integers

T ∈ ZL
ℓ of length L, number of times to draw

from the table 𝑁 (> 0)
Input: Alice’s databases 𝐴 and Bob’s databases 𝐵

Output: Both’s output 𝑦
1 /* Evaluate the query 𝑞(𝐴, 𝐵) securely */

2 Alice and Bob invoke the secure function evaluation

functionality F 𝑞

SFE

3 Alice and Bob input 𝐴 and 𝐵 respectively, and obtain

additive shares ⟦𝑥⟧𝐴 and ⟦𝑥⟧𝐵 respectively

4 for 𝑘 = 1 to 𝑁 do
5 /* Sample an element of the table

uniform-randomly */

6 Alice samples a uniformly-random number

⟦𝑧𝑘⟧𝐴
$← Zℓ

7 Alice generates random permutation 𝜋𝑘 on

{0, . . . , L − 1}
8 Alice makes a table (an array) T′

𝑘
such that

T′
𝑘
[𝑖] = T[𝜋𝑘 (𝑖)] − ⟦𝑧𝑘⟧𝐴 for 𝑖 = 0, . . . , L − 1

9 Bob samples a random index 𝑐𝑘
$← {0, . . . , L − 1}

10

11 Alice and Bob invoke the 1-out of-L oblivious transfer

functionality FL-OT

12 Alice inputs T′ and Bob inputs 𝑐𝑘 to FL-OT

13 Bob receives ⟦𝑧𝑘⟧𝐵 from FL-OT

14 end
15 Alice computes ⟦𝑦⟧𝐴 ← ⟦𝑥⟧𝐴 +

∑𝑁
𝑘=1
⟦𝑧𝑘⟧𝐴 locally

16 Bob computes ⟦𝑦⟧𝐵 ← ⟦𝑥⟧𝐵 +
∑𝑁

𝑘=1
⟦𝑧𝑘⟧𝐵 locally

17

18 Alice and Bob reveal their share ⟦𝑦⟧𝐴 and ⟦𝑦⟧𝐵 to each

other

19 Alice and Bob obtain the result 𝑦 ← ⟦𝑦⟧𝐴 + ⟦𝑦⟧𝐵
Protocol 3: A two-party protocol Π

𝑞,𝑇 ,
∑
𝑁

DAM
for functionality

F 𝑞,𝑇 ,
∑
𝑁

DAM

Proof. We will construct simulators of each party’s view, and

prove that they are computationally indistinguishable from the real

view.

Corrupt Alice. Alice’s view consists of additive share ⟦𝑥⟧𝐴, ⟦𝑦⟧𝐵 ,
and the result 𝑦 (𝑘 = 1, . . . , 𝑁 , 𝑖 = 0, . . . , 𝐿 − 1). We can simulate

her view by doing the following:

• Sample ⟦𝑥⟧𝐴 from the uniform distribution on Zℓ .

• For each 𝑘 = 1, . . . , 𝑁 :

– Sample ⟦𝑧𝑘⟧𝐴 from the uniform distribution on Zℓ .

– Compute ⟦𝑦⟧𝐴 ← ⟦𝑥⟧𝐴 +
∑𝑁

𝑘=1
⟦𝑧𝑘⟧𝐴 .

• Obtain 𝑦 from the ideal functionality F 𝑞,𝑇 ,
∑
𝑁

DAM
.

• Compute ⟦𝑦⟧𝐵 = 𝑦 − ⟦𝑦⟧𝐴 .
Since the share ⟦𝑥⟧𝐴 is the output of the ideal functionality F 𝑞

SFE
,

it can be simulated as a uniformly random element. ⟦𝑦⟧𝐴 only

depends on ⟦𝑥⟧𝐴 and ⟦𝑧1⟧𝐴, and the latter is generated by Alice

32

Lightweight Two-Party Secure Sampling Protocol
for Differential Privacy Proceedings on Privacy Enhancing Technologies 2025(1)

independently. Thus, we can simulate these data from Alice’s point

of view.

We will prove that we can simulate the result 𝑦 of the real

protocol with the ideal functionality F 𝑞,𝑇 ,
∑
𝑁

DAM
. Alice and Bob

separately choose 𝜋𝑘 and 𝑐𝑘 respectively, where 𝑘 − 1, . . . , 𝑁 .

Furthermore, the random variables 𝜋1, . . . , 𝜋𝑁 and 𝑐1, . . . , 𝑐𝑁 are

independent. This results in 𝜋1 (𝑐𝑘), . . . , 𝜋𝑁 (𝑐𝑁) being random

variables that follow a uniform distribution on {0, . . . , 𝐿 − 1}. Note
that the two pairs of random variables 𝑐𝑘 and 𝜋𝑘 (𝑐𝑘), and 𝜋𝑘 and

𝜋𝑘 (𝑐𝑘) are independent. This means we can simulate 𝜋𝑘 (𝑐𝑘)
without random values 𝜋𝑘 or 𝑐𝑘 generated by real participants.

