
SoK: Computational and Distributed Differential Privacy for MPC
Fredrik Meisingseth

Graz University of Technology

Graz, Austria

fredrik.meisingseth@iaik.tugraz.at

Christian Rechberger

Graz University of Technology

Graz, Austria

christian.rechberger@iaik.tugraz.at

Abstract
In the last fifteen years, there has been a steady stream of works

combining differential privacy with various other cryptographic

disciplines, particularly that of multi-party computation, yielding

both practical and theoretical unification. As a part of that unifica-

tion, due to the rich definitional nature of both fields, there have

been many proposed definitions of differential privacy adapted to

the given use cases and cryptographic tools at hand, resulting in

computational and/or distributed versions of differential privacy.

In this work, we offer a systemization of such definitions, with

a focus on definitions that are both computational and tailored

for a multi-party setting. We order the definitions according to

the distribution model and computational perspective and propose

a viewpoint on when given definitions should be seen as instan-

tiations of the same generalised notion. The ordering highlights

a clear, and sometimes strict, hierarchy between the definitions,

where utility (accuracy) can be traded for stronger privacy guar-

antees or lesser trust assumptions. Further, we survey theoretical

results relating the definitions to each other and extend some such

results. We also discuss the state of well-known open questions and

suggest new open problems to study. Finally, we consider aspects of

the practical use of the different notions, hopefully giving guidance

also to future applied work.

Keywords
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1 Introduction
The applications of Differential Privacy (DP) and Multi-party Com-

putation (MPC) have essentially orthogonal goals, namely that

with MPC one wishes to make sure that when performing a joint

computation, no information is learned by the adversary except
for that which can be learned from the allowed computation output,
whereas DP concerns bounding the privacy loss incurred from said
output [4, 22]. In the words of Beimel, Nissim and Omri [4], MPC

tells us how to compute something privately and DP tells us what
can be privately computed. Therefore, combining them is an ap-

pealing prospect as it can potentially enable protocols that provide

privacy protection with respect to both their execution and their

outputs. In addition to the case where one is a priori interested

in achieving the privacy goals of both MPC and DP, the topic of
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combining DP with MPC (a part of what is at times called DP-
cryptography [69]) also concerns improving a scheme in one of the

disciplines by utilising tools and perspectives from the other. This

has proven a fruitful endeavor and this success is rooted in that

not only the goals but also the typical challenges within the two

fields are mostly distinct. The literature on using MPC techniques

to improve DP systems mostly focuses on removing the need to

fully trust a single central computational party. Avoiding this trust

assumption can be done without relying on MPC techniques, for

instance by using the local or shuffle models of DP (see Section

3), but these models sometimes do not admit accuracy similar to

(or even close to) that in the central model. If one does use MPC,

however, then the clients can distributedly simulate the central

dataholder, thereby avoiding the main trust assumption in DP with-

out lowering the accuracy of the protocol [4, 5, 22]. Using DP to

improve MPC schemes is typically done to improve the efficiency

of the scheme. The efficiency problems in MPC can intuitively be

seen as caused by the need to spread out the secret information

such that, at all times, all sufficiently small coalitions of parties

cannot learn any information about the underlying secret. Often-

times, such efficiency problems can be reduced if one relaxes the

demand that no information should leak, to that the information

that is leaked is from a differentially private function of the secret

inputs [5, 40, 46, 71]. When unifying the formalities in MPC and

DP, some hurdles arise however. Firstly, DP is typically studied

in a statistical (information-theoretic) setting whereas multi-party

protocols must for certain settings rather work with computational
guarantees. Therefore, when deploying DP in those settings, the

usual definition of statistical DP (SDP) must be turned into computa-
tional DP (CDP).1 Secondly, DP is formulated with respect to single

probabilistic algorithms, called mechanisms, rather than with re-

spect to algorithms interacting with one another within a protocol.

There are twomain motivations behind writing a systematization of

knowledge paper on this particular topic at this particular time, one

regarding theory and one regarding the application of the theory

in practice. On the theoretical side, there have now been so many

distributed CDP definitions proposed that getting an overview of

them by either following the early definitional works and their

follow-ups or by following related work sections of recent work

is getting increasingly laborious. This together with recent rapid

developments [32, 37, 41, 42] on fundamental open problems, such

as those posed in [67], leads to a need to survey the topic for the

benefit of new theoretical work. On the practical side, there is a

growing literature [5, 6, 27, 70] on concrete protocols combining

DP and MPC and this causes a need to discuss the theory with

1
We use ‘DP’ to refer to both computational and statistical definitions. When referring

specifically to definitions that are either statistical or computational, we call them SDP

and CDP definitions, respectively.
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Figure 1: Overview of the central model of DP. The single
trusted server (dataholder) gets the whole dataset 𝐷 in the
clear, then computes the DP mechanismM and sends the
result to the untrusted analyst.

respect to its relationship to practice. This applies particularly to

concerns about what settings the various CDP definitions are suited

for and the choice of parameter regime. As an illustrative example,

take the recent paper [5] from CCS’22. There an efficient protocol

for computing DP histograms in a two-party model is proposed

and it is shown that the protocol is CDP by formulating an ideal

functionality that is SDP and then proving that the protocol realises

it, which is a common and natural design strategy. The illustrative

part of this example is that, since the ideal/real paradigm is used,

SIM
+
-CDP is chosen as the CDP notion as it gives the strongest

guarantees and also is geared towards this specific proof strategy.

However, the SIM
+
-CDP definition needs to be adapted (which is

done implicitly) since the original definition uses (𝜀, 0)-SDP in the

functionality and requires perfect correctness but the protocol, for

practical reasons, can only give statistical correctness and realises

an ideal function which is (𝜀, 𝛿)-SDP with non-zero 𝛿 . This implicit

adaptation of the CDP definition shows that there is a need to ex-

plicitly discuss the details of the CDP definition from the point of

view of application, to make it clear for practitioners when specific

flavours of CDP can be used and when not.

1.1 Characterising DP Definitions
Traditionally, DP is studied in the central model (see Figure 1),

where the data of all clients is held in the clear by a central trusted

server (or dataholder). On this dataset the mechanism is run and

the output is given to an untrusted analyst. DP is a property of the

mechanism, as is seen in the following definition (details follow in

Section 2). We formulate the definition with the adjacency notion

being variable. For a very general definition of what an adjacency

notion is, see Definition 2.2.

Definition 1.1 ((𝜀, 𝛿)-SDP [21, 23]). Let 𝜀 ≥ 0, 𝛿 ∈ [0, 1] and ADJ
be an adjacency notion on the input domain D. A probabilistic

algorithmM : D → R is (𝜀, 𝛿)-differentially private (SDP) if for

all pairs (𝐷,𝐷 ′) of adjacent databases (with respect to ADJ) in D
and all measurable subsets 𝑆 of R,

P(M(𝐷) ∈ 𝑆) ≤ 𝑒𝜀P(M(𝐷 ′) ∈ 𝑆) + 𝛿, (1)

where the probability is overM’s internal coin tosses.

On a very high level, DP defines a property of a probabilistic

algorithm that relates a notion of closeness between input pairs

(the adjacency notion) to some requirement of closeness
2
between

the respective output distributions. When placing the mechanism

within the context of an interaction between parties in a proto-

col, a DP definition additionally specifies what parts of the data

involved in the interaction are to be seen as input to the mechanism

and what parts are to be seen as the output. Further, in the case

that some party that gets mechanism output is computationally

bounded, one can relax the requirement that the process creating

those outputs actually is SDP and rather say it has to ‘look SDP’ to

the computationally bounded party. In summary, we consider a DP

definition to be determined by:

• The distribution model – what probabilistic function in the

interaction should be DP?

• The notion of adjacency – how is the condition that two

inputs are close to each other formalised?

• The notion of output closeness – how is the requirement that

two output distributions are similar formalised?

• The computational perspective – are there computational lim-
itations on the party receiving the output? If yes, what does

it formally mean for a mechanism to ‘look SDP’ to a compu-

tationally bounded party?

Typically, some of these characteristics are fixed in a definition

and some are kept variable, meaning that the same definition can

be instantiated with different choices of them. As an example, we

can consider the definition of SDP above, in which the distribution

model, computational limitations and output closeness notion are

implicitly kept fixed (changing them results in a new definition). In

particular, the distribution model is fixed to the central model, all

parties are allowed to be computationally unbounded and output

closeness is defined by Equation (1). The adjacency notion on the

other hand is kept variable and changing it can be done without it

being seen as proposing a new DP definition.

Scope. Throughout this survey, we follow this practice of letting

the adjacency notion be variable within a DP definition and we fix

the output closeness to the standard notion as in (𝜀, 𝛿)-SDP. We let

the other two properties define new definitions. It is not always

clear when a change in those properties warrants the resulting

definition to be seen as new, for instance in the case when chang-

ing a computationally bounded party from being uniform to being

non-uniform, or when the distribution model shifts from involving

three parties to involving four parties. We will see two definitions

that we consider to only differ in such details (i.e. in details that are

perhaps technically crucial but do not change the intuitive appeal

or raison d’être of the definition) as being two instantiations of the

same definition, even if they were not originally proposed as such.
3

Since there are essentially infinitely many possible and a very large

number of potentially relevant choices of distribution model and

computational perspective, we need also restrict our discussion

2
Technically, the notion of output closeness is typically a divergence, i.e. some non-

negative function of two probability distributions which is 0 if and only if the distribu-

tions are identical.

3
The choice of when to consider two definitions to be the same in this sense is a quite

informal one. Of course it would be preferable to avoid turning to such informalities

although we have not found a way to do so without gravely restricting the overview

of the space of definitions by restricting all comparisons to very specific settings.
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to certain choices of them. Firstly, we include only choices within

each dimension that have been treated in the literature on either

distributed or computational DP (ignoring choices only present in

the non-DP literature on secure computation or central-model SDP).

Secondly, as our motivating use case is the combination of DP and

MPC, our focus is on DP definitions that are both distributed and
computational. Therefore, we include only distributed SDP notions

and central-model CDP notions to the extent needed to provide

understanding and context for the distributed CDP definitions. For

a brief list of definitions we have chosen not to include, see Ap-

pendix B. Regarding the adjacency notion, we leave it arbitrary

in all DP definitions although almost all results we survey use an

adjacency notion where datapoints are either binary strings or in-

tegers of bounded size and two datasets are adjacent if at most one

element is changed.
4
It is also worth noting that we formulate all

CDP definitions considering protocols with respect to an arbitrary

number of parties, in order to increase the generality of our discus-

sion, even though they have primarily been presented, used and

analysed in the two-party setting.

Relations between definitions. After surveying the field of defini-

tions and deciding which of them to consider, we turn to relating

the definitions to each other, with the goal of ordering them with

respect to the guarantees they provide and the types of computa-

tional tasks that can be solved whilst satisfying them. The literature

contains primarily two types of such results: results showing direct
implications (DI), i.e. that all mechanisms satisfying one definition

fulfill another as well, and results showing that one definition is

more expressive (ME) than another, i.e. that all tasks solvable with

the first definition can also be solved with the other. These types

of results are interesting both in their positive form (then we call

them implications) and in their negative form (then we call them

separations). Roughly, DI-results concern establishing properties of

every mechanism satisfying a given definition whereas ME-results

concern whether there exists any mechanism solving a given task

whilst satisfying the DP definition. Therefore positive DI-results

are strictly stronger than positive ME-results and the other way

around for separations. We define the different types of relations

in Section 2.

1.2 Related Work
The two works most related to this are the 2020 survey by Des-

fontaines and Pejó [19] and the 2017 survey by Vadhan [67]. Two

key works that we will refer to heavily (and discuss later in more

depth), since they largely initiated the formal study of distributed

and computational DP are [4, 62]. In the following, we will refer

to [62] and [4] as MPRV and BNO, respectively, after their authors.

Relation to Desfontaines and Pejó’s survey. In [19] hundreds of

definitions of DP are surveyed and categorised according to seven

dimensions, including (with other names) the adjacency notion,

output closeness and computational perspective. Additionally varia-
tions in the privacy loss (letting different inputs enjoy different types

4
Intuitively, the use of a change-one binary adjacency notion can be seen as being the

smallest possible choice since if one considers machines that work in binary then all

other changes to a dataset can be translated to a sequence of changed bits. Therefore,

under the group privacy property of SDP, results with respect to single binary changes

should offer easy translation to most other common adjacency notions.

of privacy guarantees), background knowledge (making assumptions

on the amount/type of background knowledge the adversary has),

formalism changes (using different formalities in measuring how

much knowledge the adversary can gain) and relativising knowl-
edge gain (relating the knowledge gain to structures or correlations

within the data) is considered. We ignore these four other dimen-

sions in our survey because combining variations within them with

computational or distributed versions of DP has occurred only very

rarely. Variations to the distribution model are considered out of

scope in [19] and therefore the overlap in the definitions covered

there and in this work is quite small. Further, since we have a more

concentrated scope, this holds true also with regard to results and

discussions about the few definitions that are included in both

works.

