
Private Computation on Common Fuzzy Records
Kyoohyung Han

Samsung SDS

kh89.han@samsung.com

Seongkwang Kim

Samsung SDS

sk39.kim@samsung.com

Yongha Son
∗

Sungshin Women’s University

yongha.son@sungshin.ac.kr

Abstract
Private computation on common records refers to analyze data from

two databases containing shared records without revealing personal

information. As a basic requirement for private computation, the

databases involved essentially need to be aligned by a common

identification system. However, it is hard to expect such common

identifiers in real world scenario. For this reason, multiple quasi-

identifiers can be used to identify common records. As some quasi-

identifiers might be missing or have typos, it is important to support

fuzzy records setting. Identifying common records using quasi-

identifiers requires manipulation of highly sensitive information,

which could be privacy concerns.

This work studies the problem of enabling such data analysis

on the fuzzy records of quasi-identifiers. To this end, we propose

ordered threshold-one (OTO) matching which can be efficiently re-

alized by circuit-based private set intersection (CPSI) protocols

and some multiparty computation (MPC) techniques. Furthermore,

we introduce some generic encoding techniques from traditional

matching rules to the OTO matching. Finally, we achieve a se-

cure efficient private computation protocol which supports various

matching rules which have already been widely used.

We also demonstrate the superiority of our proposal with exper-

imental validation. First, we empirically check that our encoding

to OTO matching does not affect accuracy a lot for the benchmark

datasets found in the fuzzy record matching literature. Second,

we implement our protocol and achieve significantly faster perfor-

mance at the cost of communication overhead compared to previous

privacy-preserving record linkage (PPRL) protocols. In the case of

100K records for each dataset, our work shows 147.58MB commu-

nication cost, 10.71s setup time, and 1.97s online time, which is

7.78 times faster compared to the previous work (50.12 times faster

when considering online time only).

Keywords
secure multiparty computation, privacy-preserving record linkage,

private set intersection

1 Introduction
Collaborative data analysis has received increasing interest across

various fields, where multiple organizations aim to derive valuable

insights and facilitate decision-making by combining their respec-

tive databases. Examples include research on rare diseases [27]

∗
This work was done while Y. Son was at Samsung SDS.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(1), 567–583
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0031

and investigations into financial crimes [34]. Through the private

computation of common records, parties can analyze data corre-

sponding to shared records across databases without disclosing

sensitive information. For instance, the effectiveness of online ad-

vertisements can be estimated through a collaborative analysis of

ad click data and purchase records.

As a prerequisite for such collaboration, the databases involved

must be aligned using a common identification system. It might

be possible to utilize some universal identifier, such as the social

security number (SSN), but it is unrealistic to expect that every

database is linked to such a universal identifier. Moreover, there

are privacy concerns associated with using universal identifiers.

For example, the Health Insurance Portability and Accountability

Act (HIPAA) in the U.S. restricts healthcare organizations from

disclosing SSNs without the patient’s consent [1]. Complicating

matters further, many countries lack such permanent personal

identifiers [42].

In order to facilitate collaborative data analysis in the absence

of a common identification system, it is natural to consider the use

of quasi-identifiers (or personally identifiable information), such

as names, birth dates, and addresses. However, these records are

inherently unstable; they are more susceptible to typos or missing

values, and different individuals may share identical field values

(e.g., names), while the same person might have different values

for certain fields (e.g., addresses, phone numbers). This situation

necessitates a framework that can privately determine whether

records match, thereby enabling data analysis.

1.1 Private Matching and Analysis
Many studies have focused on privacy-preserving collaborative

data analysis in many names. Although the studies equally pursued

a join of two datasets in a privacy-preserving way, the objectives of

each protocols are subtly different. We explain the problem setting

and differences of the related concepts.

Problem Setting. Two parties, which will be called the receiver R
and the sender S respectively, want to join their dataset 𝑋 of R and

𝑌 ofS in a certain way. Each dataset is a form of matrix whose rows

corresponds to records and columns corresponds quasi-identifiers.
We will call 𝑋 and 𝑌 record tables. Here, quasi-identifier is a charac-
teristic of a record which may collide with other record (e.g., date

of birth, name, zip code). The quasi-identifiers in each record table

is assumed to have possibly blanks or typos. On the other hand,

identifier is the opposite concept which is linked uniquely with a

record (e.g., social security number). We assume that each record

table does not include any identifier.

Privacy-preserving Record Linkage. Privacy-preserving record link-

age (PPRL) targets to output links of each matched records. They

output a function between indices of the two record tables which

links the matched records. A notable method of encoding in this

567

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0031

Proceedings on Privacy Enhancing Technologies 2025(1) Kyoohyung Han, Seongkwang Kim, and Yongha Son

realm involves the use of Bloom filters (applied to substrings of

features) [39, 43, 44], which transform similar records into strings

that are close in terms of Hamming distance. Despite this, numer-

ous solutions have naively argued that such encodings can hide

the original input records without providing a solid theoretical

security framework (e.g., simulation-based security proofs). This

oversight has indeed exposed actual vulnerabilities in these solu-

tions [14, 15, 33]. While selected few studies have presented ro-

bust security arguments [13, 45], these approaches rely on generic

multi-party computation (MPC) for pairwise similarity assessments,

thereby unable to circumvent the intrinsic quadratic complexity

associated with such computations.

Private ID. Some protocols do not stop at just giving a link between

matched records, but rather give a random ID for each record, where

the IDs for matched records are same. In this line of research, Pri-

vate Join and Compute (PJC) developed by Google [23, 29], have

facilitated analytics on matching identifiers with practical applica-

tions like ad conversion tracking. Similarly, Private Matching for

Compute (PMC) from Meta [9] proposes alternative approaches for

enabling private computations. Notably, it introduces the concept

of private secret shared set intersection (PS
3
I), which generates

secret shares of data associated with matching identifiers. These

shares can then be integrated into one’s preferred generic mul-

tiparty computation (MPC) framework to carry out any desired

computation.

As follow-up efforts to PMC [9], which concentrated on private

computation over a single identifier, Buddhavarapu et al. [8] have

broadened the scope to encompass multiple identifiers, an approach

we refer to as multi-key PMC (MK-PMC). Mouris et al. [32] provide

an delegated version of MK-PMC, which allows small parties to

delegate the matching protocol.

Private SQL. Mohassel, Rindal, and Rosulek proposed SQL-join op-

erations within a secret-shared state [30]. This work operates under

the assumption of an (honest-majority) three-party setting, which

is different from the two-party setting. While this presents a rele-

vant context for comparison, our focus remains on the challenges

and solutions unique to two-party collaborative environments.

1.2 Our Contribution
This work studies the problem of enabling collaborative data analy-

sis on the fuzzy records of quasi-identifiers, with sub-contributions

presented below.

Private Fuzzy Left Join. Combining datasets usually does not end

with the join itself, but often requires additional analysis afterward.

We focus on a two-party protocol that one party has a payload

to share for analysis afterward. So, we assume the sender S has

a additional set of payloads, where each payload is linked with

a record. Informally speaking, the objective of our protocol is to

secret-share the payloads.

We define a private fuzzy left join (PFLJ) as a two-party proto-

col that computes the join table in a secret-shared state, effectively

preventing any unwanted information leakage. This includes safe-

guarding against the disclosure of which records match or do not

match; furthermore, even neither party is able to determine the

presence of any specific quasi-identifier in the other party’s table.

Figure 1 illustrates the PFLJ protocol involving two databases.

The first matrix on the upper left represents record table𝑋 ofR, and
the second matrix on the upper right represents record table 𝑌 of

S. Both record tables arrange columns by quasi-identifiers (Name,

DOB, and Zipcode), while 𝑌 has additional column of Payload. The

protocol identifies similar entries between the two databases, as

indicated by bidirectional arrows connecting matching rows.

The lower part of the figure shows the output after performing

a join operation on the two databases. The main output matrix on

the lower center aligns the index same as 𝑋 , and it includes the

membership information – whether a record in 𝑋 is linked with a

record in 𝑌 – and the payload from 𝑌 . This output is then split into

two secret shares, as shown in the matrices to the left and right of

the main output. Each share contains partial information about the

membership and payload values, which ensures that sensitive data

is protected and can only be fully reconstructed by combining the

two shares.

Efficient Protocol for PFLJ. To efficiently realize the PFLJ, we tried to

leverage the recent advances circuit-based private set intersection

(CPSI) protocols. CPSI with associated payloads [36] offers similar

functionality which joins two sets of “identifiers”, and outputs

the share of membership value and corresponding payload. As

this technique does not fit well with databases of quasi-identifiers,

we introduce some encoding techniques from quasi-identifiers to

highly-distinct columns, dubbed feature. The encoding techniques

cover wide range of traditional matching rules commonly employed

in the literature. Then, we introduce ordered threshold-one (OTO)
matcher, which judges two records as matched if they share at least

one matching feature.

On top of OTO matcher, we construct a secure and efficient pro-

tocol for PFLJ, where two records are identified if they share at

least one matching feature. Informally speaking, our construction

run a CPSI with associated payload for each features, align the

outputs of CPSI by permute-and-share protocol (PnS), then share

the payload by a generic MPC protocol. As a result, our protocol

exhibits a complexity of 𝑂 (𝑛𝑁 log𝑁), where 𝑛 denotes the num-

ber of encoded features, and 𝑁 denotes the number of records of

each party. While PnS is the only subroutine of quasi-linear com-

plexity with respect to 𝑁 , PnS does not dominate the total time

complexity of the PFLJ protocol in the plausible amount of record

(∼ 10
6
) so that our protocol can be regarded as de facto linear com-

plexity. This represents a significant improvement over previous

works, such as [8], which required 𝑂 (𝑛𝑁) public key operations.

In contrast, our approach necessitates a constant number of pub-

lic key operations while also employing 𝑂 (𝑛𝑁 log𝑁) symmetric

key operations, thereby markedly accelerating the protocol’s speed.

Furthermore, we prove the semi-honest security of our protocol

within the two-party computation (2PC) model.

Implementation Results. We validate that our encoding techniques

toward OTO matcher, using several benchmark datasets: the DBLP-

ACM dataset [2], the European census dataset [3] and the NCVR

dataset [4], which have been previously utilized in studies on fuzzy

matching and record linkage. The traditional matching rule achieves

F1 scores of up to 0.977, 0.985 and 0.979 for each datasets, and OTO

matcher with our encoding achieves up to 0.947, 0.965 and 0.976

respectively.

568

Private Computation on Common Fuzzy Records Proceedings on Privacy Enhancing Technologies 2025(1)

Receiver R Sender S

Index1 Name DOB Zipcode

1 John 1998-SEP-12 45678

2 Alise 1987-AUG-05 12345

3 Eve 1956-OCT-11 -

4 Carl - 86952

Index2 Name DOB Zipcode Payload

1 Carl 1965-MAR-13 86952 𝑝1

2 - 1991-FEB-21 65438 𝑝2

3 Alice 1987-AUG-05 12345 𝑝3

4 Kevin 1977-JUN-15 94865 𝑝4

5 David 1973-JUL-09 - 𝑝5

Similar

Index1 Membership Payload

1 0 (False) 𝑟 = 𝑣1 ⊕ 𝑤1

2 1 (True) 𝑝3 = 𝑣2 ⊕ 𝑤2

3 0 (False) 𝑟 ′ = 𝑣3 ⊕ 𝑤3

4 1 (True) 𝑝1 = 𝑣4 ⊕ 𝑤4

Index1 Mem. Share Pay. Share

1 0 𝑣1

2 1 𝑣2

3 1 𝑣3

4 0 𝑣4

Index1 Mem. Share Pay. Share

1 0 𝑤1

2 0 𝑤2

3 1 𝑤3

4 1 𝑤4

Record table 𝑋
Record table 𝑌 with payload 𝑃𝑌

(Left) Join

secret-shared secret-shared

share1 (R) share2 (S)

Figure 1: Description of our protocol. Each database may include blanks (denoted by -), or typos. Each party outputs the list of
shares of memberships and associated payloads.

In terms of performance, our protocol demonstrates significant

improvement in running time, requiring only 12.58 seconds (1.97

seconds online time) over a LAN network to process a dataset of

100K records, with total communication overhead of 147.58MB.

This represents a 7.78 times speed increase over previous work [8]

(50.12 times increase if we only consider online time), albeit at the

cost of a threefold increase in communication volume. Moreover,

our protocol’s scalability is confirmed by experiments with varying

input sizes and under different network conditions, showing an

almost linear relationship between running time and input size. For

a comprehensive review of these experimental results, we direct

readers to Section 6.

1.3 Comparison with PMC
Multi-key Matching for Compute (MK-PMC) [8, 32] is similar con-

cepts with our PFLJ protocol. These papers discussed similar ap-

plications to ours, so we especially provide some comparison with

the works here.

Although the both two papers considered the OTO matcher

(called multi-key matching in those papers), they lack a connection

to real-world fuzzy matching. Our paper shows a connection from

conventional fuzzy matching techniques to the OTOmatcher, utiliz-

ing methods such as concatenation and locality-sensitive hashing.

The timing efficiency of our protocol executing the OTOmatcher

surpasses the protocol in those papers. The disparity between the

performances stems from their reliance on the specific characteris-

tics of public key operations based on Diffie-Hellman, which are

inherently computation-intensive. In contrast, our approach lever-

ages recent advancements in PSI-related techniques, which heavily

uses symmetric key operations rather than public key operations.

While the protocol in [32] outputs a similar format with the

PFLJ protocol (shares of payloads), the protocol in [8] only outputs

private IDs in plain. The distribution of shares allows further private

computation over the payload. If some users want to invoke a

private computation after the protocol in [8], they need to secret-

share their data.

