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Abstract
In this work we revisit the problem of using general-purpose MPC

schemes to emulate the trusted dataholder in differential privacy

(DP), to achieve the same accuracy but without the need to trust one

single dataholder. In particular, we consider the two-party model

where two computational parties (or dataholders), each with their

own dataset, wish to compute a canonical DP mechanism on their

combined data and to do so with active security. We start by remark-

ing that available definitions of computational DP (CDP) for proto-

cols are somewhat ill-suited for such a use-case, due to them either

poorly capturing some strong security guarantees commonly given

by general-purpose MPC protocols, or having too strict require-

ments in the sense that they need significant adjustment in order

to be satisfiable by using common DP and MPC techniques. With

this in mind, we propose a new version of simulation-based CDP,

called SIM
∗
-CDP, and prove it to be stronger than the IND-CDP

and SIM-CDP and incomparable to SIM
+
-CDP. We demonstrate the

usability of the SIM
∗
-CDP definition by showing how to satisfy it by

the use of an available distributed protocol for sampling truncated

geometric noise. Further, we use the protocol to compute two-party

inner-products with CDP and active security, and with accuracy

equal to that of the central model, being the first to do so. Finally,

we provide an open-sourced implementation and benchmark its

practical performance. Our implementation generates a truncated

geometric sample in between about 0.035 and 3.5 seconds (amor-

tized), depending on network and parameter settings, comparing

favourably to existing implementations.

Keywords
Differential privacy, Multiparty computation, UC-security, Noise

sampling

1 Introduction
The study of differential privacy in various distributed settings

has given rise to a plethora of new definitions of DP, such as DP

in the local model (LDP) [48], the shuffle model [6, 16] and defini-

tions with a computationally bounded adversary, giving guarantees

of computational DP (CDP) [4, 26, 64]. Each of the definitions is

subject to its own restrictions in the adversarial model and in the

accuracy that can be achieved within them. For instance, it is well-

studied that in LDP, which is a computationally efficient model
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with very few trust assumptions, one must in some settings add

much more noise than the standard central model of statistical

DP (SDP)
1
[4, 15, 48, 72]. One recurring idea is that one can use

general-purpose multiparty computation (MPC) techniques to em-
ulate a trusted central dataholder and thus one may get the same

accuracy as is in the central model without having to trust a central

computational party [16, 29]. The troubles in realising this idea,

which we can call generic emulation of the dataholder (GED), are
firstly that one must accept the, potentially, large computational

costs of MPC and secondly that it is not necessarily clear how one

should define DP in this new distributed and computational set-

ting. In order to avoid or reduce the computational costs of using

MPC, up until now, most of the works in this area have opted for

considering passive adversaries [4, 30, 68], only allowing aggre-

gate functions [19, 49] and/or requiring honest majorities [26]. We

focus on the case of two parties
2
, active (static) corruptions, and

require efficient protocols
3
for non-aggregate functionalities that

achieve the same accuracy as in the central model. This work con-

sists of two main parts. First, we consider existing definitions of

CDP for the setting above, conclude that they leave some things

to be wished for and we therefore propose an adjusted definition

of CDP. In the second part, we implement an existing protocol for

noise sampling [30], prove that it fulfills our new definition (but

not some previous ones) and show that when augmented to use a

mixed-circuit approach, it is efficient also in practice.

Definitions of CDP. In order to design practical protocols for

GED, we want a DP notion that is directly compatible with secu-

rity definitions of state-of-the-art MPC schemes and that allows

the emulated dataholder to compute common SDP mechanisms.

Since we consider the case of two parties and active corruptions,

for which information-theoretic general-purpose MPC is impossi-

ble [18, 32, 37], we have to use CDP [4, 64]. Intuitively, compatibil-

ity with standard MPC security definitions might seem immediate,

since the possibility of general-purpose MPC means that essentially

any functionality can be securely realised as long as it is computable

in strict polynomial time. The restriction to polynomial-time func-

tionalities may look minor but we shall see that it causes quite some

intricacies, especially since it means that only functionalities whose

1
Throughout this work we use ’DP’ to refer to definitions that are both statistical

(information-theoretic) and computational. When distinguishing between them we

use ’SDP’ and ’CDP’ respectively.

2
We consider both in the discussion about definition and in that of protocols only the

case of two-party computation, although since all the tools we use are also applicable

to settings with more parties (and all definitions can trivially be extended to those

settings), we will continue to speak of MPC at times. At all times, the reader can

suitably think of the special case of two parties whenever MPC is mentioned.

3
In particular, we require that the protocols are computable in strict polynomial time

in a finite computational model, as suggested in [2].
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output distribution is of a certain type can be securely realised. Crit-

ically, fundamental SDP mechanisms such as the Laplace [28], geo-

metric [36], Gaussian [29] and discrete Gaussian [13] mechanisms

have output distributions which cannot be computed exactly in

strict polynomial time.
4
This means that the CDP definition we use

needs to allow either that the protocol does not exactly emulate the

dataholder (imperfect correctness) or that the emulated dataholder

does not exactly compute the SDP mechanism, or both.

In Section 3, we revisit the CDP definitions for two-party pro-

tocols by [64]. Since we will refer to it recurrently, let us call the

paper [64] MPRV, after its authors. They are all applicable to the

setting of active corruptions however we find that they all fit un-

naturally to the task of GED. For IND-CDP (Definition 3.1) and

SIM-CDP (Definition 3.2), the inconvenience lies in that by using

MPC to compute an SDPmechanism, one gets a protocol with much

stronger guarantees than is captured in those CDP definitions, such

as guarantees of security and correctness. This creates the need

to analyse the desired properties of the protocol (now correctness,

accuracy, security and CDP) separately, contrary to the custom

when it comes to general-purpose MPC, which is typically analysed

in the ideal/real paradigm where all such properties are formulated

and asserted simultaneously. Intuitively, this ill-fitting is due to

there not being a separation in the definitions between the protocol,

which we want to be efficient, and the ideal DP mechanism, which

we want to allow to be inefficient. For SIM
+
-CDP (Definition 3.3)

there is no such dissonance in the modeling of the protocol since

it is already formulated using the ideal/real paradigm. Here the

troubles lie rather in the details of the definition, which we will

see are too restrictive to allow the notion to be fulfilled by emu-

lating most common SDP mechanisms. This is fundamentally due

to SIM
+
-CDP requiring perfect correctness in the MPC protocol,

which together with a demand for protocols running in strict poly-

nomial time rules out any SDPmechanism that uses noise that is not

samplable exactly in strict polynomial time. Whereas SIM
+
-CDP

could be achieved by using a finite version of standard SDP mecha-

nisms, for instance using the mechanisms introduced in [2], it does

mean a less direct realisation of GED, since the intuition is still

to, say, ’use MPC to run the geometric mechanism’. Therefore, in

Section 4, we propose an adapted version of SIM
+
-CDP, calling it

SIM
∗
-CDP, which indeed can be satisfied by emulating standard

CDP mechanisms due to a relaxation to computational correctness.

Other large changes from SIM
+
-CDP include using the UC (Univer-

sal Composability) security framework [10] instead of standalone

security [9, 37] and allowing other ideal functionalities than secure

function evaluation.
5
We prove that SIM

∗
-CDP is of incomparable

strength to SIM
+
-CDP, meaning that there are in both ways com-

putational tasks that can be solved with one but not the other, and

4
For more details on this, see Appendix A. The core observation there is that they

cannot be computed exactly in strict polynomial time on a finite computer due to

having probability distributions containing densities that are not an inverse polynomial

power of 2.

5
We underscore that the merit of our new definition is not that it allows studying new

scenarios or is to be preferred over previous definitions in all cases, indeed there are

many cryptographic tasks for which UC-secure protocols are missing or for which

it is not the most desirable framework to use. Rather the merit is that for settings

where UC-secure protocols are readily available, then we have a formulation that takes

advantage of that to give results that are both stronger and easier to obtain.

that (like SIM
+
-CDP) SIM

∗
-CDP is strictly stronger than SIM-CDP

and IND-CDP.

Implementing a protocol satisfying the new definition. To demon-

strate the advantages of SIM
∗
-CDP, we implement a generic proto-

col for satisfying SIM
∗
-CDP for the ideal functionality computing

the truncated geometric mechanism. In particular, we analyse the

noise sampling protocol of [30], adjust it to use mixed circuits for

improved efficiency and give a very direct proof that the resulting

protocol satisfies SIM
∗
-CDP. Further, we implement the protocol

and thereby present the first implementation of the protocol of [30]

and simultaneously the first implementation of the truncated geo-

metric mechanism with active security. Finally, we show how to

use the protocol for computing integer inner-products with CDP

and accuracy equal to that of the central model and benchmark the

implementation, showing its practical efficiency. This treatment

might be of independent interest, perhaps primarily due to our

considerations relating to that the function sensitivity of the inner-

product is dependent on the input domain of the corrupted party,

thus creating a need for input validation. We note that whilst the

definitions of CDP remain relatively unchanged when going from

passive to active corruptions, the concrete privacy proof of a given

protocol often changes significantly (as does the practical efficiency

of its implementation) thereby the simplicity of our analysis in this

more complicated setting showcases the usability of SIM
∗
-CDP.

Contributions:

• We identify aspects of existing CDP definitions that make

them an unnatural fit to the approach of generic emulation

of a central trusted dataholder that computes an inefficient

SDP mechanism. Therefore, we present a new version of

SIM
+
-CDP, which we call SIM

∗
-CDP, and formally relate it

to previous definitions (Sections 3 and 4).

• We demonstrate the usability of the SIM
∗
-CDP definition by

showing how it can be satisfied with the truncated geometric

mechanism by proving that the efficient MPC protocol by

[30] for sampling geometric noise satisfies our definition

(Sections 5 and 6).

• We improve the efficiency of the protocol by using mixed

circuits and use the protocol to compute two-party inner-

products with CDP and active security, to the best of our

knowledge being the first to do so with accuracy equal to

that in the central model. Our open-sourced implementation

is the first implementation of the noise sampling protocol

of [30]. We provide benchmarks of the implementation and

thereby show that it is efficient in practice (Section 7).

Related works. The first work that aims to emulate a central

trusted party for DP by use of MPC is Our data, ourselves [26],
where a protocol is proposed for computing sums with security

against active adversaries corrupting less than a third of the par-

ties, a part of which is a method for distributed noise generation.

Following [26], other works have also proposed noise sampling

protocols for DP in an MPC setting [1, 14, 30, 71] and the work

most related to ours is EIKN [30, 31]. EIKN gives an efficient MPC

protocol for sampling an approximate truncated geometric distri-

bution, which we use in this work. The mechanism is analysed

with respect to IND-CDP, however the privacy proofs given are
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only for honest majorities and thus do not apply to the two-party

case [30, 31]. In a recent work [50], efficient noise sampling proto-

cols for passive corruptions and dishonest majorities are provided.

It is noted in passing that the protocols can easily be made secure

against active adversaries by implementing them in a framework

with active security but the type of CDP this would result in is not

discussed. Our proposed SIM
∗
-CDP definition offers an immediate

answer to that. The work of [14] proposes a method for performing

Bernoulli trials that is asymptotically superior to the one we use

however their method relies on implementing oblivious data struc-

tures hence making it unsuitable for direct combination with the

secret-sharing-based MPC schemes that we use. Further, avoiding

reasoning about oblivious data structures greatly simplifies our

proofs and the disposition of later sections, allowing us to focus

more on details relating to the CDP definitions.

Another line of work that is of relevance to ours due to it dealing

with combining definitions of security for MPC schemes and DP

is the serie of papers considering MPC with differentially private

leakage [42, 45, 59], where the idea is to improve the efficiency of

an MPC protocol by allowing the protocol execution itself (not the

result) to leak some extra information, but to restrict this leakage to

be differentially private. Whilst the task solved in this line of work

is quite different from the one we study, there are similarities in the

formalities, which we discuss after having introduced SIM
∗
-CDP.

2 Preliminaries and Notation
For a natural number 𝑛, let [𝑛] := {1, . . . , 𝑛}. Let N−1

denote {1/𝑛 :

𝑛 ∈ N}.

2.1 Secure Computation
We now briefly introduce necessary terminology regarding secure

multiparty computation, for a slightly more thorough introduc-

tion, see Appendix B. A protocol is described as a set of interactive

machines. For our purposes, it is not important exactly how those

machines are formalised but for concreteness, we will think of inter-

active Turing Machines, which are non-uniform unless otherwise

stated. We say that an algorithm (or machine or protocol) is efficient
if it is PPT, meaning it is probabilistic and runs in strict polynomial

time. We quantify the security by a protocol by a computational

security parameter 𝜅.6 We consider both active and passive cor-

ruptions but assume they are static. For a protocol 𝜋 = {𝑃1, ..., 𝑃𝑛}
and a set 𝐶 ⊂ [𝑛], let {𝑃𝐶 } denote {𝑃𝑖 : 𝑖 ∈ 𝐶} and let {𝑃−𝐶 }
denote {𝑃𝑖 : 𝑖 ∉ 𝐶}. The information available to the coalition 𝐶

of parties in the protocol is formalised in their view, as defined be-

low. The reason for exchanging {𝑃𝐶 } with {𝑃𝐶 } is to model active

corruptions.

Definition 2.1 (VIEW, reformulation from [4]). Let 𝜋 = {𝑃1, ..., 𝑃𝑛}
be a protocol and A be an adversary corrupting a set 𝐶 ⊂ [𝑛] of
parties. For fixed inputs 𝐷 = (𝐷1, ..., 𝐷𝑛) ∈ D, the view in 𝜋 of the

corrupted parties {𝑃𝐶 }, denoted VIEWA𝜋,𝐶 (𝐷), is defined as the ran-

dom variable containing the inputs of the parties in𝐶 , their random

coins and the messages that they receive during the execution of

6
Many of our results will be quantified by 𝜅 even if they also hold with respect to an

equal statistical security parameter since statistical security implies computational

security.

the protocol {𝑃𝐶 } ∪ {𝑃−𝐶 } on inputs 𝐷 . The randomness is over

the random coins of the honest parties {𝑃−𝐶 }.

Often it is clear from context what parties the adversary corrupts

(for instance in a symmetric two-party protocol) and then we omit

𝐶 from notation. For defining secure computation of protocols we

use the standard definitions in the ideal/real-paradigm, in both the

standalone [9, 37, 56] and UC frameworks [10, 21]. Very shortly one

can say that security is defined by formulating an ideal world in

which an incorruptible trusted central party, an ideal functionality,
performs all computations (and is secure by definition) and then a

real-world protocol is deemed secure if no efficient distinguisher

can distinguish it from the ideal world.