Relation to Vadhan’s survey. Vadhan’s 2017monograph [67] gives

a broad introduction to the relationship between differential pri-

vacy and computational complexity theory, giving an overview of

the literature, including distributed and computational DP, and for-

mulating open problems. The sections on distributed DP and CDP

focus on relating these areas to complexity theory and SDP, and

therefore do not discuss the wide range of proposed definitions. In

this work, we fill the gap by surveying the definitions of distributed

CDP and results relating them to each other. As many such recent

results are tied to open problems posed by Vadhan, we also provide

a status update on those problems.

2 Notation and Preliminaries
For any natural number 𝑁 , let [𝑁 ] := {1, . . . , 𝑁 }. For a probability
distribution Dist, let 𝑎 ← Dist denote sampling 𝑎 from Dist. We

refer to a function from the naturals to the non-negative reals as

negligible if it approaches 0 faster than the inverse of any polyno-

mial. We reserve the notation negl and 𝑝𝑜𝑙𝑦 for arbitrary negligible

or polynomial functions, respectively.

2.1 Protocols, Algorithms and Corruption
Models

We follow the convention set in MPRV and describe a protocol

simply as a set of parties, {𝑃1, ..., 𝑃𝑁 }, where each party is an in-

teractive probabilistic function. This abstraction is sufficient for

our discussion, except for in two crucial aspects, namely when it

comes to computational efficiency and defining secure computation,
where a more nuanced model of protocol execution is needed. In

formalising efficiency we use non-uniform algorithms (e.g. Turing

Machines), as is the standard within the literature on CDP.
5
We

let PPT stand for probabilistic polynomial time and PPTM stand

for non-uniform PPT Turing Machine. If a function is computable

by a PPTM, then we call it efficiently computable. We call a dis-

tribution efficiently samplable if there exists a PPTM mapping 1
𝜅
,

with 𝜅 being the security parameter, to a sample of the distribution.

For more discussion on the efficient samplability of distributions

in the context of CDP, see [61]. Regarding secure computation,

we consider both active (also called malicious or byzantine) and
passive (also called semi-honest) corruptions but assume they are

5
Note that all DP definitions which consider efficient computation can be instantiated

just as well with respect to uniform PPT without changing the spirit of the definition.

Such changes may however potentially invalidate some of the results that we survey.
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static (i.e. the set of corrupted parties is fixed before the protocol

execution starts). We represent a corruption model COR = (𝑎, C)
where 𝑎 ∈ {active, passive} and C ⊆ Powerset( [𝑁 ]). The set C
defines what subsets of parties may be corrupted at the same time.

For a protocol 𝜋 = {𝑃1, ..., 𝑃𝑁 } and a set 𝐶 ∈ C, let {𝑃𝐶 } denote
{𝑃𝑖 : 𝑖 ∈ 𝐶} (the corrupted parties in 𝜋 ) and let {𝑃−𝐶 } denote
{𝑃𝑖 : 𝑖 ∉ 𝐶} (the honest parties in 𝜋 ). The information available to

the coalition of corrupted parties is formalised in their joint view,
as defined below. The reason for exchanging {𝑃𝐶 } with {𝑃𝐶 } is to
model active corruptions, i.e. where the corrupted parties do not

follow their instructions.

Definition 2.1 (VIEW, reformulation from [4]). Let𝜋 = {𝑃1, ..., 𝑃𝑁 }
be a protocol and A be an adversary corrupting a set 𝐶 ⊂ [𝑁 ] of
parties. For inputs 𝐷 = (𝐷1, ..., 𝐷𝑁 ) ∈ D, the view in 𝜋 of the cor-

rupted parties {𝑃𝐶 }, denoted VIEWA𝜋,𝐶 (𝐷) is defined as the random
variable containing the inputs of the parties in𝐶 , their random coins

and the messages that they receive during the execution of the pro-

tocol {𝑃𝐶 } ∪ {𝑃−𝐶 } on inputs 𝐷 . The randomness in VIEWA
𝜋,𝐶
(𝐷)

is over the random coins of the honest parties {𝑃−𝐶 }.

For defining secure computation of protocols we use the standard

definitions in the ideal/real-paradigm, in both the standalone [11,

35, 57] and UC frameworks [12, 18]. A brief introduction to those

frameworks is found in Appendix A.

2.2 Adjacency
For a protocol with 𝑁 parties we consider an input dataset as an

ordered set 𝐷 in the domain D := 𝜒𝑁 , for a data universe 𝜒 . We

define a notion of adjacency as a set of pairs of datasets in the

following fashion.

Definition 2.2 (Adjacency notion). An adjacency notion ADJ on
the dataset domain D is a set in D × D that is symmetric, i.e. if

(𝐷,𝐷 ′) ∈ ADJ then so is (𝐷 ′, 𝐷), and ∀𝐷 ∈ D, (𝐷, 𝐷) ∈ ADJ. If
(𝐷,𝐷 ′) ∈ ADJ the we say that 𝐷 and 𝐷 ′ are adjacent with respect

to ADJ.

The adjacency notion is typically clear from context and hence

we will most of the time simply say that 𝐷 and 𝐷 ′ are adjacent,
without further specification. Note that the definition above can be

instantiated to practically all commonly used adjacency notions,

for instance those when each each party holds an integer and two

datasets are considered adjacent if at most one player changes or

removes their value. For protocols, it is commonplace to consider

DP with an adjacency notion that is agnostic to the inputs of the

corrupted parties, as formalised below.

Definition 2.3 (𝐶-adjacency [4]). Let {𝑃1, . . . , 𝑃𝑁 } be a set of par-
ties, each with their own input 𝐷𝑖 ∈ 𝜒 , and 𝐶 ⊂ [𝑁 ] be a proper
subset of the indices of the parties. Let 𝐷 = {𝐷1, . . . , 𝐷𝑁 } ∈ 𝜒𝑁 ,

𝐷−𝐶 := {𝐷𝑖 : 𝑖 ∉ 𝐶} and analogously for 𝐷 ′ ∈ 𝜒𝑁 . We say that 𝐷

and 𝐷 ′ are 𝐶-adjacent with respect to an adjacency notion ADJ if
𝐷−𝐶 , 𝐷 ′−𝐶 are adjacent with respect to ADJ.

2.3 Relations between DP Definitions
Most of this work concerns the relations between various DP def-

initions, and such relations can be either implications (showing

that the two definitions are similar in some sense) or separations

(showing the contrary). We consider two such types of results –

direct implications, showing that any protocol satisfying the first

definition also satisfies the second one, and more expressiveness,
showing that all computational tasks solvable whilst satisfying the

one definition are also solvable whilst satisfying the other. In other

words, a direct implication requires that any task solvable with

the first type of DP can also be solved with the other type of DP

by using the same mechanism, whereas expressiveness allows the

task to be solved by a different mechanism for the other type of

DP. Therefore a direct implication result should imply a result of

more expressiveness, and below we see that for our formalisation

of these notions, it does. Both of these types of results are condi-

tional on parameter regimes and we follow the convention of [19]

in letting 𝜂, 𝛽 both be collections of parameter tuples. For instance

can 𝜂 be {(𝜀𝜅 , 𝛿𝜅 ) ∈ R2

+ : 𝜀𝜅 > 0, 𝛿𝜅 = negl(𝜅)}. Letting Def1 be a
DP definition, when the protocol 𝜋 (run with security parameter 𝜅)

satisfies Def1 with the parameters in 𝜂 for the same 𝜅 , then we say

that 𝜋 satisfies 𝜂-Def1.

Definition 2.4 (Direct implication (DI)). Let Def1 and Def2 be

two DP definitions and 𝜂, 𝛽 be parameter regimes for them, respec-

tively. We say that 𝜂-Def1 directly implies (DI) 𝛽-Def2, denoted
𝜂-Def1 =⇒

(𝐷𝐼 )
𝛽-Def2, if all protocols 𝜋 satisfying 𝜂-Def1 also satisfy

𝛽-Def2. If 𝜂-Def1 =⇒
(𝐷𝐼 )

𝛽-Def2 and 𝜂-Def1 ⇐=
(𝐷𝐼 )

𝛽-Def2, we say

that they are equivalent.

In order to discuss expressiveness, we must define what it means

for a protocol to solve a task. A task is defined with respect to a

utility function, which we quite generally choose to formalise as a

binary deterministic function mapping a dataset and a mechanism

output to 1 iff the output was a "good" solution. Since DP mecha-

nisms are probabilistic, we measure the utility as the probability

that a mechanism will output a good solution.

Definition 2.5 (Utility function [9, 32]). A utility function is an ef-

ficiently computable deterministic function𝑢 : D×R → {0, 1}. Let
Dist be a probability distribution on the domain D. A mechanism

M : D → R is 𝛼-useful for 𝑢 with respect to Dist if:

P
𝑦←M(𝐷 ),𝐷←Dist(D)

(𝑢 (𝐷,𝑦) = 1) ≥ 𝛼. (2)

If the inequality holds for all distributions Dist then we omit it

from notation. An important detail here is that we require the utility

function to be efficiently computable. This restriction is needed to

rule out pathological separations between DP definitions, as argued

in [9], and therefore to save the meaningfulness of results about

expressiveness. Further, the restriction strengthens the practical

appeal of the notion of utility, since it means that a mechanism is

only seen as significantly more useful (having higher utility) than

another if it can be feasibly tested that such is the case.

Definition 2.6 (Task). A task is a tuple 𝜏 = (𝛼,𝑢,Dist) as in Defi-

nition 2.5. For a mechanismM, we say thatM solves the task 𝜏 if

M is 𝛼-useful for 𝑢 with respect to Dist.

An example of a task is to compute the mean of a vector of

natural numbers to within 10% additive error, and do so for each

𝐷 ∈ D with probability at least 0.9. In that example, 𝑢 (𝐷,𝑦) = 1 iff

𝑦 ∈ [0.9 ·mean(𝐷), 1.1 ·mean(𝐷)] and 𝛼 = 0.9. When 𝛼 is constant
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and the utility function is defined as a bounded distance between 𝑦

and a function evaluation 𝑓 (𝐷), then we call the distance bound

the accuracy ofM for computing 𝑓 .

Definition 2.7 (More expressive (ME)). Let Def1 and Def2 be two
DP definitions and 𝜂, 𝛽 be parameter regimes for them, respectively.

We say that 𝛽-Def2 is more expressive (ME) than𝜂-Def1, denoted𝜂-
Def1 =⇒

(𝑀𝐸 )
𝛽-Def2, if all tasks solvable whilst satisfying 𝜂-Def1 are

also solvable whilst satisfying 𝛽-Def2. That is, for all 𝜏 such that ∃𝜋
that satisfies 𝜂-Def1 and solves 𝜏 , there also exists a 𝜋 ′ that satisfies
𝛽-Def2 and solves 𝜏 . If 𝜂-Def1 =⇒

(𝑀𝐸 )
𝛽-Def2 and 𝜂-Def1 ⇐=

(𝑀𝐸 )
𝛽-

Def2 then we say that the definitions are equally expressive.

A direct consequence of the definitions of DI and ME is that

DI-results imply ME-results, in the desired way.

Corollary 2.8. For any 𝜂, 𝛽,Def1,Def2 as above, if 𝜂-Def1 =⇒
(𝐷𝐼 )

𝛽-Def2 then 𝜂-Def1 =⇒
(𝑀𝐸 )

𝛽-Def2.

Both DI-results and ME-results are amendable to computational

assumptions, for instance, it is often crucial to make certain com-

plexity assumptions for a specific task to be solvable whilst satisfy-

ing a given CDP notion. If an ME-result is established under a com-

plexity assumption, we say that it is an assumption-dependent ME

(ADME) result, and analogously for other types of results. Finally,

we also speak of definitions being direct relaxations of some other

definition. By this we simply mean that the relaxed definition is

directly implied by the other and that this relationship is apparent

from the definitions.

3 Distributed Statistical DP (Variations in
Distribution Model)

On a high level, a distribution model is a description of the different

entities in a protocol interaction and the roles they play. Roughly,

we consider there to be three different roles in a protocol – clients,
servers and analysts. A client is a party (typically trusted) who has

input, i.e. holds at the start of the protocol a part of the dataset 𝐷

of interest for the DP mechanism. A server is a party that receives

a function evaluation of some inputs and then sends some function

of the results further. An analyst is an untrusted party that receives

some mechanism output. It is the analyst that the mechanism is

supposed to be DP against. These roles are not necessarily disjoint,

meaning that one party can have several of them at once.