The protocol in [32] has additional private delegation function-

ality, which allows low-computational clients to delegate compu-

tational burden to some server (called helper). In contrast, our

research is specifically tailored to the collaboration between two

parties, and is not readily adaptable to scenarios involving delega-

tion. Although the delegation scenario may be desirable for some

scenario, two-party protocols still have useful applications in the

real world such as a cross-border collaboration, or the case where

two large companies with substantial resources and data want to

collaborate. Therefore, we believe our protocol with much faster

running time still has some advantages over the delegation protocol

of [32].

1.4 Applications
Our PFLJ protocol outputs two lists of membership shares and pay-

load shares from two record tables (see Figure 1). By manipulating

the outputted lists, the PFLJ protocol can be transformed into re-

lated concepts introduced in Section 1.1. We explain how the PFLJ

protocol can be extended to other protocols.

Privacy-Preserving Record Linkage. The goal of privacy-preserving
record linkage (PPRL) protocols is to output links between records

which are identified as a same entity. The link might can be form of

index pairs, where one of the index is from 𝑋 and the other is from

𝑌 (e.g., (4, 1) in Figure 1). To achieve these pairs, two parties (R and

S) needs to invoke the PFLJ protocol with payload to be the exact

index of the record (e.g., 𝑝 𝑗 = 𝑗 in Figure 1). After the protocol, S
sends its payload share to R. Then, R can link the payload – index

of 𝑌 – to corresponding index in 𝑋 . Communication overhead is

𝑁 log𝑁 bits where 𝑁 is the number of records for each record table.

The overhead is negligible compared to the PFLJ protocol.

Many previous PPRL solutions involving Bloom filter are found

out to either be vulnerable [14, 15, 33] or lack practical efficiency [13,

28, 45] because of their inherent 𝑂 (𝑁 2) time complexity. As the

latter ones usually are combined with generic multiparty compu-

tation (MPC) protocols such as Yao’s garbled circuit, they lead to

569

Proceedings on Privacy Enhancing Technologies 2025(1) Kyoohyung Han, Seongkwang Kim, and Yongha Son

poor performance that is quite far from practice (e.g., a few hours

for matching 10K data in LAN environment).

One comparable previous work is the study of Adir et al. [6],

which achieved linear complexity by combining a private set inter-

section (PSI) with a locality-sensitive hashing (LSH) encoding. It is

hard to fairly compare efficiency between our work and this solu-

tion as the Adir et al. did not publicly open the source codes. Our

PFLJ protocol seems to provide a more efficient PPRL solution as [6]

requires 273s time and 1.44 GB communication for 2
16
records in

the LAN setting. Furthermore, although PSI hides the information

of non-matching records, this protocol still leaks some unwanted

information; the PSI receiver knows the exact intersected LSH eval-

uations for each record, which indicates the similarity between

records from the number of intersections.

Private-ID. The goal of private-ID (PID) protocols is to build com-

mon identifiers for each record, where the identifier does not include

any private information (usually randomly sampled) and agree on

the matched records. If two parties (receiver R and sender S) in-
voke the PFLJ protocol with randomly sampled payload (i.e., 𝑝𝑖 ’s

in Figure 1 are randomly sampled), R and S shares the random

payloads for common records at the end of the protocol. After the

protocol, S sends the payload shares (𝑤𝑖 ’s) so that R recovers the

payload corresponding to the same records (e.g., 𝑝1 and 𝑝3 in Fig-

ure 1). Both parties can agree on common identifiers by setting the

payloads as the identifiers; R gets random ID (𝑟, 𝑝3, 𝑟
′, 𝑝1) without

knowing what is matched.

Performance overhead from the transformation is negligible;

S needs to additionally send all the payload shares of S. If the
probability of ID collision is required to be less than 2

−40
, then

communication cost of (40+2 log𝑁) ·𝑁 bits will be added where 𝑁

is the number of records in each record table. This communication

overhead is less than 1% of the communication cost of the PFLJ

protocol, and so we compare communication and computation

cost with a PID protocol [8] in Section 6 without the additional

communication overhead.

2 Backgrounds
2.1 Notations
For an integer𝑛, we denote the set {1, . . . , 𝑛} by [𝑛]. An𝑛-dimensional

vector 𝑣 = (𝑣1, . . . , 𝑣𝑛) is succinctly represented by 𝑣 = (𝑣𝑖)𝑖∈[𝑛] .
For a matrix 𝑋 of size 𝑁 × 𝑛, the 𝑖-th row and 𝑘-th column are de-

noted by 𝑋𝑖 and 𝑋 [𝑘], respectively. The matrix 𝑋 is often regarded

as a length-𝑁 vector of rows, thus we express 𝑋 = (𝑋𝑖)𝑖∈[𝑁] . For
a condition con, function 1(con) outputs 1 if the corresponding

input satisfies con, or 0 otherwise. We denote the statistical security

parameter by 𝜆, and the computational security parameter by 𝜅.

For an element 𝑥 and a vector 𝑣 , if 𝑥 = 𝑣 [𝑖] for some 𝑖 , then we

abuse the notation 𝑥 ∈ 𝑣 for convenience.

2.2 Oblivious Transfer
The oblivious transfer (OT) functionality involves two parties: a

sender, who inputs two messages𝑚0 and𝑚1, and a receiver, who

inputs a choice bit 𝑏 ∈ {0, 1}. The objective is for the receiver to
obtain the message𝑚𝑏 corresponding to their choice bit, without

revealing any additional information to either party. Specifically,

the sender does not learn 𝑏, and the receiver does not learn the

alternative message𝑚1−𝑏 .
We particularly consider two specialized forms of OT:

• A correlated OT (COTℓ) wherein the sender inputs a single

correlation 𝛿 ∈ {0, 1}ℓ to establish𝑚0 = 𝑟 and𝑚1 = 𝑟 ⊕ 𝛿 for

a randomly chosen 𝑟 ∈ {0, 1}ℓ .
• A random OT (ROTℓ) in which the sender does not provide

any input but receives two random messages 𝑚0 and 𝑚1,

each of length ℓ , as outputs.

To avoid any confusion, we refer to the original OT, where the

sender inputs two messages𝑚0 and𝑚1, as standard OT (SOTℓ).
The subprotocols employed in this work necessitate a substantial

number of OT calls, prompting the consideration of theOT extension
framework [24]. This framework starts with a small (polynomial

in 𝜅) number of base OTs and extends them to a large number of

ROT𝜅 instances. According to the state-of-the-art OT extension

protocols [18, 47], the communication overhead is remarkably low,

for instance, less than 0.1 bit per ROT.

2.3 Circuit-based PSI
Circuit-based private set intersection (CPSI) is a 2-party protocol

which computes intersection information in a secret-shared man-

ner [10, 16, 25, 36, 37, 41]. In the protocol, two parties, a receiver and

a sender, who own input sets 𝑋 ∗ and 𝑌 ∗ respectively,1 computes

Boolean shares of 1(𝑥 ∈ 𝑋 ∗ ∩ 𝑌 ∗) for each 𝑥 ∈ 𝑋 ∗. In this work,

we further consider a useful variant [36] of this concept, which not

only computes the intersection information 1(𝑥 ∈ 𝑋 ∗ ∩ 𝑌 ∗) but
also generates secret shares of the associated payloads related to

𝑌 ∗, denoted as 𝑃𝑌 ∗ = {𝑝𝑦 : 𝑦 ∈ 𝑌 ∗}.
Although it seems natural that the functionality retains its align-

ment of the output secret shares same with the input set 𝑋 ∗, recent
CPSI constructions [36, 37, 41] exhibit an output ordering that may

appear random. This characteristic stems from the use of the cuckoo

hashing technique [7], which is essential for achieving linear com-

plexity within the protocol. As a result, the ideal functionality of

CPSI includes an output alignment represented by the index map

idx : 𝑋 ∗ → [𝑀] for some 𝑀 ≥ |𝑋 ∗ |, where 𝑀 is a bit larger than

|𝑋 ∗ | (e.g., 𝑀 = 1.3|𝑋 ∗ |) to ensure that the cuckoo hashing works

well. We describe the ideal functionality of CPSI including the ran-

dom alignment in Figure 2. It is important to note that the index

map idx is randomly determined during the protocol execution,

ensuring that neither party can influence its outcome. Moreover,

only R gains knowledge of the index map idx : 𝑋 ∗ → [𝑀].
While the inclusion of the index map in the CPSI protocol might

seem to add unnecessary complexity, it is important to recognize its

essential role in the technical underpinnings of our main protocol

construction, as detailed in Section 5.

2.4 Permute-and-Share
Permute-and-Share (PnS) is a functionality that obliviously shuffles

the input, as defined in Figure 3. Given a permutation 𝜋 : [𝑁] →
[𝑁] and a vector 𝑥 of length 𝑁 , this functionality outputs to each

party additive shares of 𝜋 (𝑥), where 𝜋 (𝑥) := (𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑁)).

1
We additionally mark asterisks for readers not to confuse with record tables𝑋 and 𝑌

which appear throughout this paper.

570

Private Computation on Common Fuzzy Records Proceedings on Privacy Enhancing Technologies 2025(1)

Parameters: Set sizes |𝑋 ∗ | and |𝑌 ∗ |, output size𝑀 ≥ |𝑋 ∗ |, and
bit-length ℓ of associated payloads.

Input: Set 𝑋 ∗ from one party R, and set 𝑌 ∗ along with the

associated payload 𝑃𝑌 ∗ = {𝑝𝑦 ∈ {0, 1}ℓ : 𝑦 ∈ 𝑌 ∗} from the other

party S.
Functionality: The functionality samples a random injective

function idx : 𝑋 ∗ → [𝑀], and define 𝑏 ∈ {0, 1}𝑀 and 𝑣 ∈
({0, 1}ℓ)𝑀 so that

𝑏idx(𝑥) = 1, 𝑣idx(𝑥) = 𝑝𝑥 if 𝑥 ∈ 𝑋 ∗ ∩ 𝑌 ∗

𝑏𝑖 = 0, 𝑣𝑖 ←$ {0, 1}ℓ otherwise.

It then sends the index map idx to R, and the secret shares of 𝑏

and𝑤 to each party.

Figure 2: Ideal functionality Fcpsi of circuit-PSI (with associ-
ated payload).

Several protocols [12, 31] have been proposed to realize this func-

tionality. Notably, the protocol from [12] exhibits advantages over

[31] for input vector components of bit-length ℓ that is significantly

larger than the computational security parameter 𝜅. However, in

this paper, we primarily focus on the protocol from [31] as it suf-

fices for our requirements where ℓ ≤ 𝜅. This protocol necessitates
𝑁 log𝑁 instances of COT2ℓ , resulting in a communication cost of

2ℓ𝑁 log𝑁 bits.

Parameters: A permutation target size 𝑁 and an item length ℓ .

Input: A sender with a permutation 𝜋 over [𝑁], and a receiver

with input vector 𝑥 ∈ ({0, 1}ℓ)𝑁 .
Functionality: The functionality samples a random vector

𝑟 ∈ ({0, 1}ℓ)𝑁 , and sends 𝑟 to the sender and 𝜋 (𝑥) ⊕ 𝑟 to the

receiver.

Figure 3: Ideal functionality Fpns of Permute-and-Share.

3 Private Fuzzy Left Join
This section provides a rigorous definition of the concepts depicted

in Figure 1, alongside the related assumptions and threat models.

Terminologies. Throughout this paper, a record having 𝑛 quasi-

identifiers is represented by a vector of 𝑛 (bit-)strings. Correspond-

ingly, a record table containing𝑁 records, eachwith𝑛 quasi-identifiers

𝑋𝑖 for 𝑖 ∈ [𝑁], is represented by a matrix 𝑋 = (𝑋𝑖)𝑖∈[𝑁] of dimen-

sions 𝑁 × 𝑛.

3.1 Fuzzy Matching and Unique Matcher
As a formal argument concerning similar records, we define a

(fuzzy-)matching rule 𝑅 as a binary function 𝑅 : (𝑥,𝑦) ↦→ {0, 1},
where 𝑅(𝑥,𝑦) = 1 indicates that 𝑥 and 𝑦 are judged to be identical

entities. A typical example involves the use of a proper similarity

measure 𝑆 : (𝑥,𝑦) ↦→ [0, 1] and a threshold 𝑡 > 0 to define𝑅(𝑥,𝑦) :=

1(𝑆 (𝑥,𝑦) ≥ 𝑡).
As our objective is to fuzzy-match two record tables 𝑋 and 𝑌 ,

there could be a situation where a single record 𝑋𝑖 corresponds

to multiple records 𝑌𝑗 within the other table, i.e., 𝑅(𝑋𝑖 , 𝑌𝑗) = 1

for many 𝑗 ∈ [𝑁𝑌]. In such instances, the standard SQL left join

operation indiscriminately incorporates every matching pair into

the resultant table. This approach, however, leads to the repeated

occurrence of certain indexes in the output table, inadvertently

revealing the number of matched indices for a specific record 𝑋𝑖 ,

thereby compromising privacy.

Thus, to prevent information leakage regarding the count of

matched records, it is desirable that the output maintains a prede-

termined size. This approach necessitates the selection of at most

one corresponding record in 𝑌 for each record 𝑋𝑖 , ensuring that

the actual number of matches remains undisclosed. To formalize

this criterion for selecting a unique matching record, we introduce

the following concept:

Definition 1. A unique matcher is a probabilistic algorithm that
takes as input a record 𝑋𝑖 and a target record table 𝑌 = (𝑌𝑗) 𝑗∈[𝑁𝑌] . It
returns either an index 𝑗 ∈ [𝑁𝑌] of the record 𝑌𝑗 that is most likely to
be matched with 𝑋𝑖 , or ⊥ to indicate that there is no matching record
for 𝑋𝑖 in 𝑌 . This algorithm is denoted by matcher, and the output of
matcher on input (𝑋𝑖 , 𝑌) is concisely expressed as matcher(𝑋𝑖 , 𝑌) ∈
[𝑁𝑌] ∪ {⊥}.