2.2 Differential Privacy
The notion of differential privacy (DP) [25, 28] considers a proba-
bilistic algorithm, or mechanism, that maps databases, i.e. sets of
elements from some data universe 𝜒 , to some output range 𝑅. We

think of databases as ordered sets of some fixed (public) size 𝑁 ,

and thus a database 𝐷 is an element of D := 𝜒𝑁 . We say that two

databases 𝐷,𝐷 ′ are adjacent if they differ in at most one element.

There are however many other adjacency notions that may be more

suitable to a given use case, perhaps especially when considering

different types of distributed settings, so it is important to note that

the definition of (S)DP in itself is agnostic to the choice of adjacency

notion, just like all CDP definitions considered in this paper.
7

Definition 2.2 (Adjacency notion). An adjacency notion ADJ on
the dataset domain D is a set in D × D that is symmetric, i.e. if

(𝐷,𝐷 ′) ∈ ADJ then so is (𝐷 ′, 𝐷), and ∀𝐷 ∈ D, (𝐷, 𝐷) ∈ ADJ. If
(𝐷,𝐷 ′) ∈ ADJ the we say that 𝐷 and 𝐷 ′ are adjacent with respect

to ADJ.

We recall the standard definition of SDP (reformulation of [25]):

Definition 2.3 ((𝜀, 𝛿)-SDP [25, 28]). A probabilistic algorithmM :

D → 𝑅 is (𝜀, 𝛿)-differentially private (SDP) if for all pairs (𝐷,𝐷 ′)
of adjacent databases in D and all subsets 𝑆 of 𝑅,

P(M(𝐷) ∈ 𝑆) ≤ 𝑒𝜀P(M(𝐷 ′) ∈ 𝑆) + 𝛿, (1)

where the probability is overM’s internal coin tosses.

As is standard in cryptography, we typically consider not single

mechanisms but rather ensembles of them and index the individual

mechanisms within an ensemble by a security parameter 𝜅 ∈ N.
The security parameter is used to quantitatively relate properties

of a mechanism or protocol (for instance the success probability

of a given type of adversary) to specific parameter choices. This

approach applies also to DP, and we therefore often allow DP pa-

rameters to depend on 𝜅 , letting 𝜀𝜅 = 𝜀 (𝜅), 𝛿𝜅 = 𝛿 (𝜅) denote sets of
parameters. Then we abuse notation by saying (for instance) that

the ensembleM = {M𝜅 }𝜅∈N is (𝜀𝜅 , 𝛿𝜅 )-SDP if for all large enough

𝜅 ,M𝜅 is (𝜀𝜅 , 𝛿𝜅 )-SDP. Since the introduction of a dependence on 𝜅

7
In particular, since the focus of this paper is on the CDP definition with respect

to GED and the choice of adjacency notion does not influence the merit of a CDP

definition over another, it is for our discussions not relevant what adjacency notion

one chooses to work with. On the practical side, there is however a potentially large

difference in how well an adjacency notion fits together with a given MPC technique

or setting, but these matters concern the realisation of GED rather than what the

approach of GED means for the definition of CDP.
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is most directly a consequence of relying on cryptographic guaran-

tees in the mechanism design, it might rightfully be more closely

associated with CDP than with SDP. We do however find that it is

convenient to include this dependence also when discussing SDP,

partly because it allows a more direct comparison to CDP and partly

because the security parameter readily arise during the design of

algorithms, also for SDP mechanisms.

The formulation of SDP above is often called approximate SDP,
whereas it is called pure SDP if 𝛿 is fixed to 0. DP is typically studied

in what is called the central model, of which an illustration can be

found in Figure 1. In the central model, the database is simply a set

of rows, each of which consists of information about one individual,

called a data subject. These data subjects send their data to a trusted
dataholder (without noise) that then computes a mechanism on

the accumulated data and then releases the result to an untrusted

data analyst. In this work, we rather consider DP in the two-party
model [60, 64] where each data subject holds two database rows

(𝑥𝑖 , 𝑦𝑖 ), each of which is sent to one of two computational parties

(or servers) that then store their respective row into their database

(x and y respectively) in the clear. Then these two servers together

wish to compute the query 𝑓 on the concatenation of their databases

𝐷 := x| |y, both learning the result, and they wish to do this in a

differentially private manner with respect to their database. An

illustration of this model can be seen in Figure 2.
8
For more details

on models of DP in multiparty settings, see [63].

When discussing DP mechanisms, it is critical to consider the

usefulness of the mechanism for approximating the query function

𝑓 . We do this by using the following notion of usefulness, as defined

via a utility function.

Definition 2.4 (Utility function [7, 35]). A utility function is an

efficiently computable deterministic function 𝑢 : D × R → {0, 1}∗.
A mechanismM : D → R is 𝛼-useful for 𝑢 if for all 𝐷 ∈ D:

P
𝑧←M(𝐷 )

(𝑢 (𝐷, 𝑧) = 1) ≥ 𝛼. (2)

A mechanism 𝛼-useful for 𝑢 is said to solve the task (𝛼,𝑢).

A specific utility function we will consider is that which in-

duces the notion of (𝑠, 𝛼)−additive-usefulness for a query function

𝑓 , namely 𝑢 (𝐷, 𝑧) = 1 iff |𝑓 (𝐷) − 𝑧 | ≤ 𝑠 . Many popular DP mecha-

nisms (such as the Gaussian, Laplace and geometric mechanisms)

work computing the query function and then add noise of a specific

distribution calibrated after the sensitivity of 𝑓 (how much any

single database entry can change the function evaluation). In this

work, we consider this change only in the sense of 𝑙1−distance.

Definition 2.5 (𝑙1-sensitivity). Let 𝑓 : D → R be a determin-

istic function, where R is a vector space on which the 𝑙1-norm

| |v| |1 :=
∑

𝑖 |𝑣𝑖 | is defined, and ADJ be an adjacency notion on D.

8
We note that the two-party model is slightly but significantly different from the

two-server/multi-server models [5, 17], primarily in that those models do not allow

any server to have any part of the input dataset in the clear. This difference is of

practical relevance because it means the models are suitable for different scenarios.

The two-party model is mostly meant for joint computation between two entities each

holding their own dataset (which may have been collected over time and without

respect to the function evaluation in question) whereas the two-server model is rather

tailored towards data collection, where one or more entities are collecting the data

specifically for the purpose of performing the computation but wish to do so in a way

that they never see any part of the dataset in the clear.

Data subjects

D1

D2

D3

...

Dataholder
Database D

Analyst

Output f(D) + noise

Figure 1: In the central model, the data subjects trust the data
holder with their data (𝐷𝑖 ) but wish to keep it secret from an
(possibly adversarial) analyst learning the (possibly noisy)
function evaluation.

The 𝑙1-sensitivity of 𝑓 with respect to ADJ, denoted Δ𝑓 , is defined
as

Δ𝑓 := 𝑚𝑎𝑥
(𝐷,𝐷′ ) ∈ADJ

| |𝑓 (𝐷) − 𝑓 (𝐷 ′) | |1 . (3)

Data subjects

x1, y1

x2, y2

x3, y3

...

Party 1
Vector x

Party 2
Vector y

Output f(x||y) + noise

Figure 2: In the two-party model, the data subjects trust two
different data holders, which we call parties, with a different
part of their data, but not with the part of the data that they
send to the other data holder. In the end both parties learn
the noisy function evaluation. Thus, in a sense, each party
plays both the role of a data holder and a data analyst.

2.3 Mixed Binary-arithmetic MPC Schemes
In our definitions, we rely on general-purpose MPC schemes with

active security. In particular, we work with MPC protocols with re-

stricted computation domain, either in F𝑝 for arithmetic or F
2
𝑘 for

binary circuits. For a discussion of active security in these schemes,

we refer to Appendix E. In general, MPC schemes in F𝑝 provide

fast algorithms for addition and multiplication. In contrast, in F
2
𝑘 ,

comparisons, bit-wise operations, and non-linear functions can be

evaluated cheaply. However, storing larger integers results in sub-

stantial overhead, and evaluating arithmetic circuits in the binary

domain incurs costs depending on the encoded values’ bit size.
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Several works have proposed solutions to convert shares be-

tween computation domains. First, in ABY [24], the authors pro-

pose a semi-honest two-party MPC scheme that allows switching

between the binary, arithmetic, and garbled circuit domains (Gar-

bled Circuits allow computation of binary circuits with low com-

munication rounds). More recently, Rotaru and Wood introduced

doubly-authenticated bits [66] and an efficient procedure to securely

sample secret bits in the arithmetic and binary domain in malicious

settings. Given the shares of an unknown random bit ( [[𝑏]]2, [[𝑏]]𝑝 )
we can transfer shared bits from the binary to the arithmetic do-

main by computing the mask𝑚 ← Reconstruct( [[𝑥]]2⊕ [[𝑏]]2) and
setting [[𝑥]]𝑝 ←𝑚 + [[𝑏]]𝑝 − 2 ·𝑚[[𝑏]]𝑝 . Similarly, converting from

arithmetic to binary masks the value by addition and evaluates sub-

traction in the binary domain. The conversion from the arithmetic

to the binary domain gets more expensive, depending on the field

size. Subsequent work introduced extended doubly-authenticated
bits (eda-bits) [33], where masking values are shared along with

their binary decomposition in the respective domains. The eda-bits

represent an improvement in efficiency when converting larger val-

ues, and [33] presents dedicated protocols to speed up comparisons

in F𝑝 .

3 CDP in the Two-party Model
We now briefly overview the literature on CDP in the two-party

model and argue why it is desired to look for new definitions. For

more details on existing definitions and how they relate, see [63].

3.1 Existing CDP Definitions for Protocols
The formal study of both SDP and CDP in the two-party and multi-

party models is initiated in [4, 64], where three definitions of two-

party CDP are proposed. These are formulated for the two-party

case but the definitions trivially extend to the multi-party case. We

also follow this convention. The notion of SDP in the central model

is extended to interactive protocols by requiring that the view of

the adversary is an SDP mechanism with respect to the input of the

honest party. In [4] it is established that there are computational

tasks for which the maximum utility in the two-party SDP model

is strictly lower than in the central model and therefore there is a

need to relax SDP to CDP. The CDP definitions come in two distinct

variations, based on how they formalise a protocol execution ’look-

ing SDP’ to a computationally bounded party. The first variation

is called indistinguishability-based and changes the demand that

the output distributions of the mechanism are close on adjacent

inputs to that this must only hold for all PPT distinguishers acting

on the mechanism output. The second variation of CDP is called

simulation-based and here a mechanism is deemed CDP if there

exist an SDP mechanism from which it is computationally indistin-

guishable. Below we include a reformulation of the definition of

indistinguishability-based CDP.
9

Definition 3.1 (IND-CDP for protocols, reformulation from [4, 68]).
We say that a 2-party protocol 𝜋 is (𝜀𝜅 , 𝛿𝜅 )-IND-CDP if for all effi-

cient adversaries A corrupting at most one party, for all efficient

9
Its original formulations [4, 64] differ slightly from one another, for instance in that [4]

allows only passive corruptions and that MPRV lets the distinguisher be non-uniform.

We consider these differences however to be of the sort making the definitions more

two different instantiations of the same definition rather than two different ones. Note

also that they both fix 𝛿𝜅 as negligible (but non-zero) in 𝜅 .

distinguishers𝑇 , every sufficiently large 𝜅 and for all𝐷,𝐷 ′ adjacent
with respect to the inputs of the honest party, we have

P
(
𝑇

(
VIEWA𝜋 (𝐷)

)
= 1

)
≤ 𝑒𝜀𝜅P

(
𝑇

(
VIEWA𝜋 (𝐷 ′)

)
= 1

)
+ 𝛿𝜅 . (4)

The probabilities are taken over the randomness in 𝜋 , A and 𝑇 .

It is noted in MPRV that if 𝛿𝜅 = 0 then IND-CDP is equivalent

to pure SDP. IND-CDP was originally formulated with 𝛿𝜅 fixed as

negligible but the version with non-negligible 𝛿𝜅 has also seen prac-

tical use, for instance, EIKN [30]. In the two-party model there are

two different main formulations of simulation-based CDP, which

we include below. These were introduced originally with 𝛿𝜅 = 0

but similarly have been used with larger 𝛿𝜅 also [5].

Definition 3.2 (SIM-CDP for protocols, reformulation from MPRV).
We say that a 2-party protocol 𝜋 is (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP if for all effi-

cient adversaries A corrupting at most one party, for all efficient

distinguishers𝑇 and𝐷, 𝐷 ′ adjacent with respect to the inputs of the
honest party, there exists an ensemble {M𝜅 (·)}𝜅∈N of (𝜀𝜅 , 𝛿𝜅 )-SDP
mechanismsM𝜅 : D → R𝜅 such that for every sufficiently large 𝜅

and every 𝐷 ∈ D of size polynomial in 𝜅 , it holds that VIEWA𝜋 (𝐷)
andM𝜅 (𝐷) are indistinguishable to 𝑇 .

Definition 3.3 (SIM+-CDP, Reformulation of MPRV). Let 𝑢 be a

utility function. A 2-party protocol 𝜋 is (𝛼, 𝜀𝜅 , 𝛿𝜅 )-SIM+-CDP for 𝑢

if there exists an (𝜀𝜅 , 𝛿𝜅 )-SDP mechanismM such that:

• the mechanismM is 𝛼-useful for 𝑢;

• 𝜋 is a secure protocol for the functionalityM as per Def-

inition B.2 (standalone security with perfect correctness,

efficient protocols and a potentially inefficient simulator).

3.2 Relations Between CDP Definitions
There is substantial literature on how the CDP definitions relate to

each other and although the relations are far from tightly charac-

terised, the rough picture is quite clear. For the parameter regimes

for which the definitions were originally proposed (𝛿𝜅 = negl(𝜅)
in IND-CDP and 𝛿𝜅 = 0 in the others), it was shown in MPRV that

any protocol that is (𝜀𝜅 , 0)-SIM+-CDP is also (𝜀𝜅 , 0)-SIM-CDP and

similarly (𝜀𝜅 , 0)-SIM-CDP implies (𝜀𝜅 , negl(𝜅))-IND-CDP. On the

other hand, there are tasks that can be solved with (𝜀𝜅 , 0)-SIM-CDP

that cannot be solved with (𝜀𝜅 , 0)-SIM+-CDP. It was long unknown
if there is a similar separation between (𝜀𝜅 , negl(𝜅))-IND-CDP and

(𝜀𝜅 , 0)-SIM-CDP but in 2023 such a task was found [35]. The defini-

tions have mostly been related to each other by either considering

a fixed task and showing that there are no complexity assumptions

under which that task can lead to a separation or by considering a

fixed complexity assumption and showing that there are no tasks

that lead to a separation under that assumption alone [7, 41, 61].

There is also a line of work about finding minimal complexity as-

sumptions under which (various types of) CDP can be separated

from SDP via a specific task, like computing boolean functions or

integer inner-products with a given accuracy [39, 40, 43, 44, 53].