From the above, we conclude that the distribution of

𝑦 = 𝑥 +∑𝑁
𝑘=1

𝑇 [𝜋𝑘 (𝑐𝑘)] is equal to that of the output of the ideal

functionality F 𝑞,𝑇 ,
∑
𝑁

DAM
.

Corrupt Bob. Bob’s view consists of the additive share

⟦𝑥⟧𝐵,⟦𝑧𝑘⟧𝐵, ⟦𝑦⟧𝐴, ⟦𝑦⟧𝐵 , and the result 𝑦

(𝑘 = 1, . . . , 𝑁 , 𝑖 = 0, . . . , 𝐿 − 1). The simulator for his view is the

same as for Alice’s. Since Bob’s view contains ⟦𝑧𝑘⟧𝐵 in addition to

Alice’s view, let us show that this can also be simulated.

⟦𝑧𝑘⟧𝐵 = 𝑇 [𝜋𝑘 (𝑐𝑘)] − 𝑚 can be computed from a uniformly

random element of the public table 𝑇 [𝜋𝑘 (𝑐𝑘)] and a uniformly

random value in Zℓ . Thus we can simulate ⟦𝑧𝑘⟧𝐵 by sampling

from the uniform distribution on Zℓ . □

8 Experimental Evaluation
In this section, we experiment with our method (Algorithm 2 and

Protocol 3) and compare it with the prior methods in terms of

runtimes, communication cost, and 𝐿1
(additive) error. For the

comparison, we take a representative from each of the 3

approaches.

8.1 Experiment Setting
This section describes the environment, implementation, and

parameters we used in our experiments.

8.1.1 Environments. We run our implementation on a desktop

computer with Intel Core i9-9900K (3.60 GHz × 8) CPU and 16

GiB RAM. Only LAN was used as the network environment. Each

measurement is performed 10 times, and we report the averages.

8.1.2 Implementation Details. We implement our protocol using

the 1-out-of-𝐿 oblivious transfer protocol in [21] implemented in

libOTe [25]. The table was implemented as a 16-bit signed integer

array since the table elements never exceeded ±2
15
. We did not

implement the optimization using batched OT.

8.1.3 Parameters. For simplicity, we fixed the sensitivity of queries

Δ = 1. As mentioned in Section 3.3, the discrete Laplace distribution

DLap(𝑝) achieves the minimum 𝐿1
error under (𝜀, 0)-DP if Δ = 1

and there were no other technical constraints.

8.2 Compared Methods
We refer to the following protocols as examples of a secure sampling

protocol of other approaches for the discrete Laplace distribution.

As an example of protocols in the as-in-plaintext approach, we

refer to a protocol in Keller et al. [19], which is considered to be

the current state-of-the-art in this approach. This protocol

computes a binary circuit to transform random bits into noise

following the discrete Laplace distribution in Yao’s garbled circuit

scheme. Their circuit has 1.86 × 10
7
(18.7 million) AND gates. We

have taken measurements from their paper because their protocol

implementation is not publicly available. Note that their protocols

perform the same for many 𝜀, while our method performs

differently depending on the privacy parameters we want to

achieve.

As an example of methods in the distributed sampling approach,

we refer to a simple protocol in [27]. In this example, two

participants sample i.i.d. noises following the discrete Laplace

distribution separately in the plaintext computation, and they add

them to the exact analysis result in a secure multiparty

computation. this example method gives statistical 𝜀-DP, while our

method and methods in the as-in-plaintext approach give

computational DP.

As examples of methods in the random table-lookup approach,

we refer to a method using our protocol with 𝑁 = 1 and the table

generated by the method in Sections 5.1 and 5.2. The details of the

table generation algorithm used in these examples are as follows.

• Adjusted DLap(𝑝), which is made from the discrete Laplace

distribution DLap(𝑝) (Section 3.2) by the method in Section

5.1.

• Naïve Iterative Algorithm (Naïve Itr.), which is described

in Section 5.2.

We also compare our method with an adjusted DDLap(𝑁, 𝑝),
which is made from the decomposed discrete Laplace distribution

DDLap(𝑁, 𝑝) by the method in Section 5.1. This method is

essentially different from the proposed method, and it is

worthwhile to compare them in the experiment. Note that since

the Algorithm 2 is based on the distribution 𝐷 (𝑝, 𝑁 ,𝑤) (Definition
6.1), we do not compare them in the experiment.

8.3 Experimental Results
8.3.1 Runtime. We compared the computation time of our protocol

(Protocol 7) with those of methods in the as-in-plaintext approach

and the random table-lookup approach. We do not compare ours

with that of the distributed sampling approach since its computation

time is as short as sampling in plaintext.