In practice, unique matchers are run with a public seed unless

they are deterministic; for the sender and the receiver to securely

realize a unique matcher, the seed should be shared between the

two parties. For convenience, we omit the random seed unless it is

not confusing.

A matching rule 𝑅 can be transformed into a unique matcher by

arbitrarily selecting one index among the 𝑗 ’s satisfying 𝑅(𝑋𝑖 , 𝑌𝑗) =
1. If the matching rule 𝑅 is based on some similarity measure 𝑆 ,

the transformed unique matcher identifies the index 𝑗 yielding the

maximal similarity 𝑆 (𝑋𝑖 , 𝑌𝑗) where one index among such 𝑗s is

randomly selected in case of a tie.

3.2 Private Fuzzy Left Join
Consider two partiesR andS possessing record tables𝑋 = (𝑋𝑖)𝑖∈[𝑁𝑋]
and 𝑌 = (𝑌𝑗) 𝑗∈[𝑁𝑌] respectively, where S additionally has a set

of associated payloads 𝑃𝑌 = {𝑝 𝑗 ∈ {0, 1}ℓ : 𝑗 ∈ [𝑁𝑌]}. Assuming

the presence of a unique matcher, denoted by matcher, we define
the membership vector 𝑏 = (𝑏𝑖)𝑖∈[𝑁𝑋] ∈ {0, 1}𝑁𝑋 and the payload

vector 𝑣 = (𝑣𝑖)𝑖∈[𝑁𝑋] ∈ ({0, 1}ℓ)𝑁𝑋 as follows:

𝑏𝑖 = 1, 𝑣𝑖 = 𝑝 𝑗 if 𝑗 =matcher(𝑋𝑖 , 𝑌) ≠ ⊥,
𝑏𝑖 = 0, 𝑣𝑖 ←$ {0, 1}ℓ otherwise.

Then, private fuzzy left join (PFLJ) refers to a two-party interactive

protocol enabling the parties to obtain secret shares of two vectors

𝑏 ∈ {0, 1}𝑁𝑋 and 𝑣 ∈ ({0, 1}ℓ)𝑁𝑋 . We consider the following basic

assumptions and threat model for PFLJ:

• The both parties are assumed to be connected by a secure

channel for interaction, which allows us to focus solely on

threats where one party attempts to extract additional infor-

mation about the other party’s input.

• Regarding adversarial behavior, we adopt the semi-honest
model, wherein an adversarial party follows the protocol

specifications honestly but seeks to derive information be-

yond the permitted output.

571

Proceedings on Privacy Enhancing Technologies 2025(1) Kyoohyung Han, Seongkwang Kim, and Yongha Son

• Finally, we assume that the both parties have previously

agreed upon a unique matcher. Consequently, the process of

privately training and developing matcher (or the matching

rule 𝑅) falls outside the scope of this paper.

3.3 Overview of Our Approach

Index1 Name DOB Zipcode

1 John 1998-SEP-12 45678

2 Alise 1987-AUG-05 12345

3 Eve 1956-OCT-11 -

4 Carl - 86952

Record table 𝑋 with quasi-identifiers

Index1 feature1 feature2 feature3 feature4

1 d330ca 719cf0 0e0348 79457c

2 01191e bf9a47 0c1452 c41b44

3 e60467 b91fc3 0e79d1 005dae

4 f6fabd a8fdd6 a80394 737963

Encoded table 𝑋 with features

Encode (Section 4)

OTO-PFLJ

(Section 5)

Input

𝑌

Input

𝑌

share1 share2

Figure 4: Our Approach for Private Fuzzy Left Join.

Figure 4 illustrates our approach for performing a Private Fuzzy

Left Join (PFLJ) protocol. The process begins with two record tables,

𝑋 and 𝑌 , containing quasi-identifiers such as names, dates of birth,

and zip codes. These tables are depicted at the top of the figure,

with 𝑋 on the left and 𝑌 on the right. Each record in these tables

is encoded into a set of features, creating the encoded tables 𝑋

and 𝑌 , as shown in the second row. This encoding process, whose

details will be presented in Section 4, transforms the original data

into a format that is suitable for a special matcher what we call the

ordered threshold-one (OTO) matcher. The encoded tables 𝑋 and 𝑌

are then input into the OTO-PFLJ protocol, indicated in the central

block of the figure (Section 5).

The Ordered-Threshold-One Matcher. The ordered threshold-one

(OTO) matcher determines if a record matches by evaluating the

membership information of each feature column. To substantiate

the utility of the OTO matcher, we discuss how widely-used match-

ers in the literature can be transformed into the OTO matcher with

appropriate encoding techniques: Similarity-based matchers can

be transformed using a suitable Locality-Sensitive Hashing (LSH)

family that aligns with the specific similarity (or distance) metric,

and equality-based matchers such as scoring-based approach [20]

can be efficiently encoded via concatenation. The details can be

found in Section 4.

Efficient PFLJ for OTO. In Section 5, we propose a highly efficient

PFLJ protocol that is specifically designed for the OTO matcher.

This protocol inherently requires multiple executions of the CPSI

protocol across each feature column, given that the OTO matcher

can be represented by column-wise membership information. How-

ever, we emphasize that our protocol is way more than a mere

aggregation of CPSI applications, primarily due to alignment com-

plications introduced by the index map concept inherent in CPSI.

To address this alignment issue, we employ permute-and-share

(PnS) protocols, thereby unifying the alignment of CPSI outputs.

Subsequently, we obtain secret-shared vectors, each corresponding

to the membership (and the associated payload) information for

every feature column. The culmination of our protocol involves the

secure amalgamation of these vectors into a single vector of shares.

This process involves secure evaluations of MUX gates, which are

efficiently executed utilizing OT.

4 Ordered Threshold-One Matcher
This section proposes a unique matcher which is called ordered

threshold-one (OTO) matcher, and the generic data encoding meth-

ods that approximate the traditional fuzzy-matcher on the original

data into OTO matcher on the encoded data. Figure 5 presents

an overview of the encoding process leading to the OTO matcher,

which will be elaborated in the rest of this section.

Eq-based

Matcher

Section 4.3

Sim-based

Matcher

Section 4.2 Highly-

Distinct

Features

OTO

Matcher

Section 4.1

C
o
n
ca
t.

L
S
H

Dedup.

Figure 5: Encodings from traditional rules to OTO matcher.

4.1 Ordered Threshold-One Matcher
Let us consider a simple matching rule that determines two records,

𝑋𝑖 and 𝑌𝑗 , to refer to the same entity if and only if there exists at

least one identical feature between them. That is, we consider the

matching rule 𝑅 : (𝑋𝑖 , 𝑌𝑗) ↦→ 1 if and only if𝑋𝑖 [𝑘] = 𝑌𝑗 [𝑘] for some

𝑘 . This straightforward approach, however, may lead to multiple

candidate records 𝑌𝑗 for a single record 𝑋𝑖 , necessitating a method

to select the most appropriate candidate.

To address this, we introduce the ordered-threshold-one (OTO)
unique matcher, which selects the candidate 𝑌𝑗 associated with the

smallest matching feature 𝑘 . In scenarios where multiple candi-

dates 𝑌𝑗 share the smallest matching feature 𝑘 , a random candidate

among these is chosen. The formal definition of the OTO matcher

is presented below:

Definition 2. Given two tables𝑋 and𝑌 of sizes𝑁𝑋×𝑛 and𝑁𝑌×𝑛
respectively, the ordered threshold-one (OTO) matcher matcherOTO :

[𝑁𝑋] → [𝑁𝑌] ∪ {⊥} is defined as follows:
• For each record 𝑋𝑖 , let 𝐶𝑖,𝑘 = { 𝑗 ∈ [𝑁𝑌] : 𝑋𝑖 [𝑘] = 𝑌𝑗 [𝑘]} and
𝐶𝑖 =

⋃
𝑘 𝐶𝑖,𝑘 .

• If 𝐶𝑖 = ∅, then matcherOTO (𝑖) := ⊥.
• Otherwise, matcherOTO (𝑖) := 𝑗

$←− 𝐶𝑖,𝑘 for the smallest 𝑘 such
that 𝐶𝑖,𝑘 ≠ ∅.

572

Private Computation on Common Fuzzy Records Proceedings on Privacy Enhancing Technologies 2025(1)

Equivalence to Membership-based Matcher. Given that the OTO

matcher evaluates pairs of records, a direct application of this ap-

proach for every potential pair would inevitably lead to a quadratic

number of comparisons. To circumvent this computational ineffi-

ciency, we introduce an observation that converts pairwise com-

parisons into feature-wise membership tests. The essence of this

strategy lies in the realization where the feature-wise membership

tests can be securely conducted using the CPSI protocol. Lemma 1

shows how the OTOmatcher can be succinctly represented through

membership information.

Lemma 1. For given two deduplicated tables 𝑋 and 𝑌 with number
of rows 𝑁𝑋 and 𝑁𝑌 , the membership matchermatchermem : [𝑁𝑋] →
[𝑁𝑌] ∪ {⊥} can be defined as follows:

• For each record 𝑋𝑖 , let𝑀𝑖 := {𝑘 : 𝑋𝑖 [𝑘] ∈ 𝑌 [𝑘]}.
• If𝑀𝑖 = ∅, matchermem (𝑖) := ⊥.
• Else, matchermem (𝑖) := 𝑗 ∈ [𝑁𝑌] by the smallest index 𝑗 in
𝑀𝑖 .

If there is no duplicate entry in each record table (i.e., 𝑋𝑖 [𝑘] ≠ 𝑋 𝑗 [𝑘],
𝑌𝑖 [𝑘] ≠ 𝑌𝑗 [𝑘] for any 𝑖 ≠ 𝑗), then it holds that for all 𝑖 ∈ [𝑁𝑋],
matchermem (𝑖) =matcherOTO (𝑖).

Proof. Suppose matcherOTO (𝛼) = 𝛽 , it means that 𝑋𝛼 [𝑘] =

𝑌𝛽 [𝑘] for some 𝑘 . Because 𝑘 is the smallest index,there is no (𝑖, 𝑗) ∈
[𝑁𝑋] × [𝑁𝑌] that 𝑋𝑖 [𝑘 ′] = 𝑌𝑗 [𝑘 ′] for 𝑘 ′ < 𝑘 . This means that the

membership results𝑀1, 𝑀2, . . . , 𝑀𝑘−1 should be zero for 𝑖 = 𝛼 , and

𝑀𝑘 = 1 as𝑋𝛼 [𝑘] = 𝑌𝛽 [𝑘]. If there is no duplication, 𝛽 is the only one
matching. So,matchermem (𝛼) should be 𝛽 . For the opposite side, we
suppose matchermem (𝛼) = 𝛽 . This means that 𝑋𝛼 [𝑘] = 𝑌𝛽 [𝑘] for
some 𝑘 , and there is no (𝑖, 𝑗) ∈ [𝑁𝑋] × [𝑁𝑌] that 𝑋𝑖 [𝑘 ′] = 𝑌𝑗 [𝑘 ′]
for 𝑘 ′ < 𝑘 , which implies matcherOTO (𝛼) = 𝛽 . □

On Feature Duplication. In order to utilize Lemma 1 that efficiently

computes OTO matcher, we need to ensure that there is no record

having duplicated features. However, it is quite implausible as-

sumption for usual quasi-identifiers. To remove duplication, we

use a two-step solution: encoding and deduplication. The encoding

step, which will be explained in following subsections, combines

multiple quasi-identifiers to a highly distinctive feature. As the

encoded features are highly distinctive, the duplication rates are

expected to quite small, but not zero. Then, the deduplication step

artificially remove the duplication of the encoded features so that

there is no remaining duplicate feature. The detailed process of the

deduplication step is described in Algorithm 4 in Section F.

This deduplication could harm the accuracy of fuzzy-matching,

especially when there is extensive duplication within some column.

However, we argue that the deduplication step does not degrade the

accuracy of the matching combined with our proposed the encoding

step, because our encoding step already effectively reduces the

number of duplication. For the justification, we provided the impact

of deduplication on the accuracy through experimental results on

benchmark datasets in Section 4.4.

4.2 Encoding from Similarity-Based Matcher
Two records which are in fact the same entity possibly have no

exactly matched quasi-identifiers, due to some typos, blanks, or

changes of quasi-identifiers (e.g., change of phone number). In this

case, we measure the similarity of two strings, defined as a function

𝑆 : D × D → [0, 1] for a proper domain of input strings (or sets)

D.
2
Given a similarity measure 𝑆 , a similarity-based rule decides

whether two records are matched or not by checking that similarity

of two data is above a threshold 𝑡 . Formally, the similarity-based

matching rule 𝑅 with a similarity measure 𝑆 can be written by

𝑅sim (𝑥,𝑦) = 1(𝑆 (𝑥,𝑦) ≥ 𝑡).
To make this rule into the unique matcher, we usually picks the

candidate records among them whose similarity is of the largest

value, and a random selection in the event of a tie.

In the following, we introduce some similarity measures for

strings that we mainly focus on. For a string 𝑠 , let qgram𝑞 (𝑠) be
the set of every 𝑞-gram of 𝑠; every 𝑞-length substrings of 𝑠 . For

example, qgram
2
(”ℎ𝑒𝑙𝑙𝑜”) = {”ℎ𝑒”, ”𝑒𝑙”, ”𝑙𝑙”, ”𝑙𝑜”}.

