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Abstract
Distributed training that enables multiple parties to jointly train

a model on their respective datasets is a promising approach to

address the challenges of large volumes of diverse data for training

modern machine learning models. However, this approach immedi-

ately raises security and privacy concerns; both about each party

wishing to protect its data from other parties during training and

preventing leakage of private information from the model after

training through various inference attacks. In this paper, we ad-

dress both these concerns simultaneously by designing efficient

Differentially Private, secure Multiparty Computation (DP-MPC)

protocols for jointly training a model on data distributed among

multiple parties. Our DP-MPC protocol in the two-party setting

is 56-794× more communication-efficient and 16-182× faster than

previous such protocols. Conceptually, our work simplifies and

improves on previous attempts to combine techniques from secure

multiparty computation and differential privacy, especially in the

context of ML training.

Keywords
Differential Privacy, Secure Multi-Party Computation, Secure and

Private Deep Learning, Discrete Gaussian Mechanism

1 Introduction
Over the last two decades, application areas of Machine Learning

(ML) have exploded. At the same time, the ML community faces the

bottleneck of access to ever increasing volumes of rich training data.

This bottleneck is only made worse by expanding regimes of legal

regulations on the use of personal data [4] and controversies about

copyright violations and data ownership. One natural approach

to address the issue of large volumes of diverse training data is to

enable multiple parties with their own respective data sets to run a

distributed training algorithm on the union of their data to build

a common model. For example, several banks might want to use

their respective transaction data sets to build a common model for

fraud detection without relying on a central entity. This approach

immediately raises two critical concerns.
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The first concern is that these parties might not trust each other

and fear exposing private information from their own data set to

other parties through the distributed training algorithm. In recent

years, secure Multi-Party Computation (MPC) has emerged as a

promising solution framework to this problem, called secure train-
ing, (and the complementary problem of secure inference). By now,

secure training and inference protocols have been constructed for

several deep learning models using techniques such as secret shar-

ing [6, 44, 50, 51, 63, 66, 67] (and references therein) in the MPC

framework and homomorphic encryption [26, 33, 47, 65].

The second concern comes from potential leakage from the

model itself after it is trained on the collective data. A slew of attacks

such as Membership Inference Attacks (MIA’s), Attribute Inference

Attacks, and Data Reconstruction Attacks [9, 17, 19, 34, 61, 74],

use a deployed model to make cleverly chosen inference queries

to learn sensitive information from, or even entirely reconstruct,

data items from the underlying training data. Differential Privacy

(DP) [24] has emerged as the de facto solution framework to protect

against this kind of leakage. A vast amount of research shows that

models trained by differentially private training algorithms, such

as DP-SGD in the seminal work of Abadi et al. [1], are resistant to
the classes of attacks mentioned above [29, 30, 52, 74]. DP gives

mathematically quantifiable guarantees on dataset privacy making

it a highly dependable privacy-protection paradigm and used in

services of tech giants such as Google [68], Apple [64] and even in

the US Census [2].

To summarize, distributed training raises two kinds of concerns:

(i) security of one party’s data against other parties during training

and (ii) privacy leakage from deployedmodel after training, through
inference attacks.

In this paper, we address both these concerns simultaneously by

constructing Differentially Private, secureMulti-Party Computation

(DP-MPC) protocols for jointly training a model on data distributed

among multiple parties. We do this by combining techniques from

the areas of secure MPC protocols and Differential Privacy for ML.

Our protocols improve the previous state of the art in such protocols

by several orders of magnitude, and make some new conceptual

contributions.

1.1 Our Contributions
Our contributions are summarized below.

• A new private neural network training algorithm: We first present

a new algorithm for training neural networks with differential

privacy - at a high level, this algorithm adds multiple discrete
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Gaussian noise samples to the gradient values at each iteration

in a fixed-point training algorithm (as opposed to DP-SGD[1]

that added a single continuous Gaussian noise sample). We prove

privacy of this new algorithm and further also extend the privacy

proof to the case where an adversary learns a strict subset of

these noise samples.We also introduce amoments accountant for

the discrete Gaussian mechanism (as opposed to the continuous

accountant from [1]), which we believe to be of independent

interest in DP training.

• A new private training toolkit: We empirically show that our

training algorithm preserves accuracy relative to the DP-SGD

algorithm. Along this way, we develop a toolkit for fixed-point

ML training with privacy. To the best of our knowledge, this is

the first DP framework that comes with an end-to-end proof of

privacy of its implementation since it does not use floating-point

arithmetic which has been shown to be vulnerable to precision-

based attacks on DP mechanisms [36, 40, 48].

• A communication-efficient protocol for secure and private deep
learning: We then convert the above algorithm into a secure and
private 𝑛-party training protocol. We do this by using existing

MPC protocols [44] to securely realize the fixed-point training

algorithm while having each of the 𝑛 parties sample a single

noise sample locally and adding it to the secret shares of the
gradients at each iteration. Using our above privacy proof, we

prove that this protocol is private as well. We implement our

protocol for secure and private training and demonstrate that

for the case of 2-party training, our protocol is at least 56-794×
communication-efficient and 16-182× faster than the current

state-of-the-art protocols [43] for the same task.

We note that all our secure DP Training protocols naturally gener-

alize to more than two parties.

1.2 Our Techniques
We now present a high-level overview of the techniques used in our

secure and private training protocol. Let us first consider the private

training algorithm DP-SGD [1]. Our training method differs from

DP-SGD on two counts. First, while standard DP-SGD works over

reals, wemake use of fixed-point arithmetic sinceMPC protocols are

more efficient over fixed-point arithmetic. To enable this, we sample

(random) noise from the discrete Gaussian distribution instead of

the continuous Gaussian distribution. Second, to avoid expensive

(single) noise sampling via MPC, we sample 𝑛 noise samples in each

training iteration (looking ahead, 𝑛 will be the number of parties in

the multi-party training protocol). We add these 𝑛 noise samples to

the (clipped) gradient. Third, unlike standard use of DP-SGD, in the

context of distributed training, an adversary controlling a subset

of parties, will also have access to a subset of added noise samples,

and privacy must be argued against such an adversary. As one of

our main technical contributions, we show that the above modified

training algorithm also satisfies differential privacy. This does not

directly follow from prior works, e.g., the privacy analysis of [1],

due to reasons we elaborate next.

First, while it is easy to see that if we sample multiple values

from a continuous Gaussian distribution and take their sum, then

the resulting distribution is also a continuous Gaussian distribution,

this, unfortunately, does not hold for discrete Gaussian distributions

– adding multiple discrete Gaussian samples results in a distribution

that is far from a discrete Gaussian with an approximation error,

which must be controlled to obtain any meaningful privacy guaran-

tees. We control this approximation error by adapting techniques

from [41]. Additionally, we extend the moments accountant [1] to

the case of the discrete Gaussian mechanism. Second, DP-SGD [1]

does not consider privacy in the case where 𝑛 noise samples are

added and the adversary is additionally also provided a strict subset

of these noise samples. However, to argue privacy against an adver-

sary controlling a subset of the parties in the multi-party training

protocol, we also prove this stronger guarantee. Combining these

techniques, gives us our proof of privacy.

Next, we build on this private training algorithm to build our

secure and private multiparty training protocol. To do this, we use

an off-the-shelf MPC protocol from the MP-SPDZ library [44] to

securely emulate each functionality of our protocol. To obtain a

secure protocol for noise sampling, since we add 𝑛 noise samples

and prove our privacy guarantee against an adversary that learns

a strict subset of these, we have each party locally sample one

noise value, using the discrete Gaussian noise sampling technique

from [15]. This gives us a highly efficient secure and private training

protocol.

1.3 Related Work
Secure ML training with private inputs and parameters has been

long studied in the domain of MPC. Various works have tackled

ML tasks such as regression [7, 39, 51, 62], neural network train-

ing and inference [21, 35, 38, 45, 49, 51, 63, 67, 69] (and references

therein) and inference for transformer-based models [31, 32, 54].

While the secure training protocols preserve data-privacy during
the training, they do not guarantee protection of the underlying

datasets against membership inference attacks on the models after
training. To protect against such inference attacks, several works

[3, 42, 56, 57] attempt to combine MPC protocols for secure training

with differential privacy. Unfortunately, all of themmake use of con-

tinuous noise distributions and use floating point arithmetic, which

could inherently lead to vulnerabilities that violate DP privacy

guarantees [48]. In contrast, in our protocols, we use discrete noise
sampling and fixed point arithmetic which are compatible with

both differential privacy and MPC protocols. Previously, Kairouz

et al. [41] studied differentially private federated learning using

discrete Gaussian noise distributions. Indeed, we rely heavily on

techniques from their work in our proofs. Their work, however,

does not consider secure training using secret-sharing in the MPC

setting, which is our focus here. The work by Keller et al. [43] intro-
duced an MPC protocol for two parties to jointly sample a discrete

Gaussian random variable, producing a single noise sample secret-

shared between the parties. However, as we will show in Section 5,

the communication costs of noise generation using their protocol is

prohibitively high for applications such as DP-SGD, where a large

number of noise samples need to be generated in each training

iteration.

1.4 Organization
The rest of the paper is organized as follows. Section 2 discusses

relevant background for differential privacy and MPC. We describe

170



Proceedings on Privacy Enhancing Technologies 2025(1)

our DP training algorithm with multiple noise samples and state its

privacy guarantees in Section 3. In Section 4, we convert this algo-

rithm to an 𝑛-party training protocol using secure MPC primitives.

We present experimental results for privacy-accuracy trade-offs

achieved by our training protocol and compare our protocol’s effi-

ciency to related work in terms of communication and runtime in

Section 5. Section 6 concludes the paper.

2 Preliminaries
We begin by setting notation used in the rest of the paper and

present the necessary background on differential privacy and secure

multiparty computation.

2.1 Notation
The symbols Z,Z+,Q and R denote the set of integers, positive

integers, rational numbers and real numbers, respectively. We rep-

resent the set {1, 2, · · · , 𝑡} by [𝑡] for 𝑡 ∈ Z+
and 𝜆 represents the

computational security parameter. The ring of 𝑤-bit integers is

represented by Z𝑊 where𝑊 = 2
𝑤
. We use P[𝑋 = 𝑥] to represent

the probability of a random variable 𝑋 taking a value 𝑥 , under a

given probability distribution. I𝑑 denotes the 𝑑 × 𝑑 identity matrix.