The results of the experiment are shown in Table 1. As 𝜀 or 𝑁

increases, the table length decreases. Therefore, the runtime also

tends to decrease in the same manner. When the parameters were

(𝜀, 𝛿) = (0.12, 2−40) and 𝑁 = 2, the runtime of our method was

983.1 ms, which is almost equal to the runtime of the protocol in

[19]. As mentioned in Section 8, the measurements for the protocol

in [19] are taken from [19], which is only slightly affected by 𝜀.

8.3.2 Communication Cost. We compared the communication cost

of ourmethodwith those of methods in the as-in-plaintext approach

and the random table-lookup approach. We do not compare ours to

that of the distributed sampling approach since its communication

cost is as small as sampling in plaintext.

The results of the experiment are shown in Table 2. As 𝜀 or 𝑁

increases, the table length decreases. Therefore, the runtime also

tends to decrease in the same manner. The communication cost of

our method is approximately 2𝑁 times the table size. Note that we

implemented the table as a 16-bit signed integer array. When the

33

Proceedings on Privacy Enhancing Technologies 2025(1) Kii et al.

Table 1: Runtimes [ms] per single sampling average over
10 times protocols runs. 𝑁 is a parameter of our protocol
(Protocol 3) and 𝑝 = 𝑒−𝜀 .

Method 𝜀 𝛿 𝑁
Total Runtime

[ms]

[19]
†1 Z>0 2

−40†2
– 993.19

Adjusted DLap(𝑝) 1.0 2
−40

1 –
†3

Naïve Itr. 1.0 2
−40

1 –
†3

Adjusted DDLap(𝑁, 𝑝) 1.0 2
−40

2 –
†3

Ours (Alg.2+Prot.3) 2.0 2
−40

2 109.7

Ours (Alg.2+Prot.3) 1.0 2
−40

2 108.2

Ours (Alg.2+Prot.3) 0.5 2
−40

2 255.5

Ours (Alg.2+Prot.3) 0.1 2
−40

2 1,263.4

Ours (Alg.2+Prot.3) 2.0 2
−40

3 10.2

Ours (Alg.2+Prot.3) 1.0 2
−40

3 11.2

Ours (Alg.2+Prot.3) 0.5 2
−40

3 12.8

Ours (Alg.2+Prot.3) 0.1 2
−40

3 30.6

†1
The measurements were obtained from [19], using a machine with an Intel

Core i9-7960X CPU and 128GiB RAM. The values are for the optimal settings

for two-party parties.

†2
Note that 2

−40 = 10
−12.041...

and 10
−10 = 2

−33.219...
.

†3
Our implementation could not run in this setting because the table was too

large.

privacy parameter was (𝜀, 𝛿) = (0.1, 2−40), the communication cost

of ours was smaller than that of the protocol in [19].

Table 2: Communication cost [MB] per single sampling. 𝑁 is
a parameter of our protocol (Protocol 3) and 𝑝 = 𝑒−𝜀 .

Method 𝜀 𝛿 𝑁
Comm. Costs

[MB]

[19]
†1 Z>0 2

−40
– 492.72

Adjusted DLap(𝑁, 𝑝) 1.0 2
−40

1 89,106,061.3 (est.)
†4

Naïve Itr. 1.0 2
−40

1 7,999,129.2 (est.)
†4

Adjusted DDLap(𝑁, 𝑝) 1.0 2
−40

2 116,028,843.9 (est.)
†4

Ours (Alg.2+Prot.3) 2.0 2
−40

2 7.3

Ours (Alg.2+Prot.3) 1.0 2
−40

2 7.4

Ours (Alg.2+Prot.3) 0.5 2
−40

2 19.1

Ours (Alg.2+Prot.3) 0.1 2
−40

2 80.1

Ours (Alg.2+Prot.3) 2.0 2
−40

3 0.1

Ours (Alg.2+Prot.3) 1.0 2
−40

3 0.2

Ours (Alg.2+Prot.3) 0.5 2
−40

3 0.3

Ours (Alg.2+Prot.3) 0.1 2
−40

3 1.6

†1
Themeasurements were obtained from [19]. The values are for the optimal settings

for two-party parties.

†4
Our implementation could not run in this setting because the

table was too large. The communication cost was estimated by

2 · (the number of elements in the table) · 16 [bit].

8.3.3 𝐿1 Error. We compared the 𝐿1
error (additive error, E[|𝑍 |])

of our method with those of methods in the distributed sampling

approach. We do not compare ours to that of the as-in-plaintext

approach and random table-lookup approach since its 𝐿1
error is

optimal as sampling in plaintext.

We compared the 𝐿1
error of each method with its ratio to Δ/𝜀.