Example 1 (Jaccard similarity). For given two sets𝑋,𝑌 , Jaccard
similarity is defined by

𝑆 𝐽 (𝑋,𝑌) := |𝑋 ∩ 𝑌 |/|𝑋 ∪ 𝑌 |.
Jaccard similarity for two strings 𝑥 and 𝑦 is defined with a parameter
𝑞 by

𝑆str𝐽 ,𝑞 (𝑥,𝑦) = 𝑆 𝐽 (qgram𝑞 (𝑥), qgram𝑞 (𝑦)) .

Example 2 (Cosine/Angular similarity). For two vectors 𝑥,𝑦 ∈
R𝑛 with non-negative components, cosine similarity is defined by

𝑆𝐶 (𝑥,𝑦) := ⟨𝑥,𝑦⟩/(∥𝑥 ∥ · ∥𝑦∥)
and angular similarity is defined by

𝑆𝐴 (𝑥,𝑦) := 1 − arccos(𝑆𝐶 (𝑥,𝑦))/𝜋.
Cosine (and angular) similarity for two strings 𝑥 and 𝑦 is defined

with a vectorizer map 𝑉 : {0, 1}∗ → R𝑛 that embeds an input string
into a numerical vector, precisely

𝑆str𝐶 (𝑥,𝑦) = 𝑆𝐶 (𝑉 (𝑥),𝑉 (𝑦)), 𝑆str𝐴 (𝑥,𝑦) = 𝑆𝐴 (𝑉 (𝑥),𝑉 (𝑦)).

Locality Sensitive Hashing. The locality sensitive hashing (LSH)

family for similarity measure 𝑆 is defined as follows [11].

Definition 3 (LSH family for a similarity). Let 𝑆 be a simi-
larity measure defined on D. A function familyH is LSH of 𝑆 if

Pr

ℎ∈H
[ℎ(𝑥) = ℎ(𝑦)] = 𝑆 (𝑥,𝑦) for all 𝑥,𝑦 ∈ D .

Our interest Jaccard similarity and the angular similarity have

the following LSH families.

Example 3 (LSH for Jaccard similarity). For a family of ran-
dom functionH , define a function MinHashℎ for ℎ ∈ H as

MinHashℎ (𝑋) = min

𝑥∈𝑋
ℎ(𝑥) .

It holds that Pr[MinHashℎ (𝑋) = MinHashℎ (𝑌)] = 𝑆 𝐽 (𝑋,𝑌).

Example 4 (LSH for angular similarity). For a vector 𝑎 ∈ R𝑛 ,
define a function ℎ𝑎 by

ℎ𝑎 (𝑥) := sgn(⟨𝑎, 𝑥⟩),
where sgn is the sign function. It holds that Pr𝑟 [ℎ𝑎 (𝑥) = ℎ𝑎 (𝑦)] =
𝑆𝐴 (𝑥,𝑦).
2
In the literature, the term ‘similarity’ sometimes includes distance functions in metric

spaces. However, we restrict the meaning of this term to have range [0, 1].
573

Proceedings on Privacy Enhancing Technologies 2025(1) Kyoohyung Han, Seongkwang Kim, and Yongha Son

It is common to use LSH with an AND-OR amplificiation tech-

nique. The AND amplification considers a 𝑟 -tuple of LSH func-

tions ℎ′ (𝑥) = (ℎ1 (𝑥), ℎ2 (𝑥), . . . , ℎ𝑟 (𝑥)) for ℎ𝑖 ∈ H , and then check

whether all components of ℎ′ (𝑥) collide, whose probability is

Pr[ℎ′ (𝑥) = ℎ′ (𝑦)] = 𝑝𝑟

where 𝑝 = 𝑆 (𝑥,𝑦). Then OR amplification considers 𝑏 independent

functionsℎ′𝑗 of AND amplification with 𝑟 LSHs, and checks whether

at least one ℎ′𝑗 (𝑥) collide. The probability of such event is computed

by

Pr[ℎ′𝑗 (𝑥) = ℎ′𝑗 (𝑦) for at least one 𝑗] = 1 − (1 − 𝑝𝑟)𝑏 (1)

where 𝑝 = 𝑆 (𝑥,𝑦). Since the hash value ℎ′𝑗 (𝑥) itself is too long, it is

hashed by a collision-resistant hash function with smaller output

size in practice.

Our Encoding Method. For a similarity-based matcher with sim-

ilarity 𝑆 having LSH family H and a matching threshold 𝑡 , our

encoding understands each record as a long string, and converts it

using LSH with appropriate AND-OR amplification parameters 𝑟

and 𝑏, whose concrete choices are discussed below. More precisely,

our encoding maps a string record 𝑥 into

(
ℎ′

1
(𝑥), · · · , ℎ′

𝑏
(𝑥)

)
where

each ℎ′𝑗 (𝑥) is an 𝑟 -AND amplification of LSH function. Such en-

coded records are judged to be matched if there is at least one same

hash value ℎ′𝑗 (𝑥).

Concrete Choices of AND-OR Parameters. As two strings 𝑥 and 𝑦 of

similarity 𝑝 := 𝑆 (𝑥,𝑦) are judged as a matched pair with probability

1−(1−𝑝𝑟)𝑏 (see (1)), we will observe the function𝐶𝑟,𝑏 (𝑝) := 1−(1−
𝑝𝑟)𝑏 over 𝑝 ∈ [0, 1], and call it by (𝑟, 𝑏)-curve. Considering that the
similarity-based matcher can be understood with the step function

1(𝑝 ≥ 𝑡), it is natural to focus on (𝑟, 𝑏)-curves that inflects at 𝑡 ,
precisely whose the second derivative at 𝑡 is zero, i.e., 𝐶′′

𝑟,𝑏
(𝑡) = 0.

Figure 6 presents some examples of such (𝑟, 𝑏)-curves inflects at
𝑡 = 0.7.

0 0.7 1

0

0.2

0.4

0.6

0.8

1

𝑟 = 7, 𝑏 = 10

𝑟 = 13, 𝑏 = 100

𝑟 = 20, 𝑏 = 1000

Figure 6: For a matching threshold 𝑡 = 0.7, we take AND-OR
parameters (𝑟, 𝑏) for LSH so that the curve 1 − (1 − 𝑝𝑟)𝑏 has
the inflection point at 𝑡 = 0.7.

Not surprisingly, appropriate choice of larger 𝑟 and 𝑏 provide

steeper (𝑟, 𝑏)-curve, and hence it would be better to take large 𝑟

and 𝑏 to make our LSH encoding close to the original similarity-

based matcher. Meanwhile, the OR parameter 𝑏 corresponds to the

number of CPSI calls (see Section 5) which is paramount to the

efficiency of our protocol. Considering this, we choose some (𝑟, 𝑏)
pairs for each 𝑡 as follows.

(1) Pick (𝑟, 𝑏) candidates such that 𝐶′′
𝑟,𝑏
(𝑡) = 0

3
restricting the

maximum 𝑏-value 𝐵.

(2) Among the candidates, choose (𝑟, 𝑏) with the maximum de-

rivative 𝐶′
𝑟,𝑏
(𝑡), while expecting it makes the steepest curve.

Table 1 shows some example (𝑟, 𝑏) parameters for each 𝑡 , where

different OR parameters 𝑏 for the same threshold 𝑡 provide a trade-

off between the accuracy and running time. Note that those values

are just examples, and any other (𝑟, 𝑏) can be utilized as a fine-

tuning. In particular, if the matching threshold 𝑡 is quite large, for

example 𝑡 = 0.9, very small parameters such as (𝑟, 𝑏) = (12, 3)
might be fine because it provides a sufficiently steep curve; see the

𝑡 = 0.9 and (12, 3) row for NCVR dataset in Table 2.

𝑡
𝐵

30 50 100

0.5 (5, 28) (6, 50) (7, 100)

0.6 (7, 30) (8, 50) (9, 99)

0.7 (10, 30) (11, 50) (13, 100)

0.8 (16, 30) (18, 50) (22, 100)

0.9 (35, 30) (40, 50) (46, 100)

Table 1: LSH AND-OR Parameters (𝑟, 𝑏) for each threshold 𝑡

4.3 Encoding from Equality-Based Matcher
Equality-based rule determines whether records correspond to one

another by checking the equality of each quasi-identifier. More

precisely, this rule assigns a specific score value 𝑠𝑘 for each 𝑘-th

quasi-identifier, and then determines whether two records refer to

the same entity by checking whether the sum of the scores of match-

ing features exceeds some predetermined threshold 𝑡 . Formally,

assuming each record has𝑚 quasi-identifiers, the corresponding

matching rule 𝑅 of two records 𝑥 = {𝑥𝑘 }𝑘∈[𝑚] and 𝑦 = {𝑦𝑘 }𝑘∈[𝑚]
is defined by

𝑅eq (𝑥,𝑦) = 1 ©«
∑︁

𝑘∈[𝑚]
1(𝑥𝑘 = 𝑦𝑘) · 𝑠𝑘 ≥ 𝑡

ª®¬ .
To make this rule into a unique matcher, one can choose the record

whose sum of the scores is maximal. In the event of a tie, a random

selection is made from among the tied candidates.

This method might seem overly restrictive; it is incapable of

accommodating even minor discrepancies within quasi-identifiers.

It is found in the Fellegi-Sunter model [20], which has gained wide-

spread acceptance in the field of record linkage for its robustness

and effectiveness. Furthermore, this method often combined with a

strategic reassemble of quasi-identifiers. Indeed, some record link-

age or entity resolution in the real world [5, 19] are categorized

by this equality-based matching with threshold 1, combined with

adequate reassembling of quasi-identifiers (see Example 5).

Example 5 (SEER-Medicare[5]). In this dataset published by
National Cancer Institute, two cancer patient records are judged as
the same person under several criteria. For example, one criterion
checks whether the last 4 digits of SSN, first name (in Soundex), last
3
In fact, as 𝑟 and 𝑏 should be integers,𝐶′′

𝑟,𝑏
(𝑡) scarcely becomes exactly 0; we allow

(𝑟, 𝑏) satisfying𝐶′′
𝑟,𝑏
(𝑡) ≈ 0.

574

Private Computation on Common Fuzzy Records Proceedings on Privacy Enhancing Technologies 2025(1)

name (in Soundex), DOB-day and DOB-month are all same or not.
The criterion is equivalent to check whether a single feature, which is
a concatenation of last 4 digits of SSN, first name (in Soundex), last
name (in Soundex), DOB-day, and DOB-month, is same or not.

Our Encoding Method. We encode an equality-based matcher to

OTO matcher as follows. First, enumerate all possible combination

of quasi-identifiers that makes

∑
𝑘∈[𝑚] 1(𝑥𝑘 = 𝑦𝑘) · 𝑠𝑘 ≥ 𝑡 . Then,

for each combination of quasi-identifiers, define a feature by con-

catenating all quasi-identifiers. The ordering of derived features

can be naturally assigned by the total score of the combination.

One might think this encoding results in excessively large numbers

of feature, since there could be total 2
𝑚
possible combinations for

𝑚 quasi-identifiers. However, since quasi-identifiers that are less

important are given low scores, or are rarely used in matching

criteria, the number of quasi-identifier combinations that exceed

the threshold is not as large as 2
𝑚
. See also the experiments with

the real data in Section 4.4.

Example 6 (Eq-based toOTOmatcher). Assume that an equality-
based matcher considers three quasi-identifiers 𝑓1, 𝑓2, 𝑓3 assigned by
score 1, 2, 4, with the score threshold 𝑡 = 3. Then the derived fea-
tures for OTO matcher would be [𝑓1∥ 𝑓2∥ 𝑓3], [𝑓2∥ 𝑓3], [𝑓1∥ 𝑓3], [𝑓3],
and [𝑓1∥ 𝑓2], which are ordered by the total score in decreasing order.

4.4 Experimental Result on Accuracy
Our encoding process from the traditional matchers (both equality

based matchers and similarity-based matchers) incurs some accu-

racy changes, especially due to the probabilistic nature of LSH or

the de-duplication step. In this section, we present experimental

results that measure the effect of our encoding on the accuracy, us-

ing the following benchmark datasets found in the fuzzy matching

literature.

• DBLP-ACM [2]: This dataset consists bibliographic data from

two databases DBLP and ACM, which comprises 2,614 and

2,294 records of 4 quasi-identifiers: title, authors, venue, and

year. We use ‘title’ and ‘author’ for our experiments.

• European Census [3]: This is synthetically generated dataset

that simulates the census data of three institutes. We es-

pecially use the data from two institutes named cis and

census, which comprises 24,613 and 25,343 records of 12

quasi-identifiers that represent different individuals, respec-

tively. We select 9 quasi-identifiers for the experiments that

are listed in Section A.

• NCVR (North Carolina Voter Registration) [4]: We selected

snapshots from November 2014 and November 2017. The

original data contains over 10M individuals for each dataset

with 90 quasi-identifiers. For our test, we select 10 quasi-

identifiers that are listed in Section A.

Table 2 and Table 3 shows some accuracy metrics for several

matchers discussed in this section. We refer Section C for the defi-

nitions of accuracy metrics and our method to measure accuracy.

Similarity-based Matchers v.s. Our Encodings. We especially focus

on Jaccard and angular similarity measures and the corresponding

LSH family, which is widely used for quasi-identifiers of variable-

length string.
4
In detail, to measure the similarities between strings,

we use 𝑞-grams of records for Jaccard similarity, and we utilizes

a vectorizer map 𝑉 by a variant of one-hot encoding of 𝑞-grams

of the input record for angular similarity.
5
For both Jaccard and

angular similarity, we fix 𝑞 = 2 for for 𝑞-grams, which is widely

used setting for analyzing string similarity. Finally, we investigate

the optimal matching threshold 𝑡 that provides the best F1 score,

whose values can be found in Table 2.

