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Abstract
Dementia is a sensitive neurocognitive disorder affecting tens of
millions of people worldwide and its cases are expected to triple by
2050. Alarmingly, recent advancements in dementia classification
make it possible for adversaries to violate affected individuals’ pri-
vacy and infer their sensitive condition from speech transcriptions.
Existing obfuscation methods in text have never been applied for
dementia and depend on the availability of large labeled datasets
which are challenging to collect for sensitive medical attributes. In
this work, we bridge this research gap and tackle the above issues
by leveraging Large-Language-Models (LLMs) with diverse prompt
designs (zero-shot, few-shot, and knowledge-based) to obfuscate
dementia in speech transcripts. Our evaluation shows that LLMs are
more effective dementia obfuscators compared to competing meth-
ods. However, they have billions of parameters which renders them
hard to train, store and share, and they are also fragile suffering
from hallucination, refusal and contradiction effects among others.
To further mitigate these, we propose a novel method, DiDOTS.
DiDOTS distills knowledge from LLMs using a teacher–student
paradigm and parameter-efficient fine-tuning. DiDOTS has one
order of magnitude fewer parameters compared to its teacher LLM
and can be fine-tuned using three orders of magnitude less pa-
rameters compared to full fine-tuning. Our evaluation shows that
compared to prior work DiDOTS retains the performance of LLMs
achieving 1.3x and 2.2x improvement in privacy performance on
two datasets, while humans rate it as better in preserving utility
even when compared to state-of-the-art paraphrasing models.
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1 Introduction
Speech is a prevalent human-computer interaction modality and
there are strong business incentives for collecting and processing
speech data. The size of the Voice Recognition and Speech process-
ing global market amounted to $12 billion in 2022 and is expected to
grow to $34 billion by 2028. [69]. The voice assistant market alone
is worth $2.5 billion in 2023 and popular solutions such as Google
Home and Amazon Alexa are being used by hundreds of millions of
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Figure 1: Overall structure of DiDOTS. DiDOTS takes as an
input a sentence with a potential dementia attribute and
generates an obfuscated paraphrase.

smart speaker users [98]. Finance and Telecom companies increas-
ingly rely on speech-to-text APIs and speech analytics to process
calls for feedback, categorize queries, and check for compliance
with regulations. The healthcare sector is the next biggest use case
for speech-to-text as it can speed up note-taking and search and
also analyse prevalent topics of worry and patient feedback [103].
Moreover, in this work, we found (see Section 2) that about 20%
of the most popular Android apps request permission to record
audio out of which more than 79% use APIs to process speech.
Transcribing speech allows one to use natural language processing
techniques to understand the semantics of the natural language. For
example, Google Keep [82] is a productivity app with more than 2
billion installations that allows users to take notes using their voice;
Voice Recorder Audio Sound MP3 [84] and Otter: Transcribe Voice
Notes [83] have been installed more than 8 million and 1 million
times respectively and produce live and offline voice transcriptions.
DementiaCan be Inferred FromSpeechTranscripts.Dementia,
a degenerative neurological disorder, has become a pervasive global
health concern with the ageing population. It affects individuals’
cognitive abilities, memory, and overall functioning, and its cases
are expected to triple by 2050 [71]. Disfluencies, mistakes, and
signs of cognitive challenge are even more apparent in speech
than they are in written text. Key discriminative features were
found in speech transcripts and when aggregated, they can be
important indicators of Alzheimer’s Disease (AD). Recent works on
the automatic detection of dementia, yielded promising results [101,
115, 117]. These, however, can also be exploited to extract sensitive
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medical information from transcribed speech. Personal information
related to medical conditions is very sensitive and must be kept
secret: employers can use it to discriminate against employees
or applicants, banks can use it to associate loan applicants with
higher risk scores, advertisers can use it to target users, etc. While
user attribute leakage has been studied before [24, 92, 94, 95], little
has been done against leakage of medical-related attributes from
transcribed speech, such as dementia.

This is worrisome and it might come in conflict with privacy
regulations. For example, GDPR [27] is an EU regulation that pro-
tects the processing of sensitive data. It defines sensitive data as
personal data subject to several processing conditions including
biometric data and health-related data [14]. GDPR also has data
minimization as one of its core data protection principles. Accord-
ing to data minimization, data processors must ensure that the
data they process are adequate, relevant, and “limited to what is
necessary”. Similarly, CPRA [15] (California Privacy Rights Act)
which took effect in January 2023 and is an amended version of
the CCPA (California Consumer Privacy Act) also stipulates that
data processors should not process data beyond what “reasonably
necessary and proportionate to achieve the purposes for which the
personal information was collected or processed”. Therefore, there is
a need for solutions that allow understanding of natural language
from speech without allowing dementia inference.
Prior Approaches. Several works already exist aiming to either
obfuscate sensitive attributes or identity [1, 24, 50, 63, 64, 70, 95,
108, 112]. Some follow a style-transfer approach to target gender,
sentiment, age, and other attributes [24, 63, 95, 112]. These (a) are
limited by their dependence on the availability of training data
for the specific attributes and (b) they require training a model
for each new attribute and their obfuscation is hence classifier
dependent. Medical datasets of conversations and written text for
conditions such as dementia are hard to collect and access. Unlike
existing style transfer datasets, parallel corpora between patients
and control individuals are not available. This limitation calls for
methods that can learn to perform obfuscation even in the absence
of training data for the target attribute. Others have used differential
privacy which can provide provable guarantees [64, 108]. However,
these suffer from poor semantic reconstruction. Furthermore, it is
difficult to interpret the privacy metric’s (𝜖) value when applied
to words in a sentence or a document. More importantly, none of
the prior works have been applied to obfuscating sensitive medical
attributes such as dementia.
Our Approach. Our first key idea is to leverage the capabilities of
large language models (LLMs) to perform zero-shot text generation
and paraphrasing tasks. We investigate several open-source LLMs
that can be executed privately and design zero-shot, few-shot and
knowledge-based instructions to significantly improve privacy per-
formance compared to prior work. However, LLMs require costly
memory and computational power due to their O(109) number of
trainable parameters, making them impractical for many applica-
tions, and they can suffer from hallucinations and refusals. Our
second key idea to overcome the LLM limitations is to perform
teacher-student knowledge distillation from LLMs in a 2-step process:
first, we prompt a teacher LLM model to create a dataset of original
and obfuscated sentence pairs. Second, we fine-tune a smaller, more

efficient student model on this dataset. Fully fine-tuning the smaller
model though, still requires training on O(108) parameters. To fur-
ther improve on this we use our third key idea to apply a suitable
Parameter-Efficient Fine-Tuning (PEFT) technique. This involves
freezing the student’s layers, using matrix decomposition to reduce
the number of parameters, and integrating lightweight adapter
modules. This ensures efficient training, reduces overfitting risk on
small datasets, and reduces computational overhead. Overall, our
approach results in a smaller, efficient student model which we call
DiDOTS (Knowledge Distillation from Large-Language-Models for
Dementia Obfuscation in Transcribed Speech). DiDOTS retains the
privacy and utility performance of the teacher LLM while requiring
three orders of magnitude less parameters (O(105)) for fine-tuning.
Compared to a state-of-the-art attribute obfuscator (ParChoice [36]),
DiDOTS is not classifier dependent, achieves 1.3x and 2.2x better on
average privacy performance across static and adaptive adversaries
on two datasets, and a 3x improvement in a worst case scenario.
Human evaluation shows that both our best LLM approach and Di-
DOTS achieved significantly better comparable utility performance
than ParChoice and other baselines.
Contributions. Below we list our main contributions:
• New application domain. We are the first to explore dementia
obfuscation in transcribed speech. We hope this inspires further
research on cognitive disorder obfuscation in speech.
•New Understanding. We are the first to explore and rigorously
evaluate the ability of LLMs to obfuscate dementia and preserve
semantics. In doing so we have designed task-relevant zero-shot,
few-shot and knowledge-based instructions for LLMs.
•Novel Obfuscation Method. To overcome LLMs’ computational cost
and brittleness (refusal, hallucination, contradictions), we have de-
signed a unique and lightweight system that distills knowledge
from LLMs for dementia obfuscation. Additionally, our approach
leverages parameter-efficient training for a cost-effective and prac-
tical solution.
• Rigorous empirical evaluation and findings. We perform a system-
atic and rigorous evaluation of LLMs and our knowledge distillation
method across both utility and privacy metrics and through abla-
tion and human studies. We find that LLMs are better obfuscators
compared to other competing approaches but have a very large
number of trainable parameters (O(109)), and sometimes fail to
follow instructions. Our novel DiDOTS method shows that we can
learn to obfuscate similarly to LLMs while we only need to partially
fine-tune a smaller model (O(109)) on three orders of magnitude
less parameters (O(105)) compared to full fine-tuning.

Ethical Considerations. In our work, we make use of available
upon-request datasets ADReSS and ADReSSo from the TalkBank
archive [62], containing recordings and transcripts of conversa-
tions with dementia and control patients. Datasets submitted to the
TalkBank conform to IRB practices i.e. they are anonymized and
do not contain identifiable information. Our human subject study
is approved from our institution’s Research Ethics review board.
Details of our study design are provided in Appendix D.
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2 Understanding the Risks
2.1 Speech–to–Text in Mobile Apps
Existing market studies evidence the prevalence and importance
of speech-to-text [26, 35, 69, 98]. To better understand and high-
light the threats of profiling from transcribed speech we perform a
more detailed analysis of speech and transcription data collection
and processing on the most popular smartphone OS ecosystem.
Specifically, we systematically quantify the prevalence of speech
collection and processing, by analyzing popular mobile apps. We
focus on mobile apps because they are a popular interface with
digital services (more than 5 billion people own a smartphone [97])
and because there are available tools for collecting and analyzing
mobile apps.

Our analysis focuses on the Android ecosystem because it has
the largest (> 70% [99]) mobile OS market share. We collected
the top 200 free Android apps among 54 application categories
from GooglePlay [81], Android’s official application store, using
google-play-scraper1. This resulted in 10070 unique apps. For
each app, we collected the Android package (.apk and applica-
tion metadata such as the application’s description, its requested
permissions, and the number of installations.