3.1 The Local Model
One major drawback of the central model of DP is the need to fully

trust a central dataholder. In order to remove this trust assumption,

a model was introduced where each client introduces some noise

to their data before giving it to someone else. Since here the DP

mechanism (also called the local randomiser) is computed by each

client themselves, this is known as the local model, of which an

illustration is found in Figure 2. One consequence of this approach,

however, is that in many situations one must add much more noise

than in the central model [4, 15, 52, 53]. Due to the very exten-

sive literature about the local model, providing a broader faithful

summary here is infeasible and since adopting the local model is

𝐷1

𝐷2

𝐷3

.

.

.

Clients Analyst

M(𝐷1)

Figure 2: Overview of the local model. Here there are no
servers so the clients send their processed datapoints directly
to the analyst.

mainly an alternative to using MPC rather than a complement of

it, we mostly consider the local model as out of scope for the rest

of this work. There is great importance of the local model for the

definitions we will study in more detail, though, namely in that

it serves as a worst-case scenario on accuracy, meaning that us-

ing local randomisers directly leads to being DP in all the other

distributed models as well and for a mechanism to be considered

non-trivial it has to at least have higher utility than possible in the

local model.

Definition 3.1 (DP in the local model [4, 23, 52]). A protocol 𝜋 is

(𝜀, 𝛿)-SDP in the local model if the clients communicate exclusively

with the analyst (who has no input) and the view of the analyst is

(𝜀, 𝛿)-SDP.

One important remark about the choice of distribution model

in practice is that they are, to some extent, often geared towards

different use cases directly. For instance, the local model can be seen

as providing protection during the collection of data rather than

merely the disclosure of information about an already assembled

dataset. One illustrative example of this difference is the comparison

between the US census bureau’s system for releasing population

statistics with DP [10] and systems from tech giants like Google

and Apple for collecting user data with DP [20, 28, 72]. In the

case of the Census bureau, their collection of population data is

largely uncontroversial, it is even their legal obligation to do so,

and therefore the central model of DP is suitable. For the large tech

companies on the other hand, already the collection of detailed

user information is arguably problematic and therefore it may be

desirable to reduce trust in the one collecting the data by having

the users themselves do local randomisation, i.e. to use the local (or

shuffle) model of DP.

3.2 The Shuffle Model
The shuffle model of DP [3, 7, 16, 36, 71, 72] is an intermediate

model between the central and local models, where the mechanism

is run locally but there is still a central server (sometimes called

curator) performing some computations. The point would be that

this server, called the shuffler, now only needs to be semi-honest

and performs only the relatively simple task of shuffling (randomly

permuting) the dataset and forwarding it to the analyst (also called
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𝐷1

𝐷2

.

.

.

𝐷3

𝐷4
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.

.

Clients/Servers Clients/Analysts

Figure 3: Description of the general distribution model as
in BNO [4], which describes an 𝑁 -party protocol where all
parties hold inputs (can be void) and some of the parties are
corrupted (become analysts rather than servers).

the aggregator). Nonetheless, one can in certain settings achieve

accuracy much better than that in the local model and even at times

the same as in the central model. Again, we do not discuss the

shuffle model further in this work due to the size of the literature

and lack of direct relevance to distributed CDP definitions.

3.3 Distributed SDP as in BNO
In BNO [4], the formal study of DP in a distributed protocol setting

is largely initiated. As a part, the authors introduce what has come

to be arguably the main definition of SDP for protocols, a definition

we call BNO-SDP. The idea of this definition is a natural one, namely

that a protocol is to be seen as SDP if whatever information the

adversary gains from the protocol is an SDP mechanism of the

inputs of the honest parties.
6
An illustration of the distribution

model is found in Figure 3.

Definition 3.2 (BNO-SDP, reformulation and generalisation of [4]).
Let COR = (𝑎, C) be a corruption model. We say that an 𝑁 -party

protocol 𝜋 is (𝜀𝜅 , 𝛿𝜅 )-BNO-SDP with respect to COR if for all (also

inefficient) adversariesA followingCOR and corrupting the parties

in𝐶 ∈ C, for all𝐶-adjacent𝐷,𝐷 ′ (Definition 2.3) and for all possible
subsets 𝑆 of combined views of the parties in 𝐶 , we have

P(VIEWA
𝜋,𝐶
(𝐷) ∈ 𝑆) ≤ 𝑒𝜀𝜅P(VIEWA

𝜋,𝐶
(𝐷 ′) ∈ 𝑆) + 𝛿𝜅 , (3)

where the probabilities are taken over the randomness in 𝜋 . If C is

exactly all subsets of [𝑁 ] of size at most 𝑡 and the corruptions are

passive, we say that 𝜋 is (𝑡, 𝜀𝜅 , 𝛿𝜅 )-BNO-SDP.

A special case of BNO-SDP is introduced in [26], called distributed
DP (DDP). The parties are classified as either clients or servers with
only the clients having inputs and the servers getting shares of each

client’s inputs. DDP is then precisely BNO-SDP except for that only

servers may be corrupted.

6
The authors of BNO also propose a computational version of this definition, which

we discuss in Section 5. We note that whilst the definitions are stated originally only

with respect to passive corruptions, leading to a simpler treatment, they are in later

works (such as MPRV) extended to also apply to the case of active corruptions. Also,

BNO-SDP was originally introduced with respect to pure SDP (𝛿 fixed to 0).

3.4 Other Distribution Models
BNO-SDP is sometimes weakened by requiring the transcript of

the protocol (i.e. the messages sent) rather than the entire view

of the corrupted parties (also including their initial inputs and

random coins) to be SDP with respect to the inputs of the honest

parties [60]. This is called DP against an external observer, which we

denote BNO𝑒𝑥𝑡 -SDP. In [44], a version of BNO𝑒𝑥𝑡 -SDP is defined

for oracle-aided protocols. There the analyst, additionally to the

protocol transcript, also has query access to the same oracle (i.e.

an abstract functionality that answers a specific type of queries)

instance that is used in the protocol. Other settings for SDP that

arguably are to be seen as variations in distribution model are those

that consider interaction between the dataholder and the analyst.

Such variations are used, for instance, in the context of adaptive

composition of mechanisms [45, 51, 66] and DP under continual

release [14, 24, 65].

3.5 Relations between Different Distribution
Models

The choice of distribution model induces a trade-off between util-

ity and trust assumptions where less restrictive trust assumptions

lead to lower optimal utility. On this scale, the local and central

models constitute the edges, meaning that no distribution model

allows better optimal utility than the central one and no model has

less trust assumptions than the local one. The utility gap between

the distribution models is critically dependent on the task at hand.

For instance, for computing integer sums, the additive error (with

constant probability) can be 𝑂 (1/𝜀𝜅 ) in central (𝜀𝜅 , 0)-SDP (by the

Laplace mechanism) but for all local (𝜀𝜅 , 0)-SDP protocols, it is

Ω(
√
𝑛/𝜀𝜅 ) [4]. The shuffle model lies strictly in between the local

and central models, and the optimal accuracy achievable within it

ranges from that of the local model to that of the central model,

depending on the task and constraints on the communication com-

plexity. The BNO-SDP model can be seen as a generalisation of the

others, since depending on how one specifies 𝜋 and COR one gets

models that are equivalent to each of the others. For instance, one

gets exactly the non-interactive local model if all parties but one

hold input except for one, which is also the only corruptible one,

and the parties with input can only sendmessages to the corruptible

one. In practice, an often crucial difference between the distribu-

tion models is the efficiency of the various involved parties. For

instance, if one goes from using the central to the local model then

a, potentially significant, computational burden is shifted from the

dataholder to the clients. Similarly, if one uses MPC (and therefore

BNO-SDP) to avoid trusting a dataholder withot using the local

model, then the computational costs rise quickly as the number

of clients increase, therefore making it less feasible than using the

local model in systems with many users (clients).
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4 Central-model CDP (Variations in
Computational Perspective)

Variations in computational perspective all formalise what it means

for a mechanism to ‘look DP’ to an efficient analyst interacting with

it. There are two main flavors of formalisations, indistinguishability-
based ones and simulation-based ones. The indistinguishability-

based definitions are created by taking the usual SDP definition

and weakening the requirement that output closeness holds for all

subsets of the range to that output closeness holds for the output

distribution of any efficient distinguisher (analyst) acting on the

mechanism output. Since the first requirement can be re-formulated

as the output of any (possibly inefficient) distinguisher satisfying

output closeness, the change amounts exactly to limiting the dis-

tinguisher to be efficient. Formally, indistinguishability-based CDP

(IND-CDP) in the central model is defined as below. Note that the

computational boundedness induces an asymptotic perspective

in the definitions and we therefore must consider mechanism en-

sembles (indexed by the security parameter) as well as parameter

ensembles (𝜀𝜅 , 𝛿𝜅 ) with possible dependence on 𝜅. 7

Definition 4.1 (IND-CDP for mechanisms, MPRV [62]). An ensem-

ble {𝑔𝜅 (·)}𝜅∈N of mechanisms 𝑔𝜅 : D → R𝜅 is (𝜀𝜅 , 𝛿𝜅 )-IND-CDP
if for every efficient distinguisher 𝑇 , every sufficiently large 𝜅, all

adjacent 𝐷, 𝐷 ′ ∈ D of polynomial size in 𝜅, it holds that

P(𝑇 (𝑔𝜅 (𝐷)) = 1) ≤ 𝑒𝜀𝜅P(𝑇 (𝑔𝜅 (𝐷 ′)) = 1) + 𝛿𝜅 ,

with the probability being over the randomness in 𝑔𝜅 and 𝑇 .

Note that IND-CDPwas originally introducedwith 𝛿𝜅 being fixed

as negligible in 𝜅 and that setting 𝛿𝜅 = 0 causes the definition to col-

lapse into being equivalent to (𝜀𝜅 , 0)-SDP.8 Simulation-based CDP is

perhaps a more direct formalisation of the idea that the mechanism

looks SDP to any PPT distinguisher, because here the requirement

is that there exists an SDP mechanism (called the simulator) from
which the mechanism is computationally indistinguishable.

Definition 4.2 (SIM-CDP for mechanisms, MPRV [62]). An ensem-

ble {𝑔𝜅 (·)}𝜅∈N of mechanisms 𝑔𝜅 : D → R𝜅 is (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP if

there exists an ensemble {M𝜅 (·)}𝜅∈N of (𝜀𝜅 , 𝛿𝜅 )-SDP mechanisms

M𝜅 : D → R𝜅 such that for every sufficiently large 𝜅 and every

𝐷 ∈ D of polynomial size in 𝜅 , it holds that 𝑔𝜅 (𝐷) andM𝜅 (𝐷) are
computationally indistinguishable.

Here we note that SIM-CDP was first defined with 𝛿𝜅 = 0 and

that, as opposed to IND-CDP, this does not cause the definition to

be equivalent to SDP. One intuitive explanation for this is that for

this definition, the computational relaxation lies in the simulation,

rather than in the output distribution of the real-world mecha-

nism. In MPRV, an intermediate definition is also proposed, called

SIM∀∃-CDP. It is the same as SIM-CDP except that the order of the

quantifiers is swapped, i.e. instead of there existing a simulatorM
for all datasets, it is allowed that each dataset has its own simulator

associated with it. This definition is introduced as a technical tool

used to study the relationship between IND-CDP and SIM-CDP.

7
When clear from context we often suppress such dependencies and speak of mecha-

nism (and protocol) ensembles simply as single mechanisms (and protocols).

8
For completeness we include a proof of the equivalence between IND-CDP and SDP

when 𝛿𝜅 = 0 in Appendix C.

4.1 Relations between CDP Definitions in the
Central Model

It is easy to see that (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP directly implies (𝜀𝜅 , 𝛿𝜅 +
negl(𝜅))-IND-CDP (via (𝜀𝜅 , 𝛿𝜅 )-SIM∀∃-CDP) and this is shown al-

ready in MPRV [62] for 𝛿𝜅 = 0. The result extends immediately

to arbitrary values of 𝛿𝜅 , which we show in Appendix C.1.1. In

MPRV it is also shown that (𝜀𝜅 , negl(𝜅))-IND-CDP directly implies

(𝜀𝜅 , 0)-SIM∀∃-CDP when 𝜀𝜅 ∈ 𝑂 (log(𝜅)). Thus the two definitions

are equivalent for such 𝜀𝜅 and 𝛿𝜅 = 0 but until now there are no

known results on how they relate for non-zero 𝛿𝜅 . It was left open in

MPRV to separate SIM∀∃-CDP and SIM-CDPwith any type of result.

Further, it is immediately clear that (𝜀𝜅 , 𝛿𝜅 )-SDP directly implies

(𝜀𝜅 , 𝛿𝜅 )-SIM-CDP for any parameter choice. Thus, the remaining

questions to discuss are how (𝜀𝜅 , 𝛿𝜅 )-SDP, (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP and

(𝜀𝜅 , 𝛿𝜅 )-SIM∀∃-CDP relate. Summaries of relationships between

the definitions can be seen in Figure 4 and Table 1.