We then examine the accuracy change of our encoding process

(LSH and deduplication) from the original similarity-based matcher,

using the AND-OR parameters (𝑟, 𝑏) presented in Table 1. In Table 2,
we compare the accuracy results between similarity-based matcher

and OTO matcher with LSH encoding.

Recall that in Section 4.2, we suggest some (𝑟, 𝑏) pairs for each
matching threshold 𝑡 with some theoretic explanation. These sug-

gestions, however, lead to a significant amount of accuracy degra-

dation as in Table 2 shows, which implies that those parameters are

too small to effectively simulate the step function 1(𝑝 ≤ 𝑡). Inter-
estingly, as an unexpected observation, we found that (𝑟, 𝑏) from
another 𝑡 ′ that is slightly larger than 𝑡 rather provides better F1

score, which is quite close to the original similarity-based matcher

with threshold 𝑡 especially for Jaccard similarity-based matcher.

Considering a record pair (𝑥,𝑦) with a similarity 𝑝 = 𝑆 (𝑥,𝑦), the
step functions deterministically judge the pairs as matched if 𝑝 > 𝑡 ,

and not matched if 𝑝 < 𝑡 . However, an (𝑟, 𝑏)-curve retains two kind
of errors compared to the step functions; firstly even if 𝑝 > 𝑡 , they

can be falsely judged as non-match with probability 1−𝐶𝑟,𝑏 (𝑝), and
secondly, even if 𝑝 < 𝑡 , they can be falsely judged as match with

probability 𝐶𝑟,𝑏 (𝑝). From the observation, we inferred the reason

of this phenomenon in the following. For a fixed 𝑥 in some record

table, there are much more 𝑦’s in the opposite-side record table

such that 𝑝 = 𝑆 (𝑥,𝑦) < 𝑡 , which implies that the second kind of

error (of probability𝐶𝑟,𝑏 (𝑝)) occurs much frequently. Therefore, we

can expect better accuracy if we slide the (𝑟, 𝑏)-curve to the right

side by setting slightly larger 𝑡 ′ than 𝑡 , despite some sacrifice in the

𝑝 > 𝑡 range.

Meanwhile, our LSH encoding for angular similarity still shows

significant differences of F1 score compare to the original similarity-

based matcher, except NCVR dataset. We can conclude that the

matcher based on angular similarity is not an efficient choice of our

LSH encoding; we provide some discussion on this phenomenon in

Section B.

Equality-based Matchers v.s. Our Encodings. To make a baseline for

comparison with equality-based matchers, we manually investigate

the best scoring strategy for each datasets, by mimicking the real

world’s fuzzy matching methodology [5]. The details for scoring

strategy can be found in Section A. The datasets assessing human

data – European Census and NCVR – consists of various short quasi-

identifiers, where we can successfully build some equality-based

4
One might be curious about with edit distance, also known as Levenshtein distance,

which is also popularly used to measure string similarity. However, to our best knowl-

edge, the LSH family for edit distance has been unknown so far, so we forgo edit

distance-based similarity measure in our encoding target.

5
Specifically, we adopt TfidfVectorizer map found in Scikit-learn. For more de-

tails, we refer to the website https://scikit-learn.org/stable/modules/generated/sklearn.

feature_extraction.text.TfidfVectorizer.html.

575

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

Proceedings on Privacy Enhancing Technologies 2025(1) Kyoohyung Han, Seongkwang Kim, and Yongha Son

DBLP-ACM European Census NCVR
†

𝑡 (𝑟, 𝑏) F1 𝑡 (𝑟,𝑏) F1 𝑡 (𝑟,𝑏) F1

(Baseline) Jaccard Sim.-based Matcher 0.5 - 0.977 0.6 - 0.985 0.7 - 0.964

0.5

(5, 28) 0.778

0.6

(7, 30) 0.902

0.7

(10, 30) 0.727

(6, 50) 0.836 (8, 50) 0.931 (11, 50) 0.818

(Ours) OTO Matchers with (7, 100) 0.876 (9, 99) 0.944 (13, 100) 0.879

Jaccard LSH encoding & dedup.

0.7

(10, 30) 0.940

0.7

(10, 30) 0.953

0.9

(12, 3) 0.945

(11, 50) 0.941 (11, 50) 0.960 (35, 30) 0.954

(13, 100) 0.947 (13, 100) 0.965 (40, 50) 0.955

(Baseline) Angular Sim-based Matcher 0.8 - 0.976 0.7 - 0.947 0.9 - 0.955

0.8

(16, 30) 0.602

0.7

(10, 30) 0.035

0.9

(35, 30) 0.897

(18, 50) 0.639 (11, 50) 0.064 (40, 50) 0.931

(Ours) OTO Matchers with (22, 100) 0.814 (13, 100) 0.149 (46, 100) 0.952

Angular LSH encoding & dedup.

0.9

(35, 30) 0.897

0.8

(16, 30) 0.340

(40, 50) 0.890 (18, 50) 0.441

(46, 100) 0.905 (22, 100) 0.712

†
We used only the first 10K rows of each datasets for similarity-based matcher tests.

Table 2: Accuracy metrics for similarity-based matchers discussed in Section 4. 𝑡 indicates the similarity threshold, (𝑟, 𝑏)
indicates the AND-OR parameter for LSH amplification. The colors of the F1 score cells vary from 0.5 to 1 , where F1 scores
below 0.5 are not colored.

European Census NCVR

feat. F1 # feat. F1

(Baseline) Equality-based Matcher - 0.949 - 0.979

(Ours) OTO Matcher with

concat. encoding & dedup.

6 0.948 3 0.976

Table 3: Accuracy metrics for equality-based matchers dis-
cussed in Section 4. # feat. shows the number of (concate-
nated) features after encoding.

matchers (or scoring method) of good accuracy. However, the DBLP-

ACM dataset consists of only 4 numbers of long quasi-identifiers

such as titles or authors, and we cannot find good equality-based

matcher for this dataset, which explains why Table 2 omit the

equality-based matcher rows for the DBLP-ACM dataset.

The concatenation encoding itself perfectly preserves the match-

ing result (or accuracy), so the only point where the accuracy can

change is deduplication process. The two bottom rows of Table 2

shows the effect of deduplication is quite small, compared to the

similarity-based matcher cases.

Finally, we emphasize that our concatenation-based encoding

for the equality-based matcher ends with much smaller number of

encoded features than LSH-based encoding, while providing quite a

decent accuracy; the accuracy metrics are even better than the LSH

encoding for NCVR dataset. Although this equality-based method

seems a bit less generic than similarity-based methods, we believe

that there are many real-world cases that utilize the equality-based

method (e.g. Example 5), where our encoding method could be

useful.

5 Private Fuzzy Left Join Protocol for
Ordered-Threshold-One Matcher

In this section, we propose a cryptographic realization of the private

fuzzy left join tailored for the OTO matcher. We start with the

assumption that both parties have preprocessed their raw record

tables 𝑋 and 𝑌 , containing quasi-identifiers, into encoded tables
𝑋 and 𝑌 , respectively. It is important to note that 𝑋 and 𝑌 are

specifically processed to eliminate any duplication within each

column vector. To avoid any potential confusion in terminology, we

will consistently use the notation 𝑋 and 𝑌 throughout this section.

Furthermore, we will refer to each column of 𝑋 and 𝑌 as a feature
to distinguish these from the quasi-identifiers found in each column

of the raw tables 𝑋 and 𝑌 .

Thanks to Lemma 1, we can consider matchermem instead of

matcherOTO for the encoded table 𝑋 and 𝑌 . More formally, we

consider an ideal functionality as illustrated in Figure 7. This section

is dedicated to proposing a protocol that securely realizes this ideal

functionality. We note that the size of final output is 𝑀 which is

larger than the number of rows in the left encoded table 𝑋 . The

index map idx : [𝑁𝑋] → [𝑀] in the final output at receiver side is

mapping from the each row of encoded table to the secret shares.

Since matchermem is defined upon the feature-wise membership

result𝑀𝑖 = {𝑘 : 𝑋𝑖 [𝑘] ∈ 𝑌 [𝑘]}, we can utilize CPSI. Our protocol

consists of the following two main stages:

• Generate a membership share table 𝐵 of size 𝑁𝑋 × 𝑛 such

that consists of membership shares 𝑏𝑖 [𝑘] = 1(𝑋𝑖 [𝑘] ∈ 𝑌 [𝑘])
• For each 𝑖 ∈ [𝑁𝑋] and the smallest 𝑘 such that 𝑏𝑖 [𝑘], output
the corresponding payload share.

We elaborate each step in the following sections, and then provide

a full protocol.

5.1 Generating Membership Share
Share Generation. To generate the secret shares, both parties agree

on the output table size𝑀 =𝑂 (𝑁𝑋) and run CPSI 𝑛 times where R
inputs 𝑋 [𝑘], and S inputs 𝑌 [𝑘] and the payload 𝑃𝑌 for 𝑘 = 1, . . . , 𝑛.

Then, CPSI outputs secret shares of the membership Boolean vector

𝐵 [𝑘] = (𝑏𝑖 [𝑘])𝑖∈[𝑀] and the payload candidate vector 𝑉 [𝑘] =

(𝑣𝑖 [𝑘])𝑖∈[𝑀] , and the receiver further obtains the index map idx𝑘 :

576

Private Computation on Common Fuzzy Records Proceedings on Privacy Enhancing Technologies 2025(1)

Parameters: Row sizes 𝑁𝑋 and 𝑁𝑌 , and number of columns

(features) 𝑛, and payload bit-length ℓ .

Input: Encoded tables 𝑋 of size 𝑁𝑋 × 𝑛 from one party R and

𝑌 of size 𝑁𝑌 × 𝑛 along with the payloads 𝑃𝑌 = {𝑝 𝑗 ∈ {0, 1}ℓ :

𝑗 ∈ [𝑁𝑌]} from the other party S.
Functionality: The ideal functionality first com-

pute matcherOTO defined as Definition 2, and define

𝑏 = (𝑏𝑖) ∈ {0, 1}𝑀 and 𝑣 = (𝑣𝑖) (∈ ({0, 1}ℓ)𝑁𝑋 so that

𝑏idx(𝑥) = 1, 𝑤idx(𝑥) = 𝑣 𝑗 if matcherOTO (𝑖) = 𝑗 ≠ ⊥
𝑏𝑖 = 0, 𝑤𝑖 ← {0, 1}ℓ otherwise.

for a index map idx : [𝑁𝑋] → [𝑀]. It then returns the secret

shares of 𝑏 and 𝑤 to each party; precisely, it samples random

vectors 𝑠𝑏 ∈ {0, 1}𝑇 and 𝑠𝑤 ∈ ({0, 1}ℓ)𝑇 . Then sends 𝑠𝑏 and 𝑠𝑤
to the sender, and 𝑏 ⊕ 𝑠𝑏 and𝑤 ⊕ 𝑠𝑤 and idx to the receiver.

Figure 7: Ideal functionality of Private Left-Join with the
OTO matcher.

[𝑁𝑋] → [𝑀]. From the definition of CPSI, those outputs satisfy

𝑏𝑖 [𝑘] = 1, 𝑣𝑖 [𝑘] = 𝑣 𝑗 if ∃ 𝑗 ∈ [𝑁𝑌] s.t 𝑋𝑖 [𝑘] = 𝑌𝑗 [𝑘] ∈ 𝑌 [𝑘]
Otherwise, we have 𝑏𝑖 [𝑘] = 0 and 𝑣𝑖 [𝑘] is just a random string. For

convenience, we denote the membership secret share by 𝐵∗ [𝑘] =
(𝑏∗𝑖 [𝑘])𝑖∈[𝑀] and the payload secret share 𝑉 ∗ [𝑘] = (𝑣∗𝑖 [𝑘])𝑖∈[𝑀] ,
for ∗ ∈ {S,R}.

One might think that this process is a straight-forward appli-

cation of CPSI on each feature column 𝑋 [𝑘] and 𝑌 [𝑘], since CPSI
exactly computes the secret shares of 𝑏𝑖 [𝑘]. However, as a technical
detail, recall from Figure 2 that CPSI outputs the secret shares in

a random order idx𝑘 : [𝑁𝑋] → [𝑀] only known to R. Therefore,
there should be an additional procedure to unify the alignment

of the secret shares for both R and S. The most naive approach

would be letting R send the index map idx𝑘 to S, so that S locally

adjusts the ordering of each CPSI output vector. However, this naive

solution leads to unwanted information leakage, whose details are

presented in [22]. We resolve this problem by employing permute-

and-share (PnS) functionality to let R obliviously permutes S’s list
of shares.

Details for Alignment Unification. The receiver starts with an ar-

bitrary global index gIdx : [𝑁𝑋] → [𝑀] at the beginning of the

protocol. After each CPSI execution where the receiver obtains

idx𝑘 : [𝑁𝑋] → [𝑀], it also sets a random permutation 𝜋𝑘 : [𝑀] →
[𝑀] satisfying 𝜋𝑘 (gIdx(𝑖)) = idx𝑘 (𝑖) for every 𝑖 ∈ [𝑁𝑋].Then
two parties engage PnS on inputs 𝜋𝑘 from the receiver and 𝐵S [𝑘]
from the sender. By definition, it outputs 𝐵

R
𝑘 = (𝑏R𝑖 [𝑘])𝑖∈[𝑀] and

𝐵
S [𝑘] = (𝑏S𝑖 [𝑘])𝑖∈[𝑀] for each party such that 𝐵

S [𝑘] ⊕ 𝐵
R [𝑘] =

𝜋𝑘 (𝐵S [𝑘]). The receiver then adjusts its shares as

𝐵
R [𝑘] ← 𝐵

R [𝑘] ⊕ 𝜋𝑘 (𝐵R [𝑘]) (2)

to have

𝐵
S [𝑘] ⊕ 𝐵R [𝑘] = 𝜋𝑘 (𝐵S [𝑘]) ⊕ 𝜋𝑘 (𝐵R [𝑘]) = 𝜋𝑘 (𝐵 [𝑘]) .