Whereas the relationship between the involved DP definitions is

quite well understood in these cases, one should note that the same

does not hold generally for other classes of tasks or for more relaxed

parameter regimes.
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3.3 Using Existing Definitions for GED
Each of the CDP notions above can be satisfied by a protocol that

uses general-purpose MPC techniques to realise a functionality

that computes an SDP mechanism, i.e. a protocol for GED. This has

been shown for IND-CDP in [4, 68] and for SIM-CDP in MPRV. For

SIM
+
-CDP it is immediate, since there are general-purpose MPC

schemes for the notion of secure computation used in SIM
+
-CDP.

We argue that GED results in guarantees that are fundamentally

stronger than those in IND-CDP and SIM-CDP, therefore warrant-

ing a definition that captures them more closely, and that there are

details in the SIM
+
-CDP definition that make it inconvenient to

work with for GED, although intuitively it is very suitable.

On using IND-CDP or SIM-CDP. One strength of GED for con-

structing CDP protocols is that one has guarantees about the be-

haviour of the protocol which exceed that of the adversarial view

appearing DP. More precisely, the use of MPC allows guaranteeing

security (dictating the influence an adversary may have on the pro-

tocol) and correctness (specifying the accuracy requirement of an

honest execution). These properties are proven in the ideal/real par-

adigm (see Appendix B), that is, by specifying an ideal functionality

that defines all of the desired properties of the protocol and then

proving that the real protocol behaves almost the same. Here there

arises a dissonance in intuition to the perspective in IND-CDP, since

that notion considers only the real-world protocol. Therefore, when

one uses IND-CDP together with GED, one has CDP as a property

of the protocol in the real world, rather than in the ideal world with

all other desired properties. This type of dissonance is smaller when

it comes to SIM-CDP since the mechanismM in SIM-CDP is also

in a way a description of the simulator and ideal functionality. The

dissonance here, however, is that the formalisation of simulation is

vastly relaxed in SIM-CDP, for instance in that the simulator has

access to all private inputs.

On using SIM+-CDP. SIM+-CDP does not suffer the modeling-

wise dissonance described above and neither does it poorly capture

the guarantees granted by secure computation. The problem with

using SIM
+
-CDP in the context of GED lies rather in that some

of the details in the definition are too restrictive, meaning that

they rule our realising GED for many of the most fundamental

SDP mechanisms. In particular, the SIM
+
-CDP definition requires

the real-world protocol 𝜋 to run in strict polynomial time and si-

multaneously have perfect correctness, meaning that its output

distribution in an honest execution is identical to that of the SDP

mechanism in the ideal functionality. This implies that any protocol

satisfying SIM
+
-CDPmust do so with respect to an SDPmechanism

that can be computed exactly in strict polynomial time. Unfortu-

nately, this rules out several commonly used SDPmechanisms, such

as the Laplace or Gaussian mechanisms, which we now showcase

with the example of the Laplace mechanism.

Impossibility of GED with the Laplace mechanism in SIM+-CDP.
The main question to ponder is whether there exists an efficient

protocol that can realise the Laplace mechanism in SIM
+
-CDP. Un-

fortunately, there is not.
10
To begin with, the support of the Laplace

mechanism is the reals, meaning the output cannot even be written

10
We note that this invalidates the claims in [1] of achieving SIM

+
-CDP for the (con-

tinuous, untruncated) Laplace mechanism. The protocol there does however seem to

in strictly finite time. Thus we can note that any mechanism in

the SIM
+
-CDP definition must have a finite support. Further, even

the (arguably) most Laplace-like such distribution, the geometric

distribution [36] truncated to the output domain, cannot be realised

in SIM
+
-CDP in general, since it requires sampling probabilities

that are not multiples of 2
−𝑝𝑜𝑙𝑦 (𝜅 )

(for details on the impossibil-

ity of sampling certain distributions in strict polynomial time, see

Appendix A). This means that in order to realise GED with distribu-

tions that cannot be sampled exactly in strict polynomial time (as

is the case for the Laplace, geometric, Gaussian, discrete Gaussian

distributions and truncated versions of them), there needs to be

some slack introduced. This could be either in the shape of allowing

a small distance between the output of the ideal functionality and

that of the protocol (relaxing correctness) or relaxing the demand

for strict polynomial time to expected polynomial time, as is argued

in [13].

As remarked shortly in the introduction, one approach in prac-

tice could be to use SIM
+
-CDP with non-zero 𝛿𝜅 and have the ideal

functionality compute an efficiently computable approximation of

a standard SDP mechanism. Then if the SDP mechanism is (𝜀𝜅 , 𝛿𝜅 )-
SDP and the approximation of it is at a statistical distance of 𝛿 ′𝜅 ,
then it is easy to see that the protocol which securely realises this

functionality (in the way required by SIM
+
-CDP) is (𝜀𝜅 , 𝛿𝜅 + 𝛿 ′𝜅 )-

SIM
+
-CDP. That is, the approximation error can be added to the

𝛿𝜅 . In many settings, this is a likely a suitable approach. One main

drawback of it, however, is that the approximation error is funda-

mentally different from the 𝛿𝜅 term in both cause and interpretation.

Another drawback is the need to introduce these efficient approxi-

mations of standard mechanisms explicitly, rather than to handle

all matters of approximation within the simulation argument.

4 A New Version of Simulation-based CDP in
the Ideal/real Paradigm

4.1 Our New Definition, SIM∗-CDP.
Wenowpropose a new version of SIM

+
-CDP,whichwe call SIM

∗
-CDP

and then discuss its relationship to previous definitions further.

Definition 4.1 ((𝜀𝜅 , 𝛿𝜅 )−SIM∗-CDP). The two-party protocol 𝜋 is

(𝜀𝜅 , 𝛿𝜅 )-SIM∗-CDP for the ideal functionality F and adjacency ADJ
notion if 𝜋 UC-realises F and for all ideal-world adversaries S, the
view of S is (𝜀𝜅 , 𝛿𝜅 )-SDP with respect to ADJ.

The main differences between SIM
∗
-CDP and SIM

+
-CDP are:

• UC-security is used as security notion.
• The ideal functionality is variable (and can be reactive).
• Correctness is computational rather than perfect.
• The ideal-world adversary (simulator) must be efficient (strict
PPT).
• The requirement of usefulness is removed from the CDP defini-
tion.

We now expand on the motivation behind these changes.

Using UC-security. Although the standalone security framework

is heavily used, in the last two decades the security analyses of

many popular schemes have taken place in the more expressive

satisfy a relaxation of SIM
+
-CDP, in line with the contents of Section 4, although that

remains to be formally shown.
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UC framework [10]. The main merit of this framework is that the

security can be proven to be preserved under arbitrary composi-

tion of protocols, leading to a stronger notion of security and an

increased modularity in security proofs. Thus, using UC security

in the CDP notion is natural for cases where this (stronger) type of

security is already achieved by the MPC scheme one intends to use.

Further, as we will see below, this change of security framework

also directly leads to many other benefits.

A variable ideal functionality. The ideal functionality used in

SIM
+
-CDP is fixed to be that of secure function evaluation (SFE), i.e.

the parties jointly compute an SDP mechanism (with abort). With

regards to capturing what it means for a protocol to be CDP gener-

ally, this is a significant restriction as compared to IND-CDP and

SIM-CDP, where CDP is defined without dependence on the func-

tionality of the protocol. In particular, both IND-CDP and SIM-CDP

allow direct modeling of reactive functionalities, and as such our

new definition arguably lies closer to those definitions conceptually

than SIM
+
-CDP does, in that it is applicable to more functionalities

than those that can be expressed as SFE [42, 46, 47]. On the prac-

tical side, one relevant reactive functionality is that of SFE with

differentially private leakage as in, for instance, [42]. More details

about the setting of SFE with DP leakage are found in Appendix C.

Computational correctness. Another positive consequence of chang-
ing security framework is that the correctness of the protocol is

now (as is standard in UC-security) computational rather than per-

fect. As explained in the previous section, this relaxation allows the

ideal functionality to sample inefficiently samplable distributions

and still have an efficient protocol that realises it.

Efficient simulators. As one main goal of our new definition is

to have it align closely to common practice in MPC, we choose to

require efficient simulation. Whereas this does make fulfilling the

definition harder, it also makes the definition stronger.

Not including usefulness in the definition. A final difference be-

tween SIM
∗
-CDP and SIM

+
-CDP is that we choose not to include

the requirement for usefulness in the definition of CDP itself. This

is done primarily to more closely correspond to how the matter of

usefulness is handled for IND-CDP and SIM-CDP in MPRV, namely

that the CDP definition is agnostic to the notion of usefulness (Def-

inition 6 in MPRV [64]) and that usefulness is then added later

(Definition 7 in MPRV). Another advantage of not having the use-

fulness as a part of the CDP definition is that one can choose to

consider the usefulness simply of the ideal functionality (as is done

in SIM
+
-CDP) or to consider the usefulness of the protocol directly

(as with IND-CDP and SIM-CDP in Definition 7 of MPRV) and

then take, for instance, failure probabilities of the protocol into

account.
11
The utility difference between the real protocol and the

ideal functionality is however bounded to be negligible by the simu-

lation argument, since the utility function is efficiently computable

and if the utility difference was non-negligible then the utility func-

tion would serve as an efficient distinguisher between the real and

ideal worlds.
12

11
For SIM

+
-CDP one should note that the usefulness of the protocol is always the

same as that of the ideal functionality unless there are active corruptions, due to the

requirement of perfect correctness.

12
A similar remark is made in [35].

Functionality F 𝑓

𝑆𝐹𝐸

Parameters:
• A function 𝑓 = (𝑓1, 𝑓2) : ({0, 1}∗)2 → ({0, 1}∗)2.

No corruptions:
• Upon x1 from 𝑃1 and x2 from 𝑃2, deliver 𝑓1 (x1, x2) to 𝑃1 and

𝑓2 (x1, x2) to 𝑃2.

Party 𝑃𝑐 corrupted (𝑃ℎ is honest):
• Upon (Input, xℎ) from 𝑃ℎ and (Input, x𝑐 ) from 𝑃𝑐 , send

𝑓𝑐 (x1, x2) to 𝑃𝑐 .
• Upon (Deliver, 𝑏) from 𝑃𝑐 , if 𝑏 = 1 then send 𝑓ℎ (x1, x2) to 𝑃ℎ ,
otherwise send ⊥.

Figure 3: The ideal functionality for SFE with abort.

To round this subsection off, we re-iterate the standard ideal

functionality for SFE with abort, see Figure 3. In Section 6 we

propose a protocol for realising this ideal functionality with the

geometric mechanism as the functions 𝑓1 and 𝑓2 and prove it is

SIM
∗
-CDP in the presence of active corruptions.

4.2 Relating SIM∗-CDP to Other Definitions
We now relate our new definition to existing ones. For all of the

propositions, the proofs are delegated to Appendix D. We prove

separations only when 𝛿𝜅 = 0 (or 𝛿𝜅 = negl(𝜅), depending on the

CDP notion), as is common in the literature, and leave extending

the separations to other settings for future work.

Relation to SIM+-CDP . There is no general hierarchy between

SIM
+
-CDP and SIM

∗
-CDP, in the sense that there are both tasks

that can be solved with SIM
+
-CDP but not SIM

∗
-CDP and the other

way around. In one direction this is due to SIM
∗
-CDP being more

restrictive in that it demands UC-security instead of standalone

security since there are well known results of functionalities that

can be realised with standalone security but not UC-security unless

certain setup assumptions are made [11]. In the other direction,

SIM
∗
-CDP is more relaxed than SIM

+
-CDP with regard to the cor-

rectness of the protocol. In more formal terms, see the propositions

below.

Proposition 4.2. Using the plain UC model, i.e. without setup
assumptions, and assuming that enhanced trapdoor permutations
(see [37]) exist, there exists 𝜀𝜅 for which there exists a task that is
solvable with (𝜀𝜅 , 0)-SIM+-CDP but not with (𝜀𝜅 , 0)-SIM∗-CDP. This
holds regardless of whether the utility requirement is placed on the
real or the ideal protocol with respect to SIM∗-CDP.

Proposition 4.3. Using the UC model with the setup assumption
of a common reference string (CRS) (see, for instance, [11]) and with
the utility in SIM∗-CDP being considered in the ideal world (i.e. with
regards to the utility of F ), there exists 𝜀𝜅 for which there exists a task
that is solvable with (𝜀𝜅 , 0)-SIM∗-CDP but not with (𝜀𝜅 , 0)-SIM+-CDP.

Relation to SIM-CDP and IND-CDP. Just as with SIM
+
-CDP, on

the one side if a protocol is SIM
∗
-CDP then it is SIM-CDP (and

thus also IND-CDP, see [64]) but on the other side there are tasks

that can be solved with SIM-CDP but not in SIM
∗
-CDP. The second

separation is a direct corollary of Proposition 4.2 due to that all
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SIM
+
-CDP protocols also are SIM-CDP protocols with unchanged

parameters.

Proposition 4.4. For any parameters 𝜀𝜅 , 𝛿𝜅 , if a two-party proto-
col 𝜋 is (𝜀𝜅 , 𝛿𝜅 )-SIM∗-CDP, then it is also (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP.

Corollary 4.5 (of Proposition 4.2). Using the plain UC model,
i.e. without setup assumptions, and assuming that enhanced trapdoor
permutations (see [37]) exist. Then there exists 𝜀𝜅 for which there
exists a task that is solvable with (𝜀𝜅 , 0)-SIM-CDP but not with (𝜀𝜅 , 0)-
SIM∗-CDP. This holds regardless of whether the utility requirement is
placed on the real or the ideal protocol with respect to SIM∗-CDP.

Relation to MPC-with-DP-leakage definition in [42]. Within the

literature on relaxing definitions of secure computation by allowing

there to be non-negligible information leakage during protocol

execution as long as this leakage is SDP (for a longer discussion on

such protocols, see Appendix C), there is a definition (Definition C.1)

that, like SIM
∗
-CDP, uses UC-security and defines a CDP property

of a protocol. The fundamental difference between SIM
∗
-CDP and

that definition is that their definition is fixed for a given ideal

functionality and only a specific part of the view of the ideal-world

adversaryS is required to be SDP, whereas SIM
∗
-CDP is defined for

arbitrary ideal functionalities and the entire view of S must be SDP.

Thus SIM
∗
-CDP can be seen as both a restriction of the definition

in [42] (where one requires the remaining parts of S’s view to be

SDP also) and as a generalisation of it since the ideal functionality

is left variable. From another point of view, the definitions try to

solve two distinct problems, but one can suitably consider the need

we see to propose an alternative CDP definition to those of (say)

IND-CDP and SIM
+
-CDP as being the analog in general CDP to

the motivation in [42] for giving a definition separate to those

of [45, 59].