4.2 Separating SIM-CDP from SDP
The first results about separating SIM-CDP and SDP were negative

and quite general. It was shown in 2011 [39] (and then strengthened

in 2016 [9]) that, roughly, they are equally expressive with respect

to the set of tasks defined by a utility function which is a bound

on an 𝐿𝑝 norm for a low-dimensional output domain. That is, for

such tasks, (𝜀𝜅 , negl(𝜅))-SIM-CDP ME-implies (𝜀𝜅 , negl(𝜅))-SDP
and they are thus equivalently expressive. This means, essentially,

that if there is a task for which there is a SIM-CDP mechanism that

has significantly better utility than the best SDP mechanism, then

the dimension of the range ofM must be large, or the utility function
must be of a different kind. Importantly, this remains true regardless

of the complexity assumptions one relies on. Another aspect of the

barriers established in [39] is that they consider mechanisms in the

two settings of roughly the same efficiency. This suggests a third
way of avoiding those barriers, namely to propose a task for which

all SDP mechanisms have to be vastly slower than the most efficient

SIM-CDP mechanism. This is done in 2016 [9] when it is proven

that there are tasks for which there is an efficient CDP mechanism

but all SDP mechanisms are inefficient. That is, it is established

an assumption-dependent infeasibility separation between SDP and

SIM-CDP. The task used in [9] is constructed specifically for the

purpose of providing the desired separation. Therefore Vadhan

poses the following open problem.

Open problem 1 (Vadhan’s open problem 10.7 [67], refor-

mulated – Still open). Can an infeasibility separation between
(𝜀𝜅 , 𝛿𝜅 )-SDP and (𝜀𝜅 , 0)-SIM-CDP be obtained using a more ‘natural’
utility function, such as the absolute error when answering counting
queries?

4.3 Separating SIM-CDP from IND-CDP
It is also remarked in [9] that if there is an ME-separation between

IND-CDP and SDP, then that must imply anME-separation between

SIM-CDP and IND-CDP. No such separation was known until 2023

when Ghazi et al. [32] provided an ADME separation. This result

simultaneously solves Vadhan’s open problems 10.6 and 10.8.
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(𝜀𝜅 , 0)-SDP (𝜀𝜅 , 0)-SIM-CDP (𝜀𝜅 , 0)-SIM∀∃-CDP (𝜀𝜅 , negl(𝜅))-IND-CDP
DI [62]

/
ADME [32]

DI [62]

DI [62]
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/

AD-Infeasibility [9]

Figure 4: Overview of relations in the central model, with respect to arbitrary queries and complexity assumptions. Note that
we state the results for constant 𝜀𝜅 > 0 and 𝛿𝜅 = 0 although each of them extend also to wider parameter regimes(see Table 1).

Closed problem 1 (Vadhan’s open problem 10.6 [67], refor-

mulated – Closed positively in [32]). Is there a computational
task that is solvable in the central model in CDP but is impossible
in SDP? In our terminology; is there an ADME-separation between
(𝜀𝜅 , negl(𝜅))-SDP and (𝜀𝜅 , negl(𝜅))-IND-CDP?

Closed problem 2 (Vadhan’s open problem 10.8 [67], Refor-

mulated – Closed negatively in [32]). For every efficiently com-
putable (𝜀𝜅 , negl(𝜅))-IND-CDP mechanismM : D → 𝑅, is there an
(𝜀𝜅 , negl(𝜅))-SDP mechanismM′ : D → 𝑅 such that for all 𝐷 ∈ D,
M(𝐷) is computationally indistinguishable fromM′ (𝐷)?

Note that this question is equivalent to asking if all (𝜀𝜅 , negl(𝜅))-
IND-CDP mechanisms also are (𝜀𝜅 , negl(𝜅))-SIM-CDP. The ADME-

separation of Ghazi et al. is with respect to non-standard but ar-

guably plausible complexity assumptions, thus suggesting investi-

gations into what assumptions are needed to establish such ADME-

separations. In particular, the question is posed what the minimal
assumption needed for the separation is.

Open problem 2 (From discussion in [32]). What is the minimal
complexity assumption needed to ADME-separate (𝜀𝜅 , negl(𝜅))-IND-
CDP from (𝜀𝜅 , 𝛿𝜅 )-SDP?

As a starting point, [39] shows that black-box use of a certain

type of computational assumptions is not enough to arrive at any

ADME-separations between IND-CDP and SDP. In particular, it is

shown that black-box use of one-way functions and similar prim-

itives
9
is not sufficient. This negative result means that for there

to be an ADME-separation at all, the SIM-CDP mechanism must

either make white-box use of the primitives or rely on stronger

cryptographic assumptions (Ghazi et al. does the latter). The separa-

tion of Ghazi et al. uses a non-uniform task, meaning that the utility

function 𝑢 is dependent on 𝜅, which suggests the open problem

of finding other tasks (particularly uniform ones) on which the

notions can be separated.

Open problem 3 (From discussion in [32]). Establish an ADME-
separation between (𝜀𝜅 , negl(𝜅))-IND-CDP and (𝜀𝜅 , 0)-SDP, as the
one in [32], for another task, such as a "more natural" task10 or one that
is uniform. In particular, are (𝜀𝜅 , 0)-SDP and (𝜀𝜅 , negl(𝜅))-IND-CDP
equally expressive in the set of uniform tasks in the central model?

We finish this section by noting that since most of the known

implications and separations are only for 𝛿𝜅 = 0 or with a non-

zero 𝛿𝜅 in only one of the involved definitions, an immediate open

research area is to extend these results to other parameter regimes.

We formulate this in two open problems.

9
In particular, the primitives considered are those that can be instantiated as a random

object. This includes trapdoor permutations and collision-resistant hash functions.
10
Here, ‘more natural’ means essentially any task which is not specifically construction

as to give the separation.

Open problem 4 (New). Are (𝜀𝜅 , 𝛿𝜅 + negl(𝜅))-IND-CDP and
(𝜀𝜅 , 𝛿𝜅 )-SIM∀∃-CDP equivalent in the central model for all 𝜀𝜅 ∈
𝑂 (log(𝜅)), 𝛿𝜅 > 0?

Open problem 5 (New). For non-zero 𝛿𝜅 , 𝛿 ′𝜅 , establish an ADME-
separation between (𝜀𝜅 , 𝛿𝜅 + negl(𝜅))-IND-CDP and (𝜀𝜅 , 𝛿 ′𝜅 )-SIM-
CDP.

5 Definitions of Distributed CDP
We now turn to CDP definitions outside the central model and

focus on the distribution model of BNO. This is due to the gen-

erality of that model and it being the primary model used when

combining DP and MPC. Just as in the central model, non-central

CDP definitions are often categorised as either indistinguishability-

based or simulation-based. Here, it is however useful to distinguish

definitions whose formalisation of simulation is in the ideal/real

paradigm of secure computation from those whose is not. We refer

to those that use the ideal/real paradigm as ideal/real-based CDP.

5.1 Indistinguishability-based CDP
Additionally to the notion of BNO-SDP (Definition 3.2), BNO [4]

also proposes a computational version of it, which we can call BNO-

CDP. Later in MPRV, the definition of IND-CDP (Definition 4.1)

is extended to the case of two-party protocols. It is also directly

extendable to the case of multiple parties, resulting in a definition

that is the same as that of BNO-CDP except that the adjacency

notion is different, algorithms are non-uniform and corruptions are

not necessarily passive. Since in this work, we ignore such differ-

ences (see Section 1.1), we consider BNO-CDP and IND-CDP (for

protocols) to be two different instantiations of the same definition

and for the rest of this work, we refer only to IND-CDP.

Definition 5.1 (IND-CDP for protocols, reformulation from [4, 67]).
Let COR = (𝑎, C) be a corruption model. We say that an 𝑁 -party

protocol 𝜋 is (𝜀𝜅 , 𝛿𝜅 )-IND-CDP with respect to COR if for all effi-

cient adversaries A following COR and corrupting the parties in

𝐶 ∈ C, for all efficient distinguishers 𝑇 , every sufficiently large 𝜅

and for all 𝐶-adjacent 𝐷,𝐷 ′, we have

P
(
𝑇

(
VIEWA

𝜋,𝐶
(𝐷)

)
= 1

)
≤ 𝑒𝜀𝜅P

(
𝑇

(
VIEWA

𝜋,𝐶
(𝐷 ′)

)
= 1

)
+𝛿𝜅 . (4)

The probabilities are taken over the randomness in 𝜋 , A and 𝑇 .

There are two direct relaxations of IND-CDP in the literature,

both of which are introduced specifically to aid in providing sepa-

rations between IND-CDP and some other notion. The first such

definition, call it IND𝑒𝑥𝑡 -CDP [42], is the computational analog of

BNO𝑒𝑥𝑡 -SDP mentioned in Section 3, meaning that it is exactly

as IND-CDP except that the distinguisher only has access to the

transcript of the protocol. The other restricted IND-CDP definition,

427



Proceedings on Privacy Enhancing Technologies 2025(1) Fredrik Meisingseth and Christian Rechberger

Table 1: Summary of implications and separations in central-model CDP.

Result Parameter restrictions Paper Comment
(𝜀𝜅 , 𝛿𝜅 )-SDP =⇒

(𝐷𝐼 )
(𝜀𝜅 , 𝛿𝜅 )-SIM-CDP - - By definition

(𝜀𝜅 , 0)-SIM-CDP ≠⇒
(𝐴𝐷−𝐼𝑛𝑓 𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑡𝑦)

(𝜀𝜅 , 𝛿𝜅 )-SDP 𝜀𝜅 ∈ 𝑂 (log(𝜅)), 𝛿𝜅 ≤ 1/𝑝𝑜𝑙𝑦 (𝜅) [9] Non-uniform task

(𝜀𝜅 , 0)-SIM-CDP =⇒
(𝐷𝐼 )
(𝜀𝜅 , negl(𝜅))-IND-CDP - MPRV

(𝜀𝜅 , 𝛿𝜅 )-SIM-CDP =⇒
(𝐷𝐼 )
(𝜀𝜅 , 𝛿𝜅 + negl(𝜅))-IND-CDP 𝜀𝜅 ∈ 𝑂 (log(𝜅)) This work See Appendix C.1.1

(𝜀𝜅 , negl(𝜅))-IND-CDP =⇒
(𝐷𝐼 )
(𝜀𝜅 , 0)-SIM∀∃-CDP 𝜀𝜅 ∈ 𝑂 (log(𝜅)) MPRV

(𝜀𝜅 , negl(𝜅))-IND-CDP ≠⇒
(𝐴𝐷𝑀𝐸 )

(𝜀′𝜅 , 𝛿𝜅 )-SIM-CDP 𝜀𝜅 , 𝜀
′
𝜅 > 0 constant, 𝛿𝜅 ≤ 1/𝜅27 [32] Non-uniform task

we call IND𝑠𝑢𝑏-CDP [37] and is the same as IND-CDP except that

the guarantee is only required to hold for a subset of protocol execu-

tions, for instance only requiring output closeness when all honest

parties get output. In [14] a local model CDP definition is proposed

which is quite similar to that of IND-CDP but has some important

differences. In particular, the corruptions are modeled as a process

(not necessarily static) and the probabilities in the output closeness

inequality are also taken over the randomness in the corruption

process.

5.2 Simulation-based CDP
Just as for IND-CDP, MPRV also proposes a version of SIM-CDP

(Definition 4.2) for two-party protocols that can easily be extended

to multi-party protocols. It is worth noting that the words ‘simu-

lation’ and ‘simulator’ are used quite differently in the SIM-CDP

definitions to what is the custom in simulation-based security defi-

nitions (such as those in the ideal/real paradigm). Essentially, the

simulator (SDP mechanism) in SIM-CDP fulfills a role more akin to

that of the ideal functionality (describe the desired behaviour of the

protocol) than that of the simulator (map functionality outputs to

something similar to party views) in a simulation-based definition

of secure computation.

Definition 5.2 (SIM-CDP for protocols, reformulation from MPRV).
Let COR = (𝑎, C) be a corruption model. We say that an 𝑁 -party

protocol 𝜋 is (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP with respect to COR if for all effi-

cient adversaries A following COR and corrupting the parties in

𝐶 ∈ C, for all efficient distinguishers𝑇 and for all𝐶-adjacent 𝐷,𝐷 ′,
there exists an ensemble {M𝜅 (·)}𝜅∈N of (𝜀𝜅 , 𝛿𝜅 )-SDP mechanisms

M𝜅 : D → R𝜅 such that for every sufficiently large 𝜅 and ev-

ery 𝐷 ∈ D of size polynomial in 𝜅, it holds that VIEWA
𝜋,𝐶
(𝐷) and

M𝜅 (𝐷) are indistinguishable to 𝑇 .

5.3 Ideal/real-based CDP
IND-CDP and SIM-CDP are formulated quite differently to the

usual ways of defining secure computation in the MPC literature.