Finally, it holds that for every 𝑖 ∈ [𝑁𝑋],
𝑏gIdx(𝑖) [𝑘] = 𝑏𝜋𝑘 (gIdxk (i)) [𝑘] = 𝑏idx𝑘 (𝑖) [𝑘] = 1(𝑋𝑖 [𝑘] ∈ 𝑌 [𝑘]), (3)

which ensures the correctness of the alignment.

Augmenting Payload Shares. As our desired output is to generate

secret shares of the corresponding payload, we need to remember

specific matching index 𝑗 ∈ [𝑁𝑌] (or the corresponding payload) as
well as the membership Boolean 𝑏𝑖 [𝑘]. To securely realize this, we

let the sender further inputs the payload set 𝑃𝑌 for each CPSI exe-

cution, so that two parties obtains the secret shares of the payload

candidate vector 𝑣𝑘 defined by

𝑣𝑖 [𝑘] :=

{
𝑣 𝑗 if 𝑏𝑖 [𝑘] = 1 by 𝑋𝑖 [𝑘] = 𝑌𝑗 [𝑘]
random if 𝑏𝑖 [𝑘] = 0.

These shares also need to be re-aligned with respect to the global in-

dex gIdx, which can be done in the exactly same way by considering

the concatenated vector (𝐵∗ [𝑘] ∥𝑉 ∗ [𝑘]) instead of 𝐵∗ [𝑘].

5.2 Aggregation of Shares
Two parties now obtain the secret shares of the membership results

𝑏𝑖 [𝑘] and corresponding payloads 𝑣𝑖 [𝑘]. Then the desired output

can be obtained by selecting one payload share 𝑣𝑖 [𝑘] for the smallest

index 𝑘 such that 𝑏𝑖 [𝑘] = 1. It can be easily checked that this can be

done by the recursive evaluation of the following MUX-gate
6
from

𝑘 = 𝑛 down to 𝑘 = 1:

𝑣𝑖 ← MUX(𝑣𝑖 [𝑘], 𝑣𝑖 , 𝑏𝑖 [𝑘]), (4)

where MUX(𝑣0, 𝑣1, 𝑏) outputs 𝑣𝑏 . Then it only remains to specify

how to evaluate the MUX-gate in a secret shared state. We consider

a simple protocol called SSMUX that performs this using two OTs,

whose details are presented by Algorithm 1.

Algorithm 1 Secret-Shared MUX (SSMUX).

Input: Secret shares of selector bit 𝑏, and two input strings 𝑣0, 𝑣1, say

𝑏∗, 𝑣∗
0
, 𝑣∗

1
for ∗ ∈ {𝑆, 𝑅}.

Output: Secret shares of 𝑣𝑏 , say 𝑣∗
𝑏
for ∗ ∈ {𝑆, 𝑅}.

// 1st OT
S picks random masking 𝑟S , and sets𝑚

𝑏S = 𝑣S
0
⊕ 𝑟S and𝑚

1−𝑏S =

𝑣S
1
⊕ 𝑟S .

Two parties execute SOT with messages𝑚0,𝑚1 from S and choice 𝑏R

from R, and R receives𝑚
𝑏R .

// 2nd OT
R picks random masking 𝑟R and sets𝑚′

𝑏R
= 𝑣R

0
⊕ 𝑟R and𝑚′

1−𝑏R
=

𝑣R
1
⊕ 𝑟R . Two parties execute SOT with messages𝑚′

0
,𝑚′

1
from R and

choice 𝑏S from S, and S receives𝑚′
𝑏S

// Finalize
S outputs 𝑣S

𝑏
:= 𝑟S ⊕𝑚′

𝑏S
, and R outputs 𝑣R

𝑏
:= 𝑟R ⊕𝑚

𝑏R .

Lemma 2. Algorithm 1 securely realizes a MUX evaluation in
a secret-shared state against semi-honest adversaries in the SOTℓ -
hybrid model.

Proof. See Section E.1. □

6
We abuse the terminology multiplexer (MUX) to take two strings as inputs, rather

than bit inputs of the standard notion for MUX.

577

Proceedings on Privacy Enhancing Technologies 2025(1) Kyoohyung Han, Seongkwang Kim, and Yongha Son

5.3 Full Protocol and Cost Analysis
Algorithm 2 shows the full description of our protocol, and Theo-

rem 1 shows that it securely realizes the ideal functionality in the

semi-honest model.

Algorithm 2 Private Fuzzy Left Join for the OTO matcher.

Input: R with an encoded table �̂� of size 𝑁𝑋 × 𝑛
S with an encoded table 𝑌 of size 𝑁𝑌 × 𝑛, and a payload set 𝑃𝑌 =

{𝑝𝑦 ∈ {0, 1}ℓ : 𝑦 ∈ 𝑌 }
// Generating Matching Shares

1: Both parties agree on the CPSI output size𝑀 =𝑂 (𝑁R)
2: for 𝑘 = 1 to 𝑛 do
3: Both parties run CPSI where R plays the receiver role with input

�̂� [𝑘] and S plays the sender role with input 𝑌 [𝑘] and 𝑃𝑌 . Each

party obtains (𝐵∗
𝑘
∥𝑉 ∗

𝑘
) for ∗ ∈ {S, R}, and R further obtain an

index map idx𝑘 .

// Unification of Alignment
4: R sets a random global index map gIdx : [𝑁𝑋] → [𝑀]
5: for 𝑘 = 1 to 𝑛 do
6: R picks a permutation 𝜋𝑘 : [𝑀] → [𝑀] satisfying 𝜋𝑘 (idx𝑘 (𝑥)) =

gIdx(𝑥) for every 𝑥 ∈ [𝑁𝑋]
7: Both parties run PnS, where R plays the sender role with input

𝜋𝑘 , and S plays the receiver role with input (𝐵S
𝑘
∥𝑉 S

𝑘
) . Each party

obtains (𝐵∗𝑘 ∥𝑉
∗
𝑘) for ∗ ∈ {S, R}.

8: For 𝑗 ∈ [𝑀], R updates (𝐵R𝑘 ∥𝑉
R
𝑘) as in Equation (2).

// Aggregation of Shares
9: Each party randomly samples𝑉 ∗ ← ({0, 1}ℓ)𝑀 and set 𝑏∗ = 0

𝑀 ∈
{0, 1}𝑀

10: for 𝑘 = 𝑛 down to 1 do
11: Both parties update𝑉 ∗ by the output of SSMUX on selector shares

�̄�∗
𝑘
and input strings 𝑉 ∗

𝑘
and 𝑉 ∗, and update 𝑏∗ by the output of

secrete shared OR computation using GMW protocol and input

strings �̄�∗
𝑘
and 𝑏∗.

12: Both parties

13: Each party outputs (𝑏∗,𝑉 ∗) for ∗ ∈ {S, R}, and receiver outputs

{gIdx} additionally.

Theorem 1. The protocol described in Algorithm 2 is a secure real-
ization of the ideal functionality given in Figure 7 against semi-honest
adversary, assuming that the CPSI protocol and the PnS protocol are
secure.

Proof. See Section E.2. □

Cost Analysis. The asymptotic complexity analysis can be found in

Section G, due to the space limit. The overall computation cost is

𝑂 (ℓ𝑛𝑁) ROTs and𝑂 (𝑛𝑁) OKVS operation, and the communication

cost is dominated by 𝑂 (ℓ𝑛𝑁 log𝑁).

6 Experiments
This section provides benchmark setup and implementation results

of our PFLJ protocol on fuzzy records. The source code is available

at https://github.com/samsungsds-research-papers/FuzzyPC.

Environment. The experiments were conducted on a single machine

equipped with 3.50 GHz Intel Xeon processors and 128 GB of RAM.

Network environments were simulated using the Linux tc com-

mand, with LAN configured with 5 Gbps bandwidth and 0.3 ms

latency, and WAN configured with 100 Mbps bandwidth and 40

ms latency (80 ms round-trip time). All experiments were executed

in a single-threaded environment unless otherwise specified. Our

source codes are developed in C++20 and leverage several libraries

for cryptographic operations and network simulation, including

the libOTe library [40], the vole-psi library [46], the xxHash li-

brary [17], and the Kuku library [26]. Notably, the xxHash library

is utilized exclusively for scenarios requiring a non-cryptographic

hash function.

MPC protocols. For OT extension (OTe) and vector-oblivious linear

evaluation (VOLE), we adopt the protocol described in [18], which

bases its security on the hardness of decoding structured LDPC

codes. In particular, we utilize the ExConv7x24 encoding outlined in
[38]. Additionally, the oblivious key-value store (OKVS) algorithm

presented in [37] is integrated into our deployed CPSI protocol [37].

General Parameters. Throughout this section, we assume a statis-

tical security parameter 𝜆 = 40 and a computational security pa-

rameter 𝜅 = 128. For cuckoo hashing within the CPSI protocol, we
utilize 𝛾 = 3 hash functions and set the table size𝑀 ≈ 1.3𝑁𝑌 , where

𝑁𝑌 denotes the number of records.

Setup and Online Separation. In multi-party cryptographic proto-

cols, the setup (or offline) phase is characterized as a preparatory

process that occurs prior to the receipt of specific input data. In

our protocol, the random OT extension is an operation that can be

efficiently executed during this setup phase. Consequently, we sep-

arately report the costs associated with both the setup and online

phases within the timing reports presented in this section.

6.1 Experiments with Various Datasets
In this section, we test overall performance of our protocol for the

given three datasets; DBLP-ACM, European Census, and NCVR,

whose descriptions are presented in Section 4.4. Table 4 summa-

rizes the performance of two different matcher (equality-based

and Jaccard LSH) on three datasets (European, NCVR, and DBLP-

ACM) with respect to communication cost, setup and online times,

and accuracy metrics. Note that our method achieves the same

accuracy metrics as the OTO matcher with deduplication, which

demonstrates the correctness of our protocol.

6.2 Comparison with MK-PMC
We compare with [8], which presents a close result to our proto-

col. Their work outputs a random identifier and provides a robust

security proof, albeit with the incidental leakage of the linkage

graph shape. For a fair comparison, we executed the open-sourced

implementation of their protocol Private-ID MultiKey7 within our

benchmark environment. Notably, we adapted the implementa-

tion to run with the given number of threads for consistency with

our testing conditions, as the original code is designed to utilize

maximal threads.

Table 5 compares the performance of our protocol and [8], on

the LAN/WAN network across dataset sizes (𝑁) and features (𝑛).

The performance metrics include communication cost, setup time,

and online time; PID protocol has no computation that can be

7
Available at https://github.com/facebookresearch/Private-ID.

578

https://github.com/samsungsds-research-papers/FuzzyPC
https://github.com/facebookresearch/Private-ID

Private Computation on Common Fuzzy Records Proceedings on Privacy Enhancing Technologies 2025(1)

Data Matcher 𝑛 (# Features) Comm. (MB) Network Setup (s) Online (s) Prec./Recall/F1

European

Equality-based 6 76.21 MB

LAN 4.47 1.13

0.999/0.902/0.948

WAN 12.37 15.27

Jaccard

LSH

100 1413.24 MB

LAN 75.9 22.02

0.992/0.938/0.965

WAN 188.72 273.47

NCVR

Equality-based 3 1615.02 MB

LAN 169.0 23.69

0.992/0.960/0.976

WAN 172.77 169.13

Jaccard

LSH

3 1615.02 MB

LAN 167.6 23.7

0.996/0.895/0.943

WAN 172.21 169.37

DBLP-ACM

Jaccard

LSH

50 91.92

LAN 4.95 1.68

0.959/0.935/0.947

WAN 53.55 65.85

Table 4: Communication cost, setup and online time, and accuracy measures for European, NCVR, and DBLP-ACM.

𝑁 𝑛 Method

Comm. LAN WAN

(MB) Setup Online Setup Online

10
5

3

Ours 147.58 10.71 1.97 16.2 18.9

PID 43.48 98.74 112.19

5

Ours 277.73 18.11 3.48 27.2 34.6

PID 61.79 143.34 161.54

7

Ours 407.86 25.55 4.89 38.1 50.9

PID 80.10 190.37 210.92

9

Ours 538.01 32.89 6.41 48.3 66.7

PID 98.42 240.62 265.42

10
6

3

Ours 1615.02 168.43 23.73 173.4 168.9

PID 434.87 1037.8 1093.9

5

Ours 3074.86 285.6 44.22 294.9 317.4

PID 617.98 1512.7 1597.59

7

Ours 4534.7 403.0 62.3 415.1 467.9

PID 801.08 2009.5 2118.6

9

Ours 6006.9 529.9 82.2 559.2 616.6

PID 984.19 2544.20 2672.5

Table 5: Comparison with Private-ID (PID) from [8] on LAN
network. 𝑁 is the number of records in each record table
where 𝑁 = 𝑁𝑋 = 𝑁𝑌 , and 𝑛 is the number of features (after
encoding).

done without input data, so the running time of previous work

is setup and online combined time. Our protocol shows higher

communication costs but lower setup and online times compared to

the PID method. For example, over LAN network with 𝑁 = 10
5
and

𝑛 = 3, our method has a communication cost of 147.58 MB, setup

time of 10.71s, and online time of 1.97s, whereas the PIDmethod has

a communication cost of 43.48 MB but a higher time of 98.74s with

no separation of setup and online. Over the WAN environment, our

protocol takes 16.2s for setup, and 18.9s for online phase, whereas

PID takes 112.19s for overall protocol. For financial cost analysis on

a cloud computing scenario, the PID protocol is expected to cost less

than ours regardless of network environment, as communication

tends to cost more than computation; for example, an AWSmachine

costs 0.0137 USD for our protocol and costs 0.0072 USD for the PID

protocol.
8

The PID protocol extensively utilized multi-threading, as their

underlying computations are highly friendly for it. However, due

8
Both R and S are assumed to use m7a.medium in Eastern United States. Protocol

runs for 3 features, and 10
5
records each.