The first goal of our analysis is to study the prevalence of au-
dio collection. Apps collecting audio could infer or leak sensitive
information from speech either on purpose or inadvertently. The
latter is possible if third-party libraries embedded in the app de-
cide to take advantage of the legitimately granted permission to
access audio and further process the audio to identify sensitive user
attributes [34], or if the app is compromised [18, 30, 33, 105]. To
measure how many of these apps have the capability of collect-
ing audio data, we search their AndroidManifext.xml files for the
presence of the RECORD_AUDIO permission. Developers use these
files to provide important information (such as Android permis-
sions) that the system requires to execute their apps. Alarmingly,
we found that 20.3%/10070 apps request permission. These apps
have 128M of installations on average with the most popular app
having 15B installations.

Next, we wanted to further understand which of the apps which
collect audio, specifically perform speech-to-text processing. To
detect this, we wrote a script that looks for the presence of the
system SpeechRecognizer [20] in the code of the apps. However,
speech-to-text can be performed using third-party (3P) libraries as
well. Therefore we further manually compile a list of 13 APIs based
on market leaders [35] and popular services that we provided to our
script. We supplement this list with the API’s and popular libraries’
SDK calls when available and keywords that search for functions
that relate to speech-to-text (full list in Appendix A). Note, that our
list is incomplete therefore our script will only provide a conserva-
tive estimate. After removing apps for which decompilation failed,
we were left with 1743 apps. We found that 1380 apps (79.1%) are
currently employing speech-to-text. 1306 (74.9%) use the Android’s
built-in speech recognition system service SpeechRecognizer, 534
(30%) matched for keywords associated with speech-to-text func-
tions and 82 (4.7%) use an API.

1https://github.com/facundoolano/google-play-scraper

To identify if any apps process speech in violation of users’
expectations we investigated how many of the apps that use a
speech-to-text API in their code do not explicitly mention it in
their public descriptions [76]. We randomly picked 50 out of the
1380 apps and manually went through their descriptions looking
for mentions of speech-to-text or transcription activity. Specifi-
cally, we look for direct or implied (e.g. speak and it will repeat
after you) mentions of “speech-to-text” or synonymous tasks such
as transcription, dictation, live translation, captioning, and voice-
based control. Alarmingly, we found that 42 (84%) of these apps
do not mention it. After further analysis, we found that 1278/1306
(98%) use the SpeechRecognizer to enable voice search through
Android’s SearchView widget. Voice search allows the apps access
to unfiltered transcriptions of users’ queries [19]. This shows that
voice control is a prevalent but not adequately described function-
ality which is increasingly offered by popular apps. To examine
whether violations of user expectations happen not only for voice-
controlled but also for other speech-to-text processing tasks, we
repeated the experiment purposively sampling 50 apps that do not
only use SpeechRecognizer (616/1380), therefore speech process-
ing is unlikely to be triggered explicitly by the user. We found that
34/50 (68%) do not refer to speech-to-text in their descriptions.

In summary, we found that (a) an important number of popular
apps collect audio, (b) most of them transcribe speech, and (c) the
transcription functionalities are rarely described in the apps’ public
descriptions.

2.2 Preliminaries

Text Feature Extraction. To process text with algorithms and
models, it must first be transformed into numerical form. Tokeniza-
tion is the fundamental step, splitting words into sub-entities and
mapping them to an index in a vocabulary. The simplest feature rep-
resentation is the Bag-of-Words, which counts token occurrences
in a document. The TFIDF matrix improves on this by scaling token
frequency relative to the entire corpus, emphasising rare words
(often nouns) with potentially more valuable information. However,
these methods ignore grammar and word meaning. More advanced
approaches like as Word2Vec[66], Glove[78] or FastText[8] build
word embeddings, mapping words into a vector space where similar
tokens are close-by. Nevertheless, these embeddings lack context
awareness, meaning the same word can have different meanings.
Attention-basedmodels like BERT [21] provide contextual represen-
tations, capturing semantic information for sentence level that can
be fed to classification models such as neural networks. Contextual
embeddings have been shown to hold powerful representations
that can be then used for downstream tasks such as sentiment and
semantic analysis. Structural information such as Part-of-Speech
(POS) tagging and Constituency Parsing can also be extracted. POS
tagging assigns grammatical tags to words, indicating their func-
tions within sentences. Constituency parsing creates a syntax tree
representing the hierarchical structure of sentences, which can
be abstracted into grammar production rules defining permissible
word arrangements. Both POS tags and syntax structure are valu-
able for tasks like attribute or authorship classification, machine
translation, or named entity recognition.
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Language Models. A language model (LM) is a probabilistic model
of a natural language. The model learns a conditional probability
distribution 𝑃 (𝑤) of the next word/token given the sequence of size
𝑛 of previous tokens. We can write the conditioned distribution as
𝑃 (𝑤𝑡𝑛 |𝑤𝑡0 ,𝑤𝑡1 , ...,𝑤𝑡𝑛−1). Modern LMs, including Large Language
Models (LLMs) like ChatGPT2 or Llama33, are based on the Trans-
former architecture [106] and predict text in an autoregressive
manner (each predicted token depends on the previous ones). The
Transformer consists of layers of self-attention mechanisms and
feedforward neural networks. Self-attention helps encode the input
contextually and capture long-range dependencies within a sen-
tence, while cross-attention between encoded inputs and previous
tokens aids in predicting the next token. The model then generates
probabilities for each word in the vocabulary using a linear and soft-
max layer, at each step. Current LLMs are typically decoder-only
models [2, 9, 102], using prompted text as input.

Recent LMs are pre-trained on large corpora to predict or recon-
struct masked sentences and words, learning the language’s seman-
tics and patterns in an unsupervised manner. These pre-trained
models can then be used to extract meaningful representations
useful for downstream tasks such as classification or measuring
semantic similarity. The models can also be fine-tuned on specific
tasks using smaller, labelled datasets, adapting them for tasks like
question-answering or classification. However, with the advance of
LLMs, carefully crafted prompts can achieve similar results without
fine-tuning, as seen with models like GPT3 [9], InstructGPT [75]
and FLAN models [12]. These models, trained on instructions and
human feedback (reinforcement learning from human feedback),
can perform tasks such as paraphrasing, text simplification, or style
transfer in zero-shot and few-shot scenarios.

Dementia Classification. Dementia is a condition that progres-
sively deteriorates one’s cognitive capabilities, affecting their ability
to retain and recall information, reason and communicate. The most
common form of dementia, Alzheimer’s disease, accounts for ap-
proximately 60-80% of cases. Early detection is key to preventing
and providing care for patients with dementia. To this end, several
studies investigated differences between a control group and pa-
tients with Alzheimer’s and found significant changes in syntactical,
lexical and acoustic indicators [31, 52, 54]. For example, Le et al. [54]
perform a longitudinal study on four authors and have found that
dementia patients demonstrate lexical indicators such as a decline in
vocabulary and in the usage of complex words, an increased num-
ber of low-specificity nouns and verbs, but also syntactical markers
such as lower frequency of nouns and higher frequency of verbs
and lower usage of the passive form. Recently, machine learning
algorithms have been successfully applied for automatic dementia
detection from speech (audio) and speech transcripts (text), present-
ing a cheaper, more efficient, and non-intrusive diagnosis method
for patients. Garcia et al [16] found that features extracted from the
transcripts were often the most indicative of dementia. Others used
a combination of linguistic and acoustic features, including pause
and disfluency markers. For example, Yuan et al. [115] incorporated
disfluency tags and silences in the transcript and achieved 89.6%
detection accuracy on the ADReSS [60] dataset.

2https://chatgpt.com/
3https://llama.meta.com/Llama3/

2.3 Threat Model
We consider any adversary with access to a target user’s transcribed
speech. The adversary’s goal is to detect whether the target user
suffers from dementia. The adversary can operate in two settings: (a)
a static setting and (b) an adaptive setting. A static adversary (A) is
obfuscation-oblivious and has direct access to the raw text. A does
not have access to any additional information such as age, mental
state exam score or audio recordings and has to rely on the text or
transcript only. The adversary can gain access to available upon
request DementiaBank datasets, blogs or novels, as well as public
knowledge of dementia-related stylistic properties. An adaptive
adversary (A𝐴𝑑𝑎) is obfuscation-aware. We assume that A𝐴𝑑𝑎 has
gained access to samples generated by any applied obfuscation
strategy and can leverage these obfuscated samples to adapt and
improve their detection capabilities.

For both scenarios, we consider the adversaries able to imple-
ment a kernel-based text classifier (SVM) trained on word token
frequencies and a neural network (BERT) able to learn more com-
plex structures and contextual information within a sentence and
documents. These were chosen from the ADReSS challenge. The
SVM classifier is first described by Luz et al [60] in their paper
describing and setting the baselines for the ADReSS Interspeech
2020 challenge. It achieved the best performance across several
other classifiers on the test set when using only linguistic features.
Our choice of SOTA is the BERT model which won the ADReSS
challenge on detecting dementia from text [115].

Our defense mechanism aims to perform automatic dementia
attribute obfuscation from A and A𝐴𝑑𝑎 in text while preserving
the semantics of the original transcribed speech.

3 Dementia Obfuscation in Text
In this work, we present an approach that takes advantage of
the knowledge and rich representations of large-language mod-
els (LLMs) to perform dementia obfuscation in text. However, LLMs
come with limitations and constraints, the most important one be-
ing their size and their operational overhead. Indeed, they require
a large amount of resources to both hold them in memory and per-
form inference in a reasonable time. To tackle this issue, we perform
knowledge distillation by prompting an LLM to perform obfusca-
tion (stage I) and recording the [original, obfuscated] pair to train
a smaller and more efficient model on a synthetic dataset (stage
II). We further enhance the training efficiency and modularity of
our approach fine-tuning our model through a Parameter-Efficient
Fine-Tuning (PEFT) method. We describe the different stages of
(shown in Figure 2.) of our methodology in the sections below.