4.3 A More General Definition, SIM◦-CDP
The core idea of SIM

+
-CDP and SIM

∗
-CDP is the same (requiring

the protocol to realise an SDP ideal functionality) and this opens

up a wide space of such definitions since there is an abundance

of different notions of secure computation in the MPC literature.

One can for instance vary correctness, robustness or efficiency

requirements for the different involved entities. This suggests a

generalised definition of which SIM
+
-CDP, SIM

∗
-CDP and other

natural variations are instantiations of. Below we formulate such a

generalised definition and call it SIM
◦
-CDP.

Definition 4.6 (SIM◦-CDP). We say that a two-party protocol 𝜋 is

(𝜀𝜅 , 𝛿𝜅 )-SIM◦-CDP with respect to ideal/real security notion SEC for

the ideal functionality F and adjacency notion ADJ if 𝜋 realises F
in the sense of SEC and for all ideal-world adversaries S, the view
of S is (𝜀𝜅 , 𝛿𝜅 )-SDP with respect to ADJ.

In light of this definition, the bulk of the discussion in this section

can be seen as concerning the ways in which we regard the specific

choice of security notion in SIM
+
-CDP as being inconvenient with

respect to GED. We are aware of only one other used instantiation

of SIM
◦
-CDP and that is in [5] where SIM

◦
-CDP is instantiated

using standard standalone security but with computational cor-

rectness. That CDP notion is stronger than SIM
+
-CDP in that it

requires efficient simulators but weaker in the sense of having re-

laxed correctness. The protocol presented in [5] is not SIM
+
-CDP

(imperfect correctness is needed) and neither is it SIM
∗
-CDP (since

no UC security proof is given).

5 A SIM∗-CDP Version of the Geometric
Mechanism

To demonstrate the use of our new definition, we now go through in

detail how to satisfy it for the standard SFE ideal functionality with

the truncated geometric mechanism as the function. Conceptually,

this is very simple; one can simply use any PPT algorithm that

samples a distribution with a sufficiently small statistical distance to

a truncated geometric distribution and then compute that algorithm

in MPC via some general-purpose, active secure, protocol. It is

however worth considering hurdles that arise in the details, such as

how to handle the mechanism’s dependence on the query function,

having a query function whose sensitivity depends on the inputs

of both parties and the consequences of working over a finite field.

One core step is, naturally, to sample a distribution that is close to

a truncated geometric distribution. Sampling algorithms for such

distributions can be found in [2, 30, 36], however, the truncation is

to a range between 0 and some fixed positive integer. The results

and methods however extend to Z𝑞 , and general queries of bounded
magnitude.

Definition 5.1 (Truncated geometric distribution). Define the trun-
cated geometric distribution 𝑍 ∼ 𝐺𝑒𝑜𝑞,𝜆 ( ¯𝑓 ) centered at

¯𝑓 ∈ Z𝑞 ,
truncated to Z𝑞 := [⌈−𝑞/2⌉, ⌊𝑞/2⌋), by its probability mass func-

tion:

𝑝𝑍 (𝑧) =
𝑒1/𝜆 − 1

𝑒1/𝜆 + 1

𝑒
−|𝑧− ¯𝑓 |

𝜆 (5)

for 𝑧 ∉ {⌈−𝑞/2⌉, ⌈𝑞/2 − 1⌉}, and

𝑝𝑍 (𝑧) =
1

𝑒1/𝜆 + 1

𝑒
−|𝑧− ¯𝑓 |

𝜆 (6)

for 𝑧 ∈ {⌈−𝑞/2⌉, ⌈𝑞/2 − 1⌉}.

Definition 5.2 (Range-truncated geometric mechanism). Let 𝜆 ∈
N−1

and let 𝑓 : D → Z𝑞 be a deterministic function. The Range-

truncated geometric mechanism (RTGeo) over Z𝑞 for 𝑓 is defined

as

M𝑞,𝑓 ,𝜆

𝑅𝑇𝐺𝑒𝑜
(𝐷) :=𝐺𝑒𝑜𝑞,𝜆 (𝑓 (𝐷)) . (7)

It is easy to verify thatM𝑞,𝑓 ,𝜆

𝑅𝑇𝐺𝑒𝑜
(𝐷) is an (𝜀, 0)-SDP mechanism

as long as 𝜆 = 𝜀
Δ𝑓 . In line with [2], we only allow 𝜆 ∈ N−1

, in

order to avoid the need to represent real numbers, and this also

implies 𝜀 ∈ N−1
. WhereasM𝑅𝑇𝐺𝑒𝑜 gives SDP, it is inconvenient

to sample the noise distribution directly, partly because it requires

knowledge of 𝑓 (𝐷) and partly because it may not be efficiently

samplable. Therefore we consider the following mechanism.

Definition 5.3 (Subrange-truncated geometric mech.). Let 𝐵 ∈
{1, . . . , ⌈𝑞/2⌉ − 1} and 𝜆 ∈ N−1

. Let the Subrange-truncated

geometric (SRTGeo) mechanism over Z𝑞 with noise truncation to

Z2𝐵 , for a function 𝑓 : D → Z𝑞 , be defined asM2𝐵,𝑓 ,𝜆

𝑆𝑅𝑇𝐺𝑒𝑜
(𝐷) :=

𝑓 (𝐷) +𝐺𝑒𝑜2𝐵,𝜆 (0), with the addition performed over Z𝑞 .

In the simple lemma below we give a bound on the statistical

distance between the two mechanisms we have introduced this far.

The proof, as the proofs of all other lemmas, is found in Appendix D.

We note that we need to introduce a bound on the absolute value of
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the query function, so as to not have the sensitivity of the function

be affected by the modular arithmetics.

Lemma 5.4. Let 𝑓𝑚𝑎𝑥
:= max

𝐷∈D
|𝑓 (𝐷) |, 𝐵 ∈ N, 𝜆 ∈ N−1 and 𝑞 >

2𝑓𝑚𝑎𝑥 + 2𝐵. Then the statistical distance betweenM2𝐵,𝑓 ,𝜆

𝑆𝑅𝑇𝐺𝑒𝑜
(𝐷) and

M𝑞,𝑓 ,𝜆

𝑅𝑇𝐺𝑒𝑜
(𝐷) for all 𝐷 ∈ D is at most 𝑒−𝐵/𝜆 .

We are now one step closer to a functionality that can be efficiently

realised, since the noise sampling is no longer dependent on the

function evaluation and the support of the noise is potentially much

smaller than the entire Z𝑞 and the support of 𝑓 . The trouble still

remains that the probabilities might not be negative polynomial

powers of two. In [26, 30] it is presented distributions that can

be exactly sampled under this constraint and that have a small

statistical distance from a truncated geometric distribution. We use

the procedure FDL (Finite-range Discrete Laplacian) introduced in

EIKN [30].

Definition 5.5 (FDL function and procedure). Let r ∈ {0, 1}𝐵𝑑+1

be independent fair coins and 0 < 𝑒−1/𝜆 < 1. Let 𝛼1 ← 1−𝑒−1/𝜆

1+𝑒−1/𝜆

and 𝛼𝑖 ← 1 − 𝛼1
for 𝑖 = 2, ..., 𝐵 be public parameters. Let ⊕ and ∧

denote addition and multiplication over the binary field and let ∨ be
shorthand for computing the OR operation by using binary addition

and multiplication. Let all other operands be defined as normally

over Z𝑞 . Define the function FDL𝜆,𝐵,𝑑 : {0, 1}𝐵𝑑+1 → Z2𝐵 ⊆ Z𝑞
by the procedure in Algorithm 1. Let 𝛼 = (𝛼1, 𝛼2, ...) be the bit

decomposition of 𝛼 . The subprocedure Ber𝛼 : {0, 1}𝑑 × {0, 1}𝑑 →
{0, 1} for generating approximate Bernoulli trials with parameter

𝛼 using a randomness seed in {0, 1}𝑑 is defined by the procedure

in Algorithm 2.

Procedure FDL
Input: r ∈ {0, 1}𝐵𝑑+1

(1) Sample 𝐵 approximate Bernoulli trials

𝛽𝑖 ← Ber𝛼𝑖 ((𝑟𝑑 ( 𝑗−1)+1, ..., 𝑟𝑑 𝑗 )) for 𝑖 = 1, ..., 𝐵.

(2) For 𝑖 = 1, ..., 𝐵: set 𝑐𝑖 ← ∨𝑖𝑗=1
𝛽 𝑗 .

(3) Set 𝑙 ← 𝐵 −∑𝐵
𝑖=1

𝑐𝑖 .

(4) Set 𝜎 ← 2 · 𝑟𝐵𝑑+1 − 1.

(5) Output 𝜎 · 𝑙 .
Algorithm 1: The algorithm description for the FDL proce-
dure.

Procedure Ber
Input: r ∈ {0, 1}𝑑 , 𝛼 ∈ {0, 1}𝑑

(1) For 𝑖 = 1, ..., 𝑑 , set 𝑐𝑖 ← 𝛼𝑖 ⊕ 𝑟𝑖 .
(2) For 𝑖 = 1, ..., 𝑑 , set 𝑒𝑖 ← ∨𝑖𝑗=1

𝑐 𝑗 .

(3) For 𝑖 = 1, ..., 𝑑 , set 𝑣𝑖 ← 𝑒𝑖 ⊕ 𝑒𝑖−1, with 𝑒0 ← 0.

(4) Set 𝛽 ← 1 ⊕𝑑𝑖=1
(𝑟𝑖 ∧ 𝑣𝑖 ) and output 𝛽 .

Algorithm 2: The algorithm description for the Ber proce-
dure.

Note that FDL is an exact method for turning 𝐵𝑑 + 1 fair coins

into a sample of a distribution that is statistically close to a trun-

cated geometric one. It is clear that if the number of fair coins is

polynomial in 𝜅 then FDL runs in strict polynomial time. With some

abuse of notation, we use FDL to denote both the procedure and the

probability distribution it generates upon being given fair coins.
13

Definition 5.6 (FDL mechanism). Let 𝐵 ∈ {1, . . . , ⌈𝑞/2⌉ − 1}. Let
the Finite-range Discrete Laplace (FDL) mechanism over Z𝑞 for a

function 𝑓 : D → Z𝑞 be defined asM𝜆,𝐵,𝑑,𝑓

FDL (𝐷) := 𝑓 (𝐷) +FDL𝜆,𝐵,𝑑 ,
with the addition performed over Z𝑞 .

The following lemma is proven in EIKN [30].

Lemma 5.7. Let 𝑓𝑚𝑎𝑥
:= max

𝐷∈D
|𝑓 (𝐷) |, 𝑞 > 2𝑓𝑚𝑎𝑥 + 2𝐵 and 𝐵 ∈

{1, . . . , ⌈𝑞/2⌉ − 1}. If FDL is given independent fair coins and all the
arithmetics are done over Z𝑞 , then the statistical distance between
M𝜆,𝐵,𝑑,𝑓

FDL (𝐷) andM2𝐵,𝑓 ,𝜆

𝑆𝑅𝑇𝐺𝑒𝑜
(𝐷) is at most 𝐵 · 2−𝑑 .

Further, we have thatM𝑞,𝑓 ,𝜀/Δ𝑓
𝑅𝑇𝐺𝑒𝑜

(𝐷) is a useful approximation of

𝑓 , as we show in the following lemma.

Lemma 5.8. Let 𝑞 > 2𝑓𝑚𝑎𝑥 + 2𝐵, 𝐵 ∈ {1, . . . , ⌈𝑞/2⌉ − 1}. Let
𝑓 : D → Z𝑞 be an arbitrary deterministic function with 𝑓𝑚𝑎𝑥

:=

max

𝐷∈D
|𝑓 (𝐷) | and let ˆ𝑓 (𝐷) := M𝑞,𝑓 ,𝜆

𝑅𝑇𝐺𝑒𝑜
(𝐷) : D → Z𝑞 . Then ˆ𝑓 is(

𝜈, 2𝑒−1/𝜆

𝑒−1/𝜆+1

𝑒−𝜈/𝜆
)
-additive-useful for 𝑓 for any positive integer 𝜈 .

6 A Protocol for the FDL Mechanism
From the previous section, we know that the FDL mechanism is

statistically close to the Range-truncated geometric mechanism

(M𝑅𝑇𝐺𝑒𝑜 ), which is pure SDP, and that this holds under some re-

strictions on the query function and on the parameter choices. At

the same time, it is immediate thatM𝑅𝑇𝐺𝑒𝑜 is statistically close to

the untruncated geometric mechanism (i.e. when the noise is not

truncated and that the modular arithmetics thus might cause over-

flows), as long as the value of the query function is somewhat far

away from ±𝑞/2. Therefore, there is a choice to be made regarding

which mechanism one chooses to have in the ideal functionality

(call this the ideal mechanism), given that we will have the protocol

compute the FDL mechanism via general-purpose MPC. The trade-

off in this choice is that havingM𝑅𝑇𝐺𝑒𝑜 as the ideal mechanism will

lead to (𝜀𝜅 , 0)-SIM∗-CDP as long as the statistical distances men-

tioned above are negligible in 𝜅, essentially having the statistical

distance be dealt with as part of the correctness slack. On the other

hand, this can be avoided by lettingMFDL be the ideal mechanism,

thus leading to (𝜀𝜅 , 𝛿𝜅 )−SIM∗-CDP where the statistical distance is

rather incorporated into the 𝛿𝜅 term. As having an ideal mechanism

as close as possible to a standard SDP mechanism is to be seen as a

more direct realisation of GED, we opt for havingM𝑅𝑇𝐺𝑒𝑜 as the

ideal mechanism.

As stated in the preliminaries, we consider two-party computa-

tion schemes that operate in F𝑞 with 𝑞 being either a prime larger

than 2 or a power of 2. We elaborate on active secure schemes for

both domains in Appendix E. Implementing the FDL algorithm in

either domain comes at a significant cost. Note that the Ber proce-

dure and the first 2 steps of the FDL procedure consist of only binary
arithmetics. However, the remainder of the FDL procedure consists

of integer arithmetics. While there are protocols to evaluate the

13
We also note that the requirement that 𝑒−1/𝜆 < 1 is equivalent to 𝜆 > 0, which is

already guaranteed by 𝜆 ∈ N−1
.
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binary steps in the arithmetic domain, they are usually very costly.

On the other hand, evaluating the whole algorithm in the binary

domain comes with two problems: the summation and addition in

binary would incur a significant cost, and second, the result would

be a shared noise in the binary domain. Thus, applying the noise

is limited to the binary domain. The mixed circuit approach (see

Section 2.3) gives us a well-performing trade-off.