A vector is represented by ®𝑣 and the 𝑖-th element of the vector ®𝑣 is
represented by ®𝑣 [𝑖].

Fixed-Point Numbers. Finite-bitwidth computers have a fixed

number of bits assigned to represent real numbers, with up to a

certain level of precision for non-integral numbers. Real numbers

which do not have a finite representation (e.g. irrational numbers)

cannot be exactly represented on finite-bitwidth computers. Hence,

all real numbers are represented to some degree of approximation

using either a fixed-point representation [73] or a floating-point

representation [53]. Fixed-point representation allows representing

real numbers as integers from a ring, by scaling the real number by

a given scaling factor. A real number 𝑟 ∈ R can be represented as

a fixed-point number 𝑥 ∈ Z𝑊 with bitwidth𝑤 and scale 𝑓 , where

𝑥 =
⌊
𝑟 · 2𝑓

⌋
mod𝑊 . The real value corresponding to a fixed-point

number 𝑥 with bitwidth𝑤 and scale 𝑓 is
𝑥

2
𝑓 .

2.2 Differential Privacy
Differential Privacy (DP) [24, 25] is a technique by which privacy

of a dataset is preserved by adding random noise to responses of

queries on the dataset (e.g. gradients computed during training

ML models). Training datasets often contain sensitive information

pertaining to individuals’ identity, health records, financial state-

ments, etc. which must be kept private. Even if the training dataset

itself is kept protected, allowing inference on the model still makes

the dataset vulnerable to membership inference attacks [16, 61].

The goal of these attacks is to determine if a particular sample is

present in the dataset on the basis of the output of the model on

carefully chosen inference inputs. Differential privacy (amongst

other things) protects against membership inference attacks by in-

jecting random noise into the model training algorithm. We provide

a formal definition of DP below.

Definition 2.1 (Adjacent datasets). LetD be the set of all datasets

comprising of𝑚 records. Two datasets 𝐷 = {𝑑1, · · · , 𝑑𝑚} and 𝐷 ′ =
{𝑑 ′

1
, · · · , 𝑑 ′𝑚} in D are said to be adjacent if they differ in exactly

one record. That is, there exists exactly one index 𝑖∗ ∈ [𝑚] such
that 𝑑𝑖∗ ≠ 𝑑 ′

𝑖∗ and 𝑑𝑖 = 𝑑 ′𝑖 for all 𝑖 ≠ 𝑖∗.

Definition 2.2 (Differential Privacy). Let M : D → R be

a randomized mechanism over D with range R – the set of all

possible outcomes of M. Let 𝜀 > 0 and 𝛿 ∈ (0, 1]. Then M is

said to satisfy (𝜀, 𝛿)-differential privacy if for all adjacent datasets

𝐷,𝐷 ′ ∈ D and 𝑆 ⊆ R, it holds that

P[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 P[M(𝐷 ′) ∈ 𝑆] + 𝛿. (1)

In this work, we are interested in training ML models and hence,

the mechanism corresponds to the private training algorithm. The

parameter 𝜀 in Equation (1) is the privacy budget of the mechanism

M. A smaller value of 𝜀 indicates that outputs ofM on two adja-

cent datasets will be close. This makes it difficult for an adversary

to detect the presence of a single data or record in the training

dataset only by looking at the output of the model, implying better

privacy protection of an individual’s sensitive data. The parameter

𝛿 specifies the maximum acceptable probability with which one

can allow the above privacy to not hold, referred to as the failure

probability of differential privacy. Overall, small values of 𝜀 and 𝛿

imply better privacy for the training dataset. Finally, we consider

differential privacy against an adversary which has some auxiliary

information about the mechanism.

Definition 2.3. Consider an adversary A that has some auxiliary

information, Aux, about the randomized mechanism M (alongside

the mechanism’s output). We say that M is (𝜀, 𝛿)-DP against A if

for all adjacent datasets 𝐷,𝐷 ′ ∈ D and 𝑆 ⊆ R, it holds that

P[M(𝐷) ∈ 𝑆 |Aux] ≤ 𝑒𝜀 P[M(𝐷 ′) ∈ 𝑆 |Aux] + 𝛿 .

Differential Privacy via Gaussian Mechanism. To ensure differ-

ential privacy for a dataset, a query 𝑞 operating on the dataset

needs to be transformed into a differentially private mechanism

M. Typically, this is done by adding noise to the query’s output

and this noise is sampled from some specific statistical distribution.

Sampling noise from the Gaussian distribution has been shown to

achieve tight privacy bounds [25]. The variance of the distribution

is typically set according to the required level of privacy and the

sensitivity of the query, i.e., how much the output of the query can

potentially vary when subject to a change in the input.

Definition 2.4 (𝐿𝑝-sensitivity). Let 𝑞 : D → R𝑏
be a query on

D. For any 𝑝 ≥ 1, the 𝐿𝑝 -sensitivity Δ𝑝 (𝑞) of the query 𝑞 is defined

as the maximum 𝐿𝑝 -distance between the outputs of 𝑞 across all

pairs of adjacent datasets 𝐷,𝐷 ′
, i.e.

Δ𝑝 (𝑞) = max

𝐷,𝐷′∈D
| |𝑞(𝐷) − 𝑞(𝐷 ′) | |𝑝 .

The larger the sensitivity, the easier it is for an adversary to

detect a change in the output of the query on different inputs and

hence the variance is typically set proportional to the squared 𝐿2-

sensitivity of the query. Hence, the Gaussian mechanism for the

query 𝑞 is defined as

M(𝐷) = 𝑞(𝐷) + N (0,Δ2

2
(𝑞)𝜎2I𝑏 ) , (2)

where the noisemultiplier𝜎 is set greater than or equal to

√
2 log(1.25/𝛿 )

𝜀

to ensure (𝜀, 𝛿)-DP [25].

171



Proceedings on Privacy Enhancing Technologies 2025(1) Das et al.

2.2.1 DP-SGD Algorithm. The Gaussian mechanism is used to

design a differentially private stochastic gradient descent (DP-SGD)

algorithm for training (deep) neural networks [1]. The DP-SGD

algorithm proceeds as follows. Consider a training dataset 𝐷 =

(𝑋,𝑌 ) with 𝑚 records, where 𝑋 ∈ R𝑚×ℎ
contains ℎ features for

each of the𝑚 records and 𝑌 ∈ R𝑚
denotes labels of the records. At

each training iteration 𝜏 ∈ {1, . . . ,𝑇 }, DP-SGD constructs a batch

𝐷𝜏 of size ℓ𝜏 by including each record with probability 𝛾 = ℓ
𝑚
,

chosen i.i.d., where ℓ denotes the (expected) size of the (random)

batch, i.e., E[ℓ𝜏 ] = ℓ . For each sampled record 𝑑𝜏,𝑖 ∈ 𝐷𝜏 , 1 ≤ 𝑖 ≤ ℓ𝜏 ,

the algorithm first computes the gradient 𝑔𝜏 (𝑑𝜏,𝑖 ) of a loss function1
L with respect to the current model parameters 𝜃𝜏 ∈ R𝑏

. It then

clips the gradient to 𝑔𝜏 (𝑑𝜏,𝑖 ) such that its 𝐿2-norm remains less than

or equal to a threshold𝐶 (called the clipping threshold hereon). Next,

the algorithm samples a vector of noise samples from the Gaussian

distribution N(0,𝐶2𝜎2I𝑏 ), scales it down by the batch size ℓ , and

adds the noise vector to the average clipped gradient. Note that the

noise vector is of the same length as the gradient vector. Finally,

DP-SGD updates the model parameters as 𝜃𝜏+1 = 𝜃𝜏 − 𝜁𝑔𝜏 , where

𝑔𝜏 = 1

ℓ

{∑ℓ𝜏
𝑖=1

𝑔𝜏 (𝑑𝜏,𝑖 ) + N (0,𝐶2𝜎2I𝑏 )
}
denotes the average noisy

gradient calculated in the previous step. 𝜁 denotes the learning rate.

At each training iteration, the addition of noise to the clipped gra-

dients makes the model differentially private w.r.t. to the respective

batch, according to the definition of the Gaussian mechanism. Note

that the batch 𝐷𝜏 at iteration 𝜏 is randomly sampled and DP-SGD

is run for total 𝑇 iterations. [1] introduces a moments accountant

that ensures the model 𝜃𝑇+1 obtained after 𝑇 iterations is (𝜀, 𝛿)-DP
for any 𝜀 < 𝑐1𝛾

2𝑇 and 𝛿 ∈ (0, 1] if one chooses 𝜎 ≥ 𝑐2
𝛾
√
𝑇 log (1/𝛿 )

𝜀
.

Here, 𝛾 = ℓ
𝑚

is the probability with which each datapoint in 𝐷

is picked into a batch at each training iteration and 𝑐1 and 𝑐2 are

appropriate constants.

2.2.2 Discrete Gaussian Mechanism [15]. In this work, we consider

the setting where multiple parties hold sensitive data and we train

an ML model on combined data using a secure multiparty computa-

tion (MPC) protocol (Section 2.3.2). Since MPC protocols are much

more efficient over fixed-point arithmetic compared to floating-

point arithmetic [58], we consider SGD and DP-SGD algorithm

over fixed-point arithmetic with fixed bitwidths and scale (section

2.1). For this, we must sample noise values from a discrete Gauss-

ian distribution instead of a continuous distribution. The discrete

Gaussian distribution NZ (𝜇, 𝜎2) with mean 𝜇 ∈ Z and variance

𝜎2 ∈ R+ has the probability mass function

∀𝑧 ∈ Z, P
[
𝑍 = 𝑧

]
=

𝑒
− (𝑧−𝜇)2

2𝜎2∑
𝑦∈Z 𝑒

− (𝑦−𝜇)2
2𝜎2

. (3)

Recall that the DP-SGD algorithm adds noise samples to the clipped

gradients, which are typically not integers. Hence, we want to

sample noise samples from a finer distributionN𝛼Z (0,𝐶2𝜎2), where
the support of the distribution is the set of rational numbers 𝛼Z for

some rational𝛼 ∈ (0, 1]. Note that the noise samples are represented

as fixed-point numbers of bitwidth𝑤 and scale 𝑓 and hence belong

to the ring Z𝑊 . Similar to equation (2), a mechanism M(𝐷) =

1
The loss function L is task dependent, e.g., for binary classification task it could be

log-loss, for regression task it could be square-loss etc.