This reference value Δ/𝜀 is the smallest 𝐿1
error that can be

achieved with the additive mechanism for 𝜀-DP. Note that the

additive mechanism for (𝜀, 𝛿)-DP (𝛿 > 0) can achieve smaller 𝐿1

error, so the ratios may be smaller than one.

The results of the experiment are shown in Table 3. The

distributed sampling method had a slightly smaller ratio of its 𝐿1

error to the reference value than our method in the setting 𝑁 = 2.

The maximum difference was 0.08 (when the parameters were

𝜀 = 0.1, 𝛿 = 2
−40, 𝑁 = 2). In both methods, the smaller the 𝜀, the

larger the ratio of 𝐿1
error to the reference value. In our method,

the ratio of 𝐿1
error to the reference value increased rapidly with

increasing 𝑁 . The method using a table generated with adjusted

DDLap(𝑁, 𝑝) had a very small ratio of its 𝐿1
error to the reference

value, but this is very unrealistic since its estimated

communication cost is 116 TB (see Table 2).

Table 3: The ratio of the 𝐿1 error (E[|𝑍 |]) of the noise 𝑍
sampled by each method to 1/𝜀. The reference value 1/𝜀
is the minimum 𝐿1 error under (𝜀, 0)-DP and Δ = 1. 𝑁 is a
parameter of our protocol (Protocol 3) and 𝑝 = 𝑒−𝜀 .

Method 𝜀 𝛿 𝑁 𝐿1
error

/
(1/𝜀)

Adjusted DDLap(𝑁, 𝑝) 1.0 2
−40

2 0.8509

Dist. Sampling
†5

2.0 10
−320 †2

– 0.9870

Dist. Sampling 1.0 10
−130

– 1.3672

Dist. Sampling 0.5 10
−65

– 1.4681

Dist. Sampling 0.1 10
−14

– 1.4987

Ours (Alg.2+Prot.3) 2.0 2
−40

2 1.0513

Ours (Alg.2+Prot.3) 1.0 2
−40

2 1.4230

Ours (Alg.2+Prot.3) 0.5 2
−40

2 1.5249

Ours (Alg.2+Prot.3) 0.1 2
−40

2 1.5622

Ours (Alg.2+Prot.3) 2.0 2
−40

3 1.4991

Ours (Alg.2+Prot.3) 1.0 2
−40

3 1.8737

Ours (Alg.2+Prot.3) 0.5 2
−40

3 1.9808

Ours (Alg.2+Prot.3) 0.1 2
−40

3 2.0429

†5
See Section 8.2 for the detail.

†2
Note that 2

−40 = 10
−12.041...

and 10
−10 = 2

−33.219...
.

9 Conclusion
In this paper, a secure sampling method is proposed. The proposed

approach combines a table look-up with a lightweight

transformation function. It is computationally less expensive than

the conventional method of transforming uniform random

numbers by computation only. As one embodiment of this

approach, we considered a method that samples random numbers

using a single table and computes their sum. An algorithm with a

theoretical background is presented to generate such a table that

produces random numbers that can be used to achieve differential

privacy (DP) with this approach. The proposed method was

compared with the existing methods in experiments, and results

34

Lightweight Two-Party Secure Sampling Protocol
for Differential Privacy Proceedings on Privacy Enhancing Technologies 2025(1)

showed that its runtimes and communication cost are significantly

smaller. On the other hand, the 𝐿1
error (additive error) was found

to be 1.4 − 1.6× larger than the minimum error under (𝜀, 0)-DP.
This is slightly larger than that of a simple method in the

distributed sampling approach, and so our method is not superior

in this aspect.

Our proposed approach is completely new, and the method

presented in this paper is only a simple embodiment of it. Potential

future work can be divided into two directions: 1) finding the

optimal table without modifying the transformation function (in

this study, we used the summing) or 2) modifying the

transformation function itself. As this paper has shown, finding an

analytically optimal solution for the former approach would be

very challenging. The latter approach requires considering both

the transformation function and the algorithm used to generate

the table. We will continue this research in both approaches.

Acknowledgments
The authors used DeepL translation and Grammarly to revise the

whole text to correct any typos, grammatical errors, and clearer

phrasing. This paper was also corrected by an expert before

submission.