Therefore another CDP definition, SIM
+
-CDP, is proposed in MPRV

which incorporates DP into the ideal/real paradigm. In the follow-

ing, we assume familiarity with standard definitions of secure com-

putation, for a brief introduction to the ideal/real paradigm we

refer to Appendix A and references therein. One main advantage of

operating within the ideal/real paradigm is that the entire possible

influence of an adversary on the protocol execution is specified,

such as how it can change the output of the protocol, rather than it

only being regulated howmuch information the adversary can gain.

In the ideal/real paradigm, the adversarial effect on the protocol is

defined by the ideal functionality that dictates all intended proper-

ties of the protocol and thus it is a natural definitional approach to

also incorporate DP in this ideal world. The SIM
+
-CDP definition

is as follows.
11

Definition 5.3 (SIM+-CDP, Reformulation of MPRV). Let 𝑢 be a

utility function. An 𝑁 -party protocol 𝜋 is (𝛼, 𝜀𝜅 , 𝛿𝜅 )-SIM+-CDP for

𝑢 if there exists an (𝜀𝜅 , 𝛿𝜅 )-SDP mechanismM such that:

• the mechanismM is 𝛼-useful for 𝑢, and,

• 𝜋 is a secure protocol for the functionality FM
𝑆𝐹𝐸

(the ideal

functionality that evaluatesM when given inputs from all

parties) as per Definition A.2 (standalone security with per-

fect correctness, efficient protocols and a potentially ineffi-

cient simulator).

In 2024, [61] argues that the used notion of secure computation

is slightly too restrictive for SIM
+
-CDP to be achievable whenM

is a canonical SDP mechanism. The argument is based on that the

security notion used in SIM
+
-CDP demands that 𝜋 runs in strict

polynomial time and that the protocol has perfect correctness, i.e.

has exactly the same output distribution as the ideal functional-

ity when there are no active corruptions. This leads to that many

standard SDP mechanisms (such as the Laplace and Gaussian mech-

anisms) cannot take the role of M in the SIM
+
-CDP definition,

since they cannot be sampled exactly in strict polynomial time.

In light of this, a new ideal/real-based CDP definition is proposed

where, among other things, the notion of secure computation and

the correctness requirement are changed.

Definition 5.4 (SIM∗-CDP, Reformulation of [61]). An 𝑁 -party

protocol 𝜋 is (𝜀𝜅 , 𝛿𝜅 )-SIM∗-CDP for the ideal functionality F and

a given adjacency notion ADJ if 𝜋 UC-realises F and for all efficient

ideal-world adversariesS, the view ofS is (𝜀𝜅 , 𝛿𝜅 )-SDPwith respect
to ADJ.

In [61], a more generalised version called SIM
◦
-CDP is also in-

troduced, which is identical to SIM
∗
-CDP except that the definition

of secure computation is kept variable. An direct relaxation of

11
The formulation inMPRV is quite different from the one we have here, in particular in

the modeling of protocols and with regard to usefulness, where a different formulation

of utility is used. The adapted definition of standalone security is defined in the long

version of the MPRV paper, which is available from the authors. We thank them for

providing it and for answering our questions.
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SIM
+
-CDP is used in [5], where the correctness is relaxed to be

computational rather than statistical (i.e. an inefficient adversary

can violate the correctness of the honest parties’ output with non-

negligible probability). It is immediate that SIM
+
-CDP directly im-

plies this relaxed notion and that it strictly stronger than SIM-CDP

in the same way that SIM
+
-CDP and SIM

∗
-CDP are.

6 Relations between the Distributed CDP
Definitions

When showing relations between distributed CDP notions, one

must do so with respect to a given family of functionalities, dis-

tribution model and corruption model. All of the results in this

section are with respect to passive (semi-honest) corruptions and

the functionality of secure function evaluation (SFE), i.e. the ideal
functionality that evaluates a fixed function when given inputs

from all parties. The choice to work with passive corruptions is not

only because it is easier but also because most results are in the

shape of (or follow from) lower bounding the error in a protocol

and if one can establish those with respect to passive corruptions,

then the results carry over to the case of active corruptions. Re-

stricting the study to SFE is similarly due to it being an extremely

general functionality. There are however reactive functionalities

that cannot be reduced to (non-reactive) SFE [40, 47, 48]. Better un-

derstanding the relations between CDP definitions for other types

of corruptions and functionalities are exciting open research areas.

Further, almost all results we survey are established with respect to

𝛿𝜅 fixed as either 0 or negligible and also here extending the results

to other parameter regimes lies largely open. Overviews of known

results are given in Figure 5 and Table 2.

6.1 Separating the CDP Definitions
The results regarding IND-CDP and SIM-CDP directly extend from

the central model, meaning that (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP directly im-

plies (𝜀𝜅 , 𝛿𝜅 + negl(𝜅))-IND-CDP and that (𝜀𝜅 , negl(𝜅))-IND-CDP
is ADME-separated from (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP by the result of Ghazi

et al. [32]. (𝜀𝜅 , 0)-SIM+-CDP is a strictly stronger definition than

both of them, as is already shown in MPRV. More precisely, (𝜀𝜅 , 0)-
SIM

+
-CDP directly implies (𝜀𝜅 , 0)-SIM-CDP but the same does not

hold in the other direction. Further, it is easy to see that (𝜀𝜅 , 𝛿𝜅 )-
SIM

+
-CDP must also be ME-separated from (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP for

some parameters since SIM-CDP allows inefficient protocols but

SIM
+
-CDP does not. We show one such simple separation in Propo-

sition C.3. Some results relating SIM
∗
-CDP to the other definitions

are given in [61], more precisely is it shown that (𝜀𝜅 , 𝛿𝜅 )-SIM∗-CDP
directly implies (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP for all parameters and that there

are parameters such that (𝜀𝜅 , 0)-SIM-CDP is ADME-separated from

(𝜀𝜅 , 𝛿𝜅 )-SIM∗-CDP. Further, it is shown that (𝜀𝜅 , 0)-SIM+-CDP and

(𝜀𝜅 , 0)-SIM∗-CDP are ADME-separated from each other in both

directions. None of these results are really surprising, considering

that SIM
∗
-CDP can be seen as a version of SIM

+
-CDP that has been

both relaxed (using computational rather than perfect correctness)

and strictened (using UC instead of standalone security).

6.2 Separating CDP and BNO-SDP
Already in BNO [4], several ADME-separations are obtained and

thus the understanding of the relationship between SDP and CDP

in the multi-party setting was always a few steps ahead of that

in the central model. This is unsurprising since there is already a

large and well-understood literature on what functionalities can

be computed under what complexity assumptions in multi-party

protocols. For instance, it is known that for the case of dishonest

majorities (such as in the two-party case), there are functionalities

(such as evaluating an AND gate) that cannot be realised with-

out complexity assumptions whereas any efficiently computable

functionality can be realised under the assumption that there ex-

ists a protocol for oblivious transfer (OT) [17, 56]. On the other

hand, if there are more than two parties and a majority of them are

honest, then any PPT functionality can be securely realised even

without computational assumptions, and thus for the discussion

about relating the different DP definitions, we focus exclusively

on the two-party case. The main strategy for separating BNO-SDP

from various CDP definitions is to choose the task of computing an

𝑁 -ary PPT computable function with the same error as in the cen-

tral model (up until a negligible decrease) and then derive a lower

bound on the error in BNO-SDP that rules out solving said task.

The existence of general-purpose MPC implies that it can be solved

under the assumption of OT and since a protocol that computes

an SDP mechanism with perfect correctness and computational

security in the standard standalone security model directly satisfies

SIM
+
-CDP, an ADME-separation between BNO-SDP and SIM-CDP

and IND-CDP follows via SIM
+
-CDP. An analog argument holds

with respect to SIM
∗
-CDP (with the OT protocol being UC-secure).

This strategy has proven remarkably successful and has yielded

ADME-separations between BNO-SDP and all CDP variants for in-

teger sums [4, 13], binary inner-products [60] and general boolean

functions [38]. This success motivates the search for the minimal

sufficient assumption to arrive at an ADME-separation for a given

functionality. That is, we know that OT is sufficient but could it be

enough to assume, say, the existence of one-way functions (OWF) or

key-agreement protocols (KA)? This is captured in one of Vadhan’s

open problems:

Open problem 6 (Open problem 10.3 in [67], Reformulated).

What is the minimal complexity assumption needed to construct a
task that can be solved by a CDP protocol but is impossible for any SDP
protocol? In our words; What is the weakest complexity assumption
under which there is a task that ADME-separates (𝜀𝜅 , 𝛿𝜅 )-BNO-SDP
and (𝜀𝜅 , 𝛿𝜅 )-IND-CDP?

There has been much progress on this question, mostly in the

shape of results proving that a given complexity assumption is nec-

essary for a given class of functionalities, with respect to (𝜀𝜅 , negl(𝜅))-
IND-CDP and (𝜀𝜅 , 0)-BNO-SDP. We now overview such results and

summarise them in Table 3. Note that these results are only partial

answers to the open problem above. In particular, understanding

the necessary and sufficient assumptions for a separation with re-

spect to other functionalities (or larger families of functions), other

versions of CDP and parameter regimes is almost entirely open.
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(𝜀𝜅 , 0)-SIM-CDP(𝜀𝜅 , negl(𝜅))-IND-CDP

(𝜀𝜅 , negl(𝜅))-BNO-SDP (𝜀𝜅 , 0)-BNO-SDP

(𝜀𝜅 , 0)-SIM+-CDP (𝜀𝜅 , 0)-SIM∗-CDP

DI [62] /ADME [62]

/
ADME [61]

/
ADME [61]

DI [61]

/
ADME [61]

DI [62]

/
ADME [32]

/ADME DI /ADME DI

Figure 5: Overview of implications and separations for the setting of two-party SFE. All results are for passive adversaries
except for the ADME separations to SIM∗-CDP. Note that we state the results for 𝛿𝜅 = 0 or 𝛿𝜅 = negl(𝜅) although some of them
extend also to larger 𝛿𝜅 (see Table 2).

Table 2: Summary of relationships between definitions in distributed CDP for two-party SFE. All results are for passive
adversaries if not otherwise stated.

Result Parameter restriction Paper Comment
(𝜀𝜅 , 𝛿𝜅 )-BNO-SDP =⇒

(𝐷𝐼 )
(𝜀𝜅 , 𝛿𝜅 )-IND-CDP - - By definitions directly

(𝜀𝜅 , 𝛿𝜅 )-IND-CDP ≠⇒
(𝐴𝐷𝑀𝐸 )

(𝜀𝜅 , 𝛿𝜅 )-BNO-SDP - E.g. [4] By impossibility of inf.-theoretic 2PC

(𝜀𝜅 , 𝛿𝜅 )-BNO-SDP =⇒
(𝐷𝐼 )
(𝜀𝜅 , 𝛿𝜅 )-SIM-CDP - - By definitions directly

(𝜀𝜅 , 𝛿𝜅 )-SIM-CDP ≠⇒
(𝐴𝐷𝑀𝐸 )

(𝜀𝜅 , 𝛿𝜅 )-BNO-SDP - E.g. [4] By impossibility of inf.-theoretic 2PC

(𝜀𝜅 , 0)-SIM-CDP =⇒
(𝐷𝐼 )
(𝜀𝜅 , negl(𝜅))-IND-CDP - MPRV [62]

(𝜀𝜅 , 𝛿𝜅 )-SIM-CDP =⇒
(𝐷𝐼 )
(𝜀𝜅 , 𝛿𝜅 + negl(𝜅))-IND-CDP 𝜀𝜅 ∈ 𝑂 (log(𝜅)) This work See Appendix C.1.1

(𝜀𝜅 , negl(𝜅))-IND-CDP ≠⇒
(𝐴𝐷𝑀𝐸 )

(𝜀′𝜅 , 𝛿𝜅 )-SIM-CDP 𝜀𝜅 , 𝜀
′
𝜅 > 0, 𝛿𝜅 ≤ 1/𝜅27 [32] By applying central-model result

(𝜀𝜅 , 𝛿𝜅 )-SIM+-CDP =⇒
(𝐷𝐼 )
(𝜀𝜅 , 𝛿𝜅 )-SIM-CDP - MPRV [62]

(𝜀𝜅 , 0)-SIM-CDP ≠⇒
(𝐷𝐼 )
(𝜀𝜅 , 0)-SIM+-CDP - MPRV [62]

(𝜀𝜅 , 0)-SIM-CDP ≠⇒
(𝑀𝐸 )

(𝜀𝜅 , 0)-SIM+-CDP Fixed 𝜀𝜅 only This work Proposition C.3

(𝜀𝜅 , 𝛿𝜅 )-SIM∗-CDP =⇒
(𝐷𝐼 )
(𝜀𝜅 , 𝛿𝜅 )-SIM-CDP - [61]

(𝜀𝜅 , 0)-SIM-CDP ≠⇒
(𝐴𝐷𝑀𝐸 )

(𝜀𝜅 , 0)-SIM∗-CDP Fixed 𝜀𝜅 only [61] Only for active corruptions.