𝑞(𝐷) + N𝛼Z (0,Δ2

2
(𝑞)𝜎2I𝑏 ) is referred to as the discrete Gaussian

mechanism. Cannonne et al. [15] show that the discrete Gaussian

mechanism achieves the same privacy guarantee as that of the

(continuous) Gaussian mechanism.

2.3 Cryptographic Primitives
We now review cryptographic primitives used.

2.3.1 Secret-Sharing. A secret-sharing scheme splits a secret 𝑥 into

random “shares" that can be put together to reconstruct the secret,

but individually do not reveal any information about the secret.

An (𝑛, 𝑡)-linear secret-sharing scheme splits a secret 𝑥 (from some

ring) into 𝑛 random shares {J𝑥K𝑗 } 𝑗∈[𝑛] such that:

(1) Each share J𝑥K𝑗 for 𝑗 ∈ [𝑛] is an element of the ring.

(2) (Security) No set of 𝑡 or less shares reveals any information

about 𝑥 .

(3) (Correctness) Any set of 𝑡 + 1 distinct shares can be used to

reconstruct the private input 𝑥 . Formally,

∑
𝑗∈𝐼 𝑐 𝑗 J𝑥K𝑗 = 𝑥 ,

where 𝐼 is an index set of size 𝑡 + 1, 𝑐 𝑗 ’s are constants and

addition is over the ring.

Linear secret-sharing schemes such as Shamir secret-sharing [60]

and additive secret-sharing [13] are extensively used in secure MPC

protocols.

2.3.2 Secure Multiparty Computation. Secure Multi-Party Com-

putation (MPC) [27, 72] is a protocol that allows 𝑛 > 1 mutually

distrusting parties to compute a public function 𝑓 on private in-

puts held by each party. Formally, consider 𝑛 parties {P𝑖 }𝑖∈[𝑛] , each
holding a private input𝐷𝑖 (dataset comprising a bunch of records in

our case) and an 𝑛-party MPC protocol secure against 𝑡 corruptions.

Then, to compute 𝑓 (𝐷1, 𝐷2, . . . , 𝐷𝑛) (an ML model in our case), the

parties can run the MPC protocol for this function, with the security

guarantee that no subset of 𝑡 parties get any information about

other parties’ data except what is revealed from the output of 𝑓 .

In our secure and private training protocol, we make use of

MPC protocols which operate in the following manner. A protocol

computes a function 𝑓 that is represented as a circuit comprising

of different gates. Each gate computes some specific functionality

required to evaluate the function such as comparison, exclusive-OR,

scalar addition, multiplication and so on. The inputs to the gate

are supplied on the input wires and the computation of the gate

is produced on its output wire. The protocol should maintain the

following invariant. The parties participating in the protocol begin

with linear secret-shares of the inputs to a gate. Using a secure

protocol, they interact with each other and end up with linear

secret-shares of the output of the gate. Using the reconstruction

property of linear secret-shares (section 2.3.1), the parties learn the

function output by reconstructing the output shares of the final

gate in the circuit.

The above structure required from the MPC protocol is satisfied

by most secret-sharing based protocols and in particular by SPDZ-

style protocols [44] that we use in our implementation.

2.3.3 Threat-Model and Security. We consider 𝑛 parties and a semi-

honest adversary A that corrupts at most 𝑡 < 𝑛 parties. We prove

security using the standard simulation paradigm [46]. In an Ideal

world, a trusted third-party computes the target function 𝑓 using

private inputs from each party, and makes the output available to
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all parties. In contrast, the Real world eliminates any such trusted

third-party and the function output evaluated using an interactive

protocol executed between the parties. In particular, consider the

view of the adversary viewA in the real world which consists of

the inputs of the corrupt parties, the random bits of the corrupt

parties and the messages that each one of them receives during

the protocol execution. A protocol realizing a function 𝑓 is said to

be secure if for every adversary A in the real world, there exists

a simulator S in the ideal world which given the inputs and the

function output of the corrupt parties alone, produces the views

of the corrupt parties which is computationally indistinguishable

from the view of A in real protocol execution. Intuitively, this

indistinguishability implies that the views of the corrupt parties

reveal no more information about the honest parties’ inputs than

the inputs and outputs of corrupt parties.

2.4 Distributed DP Protocols
In order to show that secure protocols realizing a differentially

private mechanism also preserve privacy, the work of [10, 11] in-

troduced the notion of distributed differentially private protocols.

We briefly review them here, starting with the following defini-

tions introduced in these works but adapted to our setting. To

this end, let 𝐷 denote a dataset comprising of𝑚 records which is

disjointly distributed among 𝑛 parties P1, . . . ,P𝑛 , i.e. 𝐷 = ∪𝑛
𝑖=1𝐷𝑖

and 𝐷𝑖 ∩ 𝐷 𝑗 = ∅ for all 𝑖 ≠ 𝑗 . With this, we define the notion of

neighbouring datasets following the literature in [10, 11].

Definition 2.5. (Ψ-Neighbouring Datasets). Given a positive

integer 𝑛 ≥ 2 and an index set Ψ ⊆ [𝑛], two datasets 𝐷 = ∪𝑛
𝑖=1𝐷𝑖

and𝐷 ′ = ∪𝑛
𝑖=1𝐷

′
𝑖 are said to beΨ-neighbouring if there exists exactly

one index 𝑖∗ ∉ Ψ such that the subsets 𝐷𝑖∗ and 𝐷 ′
𝑖∗ are adjacent

(i.e., they differ in exactly one record, see Definition 2.1) and for all

other indices 𝑖 ≠ 𝑖∗, the subsets 𝐷𝑖 , 𝐷
′
𝑖 are same.

Note that if two datasets 𝐷, 𝐷 ′
are Ψ-neighbouring, they are

also adjacent. Following prior work [10, 11], we define differential

privacy for a multi-party protocol. Consider 𝑛 parties, and a set

of 𝑡 parties indexed by Ψ which are controlled by a semi-honest

adversary A. Differential privacy with respect to the joint view of

the adversary is defined as follows.

Definition 2.6. (Distributed Differential Privacy.) A protocol

Π computing a function 𝑓 on inputs from parties {P𝑖 }𝑖∈[𝑛] is said
to be (𝑡, (𝜀, 𝛿))-DP if for all index sets Ψ ⊂ [𝑛] with |Ψ| ≤ 𝑡 , for all

Ψ-neighboring datasets 𝐷 , 𝐷 ′ ∈ D, and for all possible views VA
of the adversary, it holds that

P[viewA (𝐷) ∈ VA] ≤ 𝑒𝜀 P[viewA (𝐷 ′
) ∈ VA] + 𝛿 ,

where the probabilities are taken over the random bits of the parties

in the protocol.

The above definition can be alternatively viewed as an algorithm

which tries to distinguish between the views of the adversary in the

case where there is a change in one of the honest party’s private

dataset. For the case of computationally bounded distinguisher,

prior works [10, 11] extend the above definition as follows:

Definition 2.7. (Computational Differential Privacy.) A pro-

tocol Π is said to be computationally (𝑡, (𝜀, 𝛿))-DP if for every

probabilistic polynomial-time distinguisher B, there exists a neg-

ligible function negl(𝜆) such that for all Ψ-neighbouring datasets
𝐷,𝐷 ′ ∈ D, it holds that

P [B(viewA (𝐷)) = 1] ≤𝑒𝜀 P [B(viewA (𝐷 ′
)) = 1] + 𝛿

+ (𝑒𝜀 + 1)negl(𝜆) ,

where the probabilities are taken over the random inputs of the

parties in protocol and the randomness of B, and 𝜆 denotes the

computational security parameter.
2

Wewant to establish that a protocol securely realizing a function-

ality that is differentially private, is also differentially private under

some given assumptions. This allows us to claim that an MPC pro-

tocol realizing our DP training algorithm that is executed between

multiple parties achieves differential privacy against a semi-honest

adversary controlling a subset of the parties. We restate [Lemma 2.7,

[12]] that proves computational differential privacy for a protocol

that securely realizes an (𝜀, 𝛿)-differentially private functionality.

Lemma 2.1. [12] Let 𝑓 be (𝜀, 𝛿)-DP, and let Π be a protocol com-
puting 𝑓 which is secure against collusions up to 𝑡 parties, then Π is
computationally (𝑡, (𝜀, 𝛿))-DP.

3 DP-SGD with Multiple Discrete Noise
We now consider a version of DP-SGD algorithm that is a mod-

ification of the one presented in Section 2.2.1. Our algorithm is

different in two ways: first, the training is performed over fixed-

point arithmetic; second, at each training iteration, 𝑛 noise samples

are sampled from the discrete Gaussian distribution and the sum of

all these values is added to the clipped gradients.

The complete training procedure is outlined in Algorithm 1.