We accept inputs represented in the binary domain, perform all

operations until the fourth step through a binary circuit, translate

all shares to the arithmetic domain, and perform the rest of the

operations through an arithmetic circuit. For each of these "phases",

we use protocols introduced before. We use SPDZ
2
𝑘 [20] for the

arithmetic computations, the FKOS protocol [34] for binary circuits

and daBits (doubly-authenticated bits) [66] for translating between

the domains. With correct parametrization, we can achieve the

same security guarantees in different computation domains. Thus,

the feasibility of the mixed circuit approach is easily tested. The

mixed circuit approach is feasible if switching between circuits is

cheaper than the computation overhead in either domain. In our

application (Section 6.1), we will, as typically for DP applications,

focus on arithmetic computations. Evaluating the FDL mechanism

in the binary domain would, therefore, incur a cost that scales with

the underlying application. For the arithmetic case, we have an

additional cost of assuring all input ranges (e.g., assert that binary

coins ∈ {0, 1}) and evaluate binary gates with arithmetic circuits.

Section 7 has a longer discussion about input validation.

We describe our protocol using the Arithmetic Black Box (ABB),
which is an ideal functionality in the UC framework. Very roughly,

the ABB is a functionality that can take inputs from the parties and

compute linear combinations and multiplications between stored

values and output stored values. We use a flavor of the ABB that

can do these operations over F
2
𝑘 and F𝑞 . Additionally, the ABB can

translate values stored as elements of the binary field to binary val-

ues within the larger field. More concretely, we use the formulation

of the ABB that can be found in [33] and we include a definition of

the ideal functionality in Appendix B.1. Our protocol is presented

in Figure 4.

We are now ready to present our main theorem, namely that

the protocol we have introduced indeed is (𝜀𝜅 , 0)-SIM∗-CDP. Let
𝑑𝑒𝑐𝑜𝑚𝑝 (𝜆, 𝑑) be short for the bit-decomposition of 𝜆 truncated to

𝑑 bits. The proof is found in Appendix D.7.

Theorem 6.1. Let 𝑞 > 2𝑓𝑚𝑎𝑥
𝜅 + 2𝐵𝜅 , 𝐵𝜅 ∈ {1, . . . , ⌈𝑞/2⌉ − 1},

𝜆𝜅 =
𝜀𝜅
Δ𝑓𝜅

and let 𝑒−𝐵𝜅/𝜆𝜅 and 𝐵𝜅2
−𝑑𝜅 be negligible in 𝜅. Let {𝑓𝜅 :

Z2𝑁
𝑞 → Z𝑞}𝜅∈N be an ensemble of efficiently computable deter-

ministic functions with 𝑓𝑚𝑎𝑥
𝜅 := max

𝐷∈Z2𝑁
𝑞

|𝑓𝜅 (𝐷) |. Let { ˆ𝑓𝜅 (𝐷)}𝜅∈N be

{M𝑞,𝑓𝜅 ,𝜆𝜅
𝑅𝑇𝐺𝑒𝑜

(𝐷)}𝜅∈N.
Then𝜋MFDL (𝐵𝜅 , 𝑑𝜅 , 𝑞, 𝑁 , 𝑑𝑒𝑐𝑜𝑚𝑝 (𝜆𝜅 , 𝑑𝜅 ), 𝑓𝜅 ) is an (𝜀𝜅 , 0)-SIM∗-CDP

protocol for the ideal functionality F
ˆ𝑓𝜅

𝑆𝐹𝐸
, with respect to the same

adjacency notion as in the calculation of Δ𝑓𝜅 , in the F𝐴𝐵𝐵-hybrid
world.

Asymptotic computational cost. We consider the computational

cost of 𝜋MFDL in terms of calls to the ABB, ignoring the cost of

computing 𝑓 . This rough model for calculating computation cost

is reasonable in two ways: Firstly, local operations are canonically

Protocol 𝜋MFDL

Parameters: Natural numbers 𝐵,𝑑, 𝑞, 𝑁 , bit decomposition

𝛼1, ..., 𝛼𝑑 and an efficiently computable function 𝑓 : Z2𝑁
𝑞 → Z𝑞 ,

meaning it can be computed using polynomially many

multiplications and linear combinations in Z𝑞 . Assume access to

F𝐴𝐵𝐵 .

Initialisation:
(1) Player 𝑖 locally samples 𝐵𝑑 + 1 fair coins and stores them as

e𝑖 .
(2) Player 𝑖 sends random seed vector e𝑖 ∈ Z𝐵𝑑+1

2
as 𝐵𝑑 + 1

consecutive inputs to F𝐴𝐵𝐵 to be stored as elements of the

binary field.

(3) For 𝑗 = 1, ..., 𝐵𝑑 + 1 the players compute 𝑟𝑖 ← 𝑒1

𝑗 ⊕ 𝑒2

𝑗 via

F𝐴𝐵𝐵 .
Noise sampling:

(1) Each operation in the first two steps of the FDL specification

is performed via F𝐴𝐵𝐵 . This results in the binary values

𝑐1, ..., 𝑐𝐵 being computed as prefix-OR’s of the Bernoulli

trials.

(2) In F𝐴𝐵𝐵 , the values 𝑐1, ..., 𝑐𝐵 and 𝑟𝐵𝑑+1 are transformed to

elements in the arithmetic field.

(3) All remaining operations in the FDL specification are

performed via F𝐴𝐵𝐵 .
Finishing:

(1) Player 1 sends x ∈ Z𝑁
𝑞 and player 2 sends y ∈ Z𝑁

𝑞 to F𝐴𝐵𝐵
and then 𝑓 is computed via F𝐴𝐵𝐵 according to its

specification. The result is stored as
¯𝑓 .

(2) The sum of
¯𝑓 and the FDL sample is computed via F𝐴𝐵𝐵 and

the result is output to the players.

Figure 4: The protocol description for the FDL mechanism in
the F𝐴𝐵𝐵-hybrid world.

negligible in terms of computation cost compared to operations

that require interaction. Secondly, in practice, the instantiation

of the ABB greatly influences the computation cost in practical

terms. As is shown in EIKN [30], the asymptotic computational

complexity of the FDL function is 𝑂 (𝐵𝑑). This complexity follows

directly from Definition 5.5 since all steps of the FDL procedure

are repeated 𝐵 times (that is, 𝐵 Bernoulli trials are sampled and

there are 𝐵 elements in the sum) and within the Bernoulli trial

subprocedure, all steps consist of 𝑑 arithmetic operations.

It is important to note that the cost of sampling the noise is

independent of the data query 𝑓 . Relative DP usefulness intuitively

increases as the number of elements in the input dataset grows.

However, the performance of the sampling protocol scales with the

number of queries and not with the size of the input dataset, thus

amortizing its execution time further.

6.1 Application: Integer Inner-products with
Bounded Elements

We now compute integer inner-products using the 𝜋M𝐹𝐷𝐿
protocol.

This query type is particularly interesting for a few reasons. First,

it is non-linear and cannot be expressed as an aggregate function

without knowledge of the other party’s inputs. Second, it is a fun-

damental building block for more complicated queries like matrix
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multiplications with vast applications in data processing, such as

machine learning. To use 𝜋M𝐹𝐷𝐿
, the query needs a bounded max-

imal absolute value, and for accuracy, we want the sensitivity of

the query to be small. Therefore, we consider only inner-products

where the input vectors have elements between 𝑎 ∈ Z𝑞 and 𝑏 ∈ Z𝑞 .
Our setting provides security in the presence of active adver-

saries. Since these parties can deviate arbitrarily from the protocol,

they might send inputs violating the above bounds. It is, therefore,

necessary to prove the correctness of the input domain in both

the FDL mechanism and the query function. There are different

strategies to achieve such a feat. We note that the ABB accepts

inputs of two types, either elements in the binary field or the larger

finite field. We need to restrict the values to the pre-defined range

for inputs in the arithmetic domain. Were we not to perform such

an input validation, this would result in an increased sensitivity of

the function (in relationship to what is a priori agreed upon by the

two parties), thwarting the privacy level of the DP mechanism. In

the presence of passive adversaries, however, there is of course no

need to validate the inputs since the adversary will per definition

not give out-of-range inputs. This requirement of a proof of function
sensitivity also arises in other scenarios where the sensitivity is

directly dependent on the secret data of multiple parties.

To provide such a validation that all given inputs fall within their

allowed range, we consider two main options: Firstly, one could

accept the inputs as elements in the larger field and then perform

a zero-knowledge range proof
14
within the MPC domain. Alterna-

tively, one could accept the inputs bit-by-bit and re-compose those

bits into elements of the larger field. These approaches present a

trade-off in input size and proof complexity. In the first approach,

the cost of inputting a value is constant (i.e., depending on 2
𝑘
in

our example) while proving the range is linear in the bound. In the

bit-by-bit setting, the input and proving costs are both logarithmic

in the bound. The second approach is thus more efficient for larger

bound values depending on the specific scheme. As noted before,

we opt for using the second method and we further assume that the

difference between 𝑎 and 𝑏 is a power of 2, to facilitate inserting an

input as a sequence of bits.

We consider DP with the bounded (’change-one’) adjacency no-

tion and the data universe is ( [𝑎, 𝑏])∗, such that each input 𝐷 to

𝑓 (as well as the protocol and the mechanism) is a tuple of 2𝑁

elements from [𝑎, 𝑏]. Let 𝐷 := x| |y, i.e. the concatenation of the

input vectors of the two parties. The inner-product 𝑓 (𝐷) is defined
as ⟨x, y⟩ :=

∑𝑁
𝑖=1

𝑥𝑖𝑦𝑖 with operations over Z𝑞 . The sensitivity Δ𝑓 of
the inner-product is max( |𝑎2−𝑎𝑏 |, |𝑏2−𝑎𝑏 |), under the assumption

that |𝑓 (x| |y) | is smaller than ⌊𝑞/2⌋ such that field operations mimic

integer behavior. We also have that 𝑓𝑚𝑎𝑥 = 𝑁 ·max(𝑎2, 𝑏2).

Parameter choices. From the properties above, the following pa-

rameter considerations follow: Let the security parameter be the

bit-length of a field element, i.e. 𝜅 = ⌈log
2
(𝑞)⌉, as is canonical. Let

both 𝜀𝜅 and Δ𝑓 (by choice of 𝑎, 𝑏) be independent of 𝜅 . Further, we

can set the FDL specific parameters as 𝐵 = 𝑑 = 𝜅. Finally, we have

𝑞 > 2𝑓𝑚𝑎𝑥 +2𝐵 = 2𝑁 ·max(𝑎2, 𝑏2) +2𝐵, where the inequality holds

for sufficiently large 𝜅.

14
For instance, such as described in the Bulletproofs paper [8].

In practice, one strategy is to choose 𝜅 as a canonical value for

statistical security in cryptography, e.g., 𝜅 = 40, and then let this

also be 𝐵 and 𝑑 .15 The practical choice of 𝜀 is highly challenging,

and there is a lively discussion in the literature on it, although

consensus is largely lacking [27, 54, 55, 62]. Luckily, there is no

direct dependence on the choice of 𝜀 in the other parameters. Finally,

this leaves the choices of 𝑎, 𝑏, and 𝑁 . Here, we care about the

distance |𝑎 − 𝑏 | and the size of 𝑁 . Both parameters allow for wider

usage scenarios when increased. However, increasing𝑁 has adverse

effects on runtime, and a larger distance causes a higher sensitivity

and decreased usefulness (if 𝜀 is kept fixed). Finally, there is a trade-

off between 𝑁 and the sizes of 𝑎, 𝑏 due to their dependence on 𝑞. In

practice, this can be circumvented by increasing the modulus size

𝑞 in the underlying MPC instantiation.

7 Implementation and Practical Performance
We tested our protocol by implementing it in the multi-protocol

SPDZ (MP-SPDZ) [51] library. Among others, it provides efficient

implementations of the SPDZ
2
𝑘 [20] and the FKOS [34]MPC schemes,

and da-bit [66] and eda-bit [33] implementations. We implement

procedure Ber in the FKOS scheme and procedure FDL in the mixed-

circuit setting with FKOS and SPDZ
2
𝑘 . We find that only one switch

between computation domains is necessary, making mixed-circuit

computation highly competitive in performance. More precisely,

this approach is faster than previous instantiations if the conversion

cost is lower than the additional overhead in the unfit computation

domain. Given the protocol in EIKN [30], circuit conversion has to

be faster than the overhead of computing the Bernoulli and prefix-

or functionality in the arithmetic domain.

In MPC schemes, communication is typically the bottleneck of

efficient function evaluation. While some communication is neces-

sary during the computation, much of the data transfer happens in

a pre-processing phase. In our setup, we have three main compo-

nents that require expensive pre-processing: shared randomness for

inputs, authenticated multiplication triples, and doubly authenti-

cated bits. In our inner-product use case, we only generate one FDL
sample. However, most pre-processing operations come in blocks of

size 𝐵 or 𝑑 . In our implementation, we take special care to minimize

the communication rounds and adapt the pre-processing batch sizes

to accommodate our protocol execution.

7.1 Benchmarks
In this section, we present benchmarks of our FDL mechanism with

𝐵 = 𝑑 = 𝜅 and measure performance for different settings
16
. Rele-

vant for parameter 𝛼 , the bit decomposition of the Bernoulli bias,

is the decomposition length 𝑑 . When setting a value 𝛼 , the binary

decomposition truncates this value to the predefined precision. Al-

though our code can be instantiated with any number of parties, we

fixed the number of parties to 2 as to align with the formalities of

earlier sections. We provide exemplary data points at 40- and 80-bit,

typical statistical security parameters. Next, we evaluate the mech-

anism at 128-bit, a usual conservative choice as a computational

15
Note that we use 𝜅 as a computational security parameter but that statistical security

implies computational security. One appealing alternative is to introduce an additional

statistical parameter separate from 𝜅 , let them be proportional and align 𝐵,𝑑 to the

new parameter instead.

16
The code can be found at https://github.com/Fable95/laplace_sampler.
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security parameter. Note that, in MP-SPDZ, the underlying security

parameters for SPDZ
2
𝑘 are fixed to 64-bit computational and 64-bit

statistical security. We run all benchmarks on a Linux server with

an AMD Ryzen 9 7900X CPU (4.7 GHz). Each party only has access

to one thread for computations. We separate our results into single

sample computation and amortized evaluation for 1000 samples.

The single sample evaluation is further split into the pre-processing

and online phases of MPC, where the pre-processing step consists

of generating necessary multiplication triples and da-bits.

Table 1 presents the runtime metrics for different network set-

tings. In Setting 1, we have an unrestricted LAN setup. Setting

2 simulates a less powerful LAN setup by limiting the network

to 1Gbit/s and the round-trip time (RTT) to 1ms. Finally, in Set-

ting 3, we simulate a WAN network with 100Mbit/s and 100ms

RTT, reflecting a solid but distant connection (e.g., intercontinen-

tal). Given the asymptotic complexity 𝑂 (𝐵𝑑), the runtime results

reflect the expected quadratic growth in the security parameter.