(𝜀𝜅 , 0)-SIM+-CDP ≠⇒
(𝐴𝐷𝑀𝐸 )

(𝜀𝜅 , 0)-SIM∗-CDP Fixed 𝜀𝜅 only [61] Only for active corruptions.

(𝜀𝜅 , 0)-SIM∗-CDP ≠⇒
(𝐴𝐷𝑀𝐸 )

(𝜀𝜅 , 0)-SIM+-CDP Fixed 𝜀𝜅 only [61] By SIM
+
-CDP needing PPT functionality

Table 3: Summary of sufficient and necessary assumptions for there existing a (𝜀𝜅 , negl(𝜅))-IND-CDP protocol for the function
in question with optimal accuracy (equal to that in the central model with (𝜀𝜅 , 0)-SDP). For AND, the known largest necessary
assumption is different between optimal accuracy a non-trivial accuracy (i.e. the best possible with (𝜀𝜅 , 0)-BNO-SDP). The result
in paranthesis is with respect to (𝜀𝜅 , negl(𝜅))-IND𝑒𝑥𝑡 -CDP. OT stands for oblivious transfer and KA for key agreement.

Function Weakest known sufficient assumption Strongest known necessary assumption
XOR OT OT [37, 38, 41, 43, 55]

AND OT KA (optimal accuracy) [55]/OWFs (non-trivial accuracy) [38]

BIP OT (KA [42]) KA [42]
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Assumptions needed for separations via boolean functions. We

have the best understanding for functionalities that evaluate boolean

functions. For them, utility is typically measured in the probability

that the protocol computes the function in question correctly. For

any boolean function, the optimal utility (i.e. the best attainable

utility with pure SDP in the central model) is 𝛼∗ := 𝜆/(𝜆 + 1),
with 𝜆 := 𝑒𝜀𝜅 , by the optimality of the randomised response mecha-

nism [54]. On the other hand, in two-party (𝜀𝜅 , 0)-BNO-SDP, the
best possible utility for XOR is 𝛼𝑋𝑂𝑅

:= 1+𝜆2
(1+𝜆)2 and for AND is

𝛼𝐴𝑁𝐷
:=

𝜆 (𝜆2+𝜆+2)
(1+𝜆)3 , as shown in [38]. Therefore, the quest for mini-

mal assumptions is to find out when the accuracy lies in [𝛼∗, 𝛼𝑋𝑂𝑅)
or [𝛼∗, 𝛼𝐴𝑁𝐷 ), respectively. In a string of results [37, 38, 41, 43, 55],

it is shown that for XOR, OT is indeed not only sufficient but

also necessary to achieve a non-trivial accuracy, i.e. accuracy non-

negligibly above 𝛼𝑋𝑂𝑅
. For AND, the current understanding is that

to get optimal accuracy, assuming that key agreement protocols

exist is necessary [55], and for a non-trivial accuracy, one needs at

least OWFs [38].

Open problem 7 (From discussion in [41]). What is the minimal
complexity assumption sufficient for the existence of a two-party
protocol computing AND with non-trivial accuracy and (𝜀𝜅 , negl(𝜅))-
IND-CDP?

Assumptions needed for separations via inner-products. For binary
inner-products (BIPs), the utility has typically been measured as

the additive error occurring with constant probability, averaged

over uniform inputs. For this setting, the optimal error is 𝑂 (1/𝜀𝜅 )
by use of, say, the geometric mechanism [33] and the best possible

error with (𝜀𝜅 , 0)-BNO-SDP is Ω
( √

𝑛

𝜆 log(𝑛)

)
, with 𝑛 being the num-

ber of elements in the vectors [60]. In 2022, [42] showed that in

order to do significantly better than this lower bound, one must

assume the existence of a key agreement protocol. In particular, any

(𝜀𝜅 , 1/𝑛2)-IND-CDP protocol for BIP with error𝑂 (
√
𝑛) can be used

to construct a key agreement protocol. Further, it is shown that for

the relaxed notion of (𝜀𝜅 , negl(𝜅))-IND𝑒𝑥𝑡 -CDP, key agreement is

both necessary and sufficient.
12

The strategy above of establishing a separation between notions by

showing a strict gap in the best achievable utility or accuracy within

each notion also suggests measuring the size of that separation as

the size of the gap. Doing so lets us understand the practical impli-

cations of having SDP rather than CDP protocols (or distributed

SDP instead of central model SDP).

Open problem 8 (Question 3 in [60], reformulated). What
is the largest gap in accuracy between statistical and computational
two-party protocols? In our terminology; Given a measure of accuracy,
a distributed CDP definition and parameter regimes, what is the
largest difference in the accuracy of any function between the best two-
party protocols satisfying BNO-SDP and CDP in the given parameter
regimes, respectively (under arbitrary complexity assumptions)?13

12
Before 2022, the state of understanding was limited to that there exists no protocol

avoiding the lower bound of [60] in the random-oracle model [44].

13
As a partial answer to this problem, [60] shows that with accuracy measured with

respect to additive error (with constant probability), there exists a function over two

𝑛-bit string for which there is a linear gap (in 𝑛) between (𝜀𝜅 , 0)-BNO-SDP and

(𝜀𝜅 , negl(𝜅 ) )-IND-CDP.

7 Discussion – Practical Differences between
Distributed CDP Definitions

7.1 On the Semantics of the Definitions
We now discuss how one might go about choosing a distributed DP

definition and instantiating it for a given use case. Firstly, we note

that the choice of distribution model is essentially entirely decided

by the problem at hand and therefore we consider only the choice

of computational perspective. As is clear from the previous section,

there is a more or less strict ordering in the expressiveness of the

CDP definitions, with the indistinguishability-based definitions al-

lowing better utility than the simulation-based and ideal/real-based

ones. This means that it could be that for the functionality and util-

ity measure one has, the maximum utility one can achieve is higher

if one opts for, say, IND-CDP rather than SIM-CDP or SIM
+
-CDP.

Similarly, opting for a CDP guarantee rather than BNO-SDP (with

comparable parameters, more on that below) can lead to higher

utility, and never worse. When it comes to the privacy guarantees,

we similarly know that, in theory, there is an inverted ordering

between the CDP definitions to the one regarding utility. In practice,

however, we are aware of no results on the practical impact of such

differences. If one considers the ideal/real-based definitions, the

picture becomes slightly different because those definitions do not

only demand privacy (in the sense of bounding the information

learned by the adversary) but also security and correctness, in the

sense of having clear specifications of the influence an adversary

can have on the computation. Since those extra requirements are

not only theoretical but also practical, these definitions do have a

clear practical advantage over, say, IND-CDP and SIM-CDP in the

guarantees they make. On the other hand, one can analyse security

properties of a protocol separately from its differential privacy, say,

by proving the protocol is both IND-CDP and securely realises a

given functionality. There is however not only a theoretical and

intuitive advantage in having the DP guarantees part of the specifi-

cation of the ideal world but also a practical one, since then being

DP is also a property of the protocol which is preserved under

composition, contrary to when the DP property is analysed solely

in the real world.

In summary, whereas the theoretical relationships between the var-

ious CDP definitions are starting to become better understood, the

practical impact of the theoretical differences is mostly unexplored.

Therefore, a pragmatic approach to choosing a CDP definition to

work with would be to simply choose the strongest one known

which readily follows from the techniques one intends to use. In

particular, if one uses well-known MPC techniques to implement

an SDP mechanism, it is likely that one can directly deduce that

the resulting protocol will satisfy SIM
+
-CDP, SIM

∗
-CDP, or a ver-

sion of them. If on the other hand, one uses techniques that do

not directly yield security guarantees such as the ones required by

the ideal/real-based CDP definitions (say if the security of one’s

protocol is asserted by a game-based proof) then it is likely that

one is better off analysing the views of the adversary directly and

from that derive an IND-CDP or SIM-CDP guarantee.
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Open problem 9 (New). Evaluate a CDP definition with respect
to its guarantees of protection against a class of attacks, such as
reconstruction attacks or membership inference attacks, and compare
it to the corresponding guarantees of SDP or another CDP definition.

7.2 On Parameter Choices
As in the general literature on DP, the questions about what consti-

tutes "good" parameter choices and what the qualitative differences

are between parameter regimes remain poorly understood also

with respect to distributed and computational DP definitions. For

CDP, understanding different parameter regimes is arguably even

harder than in statistical DP, because the parameters (especially 𝛿)

now play a somewhat dual role in that they can be either solely DP

parameters or function also as a computational slack. For instance,

when going from IND-CDP to SIM-CDP, a negligible 𝛿 term can be

converted into a computational distance in the simulation, as seen

in that the analog to (𝜀𝜅 , negl(𝜅))-IND-CDP is (𝜀𝜅 , 0)-SIM-CDP.

One way of largely avoiding the different interpretations and roles

of the parameters within the different CDP definitions is to stick

to the parameter regimes in which they were originally proposed,

with 𝛿𝜅 = negl(𝜅) in BNO-SDP and IND-CDP and 𝛿𝜅 = 0 in the

others. The problem with this approach, however, is that for practi-

cal reasons one might strongly prefer using, say, SIM
+
-CDP with

non-zero (and non-negligible) 𝛿𝜅 , such as in [5]. The practical rea-

sons might, for instance, be that one’s system is highly composed

and thus can achieve higher utility by using (𝜀𝜅 , 𝛿𝜅 )-SDP or that

one wants to approximate an (𝜀𝜅 , 0)-SDP mechanism to decrease

the runtime. Therefore it is of large practical importance to build a

better understanding of what happens theoretically when the CDP

definitions are relaxed to work in other parameter regimes than in

which they were originally posed.

8 Conclusion
We have surveyed the literature on distributed and computational

DP definitions, reformulated them to unify notation and highlight

their used distribution model and computational perspective, and

summarised known results on the relations between the definitions.

The CDP definitions (both in the central model and in a multi-

party setting) can be sorted in a rough hierarchy where a loss in

utility can be traded for improved privacy parameters or lesser

trust assumptions. Whether the ordering is strict or not depends on

the specifics of the functionality, distribution model and parameter

regime. A clear characterisation of when the various definitions are

separated is, however, lacking for all but a few functionalities and

settings. While much progress has been made on understanding

the definitions from a theoretical angle in recent years, there are

still many research directions lying largely unexplored, and this

holds true also on the practical side. Two such broad directions are

formulated in the open problems below.

Open problem 10 (New). Find separations between CDP defini-
tions under other constraints than complexity assumptions or protocol
runtime, such as the efficiency of the simulator or the runtime of the
adversary.14

14
For instance, in [32] is it noted that the separation established there between central-

model SDP and CDP does not hold against quasi-polynomial adversaries.

Open problem 11 (New). Relate the CDP notions to one another
within stricter adversarial models, such as with active or adaptive
corruptions.

Whilst the lack of understanding for practical separations is

unsatisfactory, it may also be seen as indication that in practical

settings, the choice of which CDP definition to use can with reason

be made according to how conveniently it fits the techniques one

intends to use. For instance, we know of no practically relevant

task that can be solved with IND-CDP instead of SIM-CDP and

therefore one’s choice between them, for a practical use case, will

likely not affect whether the task can be solved or not. Similarly, we

know of little good reason to have less faith in the concrete privacy

guarantees given by IND-CDP than those given by SIM-CDP, even

though IND-CDP is theoretically weaker.

Besides the two above, we have posed three other new problems

(Open problems 4,5 and 9 – about extending the study of CDP defi-

nitions to new parameter regimes and relating the CDP guarantees

to specific attack vectors). We have also revisited the four open

problems proposed by Vadhan [67] regarding CDP, out of which

two have been essentially solved (Closed problems 1 and 2 – about

finding ME-separations between IND-CDP and SDP in the central

model) and two are still mostly open (Open problems 1 and 6 –

about finding a more natural infeasibility separation between SDP

and SIM-CDP and minimal complexity assumptions needed for sep-

arations in the two-party model). Finally, we have re-iterated and

reformulated four open problems from the discussions in recent

works [32, 41, 60] (Open problems 2 and 7 – about finding minimal

complexity assumptions for ME-separating IND-CDP and SDP in

the central model or for getting non-trivial accuracy for the AND

gate in the two-party model, and Open problems 3 and 8 – about

finding a more natural task for separating IND-CDP and SDP in the

central model or finding the largest accuracy gap between them in

the two-party model).

There is a deep connection between distributed and computational

DP and other areas in the theory of computing, such as randomness

extractors, pseudodensity and communication complexity [41, 60,

62]. This together with the increasing practical maturity of DP and

MPC, makes us hopeful that there will be much interesting work

about understanding and using the notions we have surveyed and

we hope that our survey and discussion may serve as a useful guide

and introduction to researchers entering the field.
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A The Ideal/real Paradigm, Standalone and UC
Security

This section is a short introduction to the real/ideal-world paradigm

of security and its most popular versions, the standalone security
model and the universal composability (UC) security model. We will

not be able to describe them in full formal detail, due to their com-

plexity, and we refer to [12, 18] for details on the UC model and

to [11, 35, 57] for details on the standalone model. For other brief

introductions to the topic, we recommend [30, 58].