𝑁 𝑛 #Thr.

LAN WAN

PID Ours PID Ours

total online total total online total

10
5

3

1 98.74

1.97 12.68

112.19

18.9 35.1

2 62.39 72.30

4 40.14 49.34

8 27.68 36.67

10
6

3

1 1037.8

23.73 192.2

1093.9

168.9 342.3

2 645.55 707.7

4 411.62 471.2

8 286.34 345.2

Table 6: Timings of PID [8] with multi-threading, versus our
single thread timing. 𝑁 is the number of records in each
record table where 𝑁 = 𝑁𝑋 = 𝑁𝑌 . “#Thr.” stands for the
number of used threads, and 𝑛 is the number of features
(after encoding).

to the complex computations and frequent interactions between

parties, our method has several challenges in leveraging the bene-

fits of multi-threading. Table 6 compares PID timing results with

multi-threading from 1 to 8 threads with our single thread timing.

It shows that the timing gap between our protocol, and Table 6

narrowed from 7.78x to 2.18x for 1 to 8 threads even for LAN net-

work. Although we observe no further gain by setting more threads

due to the limitation of our deployed machine, we have to say that

PID protocol could still be better than our protocol, provided with

sufficient multi-threading resources.

To conclude, although our protocol requires higher communi-

cation cost than the PID protocol, the advantage on setup and

online times results in better running time even for WAN network

of 100Mbps bandwidth and 80ms RTT. However, we clarify that

the PID protocol has a definite advantage on having smaller com-

munication cost and good multi-threading performance, which

makes it better than our protocol when the network environment

is much slower or each party has sufficient computational resource

for multi-threading.

References
[1] Federal and State Laws Restrict Use of SSNs, yet Gaps Remain. https://www.gao.

gov/assets/gao-05-1016t.pdf, 2005. United States Government Accountability

Office.

[2] Benchmark datasets for entity resolution, 2010. https://dbs.uni-leipzig.de/

research/projects/benchmark-datasets-for-entity-resolution.

579

https://www.gao.gov/assets/gao-05-1016t.pdf
https://www.gao.gov/assets/gao-05-1016t.pdf
https://dbs.uni-leipzig.de/research/projects/benchmark-datasets-for-entity-resolution
https://dbs.uni-leipzig.de/research/projects/benchmark-datasets-for-entity-resolution

Proceedings on Privacy Enhancing Technologies 2025(1) Kyoohyung Han, Seongkwang Kim, and Yongha Son

[3] Synthetic European Census Data, 2011. https://cros-legacy.ec.europa.eu/content/

job-training_en.

[4] North Carolina Voter Registration (NCVR) database snapshots, 2014. https:

//dl.ncsbe.gov/index.html?prefix=data/Snapshots/.

[5] SEER-Medicare database, 2020. https://healthcaredelivery.cancer.gov/

seermedicare/overview/linked.html.

[6] Adir, A., Aharoni, E., Drucker, N., Kushnir, E., Masalha, R., Mirkin, M., and

Soceanu, O. Privacy-preserving record linkage using local sensitive hash and

private set intersection, 2022.

[7] Arbitman, Y., Naor, M., and Segev, G. Backyard cuckoo hashing: Constant

worst-case operations with a succinct representation. In FOCS 2010 (2010), IEEE,
pp. 787–796.

[8] Buddhavarapu, P., Case, B. M., Gore, L., Knox, A., Mohassel, P., Sengupta, S.,

Taubeneck, E., and Xue, M. Multi-key Private Matching for Compute. Cryptol-

ogy ePrint Archive, Paper 2021/770, 2021. https://eprint.iacr.org/2021/770.

[9] Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E., and

Vlaskin, V. Private matching for compute. Cryptology ePrint Archive, Paper

2020/599, 2020. https://eprint.iacr.org/2020/599.

[10] Chandran, N., Gupta, D., and Shah, A. Circuit-PSI with Linear Complexity

via Relaxed Batch OPPRF. PoPETs 2022 (2022), 353–372.
[11] Charikar, M. S. Similarity Estimation Techniques from Rounding Algorithms. In

Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing
(New York, NY, USA, 2002), STOC ’02, Association for Computing Machinery,

p. 380–388.

[12] Chase, M., Ghosh, E., and Poburinnaya, O. Secret-shared shuffle. InASIACRYPT
2020 (Cham, 2020), Springer, pp. 342–372.

[13] Chen, F., Jiang, X., Wang, S., Schilling, L. M., Meeker, D., Ong, T., Matheny,

M. E., Doctor, J. N., Ohno-Machado, L., and Vaidya, J. Perfectly Secure and

Efficient Two-Party Electronic-Health-Record Linkage. IEEE Internet Computing
22, 2 (2018), 32–41.

[14] Christen, P., Ranbaduge, T., Vatsalan, D., and Schnell, R. Precise and fast

cryptanalysis for bloom filter based privacy-preserving record linkage. IEEE
Transactions on Knowledge and Data Engineering 31, 11 (2019), 2164–2177.

[15] Christen, P., Schnell, R., Vatsalan, D., and Ranbaduge, T. Efficient Crypt-

analysis of Bloom Filters for Privacy-Preserving Record Linkage. In Advances in
Knowledge Discovery and Data Mining (Cham, 2017), J. Kim, K. Shim, L. Cao, J.-G.

Lee, X. Lin, and Y.-S. Moon, Eds., Springer International Publishing, pp. 628–640.

[16] Ciampi, M., and Orlandi, C. Combining Private Set-Intersection with Secure

Two-Party Computation. In Security and Cryptography for Networks (Cham,

2018), D. Catalano and R. De Prisco, Eds., Springer International Publishing,

pp. 464–482.

[17] Collet, Y. xxhash: Extremely fast hash algorithm. GitHub https://github.
com/Cyan4973/xxHash (2023).

[18] Couteau, G., Rindal, P., and Raghuraman, S. Silver: Silent vole and oblivious

transfer from hardness of decoding structured ldpc codes. In CRYPTO 2021 (Cham,

2021), Springer, pp. 502–534.

[19] Dusetzina, S. B., Tyree, S., Meyer, A.-M., Meyer, A., Green, L., and Carpenter,

W. R. Linking data for health services research: a framework and instructional

guide.

[20] Fellegi, I. P., and Sunter, A. B. A Theory for Record Linkage. Journal of the
American Statistical Association 64, 328 (1969), 1183–1210.

[21] Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., and Yanai, A. Oblivious

key-value stores and amplification for private set intersection. In CRYPTO 2021
(2021), Springer, pp. 395–425.

[22] Huang, C., Zhang, F., Tan, M., Hou, C., Zhao, Y., Rao, H., Cheng, Y., Li, Z., and

Liu, Z. Idash 2022 track 4: Psi-circuit and oblivious switching network-based

privacy-preserving record linkage (team angelfl), 2022.

[23] Ion, M., Kreuter, B., Nergiz, A. E., Patel, S., Saxena, S., Seth, K., Raykova,

M., Shanahan, D., and Yung, M. On Deploying Secure Computing: Private

Intersection-Sum-with-Cardinality. In EuroS&P 2020 (2020), IEEE, pp. 370–389.
[24] Ishai, Y., Kilian, J., Nissim, K., and Petrank, E. Extending Oblivious Transfers

Efficiently. In CRYPTO 2003 (2003), Springer, pp. 145–161.
[25] Karakoç, F., and Küpçü, A. Linear Complexity Private Set Intersection for

Secure Two-Party Protocols. In Cryptology and Network Security (Cham, 2020),

S. Krenn, H. Shulman, and S. Vaudenay, Eds., Springer International Publishing,

pp. 409–429.

[26] Microsoft Kuku. https://github.com/microsoft/Kuku, 2021. Microsoft Research,

Redmond, WA.

[27] Kussel, T., Brenner, T., Tremper, G., Schepers, J., Lablans, M., and Hamacher,

K. Record linkage based patient intersection cardinality for rare disease studies

using Mainzelliste and secure multi-party computation. Journal of Translational
Medicine 20, 1 (Oct 2022), 458.

[28] Lazrig, I., Ong, T. C., Ray, I., Ray, I., Jiang, X., and Vaidya, J. Privacy preserving

probabilistic record linkage without trusted third party. In 2018 16th Annual
Conference on Privacy, Security and Trust (PST) (2018), pp. 1–10.

[29] Lepoint, T., Patel, S., Raykova, M., Seth, K., and Trieu, N. Private join and

compute from pir with default. In ASIACRYPT (2021), Springer, pp. 605–634.

[30] Mohassel, P., Rindal, P., and Rosulek, M. Fast database joins and psi for secret

shared data. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (2020), pp. 1271–1287.

[31] Mohassel, P., and Sadeghian, S. How to hide circuits in MPC an efficient

framework for private function evaluation. In EUROCRYPT 2013 (Cham, 2013),

Springer, pp. 557–574.

[32] Mouris, D., Masny, D., Trieu, N., Sengupta, S., Buddhavarapu, P., and Case,

B. Delegated private matching for compute. Cryptology ePrint Archive, Paper

2023/012, 2023. https://eprint.iacr.org/2023/012.

[33] Niedermeyer, F., Steinmetzer, S., Kroll, M., and Schnell, R. Cryptanalysis

of Basic Bloom Filters Used for Privacy Preserving Record Linkage. Journal of
Privacy and Confidentiality 6, 2 (Dec. 2014).

[34] Onar, S. Ç., Öztaysi, B., and Kahraman, C. Record linkage using fuzzy sets for

detecting suspicious financial ransactions. In 2015 Conference of the International
Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology
(IFSA-EUSFLAT-15) (2015), Atlantis Press, pp. 241–246.

[35] Pinkas, B., Schneider, T., Segev, G., and Zohner, M. Phasing: Private Set

Intersection Using Permutation-based Hashing. In USENIX 2015 (2015), USENIX
Association.

[36] Pinkas, B., Schneider, T., Tkachenko, O., and Yanai, A. Efficient Circuit-based

PSI with Linear Communication. In EUROCRYPT 2019 (Cham, 2019), Springer,

pp. 122–153.

[37] Raghuraman, S., and Rindal, P. Blazing fast psi from improved okvs and

subfield vole. In CCS 2022 (New York, NY, USA, 2022), ACM, p. 2505–2517.

[38] Raghuraman, S., Rindal, P., and Tanguy, T. Expand-convolute codes for pseu-

dorandom correlation generators from lpn. In Annual International Cryptology
Conference (2023), Springer, pp. 602–632.

[39] Randall, S., Wichmann, H., Brown, A., Boyd, J., Eitelhuber, T., Merchant,

A., and Ferrante, A. A blinded evaluation of privacy preserving record linkage

with Bloom filters. BMC Medical Research Methodology 22, 1 (Jan 2022), 22.

[40] Rindal, P. libote: an efficient, portable, and easy to use oblivious transfer library,

2022.

[41] Rindal, P., and Schoppmann, P. VOLE-PSI: Fast OPRF and Circuit-PSI from

Vector-OLE. In EUROCRYPT 2021 (Cham, 2021), Springer, pp. 901–930.

[42] Schnell, R. Privacy-preserving record linkage in the context of a national

statistics institut, 2021.

[43] Schnell, R., Bachteler, T., and Reiher, J. Privacy-preserving record linkage

using Bloom filters. BMC Medical Informatics and Decision Making 9, 1 (Aug

2009), 41.

[44] Schnell, R., and Borgs, C. Randomized response and balanced bloom filters for

privacy preserving record linkage. In 2016 IEEE 16th International Conference on
Data Mining Workshops (ICDMW) (2016), pp. 218–224.

[45] Stammler, S., Kussel, T., Schoppmann, P., Stampe, F., Tremper, G., Katzen-

beisser, S., Hamacher, K., and Lablans, M. Mainzelliste SecureEpiLinker (Main-

SEL): privacy-preserving record linkage using secure multi-party computation.

Bioinformatics 38, 6 (09 2020), 1657–1668.
[46] Visa-Research. volepsi: Efficient private set intersection base on vole, 2022.

[47] Yang, K., Weng, C., Lan, X., Zhang, J., and Wang, X. Ferret: Fast extension

for correlated ot with small communication. In CCS 2020 (New York, NY, USA,

2020), ACM, pp. 1607–1626.

Appendix A Quasi-Identifiers Details
European Census. Among the raw data with 12 quasi-identifiers,

we used the following 9 quasi-identifiers: PERNAME1, PERNAME2,
DOB_DAY, DOB_MON, DOB_YEAR, ENUMPC, ENUMCAP.

For the similarity-based matcher and LSH encoding, we concate-

nate all 9 quasi-identifiers as one long string. For the equality-based

matcher, we set the match threshold 1, and assign score 1 on the

following combinations of quasi-identifiers.