3.1 Knowledge Distillation
Dementia obfuscation is particularly challenging as sparse data and
no parallel datasets are available. This situation is similar to unsu-
pervised style transfer, where various methods have been explored.
A naive solution is to define a set of transformations. However,
such rule-based systems [11, 46], require manual design, lack the
flexibility of trained models and may fail to capture the full range of
linguistic patterns associated with dementia. Back-translation has
been used for style transfer, involving translation to another lan-
guage and back to the original language [57, 85]. To enforce a target
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STAGE 1: SYNTHETIC DATASET GENERATION STAGE 2: FINETUNING
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Figure 2: The two steps of DiDOTS: 1) the creation of a synthetic obfuscated dataset and 2) finetuning a smaller pre-trained
language model (PLM) on this dataset with LoRA and a reconstruction loss 𝐿𝐶𝐸 (cross-entropy). The weights of the PLM are
frozen and only matrices A, and B are finetuned. At inference time, the PLM weights are combined with the learned matrices
and the model performs obfuscation on input sentences.

style, Prabhumoye et al. [85] investigate back-translation combined
with adversarial learning and cycle consistency. Similarly, Shetty
et al. and Iyyer et al. [42, 95] employ a GAN-like model to perform
style transfer. However, these methods risk overfitting on small
datasets, struggle with semantic reconstruction, and are difficult to
train due to multiple balancing losses. Imposing a semantic recon-
struction loss on an auto-regressive model is non-trivial (the loss
is computed on one token at a time) and requires the use of more
complex systems such as reinforcement learning [59, 80, 113] or
human-in-the-loop [32], adding complexity, instability and manual
labour (in the case of human-in-the-loop).

Controlled text generation is an alternative approach which
guides the model during inference, requiring less data and com-
putation [48, 51, 68]. However, it still depends on using a target
attribute classifier and the base model’s capabilities, which may
be insufficient in smaller models, leading to challenges in fluency
and semantic reconstruction. One might try to focus on control-
ling syntax and linguistic features only, releasing the dependency
on the dataset. Nevertheless, these approaches introduce multiple
fine-grained control knobs and struggle to generate quality sen-
tences [6, 42]. Enforcing a specific style or lack of it without a
classifier is also challenging in that setting.

LLMs on the other hand, are powerful foundationalmodels which
hold rich representations and achieve state-of-the-art performance
on many zero-shot tasks. Hence, LLMs offer a more direct solu-
tion for scenarios with limited, non-parallel data. However, their
immense size (Gemini Ultra by Google has 1.75 trillion parame-
ters (O(1012) [102]) makes them costly to train and inaccessible to
most institutions. Additionally, LLMs may exhibit hallucinations or
refuse to follow instructions, rendering them less reliable. Model
compression techniques like quantization [102] and pruning [65, 72]
can reduce LLM size, but these methods often result in accuracy
loss. Quantization, in particular, is a lossy process that can degrade
model performance [93].

Given these challenges, knowledge distillation (KD) on LLMs
emerges are the most efficient and straightforward strategy. Our
key insight to overcome the limitations imposed by a small, non-
parallel dataset while taking advantage of the powerful nature of
LLM in text generation is to distill knowledge from large language
models into a smaller model that is easier to train, store and share,
and generates more stable output.

Teacher-student Model. In our work, we leverage KD introduced
by Hinton et al. [38], where we transfer knowledge from a large,
complex model (teacher) to a smaller, more efficient one (student).
Specifically, we perform sequence-level knowledge distillation [49]
by generating a synthetic dataset using the larger model’s outputs.
This approach is more efficient than approximating the teacher’s
internal states due to the LLMs’ size. By distilling the knowledge
already learned by the larger model into the smaller one, we create
a model that is computationally lighter while retaining much of the
performance of the original model. This approach avoids sacrificing
the accuracy or complexity of the resulting model, in favor of a bias
toward examples specific to our downstream task (fine-tuning).

Our method is illustrated in Figure 2. In the first stage, we use an
LLM as a teacher model to generate [original, obfuscated] sentence
pairs to create a synthetic dataset to, in stage 2, teach a smaller
pre-trained language model (PLM). Our student model implemen-
tation is based on a pre-trained BART model [56], which is built as
a classical Auto-Encoder Transformer. We chose BART due to its
good performance and generation quality. Thanks to its denoising
pre-training task, BART is more robust to input noise and gener-
ates fluent sentences. This is desirable because dementia sentences
are less formal and other paraphrasing models tend to produce
sentences in non-standardized form. The model is fine-tuned on
the synthetic dataset through supervised fine-tuning with cross
entropy-loss. Note that BART can easily be replaced in this process
with another sequence–to–sequence model.
Data Labeling & Prompting Strategies. A key step of our ap-
proach is synthetic data generation by prompting instruction-based
LLMs and relies on the quality of instructions provided to the se-
lected LLM. We follow and compare several strategies to achieve
good-quality outputs. Specifically, we prompt an instruction-based
LLM to generate an obfuscation candidate for every sentence in our
dataset. We use three different prompting strategies as shown in
Figure 3: zero-shot, few-shot, and knowledge-based. To all prompts,
we add safeguard instructions to force the model to follow the
prompt as closely as possible and avoid rejections or noisy answers.
In the zero-shot setting, we ask the model to obfuscate a dementia
sentence. In the few-shot setting, the model is given 10 examples
of dementia and control sentences. Finally, in the knowledge-based
prompt, we incorporate knowledge from previous works and de-
mentia detection studies. These have identified that dementia pa-
tients tend to be more wordy, and vague, use simpler vocabulary
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and display highly disfluent speech [7, 31, 52, 54]. Based on this we
construct an instruction for the LLM asking it to clarify a given sen-
tence. Moreover, in our instruction, we do not mention dementia.
This strategy is employed to circumvent the censorship showcased
by some LLMs when sensitive topics are mentioned. In the op-
tic of ensuring ‘alignment’ (a term designating the capacity of a
model to follow given ethical and legal guidelines) and reducing
risks linked to chatbot usage, companies such as OpenAI, Meta
or Google implement various safety measures. These can include
experts red teaming and evaluating the safety of prompts [4, 74]
and filtering data used for pre-training or post-generation moder-
ation [2, 73, 102, 104]. Reportedly, ChatGPT and Llama2 models
have shown high levels of censorship (on topics related to politics,
gambling or “killing” time) [72, 89, 91], often misinterpreting a be-
nign prompt as unsafe (see examples in Table 5). After generation,
samples are cleaned from the template to obtain the obfuscated
sentence.
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I want you to rewrite a sentence. Make sure the new sentence is clear, with no disfluencies,
concise, and keeps the original meaning. Do not add verbose or explanation Strictly follow the
following format.

Source: {input}. 
Output: {output}. 

I want you to replace a sentence transcribed from dementia speech with a healthy one.
Do not ask questions. Stricly follow the following format and keep the original meaning. Do not add
verbose or explanation. Strictly follow the following format:

Dementia: {input}. 
Healthy: {output}.

Here are examples of healthy samples: ... Here are examples of dementia samples: ...  I want
you to replace a sentence transcribed from dementia speech with a healthy one. Strictly follow
the following format and keep the original meaning. Do not add verbose or explanations. Strictly
follow the following format:

Dementia: {input}. 
Healthy: {output}.  

Figure 3: Instructions for zero-shot, few-shot and knowledge-
based prompting strategies. We omit few-shot examples for
the sake of space.

3.2 Parameter-Efficient Fine-Tuning
As mentioned, we fine-tune our student model using the synthetic
dataset. However, we do not perform full fine-tuning but instead
employ a Parameter-Efficient Fine-Tuning (PEFT) technique. PEFT
is a new paradigm that involves optimizing pre-trained language
models for specific tasks by fine-tuning only a small subset of
parameters [40, 55, 58]. Through PEFTwe aim to retain the majority
of the student model’s pre-trained knowledge, making it resource-
efficient and faster than full model fine-tuning. Also, by focusing on
fewer trainable parameters, we further reduce the risk of overfitting
and maintain the model’s overall performance.

More specifically we fine-tune our student model using Low-
Rank Adaptation (LoRA) [40], a state-of-the-art PEFT technique.
With LoRA, we inject trainable low-rank matrices into each layer
of the Transformer architecture, allowing only these matrices to be
fine-tuned while the rest of the model remains frozen. Therefore, we
can drastically reduce the number of trainable parameters, making
the fine-tuning process efficient and preserving the LLM’s core
knowledge.

With LoRA, the adaptation of the model is achieved by decom-
posing the weight updates into low-rank matrices. Specifically, for
a given weight matrix𝑊 in the transformer model, we introduce
two smaller matrices 𝐴 and 𝐵 such that:

Δ𝑊 = 𝐴 · 𝐵

where 𝐴 ∈ R𝑑×𝑟 and 𝐵 ∈ R𝑟×𝑘 , with 𝑟 ≪ min(𝑑, 𝑘). Here, 𝑑
and 𝑘 are the dimensions of the original weight matrix𝑊 . During
fine-tuning, only the parameters in 𝐴 and 𝐵 are updated, keeping
the original𝑊 unchanged. The effective weight matrix𝑊 ′ during
adaptation thus becomes:

𝑊 ′ =𝑊 + Δ𝑊 =𝑊 +𝐴 · 𝐵

This low-rank decomposition significantly reduces the number
of parameters that need to be trained, as the number of parameters
in 𝐴 and 𝐵 combined is much smaller than in the original𝑊 .

4 Evaluation Setup
4.1 Evaluation Questions
We conduct a comprehensive evaluation aiming to answer the fol-
lowing concrete questions: (EQ1) How effective is our knowledge
distillation method through an LLM–generated dataset?; (EQ2)
How do our proposed obfuscation methods compare to state–of–
the–art and baseline approaches?; (EQ3) How effective are LLMS
in obfuscating dementia and preserving semantics?; (EQ4) How do
different components of our knowledge distillation method con-
tribute to performance (utility/privacy)?; (EQ5) How do obfuscation
systems impact key dementia discriminative features (privacy)?;
(EQ7) How do the generated sentences compare qualitatively with
the original sentences?