Regarding the network settings, communication is needed for in-

puts, binary AND gates, arithmetic multiplication, secret share

conversion, and outputs. Since inputs, conversions, and compu-

tations depend on one or both parameters 𝐵, or 𝑑 , the negative

impact of a reduced network speed and increased RTT is increased.

Compared to concurrent work [50], our mechanism outperforms

theirs in runtime and memory for the overall computation in the

fast network settings.
17

Arguably, their setup heavily optimizes

the online phase, making it more efficient if pre-processing can

be performed in advance. However, sampling geometric noise in

MPC can generally be seen as pre-processing since the sensitivity

of a function is known before the data is processed, and the parties

can already engage in the noise sampling procedure before their

inputs to the query function have been fixed. Further, their geo-

metric mechanism has a low round complexity, showing improved

performance in WAN network settings. Comparing with [30] is

challenging as only asymptotic complexities are given there and the

results are based on arithmetic evaluations of binary computations

from [65]. Our approach, on the other hand, is based on mixed cir-

cuits [66] and includes substantial performance improvements by

dedicated parameter optimizations. In our benchmarks, we adhered

to the following principle. We aimed to reduce the communication

complexity for low-latency networks, while for the high-latency

networks, we reduced the round complexity. This trade-off can be

determined with the pre-processing batch size parameter. Given a

high minimum batch size for the MPC schemes we use, computing

a single geometric sample leads to substantial overhead. Thus, it is

crucial to parametrize the implementation according to the number

of samples and expected network latency.

In Table 2, we present benchmarks for network costs for each

security parameter. We see that the network cost of our imple-

mentation is lower than that in [50], further showing that their

round complexity is much lower than that of the malicious secure

SPDZ
2
𝑘 protocol. Given the network cost, we could further reduce

the network bandwidth before its limiting impact equals a slow

RTT. In our amortized costs column, we present the network traffic

per sample in a computation of 1 000 samples.

17
One should further note that [50] is in themore efficient setting of passive adversaries,

thus making direct comparisons skewed in their favor.

Table 1: Runtime in milliseconds of benchmarks with dif-
ferent security levels. Total runtime is for a single sample,
while amortized runtime assumes 1000 samples.

Protocol 𝜅 Prep. Online Total Amort.

10 Gbit/s with RTT of 1 ms

40 74.7 42 116.6 34.6

Ours 80 94.2 119.9 214.1 118.5

128 130 276.9 406.9 283.4

[50] 40 1606 37.72 1 643 992
†

1 Gbit/s with RTT of 1 ms

40 182.9 248.4 431.2 69.7

Ours 80 245.6 650.2 895.7 209.7

128 345.6 1 362 1 707 520.3

[50] 40 4 707 4.81 − 4 711
‡

100 Mbit/s with RTT of 100 ms

40 11 256 20 486 31 742 577.9

Ours 80 15 215 51 794 67 009 1 604

128 20 795 105 350 126 145 3 558

[50] 40 42 352 47.99 − 42 400
‡

† Amortized over 40 samples

‡ Amortized over 10 samples, no single sample performance pro-

vided.

Table 2: Network cost in MB of different geometric sampling
settings. The amortized cost assumes 1000 samples.

Protocol 𝜅 Prep. Online Total Amort.

40 14.7 17.9 65.3 23.8

Ours 80 20.9 58.3 158.3 75.3

128 29.2 143.4 345.2 173.6

[50] 40 − − 492.7† −
† Run with single sample, no amortized network cost provided.

8 Conclusion and Outlooks
In this work, we revisit the idea of generic emulation of the central

dataholder (GED) as a method to achieve accuracy equal to that of

the central model of DP without the need for a single trusted data-

holder. The bulk of our work is spent analysing existing definitions

of computational DP (CDP) in the multiparty setting, noting that

whereas they are very well-suited for theoretic study and use with

special-purpose MPC schemes, they all fit somewhat suboptimally

to the task of GED. Since one of them, SIM
+
-CDP, appears to fit very

well conceptually but has some details preventing its use together

with canonical statistical DP (SDP) mechanisms, we propose both

a generalised version of it, SIM
◦
-CDP, and another instantiation

of that generalised definition, SIM
∗
-CDP, that we argue is more

fitting to the current state-of-the-art in both general-purpose MPC

and SDP. We relate SIM
∗
-CDP to IND-CDP and SIM-CDP, showing

that it is a stronger notion in the sense that all SIM
∗
-CDP protocols
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are also SIM-CDP (and thus also IND-CDP) with unchanged param-

eters, whilst there are computational tasks (such as computing a

given functionality to within a given absolute error with constant

probability) that can be solved with SIM-CDP but are impossible

with SIM
∗
-CDP. Further, we show that SIM

+
-CDP and SIM

∗
-CDP

are separated from each other in both directions in the sense that

there are tasks solvable for one of them but not the other. Some

of these results, however, are established under specific parameter

regimes (as is commonplace in the CDP literature) and therefore

extending them to wider regimes is an interesting open problem.

On the practical side, we show how to achieve SIM
∗
-CDP via the

truncated geometric (discrete Laplace) mechanism by using a state-

of-the-art protocol for distributed noise sampling and analyse the

use of this protocol for computing integer inner-products with

active security in the two-party setting. We then provide an open-

sourced implementation of the protocol using the MP-SPDZ library

and show that it is very efficient in practice.

As always when formulating new definitions in cryptography

questions arise, such as whether the definition is intuitive, practi-

cally usable, and not overly relaxed or strict. On the usability front,

we present evidence that SIM
∗
-CDP is practical since it allows us to

design efficient, quite general protocols of natural tasks that fulfill

it, and the proof that the definition is satisfied follows essentially

directly from the use of general-purpose MPC and an SDP mecha-

nism. Further, the definition appears intuitive due to its closeness

to both previous definitions and established formalities in both the

DP and MPC domains. There is, however, much need for additional

scrutiny, and this is the case also for the question about balance in

the definition. Interesting open directions here are to more tightly

relate the definition to previous ones and explore whether there

is some characteristic trait of SDP that is captured in the previous

ones but not in SIM
∗
-CDP.
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A The Efficient Samplability of Distributions
We consider a probability distribution Dist efficiently samplable if

there exists a PPT Turing Machine (TM) that maps 1
𝜅
to a sample

fromDist. That is, if there exists a probabilistic TM that runs in strict

polynomial time and, using only its unbiased randomness tape, sam-

ples from Dist exactly. We do not delve into the broader literature

on what distributions can be sampled (exactly or approximately)

under certain constraints (see, for instance [38, 69, 70]), but rather

settle for some basic remarks. Most critically, we note that since the

sampler runs in polynomial time, it can read at most 𝑝𝑜𝑙𝑦 (𝜅) coins
from its randomness tape, with 𝑝𝑜𝑙𝑦 (·) being some polynomial.

Since the randomness tape is the only source of randomness in the

sampler, the sampler is deterministic if one considers the coins as

input. This means that there are only 2
𝑝𝑜𝑙𝑦 (𝜅 )

possible executions

of the sampler, each giving a fixed output.
18

This has two direct

consequences:

• All probability densities in Dist must be multiples of
2
−𝑝𝑜𝑙𝑦 (𝜅 ) .

• The support ofDist can contain at most 2
𝑝𝑜𝑙𝑦 (𝜅 ) distinct

elements.
The first of these, of course, implies the second and the second

can similarly be directly realised by that the sampler can write at

most 𝑝𝑜𝑙𝑦 (𝜅) elements on its output tape, since it is strict PPT. The

restriction on the support is anyhow useful to include explicitly,

since it implies that only discrete distributions on a sufficiently

small support can be efficiently sampled. This rules out, most di-

rectly, sampling from the reals (as in the usual Laplace or Gaussian

distributions) but also, a bit more subtly, sampling distributions

18
This simple fact was made aware to us by [2, 13].

whose support is of a finite size 𝑞 > 2
𝑝𝑜𝑙𝑦 (𝜅 )

. The first restriction

however is the more important one, and in particular, it rules out

distributions such as

• Bernoulli trials of general parameters: There are param-

eters 𝛼 such that the Bernoulli distribution 𝐵𝑒𝑟 (𝛼) can not

be efficiently sampled. One example of this is 𝛼 = 1/3. In
particular, 𝐵𝑒𝑟 (𝛼) is efficiently samplable iff 𝛼 is a multiple

of 2
−𝑝𝑜𝑙𝑦 (𝜅 )

for some polymial 𝑝𝑜𝑙𝑦 (·).
• Truncated geometric and discrete gaussian distribu-
tions of general parameters: There are parameters 𝛼 such

that the geometric distribution (discrete Laplace) on a finite

(small) support 𝐺𝑒𝑜 (𝛼) can not be efficiently sampled. This

is due to the need to generate probability densities of the

form
1

2𝛼
𝑒
−|𝑧 |
𝛼 , which generally cannot be expressed as a mul-

tiple of 2
−𝑝𝑜𝑙𝑦 (𝜅 )

. The same reasoning holds for the discrete

gaussian.

The takeaway from these examples, since we still would like to

use these kinds of distributions when constructing DP mechanisms,

is that one must either relax the demand for strict polynomial

time or the demand that the samples are from exactly Dist rather
than from a good approximation of Dist. Indeed, is is shown in

[13] that the discrete gaussian (with support on the integers) can

be sampled in expected polynomial time. In practice, settling for

expected polynomial time is arguably not at all problematic, at

least in the central model. The problems arise on the theory side

when trying to prove security in a protocol, since the literature on

secure computation heavily favours strict polynomial time,meaning

that directly slotting in a mechanism that potentially runs, say,

exponentially long might prove a large obstacle to proving security

of the protocol as a whole. The other alternative is to settle for

approximating the distribution in question, a strategy arguably

more readily usable in conjunction with formally proving secure

computation, as we do in this work. The challenge to this approach

however is to include this sampling error into the DP guarantee

in question, for instance letting it be a part of the 𝛿 parameter or

including it in a computational error term in the CDP notion in

question.

B The Ideal/real Paradigm, Standalone and UC
security

We now give a brief introduction to the real/ideal-world paradigm

of security and it’s two standard versions, the standalone security
model and the universal composability (UC) security model. Due
to their complicated nature, we will not be able to describe them

in full formal detail and we refer to [10, 21] for details on the UC

model and to [9, 37, 56] for details on the standalone model. In our

summary here, we lean upon those in [32, 42, 57].

The core idea of the ideal/real paradigm of security is to define an

ideal world that is secure by definition, i.e. which formulates what

computations are supposed to be done and what it means formally

to have that done securely (for instance, specifying what types of

information leakage are not to be seen as a violation of security).

Then the security of the actual protocol in question, defining the

real world, is asserted by a simulation proof that the adversary

cannot know if it is interacting with the ideal world or the real
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world. That is, the intuition is that if the adversary cannot tell if

it is interacting with the real protocol or a version of the protocol

that is secure by definition, then the protocol should be seen as

essentially as secure as that in the ideal world.

The ideal world works as follows: There is an incorruptible third

party called the ideal functionality which is given the inputs of all

of the parties. The functionality then performs the computation in

question, perhaps incorporating some well-defined allowed influ-

ence of the adversary, and then forwards the result to the players

who output it. The functionality thereby defines what it means to be

secure, and what computations should be possible, by merit of being

incorruptible. However, when observing the protocol execution,

it is potentially very easy to distinguish such an ideal world from

the real world, for instance by observing the number of messages

sent. Therefore, the ideal world also must include a simulator, or
ideal-world adversary, whose task it is to generate a view that is

indistinguishable from that of the real-world adversary and to do

this by using only the information available to it in the ideal world

(essentially, the information given to it by the ideal functionality).

An important quantifier of the strength of the simulation argument

is the efficiency of the simulator, since it describes how much work

is needed to turn the allowed information leakage into the real one,

with an efficient simulator giving a stronger guarantee of security.

Therefore, in the literature on secure computation, one typically

requires the simulator to be efficient, although this is not always

the case for CDP using the ideal/real-world paradigm.
19

So the core idea is that the ideal world (with parties, ideal func-

tionality and simulator) in some sense looks like the real world

(with parties and adversary). This begs the question of who they

should look the same to – who is the distinguisher? Here is where

the standalone and UC security models start diverging. In the stan-

dalone model, the distinguisher is the adversary, meaning that the

distinguisher itself takes part in the protocol. More precisely, the

task of the simulator is to use only information available in the ideal

world and generate an output distribution that is indistinguishable

from the view
20
of the real-world adversary.

Definition B.1 (Standalone security, reformulation of Def. 4 in [9]).
We say that a protocol𝜋 is a secure protocol for the functionality F
if for all efficient adversaries A, there exists an efficient simulator

S (corrupting the same parties as A) such that the joint output

of the honest parties and A in the real world is computationally

indistinguishable from the joint output of the honest parties and

S in the ideal world, i.e. when the output distributions in the ideal

and real worlds are computationally indistinguishable.

There are many different flavors of the security definition, for

instance in the type of indistinguishability (sometimes one requires

the distributions to be identical or have negligible statistical dis-

tance) or in the inclusions of specific requirements on the correctness
(such as requiring that the outputs in the real and ideal worlds are

identical or statistically close if there are no corruptions, as done

in [37, 56]). The version of the notion which is used in MPRV [64]

19
Most notably, in MPRV [64], the simulators are allowed to be inefficient (computa-

tionally unbounded) in the definition of SIM
+
-CDP.

20
In Definition B.1 it is the output rather than the view of the adversary that is

considered. These two formulations are equivalent since the adversary is allowed to

simply output its entire view as output.

within the definition of SIM
+
-CDP (Definition 3.3) has such an extra

correctness requirement, as well as demanding efficient protocols

and removing the efficiency requirement of the simulator.

Definition B.2 (Standalone security as in MPRV [64], Reformulated).
We say that a protocol𝜋 is a secure protocol for the functionality F
if it fulfills Definition B.1 with the following changes:

(1) 𝜋 must be efficiently computable (PPT);
(2) 𝜋 must have perfect correctness, that is, in an honest execution

of 𝜋 , its output distribution is identical to that of F ;
(3) the simulator is allowed to be inefficient.

In the standalone model, as the name implies, the security of the

protocol is considered in isolation, meaning that the distinguisher

is constrained to what other protocols it can run in order to try

and distinguish the worlds. Making such a restriction makes prov-

ing security technically easier, for example by allowing so-called

rewinding techniques. The drawback of the model is precisely that

it considers protocol security in isolation, opening up the possi-

bility that a protocol thought to be secure loses all of its security

properties when it is run in parallel to some other processes. Since

it can be argued that such composition of protocols and processes

is the rule rather than the exception in modern computer systems,

it is highly desirable to be able to prove that a protocol remains

secure also when other protocols are run in composition to it.