The training dataset 𝐷 contains 𝑚 records, with ℎ attributes in

each record. First, similar to DP-SGD, we randomly sample a batch

𝐷𝜏 = {𝑑𝜏,𝑖 }𝑖∈[ℓ𝜏 ] of size ℓ𝜏 from the train dataset 𝐷 in each training

iteration 𝜏 , with each example in the dataset having probability

𝛾 = ℓ
𝑚

of being sampled. Then, we compute the gradient 𝑔𝜏 (𝑑𝜏,𝑖 ) =
∇𝜃𝜏L(𝜃𝜏 , 𝑑𝜏,𝑖 ) of the loss function L w.r.t. the current model 𝜃𝜏 for

each 𝑑𝜏,𝑖 ∈ 𝐷𝜏 , 𝑖 ∈ [ℓ𝜏 ]. The gradients are clipped as

𝑔𝜏 (𝑑𝜏,𝑖 ) =
𝑔𝜏 (𝑑𝜏,𝑖 )

max

{
1,

| |𝑔𝜏 (𝑑𝜏,𝑖 ) | |2
𝐶

} , (4)

where 𝐶 is the clipping threshold. Next, in contrast to DP-SGD

where only one continuous noise vector is sampled at each iteration,

we sample 𝑛 discrete noise vectors ®𝜂𝜏,1, . . . , ®𝜂𝜏,𝑛 , where each ®𝜂𝜏,𝑗 =
⟨®𝜂𝜏,𝑗 [1], . . . , ®𝜂𝜏,𝑗 [𝑏]⟩ ∈ Z𝑏 and each entry ®𝜂𝜏,𝑗 [𝑖] ∼ NZ (0,𝐶2𝜎2)
is independent and identically distributed (i.i.d.). These 𝑛 noise

vectors are added to the clipped gradients and the average noisy

gradient is computed as

𝑔𝜏 =
1

ℓ

(
ℓ𝜏∑︁
𝑖=1

𝑔𝜏 (𝑑𝜏,𝑖 ) +
𝑛∑︁
𝑗=1

®𝜂𝜏,𝑗

)
. (5)

Finally, similar to DP-SGD, the model is updated as 𝜃𝜏+1 = 𝜃𝜏 −
𝜁𝑔𝜏 , where 𝜁 is the learning rate. Note here that all the computations

2
Although the term (𝑒𝜀 + 1)negl(𝜆) can be subsumed under a negligible function for

practical choices of 𝜀 , we keep it explicit to be consistent with prior literature [10, 11].
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Algorithm 1: DP-SGD with Multiple Discrete Noise Sam-

ples

1: Input: Training dataset 𝐷 = (𝑋,𝑌 ), 𝑋 ∈ Z𝑚×ℎ, 𝑌 ∈ Z𝑚 ,

learning rate 𝜁 , (expected) batch size ℓ , training iterations 𝑇 ,

clipping threshold 𝐶 , noise std. dev. 𝜎 , number of generated

noise vectors per iteration 𝑛

2: Initialize model parameters 𝜃1 ∈ Z𝑏

3: for iteration 𝜏 = 1, . . . ,𝑇 do
4: Sample a subset 𝐷𝜏 = {𝑑𝜏,1, . . . , 𝑑𝜏,ℓ𝜏 } from 𝐷 at random

5: for 𝑖 = 1, . . . , ℓ𝜏 do
6: Compute gradient 𝑔𝜏 (𝑑𝜏,𝑖 ) = ∇𝜃𝜏L(𝜃, 𝑑𝜏,𝑖 )
7: Clip gradient 𝑔𝜏 (𝑑𝜏,𝑖 ) = 𝑔𝜏 (𝑑𝜏,𝑖 )

max

{
1,

| |𝑔𝜏 (𝑑𝜏,𝑖 ) | |2
𝐶

}
8: end for
9: for 𝑗 = 1, . . . , 𝑛 do
10: for 𝑖 = 1, . . . , 𝑏 do
11: Sample noise ®𝜂𝜏,𝑗 [𝑖] ∼ NZ (0,𝐶2𝜎2)
12: end for
13: end for
14: 𝑔𝜏 = 1

ℓ

(∑ℓ𝜏
𝑖=1

𝑔𝜏 (𝑑𝜏,𝑖 ) +
∑𝑛

𝑗=1 ®𝜂𝜏,𝑗
)
⊲ average noisy gradient

15: Update model 𝜃𝜏+1 = 𝜃𝜏 − 𝜁𝑔𝜏

16: end for
17: return trained model 𝜃𝑇+1

are done using fixed-point arithmetic in practice.

3.1 Privacy Guarantee
In this section, we provide the privacy guarantee of Algorithm 1

against an adversaryA that has the following auxiliary information

Aux. Before the training starts, the adversary picks a set Ψ ⊂ [𝑛]
of 𝑡 indices. At the end of the training, the adversary receives

𝑇 sets of noise 𝜒1, . . . , 𝜒𝑇 , where each set 𝜒𝜏 consists of 𝑡 noise

vectors indexed by Ψ. Therefore, A has the auxiliary information

Aux = (𝜒1, . . . , 𝜒𝑇 ). Note that the rest of the (𝑛 − 𝑡) ⩾ 1 noise

vectors added in each training iteration are still unknown toA. We

show below that due to these (𝑛 − 𝑡) “secret” sets of noise vectors,
the model given to the adversary is (𝜀, 𝛿) differentially private

according to Definition 2.3 for values of 𝜀, 𝛿 that we calculate below.

Theorem 3.1. For any 𝛿 > 0, the trained model 𝜃𝑇+1 returned by
Algorithm 1 is (𝜀, 𝛿)-DP against the adversaryA with auxiliary infor-
mationAux = (𝜒1, . . . , 𝜒𝑇 ) defined above, where 𝜀 = 𝛾𝜀0

√︁
2𝑇 log(1/𝛿)+

𝛾𝜀2
0

√
𝑇 /2. Here,

𝜀0=min

{√︂
1

(𝑛 − 𝑡)𝜎2
+ 2𝜀′𝑏,

√︄
1

(𝑛 − 𝑡)𝜎2
+ 2

√
𝑏𝜀′

√
𝑛 − 𝑡𝜎

+ 𝜀′2𝑏,

1

√
𝑛 − 𝑡𝜎

+ 𝜀′
√
𝑏

}
, 𝜀′ = 10

𝑛−𝑡−1∑︁
𝑗=1

𝑒
−2𝜋2𝐶2𝜎2 𝑗

𝑗+1 , and

𝑇 is the total number of iterations,𝛾 = ℓ
𝑚
is the probability of sampling

an example into a batch at each iteration and 𝑏 is the total parameters
of the model.

3.1.1 Overview of Proof Technique. Before we formally prove The-

orem 3.1, we briefly discuss the associated challenges and how

we tackle those. First note that unlike the continuous Gaussian

distribution, the sum of two random variables drawn i.i.d. from

a discrete Gaussian distribution is not distributed according to a

discrete Gaussian. Hence the 𝑛 discrete Gaussian noise samples

that our protocol adds in each training iteration do not simply add

to a discrete Gaussian with 𝑛 times the variance, and thus needs

to be approximated. Therefore, the standard privacy analysis of

DP-SGD [1] does not directly apply to our protocol, and extra care is
needed to control the approximation error. Using techniques from

[41], we account for this error in the privacy budget 𝜀 obtained

from the vanilla DP-SGD algorithm. As we will see in the proof,

the contribution of this error term to 𝜀 is expressible as a nega-

tive exponential function varying with the total noise samples 𝑛

(for fixed training hyperparameters), thus giving us tight privacy

guarantees. Thus, we obtain a new discrete Gaussian mechanism

which in contrast to the Gaussian mechanism of DP-SGD, is differ-

entially private using 𝑛 > 1 noise samples. Further, we will prove

privacy of this new mechanism against an adversary who learns

any strict subset of 𝑡 noise samples added in the training. We do

so by expressing the output distribution of the private mechanism

conditioned on the event that the adversary has access to some

auxiliary information (the 𝑡 noise samples in this case). Specifically,

we express the privacy budget as a function of the total noise sam-

ples (𝑛) and the number of noise samples that the adversary learns

(𝑡 ). Finally, while Abadi et al. [1] employ the moments accountant

for continuous Gaussians to prove privacy guarantee of DP-SGD

involving multiple training iterations, we derive from scratch the

moments accountant for discrete Gaussian mechanism to prove our

protocol’s privacy. Now, we present the proof of Theorem 3.1.

Proof. Recall that𝐷𝜏 = {𝑑𝜏,1, . . . , 𝑑𝜏,ℓ𝜏 } is the randomly sampled

batch of size ℓ𝜏 from the training dataset 𝐷 at step 𝜏 ∈ [𝑇 ]. Define
a query function 𝑞 : 𝐷𝜏 → Z𝑏 as 𝑞(𝐷𝜏 ) =

∑ℓ𝜏
𝑖=1

𝑔𝜏 (𝑑𝜏,𝑖 ), where
𝑔𝜏 (𝑑𝜏,𝑖 ) denotes the clipped gradient. Note that the query 𝑞 has 𝐿2

sensitivity 𝐶 and 𝐿1 sensitivity 𝐶
√
𝑏. Now, we define a mechanism

M : 𝐷𝜏 → Z𝑏 as

M(𝐷𝜏 ) = 𝑞(𝐷𝜏 ) +
𝑛∑︁
𝑗=1

®𝜂𝜏,𝑗 ,

where ®𝜂𝜏,𝑗 = ⟨®𝜂𝜏,𝑗 [1], . . . , ®𝜂𝜏,𝑗 [𝑏]⟩ and each ®𝜂𝜏,𝑗 [𝑖] ∼ NZ (0,𝐶2𝜎2).
Without loss of generality, assume that the adversary picks Ψ = [𝑡].
Then 𝜒𝜏 = (®𝜂𝜏,1, . . . , ®𝜂𝜏,𝑡 ) denotes the set of 𝑡 noise vectors that is
available to the adversary A at iteration 𝜏 . Let ®𝜂𝜏,1:𝑡 =

∑𝑡
𝑗=1 ®𝜂𝜏,𝑗

denote the sum of these 𝑡 noise vectors. With this, define another

mechanismM′ (𝐷𝜏 ) =M(𝐷𝜏 ) − ®𝜂𝜏,1:𝑡 . Observe that, for any 𝑧 ∈ Z𝑏 ,
we have

P
[
M(𝐷𝜏 ) = 𝑧 | 𝜒𝜏

]
= P

[
M′ (𝐷𝜏 ) = 𝑧 − ®𝜂𝜏,1:𝑡 | 𝜒𝜏

]
. (6)

Now the privacy guarantee ofM′
is dictated by the (𝑛−𝑡) indepen-

dent noise samples which are not in 𝜒𝜏 . Now, if these noise samples

were coming from a continuous Gaussian distribution N(0, 𝜎2),
one could have computed the privacy guarantee in the same way as

DP-SGD as if one single noise were sampled from the distribution

N(0, (𝑛 − 𝑡)𝜎2). Instead, since we sample noise from a discrete
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Gaussian distributionNZ (0, 𝜎2), the noise variances won’t just sim-

ply add up like the continuous case, and we suffer an additional

privacy expenditure 𝜀′ roughly proportional to (𝑛 − 𝑡)𝑒−𝜋2𝐶2𝜎2

.