The core idea of the ideal/real paradigm of security is to define

an ideal world that is secure by definition, i.e. which formulates

what computations are supposed to be done and what it means

to have that done securely. This includes, for example, specifying

what types of information leakage are not to be seen as a violation

of security. The security of the real protocol, defining the real world,
is asserted by a simulation proof that the adversary cannot know if

it is interacting with the ideal world or the real world. The thought

is that if the adversary cannot tell if it is interacting with the real

protocol or a version of the protocol that is secure by definition,

then the protocol should be seen as secure also.
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In the ideal world, there is an incorruptible third party called the

ideal functionality which is given the inputs of all of the parties. This
functionality performs the computation in question (potentially

incorporating some well-defined allowed adversarial influence) and

then gives the results to the players. Since the functionality cannot

be corrupted, it thus defines what it means to be secure and what

computational task should be achieved. When observing the pro-

tocol execution (either from the outside or as someone who takes

part), it is potentially quite simple to tell apart the ideal world from

the real world, for example by observing the number of messages

sent. Therefore, the ideal world also must include a simulator (also
called an ideal-world adversary) whose mission is to construct a

view indistinguishable from the view of the real-world adversary. It

must do this whilst only having access to the information available

to it in the ideal world (essentially, the information given to it by

the ideal functionality).

There are different ways to quantify the strength of such a simu-

lation argument. One measure is the efficiency (say, in terms of

runtime) of the simulator, since it describes how much work is

needed to turn the allowed information leakage into the real in-

formation leakage. A faster simulator gives a stronger guarantee

of security since then, intuitively, the real information leakage is

more similar to the allowed one. Therefore, it is commonplace to

require the simulator to be efficient in the sense of running in strict

polynomial time, although this is not always the case for CDP using

the ideal/real-world paradigm. Most notably, in MPRV [62], the sim-

ulators are allowed to be inefficient (computationally unbounded),

for instance in the definition of SIM
+
-CDP.

So, the core idea of the paradigm is to capture the notion of secure

computation as that the ideal world (with parties, ideal functional-

ity and simulator), in some sense, looks similar to the real world

(with parties and adversary). This begs the question; who is the dis-

tinguisher? This is where is where the standalone and UC security

models start diverging. In the standalone model, the distinguisher

is essentially the adversary, meaning that the distinguisher itself

takes part in the protocol. That is, the distinguisher tries to figure

out which world it is in from the inside. The task of the simulator

is to use only information available in the ideal world and generate

an output distribution that is indistinguishable from the view
15
of

the real-world adversary.

Definition A.1 (Standalone security, reformulation of Def. 4 in [11]).
We say that a protocol𝜋 is a secure protocol for the functionality F
if for all efficient adversaries A, there exists an efficient simulator

S (corrupting the same parties as A) such that the joint output

of the honest parties and A in the real world is computationally

indistinguishable from the joint output of the honest parties and S
in the ideal world, i.e. when the outputs distributions in the ideal

and real worlds are computationally indistinguishable.

There are various different versions of the security definition,

for instance varying the type of indistinguishability (like requiring

15
In Definition A.1 it is the output rather than the view of the adversary that is

considered. These two formulations are equivalent since the adversary is allowed to

simply output its entire view as output.

the distributions to be identical or have negligible statistical dis-

tance). Other times the correctness requirement is changed (such as

requiring that the outputs in the real and ideal worlds are identical

or statistically close if there are no corruptions, as done in [35, 57]).

The version used in MPRV [62] within the definition of SIM
+
-CDP

(Definition 5.3) has such an extra correctness requirement, as well

as demanding efficient protocols and removing the efficiency re-

quirement of the simulator.

Definition A.2 (Standalone security as inMPRV [62], Reformulated).
We say that a protocol𝜋 is a secure protocol for the functionality F
if it fulfills Definition A.1 with the following changes:

(1) 𝜋 must be efficiently computable;
(2) 𝜋 must have perfect correctness, that is, in an honest execution

of 𝜋 , its output distribution is identical to that of F ;
(3) the simulator is allowed to be inefficient.

In the standalone model, the security of the protocol is consid-

ered in isolation. That is, since the distinguisher is a part of the

protocol execution, the protocol is studied under the assumption

that the distinguisher does not run other protocols concurrently to

the one being studied. Making such an assumption makes proving

security technically much easier, for instance, it allows so-called

rewinding techniques. The drawback of the model is precisely that

it considers protocol security in isolation, opening up the possi-

bility that a protocol thought to be secure loses all of its security

properties when it is run in parallel to some other processes. Since

it can be argued that such composition of protocols and processes

is the rule rather than the exception in modern computer systems,

it is highly desirable to be able to prove that a protocol remains

secure also when other protocols are run in composition to it.

There are many ways to compose protocols and some of them

are easier to deal with than others. For example does the usual

formulations of the standalone model guarantee that security is

preserved under sequential composition, i.e. as long as all protocols

are run one after another. The most powerful type of composition

results are those when the security of the protocol is preserved

regardless of how the surrounding protocols are executed. This is

called universal composition and the entire point of the UC (Uni-

versal Composability) security framework is that protocols proven

within it remain secure under universal composition. In particular,

if a protocol 𝜋 realises the ideal functionality F , then any other

protocol that uses F as a subprocedure does not lose its security

properties if F is replaced by a copy of 𝜋 . In the UC framework,

the distinguisher no longer is a part of the protocol execution per

se, it is rather an external entity that observes and interacts with

the system. This entity is called the environment. In more detail,

it is an entity in both worlds that selects the initial inputs to all

parties, interacts arbitrarily with the adversary and then, based on

the outputs, tries to distinguish between the two worlds. In other

words, the environment gets to play with one of the worlds and

depending only on the input-output behaviour of this world it tries

to determine if it is playing with real or the ideal world.

435



Proceedings on Privacy Enhancing Technologies 2025(1) Fredrik Meisingseth and Christian Rechberger

Definition A.3 (UC security [12, 40]). We say that a protocol 𝜋

UC-securely realises the ideal functionality F if for all PPT real-

world adversaries A there exists a PPT simulator
16 S (corrupting

the same parties asA) such that for all PPT environments 𝐸, the sta-

tistical distance between 𝐸’s output when interacting with the ideal

world and that when interacting with the real world is negligible

in the security parameter 𝜅.

A.1 Complexity Assumptions
Now that we have seen the security definitions, we consider what

assumptions one must make for them to be attainable. First of all,

what kind of security one can prove of a protocol is directly depen-

dent on the functionality one wants to realise. It is also dependent

on the ideal functionalities one assumes are available to the parties,

since such functionalities also define the communication channels

present in the protocol execution. As a basis, the plain model as-
sumes access to no other ideal functionality than authenticated

channels, meaning that the parties can send messages to each other

(point-to-point) and be sure who the messages come from and that

it has not been tampered with but there are no guarantees that the

contents of the messages have not been leaked. In the plain model,

quite a few fundamental functionalities can be realised, such as

secure transfer which is the same as authenticated transfer except

that the contents of the messages are now hidden from an eaves-

dropper. There are however many important functionalities that

cannot be realised in the plain model, unless one makes certain

assumptions on the types of corruption that are being made (in

particular, one has to assume an honest majority). In such cases,

one has to leave the plain model and claim access to some other

ideal functionality, i.e. one makes the assumption that there exists a

protocol that realises that ’helping functionality’. Such assumptions

are typically in the form of complexity assumptions, meaning that

one assumes some given specific computation that the adversary

(or environment) would have to do to mount a specific attack is

computationally infeasible.

Such complexity assumptions have been very deeply studied, and

they are commonly ordered after their relative strength, i.e. by

proving that one assumption is stronger (or larger) than another in

the sense that the first one implies the other but not the other way

around. How various complexity assumptions relate to each other is

quite well understood, and this is also true for what assumptions are

needed for general-purpose MPC (i.e. where any PPT functionality

can be realised) to be possible in various distribution and corrup-

tion models. In the main body, we mostly discuss three common

complexity assumptions (listed from weakest to strongest):

• The existence of one-way functions (OWFs). A OWF is, intu-

itively, a function that can be computed efficiently but for

which it is hard to find pre-images. That is, if one is given an

evaluation of the function, no efficient adversary can predict

the input which resulted in that evaluation with probabil-

ity non-negligibly above that when purely guessing. For a

definition and more detail, see [34].

• The existence of a key-agreement (KA) protocol. A KA protocol

is, intuitively, a protocol in which two parties who at the

16
Also called ideal-world adversary.

beginning share no secret information with each other, send

some sequence of messages to each other which results in

them at the end both knowing a secret key but that this key

is not known to an eaves-dropping adversary which sees

only the transcript of the protocol.

• The existence of an oblivious transfer (OT) protocol. An OT

protocol is, intuitively, a protocol between two parties, one

of which has a number of information pieces (say, rows in

a database) and the other wants to learn one of them. This

should be done, however, without the party holding the data

knowing which information the other one has learned. In

that way, the sender is oblivious to the request of the receiver.

The importance of OT is that it allows the construction of

general-purpose MPC protocols when all but one of the

parties are corrupted [56].

B Other DP Definitions and Distribution Models
We now very briefly discuss topics that to some extent concern DP

outside of the central model or are dependent on computational

relaxations of SDP. As noted in the introduction of this paper, the

definitions discussed in this list here were excluded from our main

body due to them, for one reason or another, not being directly

relevant for studying definitions of CDP in multi-party settings. We

include them here in order to offer a wider context to the definitions

included in the main body.

B.1 Adaptive Query Choices, Interactive DP and
DP under Continual Observation

One important aspect of DP in all models is that of composition of

mechanisms, i.e. how the DP guarantees are affected by multiple

DP mechanisms being run (sequentially or concurrently) on the

same database [25, 50, 54, 63]. Whereas it is often studied in the

simple non-adaptive setting where the DP mechanisms are chosen

independently of the outcomes of the others, it is also studied in

the adaptive setting, where an adversary can choose what mecha-

nism execution to request dependent on the previous mechanism

outputs. Such adaptive choices induce a notion of interaction even

into the central model, turning such an interaction between the

dataholder and the analyst into an asymmetric two-party protocol.

Therefore, such interactive situations are at times studied explicitly

as a distribution model separate from the central model, resulting

in an explicit notion of interactive DP. This is, for instance, done
recently in [45, 68], where interactive DP is defined precisely as in

BNO-SDP except for that the DP guarantees are one-sided. Simi-

larly, it is straight-forward to adapt the notion of interactive DP

into a one-sided CDP definition.

Another commonly studied DP model in which interaction plays

a crucial role is that of DP under continual observation and similar

models [14, 24, 49]. As opposed to interactive DP above, here the

mechanism is not adaptively chosen by the analyst but rather is

the mechanism itself faced with the mission to release multiple

outputs over time such that the overall mechanism is DP and at all

times, the released output in that timestep has high utility. The core

insight is that, since the outputs at different timesteps are highly

correlated (as they concern the same dataset) one might be able to
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achieve a much higher utility than allowed by directly applying

theorems from the literature on the composition of mechanisms.

B.2 Multiparty Protocols with DP Leakage
It was noted already in MPRV that SIM-CDP (as well as IND-CDP)

allows partial intermediate results/information to be leaked as long

as it is DP whereas SIM
+
-CDP does not. That is, they allow there

to be some non-negligible information leakage during the protocol

(which is not allowed traditionally in MPC), as long as the leakage is

CDP. This idea of havingDP leakage during a protocol execution has

also been combined with MPC protocol whose function evaluation

is not DP, thus resulting simply in a controlled relaxation of the

usual requirements in secure computation. This is done in order to

improve efficiency and is particularly relevant when the function

output, for use case specific reasons, is anyhow required to be exact.

Some papers in this space where definitions are proposed are:

• [46] – As far as we are aware, this was the first definition of

MPC with DP leakage. A DP definition is introduced (output
constrained DP) and then it is specialised asDP for record link-
age (DPRL). This is simply IND-CDP with a new adjacency

notion, namely one where only databases that evaluate a

given function to the same value are considered adjacent.

• [59] – A more general definition of MPC with DP leakage is

proposed which uses the standalone model of the ideal-real

paradigm. It is essentially the same as the standard definition

of secure two-party computation in the standalone model ex-

cept that the simulator also learns an additional DP function

of the input dataset.

• [40] – TheMPC-with-leakage definition of [59] is adjusted to

use UC-security instead of standalone security and also the

leakage is allowed to occur before the corrupted party sends

its inputs, thus relaxing the guarantee of input independence

(see, for instance [58]).