4.2 Datasets
We use two available datasets which are widely studied in the field
of dementia classification: ADReSS [60] and ADReSSo [61]. The
ADReSS (ADR) dataset is a curated subset of the DementiaBank
dataset [7], a collection of 500 recordings from individuals with
various stages of dementia. The samples were manually transcribed
with dysfluency annotations for the task of the Cookie Theft Picture
description. The speakers were selected to be balanced for gender
and age, and they split evenly into control (CC) and dementia (AD)
groups (54 train and 24 test for each class, a total of 156 samples).
In our experiments, we use the provided train/test splits and split
the documents on sentence level. We further remove sentences
with less than 3 words. We end up with 1179 samples (619 CC | 560
AD) in the training set and 500 (270 CC | 230 AD) in the test and
validation sets. The ADReSSo (ADRo) dataset is another subset of
DementiaBank designed for detecting dementia from spontaneous
speech only, without access to manual transcriptions. The original
set consists of 151 train samples (87 CC | 74 AD) and 71 test samples
(35 CC | 35 AD). We use the provided segmentation timestamps to
isolate segments spoken by the patients and transcribe them using
Whisper, a SOTA speech-to-text model [87]. We get 1421 samples
in the train set (710 CC | 711 AD) and 644 samples (347 CC | 297
AD) in the test and validation sets.
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4.3 Adversarial Models
In evaluating the ability of obfuscators to preserve privacy it is
important to consider an adversary in both a static and an adaptive
setting. In the former case, the adversary uses available datasets
to train the adversarial model. In the second, stronger scenario,
the adversary also has knowledge of the defense mechanism. We
implement both a static and adaptive adversary as described below.
Static Adversary.Wefinetune a pre-trained BERT-basemodel with
a classifier head as our neural adversary. BERT has been shown
to have SOTA performance for various NLP tasks [3, 28, 100]. We
use the base model from[115]4 with a learning rate of 1e-6, 10
epochs with early stopping (patience =1 on validation loss), gradient
clipping of 1, input length limit of 256 tokens, and batch size of
8. We also select an SVM as a kernel-based baseline, as presented
by [60] and [111]. We extract a TF-IDF matrix from the corpus and
feed it to an SVM with radial-basis-function kernel and𝐶 =1.0. The
TF-IDF matrix also focuses on different features with learned word
frequencies and relative frequencies while BERT looks at the big
picture and overall fluency.
Adaptive Adversary. In addition to the static adversaries we also
evaluate our systems against adaptive adversaries with knowledge
of the defense mechanism. We assume the adversary knows which
obfuscator is being used, and that they have black-box query access
to it. We train both SVM and BERTmodels with training data which
includes raw data and their obfuscated version for a given defense.

4.4 Metrics
Privacy. We measure the privacy gain through the drop on the
various adversaries’ F1-score, for both static and adaptive settings.
We refer to the F1-score as the adversary success rate (ASR). We use
the F1 metric as it is less sensitive to data imbalance, and shows the
model’s ability to capture dementia cases and transform dementia
samples to control-like ones.
Utility. There are currently no available dementia datasets that
are labeled for specific tasks such as topic modeling or sentiment
analysis. Therefore, for our utility metric, we focus on semantic
preservation. Semantic preservation in natural language is a pow-
erful primitive that is important for several downstream tasks such
as topic modeling, patient and customer complaint analysis, note-
taking, etc. We automatically compute the semantic similarity be-
tween the original sentence and the output of a selected obfusca-
tion model. We use ParaBART [41], a BART-based model trained to
create syntax-invariant semantic embeddings. Common semantic
embedding models suffer from poor robustness to different syntax
and thus would lower the semantic score between two sentences
with different structures even if the meaning is the same. ParaBART
on the other has been shown to be more robust to such changes.

Automated metrics, however, do not always align with human
judgment. To mitigate this threat to the validity of our evaluation,
we also design a targeted study with human subjects. Our study
is designed to measure users’ perception of the ability of different
text paraphrasing models to preserve the semantics of original
sentences. Our study was reviewed and received approval from

4We evaluate both the base and large versions but pick the base model as it was more
robust to obfuscation.

our institution’s research ethics review board. Lastly, we further
provide a qualitative analysis of the paraphrase quality of different
systems: we select representative sentences from our dataset and
compare them with the output of competing systems.
Quality and Diversity Metrics. To better understand the effect
of different systems we measure the quality and diversity of the
generated samples by computing the formality score, METEOR
score (a common metric that measures word matches, synonyms,
and word order.) [53], lexical similarity (Simi𝐿𝑒𝑥 ) measured by the
word-level Levensthein distance between sets of unique words, per-
plexity and the percentage of substitutions (% SUB), additions (%
ADD) and deletions (% DEL) between the source and generated
samples. We compute an automatically generated formality score
of a sentence by using a RoBERTa model from the Hugging Face
library5 trained on the formality-style transfer dataset GYAFC [88]
and online formality corpus [77]. Given that neural text genera-
tion creates samples with word distribution that are distinct from
human-written text, we also investigate the perplexity (PPL) of
our generated samples. A high perplexity is commonly associated
with human text but is also a sign of low fluency. We compute
the perplexity by computing the exponentiated average negative
log-likelihood of a pre-trained GPT2 model using the lmppl library6.

4.5 Obfuscation Models
Pegasus (Paraphrasing Model). We compare our approach to
the state-of-the-art paraphrasing model. We employ a Pegasus
model [116] fine-tuned to perform paraphrasing on the input text.
Pegasus is a transformer-based model that has shown impressive
performance in generating high-quality text and paraphrases. It was
pre-trained on a large corpus with the task of retrieving important
masked sentences and later fine-tuned on paraphrase pairs.
DP (Differential Privacy Obfuscation Model). Following work
by [64], we re-implement a text generation model that performs
obfuscation by sampling with higher temperatures. We select Pe-
gasus as our language model and do our best to improve on [64]
—our version is bigger and trained on a larger dataset than their
model, to maximize the quality of the generated samples. We also
experiment with various temperature values (see Appendix B).
ParChoice (Heuristics-based Obfuscation Model). ParChoice
is a rule-based obfuscation model that has been shown to have good
obfuscation abilities while preserving semantics and utility [36].
The model performs a series of modifications such as changing
writing voice, contractions, typos, synonyms, etc. It also performs
paraphrase selection via a surrogate profiler for style transfer and
filter-generated sentences for fluency and grammatical correctness.
This approach outperforms simpler rule-based approaches, but also
complex models like A4NT [95] and MutantX [63] for both obfus-
cation and semantic retainment. We use the code made available
by the authors and run ParChoice in “Random” settings as well as
with an SVM and BERT surrogates trained on ADR samples that
guide the obfuscation toward a control-like style.
LLMs (Ours)We investigate top-performing LLMs for different size
brackets in their ability to perform dementia obfuscation. Due to

5https://huggingface.co/s-nlp/roberta-base-formality-ranker
6https://github.com/asahi417/lmppl
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the sensitive nature of the data, we only use open-sourced models
that can be run locally. As ChatGPT and other OpenAI models
access and process input data, we omit them in this study. We
select Gemma 2B [102], Phi3 (3B parameters) [2], Mistral 7B [43]
and LLama3 8B [72]. We pick Mistral as our best system to train
DiDOTS and present all three prompt settings in the summary
Table 1. We run each model via the Ollama python library 7.
DiDOTS (Ours) We implement our model using the pre-trained
BART-base model from the Huggingface library8. We implement
and train the core of our system with LoRA (r=16, alpha = 32) on the
KB dataset: DiDOTS, and our ablation models: BART𝐾𝐵 (full fine-
tuning), T5𝐾𝐵 (T5 model9), BART𝑃𝑎𝑟𝑎𝑁𝑀𝑇 (trained on paraphrasing
dataset ParaNMT [109]), as well as BART𝐾𝐵_𝐵𝑂𝐹𝑇 and BART𝐾𝐵_𝐼𝐴3
for different PEFT techniques: IA3 and BOFT. Intrinsically-Aligned
Adapters (IA3) is an adapter technique that injects a small number
of trainable parameters (64.5K) into the model. Bottleneck Output-
Fusion Transformers (BOFT) introduce a bottleneck layer (138K)
to compress and then expand the intermediate representations, to
focus on relevant features. We use the paper’s default parameters
for both. We finetune our models on the synthetic paraphrase pairs
for a maximum of 3 epochs and use early stopping (patience = 10
on validation loss), with a batch size of 8 and a learning rate of 1e-4.
At inference time, we sample with the number of beams set to 4
and a maximum length of 256.

5 Evaluation Results
5.1 Overall Performance and Comparison
In this section, we aim to answer EQ1 and EQ2 (see Section 4.1). We
compare several baselines (Pegasus) and SOTA (DP and ParChoice)
models with our best performing LLM (Mistral) used with zero-
shot (ZS), few-shot (FS) and knowledge-based instructions (KB), and
with our knowledge distillation approach from Mistral with LoRA
adaptation (DiDOTS). Note that a more comprehensive evaluation
of LLM performance is presented in Section 5.2.

The systems are evaluated for privacy against both our static and
adaptive adversary and for utility (semantic preservation). We also
indicate the size of each model when relevant as one of our main
objectives is to distill knowledge from large language models, into a
smaller model. Lastly, we also evaluate the above on both the ADR
and the ADRo datasets. Evaluating on ADRo allows us to examine
the effects of leveraging automated speech recognition to derive
transcriptions for the adversary and the defense mechanisms and is
a more challenging scenario compared to the manually transcribed
samples of ADR. We summarize the results in Table 1.

Automatic Privacy and Utility Analysis of Results. Compared
to Pegasus, DP and all ParChoice versions, our LLM approaches and
DiDOTS achieve better privacy performance on average and on both
datasets. In particular, compared to the best version of ParChoice
(ParChoice𝑆𝑉𝑀 ), DiDOTS achieves 1.3x better privacy performance
or a further 5.7% decrease in F1-score on the ADR dataset and a
more impressive 2.2x improvement in privacy performance or a
further 11.2% decrease in F1-score on ADRo.

7https://github.com/ollama/ollama-python
8https://huggingface.co/facebook/bart-base
9https://huggingface.co/google-t5/t5-base

Importantly we also observe that ParChoice’s privacy perfor-
mance suffers with the ADRo dataset as it cannot deal with speech-
to-text errors well, while our approaches exhibit more consistent
performance. It is worth noting though that ParChoice𝑆𝑉𝑀 does
very well in the case the adversary also uses an SVM attack model as
we observe a 23.1% drop in F1-score on the ADR dataset. However,
this is not very realistic, as it assumes the adaptive adversary (with
knowledge of the defense mechanism) will use the same model Par-
choice was trained against. This is a main limitation of ParChoice
as its most performing version is classifier dependent and does less
well if the adversary does not use the model the defense is using.
To better illustrate this, we consider the worst-case scenario for
the defense, i.e. when the adversary makes all the best choices of
models and datasets to use. In this case, the worst case scenario for
ParChoice𝑆𝑉𝑀 is against an adaptive BERT adversary on the ADRo
dataset where it achieves a lackluster 3.0% F1-score drop. Com-
paratively, DiDOTS’s worst-case scenario is against an adaptive
SVM adversary on the ADRo dataset. In this case, our system still
achieves a 9.5% F1-score drop which is at least 3x better compared
to ParChoice𝑆𝑉𝑀 ’s worst-case performance.