Kairouz et al. [41] formalizes this for sums of 𝑛 i.i.d. discrete Gaus-

sians. Now, invoking [41, Theorem 5], the mechanism M′
satisfies

1

2
𝜀2
0
concentrated differential privacy [14], where 𝜀0 is defined as

above. Now, using the conversion lemma from concentrated DP to

approximate DP [41, Lemma 4], we have, for any 𝛿 > 0, that M′

satisfies (�̃�, 𝛿)-DP, where

�̃� ≤ 𝜀0
√︁
2 log(1/𝛿) + 𝜀2

0
/2 .

By (6) and the post-processing property of DP [25], this implies the

average noisy gradient 𝑔𝜏 at iteration 𝜏 is (�̃�, 𝛿)-DP against an ad-

versary with auxiliary information 𝜒𝜏 . Note that this DP guarantee

is with respect to the dataset 𝐷𝜏 at iteration 𝜏 . Since 𝐷𝜏 is also a

random subset of 𝐷 with sampling probability 𝛾 and we have total

𝑇 iterations, we can now employ a moment accountant for the dis-

crete Gaussian mechanism to conclude that the trained model 𝜃𝑇+1
is

(
𝑂

(
𝛾�̃�
√
𝑇

)
, 𝛿

)
-DP against the adversary A with auxiliary infor-

mation Aux = (𝜒1, . . . , 𝜒𝑇 ). We describe this moments accountant

in Section 3.1.2. □

Remark 3.2. Consider the case where the adversary picks 𝑡 = 𝑛 − 1

indices. In this case, we can exactly recover the privacy guarantee

of DP-SGD from Theorem 3.1. To see this, note that the additional

privacy expenditure 𝜀′ = 0 in this case, and hence 𝜀0 =
1

𝜎
. This yields

𝜀 =
𝛾

𝜎

√︁
2𝑇 log(1/𝛿) + 𝛾

𝜎2

√
𝑇 /2. Hence, setting 𝜎 ≥ 𝑐2

𝛾
√
𝑇 log (1/𝛿 )

𝜀
,

we can ensure that our trained model 𝜃𝑇+1 is (𝜀, 𝛿)-DP for any

𝜀 < 𝑐1𝛾
2𝑇 , where 𝑐1 and 𝑐2 are appropriate constants. This matches

the privacy guarantee of DP-SGD indicating that we prove a strictly

general result. We need this to prove the privacy guarantee of our

secure SGD training protocol with 𝑛 parties against an adversary

A that controls 𝑡 of them (see Section 4).

3.1.2 Moments Accountant for the Discrete Gaussian Mechanism.
Abadi et al. [1] introduced amoments accountant for the continuous

Gaussian mechanism to calculate privacy guarantees for training

a model over multiple training iterations using the DP-SGD al-

gorithm. The moments accountant reports the private budget (𝜀)

by bounding 𝛼M (𝜆), which represents the logarithm of the mo-

ment generating function of a Gaussian distribution evaluated at

all 𝜆 ≤ 𝜎 ln
1

𝑞𝜎
. Here, 𝑞 represents the sampling probability and

𝜎 represents the standard deviation of the Gaussian distribution

used. Since our training algorithm samples noise vectors from the

discrete Gaussian distribution, we derive a moments accountant

for the discrete Gaussian mechanism on the lines of the continu-

ous counterpart. Essentially, we show that Theorem 1 in [1] which

derives privacy guarantees over 𝑇 training iterations and a given

noise level for the continuous Gaussian mechanism, can be restated

for the discrete Gaussian mechanism. The crux of the proof of [The-

orem 1, [1]] lies in proving [Lemma 3, [1]] which we restate below

in the context of the discrete Gaussian mechanism:

Lemma 3.3 (Abadi et al. [1]). Suppose that 𝑓 : D → Z𝑏 with
| |𝑓 (·) | |2 ≤ 1. Let 𝜎 ≥ 1 and let 𝐽 be a sample from [𝑛] where each 𝑖 ∈
[𝑛] is chosen independently with probability 𝑞 < 1

16𝜎
. Then for any

positive integer 𝜆 ≤ 𝜎 ln
1

𝑞𝜎
, the mechanism M(𝑑) = ∑

𝑖∈ 𝐽 𝑓 (𝑑𝑖 ) +

NZ (0, 𝜎2I𝑏 ) satisfies 𝛼M (𝜆) ≤ 𝑞2𝜆 (𝜆+1)
(1−𝑞)𝜎2

+ 𝑂 ( 𝑞
3𝜆3

𝜎3
), where symbols

have the usual meaning as defined in [1].

Proof. The proof sketch of lemma 3.3 above follows exactly

from the proof of [Lemma 3, [1]]. Since the proof of [Lemma 3, [1]]

relies on three other facts based on the properties of the continuous

Gaussian distribution, we restate and prove these facts for the

discrete Gaussian distribution in the form of the lemmas below.

Throughout, we use 𝜇0 (𝑧) and 𝜇1 (𝑧) to denote the probability mass

function of the distribution NZ (0, 𝜎2) and NZ (1, 𝜎2), similarly as

in the proof of [Lemma 3, [1]].

The first lemma states that under the discrete Gaussian distribu-

tionNZ (0, 𝜎2), the expected value of exp
(
2𝑎𝑧

2𝜎2

)
is equal to exp

(
𝑎2

2𝜎2

)
.

This result is similar the case of the continuous Gaussian distribu-

tion N(0, 𝜎2).

Lemma 3.4. For any 𝑎 ∈ R, E𝑧∼𝜇0

[
exp

(
2𝑎𝑧

2𝜎2

)]
= exp

(
𝑎2

2𝜎2

)
.

Proof. Note that

E𝑧∼𝜇0

[
exp

(
2𝑎𝑧

2𝜎2

)]
=

∑︁
𝑧∈Z

𝑒
2𝑎𝑧

2𝜎2

𝑒
−𝑧2
2𝜎2∑

𝑦∈Z 𝑒
−𝑦2
2𝜎2

=

∑
𝑧∈Z 𝑒

− (𝑧−𝑎)2+𝑎2
2𝜎2∑

𝑦∈Z 𝑒
− 𝑦2

2𝜎2

=
𝑒

𝑎2

2𝜎2

∑
𝑧∈Z 𝑒

− (𝑧−𝑎)2
2𝜎2∑

𝑦∈Z 𝑒
− 𝑦2

2𝜎2

=
𝑒

𝑎2

2𝜎2

∑
𝑧∈Z 𝑒

− 𝑧2

2𝜎2∑
𝑦∈Z 𝑒

− 𝑦2

2𝜎2

= 𝑒
𝑎2

2𝜎2 .

□

The next lemma proves the following distance relations between

the discrete Gaussian distributions NZ (0, 𝜎2) and NZ (1, 𝜎2).

Lemma 3.5. The following relations hold for 𝑧 ∈ Z:

• ∀𝑧 < 0 : |𝜇0 (𝑧) − 𝜇1 (𝑧) | ⩽ − (𝑧−1)𝜇0 (𝑧 )
𝜎2

• ∀𝑧 > 1 : |𝜇0 (𝑧) − 𝜇1 (𝑧) | ⩽ − 𝑧𝜇1 (𝑧 )
𝜎2

• ∀𝑧 ∈ {0, 1} : |𝜇0 (𝑧) − 𝜇1 (𝑧) | ⩽ 𝜇0 (𝑧 )
𝜎2

Proof. For 𝑧 ⩽ 0,

|𝜇0 (𝑧) − 𝜇1 (𝑧) |
𝜇0 (𝑧)

=

𝑒
− 𝑧2

2𝜎2∑
𝑦∈Z 𝑒

− 𝑦2

2𝜎2

− 𝑒
− (𝑧−1)2

2𝜎2∑
𝑦∈Z 𝑒

− (𝑦−1)2
2𝜎2

𝑒
− 𝑧2

2𝜎2∑
𝑦∈Z 𝑒

− 𝑦2

2𝜎2

= 1 − 𝑒
2𝑧−1
2𝜎2 = 1 − 𝑒

𝑧−1
𝜎2 · 𝑒

1

2𝜎2

⩽
𝑧 − 1

𝜎2
(since 𝑘𝑒−𝑥 ⩾ 1 − 𝑥 for 𝑘 > 1) .
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For 𝑧 ⩾ 1,

|𝜇0 (𝑧) − 𝜇1 (𝑧) |
𝜇1 (𝑧)

=

𝑒
− (𝑧−1)2

2𝜎2∑
𝑦∈Z 𝑒

− (𝑦−1)2
2𝜎2

− 𝑒
− 𝑧2

2𝜎2∑
𝑦∈Z 𝑒

− 𝑦2

2𝜎2

𝑒
− (𝑧−1)2

2𝜎2∑
𝑦∈Z 𝑒

− (𝑦−1)2
2𝜎2

= 1 − 𝑒
− 𝑧

𝜎2 · 𝑒
1

2𝜎2 ⩽ − 𝑧

𝜎2
.

Observe that |𝜇0 (𝑧) − 𝜇1 (𝑧) | is symmetric around 𝑧 = 1

2
, for 𝑧 ∈ R.

We prove the third result for 0 ⩽ 𝑧 ⩽ 1/2, and the proof for

1/2 < 𝑧 ⩽ 1 follows from symmetry:

|𝜇0 (𝑧) − 𝜇1 (𝑧) |
𝜇0 (𝑧)

= 1 − 𝑒
2𝑧−1
2𝜎2 = 1 − 𝑒

−1
𝜎2 · 𝑒

2𝑧+1
2𝜎2 ⩽

1

𝜎2
.