There are many ways to compose protocols and some of them are

easier to deal with than others. For instance, the usual formulations

of the standalone model guarantee that security is preserved under

sequential composition, meaning as long as all the surrounding pro-

tocols are run sequentially (one after another). The most powerful

type of composition results are those when the security of the pro-

tocol is preserved regardless of how the surrounding protocols are

run (in particular when they run concurrently to the protocol in

question). This is called universal composition and the entire point

of the UC (Universal Composability) security framework is that

protocols proven within it remain secure under universal composi-

tion. This means, in particular, that if a protocol 𝜋 realises the ideal

functionality F , then any other protocol that uses F as a subproce-

dure does not lose its security properties if F is replaced by a copy

of 𝜋 . In the UC framework, the distinguisher goes from taking part

in the protocol (as in the standalone model) to being an external

entity that observes and interacts with the system from the outside.

The distinguisher is captured in an entity called the environment,
which is an entity in both worlds that selects the initial inputs to all

parties, interacts arbitrarily with the adversary and then, based on

the outputs of each party at the end, tries to distinguish between the

two worlds. In other words, the environment gets to play with one

of the worlds and depending only on the input-output behaviour

of this world it tries to determine which world it is playing with.

Definition B.3 (UC security [10, 42]). We say that an efficient

protocol 𝜋 UC-securely realises the ideal functionality F if for all

efficient real-world adversaries A there exists an efficient simula-

tor
21 S (corrupting the same parties asA) such that for all efficient

environments 𝐸, the statistical distance between 𝐸’s output when

interacting with the ideal world and that when interacting with the

real world is negligible in the security parameter 𝜅.

21
Also called ideal-world adversary.
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B.1 The Arithmetic Black-box
In Figure 5 we present the ideal functionality F𝐴𝐵𝐵 of the arith-

metic black-box. The ABB is at times formulated slightly differently,

such as only operating within the arithmetic domain, not including

conversions between the domains or including conversions in both

directions in between the binary and arithmetic representations.

We choose the flavor of ABB that is used in [33], simply because it

includes the operations we need but nothing more. For more details

on the ABB see, for instance, [22, 58].

Functionality F𝐴𝐵𝐵
Parameters: A modulus 𝑞 that is either a prime or a power of 2.

Input:
• Upon input (Input, 𝑃𝑖 , type, id, 𝑥) from 𝑃𝑖 and input

(Input, 𝑃𝑖 , type, id) from all other parties, if id is a fresh iden-

tifier and (type, 𝑥) ∈ {{binary} × Z2, {arithmetic} × Z𝑞)}
then store (type, id, 𝑥).

Linear combination:
• Upon input (LinComb, type, id, (id𝑗 )𝑚𝑗=1

, 𝑐, (𝑐 𝑗 )𝑚𝑗=1
) from all

parties, if

– each id𝑗 is stored in memory, and,

– 𝑐, 𝑐 𝑗 ∈ Z2 if type is binary and 𝑐, 𝑐 𝑗 ∈ Z𝑞 if type is

arithmetic,
then

– retrieve ((type, id1, 𝑥1), . . . , (type, id𝑚, 𝑥𝑚)),
– compute 𝑦 ← ∑

𝑐 𝑗 · 𝑥 𝑗 mod 2 if type is binary and 𝑦 ←∑
𝑐 𝑗 · 𝑥 𝑗 mod 𝑞 if type is arithmetic,

– store (type, id, 𝑦).
Multiplication:
• Upon input (Mult, type, id, id1, id2) from all parties, if id1, id1

are stored in memory then

– retrieve (type, id1, 𝑥1), (type, id2, 𝑥2)),
– compute 𝑦 ← 𝑥1 · 𝑥2 mod 2 if type is binary and 𝑦 ←
𝑥1 · 𝑥2 mod 𝑞 if type is arithmetic,

– store (type, id, 𝑦).
Converting from binary to arithmetic:
• Upon input (ConvertB2A, id, id′) from all parties, if id′ is
present in memory then retrieve (binary, id′, 𝑥) and store

(arithmetic, id, 𝑥).
Output:
• Upon input (Output, type, id) from all honest parties, if id′

is present in memory then retrieve (type, id, 𝑥) and output

it to the adversary. Wait for input from the adversary of the

form (Deliver, 𝑏), where 𝑏 ∈ Z2. if 𝑏 = 1 then output 𝑥 to all

parties, otherwise output ⊥.

Figure 5: The ideal functionality for the arithmetic black-
box.

C On SFE with DP Leakage
As noted shortly in Section 4, one cryptographic task that SIM

∗
-CDP

can handle but SIM
+
-CDP cannot is that of computing a differen-

tially private mechanism whilst allowing the adversary to receive

leakage throughout the protocol, as long as that leakage is DP, in

particular when some leakage occurs before the corrupted party

chooses their input. Joint computation of functions whilst allowing

DP leakage has been studied in a few different settings with regards

to output functions and adversarial models [5, 42, 59, 67]. Of par-

ticular interest to us is the work of [42] where it is proposed an

ideal functionality in UC for this setting which is then realised with

respect to private set intersection (PSI) in the presence of active

corruptions. One reason that the ideal functionality of [42] cannot

be expressed as an instantiation of SFE (the functionality used in

SIM
+
-CDP) is that the functionality in [42] relaxes the guarantee

of input independence, meaning that the corrupted party can choose

their input based on the input of the honest party.

The PSI protocol of [42] outputs the exact set intersection (to

only one of the parties, the other gets no output) and therefore

their protocol as a whole intuitively cannot be SIM
∗
-CDP. If one

would instead realise their ideal functionality for computing a func-

tion with leakage, and enforce that all possible combinations of

leakage functions and the output function to the corrupted party is

DP (when seen as a composition), then SIM
∗
-CDP can be achieved.

Below in Figure 6 we re-iterate the ideal functionality from [42]

but augmented to have two potentially different classes of leakage

functions for each party. The need for this is that since 𝑓1 and 𝑓2
need not be the same, as in the case when only one of them gets

an output, then one can allow the party whose output function is

DP with better parameters to have leakage functions that use up

more of the privacy budget. In Definition C.1 we reiterate [42]’s

definition of SFE with DP leakage, reformulated for consistency

with our notation.

Definition C.1 (SFE with DP leakage [42]). A protocol 𝜋 securely

realises 𝑓 with leakage (L1,L2) if 𝜋 is a UC-secure protocol for

F 𝑓 ,L1,L2

SFE with leakage
(see Figure 6). We say that the protocol realises 𝑓

with (𝜀𝜅 , 𝜀𝜅 )-SDP leakage if it realises 𝑓 with (L1,L2) if for every

(𝐿𝑝𝑟𝑒
𝑗𝑖

, 𝐿
𝑝𝑜𝑠𝑡

𝑗𝑖
) ∈ L1 ∪ L2, the probabilistic function 𝐷 := 𝐷1 | |𝐷2 →

(𝐿𝑝𝑟𝑒
𝑗𝑖
(𝐷), 𝐿𝑝𝑜𝑠𝑡

𝑗𝑖
(𝐷)) is (𝜀𝜅 , 𝜀𝜅 )-SDP.

D Proofs
D.1 Proof of Proposition 4.2

Proof overview. We now prove Proposition 4.2, which in short

says that in the plain model (without setup assumptions) there

exists tasks and parameter regimes for which SIM
+
-CDP can be

satisfied but not SIM
∗
-CDP with the same parameters. This follows

from the results that some ideal functionalities cannot be realised

with UC security in the plain model, and this particularly holds

for a large class of same-output probabilistic two-party function-

alities, as proven in [11]. Such results yield the desired separation

after noting that some optimal SDP mechanisms fall within that

class of functionalities, and that they are directly computable with

SIM
+
-CDP by use of general-purpose standalone secure two-party

computation, which does not require setup assumptions.

Background. The UC part of the proof is in the plain model, mean-

ing that no setup assumptions (such as having a common reference

string) are made, and that one by default only has access to authen-

ticated (not necessarily secure) channels [11, 12]. In the plain model,

it has been shown that there are many functionalities that cannot

be realised with UC-security. At the same time, it is known that
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Functionality F 𝑓 ,L1,L2

SFE with leakage

Parameters:
• A function 𝑓 = (𝑓1, 𝑓2) : ({0, 1}∗)2 → ({0, 1}∗)2.
• Two classes of functions L 𝑗 = {(𝐿𝑝𝑟𝑒 , 𝐿𝑝𝑜𝑠𝑡 ) 𝑗1, . . .}, 𝑗 ∈
{1, 2}, with 𝐿

𝑝𝑟𝑒

𝑗𝑖
, 𝐿

𝑝𝑜𝑠𝑡

𝑗𝑖
: {0, 1}∗ → {0, 1}∗.

No corruptions:
• Upon 𝐷1 from 𝑃1 and 𝐷2 from 𝑃2, deliver 𝑓1 (𝐷1 | |𝐷2) to 𝑃1

and 𝑓2 (𝐷1 | |𝐷2) to 𝑃2.

Party 𝑃𝑐 corrupted (𝑃ℎ is honest):
• Upon 𝐷ℎ from 𝑃ℎ and (Leak, 𝐿𝑝𝑟𝑒 ) from 𝑃𝑐 , if there exists an

element (𝐿𝑝𝑟𝑒 , ·) in L𝑐 then send 𝐿𝑝𝑟𝑒 (𝐷ℎ) to 𝑃𝑐 , otherwise
send ⊥.
• Upon𝐷𝑐 and (Leak, 𝐿𝑝𝑜𝑠𝑡 ) from 𝑃𝑐 , if there exists an element

(𝐿𝑝𝑟𝑒 , 𝐿𝑝𝑜𝑠𝑡 ) inL𝑐 then send 𝐿
𝑝𝑜𝑠𝑡 (𝐷ℎ) to 𝑃𝑐 , otherwise send

⊥. Regardless, also send 𝑓𝑐 (𝐷1 | |𝐷2) to 𝑃𝑐 .
• Upon (Deliver, 𝑏) from 𝑃𝑐 , if 𝑏 = 1 then send 𝑓ℎ (𝐷1 | |𝐷2) to
𝑃ℎ , otherwise send ⊥.

Figure 6: The ideal functionality for reactive two-party SFE
with abort and leakage.

in the standalone model (also here without any setup assumptions

apart from that there are authenticated channels), all two-party PPT

functionalities can be realised. Further, any protocol that securely

realises an ideal functionality computing an SDP mechanism in the

standalone model also satisfies SIM
+
-CDP with unchanged param-

eters. Therefore, if there exists a task for which there is an optimal

mechanism and this mechanism can be realised with standalone

security but not UC-security (without setup assumptions), then our

desired protocol will follow. We now state some definitions and

results needed for our proof.

Definition D.1 (Unpredictable function family [11]). A probabilis-

tic function family 𝑓 = {𝑓𝜅 }𝜅∈N with 𝑓 𝜅 : D2 → R is said to

be unpredictable if there exists a polynomial 𝑝 (·) such that for

infinitely many 𝜅: ∃𝐷1, 𝐷2 ∈ D such that:

(1) ∀𝐷 ′
2
∈ D, 𝑧 ∈ R : P(𝑓𝜅 (𝐷1, 𝐷

′
2
) = 𝑧) ≤ 1

𝑝 (𝜅 ) .

(2) ∀𝐷 ′
1
∈ D, 𝑧 ∈ R : P(𝑓𝜅 (𝐷 ′1, 𝐷2) = 𝑧) ≤ 1

𝑝 (𝜅 ) .

Intuitively, 𝑓 is unpredictable if (asymptotically) there are no

choices of inputs any one of the parties can make such that the

function output is almost always the same, regardless of the inputs

of the other party. In other words, each party can choose its input

such that the function output will not have almost all its probability

mass at one output event. This is a pretty weak requirement on a

probabilistic function. In particular, we have that the randomised re-

sponse mechanism for binary functionalities (i.e. where for a binary

function 𝑓 : {0, 1}2 → {0, 1}, 𝑓 (𝐷1, 𝐷2) is output with probability

𝑒𝜀

𝑒𝜀+1
and otherwise its negation is output) is unpredictable, with

𝑝 in the definition of unpredictability being chosen as a suitable

constant. Further, it is easy to verify that for all binary functions,

no pure SDP mechanism can have a higher probability of returning

the true value than randomised response. Thus we can set 𝑢 to be 1

iff the mechanism outputs the correct evaluation of a fixed arbitrary

binary function, and 𝛼 to be
𝑒𝜀

𝑒𝜀+1
, i.e. the probability of a correct

answer when using randomised response with parameter 𝜀.

Lemma D.2 (Reformulation of Theorem 6.1 in [11]). LetM =

{M𝜅 } be a family of unpredictable PPT two-input same-output func-
tions and let F be the ideal functionality that returns (to both players)
a sample fromM(𝐷1, 𝐷2) when given 𝐷1 from party 1 and 𝐷2 from
party 2. Then F cannot be UC-realised in the plain model by any
non-trivial protocol.

The notion of a non-trivial protocol is an extremely broad one,

essentially only requiring that all parties get outputs in the case

that all parties are honest and the adversary does not prevent any

messages from being delivered. It is immediately clear that the

protocol which realises the ideal functionality of randomised re-

sponse in the standalone model with perfect correctness by use of

general-purpose two-party computation is indeed non-trivial.

Proof of Proposition 4.2. What needs to be presented is a

choice of 𝜀 and a task (𝛼,𝑢) together with proofs that it can be solved
with (𝜀, 0)-SIM+-CDP but not (𝜀, 0)-SIM∗-CDP in the plain model.

As explained in the preceding paragraphs, we define the utility func-

tion by choosing the boolean XOR function 𝑓 : {0, 1}2 → {0, 1}
and set 𝑢 (𝐷, 𝑧) = 1 ⇐⇒ 𝑧 = 𝑓 (𝐷1, 𝐷2) := 𝐷1 ⊕ 𝐷2. We set

𝛼 := 𝑒𝜀

𝑒𝜀+1
. Further, set 𝜀 such that there exists a polynomial 𝑝 in

𝜅 such that 𝛼 is a multiple of 2
−𝑝 (𝜅 )

for large enough 𝜅. The ran-

domised response mechanism with parameter 𝜀, by construction,

has 𝛼-usefulness for 𝑢, since 𝛼 is exactly the probability with which

the mechanism outputs the true answer. We may now make the

following observations:

• There is no (𝜀, 0)-SDP mechanism with higher utility than

𝛼 for 𝑢. This follows directly from a simple contradiction

argument, namely that if a boolean mechanism has utility

above 𝛼 , then it cannot be (𝜀, 0)-SDP since there exists a

choice of database such that the privacy loss random variable

is above 𝑒𝜀 .

• If there exists a polynomial 𝑝 in 𝜅 such that 𝛼 is a multiple

of 2
−𝑝 (𝜅 )

for large enough 𝜅, then randomised response is

computable in strict polynomial time, which implies (by

the possibility of computational perfect-correctness general-

purpose two-party computation in the standalone model,

see e.g. Theorem 7.1.2 of [37]) that the ideal functionality

that computes randomised response with respect to 𝑓 can

be realised in the standalone model.