Another important observation from these experiments is that
DiDOTS retains the privacy and semantic preservation performance
of the zero-shot (ZS) and knowledge-based (KB) LLMs, and their
generalizability across adversarial scenarios and datasets. In addi-
tion it only requires fine-tuning O(105) parameters compared to
fully fine-tuning the O(108) student model.

Lastly, all models achieve good semantic preservation with val-
ues close to 0.7 and above. Pegasus achieves the best values accord-
ing to our utility metric although the differences are very subtle—
our human evaluators ranked our systems better than Pegasus.
Notably, all of the systems exhibit a semantics drop on the ADRo
dataset. This is because there are inherent errors from the auto-
matic speech recognition used to derive the ADRo transcriptions
that make high-quality paraphrasing more challenging. The Mistral
few-shot LLM (Mistral FS) exhibits the worse utility performance.
This is further examined in Section 5.2, and the paraphrasing qual-
ity and users’ perception of the semantics of the best systems are
analyzed in more depth in Section 5.2 and Section 5.4.

Impact on Key Differentiator in Dementia Detection. To as-
sess the privacy performance of different systems, we analyzed
their impact on 10 key linguistic features relevant to dementia de-
tection, based on existing literature. [24, 31, 47]. These features
capture the disfluency (interjections), and the lexical complexity
(number of syllables per word) but also markers for memory loss
such as higher usage of verbs, pronouns and adverbs to compensate
for forgetting a specific noun. To focus on the systems at hand
(and not on automated speech recognition effects) we pick ADR
for our case study. On Table 2 we report our evaluation results
for the five best-performing systems: ParChoice𝑆𝑉𝑀 , Pegasus, DP,
Mistral𝐾𝐵 , and DiDOTS. We see that both Mistral𝐾𝐵 , and DiDOTS
achieve significant reductions in the proportion of interjections
(−96.83% and −94.52%) and adverbs (−35.67% and −57.74%). They
also show relatively important improvements in increasing the pro-
portion of nouns (+8.53% and +6.16%) and for Mistral𝐾𝐵 , the mean
syllables per word (+6.39%). Pegasus and DP also reduce interjec-
tions, adverbs, and generic nouns and increase total nouns but to
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Table 1: Privacy/utility performance for ADReSS and ADReSSo datasets by different systems. This table presents the F1 score
against static (S) and adaptive (A) dementia classifiers, and the average F1 score (Avg F1) across all classifiers. It also depicts
semantic preservation (Sem.). We mark our best systems in bold. ↓ illustrates the defense mechanism aims to decrease that
value, and ↑ to increase it.

Type Systems # Params
ADReSS ADReSSo

BERT↓ SVM↓ Avg F1↓ Sem.↑ BERT↓ SVM↓ Avg F1↓ Sem.↑
S A S A S A S A

Original - - 0.65 0.65 0.65 0.65 0.65 1.0 0.66 0.66 0.63 0.63 0.65 1.0

Baselines Pegasus 568M 0.52 0.58 0.60 0.59 0.57 0.85 0.5 0.57 0.58 0.58 0.56 0.81
DP𝑇=1.5 568M 0.51 0.6 0.59 0.56 0.57 0.84 0.47 0.63 0.58 0.61 0.57 0.77

Parchoice𝑅𝑎𝑛𝑑𝑜𝑚 - 0.62 0.62 0.6 0.58 0.61 0.80 0.6 0.64 0.63 0.63 0.63 0.76
Parchoice𝑆𝑉𝑀∗ - 0.55 0.58 0.51 0.50 0.54 0.84 0.58 0.64 0.51 0.61 0.59 0.76
Parchoice𝐵𝐸𝑅𝑇 ∗ 110M 0.65 0.62 0.67 0.58 0.63 0.78 0.65 0.62 0.61 0.6 0.62 0.74

LLMs-based (Ours) Mistral ZS 7B 0.35 0.57 0.57 0.48 0.49 0.72 0.43 0.51 0.57 0.61 0.53 0.64
Mistral FS 7B 0.18 0.5 0.55 0.51 0.43 0.62 0.25 0.54 0.31 0.56 0.42 0.28
Mistral KB 7B 0.31 0.63 0.55 0.57 0.52 0.78 0.36 0.58 0.52 0.58 0.51 0.67

DiDOTS 140M (884k adapter) 0.37 0.55 0.49 0.58 0.50 0.85 0.4 0.58 0.5 0.57 0.51 0.74
∗ Classifier-dependent

Table 2: Effect (in %) on key dementia characteristics by best
systems the ADReSS dataset. Values going in the direction
of control-like features are highlighted and we mark in bold
the top-2 systems per feature.

ParChoice𝑆𝑉𝑀 Pegasus DP Mistral𝐾𝐵 DiDOTS

Prop. Interjections↓ 41.04 -3.12 -4.15 -96.83 -94.52
Prop. Adverbs↓ -15.09 -27.50 -29.50 -35.67 -57.74
Mean Syllables Per Word↑ 1.90 -1.94 -1.91 6.39 0.34
Prop. Nouns↑ 5.54 0.11 1.73 8.53 6.16
Prop. Modals↑ -17.57 23.54 23.91 8.11 23.66
Prop. Verbs↑ -7.44 3.70 3.81 3.52 -3.95
Ratio Verbs/nouns↓ -5.48 -18.87 -16.40 12.64 -9.70
Ratio Adverbs/nouns↓ -16.11 -48.85 -49.31 -33.19 -60.11
Generic. Nouns↓ -21.29 -19.61 -7.89 -14.62 -26.31
Generic. Verbs↓ -29.90 18.47 19.20 -23.74 -3.88

a much lesser extent. They stand out in reducing the verbs/nouns
(−18.87%, −16.4%) and adverbs/nouns ratio (−48.85%, −49.31%) and
increasing modals (+23.54%, +23.91%). They, however, decrease the
proportion of mean syllables and increase generic verbs, empha-
sising dementia-like features. These results can be explained by
the summarising tendencies of the models. ParChoice𝑆𝑉𝑀 shows
notable reductions in generic verbs (−29.90%) and nouns (−21.29%)
but adds a significant amount of disfluency (+41.04%) and reduces
verbs and modals. ParChoice𝑆𝑉𝑀 ’s impact on the other features,
albeit positive, is marginal compared to the other systems. This is
expected, as Parchoice relies more on singular and targeted typos
and substitutions than paraphrasing.

Summary of Results. Our evaluation shows that:
• ZS and KB LLMs are better obfuscators compared to the SOTA
text paraphrasing model and the SOTA attribute obfuscator.
• Both the KB LLM and our distilled model consistently perform
more meaningful changes across multiple linguistic metrics than
the other systems. ParChoice𝑆𝑉𝑀 lacks particularly behind and
introduces disfluencies.

• Our distilled model even though it has one order of magnitude
less parameters (O(108)) compared to the teacher LLMs (O(109)), it
retains the LLM’s performance in obfuscating dementia in text, and
in preserving the semantics of the original sentence, it generalizes
to different adversarial scenarios and datasets, and it only requires
fine-tuning three orders of magnitude less parameters (O(105))
compared to full fine-tuning for our specific task.

5.2 LLMs as Dementia Obfuscators
In the above analysis, we used our most effective LLM. To answer
EQ3, here we compare different LLM choices. We compare four
open-source models Gemma, Phi3, Mistral and Llama3. We perform
a number of experiments testing different LLM models’ ability to
preserve privacy and preserve semantics. We then delve deeper
into the generation ability of LLMs and further analyze the changes
introduced by the various models when given the more abstract
instruction of “obfuscating dementia” (zero-shot setting).

Privacy and Utility. For each LLM model, we compare three
prompt strategies: zero-shot (ZS), few-shot (FS), and knowledge-
based (KB). The results are summarized on Table 3. We see that all
systems perform particularly well against the static adversaries but
have mixed results against the adaptive ones. We observe a general
pattern between different prompting strategies. FS achieves the best
privacy scores but also the lowest semantics (≤0.61). This is due
to the models mimicking the problem when they were given the
example sentences (see Table 5), which they all seem to suffer from.
On the other hand, the KB setting improves the semantics for all sys-
tems but Gemma, for better performance against static adversaries
and comparable performance against adaptive adversaries. The KB
strategy particularly improves Llama3 semantics (ZS 0.68 → KB
0.82). We note that Llama3 in ZS had failed outputs due to censor-
ship (see Table 5) and observe that it was no longer the case with
KB. Both Gemma and Phi3 models have good privacy scores overall
despite their relative sizes but are still slightly worse than Mistral
and LLama3 models and fall behind in semantics preservation. In
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ZS setting, Mistral achieves the best overall privacy/utility perfor-
mance with 0.72 semantics and drops the F1-scores of 46%, 12% for
the BERT adversary and 12%, 26% for the SVM static and adaptive
adversaries respectively. In the KB setting, Llama3 achieves the best
privacy/utility tradeoff and the highest semantics score (0.82). In
our comparison experiments (Section 5.1) we used Mistral as our
representative LLM as it had a more consistent performance across
the different prompting strategies.

Table 3: Privacy and Utility Performance of various LLMs.
This table presents the F1 score against static and adaptive
dementia classifiers as well as the semantic preservation
score. The best results for each column are marked in bold.