Therefore, for 𝑧 ∈ {0, 1}, |𝜇0 (𝑧) − 𝜇1 (𝑧) | ⩽ 𝜇0 (𝑧 )
𝜎2

. □

Finally, lemma 3.6 below relates the 𝑡-th moment of |𝑧 | (𝑧 is

sampled from NZ (0, 𝜎2)) to the double factorial of 𝑡 .

Lemma 3.6. E𝑧∼𝜇0 [|𝑧 |𝑡 ] ⩽ 𝜎𝑡 (𝑡 − 1)!! where 𝑘!! denotes the double
factorial [70] of 𝑘 .

Proof. In the proof below, we use Fact 19 from [15] stating that

∀𝜎 ∈ R+
,

𝑚𝑎𝑥{1, 𝜎
√
2𝜋} ⩽

∑︁
𝑛∈Z

𝑒
− 𝑛2

2𝜎2 ⩽
√
2𝜋𝜎2 + 1 .

This gives us

E𝑧∼𝜇0
[
|𝑧 |𝑡

]
=

∑︁
𝑧∈Z

|𝑧 |𝑡 𝑒
− 𝑧2

2𝜎2∑
𝑦∈Z 𝑒

− 𝑦2

2𝜎2

= 2

∞∑︁
𝑧=0

𝑧𝑡
𝑒
− 𝑧2

2𝜎2∑
𝑦∈Z 𝑒

− 𝑦2

2𝜎2

⩽
2

𝑚𝑎𝑥{1, 𝜎
√
2𝜋}

∞∑︁
𝑧=0

𝑧𝑡𝑒
− 𝑧2

2𝜎2

⩽
2

𝑚𝑎𝑥{1, 𝜎
√
2𝜋}

∫ ∞

0

𝑧𝑡𝑒
− 𝑧2

2𝜎2 𝑑𝑧 .

By substituting 𝑧2 = 2𝜎2𝑥 in the integral above and using the

definition of the Gamma function [59], the inequality becomes

E𝑧∼𝜇0
[
|𝑧 |𝑡

]
⩽

𝜎𝑡+12
𝑡+1
2

𝑚𝑎𝑥{1, 𝜎
√
2𝜋}

∫ ∞

0

𝑥
𝑡−1
2 𝑒−𝑥𝑑𝑥

⩽
𝜎𝑡+12

𝑡+1
2

𝑚𝑎𝑥{1, 𝜎
√
2𝜋}

Γ

(
𝑡 + 1

2

)
.

Now, we consider two cases. Case 1: 𝜎
√
2𝜋 ⩾ 1: We have

E𝑧∼𝜇0
[
|𝑧 |𝑡

]
⩽

𝜎𝑡 · 2 𝑡
2

√
𝜋

· Γ
(
𝑡 + 1

2

)
.

Case 2: 𝜎
√
2𝜋 < 1: We have

E𝑧∼𝜇0
[
|𝑧 |𝑡

]
⩽ 𝜎

√
2𝜋

{
𝜎𝑡 · 2 𝑡

2

√
𝜋

· Γ
(
𝑡 + 1

2

)}
⩽

𝜎𝑡 · 2 𝑡
2

√
𝜋

· Γ
(
𝑡 + 1

2

)
.

In both cases above, E𝑧∼𝜇0
[
|𝑧 |𝑡

]
⩽ 𝜎𝑡

{
2

𝑡
2√
𝜋
Γ

(
𝑡+1
2

)}
⩽ 𝜎𝑡 (𝑡 − 1)!!

by the definition of double factorial. □

Lemmas 3.4-3.6 are used to prove upper bounds on the individual

terms of the binomial expansion of [Equation (5), [1]], that says

E𝑧∼𝜈1

[(
𝜈0 (𝑧 )
𝜈1 (𝑧 )

)𝜆+1]
=

∑𝑡=𝜆+1
𝑡=0

(𝜆+1
𝑡

)
E𝑧∼𝜈1

[(
𝜈0 (𝑧 )−𝜈1 (𝑧 )

𝜈1 (𝑧 )

)𝑡 ]
for 𝜈0 (𝑧) =

𝜇0 (𝑧), 𝜈1 (𝑧) = 𝜇1 (𝑧). The proof of lemma 3.3 follows by substituting

lemmas 3.4-3.6 in place of the corresponding fact (for the continuous

Gaussian distribution) in the proof of [Lemma 3, [1]]. Note that the

rest of the statements in the proof of [Lemma 3, [1]] do not depend

on any specific property of the (continuous) Gaussian distribution.

Hence, our proof for lemma 3.3 follows from the proof of [Lemma

3, [1]] and lemmas 3.4-3.6. □

Since the proof of the privacy guarantees reported by the mo-

ments accountant [Theorem 1, [1]] again does not depend on any

specific property of the Gaussian distribution, we can apply the

lemma 3.3 in conjunctionwith the proof of Theorem 1 in [1], thereby

obtaining the proof of privacy guarantees reported by the moments

accountant for the discrete Gaussian mechanism.

4 Secure and Private Training
We now present our protocol for secure and private𝑛-party training.

At a high level, for an 𝑛-party protocol tolerating 𝑡 corruptions, we

use a standard secure multi-party computation protocol to realize

the SGD algorithm. Through this, for every iteration of the training,

parties will begin with shares of all the values (inputs, gradients

etc.) and end with shares of updated gradient values. To make the

protocol differentially private, each of the parties will locally pick

one noise sample from the discrete Gaussian distribution. These

noise samples will then be (𝑛, 𝑡) secret shared with all the 𝑛 parties

who will add them to the shares of the gradients that they had

previously obtained to obtain secret shares of differentially private

gradients (this is possible since we are working with an MPC pro-

tocol that operates over linear secret sharing schemes). The parties

are then in a position to continue the next iteration of SGD training

through MPC. For the special case of (𝑛, 𝑛 − 1) secure and private

training, the parties need not even communicate shares of their

individual noise samples and can simply treat their noise samples

as (𝑛, 𝑛 − 1) additive shares of the final noise sample to be added.

We provide more details below.

4.1 Secure DP Training with Multiple Parties
Consider a set of 𝑛 > 1 parties 𝑃 = {P1,P2, . . . ,P𝑛} who wish to

jointly train a model on private datasets 𝐷𝑖 held by party 𝑃𝑖 . We

assume a static, semi-honest adversary A which controls a set of 𝑡

parties (𝑡 < 𝑛), fixed before protocol execution begins.

Protocol Initialization. The training protocol begins with each

party secret-sharing their (private) dataset with the other parties.

The parties start with shares of initial model parameters 𝜃1 (which

is a publicly agreed upon value). The noise distribution parameters

(variance of the discrete Gaussian) and training hyperparameters

(e.g. number of epochs, batch size, learning rate, clipping factor)

are also public, and thus known to all parties. This initialization

step does not require involvement of any central entity.

Model Training. In each training iteration 𝜏 , the protocol executes
the following steps. The protocol first invokes the MPC protocol for

the gates that compute the gradient of the loss function and clipping

of the gradients by the clipping threshold. This protocol maintains
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the invariant specified in Section 2.3.2, i.e., that parties begin with

(𝑛, 𝑡) linear secret shares of the input and end the protocol with

(𝑛, 𝑡) linear secret shares of the output. At the end of this step, all

parties in 𝑃 obtain (𝑛, 𝑡) linear secret-shares of the average clipped
gradients 𝑔. In the next step, each party P𝑖 samples a vector of noise

samples ®𝜂𝑖 from the discrete Gaussian distribution locally. Observe
that this local noise sampling step involves no interaction between

the parties. Each party then scales down the noise samples by the

batch size and forms (𝑛, 𝑡) linear secret-shares of each noise sample.

Finally, each party obtains a linear secret-share of the noise vector

®𝜂𝑘 for each 𝑘 ∈ [𝑛]. Each party locally adds these 𝑛 shares of noise

vectors to their respective shares of the average clipped gradient,

obtaining linear secret-shares of the noisy average gradient𝑔 (while

also maintaining the invariant as desired). The training iteration

ends by invoking the gate for calculating the updated parameters

according to the parameter update step (step 15) in algorithm 1,

and each party obtaining shares of the updated model parameters.

At the end of 𝑇 training iterations, the parties reconstruct the final

model parameters.

Note that our protocol incurs bulk of the communication only in

the MPC steps corresponding to computing the conventional SGD

algorithm (namely, batch sampling, forward propagation, gradient

computation and parameter update) with an additional gradient

clipping operation. The noise sampling comes for free, albeit with

a minimal cost for secret-sharing the noise vectors which consist

of𝑤-bit ring elements.

Remark 4.1. In the case where the adversary controls 𝑡 = 𝑛 − 1

parties, we use an (𝑛, 𝑛 − 1) additive secret-sharing scheme in

our secure and private training protocol. In this case, each of the

𝑛 parties sample noise in the training protocol. Each party adds

their noise vector to the gradient share, without secret-sharing

the noise vector with the other parties. Secret-sharing of the noise

vectors is not required since each party implicitly holds a share of(
𝑔 + ∑𝑘=𝑛

𝑘=1
®𝜂𝑘
)
, where 𝑔 is the clipped gradient.

4.2 Privacy for 𝑛-Party Training
The following theorem summarizes the privacy for the 𝑛-party

secure and private training protocol.

Theorem 4.2. The training protocol described above is computation-
ally (𝑡, 𝜀, 𝛿)-differentially private.

Proof. Observe that the adversary in the training protocol de-

scribed above is identical to the adversary in Theorem 3.1. This

follows from MPC security; since the above protocol is a secure

MPC protocol [44], the view of the adversary in the above protocol

can be completely simulated given only the model output. Now,

according to Theorem 3.1, Algorithm 1 satisfies (𝜀, 𝛿)-DP against

the adversary A for values of 𝜀 and 𝛿 as calculated in the theorem.