References
[1] Abbas Acar, Z. Berkay Celik, Hidayet Aksu, A. Selcuk Uluagac, and Patrick

McDaniel. 2017. Achieving Secure and Differentially Private Computations in

Multiparty Settings. In 2017 IEEE Symposium on Privacy-Aware Computing (PAC).
IEEE, Washington, DC, USA, 49–59. https://doi.org/10.1109/PAC.2017.12

[2] Borja Balle, Gilles Barthe, and Marco Gaboardi. 2020. Privacy Profiles and

Amplification by Subsampling. Journal of Privacy and Confidentiality 10, 1

(Jan. 2020). https://doi.org/10.29012/jpc.726

[3] Gilles Barthe and Federico Olmedo. 2013. Beyond Differential Privacy:

Composition Theorems and Relational Logic for f-Divergences between

Probabilistic Programs. In Automata, Languages, and Programming (Lecture Notes
in Computer Science), Fedor V. Fomin, Rūsin, š Freivalds, Marta Kwiatkowska, and

David Peleg (Eds.). Springer, Berlin, Heidelberg, 49–60. https://doi.org/10.1007/

978-3-642-39212-2_8

[4] Amos Beimel, Kobbi Nissim, and Eran Omri. 2008. Distributed Private Data

Analysis: Simultaneously Solving How and What. In Advances in Cryptology –
CRYPTO 2008 (Lecture Notes in Computer Science), David Wagner (Ed.). Springer,

Berlin, Heidelberg, 451–468. https://doi.org/10.1007/978-3-540-85174-5_25

[5] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function Secret Sharing. In

Advances in Cryptology - EUROCRYPT 2015, Elisabeth Oswald and Marc Fischlin

(Eds.). Springer, Berlin, Heidelberg, 337–367. https://doi.org/10.1007/978-3-662-

46803-6_12

[6] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing:

Improvements and Extensions. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’16). Association for Computing

Machinery, New York, NY, USA, 1292–1303. https://doi.org/10.1145/2976749.

2978429

[7] Jeffrey Champion, abhi Shelat, and Jonathan Ullman. 2019. Securely Sampling

Biased Coins with Applications to Differential Privacy. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security (CCS’19).
Association for Computing Machinery, London United Kingdom, 603–614. https:

//doi.org/10.1145/3319535.3354256

[8] T-H. Hubert Chan, Elaine Shi, and Dawn Song. 2012. Optimal Lower Bound for

Differentially Private Multi-party Aggregation. In Algorithms – ESA 2012 (Lecture
Notes in Computer Science), Leah Epstein and Paolo Ferragina (Eds.). Springer,

Berlin, Heidelberg, 277–288. https://doi.org/10.1007/978-3-642-33090-2_25

[9] Chris Clifton and Balamurugan Anandan. 2013. Challenges and Opportunities

for Security with Differential Privacy. In Information Systems Security (Lecture
Notes in Computer Science), Aditya Bagchi and Indrakshi Ray (Eds.). Springer,

Berlin, Heidelberg, 1–13. https://doi.org/10.1007/978-3-642-45204-8_1

[10] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Generation.

In Advances in Cryptology - EUROCRYPT 2006 (Lecture Notes in Computer Science),
Serge Vaudenay (Ed.). Springer, Berlin, Heidelberg, 486–503. https://doi.org/10.

1007/11761679_29

[11] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of

Differential Privacy. Foundations and Trends® in Theoretical Computer Science 9,
3–4 (2014), 211–407. https://doi.org/10.1561/0400000042

[12] Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan

Pryvalov. 2014. Differentially Private Data Aggregation with Optimal Utility.

In Proceedings of the 30th Annual Computer Security Applications Conference
(ACSAC ’14). Association for Computing Machinery, New York, NY, USA, 316–

325. https://doi.org/10.1145/2664243.2664263

[13] Reo Eriguchi, Atsunori Ichikawa, Noboru Kunihiro, and Koji Nuida. 2021. Efficient

Noise Generation to Achieve Differential Privacy with Applications to Secure

Multiparty Computation. In Financial Cryptography and Data Security (Lecture
Notes in Computer Science), Nikita Borisov and Claudia Diaz (Eds.). Springer,

Berlin, Heidelberg, 271–290. https://doi.org/10.1007/978-3-662-64322-8_13

[14] David Froelicher, Patricia Egger, João Sá Sousa, Jean Louis Raisaro, Zhicong

Huang, Christian Mouchet, Bryan Ford, and Jean-Pierre Hubaux. 2017. UnLynx:

A Decentralized System for Privacy-Conscious Data Sharing. Proceedings on
Privacy Enhancing Technologies 2017, 4 (Oct. 2017), 232–250. https://doi.org/10.

1515/popets-2017-0047

[15] Quan Geng and Pramod Viswanath. 2013. The Optimal Mechanism in Differential

Privacy. arXiv:1212.1186 [cs] (Oct. 2013). arXiv:1212.1186 [cs] http://arxiv.org/

abs/1212.1186

[16] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. 2009. Universally

Utility-Maximizing Privacy Mechanisms. In Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing (STOC ’09). Association for Computing

Machinery, New York, NY, USA, 351–360. https://doi.org/10.1145/1536414.