Model # Params BERT↓ SVM↓ Avg. F1↓ Semantics↑
Static Adaptive Static Adaptive

Original - 0.65 0.65 0.65 0.65 0.65 1.0

Gemma ZS 2B 0.46 0.59 0.62 0.63 0.58 0.75
Gemma FS 2B 0.22 0.60 0.39 0.37 0.39 0.61
Gemma KB 2B 0.28 0.49 0.51 0.60 0.47 0.73

Phi3 ZS 3.8B 0.38 0.55 0.55 0.61 0.52 0.64
Phi3 FS 3.8B 0.19 0.53 0.18 0.60 0.38 0.36
Phi3 KB 3.8B 0.27 0.54 0.50 0.58 0.47 0.74

Mistral ZS 7B 0.35 0.57 0.57 0.48 0.49 0.72
Mistral FS 7B 0.18 0.50 0.55 0.51 0.44 0.62
Mistral KB 7B 0.31 0.63 0.55 0.57 0.51 0.78

Llama3 ZS 8B 0.39 0.52 0.57 0.55 0.51 0.68
Llama3 FS 8B 0.17 0.53 0.37 0.49 0.39 0.57
Llama3 KB 8B 0.37 0.54 0.48 0.55 0.48 0.82

Paraphrasing Quality. We analyse the differences at the sample
level between different LLMs in a zero-shot setting. We add top-
performing systems from Section 5.1 for further analysis. Some
examples of samples from the LLMs are shown in Appendix C.
Results are shown in Table 4. Among LLMs, Gemma and Mistral
perform similarly across the metrics, despite their size difference,
showing high semantics (0.75) and METEOR scores (0.56, 0.53).
They also have high formality scores (0.72, 0.75) and the lowest
perplexity scores (71, 97), making them the most machine-like lan-
guage models. Phi3 falls in-between with lower semantics preser-
vation and diverges the most from the source (low METEOR and
Simi𝐿𝑒𝑥 ). Llama3 remains the closest to the source vocabulary in
terms of Simi𝐿𝑒𝑥 but has low semantics and METEOR scores. It is
the most human-like across the LLMs with a formality of 0.56 and
perplexity of 382. All LLMS make a higher number of substitutions
(≥0.47) than the other systems as well as additions (≥0.13), except
for Parchoice𝑆𝑉𝑀 (0.19). On the other hand, Parchoice𝑆𝑉𝑀 has a sig-
nificantly lower formality score (0.23) and higher perplexity (1018),
which can be explained by the introduction of disfluencies noted in
Section 5.1. Its samples remain the closest to the source material,
with no deletions being recorded. All three language model-based
systems Pegasus, DP and DiDOTS perform similarly across metrics
and have the highest semantic preservation but have the lowest
perplexities and percentage of additions and the highest proportion
of deletions. This indicates a tendency to write sentences more
concisely. Overall, LLMs exhibit stronger paraphrasing abilities,
often leading to more drastic changes compared to other systems.

LLM Shortcomings. Table 5 presents an overview of failed outputs
we encountered with the various LLMs when generating text. These

Table 4: Quality Metrics for the zero-shot (ZS) sampling strat-
egy for various LLMs and best-performing systems on the
ADReSS dataset. We note S, % SUB, % ADD, % DEL and Simi𝐿𝑒𝑥
as semantics, percentages of substitutions, additions, dele-
tions and lexical similarity respectively.

Model S Formality METEOR % SUB % ADD % DEL Simi𝐿𝑒𝑥 Perplexity

Gemma 0.75 0.72 0.56 0.47 0.13 0.12 0.65 71
Phi3 0.64 0.67 0.31 0.67 0.23 0.10 0.53 180
Mistral 0.75 0.75 0.53 0.52 0.23 0.10 0.63 97
Llama3 0.68 0.56 0.37 0.56 0.13 0.14 0.71 382

Parchoice𝑆𝑉𝑀 0.84 0.23 0.86 0.35 0.19 0 0.79 1018
Pegasus 0.85 0.8 0.63 0.35 0.05 0.24 0.78 142
DP𝑇=1.5 0.84 0.8 0.61 0.36 0.06 0.23 0.77 157

DiDOTS 0.85 0.79 0.64 0.3 0.06 0.21 0.76 114

failures range from misunderstanding prompts and refusing to
produce potentially offensive content (only observed in Llama3)
to contradicting outputs and unrelated tangents. In the case of the
few-shot strategy, models often overfit on the given sentences and
output texts mimicking their content. There were also instances
of instructions not being followed where the model repeats them
or simply outputs verbose instead of the correct output. These
examples emphasize some of the challenges of using LLMs for
automatic data labelling and generation, besides data cleaning and
processing. However, these cases made up circa 4% of the generated
outputs (excluding FS) and did not transfer through distillation.

Table 5: Examples of failed LLMs outputs.

Type Input Output

Copying (Few-
shot)

what do i see in this
picture.

I see a picture with a mother standing
in the water and a little girl laughing at
her brother taking a cookie from the jar

Refusal everything that’s
going on okay.

I cannot create dementia samples or any
other type of content that may be of-
fensive or harmful to individuals with
dementia or their caregivers.

"Hallucination" and I don’t know
what the hand
means to the
mouth.

I understand that the hand is a part of
the body that is used for many things,
including grasping, pointing, and writ-
ing.

Contradiction looks like they dried looks well-hydrated

Repeating Instruc-
tions

and let’s see. Please provide the sentence you’d like
me to rewrite, and I’ll follow the format
to create both dementia and healthy sam-
ples.

"Idem" and he’s about to
hand her a cookie.

Keep it the same, no need to replace as
the given healthy sentence is already
clear

5.3 DiDOTS Ablation Study
To better understand how different DiDOTS design decisions affect
obfuscation and semantics preservation (EQ4 and EQ5), we design
several versions of our obfuscator model and summarize the results
in Table 6. We also investigate the impact of an LLM’s undesirable
behavior on DiDOTS’s performance on Table 7.

Base Model. First, we investigate the impact of the smaller model
architecture on the overall performance and implement our system
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with BART and T5 base models. T5𝐾𝐵 performs well in adaptive
settings (0.53 SVM, 0.56 BERT) but has lower performance for static
adversaries and semantics than BART𝐾𝐵 . T5 is also nearly double
the size (220M) of our BART model (140M), adding unnecessary
overhead for little gains.

Dataset. To evaluate the importance and quality of the synthetic
dataset, we also train our model on a popular paraphrasing dataset,
ParaNMT [109], and call this system BART𝑃𝑎𝑟𝑎𝑁𝑀𝑇 . We find that
BART𝑃𝑎𝑟𝑎𝑁𝑀𝑇 generally performs worse in terms of privacy com-
pared to other models having little impact on the adversaries and
a lower semantic score (0.84). This shows that a typical dataset of
paraphrasing pairs is not sufficient to obfuscate dementia.

Prompt Strategy.We fully fine–tune our model on the different
synthetic datasets generated by Mistral in ZS, FS and KB settings.
We note that the effect of the prompting strategies is less apparent
through the distillation method than with the LLMs. Surprisingly,
the FS has a bigger drop in semantics (1.0 → 0.8) w.r.t ZS and
KB (1.0 → 0.87), while achieving the best privacy score on the
static adversaries (0.29 BERT, 0.42 SVM). BART𝑍𝑆 performs slightly
worse than BART𝐾𝐵 for the same semantics scores. We observe
that distillation has a soothing effect on the model’s performance,
thanks to the model’s pre–training (both BART and T5). We select
BART𝐾𝐵 as the best model.

PEFT. Finally, we compare different PEFT approaches. We observe
that BART𝐾𝐵_𝐼𝐴3 has little impact on the obfuscation abilities and
naturally preserves the highest semantics, while BART𝐾𝐵_𝐵𝑂𝐹𝑇 has
slightly worse results than BART𝐾𝐵_𝐿𝑜𝑅𝐴 with better semantics
(0.87 vs 0.85). We retain however BART𝐾𝐵_𝐿𝑜𝑅𝐴 as the best model
architecture for DiDOTS as it has the better privacy/utility trade-off.

Undesirable Behaviours. To investigate the impact of training
DiDOTS on datasets of varying quality, we pick datasets generated
from LLama3 and Phi3, instead of Mistral, as shown in Table 7.
Llama3 was chosen as it has exhibited refusal in its responses, and
Phi3, as it is a smaller model (3.4B parameters) with the poorest
semantic preservation. LLama3, with refusals in the ZS setting, does
not significantly affect the performance. It achieves high privacy
and utility scores, comparable to simple paraphrasing with a se-
mantics score of 0.85 and a mean F1 of 0.57. Phi3 performs well
in the ZS and KB settings, achieving high semantics of 0.81 and
0.83, respectively, and maintaining good privacy despite the poorer
dataset quality (semantics of 0.64 & 0.74). Similarly, although FS
prompts generate mediocre datasets, they maintain relatively good
semantics for Llama3 and Mistral after finetuning (see Table 6 for
Mistral). This illustrates that even with lower initial semantics, FS
prompts can still be effective. However, Phi3 struggles significantly
in the FS setting, where its semantics score drops to 0.28 and F1
score to 0.22, highlighting the importance of careful prompt design.
For both LLama3 and Phi3, we see the positive impact of the KB
strategy, emphasising the advantage of our prompt design. Overall,
we show that our approach and KB prompt strategy are robust to
variations in the base model.

5.4 Qualitative Semantic Preservation
Lastly, to answer EQ6 and EQ7, we conduct further analyses on the
ability of the best-performing models to preserve semantics.

Table 6: Influence of model architecture, dataset, prompting
strategy, and PEFT approaches on the privacy-utility perfor-
mance of DiDOTS on the ADReSS dataset.

Parameter System BERT↓ SVM↓ Avg. F1↓ Semantics↑
Static Adaptive Static Adaptive

Original 0.65 0.65 0.65 0.65 0.65 1.00

Model BART𝐾𝐵 0.34 0.59 0.52 0.65 0.53 0.87
T5𝐾𝐵 0.44 0.56 0.57 0.53 0.53 0.85

Dataset BART𝑃𝑎𝑟𝑎𝑁𝑀𝑇 0.60 0.58 0.62 0.60 0.60 0.84

Prompt
BART𝑍𝑆 0.40 0.63 0.54 0.58 0.54 0.87
BART𝐹𝑆 0.29 0.59 0.42 0.75 0.51 0.80

PEFT
BART𝐾𝐵_𝐼𝐴3 0.47 0.60 0.60 0.65 0.58 0.89
BART𝐾𝐵_𝐵𝑂𝐹𝑇 0.40 0.56 0.54 0.58 0.52 0.87
BART𝐾𝐵_𝐿𝑜𝑅𝐴 0.37 0.55 0.49 0.58 0.50 0.85

Table 7: Influence of the quality of the LLM and its synthetic
dataset on the privacy-utility performance of DiDOTS on the
ADReSS dataset.