B.3 CDP with Zero-knowledge Proofs
Just as there has beenmuchwork on combining DPwithMPC, there

has been work on combining it with the field of zero-knowledge

proofs. One such line of work considers a notion of privacy called

zero-knowledge privacy, which shares many similarities to DP, and

another considers verifiable DP, where a DP mechanism output is

given together with a proof that it has been faithfully generated.

Zero-knowledge Privacy. In [31], a stricter privacy notion related

to SDP is proposed with the name zero-knowledge privacy (ZKPr),
which, very roughly, is made stronger than SDP by requiring that

the view of the adversary can be approximated well by a simula-

tor that only has access to some aggregate information about an

adjacent database. A computational version of the notion is also

proposed, let us call it CZKPr, by requiring that the simulator, ad-

versary and function generating the aggregate information are PPT.

The authors show that ZKPr is strictly stronger than SDP and that

this remains true for CZKPr as long as the mechanism in question is

efficient. We do not include it in the main body of this work because

(C)ZKPr differs from SDP not only with regard to its computational

perspective but also fundamentally with respect to the concept of

adjacent databases and the information available to the simulator.

Additionally, we are only aware of the definition being used in the

central model.

Verifiable DP. Verifiable DP (VDP) is first proposed in 2015 [64]

when a system called VerDP is proposed which answers a restricted

set of DP queries whilst also proving that the mechanism output

is both from a DP mechanism and consistent with the supposed

database. Since the system uses cryptographic tools with computa-

tional security, the authors note that the DP guarantees in the end

are computational (referring to MPRV) but the discussion about

details here is limited due to that the focus of the paper is largely

on the practical aspects of the given system and implementation.

In 2023, another paper [6] re-introduced VDP and this time there

is a substantial focus on defining VDP as a notion in itself and

some fundamental impossibility-results are established, such as the

impossibility of statistical VDP (for a DP system to be verifiable, it

has to be computational). Additionally, the notion is also studied

in a multi-party setting, with a first protocol being proposed and

implemented.

B.4 CDP with Functional Encryption
DP has also been combined with the field of functional encryp-

tion [8], first in [1, 2] with statistical DP and then in [29] with CDP.

In particular, in [29] IND-CDP is incorporated into a new definition

of functional encryption. Then a general mechanism is proposed

which satisfies the new definition and it is particularly studied for

the case of linear queries.

C Proofs
C.1 Proofs Omitted in Section 4
C.1.1 (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP directly implies (𝜀𝜅 , 𝛿𝜅 + negl(𝜅))-IND-
CDP for non-zero 𝛿𝜅 . We now prove that the direct implication from

SIM-CDP to IND-CDP with a negligible increase in the additive

parameters also holds for non-zero 𝛿𝜅 . That it holds for 𝛿𝜅 = 0 was

shown already in MPRV and [67]. These proofs carry over directly

to the more general setting under a mild condition on 𝜀𝜅 . We state

the implication only for central model mechanisms but it extends

directly to the distributed setting since the result concerns only

the formulation of output closeness, which is unchanged by the

distribution model.

Proposition C.1. Let 𝛿𝜅 ∈ [0, 1] be arbitrary and let 𝜀𝜅 ∈
𝑂 (log(𝜅)). Then any mechanismM that is (𝜀𝜅 , 𝛿𝜅 )-SIM-CDP is also
(𝜀𝜅 , 𝛿𝜅 + negl(𝜅))-IND-CDP.

Proof. LetM : D → R be a mechanism that is (𝜀𝜅 , 𝛿𝜅 )-SIM-

CDP. This implies that there exists an (𝜀𝜅 , 𝛿𝜅 )-SDP mechanism
˜M

such that the output distributions ofM(𝐷) and ˜M(𝐷) are com-

putationally indistinguishable. That is, the output distributions of

any PPT distinguisher when given
˜M(𝐷) andM(𝐷), respectively,

have a negligible statistical distance. This gives us, for any adjacent

𝐷,𝐷 ′ ∈ D and any PPT distinguisher 𝑇 :
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P(𝑇 (M(𝐷)) = 1) ≤ P(𝑇 ( ˜M(𝐷)) = 1) + negl(𝜅)

≤ 𝑒𝜀𝜅P(𝑇 ( ˜M(𝐷 ′)) = 1) + 𝛿𝜅 + negl(𝜅)
≤ 𝑒𝜀𝜅 (P(𝑇 (M(𝐷 ′)) = 1) + negl(𝜅)) + 𝛿𝜅 + negl(𝜅)
≤ 𝑒𝜀𝜅P(𝑇 (M(𝐷 ′)) = 1) + 𝛿𝜅 + negl′ (𝜅) .

The first and third inequalities follows from thatM and
˜M are

computationally indistinguishable and the second from that
˜M

is (𝜀𝜅 , 𝛿𝜅 )-SDP. The final inequality follows from the assumption

that any negligible function remains negligible when multiplied

by 𝑒𝜀𝜅 . In particular, negl(𝜅) is an arbitrary negligible function and

negl′ (𝜅) := 𝑒𝜀𝜅 · negl(𝜅) + negl(𝜅).
□

C.1.2 (𝜀𝜅 , 0)-IND-CDP is equivalent to (𝜀𝜅 , 0)-SDP. The reason to

introduce a non-zero 𝛿𝜅 parameter is that (𝜀𝜅 , 0)-IND-CDP is equiv-

alent to (𝜀𝜅 , 0)-SDP and (𝜀𝜅 , 0)-BNO-SDP in the central and dis-

tributed models, respectively. We reiterate the argument here for

completeness. We give the proposition and proof for the central

model only as the extension to the distributed case is immediate.

Proposition C.2 (Reformulation of MPRV). In the central
model, (𝜀𝜅 , 0)-IND-CDP and (𝜀𝜅 , 0)-SDP are equivalent but (𝜀𝜅 , negl(𝜅))-
IND-CDP and (𝜀𝜅 , negl(𝜅))-SDP are not. That is:

(1) LetM : D → R, with y ∈ R of polynomial size. IfM is
(𝜀𝜅 , 0)-IND-CDP then it is also (𝜀𝜅 , 0)-SDP, and vice versa.

(2) There exist a mechanismM that is (𝜀𝜅 , negl(𝜅))-IND-CDP
but not (𝜀𝜅 , negl(𝜅))-SDP.

Proof. We start by proving the first statement in the proposi-

tion, namely that IND-CDP and SDP are equivalent when 𝛿𝜅 = 0.

That all SDP mechanisms are also IND-CDP with unchanged pa-

rameters is immediate so what remains to show is the opposite

direction. The argument below is a reformulation of a discussion

in MPRV [62].

Part 1 (From MPRV):

Assume thatM is (𝜀𝜅 , 0)-IND-CDP. Let 𝑇 𝑆 (𝜂), for some arbitrary

𝑆 ⊂ R, be the distinguisher that outputs ⊮{𝜂 ∈ 𝑆}. That M is

(𝜀𝜅 , 0)-IND-CDP implies that, for all 𝑆 such that𝑇 𝑆
is PPT, we have

P(𝑇 𝑆 (M(x)) = 1) ≤ 𝑒𝜀𝜅P(𝑇 𝑆 (M(x′)) = 1),

which implies

P(M(x) ∈ 𝑆) ≤ 𝑒𝜀𝜅P(M(x′) ∈ 𝑆) .

Hence, for all sets 𝑆 ⊂ R for which checking membership is effi-

cient, the first part of the proposition holds. The assumption that

the elements of R are of polynomial length implies that this is the

case for all 𝑆 ⊂ R (by use of, for instance, a binary search tree).

Part 2 (From [9]):

Consider the counter-example of the mechanismM that takes one

bit 𝑥 as input and if 𝑥 = 1 it output a uniformly random 2𝜅-bit

string and if 𝑥 = 0 it outputs a pseudorandom 2𝜅-bit string by use

of a pseudorandom generator (PRG) (see, for instance [34]). This

mechanism is (0, negl(𝜅))-IND-CDP but by the definition of a PRG,

it is not (0, 𝛿)-SDP for any 𝛿 < 1−negl(𝜅), since an unbounded dis-

tinguisher can distinguish a PRG from a generator of truly random

strings arbitrarily well. □

We remark that the restriction to output domains of polynomial-

sized elements is very mild since the distinguisher is always as-

sumed to be PPT, meaning that if the output of the mechanism is

not of polynomial size, then the distinguisher cannot even read its

whole input.

C.2 Proofs Omitted in Section 6
We now prove an ME-separation between SIM-CDP and SIM

+
-CDP

for the case where 𝛿𝜅 = 0. The idea is that SIM
+
-CDP requires

efficient protocols and perfect security, meaning that it cannot

be satisfied for a task that cannot be solved in strict polynomial

time. SIM-CDP on the other hand makes no such requirements,

meaning that it can be fulfilled for inefficient protocols. That is,

the only thing required is to find a task that can be solved in, say,

exponential time but not in polynomial time. We find such a task in

the shape of computing the XOR gate to within a given probability

of failure, which is suitable because it is equivalent to sampling

a Bernoulli trial with a given parameter, and this parameter can

easily be chosen such that the sampling can be done exactly only

in super-polynomial time.

Proposition C.3 (ME-separating SIM-CDP and SIM
+
-CDP).

There exist 𝜀𝜅 > 0 for which (𝜀𝜅 , 0)-SIM-CDP ≠⇒
𝑀𝐸
(𝜀𝜅 , 0)-SIM+-CDP.

Proof. We consider the two-party case and passive corrup-

tions. Let 𝜀𝜅 = 𝑙𝑛(22𝜅 − 1), 𝐷 = {0, 1}2, set the utility function

to 𝑢 ((𝐷1, 𝐷2), (𝜂,𝑦)) := ⊮{𝑦 = 𝐷1 ⊕ 𝐷2} and 𝛼 = 1 − 2−2𝜅 . That is,
the task is to have party 2 output the XOR of the inputs of both the

parties’ inputs and to be incorrect with a probability of at most 2
−2𝜅

.

To see that there is no (𝜀𝜅 , 0)-SIM+-CDP protocol solving the task,

assume towards a contradiction that there is such a protocol 𝜋 ′.
Since SIM

+
-CDP demands perfect correctness, we know that in

an honest execution, the output distributions of 𝜋 ′ and the ideal

functionality it realises,M′, have identical output distributions.
Since 𝜋 ′ runs in strict polynomial time, this implies that there is a

strict PPT mechanismM′ that is (𝑙𝑛(22𝜅 −1), 0)-SDP and outputs a

bit that is 𝐷1 ⊕ 𝐷2 with probability at least 𝛼 and its negation with

probability at most 1−𝛼 . It is easy to see that no binary (𝜀𝜅 , 0)-SDP
mechanism can have accuracy above 𝑒𝜀𝜅 /(𝑒𝜀𝜅 + 1), which means

that the task above is the same as outputting the correct function

evaluation with probability 1 − 2
−2𝜅

. Sampling a Bernoulli trial

with such a parameter is impossible in strict polynomial time (as it

requires exponentially many fair coins) and thus we have reached

the contradiction.

We now give a protocol 𝜋 that solves the task and simultaneously is

(𝜀𝜅 , 0)-SIM-CDP. The key here is that 𝜋 need not be efficient, since

there is no such requirement in SIM-CDP. Let 𝜋 simply be that party

1 runs randomised response on its input with parameter 𝜀𝜅 . That

is, first 𝑃1 samples a Bernoulli trial with parameter 1 − 2−2𝜅 using

2
𝜅
uniform coins, which can trivially be done in exponential time.

Call the sample outcome 𝑏. Then 𝑃1 sends 𝑐 ← 𝐷1 ⊕ 𝑏 to 𝑃2 and

438



SoK: Computational and Distributed Differential Privacy for MPC Proceedings on Privacy Enhancing Technologies 2025(1)

outputs ⊥. Then 𝑃2 outputs 𝐷2 ⊕ 𝑐 . This protocol obviously solves

the task and is (𝜀𝜅 , 0)-SIM-CDP via the simulator that samples 𝑏 as

𝑃1 does and then outputs ⊥ to 𝑃1 and 𝐷1 ⊕ 𝐷2 ⊕ 𝑏 to 𝑃2. □

Note that the task in the proof above is quite contrived and

is chosen as to simplify the proof rather than being practically

interesting or general. In fact, any task that has an optimal SDP

mechanism that can be run in exponential but not polynomial

time suffices for the proof idea, and thus is it probable that the

proposition extends into quite general parameter regimes. Further

(as noted in MPRV), if one does restrict the SIM-CDP protocol to

be efficient, it seems likely that there should be ME-separations

between the two notions, since SIM-CDP allows the simulator (there

also the mechanism) to have access to the inputs of both parties,

whereas in SIM
+
-CDP the simulator only has access to the outputs

of the ideal functionality and from them it has to construct the

adversarial view, which seems much more restrictive.
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