Therefore, invoking Lemma 2.1, the protocol above is computation-

ally (𝑡, (𝜀, 𝛿))-DP. □

4.2.1 Relation between Privacy Budget and Adversarial Setting. We

study how the privacy budget 𝜀 varies with the number of corrup-

tions in the multi-party training setup. Observe from Theorem 3.1

that 𝜀 depends on the number of parties 𝑛, number of corruptions

𝑡 (i.e., noise samples given to the adversary), number of training

iterations 𝑇 , sampling probability 𝛾 , clipping factor 𝐶 , noise mul-

tiplier 𝜎 , dimensions of the model 𝑏, and failure probability 𝛿 . In

order to illustrate how 𝜀 varies with 𝑡 , we consider the following

setting with 𝑛 = 10 parties. We train model A from table 2 and fix

(hyper)parameters as follows: 𝑇 = 1000, 𝛾 = 0.01, 𝐶 = 4, 𝜎 = 2,

𝑏 = 79510, 𝛿 = 10
−5
. As an example, for 𝑡 = 5 corruptions, using

the expressions in Theorem 3.1, we first calculate 𝜀′ by plugging

in the required values to obtain 𝜀′ ≈ 9.12 × 10
−274

. Next, we plug

𝜀′ into the expression for 𝜀0 along with 𝑛, 𝑡 and 𝜎 to get 𝜀0 = 0.224

(ignoring lower order terms). Finally, using this value of 𝜀0 in the

expression for 𝜀, we get the overall privacy budget 𝜀 = 0.232. Simi-

larly, we calculate the privacy budget for other values of 𝑡 = 1 and 9

(presented in Table 1). As expected and as can be seen, the privacy

budget is lower when there are fewer corrupt parties.

Number of corrupt parties (𝑡 ) 1 5 9
Privacy Budget (𝜀) 0.172 0.232 0.540

Table 1: Relation of privacy budget and adversarial setting

5 Evaluation
In this section, we justify two claims. First, the accuracy of our

secure and private training protocol matches the accuracy of stan-

dard DP-SGD [1] (i.e., in the single party case without security) on

different benchmarks. Second, for the case of 2−party secure and

private training (where prior works exist), our protocol is up to two

orders of magnitude more efficient, both in terms of communication

as well as runtime than prior state-of-the-art [43]. We first begin

by describing the datasets and models we work with, in Section 5.1.

Next, in Section 5.2, we show that our secure and private training

protocol preserves accuracy (over standard DP-SGD) in the 2-party

setting and has only marginally lower accuracy even when several

parties contribute data. Finally, in Section 5.3, we show that in the

2-party setting, our protocol is orders of magnitude more efficient

(both in terms of communication and runtime) than prior state-of-

the-art [43]. Since, our protocol for making a secure SGD protocol

also private (via differential privacy) incurs practically no commu-

nication when compared with any MPC protocol to compute the

SGD algorithm itself, our improvements translate to the 𝑛-party

case as well (when compared with any MPC protocol that could be

used to sample noise).

5.1 Datasets and Models
We use two widely employed datasets for image classification,

namely MNIST [23] and Fashion MNIST [71]. Each dataset contains

60000 training images and 10000 test images, each image being

a 28 × 28 matrix of pixel values between 0 and 255. Additionally,

each dataset contains labels for each test image, which denotes the

class of the image by a digit from the set {0, 1, . . . , 9}. The MNIST

dataset contains images of handwritten digits from 0 to 9, while the

Fashion MNIST dataset contains images of 10 clothing accessories

such as sweaters, socks, shoes, etc. As a pre-processing step for

each dataset, we normalize each image in the dataset by descaling

the pixel value from [0, 255] to the range [0, 1]. In addition, we

evaluate our results on a tabular dataset called the “CDC Diabetes

Health Indicators” dataset taken from the UCI Repository [8]. This
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Model
Name Reference Architecture No. of

Parameters
A [1] 784-100-10 79510

B [51] 784-128-128-10 118282

C [1] 784-500-10 397510

D [8] 21-128-2 3074

Table 2: Neural Networks used in our Experiments

is a classification dataset consisting of health records of 253680 pa-

tients, each consisting of 21 features. The target attribute is a binary

variable indicating whether the patient suffers from diabetes or not.

We split the dataset into 200000 data points for training and the

rest of the 53680 data points for the test. All the attributes are in nu-

merical format and we do not perform any dataset pre-processing.

We will refer to this dataset as the “Diabetes” dataset.

We use 4 different neural network [37] architectures in our ex-

periments described in Table 2. The model architecture is denoted

by a string "𝑥 − 𝑦 − 𝑧" where 𝑥 denotes the number of input fea-

tures, 𝑦 denotes the number of neurons in each hidden layer and 𝑧

denotes the number of output neurons. The last column in Table 2

specifies the number of trainable parameters in the network which

is the sum of weights and biases for each layer. Models A-C are

used in experiments for the MNIST and Fashion MNIST datasets.

We note that each image in the datasets above is a 2D matrix of

784 elements, which we flatten to a vector of 784 elements before

inputting it to the neural network. Each hidden layer is implicitly

followed by a ReLU activation layer [5]. Model D is used for evalu-

ating our training protocol on the Diabetes dataset. In all models,

the output layer is implicitly followed by a softmax activation [28]

layer in each model which converts the output to a one-hot vector

representing the class with the highest probability as predicted

by the model. We use the cross-entropy loss function [76] as the

optimizing function to train the networks. Note that we do not use

any additional techniques in training such as adding dropout or

normalization layers.

Hyperparameter Dataset
MNIST/Fashion MNIST Diabetes

Learning Rate (𝜁 ) 0.1 0.1

Batch Size (ℓ) 500 400

Clipping Factor (𝐶) 4 4

No. of Epochs (𝐸) 10 5

Table 3: Hyperparameters used in each Experiment

Several works [18, 22, 55] have studied the influence of hyper-

parameters like the learning rate (𝜁 ), batch size (ℓ), clipping factor

(𝐶) and noise multiplier (𝜎) along with their interdependence on

each other on getting accuracy-privacy tradeoffs in differentially

private training. These works are orthogonal to our contributions

and hence in our experiments with different datasets, models and

noise levels, we fix all hyperparameters, apart from the noise mul-

tiplier, across all experiments to the values in listed in table 3.

5.2 Accuracy v/s Privacy Tradeoff
We compare the accuracy of our protocol with the DP-SGD algo-

rithm on the three fully connected neural network (FCNN) archi-

tectures listed in Table 2 over the two datasets. Since the MPC

protocol that we use computes the cleartext functionality in a bit-
wise equivalent manner, it suffices to run accuracy experiments

with the cleartext code (with differential privacy). To illustrate the

accuracy obtained in different settings (with or without privacy

and/or security), we consider five different settings and find the

accuracy of each model on the two datasets for all these settings.

Table 4 summarises the features of each experimental setting.

Setting I represents the accuracy of the cleartext training algo-

rithm with no privacy and no security. This training algorithm

operates over floating-point arithmetic and is implemented in the

Opacus [75] framework. Setting II represents the accuracy of a non-

private but secure training protocol obtained through the use of

MPC. As described earlier, such an algorithm, for efficiency reasons,

must operate over fixed-point arithmetic. We use the MP-SPDZ [44]

to generate the fixed-point cleartext training algorithm (which is

bitwise equivalent to the output of the MPC protocol). Setting III re-

flects the accuracy of a private (but insecure) training algorithm - i.e.,

the accuracy of standard DP-SGD [1]. The training is over floating-

point arithmetic and noise is sampled from the continuous Gaussian

noise distribution, implemented via the the torch.normal function
in Opacus [75]. Setting IV represents the accuracy of private and

secure training as obtained through prior state-of-the-art [43]. Here

the training is performed over fixed-point arithmetic and noise is

sampled from the discrete Gaussian distribution [15] (via the MPC

protocol, MDGauss in [43]). Here, note that a single noise sample

is used per model parameter per iteration. We remark here that

while the other subroutines used in the SGD algorithm were taken

off-the-shelf from MP-SPDZ, we implemented a new subroutine

for clipping the parameter gradients using the primitives available

in the framework. Finally, setting V represents the accuracy of our

private and secure training protocol in the 2-party setting. Here,

the training is over fixed-point arithmetic and since every party

locally adds a noise sample from the discrete Gaussian distribution

(implemented using SampleDGauss [Algorithm 3, [15]]), 2 noise

samples are added at every iteration to all the gradients.

Table 5 presents accuracy results for training in settings I-V for

models A-D using the hyperparameters in Table 3 and using noise

multiplier 𝜎 = 2 (the total noise variance is thus𝐶2𝜎2 = 64). We ob-

tain privacy guarantees as (0.59, 10−5) for MNIST/Fashion MNIST

and (0.24, 10−6) for Diabetes dataset. We make two observations.

First, the accuracy of our protocol is within a margin of 0.7% of the

accuracy of the state-of-the-art secure and private training proto-

col [43]. Second, the accuracy of our protocol is at most 0.08−3.23%

lower than the accuracy of standard DP-SGD [1]. Next, in Figure 1,

we show the trade-off between privacy and accuracy of our training

protocol for varying values of the privacy budget 𝜀 (ranging from

0.2 to 1.8). As can be seen from table 5, this trade-off is acceptable.

5.2.1 Training in the (𝑛, 𝑛 − 1) Setting. We now show the accuracy

of our protocol in the case when 𝑛 parties perform the training

(where 𝑛 − 1 of these parties are controlled by an adversary). As we

discussed in Section 4, it is required that all 𝑛 parties sample and

add noise in the training protocol. Since, now, we are adding more
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Setting Description Arithmetic
Mode

Differential
Privacy

Gaussian Noise
Distribution

No. of Noise
Samples/Iter.