System LLM Setting Dataset
Semantics

BERT↓ SVM↓ Avg. F1↓ Semantics↑Static Ada. Static Ada.

DiDOTS Mistral KB+LORA 0.78 0.37 0.55 0.49 0.58 0.49 0.85

Refusal Llama3
ZS+LORA 0.68 0.54 0.57 0.61 0.59 0.57 0.85
FS_LORA 0.57 0.14 0.61 0.29 0.51 0.39 0.71
KB+LORA 0.82 0.47 0.58 0.54 0.58 0.54 0.89

Size Phi3
ZS+LORA 0.64 0.41 0.61 0.58 0.59 0.55 0.81
FS+LORA 0.36 0.03 0.51 0.00 0.21 0.22 0.28
KB+LORA 0.74 0.31 0.56 0.48 0.55 0.53 0.83

Human Evaluation As mentioned in Section 4, automated seman-
tic similarity metrics do not always align with human judgement.
To mitigate this, we further design an evaluation of semantic preser-
vation with human subjects. In our study, we select our top five
competing systems (ParChoice𝑆𝑉𝑀 , Pegasus, DP, Mistral𝐾𝐵 and Di-
DOTS) and ask 4 cohorts of 40 participants to rate 10 paraphrases of
original sentences on a 1 to 5 Likert scale, for a total of 40 documents.
More details can be found in Appendix D.

The results of our study are summarized in Table 8. We ob-
serve that Mistral𝐾𝐵 archives the highest semantic score (3.86). It
is closely followed by DiDOTS with a mean score of 3.75. A paired
t-test (with Holm-Bonferroni correction for many comparisons)
suggests no significant difference between the two systems. Pega-
sus and DP are not too far behind, but (statistically) significantly
lower. ParChoice𝑆𝑉𝑀 has the lowest semantics score of 2.45. These
results contrast with those of the automatic metrics, Mistral𝐾𝐵
having a much higher ranking and ParChoice𝑆𝑉𝑀 having a lower
score. These results highlight the limitations of automatic metrics
in capturing semantics for diverse paraphrases (Mistral𝐾𝐵 ) or small
variations (ParChoice𝑆𝑉𝑀 ). Additionally, while Mistral𝐾𝐵 may pro-
duce some incorrect outputs affecting overall semantic scores, the
survey samples demonstrate the LLM’s potential on successful out-
puts.

Qualitative Sample Comparison Table 9 and Table 10 show gen-
erated samples for each of the obfuscation approaches. We pick
two sentences, one from a control subject and one from a dementia
subject, to showcase the structural differences for similar meanings.
TheAD sample is longer and has a stutter (“them themother”) while
the control sample uses fewer words.We can see that ParChoice𝑆𝑉𝑀
introduces changes in words and typos, consequently decreasing
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Table 8: Mean and standard deviation of semantic (S) human
evaluation for different systems. A score of 1 indicates no
semantic similarity and 5 identical meaning. The symbols
* and † represent systems pairs not significantly different
from each other.

ParChoice𝑆𝑉𝑀 Pegasus DP𝑇=1.5 Mistral𝐾𝐵 DiDOTS

S ↑ 2.45 ± 0.57 3.55 ± 0.46* 3.45 ± 0.47* 3.86 ± 0.51† 3.75 ± 0.47†

fluency and sense. We note that both Pegasus and DiDOTS rewrite
the sample more concisely. On the other hand, BART𝑃𝑎𝑟𝑎𝑁𝑀𝑇 para-
phrases the text andmakes a mistake (“the water was running out of
the water.") or lowers the language level (the mother→mom) while
Mistral increases the formality level for the AD sample. All systems
except ParChoice𝑆𝑉𝑀 managed to remove the original disfluencies.

Table 9: Obfuscating a Dementia (AD) sample sentence.

Obfuscation Sample

Original AD well in the first place the m the mother for-
got to turn off the water and the water’s
running out the sink.

ParchoiceSVM well in the firstly place the m the mother left
to turn off the water and the waters running
out the sink.

Pegasus The mother forgot to turn off the water and
the water was running out of the sink.

DPT=1.5 The mother forgot to turn off the water and
the sink ran out.

BART𝑃𝑎𝑟𝑎𝑁𝑀𝑇 first of all, the mother forgot to turn off the
water, and the water was running out of the
water.

Mistral𝐾𝐵 The mother forgetting to turn off the water
resultated in it flowing out of the sink.

DiDOTS The mother forgot to turn off the water and
the water is flowing out of the sink.

6 Related Work
Authorship and Attribute Detection. Various stylometric fea-
tures were identified to detect differences between authors such as
lexical features, content-specific and syntactic features [1, 50, 94].
Several mental health conditions can also be detected from text [5,
13, 23, 107]. While these works are crucial for early detection it is
also a powerful tool for author profiling. Our work is the first to
investigate dementia obfuscation in text.
Authorship and Attribute Obfuscation. Authorship and at-
tribute obfuscation techniques range from rule-based [11, 46] to
paraphrasing and text generation. A4NT [95] and Style–pooling [67]
perform obfuscation by style transfer by training a model to trans-
fer sentences from one attribute to another or combining multiple
styles. MutantX [63] is optimized to perform word changes to fool
the authorship detection model. Both in [42] and in [68], authors

Table 10: Obfuscating a Control (CC) sample sentence.

Obfuscation Sample

Original CC the mother is uh washing dishes and the
water’s spilling over on the uh kitchen floor.

ParchoiceSVM the mother is uh washing lookers and the
waters spill over on the uh kitchen floor.

Pegasus The mother is washing dishes in the
kitchen.

DPT=1.5 The mother is washing dishes while the wa-
ter spills over on the kitchen floor.

BART𝑃𝑎𝑟𝑎𝑁𝑀𝑇 mom’s washing dishes, and there’s water
all over the kitchen floor.

Mistral𝐾𝐵 The mother is washing dishes, but the water
is spilling onto the kitchen floor.

DiDOTS The mother is washing dishes and the water
is spilling onto the kitchen floor.

learn syntactical changes to fool a classifier for sentiment, formal-
ity, and agency. Lin & Wan [57] implement several iterations of
back-translation in hopes of breaking the syntax and introducing
synonyms at each pass. ParChoice [36] implements a series of rule-
based modifications for authorship and attribute obfuscation. It
showed superior privacy performance while maintaining high se-
mantic preservation compared to A4NT and MutantX. Differential
privacy methods have also been applied for obfuscation in text,
with most focus on authorship obfuscation. Early work focuses on
applying DP to the word level but often struggles to preserve se-
mantics and computational efficiency. To counter these limitations,
Mattern et al. [64] suggest sampling from a language model using
softmax scaled by a temperature.
LLMs Distillation. Knowledge Distillation (KD) was introduced
by Hinton et al. [38], to train a smaller model (student) to replicate
the logit outputs of a larger, more complex model (teacher). With
the emergence of LLMs and increased computational costs, KD
techniques have been used to reduce models’ sizes [2, 37, 102] but
also to create task-specific smaller-model that leverage the deeper
knowledge of LLMs [39, 45, 114]. Due to their size, these models
are often distilled using “black-box” or sequence-level knowledge
distillation [49] approaches, only accessing the textual output for
the student to train on. Comparatively to our work, [10, 79, 96, 114]
and [25] performed sequence-level KD on the tasks of paraphrasing,
text-simplification and neural machine translation. Text Launder-
ing [44] employ a similar approach to mitigate adversarial attacks
on downstreammodels. To our knowledge, we are the first to utilize
KD from LLMs for attribute obfuscation in text.

7 Discussion
Our system aims to prevent dementia attribute leakage in tran-
scribed speech and protect individuals from potential discrimina-
tion, such as insurance denial or employment bias. It can be in-
tegrated into healthcare systems, online and mobile platforms, or
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transcription services to ensure privacy for individuals with de-
mentia. Our approach promotes ethical data handling and privacy-
preserving communication.

For instance, Android’s SpeechRecognizer [20] is used by 95%
(1306/1380) of apps with speech-to-text functionality (see Section 2).
Google or other Original Equipment Manufacturers (OEMs) can
modify SpeechRecognizer to return obfuscated transcriptions to
the requesting third-party apps by default. The DiDOTS obfusca-
tion model can be applied on the server side where the current
Automatic Speech Recognition (ASR) system is run, to obfuscate
the ASR outputs before returned to the mobile OS, or integrated
into Android’s middleware speech framework whenever the ASR
results are ready, to handle results from both remote and on-device
system ASR models.

Even though DiDOTS ensures high semantics preservation, it
might be beneficial for a minimal set of trusted apps to completely
disable the privacy protection and allow full utility (raw text pro-
cessing). To enable this, the OS provider could follow two strategies:
(a) using Security–Enhanced Linux (SELinux) in Android to enforce
mandatory access control policies allowing only trusted system
apps to invoke APIs accessing original transcriptions, or (b) in-
troducing a runtime permission for accessing raw transcriptions
which requires user interaction to be granted. The former approach
makes all third-party apps untrusted by default and will be denied
access to raw transcriptions. A more flexible SELinux in Android is
introduced by Demetriou et al. [17] which allows users to create
discretionary versions of the policy.

The latter allows user control over which apps receive raw text
access as apps will have to explicitly request the new permission.
This will require populating two versions of the SpeechRecognizer
API, one for permission–protected unsafe access and one for default
safe (or obfuscated) access which is not permission–protected. Note
that this may decrease user attention to permission prompts due
to Android’s already high number of permissions [29]. There is
currently 1215 system permissions on Android version 14 (the latest
stable version) out of which 120 are runtime permissions.10

Some apps may perform transcriptions directly on raw audio,
on-device or using third-party libraries (5.9% or 82/1380 in our
study 2). If the transcriptions are performed on–device or known
libraries are used, app markets (e.g. GooglePlay, Samsung Galaxy
Store, Amazon AppStore etc.) could block or modify such apps to
use DiDOTS obfuscated transcriptions.