• PERNAME1 (Soundex), PERNAME2 (Soundex), 2 out of 3 DOB
(date of birth) parts, sex.

• ENUMPC, ENUMCAP, 2 out of 3 DOB (date of birth) parts.

NCVR Among the raw data with 90 quasi-identifiers, we used the

following 10 quasi-identifiers: first name, middle name, last
name, house number, street number, zip code, birth place,
birth year, phone area code, phone number.

For the similarity-based matcher and LSH encoding, we concate-

nate all 10 quasi-identifiers as one long string. For the equality-

based matcher, we set the match threshold 1, and assign score 1

580

https://cros-legacy.ec.europa.eu/content/job-training_en
https://cros-legacy.ec.europa.eu/content/job-training_en
https://dl.ncsbe.gov/index.html?prefix=data/Snapshots/
https://dl.ncsbe.gov/index.html?prefix=data/Snapshots/
https://healthcaredelivery.cancer.gov/seermedicare/overview/linked.html
https://healthcaredelivery.cancer.gov/seermedicare/overview/linked.html
https://eprint.iacr.org/2021/770
https://eprint.iacr.org/2020/599
https://github.com/microsoft/Kuku
https://eprint.iacr.org/2023/012

Private Computation on Common Fuzzy Records Proceedings on Privacy Enhancing Technologies 2025(1)

on the following combinations of quasi-identifiers: first name,
middle name, last name and one of the following sets:

• house number, street number, zip code
• birth place, birth year
• phone area code, phone number

Appendix B Angular Similarity and LSH

(a) DBLP-ACM, Jaccard (b) DBLP-ACM, Cosine

(c) European Census, Jaccard (d) European Census, Cosine

Figure 8: Similarity distributions for true match paris (green)
and false match pairs (red). For the false match pair, we ran-
domly sample 10000 pairs.

The underlying idea of LSH encoding with AND-OR amplifica-

tion is to judge two strings 𝑥 and 𝑦 of similarity 𝑝 := 𝑆 (𝑥,𝑦) with
probability 1−(1−𝑝𝑟)𝑏 . To compute the angular similarity between

strings, we relied on a vectorizer map𝑉 that converts a string 𝑠 into

some numerical vector𝑉 (𝑠) ∈ R𝑛
. The problem is that our deployed

vectorize map is (a variant of) one hot encoding of 𝑞-grams, which

always makes 𝑉 (𝑠) has non-negative component. This makes any

two strings 𝑥 and 𝑦 has at least 0.5 angular similarity; whereas

Jaccard similarity of two strings can vary from 0 to 1. As a visual

explanation, Figure 8 shows the distributions of similarity for true

match pairs and false match pairs. Considering the AND-OR pa-

rameters (𝑟, 𝑏) is chosen so that the curve 1− (1−𝑝𝑟)𝑏 distinguishes
the green and red parts, 𝑟 and 𝑏 should be large enough to have a

steep curve than Jaccard similarity if the same F1 score is required.

Appendix C Accuracy Metrics
To measure the quality of our matching, we use the unique payload

in the given dataset to check whether the linkage is correct or not.

When an entity in the receiver’s data is matched by some entity

in the sender’s data, we define the result as correct if the result

payload is the same as the sender’s payload. Precisely, Algorithm 3

shows how we compute true-positive to false-negative.

Algorithm 3 Accuracy Measurement

Input: Linkage information link : [𝑁R] → [𝑁S] ∪ {⊥}, the re-
ceiver’s received payload𝑉S , and the sender’s original pay-
load 𝑉R

Output: (tp, tn, fp, fn)
for 𝑖 ∈ [𝑁R] do

if link(𝑖) ≠⊥ then
if 𝑉R [𝑖] =𝑉S [link(𝑖)] then

tp+ = 1

else
fn+ = 1

else
if 𝑉R [𝑖] ∈ 𝑉S then

// Wrong ID is assigned
fp+ = 1

else
tn+ = 1

return (tp, tn, fp, fn))

Then the accuracy metrics such as Prec, Recall and F1 are defined
by

Prec =
tp

tp + fp, Recall =
tp

tp + fn, F1 =
2

Prec−1 + Recall−1
.

Appendix D Experiments with Various Input
Sizes

This section reports the experimental outcomes for various input

settings including the number of records and the number of features.

To check the performance in various input settings, we randomly

generate for the given number of records 𝑁𝑋 , 𝑁𝑌 and the number

of features 𝑛.

Figure 9 presents a detailed analysis of the performance by plot-

ting the time taken for various components (CPSI, PnS, AS) against
the number of input data points, and the number of features after

encoding. These figures provide insights of how each component’s

processing time scales with different input sizes and the number of

features counts.

Both graphs clearly demonstrate that the CPSI component is the

most time-consuming part of the process. The total processing time

seems to grow linearly (which is theoretically not true for huge 𝑁)

in both the number of records and the number of features.

Appendix E Missing Proofs
E.1 Proof for Lemma 2
Proof. The security proof is immediate; each SOT output reveals

nothing since it is randomly masked, and the intermediate view of

SOT can be simulated by the SOT simulator.

We proceed to the correctness proof. The output of the first OT

𝑚𝑏R is 𝑣S
0
⊕ 𝑟 S if 𝑏R = 𝑏S , and 𝑣S

1
⊕ 𝑟 S if 𝑏R = 1 ⊕ 𝑏S , which is

exactly the same with 𝑣S
𝑏
⊕ 𝑟 S . Then, the first OT generates the

secret shares of 𝑣S
𝑏
, where S obtains 𝑟 S and R obtains 𝑣S

𝑏
⊕ 𝑟 S .

Similarly, the second OT generates the secret shares of 𝑣R
𝑏
. At the

finalize step, two parties locally add each share of 𝑣S
𝑏
and 𝑣R

𝑏
, which

becomes secret shares of 𝑣𝑏 . □
581

Proceedings on Privacy Enhancing Technologies 2025(1) Kyoohyung Han, Seongkwang Kim, and Yongha Son

0 1 · 10
5

2 · 10
5

3 · 10
5

4 · 10
5

5 · 10
5

0

2

4

6

Input data

T
i
m
e
(
s
)

CPSI

PnS
AS

(a) Various input sizes 𝑁𝑋 = 𝑁𝑌 with three features (𝑛 = 3).

4 6 8

0

2

4

Features (after encoding)

T
i
m
e
(
s
)

CPSI

PnS
AS

(b) Various number of features with 𝑁𝑋 = 𝑁𝑌 = 10
5.

Figure 9: Timings for each part according to the size of inputs
and the number of features on LAN network.

E.2 Proof for Theorem 1
Proof. As the correctness is already discussed in the protocol

detail explanation so far, we only need to prove the security. For a

corrupt receiver, it is sufficient to simulate the views consisting of

the outputs of CPSI, PnS, and SSMUX. The simulation can be done

by replacing all the outputs with uniform random. Precisely, the

simulator T interacts with R as follows.

• T plays the role of Fcpsi. When R sends 𝑌 [𝑘] to Fcpsi, T
sends random shares 𝐵R

𝑘
∈ {0, 1}𝑀 and 𝑉 R

𝑘
∈ ({0, 1}ℓ)𝑀 .

• T plays the role of Fpns. When R sends 𝜋𝑘 to Fpns, T sends

random shares 𝐵
R
𝑘 ∈ {0, 1}𝑀 and 𝑉

R
𝑘 ∈ ({0, 1}ℓ)𝑀 .

• T plays the role of Fssmux. When R sends the input shares

to Fssmux, T sends a random share 𝑣∗.

To prove that this simulation is indistinguishable from the real

protocol, we consider the following hybrid worlds.

• Hybrid 0: The same as the real protocol.

• Hybrid 1: T in this world plays the role of Fcpsi and Fpns.
We already assumed that CPSI and PnS are secure, and those
protocol outputs a uniformly random shares by definition.

So, this world is indistinguishable from the previous world.

• Hybrid 2: Now, T in this world additionally plays the role of

Fssmux. As Lemma 2 already proved that SSMUX is secure,

it is indistinguishable from the previous world. One can

observe that this world is same as the simulation.

For a corrupt sender, it is sufficient to simulate the views consist-

ing of the outputs of CPSI, PnS, and SSMUX, whose proof is almost

similar to that for a corrupt receiver. □

Algorithm 4 Deduplication.

Input: An encoded record table 𝑋 of size 𝑁𝑋 × 𝑛
1: Set I = ∅
2: for 𝑘 = 1 to 𝑛 do
3: for 𝑖 = 1 to 𝑁𝑋 do
4: if 𝑖 ∉ I then
5: Compute 𝐷 = { 𝑗 ∈ [𝑁𝑋] |𝑋𝑖 [𝑘] = 𝑋 𝑗 [𝑘]}.
6: Choose 𝑗∗ ←$ 𝐷 .

7: For 𝑗 ∈ 𝐷\{ 𝑗∗}, replace 𝑋 𝑗 [𝑘] to a random string

from {0, 1}𝜆 until 𝑋 𝑗 [𝑘] ∉ 𝑋 [𝑘].
8: Update I = I ∪ 𝐷 .

return 𝑋

Appendix F Deduplication Process
Appendix G Details for Cost Analysis
Table 7 summarizes the analysis below. Given the statistical security

parameter 𝜆, we choose the table size𝑀 = 𝜀 · 𝑁𝑋 for some 𝜀 > 1 so

that cuckoo hashing with 𝛾 hash functions fails with probability

less than 2
−𝜆
. As a typical example, 𝜆 = 40 and 𝛾 = 3 yields 𝑀 ≈

1.3𝑁𝑋 [35], so we regard𝑀 =𝑂 (𝑁𝑋) below.
For the CPSI step, we employ the OPPRF-based protocols [36, 37,

41]. Here we simply give a rough summary of the cost, and refer to

the original papers for the details [36, 37, 41]. As the first step, both

parties compute and interact with each other using a special linear

system solver called oblivious key-value store (OKVS) [21, 37],

whose computation complexity is𝑂 (𝑁𝑌 +𝑁𝑋) and communication

complexity is 𝑂 (𝜅𝑁𝑌 + 𝛾ℓ𝑁𝑋). Next, the second part consists of

𝑂 (𝜆𝑀) times of COT1, whose computation cost is 𝑂 (𝜆𝑀) times

of ROT and communication cost is 𝑂 (𝜆𝑀). This process will be
executed 𝑛 times in our protocol.

For the alignment step, we employ the switching network-based

protocol of PnS [31]. It requires 𝑂 (𝑀 log𝑀) times of COT2ℓpns

where ℓpns is the bit-length of each input vector entry, whose

computation cost is 𝑂 (𝑀 log𝑀) times of ROT and communica-

tion is 𝑂 (ℓ𝑀 log𝑀) bits. Usually, the input vector is of the form
(𝐵S [𝑘] ∥𝑉 S [𝑘]) and we have ℓpns = 1 + ℓ . If there is no need to

generate ID shares for some 𝑘 , the input vector could be the Boolean

vector 𝐵S [𝑘], and we have only ℓpns = 1. This process is executed

𝑛 times (or 𝑛 − 1 times considering the global index optimization).

The final share aggregation step requires 𝑛 times of SSMUX calls

per each row of the secret share table. As one SSMUX requires two

SOTℓ calls, we count the computation cost by 2𝑛 times ROT, and
the communication cost by 4ℓ + 2. As we have𝑀 = 𝜀𝑁𝑋 rows, the

total computation cost is counted as 𝑂 (𝑛𝑁) times of ROT, and the

communication cost is 𝑂 (ℓ𝑛𝑁).

582

Private Computation on Common Fuzzy Records Proceedings on Privacy Enhancing Technologies 2025(1)

CPSI PnS AS

Comp.

ROTs 𝑂 (𝜆𝑛𝑁) 𝑂 (𝑛𝑁 log𝑁) 𝑂 (𝑛𝑁)
Other 𝑂 (𝑛𝑁) OKVS - -

Comm. 𝑂 (𝑛(𝜅 + ℓ)𝑁) 𝑂 (𝑛ℓ𝑁 log𝑁) 𝑂 (ℓ𝑛𝑁)
Table 7: Asymptotic complexities of each step (in the worst
case) of our protocol, assuming 𝑂 (𝑁) = 𝑁𝑌 ≈ 𝑁𝑋 . 𝜅 is the
computational security parameter, and ℓ is the bit-length of
the payload.

583

	Abstract
	1 Introduction
	1.1 Private Matching and Analysis
	1.2 Our Contribution
	1.3 Comparison with PMC
	1.4 Applications

	2 Backgrounds
	2.1 Notations
	2.2 Oblivious Transfer
	2.3 Circuit-based PSI
	2.4 Permute-and-Share

	3 Private Fuzzy Left Join
	3.1 Fuzzy Matching and Unique Matcher
	3.2 Private Fuzzy Left Join
	3.3 Overview of Our Approach

	4 Ordered Threshold-One Matcher
	4.1 Ordered Threshold-One Matcher
	4.2 Encoding from Similarity-Based Matcher
	4.3 Encoding from Equality-Based Matcher
	4.4 Experimental Result on Accuracy

	5 Private Fuzzy Left Join Protocol for Ordered-Threshold-One Matcher
	5.1 Generating Membership Share
	5.2 Aggregation of Shares
	5.3 Full Protocol and Cost Analysis

	6 Experiments
	6.1 Experiments with Various Datasets
	6.2 Comparison with MK-PMC

	References
	A Quasi-Identifiers Details
	B Angular Similarity and LSH
	C Accuracy Metrics
	D Experiments with Various Input Sizes
	E Missing Proofs
	E.1 Proof for Lemma 2
	E.2 Proof for Theorem 1

	F Deduplication Process
	G Details for Cost Analysis