1536464

[17] Slawomir Goryczka, Li Xiong, and Vaidy Sunderam. 2013. Secure Multiparty

Aggregation with Differential Privacy: A Comparative Study. In Proceedings of
the Joint EDBT/ICDT 2013 Workshops (EDBT ’13). Association for Computing

Machinery, New York, NY, USA, 155–163. https://doi.org/10.1145/2457317.

2457343

[18] Seidu Inusah and Tomasz J. Kozubowski. 2006. A Discrete Analogue of the

Laplace Distribution. Journal of Statistical Planning and Inference 136, 3 (March

2006), 1090–1102. https://doi.org/10.1016/j.jspi.2004.08.014

[19] Hannah Keller, Helen Möllering, Thomas Schneider, Oleksandr Tkachenko, and

Liang Zhao. 2023. Secure Noise Sampling for DP in MPC with Finite Precision.

https://eprint.iacr.org/2023/1594

[20] John B. Kioustelidis. 1986. Bounds for Positive Roots of Polynomials. J. Comput.
Appl. Math. 16, 2 (Oct. 1986), 241–244. https://doi.org/10.1016/0377-0427(86)

90096-8

[21] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016.

Efficient Batched Oblivious PRF with Applications to Private Set Intersection. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). Association for Computing Machinery, New York, NY, USA,

818–829. https://doi.org/10.1145/2976749.2978381

[22] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar,

and Salil Vadhan. 2010. The Limits of Two-Party Differential Privacy. In 2010
IEEE 51st Annual Symposium on Foundations of Computer Science. IEEE, Las Vegas,
NV, USA, 81–90. https://doi.org/10.1109/FOCS.2010.14

[23] Sebastian Meiser and Esfandiar Mohammadi. 2018. Tight on Budget? Tight

Bounds for r-Fold Approximate Differential Privacy. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (CCS ’18).
Association for Computing Machinery, New York, NY, USA, 247–264. https:

//doi.org/10.1145/3243734.3243765

[24] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009.

Computational Differential Privacy. In Advances in Cryptology - CRYPTO 2009,
Shai Halevi (Ed.), Vol. 5677. Springer Berlin Heidelberg, Berlin, Heidelberg, 126–

142. https://doi.org/10.1007/978-3-642-03356-8_8

[25] Peter Rindal and Lance Roy. 2021. Osu-Crypto/libOTe. Cryptography research

at Oregon State University. https://github.com/osu-crypto/libOTe

[26] Seetha Lekshmi, V and Simi Sebastian. 2014. A Skewed Generalized Discrete

Laplace Distribution. 2, 3 (March 2014), 8. https://www.ijmsi.org/Papers/Volume.

2.Issue.3/K0230950102.pdf

[27] E. Shi, T.-H. Hubert Chan, E. Rieffel, Richard Chow, and D. Song. 2011.

Privacy-Preserving Aggregation of Time-Series Data. In Network and
Distributed System Security Symposium. https://www.semanticscholar.

org/paper/Privacy-Preserving-Aggregation-of-Time-Series-Data-Shi-

Chan/7cc53ef35f8398181bd09755ecc2fa8f52d0da1d

[28] Elaine Shi, T.-H. Hubert Chan, Eleanor Rieffel, and Dawn Song. 2017. Distributed

Private Data Analysis: Lower Bounds and Practical Constructions. ACM
Transactions on Algorithms 13, 4 (Dec. 2017), 50:1–50:38. https://doi.org/10.

1145/3146549

[29] David M. Sommer, Sebastian Meiser, and Esfandiar Mohammadi. 2019. Privacy

Loss Classes: The Central Limit Theorem in Differential Privacy. Proceedings on
Privacy Enhancing Technologies (2019). https://petsymposium.org/popets/2019/