A more challenging case is when an app captures and sends the
audio to a remote destination for processing. In this case, OS and
market providers cannot have access to the ASR output (the text
transcriptions) and therefore an orthogonal technique to DiDOTS,
which is a text obfuscation mechanism, is needed. Tackling threats
from such apps requires a novel and careful design to ensure real-
time performance. A possible approach would be to obfuscate the
target attribute directly on the audio signal. For example, Woszczyk
et al [110] proposed promising techniques for disentangling iden-
tity information from dementia in audio and future work could
focus on adapting those techniques for preserving semantics while
disentangling and obfuscating dementia features.
10To count the permissions we used the android debug bridge (adb) command line
tool and the command ’adb shell pm list permissions -g -d | awk -F:
’/permission:/ print $2’ | wc -l)’.

Limitations. In this work, we perform an in-depth analysis of
LLMs’ ability to obfuscate sensitive attributes like dementia and
demonstrate the feasibility of distilling their knowledge into a
smaller, fine-tuned student model. While our main focus is on
dementia, our framework can extend to other attributes such as age,
emotion, authorship, and gender. our PEFT approach allows for the
easy sharing of adapter weights for each attribute, depending on
the specific use case. However, due to the difficulty of accessing
dementia datasets, our work relies on only two datasets with the
same task which restricts the generalizability of our findings. The
data may not fully capture the diverse characteristics and varia-
tions of spoken dementia, potentially impacting the effectiveness
and robustness of the proposed approach. Despite this, we identify
key characteristics from the literature and show LLMs and our dis-
tilled model’s ability to reduce dementia-like features. Our current
evaluation also relies on the choice of adversaries given current
detection capabilities and does not provide formal guarantees. We
attend to this issue by considering several adversaries including
traditional and neural classifiers in static and adaptive settings and
show the effectiveness of our obfuscation strategy. In our work, we
focus on sentence-level obfuscation and we do not account for intra-
sentence dependencies and coherence issues. Future research could
explore incorporating such dependencies to enhance obfuscation
effectiveness and minimize attribute leakage risk.

8 Conclusion
In this work, we highlight the risk of leaking a sensitive medi-
cal user attribute from transcribed speech and leverage LLMs for
privacy-preserving text transformations. We focused our analysis
on dementia, a neurocognitive condition affecting tens of millions
of people globally and to the best of our knowledge, we are the first
to attempt to obfuscate this very sensitive attribute in speech. First,
we showed that transcriptions can already be accessed by a large
proportion (∼20%) of the most popular mobile apps, a functionality
often not properly described to users. Then, we investigated the
capabilities of LLMs on the task of dementia obfuscation through
various prompting strategies and found that zero-shot and domain-
knowledge-informed prompts outperform compared to state-of-
the-art (SOTA) text paraphrasing and attribute obfuscation models.
Finally, we present DiDOTS, which distills knowledge from LLMs.
DiDOTS is a significantly smaller student model compared to its
teacher LLM model. Moreover, DiDOTS is partially fine–tuned for
dementia obfuscation on a synthetic LLM-generated dataset with
LoRA, which allows us to train and share three orders of magnitude
fewer parameters compared to full fine-tuning. Our comprehensive
evaluation demonstrated that DiDOTS retains the high obfuscation
capabilities despite its smaller size and parameter-efficient fine-
tuning. Our work highlights the capabilities of LLMs and knowl-
edge distillation for attribute obfuscation in text and their potential
for deploying effective and resource-efficient privacy-preserving
text processing systems.
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A Android Motivation
Table 11 shows the list of keywords, third-party services, popular
APIs, and SDK calls used in the study of Android apps to search for
the presence of speech-to-text activity in Android apps code. Note,
that it is a conservative list.

Table 11: List of Keywords, APIs, and SDKs used for search-
ing for speech-to-text processing within Android OS apps
(transposed).

Category Items

APIs api.deepgram.com/v1/listen
speech-to-text.watson.cloud.ibm.com
api.openai.com/v1/audio/
api.assemblyai.com
speech.googleapis.com
asr.api.speechmatics.com
apis.voicebase.com
api.cognitive.microsoft.com/speechtotext
libdeepspeech
asr.api.nuance.com
api.amberscript.com
api.rev.com
api.scriptix.io

SDKs android.speech.action.recognize_speech
org.tensorflow.lite.task.text.nlclassifier
com.assemblyai
pocketsphinx
com.google.cloud.speech.v1
android.media.AudioRecord
software.amazon.awssdk:transcribestreaming
ninamobilecontroller
com.microsoft.cognitiveservices.speech
android.speech.recognizerintent
org.vosk
revai.revaistreamingclient
com.ibm.watson.developer_cloud
com.github.mozilla:mozillaspeechlibrary

Keywords speechtotext
speech-to-text
speech_to_text
speechlistener
speech_listener
transcribe
transcription
speechrecognition
speech_recognition

B DP-Pegasus
Table 12 presents the privacy/utility performance of the DP system
based on the Pegasus model with various sampling temperatures.
The temperature seems to have little effect on the obfuscation
capabilities with a constant mean F1 score of circa 0.57,0.56 for
ADReSS (ADR) and ADReSSo (ADRo) datasets while the semantic
score is dropping down to 0.51,0.47 for ADR, ADRo respectively. We
find that the temperature of T=1.5 achieves the best trade-off across
both datasets and select it for our main comparison in Section 5.
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Table 12: Privacy/utility results for ADReSS and ADReSSo
datasets at sentence-level for DP Pegasus with various tem-
peratures. This table presents the F1 scores against static
and adaptive dementia classifiers and semantic preservation.
Best result for each column is identified in bold.

Temp. SVM↓ BERT↓ Avg. F1↓ Semantics↑
Static Adaptive Static Adaptive

ADReSS

1.0 0.60 0.59 0.52 0.58 0.57 0.85
1.5 0.59 0.56 0.51 0.58 0.56 0.85
2.0 0.60 0.57 0.52 0.58 0.57 0.82
3.0 0.58 0.59 0.52 0.58 0.57 0.72
5.0 0.57 0.57 0.55 0.58 0.57 0.58
10.0 0.61 0.55 0.63 0.58 0.59 0.51

ADReSSo

1.0 0.58 0.58 0.50 0.57 0.56 0.81
1.5 0.58 0.59 0.49 0.57 0.56 0.80
2.0 0.58 0.61 0.47 0.57 0.56 0.77
3.0 0.58 0.57 0.50 0.57 0.56 0.68
5.0 0.58 0.58 0.56 0.57 0.57 0.56
10.0 0.61 0.55 0.57 0.57 0.58 0.47

C LLMs Samples
In Table 13, we showcase samples generated by our selected LLMs.
We see that they all generate fluent paraphrases and semantically
close while also being diverse. We can note they tend to increase
the formality of the language except for LLama3 which remains
quite unformal.

Table 13: Comparison of Dementia (AD) and Control (CC)
Samples from different LLMs.

System Sample AD Sample CC

Original and uh they’re each
busy at at uh some-
thing.

and there’s a tree out
there somewhere that
you can see part of the
trunk and part of the fo-
liage.

Gemma and they were each
busy at something.

There is a large tree
standing in the dis-
tance that you can see
some of its branches
and leaves.

Phi3 They are all occu-
pied with their re-
spective tasks.

and there’s a tree
outside where we can
catch a glimpse of its
trunk and leaves.

Mistral And they’re all occu-
pied with their own
tasks.

Outside, you can see a
tree with some of its
trunk and leaves visi-
ble.

LLama3 and each person is
occupied with their
own activity.

you can see part of the
trunk and some leaves
on that tree.

D Human Evaluation: Ethical Considerations
The reason for conducting our study with human subjects is to eval-
uate the effectiveness of our text obfuscation model in preserving
semantic content and comparing it to relevant work. As automatic
metrics do not accurately represent semantics, it is crucial to per-
form human evaluation on a significant sample size. Our research
question focuses on assessing our model’s ability to maintain the
original text’s semantics comparatively with other existing para-
phrasing methods, employing human perception as the metric. Our
study was approved by our institution’s Research Ethics review
board.

Task design: We design a questionnaire presenting an original
sentence and its paraphrase with different systems. We consider 5
systems: ParChoice (rule-based), Pegasus (Paraphrase), DP (Differ-
ential Privacy-based), and our system, Mistral (knowledge-guided
strategy) and DiDOTS. Participants were be asked to rate the para-
phrase of each system on a 1 to 5 Likert scale. We randomise the
questions order aswell as the system’s positionwithin the questions,
to mitigate the order bias that might affect how the respondent
answers. We recruit 100 participants who are English natives from
the UK or US, and recruit an additional 60 participants to correct
for low-quality respondents.

Platform & Recruitment Methods: We create the survey on
Qualtrics and advertise it on Prolific. Prolific [86] is increasingly
used in academic studies as it gives researchers access to a pool of
quality participants (passing attention checks, giving meaningful
answers, following instructions) [22]. The participants are given
a link to a full participant information sheet which contains the
study description, contact details and a full transparency notice
and asked for consent. Each user is anonymized and accesses the
survey online [90]. The platform allows us to add several filters
to further ensure the relevance of the participants. Eligible partici-
pants are sent the survey and a preview on the platform (with the
compensation and estimated duration) and they can choose to take
it or ignore it. Each participant will be offered compensation for
their work. The preview will read as follows:

“The purpose of this study is to investigate the effectiveness
of various techniques that modify text in different ways but can
preserve the meaning of the original text. We ask you to evalu-
ate passages, rating the degree of similarity between original and
paraphrased texts on a scale of 1 to 5.”

Consent: At the beginning of the survey participants will be asked
to opt-in to the survey by agreeing to a consent form shown after
being presented with a short summary of the participant informa-
tion sheet. The summary will have a link to the full participant
information sheet which contains the full transparency notice.

Withdrawal of participation: The participants are free to stop
the survey at any moment if they do not wish to complete it. After
the survey, they may choose to ”return” the survey on the Prolific
platform. The data of participants with incomplete surveys are
not used in the study. In case of withdrawal, the participant will
not receive compensation and their response will be deleted from
Qualtrics and local records.
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Anonymity: Each user is anonymized and accesses the survey
online [90]. We do not collect identifiable data such as location,
names, or age. Although the Prolific ID has not been linked to any
de-anonymization attempt we do treat it as a PII and do not store
the Prolific identifiers. We only use the Prolific ID to reject or accept
the completion of the survey and offer compensation. This ID will
only be accessed by researchers working on the project. For storing
the data, we substitute each prolific ID with a new ID we randomly
generate.
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