I Non-Private Non-Secure Training Floating-Point ✘ - 0

II Non-Private Secure Training Fixed-Point ✘ - 0

III Private Non-Secure Training Floating-Point ✔ Continuous 1

IV Private Secure Training ([43]) Fixed-Point ✔ Discrete 1

V Private Secure Training (Our Protocol) Fixed-Point ✔ Discrete 2

Table 4: Settings for Accuracy-Privacy Experiments

Dataset Model
Name

Test Accuracy in Different Settings (in %)
Setting I Setting II Setting III Setting IV Setting V

MNIST

A 93.50 94.11 90.70 91.23 90.62

B 94.12 95.45 90.21 91.16 90.62

C 93.86 94.71 90.99 91.58 91.06

Fashion

MNIST

A 83.16 83.97 80.55 81.21 81.10

B 82.98 84.08 79.37 81.05 80.90

C 83.41 84.45 80.92 81.42 81.36

Diabetes D 86.20 85.99 85.96 82.03 82.73

Table 5: Accuracy for different models after training in setting I-V
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Figure 1: Accuracy for different levels of privacy for different models and datasets trained using our 2PC DP Protocol

noise samples to our training protocol, we investigate the resulting

degradation in the accuracy that our models as we vary the number

of parties.We present our accuracy results for trainingwithmultiple

parties in Table 6 for models A-D in the (3, 2), (5, 4) and (10, 9)
adversarial settings where each party draws noise samples from the

discrete Gaussian distribution by setting 𝜎 = 2, as in the previous

experiments. Note that the other training hyperparameters are fixed

as per Table 3 as before. As one can observe from the table, the

accuracy of our protocol as we move from the 2-party setting (with

2 noise samples) to the 10−party setting (with 10 noise samples),

degrades only by ≈ 5%. The privacy budget in these settings and

chosen noise level remains under the acceptable budget of 𝜀 = 2.

(n,t)

MNIST Fashion MNIST Diabetes
A B C A B C D

(2, 1) 90.62 90.62 91.06 81.10 80.90 81.36 82.73

(3, 2) 90.46 90.18 90.63 80.30 80.45 81.00 83.26

(5, 4) 89.76 88.82 89.77 80.12 79.50 80.19 82.76

(10, 9) 87.84 85.29 86.88 78.72 76.00 78.24 82.51

Table 6: Accuracy for setting of 𝑛 parties with 𝑡 corruptions.
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Model Information SGD

Comm.

(TB)

Communication for

Noise Generation (TB)

Total Communication (TB)

[SGD + Noise Generation]
Improvement

Factor

Name Total

Parameters

Batch

Size
Baseline* Our Protocol Baseline Our Protocol

A 79510

100 0.1

84.2 0

84.3 0.1 766×

500 0.5 84.7 0.5 161×

1000 1.0 85.2 1.0 81×

B 118282

100 0.2

125.3 0

125.5 0.2 724×

500 0.8 126.1 0.8 151×

1000 1.7 127.0 1.7 76×

C 397510

100 0.5

421.2 0

421.7 0.5 794×

500 2.5 423.7 2.5 167×

1000 5.0 426.2 5.0 84×

D 3074

100 0.006

3.3 0

3.306 0.006 539×

500 0.030 3.330 0.030 111×

1000 0.060 3.360 0.060 56×
*This is an estimate based on numbers reported for generating one noise sample in [43]

Table 7: Communication Comparison between ΠBaseline and Our 2PC Protocol (ΠUs) (1 training iteration)

Model Information SGD

Runtime

(seconds)

Runtime for

Noise Generation (sec)

Total Runtime (sec)

[SGD + Noise Generation]
Improvement

Factor

Name Total

Parameters

Batch

Size
Baseline* Our Protocol Baseline Our Protocol

A 79510

100 596

86268 5

86864 601 144×

500 1747 88015 1752 50×

1000 3233 89501 3238 27×

B 118282

100 875

128335 7

129210 882 146×

500 2703 131038 2709 48×

1000 5077 133412 5084 26×

C 397510

100 2333

431298 38

433631 2371 182×

500 6302 437600 6340 69×

1000 11205 442503 11243 39×

D 3074

100 26

3339 1

3365 27 125×

500 105 3444 106 32×

1000 212 3551 213 16×
*This is a lower-bound based on just communication time

Table 8: Runtime Comparison of ΠBaseline and Our 2PC Protocol (ΠUs) in a 1GB/s 1ms RTT LAN Setting (1 training iteration)
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5.3 Performance
The work of Keller et al. [43] shows how to sample noise samples

from the discrete Gaussian distribution using a 2PC protocol. Their

protocol can be used in conjunction with an MPC protocol for

SGD to obtain a secure and private training protocol. This forms

our baseline 2PC protocol ΠBaseline with which we compare our

protocol. This protocol executes two subprotocols: 1) ΠMDGauss

from [43] to sample noise from a discrete Gaussian distribution

and secret-share the noise samples between the two parties, and

2) ΠSGD which carries out SGD training while implementing the

functionality required in DP-SGD such as gradient clipping and

adding the noise samples generated by ΠMDGauss to the gradients.

More concretely, ΠBaseline executes DP-SGD between two training

parties (each holding secret-shares of a dataset) while adding shares

of Gaussian noise into the shares of the gradients for each party,

for a given number of training iterations, where the noise itself is

generated using ΠMDGauss.

In contrast, our protocol ΠUs just consists of one subprotocol,

namely ΠSGD which in our case emulates the DP-SGD algorithm

and adds noise sampled locally by each party to the gradient shares

of the respective party. More concretely, ΠUs executes DP-SGD be-

tween two training parties (each holding secret-shares of a dataset)

while adding independent Gaussian noise samples into the shares

of the gradients for each party, for a given number of training it-

erations. We now do a comparative cost analysis between the two

protocols ΠBaseline and ΠUs in terms of communication and runtime.

Note that the performance of SGD training depends only on model

architecture and batch size, and is identical for MNIST and Fashion

MNIST due to identical structures of the two datasets.

5.3.1 Communication. Suppose protocol ΠSGD incurs a total com-

munication of 𝑋 GB in one training iteration for a given model and

hyperparameter combination. Note that the only hyperparameter

that ΠSGD’s communication depends on, is the batch size. Suppose

the protocol ΠMDGauss incurs a total communication of𝑌 GB to gen-

erate noise samples required in one training iteration. 𝑌 is given

by simply multiplying the communication cost of generating one

noise sample (roughly 1.085 GB as per [43]) by 𝑏 (total number of

trainable parameters in the model), since one noise sample needs

to be added to the gradient of each parameter in the model in a

training iteration. Therefore, the total communication incurred by

protocol ΠBaseline in one training iteration is given by 𝑋 +𝑌 . On the

other hand, the total communication incurred by our protocol ΠUs

is just 𝑋 , since noise sampling in our protocol is local and does not

involve any communication. It is therefore evident that our end-

to-end training protocol enjoys an improvement factor of

(
𝑋+𝑌
𝑋

)
over ΠBaseline. We present this improvement factor concretely in

Table 7 for training models A-C, each with three different batch

sizes. As can be seen from the table, our protocol is 56− 794× more

communication efficient than prior state-of-the-art.

5.3.2 Runtime. We run our experiments for neural network train-

ing on two F16s v2 Azure instances, each equipped with 16 CPU

cores and 32 GB of RAM, with a bandwidth of 1 GB/s and 1 ms RTT

operating in LAN setting. Since the code of [43] is not available,

we conservatively estimate a lower bound on the runtime of their

noise sampling protocol, dividing communication by bandwidth.

Now, supposeΠSGD takes a total of 𝑡 seconds to execute one itera-

tion of training for a given model and hyperparameter combination.

Note that 𝑡 depends on the batch size used and is higher for higher

batch size. We also obtain a lower bound on the runtime for gener-

ating one batch of noise samples by protocol ΠMDGauss [43] as
𝑌
𝐵
,

where 𝑌 is the communication incurred calculated in Section 5.3.1

and 𝐵 represents the network bandwidth. Finally, we empirically

measure the time 𝑡 ′ taken by our algorithm SampleDGauss to (lo-
cally) generate one batch of noise samples for each party for one

training iteration. The total runtime for one iteration of end-to-end

training taken by our protocol is given by 𝑡 + 𝑡 ′ seconds, while
the value

(
𝑡 + 𝑌

𝐵

)
represents a lower bound on the total runtime

for one iteration of end-to-end training using protocol ΠBaseline.

As we show in Table 8, our protocol is 16-182× faster than prior

state-of-the-art [43]. From the tables, we see that the cost (runtime

and communication) of SGD via MPC scales (almost) linearly with

batch size. Also, the cost of noise sampling depends on the number

of model parameters alone and is independent of the batch size.

Hence, our improvements over prior work are higher for lower

batch sizes. For batch size 500, our protocol has 111 − 167× lower

communication and 32 − 69× lower runtime.

Remark 5.1. In Theorem 3.1, we analyze the privacy guarantee of

our training algorithm (Algorithm 1), which similar to Abadi et
al. [1], constructs batches by sampling each record i.i.d. with a cer-

tain probability (this process is called Poisson sampling) and thus

enjoys an amplification of privacy. This, however, leads to variable-

sized batches, which is technically challenging to handle in practice.

To get around this issue in our implementation, we randomly shuf-

fle all the records in the dataset and construct fixed-sized batches by

going over the shuffled dataset sequentially, similar to the approach

in almost all practical private deep learning frameworks. Chua et
al. [20] observe that there exists a gap between the privacy proofs

in literature using Poisson sampling and the practical implemen-

tations of private training algorithms. We remark that, as evident

from [Figure 5, [20]], this subtle difference in the accounted value

of privacy level 𝜀 is negligible for our choices of noise standard

deviation 𝜎 , training iterations 𝑇 and failure probability 𝛿 .

6 Conclusion
In this work, we introduced a new protocol for the secure and

private multi-party training of machine learning models that is or-

ders of magnitude more performant than prior works. The protocol

allows 𝑛 parties, 𝑡 of which may be controlled by a semi-honest ad-

versary, to securely train a neural network on private datasets held

by each party, such that the trained model is differentially private

against the adversary. As a stepping stone, we showed that adding

𝑛 noise samples to DP-SGD (instead of 1 as is done in standard

DP-SGD) preserves differential privacy even when the adversary

learns 𝑡 < 𝑛 out of these noise samples. This theorem may be of

independent interest. Interestingly, we show that adding multiple

noise samples to DP-SGD does not degrade the accuracy of the

final trained model significantly. Our distributed noise generation

method is compatible with existing secure MPC protocols and since

the method comes with practically zero overhead, it can be used

with any secure training algorithm to also make it private.
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