popets-2019-0029.php

[30] Genqiang Wu, Yeping He, Jingzheng Wu, and Xianyao Xia. 2016. Inherit

Differential Privacy in Distributed Setting: Multiparty Randomized Function

35

https://doi.org/10.1109/PAC.2017.12
https://doi.org/10.29012/jpc.726
https://doi.org/10.1007/978-3-642-39212-2_8
https://doi.org/10.1007/978-3-642-39212-2_8
https://doi.org/10.1007/978-3-540-85174-5_25
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/3319535.3354256
https://doi.org/10.1145/3319535.3354256
https://doi.org/10.1007/978-3-642-33090-2_25
https://doi.org/10.1007/978-3-642-45204-8_1
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/2664243.2664263
https://doi.org/10.1007/978-3-662-64322-8_13
https://doi.org/10.1515/popets-2017-0047
https://doi.org/10.1515/popets-2017-0047
https://arxiv.org/abs/1212.1186
http://arxiv.org/abs/1212.1186
http://arxiv.org/abs/1212.1186
https://doi.org/10.1145/1536414.1536464
https://doi.org/10.1145/1536414.1536464
https://doi.org/10.1145/2457317.2457343
https://doi.org/10.1145/2457317.2457343
https://doi.org/10.1016/j.jspi.2004.08.014
https://eprint.iacr.org/2023/1594
https://doi.org/10.1016/0377-0427(86)90096-8
https://doi.org/10.1016/0377-0427(86)90096-8
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1109/FOCS.2010.14
https://doi.org/10.1145/3243734.3243765
https://doi.org/10.1145/3243734.3243765
https://doi.org/10.1007/978-3-642-03356-8_8
https://github.com/osu-crypto/libOTe
https://www.ijmsi.org/Papers/Volume.2.Issue.3/K0230950102.pdf
https://www.ijmsi.org/Papers/Volume.2.Issue.3/K0230950102.pdf
https://www.semanticscholar.org/paper/Privacy-Preserving-Aggregation-of-Time-Series-Data-Shi-Chan/7cc53ef35f8398181bd09755ecc2fa8f52d0da1d
https://www.semanticscholar.org/paper/Privacy-Preserving-Aggregation-of-Time-Series-Data-Shi-Chan/7cc53ef35f8398181bd09755ecc2fa8f52d0da1d
https://www.semanticscholar.org/paper/Privacy-Preserving-Aggregation-of-Time-Series-Data-Shi-Chan/7cc53ef35f8398181bd09755ecc2fa8f52d0da1d
https://doi.org/10.1145/3146549
https://doi.org/10.1145/3146549
https://petsymposium.org/popets/2019/popets-2019-0029.php
https://petsymposium.org/popets/2019/popets-2019-0029.php

Proceedings on Privacy Enhancing Technologies 2025(1) Kii et al.

Computation. In 2016 IEEE Trustcom/BigDataSE/ISPA. 921–928. https://doi.org/

10.1109/TrustCom.2016.0157

A Proof of Theorem 6.2
Proof. For simplicity, we prove the case when 𝑁 = 2 only, but

𝑁 is not substituted for 2 as much as possible. The general case can

be proved in the same way.

We will show that there exists a bound 𝑅(𝑤,𝑘) (> 1) such that

(1) 𝑟𝑃𝐷∗𝑁 (𝑘 + 1) − 𝑃𝐷∗𝑁 (𝑘) ≥ 0 holds for any 𝑟 ≥ 𝑅(𝑤,𝑘), and
(2) max𝑘 𝑅(𝑤,𝑘) converges to 1 as𝑤 →∞.

Here we denote 𝐷 (𝑒−𝜀/Δ, 𝑁 ,𝑤) by 𝐷 . Since we already know

𝑃𝐷∗𝑁 (𝑘) = 𝐶2𝑟𝑤−|𝑘 | for |𝑘 | ≥ (𝑁 − 1)𝑤 as above, we consider

𝑘 = 0, . . . , (𝑁 − 1)𝑤 − 1.

We will compute 𝑟𝑃𝐷∗𝑁 (𝑘 + 1) and 𝑃𝐷∗𝑁 (𝑘). In this proof, we

repeatedly use the shorthand notation 𝐵(𝑖) :=
(
1/𝑁+(𝑤−𝑖)−1

𝑤−𝑖
)
. Note

that we can write 𝑃𝐷 (𝑘) = 𝐵(𝑘)𝑟𝑤−𝑖 .
𝑟𝑃𝐷∗𝑁 (𝑘 + 1)

= 𝑟𝑁𝑤−𝑘𝐵(0)𝐵(𝑘 + 1) + 𝑟𝑁𝑤−𝑘
∑︁
𝑖+𝑗=𝑘
0≤𝑖≤𝑘

𝐵(𝑖)𝐵(𝑗 + 1)

+
(
𝑁

1

) ∑︁
𝑖+𝑗=𝑘

𝑘−𝑤+1≤𝑖<0

𝐵(−𝑖)𝑟𝑤+𝑖𝐵(𝑗 + 1)𝑟𝑤− 𝑗 .

Also,

𝑃𝐷∗𝑁 (𝑘)

= 𝑟𝑁𝑤−𝑘
∑︁
𝑖+𝑗=𝑘
0≤𝑖≤𝑘

𝐵(𝑖)𝐵(𝑗)

+
(
𝑁

1

) ∑︁
𝑖+𝑗=𝑘

𝑘−𝑤+1≤𝑖<0

𝑟𝑤+𝑖𝐵(−𝑖)𝑟𝑤− 𝑗𝐵(𝑗) + 𝑁𝑟𝑘𝐵(𝑤 − 𝑘)𝐵(𝑤) .