The second observation above implies that there is a protocol

which is (𝜀, 0)-SIM+-CDP for the task (𝛼,𝑢), namely the one that

uses general-purpose two-party computation to realise (with per-

fect correctness) the ideal functionality which performs randomised

response with respect to 𝑓 . The first observation above gives that

randomised response is optimal in the sense that no other mech-

anism has higher utility and that any mechanism with utility in-

distinguishable from that of randomised response, also must have

an output distribution which is indistinguishable from that of ran-

domised response, due to the boolean output range.

Thus the only thing that remains to be shown is that there is

no protocol that has a utility indistinguishable from that of the

protocol above whilst satisfying (𝜀, 0)-SIM∗-CDP. This follows di-
rectly from the fact that the randomised response ideal functional-

ity is unpredictable (in the sense of Definition D.1) together with

Lemma D.2. In particular, any (𝜀, 0)-SIM∗-CDP protocol which has
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utility indistinguishable from 𝛼 has an output distribution that is

indistinguishable from that the randomised response ideal function-

ality, which implies that the protocol UC-realises said functionality,

which is a contradiction to Lemma D.2 since randomised response

is unpredictable. Finally, we note that since the impossibility holds

not only for protocols with exactly the utility 𝛼 but also those with

utility computationally indistinguishable from 𝛼 , the impossibility

result holds for SIM
∗
-CDP protocols both with respect to real-world

accuracy and ideal-world accuracy. □

D.2 Proof of Proposition 4.3
Proof overview. We now prove Proposition 4.3, which says that

there are tasks such that in some parameter regimes, they can be

solved with SIM
∗
-CDP but not SIM

+
-CDP. The whole idea of the

proof is that, under sufficient complexity assumptions, both UC-

security and standalone security allow general-purpose two-party

computation, meaning that any PPT functionality can be realised.

Now the requirement of perfect correctness in SIM
+
-CDP means

on the other side that no non-PPT ideal functionalities can be used

to achieve SIM
+
-CDP, whereas this is not the case for SIM

∗
-CDP,

since there the correctness requirement is computational rather

than perfect. Again, we use the concrete proof strategy applied in

Section D.1, namely showing that there is a parameter regime for

which the randomised response mechanism can be realised with

SIM
∗
-CDP but not with SIM

+
-CDP and this gives the result by the

fact that randomised response is optimal for pure SDP boolean

mechanisms.

Proof of Proposition 4.3. As in the proof of Proposition 4.2,

define 𝑢 (𝐷, 𝑧) = 1 ⇐⇒ 𝑧 = 𝑓 (𝐷1, 𝐷2) := 𝐷1 ⊕ 𝐷2 i.e. with 𝑓

being the XOR function. Set 𝛼 (𝜅) := 𝑒𝜀𝜅

𝑒𝜀𝜅 +1
. Now, as opposed to

the previous proof, we set 𝜀 such that the resulting randomised

response mechanism can not be computed in strict polynomial time.

In particular, set 𝜀𝜅 such that 𝛼 (𝜅) = 1−2
−2

𝜅
, i.e. 𝜀𝜅 := 2

−2
𝜅

1−2
−2

𝜅 . That

is, the mechanism we consider is that in which 𝑓 (𝐷) is returned
except for which probability 2

−2
𝜅
.

This mechanism can be realised (with computational correctness)

with UC security under the common reference string (CRS) setup

assumption, since that model allows general-purpose two-party

computation (see, for instance [11, 12]). That is, with utility consid-

ered in the ideal world (i.e. the ideal functionality F is 𝛼-useful for

𝑢), the task (𝛼,𝑢) can be solved with SIM
∗
-CDP.

On the other hand, the mechanism above can not be realised

in the standalone model with perfect correctness, since it requires

sampling a Bernoulli trial with parameter 𝛼 , which is impossible

in strict polynomial time since 𝛼 is not a multiple of an inverse

polynomial power of 2 (see Appendix A). Further, since randomised

response is optimal for boolean functionalities, there is no (𝜀𝜅 , 0)-
SDP mechanism that runs in strict polynomial time and has utility

above 𝛼 . Thus there is no PPT mechanism which is 𝛼-useful for 𝑢

and consequently there is no (𝜀𝜅 , 0)-SIM+-CDP protocol which is

𝛼-useful for 𝑢 either. □

D.3 Proof of Proposition 4.4
We now prove Proposition 4.4, which in short says that for all proto-

cols SIM
∗
-CDP implies SIM-CDP with unchanged parameters. Note

that this proof is analogous to that of the same relation between

SIM
+
-CDP and SIM-CDP, which is found in the long version of

MPRV [64]. The proof follows essentially directly from the two

definitions involved after noting that the mechanism (simulator) in

SIM-CDP has access to all of the inputs and thus can run copies of

the ideal world internally.

Proof of Proposition 4.4. Let 𝜀𝜅 ≥ 0, 𝛿𝜅 ∈ [0, 1] be arbitrary
fixed classes of parameters. Let 𝜋 be a two-party protocol that

satisfies (𝜀𝜅 , 𝛿𝜅 )-SIM∗-CDP with respect to some arbitrary fixed

ideal functionality F . This implies that for all PPT adversaries A,

the view of SA (the ideal-world adversary corresponding to A) is

(𝜀𝜅 , 𝛿𝜅 )-SDP and that the views of A and SA are computationally

indistinguishable. That is, ∀𝐷 ∈ D,A : VIEWA𝜋𝑟𝑒𝑎𝑙 ≈𝑐 VIEWSA𝜋𝑖𝑑𝑒𝑎𝑙 .

This is due to the definition of UC-security, because if these two

random variables are not computationally indistinguishable, then

there exists an efficient environment that distinguishes the real and

ideal worlds with a non-negligible advantage over guessing.

We can now turn the simulator SA into the mechanismM in

the SIM-CDP definition by lettingM run a copy of the ideal world

protocol and then output the view of SA . This is possible since in
SIM-CDP, the mechanism (also at times called the simulator)M has

access to the inputs of both the corrupted and honest parties. That

is, sinceM can run a copy of the ideal world (thus makingM(𝐷)
identically distributed to VIEWSA𝜋𝑖𝑑𝑒𝑎𝑙 ), the indistinguishability of

the views shown above implies that the view of the adversary in the

real world is computationally indistinguishable from the output of

M(𝐷) for all 𝐷 , which is (𝜀𝜅 , 𝛿𝜅 )-SDP, and thus 𝜋 is (𝜀𝜅 , 𝛿𝜅 )-SIM-

CDP. □

D.4 Proof of Lemma 5.4
Proof. Let𝑍 ∼ M𝑝,𝑓 ,𝜆

𝑅𝑇𝐺𝑒𝑜
(𝐷) and𝑌 ∼ M2𝐵,𝑓 ,𝜆

𝑆𝑅𝑇𝐺𝑒𝑜
(𝐷) for arbitrary

𝜆, 𝐷 . Let 𝑝𝑍 and 𝑝𝑌 denote the probability density functions of 𝑍

and 𝑌 respectively and let 𝐹 denote their cumulative distribution

functions in the same manner. Since the parameter restrictions

guarantee that the final sum in 𝑌 does not overflow (the result is

as if the sum was done over the integers), the statistical distance

between the two distributions is exactly twice the total probability

mass that is affected by the truncation in 𝑌 . That is,

𝑆𝐷 (𝑍,𝑌 ) = 1

2

∑︁
𝑧∈Z𝑝
|𝑝𝑋 (𝑧) − 𝑝𝑌 (𝑧) |

=
∑︁

𝑧∈Z𝑝 \( ¯𝑓 −𝐵, ¯𝑓 +𝐵)

|𝑝𝑋 (𝑧) − 𝑝𝑌 (𝑧) |

= |𝐹𝑋 ( ¯𝑓 − 𝐵) + (1 − 𝐹𝑋 ( ¯𝑓 + 𝐵)) |

=

���� 𝑒1/𝜆

𝑒1/𝜆 + 1

𝑒−(
¯𝑓 − ¯𝑓 +𝐵)/𝜆

+ 1

𝑒1/𝜆 + 1

𝑒−(
¯𝑓 +𝐵− ¯𝑓 )/𝜆

����
= 𝑒−𝐵/𝜆,

where
¯𝑓 is shorthand for 𝑓 (𝐷). The equalities follow by inserting

the formulas from Definition 5.1 and direct simplifications. □
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D.5 Proof of Lemma 5.7
Proof. Firstly, Ber𝛼 exactly samples a Bernoulli trial with a

parameter equal to the recomposition of the first 𝑑 elements of 𝛼 .

Call this parameter value 𝛼 ′. This means that the statistical distance

between Ber(𝛼) and an exact Bernoulli trial with parameter 𝛼 is

the same as between two exact Bernoulli trials with parameter 𝛼

and 𝛼 ′, respectively. This statistical distance is equal to |𝛼 − 𝛼 ′ |,
which is at most 2

−𝑑
since the first 2

𝑑
bits of their decomposition

are identical.

Secondly, the statistical distance betweenM𝜆,𝐵,𝑑,ℎ
FDL (𝐷) and

M2𝐵,ℎ,𝜆

𝑆𝑅𝑇𝐺𝑒𝑜
(𝐷) is at most equal to the probability of any of the

Bernoulli trials being incorrect, which due to independence is at

most 𝐵2
−𝑑
. □

D.6 Proof of Lemma 5.8
Proof. The additive usefulness follows from a standard tail

bound on the geometric distribution, since the truncated geometric

is at least as concentrated as the untruncated one:

P( |𝐺𝑒𝑜𝑞,𝜆 (𝑓 (𝐷)) − 𝑓 (𝐷) | ≥ 𝜈) = P( |𝐺𝑒𝑜𝑞,𝜆 (0) | ≥ 𝜈)
≤ P( |𝐺𝑒𝑜𝜆 (0) | ≥ 𝜈)
= 2𝐹𝐺𝑒𝑜𝜆 (0) (−𝜈)

=
2𝑒1/𝜆

𝑒1/𝜆 + 1

𝑒−𝜈/𝜆 .

□

D.7 Proof of Theorem 6.1
Proof. The definition of SIM

∗
-CDP demands two things to be

shown, namely that the view of the simulator is SDP and that the

protocol UC-realises the ideal functionality. The first requirement is

fulfilled as the only message sent from F
ˆ𝑓𝜅

𝑆𝐹𝐸
to the corrupted party

isM𝑞,𝑓𝜅 ,𝜆𝜅
𝑅𝑇𝐺𝑒𝑜

(𝐷) and this is (𝜀𝜅 , 0)-SDP due to the fact that the range-

truncated geometric mechanism is (𝜀𝜅 , 0)-SDP under the standard

parametrisation specified in the theorem. The other parts of the

view of S (like its input and randomness tape) are independent

of the inputs of the honest party, thus making the view of S as

a whole (𝜀𝜅 , 0)-SDP. Further, this holds for all types of malicious

behavour of S since, due to the formulation of F𝑆𝐹𝐸 , the only way

S can change its view is to refuse to collaborate in the protocol

or change its inputs and both of those decisions would have to be

made independently of the inputs of the honest party (thus making

those decisions (0, 0)-SDP as well).

The UC-realisation of the ideal functionality follows directly

from the use of the arithmetic black-box and the statistical indis-

tinguishability betweenMFDL andM𝑅𝑇𝐺𝑒𝑜 , which follows from

lemmas 5.4 and 5.7 together with the assumptions of the theorem.

In particular, due to the use of F𝐴𝐵𝐵 , the view of the corrupted party

in the hybrid world consists of only its input, random coins and

the output returned from F𝐴𝐵𝐵 , which is exactlyMFDL. Similarly,

the view of the corrupted party in the ideal world is also only its

input, random coins and output returned from F
ˆ𝑓𝜅

𝑆𝐹𝐸
. Therefore

the simulator that simply outputs its view (after having changed

its inputs and/or aborted with respect to its random coins as the

hybrid-world adversary does) yields a view that is computationally

indistinguishable from that of the hybrid-world adversary. Further,

this simulator is strict PPT due to it performing only the same op-

erations as the hybrid-world adversary (choosing input and abort

behaviour based on its coins and then receiving one Z𝑞 element),

hence the theorem follows. □

E Techniques for Achieving Secure MPC
In the context of MPC, we typically distinguish binary and arith-

metic protocols. This classification describes the possible compu-

tations. In other words, we perform addition and multiplication

in F2 and F𝑝 , respectively. In this work, we rely on secret sharing-

based (SS) MPC protocols. More precisely, we use additive secret

sharing (ASS). In such protocols, secret values 𝑥 are shared among

𝑛 parties by uniformly sampling 𝑛 − 1 random values 𝑥1, . . . , 𝑥𝑛−1

from F, setting 𝑥0 ← 𝑥 − ∑𝑛
𝑖=1

𝑥𝑖 , and distributing 𝑥𝑖 to every

party 𝑝𝑖 . We denote secret shared values as [[𝑥]]. We further denote

[[𝑥]] ← Share(𝑥), and 𝑥 ← Reconstruct( [[𝑥]]) as sharing and re-

constructing secrets. ASS schemes are additively homomorphic, al-

lowing the addition of shares without interaction and hiding under-

lying secrets as long as there is one honest party. To allow multipli-

cations with an ASS, one can use multiplication triples, introduced

by Beaver [3]. Triples are three shared values ( [[𝑎]], [[𝑏]], [[𝑐]]),
that no party knows and that fulfil 𝑎 · 𝑏 = 𝑐 . When multiplying

two shared values ( [[𝑥]], [[𝑦]]), one reconstructs masked versions

𝛼 ← Reconstruct( [[𝑥]] − [[𝑎]]), 𝛽 ← Reconstruct( [[𝑦]] − [[𝑏]]),
and computes

22 [[𝑧]] ← 𝛼𝛽 + 𝛽 [[𝑥]] + 𝛼 [[𝑦]] + [[𝑐]] = [[𝑥 · 𝑦]].
Given these ingredients, we can instantiate an active secure

general-purpose MPC protocol if we have access to a secure sam-

pling method for multiplication triples, and adversaries cannot

tamper with the reconstruction procedure. In the SPDZ paper [23],

the authors introduced solutions to both problems. They propose

an additively homomorphic encryption scheme for sampling triples

and information-theoretic message authentication codes (MACs)

to secure the reconstruction procedure. Subsequent work intro-

duced several performance improvements by instantiating the ASS

over the ring F
2
𝑘 [20] or replacing the expensive homomorphic

encryption with oblivious transfer [52]. Note that both improve-

ments, to some degree, accept a higher communication for a lower

computation complexity.

22
This step requires multiplication and addition with constant terms which follows

from the ASS properties.
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