By the definition of the binomial coefficient𝐵(𝑗),𝐵(𝑗+1)−𝐵(𝑗) =
−1/𝑁+1

𝑤−(𝑗+1) 𝐵(𝑗) ≥ 0 for 0 ≤ 𝑗 ≤ 𝑤−1 = (𝑁 −1)𝑤−1. Since we consider

0 ≤ 𝑘 ≤ (𝑁 − 1)𝑤 − 1, we can obtain the difference

𝑟𝑃𝐷∗𝑁 (𝑘 + 1) − 𝑃𝐷∗𝑁 (𝑘)

= 𝑟𝑁𝑤−𝑘𝐵(0)𝐵(𝑘 + 1) (16)

+ 𝑟𝑁𝑤−𝑘
∑︁

0≤𝑖≤𝑘,
𝑖+𝑗=𝑘

−1/𝑁 + 1

𝑤 − (𝑗 + 1) 𝐵(𝑖)𝐵(𝑗) (17)

+ 𝑁
∑︁

𝑘−𝑤+1≤𝑖≤−1,
𝑖+𝑗=𝑘

−1/𝑁 + 1

𝑤 − (𝑗 + 1) 𝐵(−𝑖)𝐵(𝑗)𝑟
2𝑤−𝑘+2𝑖

(18)

− 𝑁𝑟𝑤𝐵(𝑤 − 𝑘)𝐵(𝑤) . (19)

Thus, 𝑟𝑃𝐷∗𝑁 (𝑘 + 1) − 𝑃𝐷∗𝑁 (𝑘) is a real-coefficient polynomial

of 𝑟 that has only one term with a negative coefficient. Especially,

since the leading term coefficient is positive, the polynomial’s value

is positive as 𝑟 → ∞. To be more specific, it is positive when 𝑟 is

greater than any positive roots of the polynomial. According to

Kioustelidis’s result [20], we can evaluate the upper bound of the

positive root of this polynomial:

𝑅(𝑤,𝑘) :=

���� the least coefficient (19)

the leading coefficient (16)+(17)

���� 1

(𝑁𝑤−𝑘)−𝑤
.

Hence 𝑟𝑃𝐷∗𝑁 (𝑘 + 1) − 𝑃𝐷∗𝑁 (𝑘) holds for any 𝑘 ∈ {0, . . . , 𝑁𝑤 − 1}
and any 𝑟 > max𝑘 𝑅(𝑤,𝑘).

Since 𝑅(𝑤,𝑘) is monotonically decreasing in 𝑘 , the maximal

upper bound 𝑅(𝑤) := max𝑘 𝑅(𝑤,𝑘) is equal to 𝑅(𝑤, 0). Specifically,
𝑅(𝑤) = 𝑅(𝑤, 0)

=

(
𝑁𝐵(𝑤)𝐵(𝑤)
2𝐵(0)𝐵(1)

) 1

(𝑁 −1)𝑤

≤
(
𝑁𝐵(𝑤)𝐵(𝑤)
2𝐵(0)𝐵(0)

) 1

(𝑁 −1)𝑤

=

(
𝑁

2

) 1

(𝑁 −1)𝑤
(
1/𝑁 +𝑤 − 1

𝑤

)− 2

(𝑁 −1)𝑤
. (20)

A well-known asymptotic formula for the generalized binomial

coefficient is((
1/𝑁 +𝑤 − 1

𝑤

)
=

)
(−1)𝑤

(
−1/𝑁
𝑤

)
≈ 𝑤1/𝑁−1

Γ(1/𝑁) (𝑤 →∞)

gives the asymptotic evaluation of the last formula (20):

𝑅(𝑤) ≤ (20) ≈
(
𝑁 · Γ2 (1/𝑁)

2

) 1

(𝑁 −1)𝑤
𝑤2/𝑁𝑤 (𝑤 →∞).

From the above, we conclude that 𝑟𝑃𝐷∗𝑁 (𝑘+1)−𝑃𝐷∗𝑁 (𝑘) ≥ 0 holds

for any 𝑘 ∈ {0, . . . , 𝑁𝑤 − 1} and 𝑟 > 1(= lim𝑤→∞max𝑘 𝑅(𝑤,𝑘))
when𝑤 goes to∞. □

36

https://doi.org/10.1109/TrustCom.2016.0157
https://doi.org/10.1109/TrustCom.2016.0157

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminary
	3.1 Differential Privacy
	3.2 Probability Generating Function
	3.3 Probability Distributions and its Decomposition

	4 Problem Description
	5 Naïve Algorithms for Random Table-Lookup Approach
	5.1 Method I : Adjusting Known PMFs
	5.2 Method II : Iterative Algorithm

	6 Our Algorithm to Make Small Table for Our Approach
	6.1 Overview of Our Method
	6.2 Approximate Decomposition of DLap(p)
	6.3 Iterative Algorithm

	7 Our Secure Sampling Protocol
	7.1 Security

	8 Experimental Evaluation
	8.1 Experiment Setting
	8.2 Compared Methods
	8.3 Experimental Results

	9 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 6.2

