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Abstract
Training a machine learning model with data following a meaning-

ful order, i.e., from easy to hard, has been proven to be effective

in accelerating the training process and achieving better model

performance. The key enabling technique is curriculum learning

(CL), which has seen great success and has been deployed in areas

like image and text classification. Yet, how CL affects the privacy of

machine learning is unclear. Given that CL changes the way amodel

memorizes the training data, its influence on data privacy needs to

be thoroughly evaluated. To fill this knowledge gap, we perform

the first study and leverage membership inference attack (MIA)

and attribute inference attack (AIA) as two vectors to quantify the

privacy leakage caused by CL.

Our evaluation of 9 real-world datasets with attack methods (NN-

based, metric-based, label-only MIA, and NN-based AIA) revealed

new insights about CL. First, MIA becomes slightly more effective

when CL is applied, but the impact is much more prominent to

a subset of training samples ranked as difficult. Second, a model

trained under CL is less vulnerable under AIA, compared to MIA.

Third, the existing defense techniques like MemGuard and Mix-

upMMD are not effective under CL. Finally, based on our insights

into CL, we propose a new MIA, termed Diff-Cali, which exploits

the difficulty scores for result calibration and is demonstrated to be

effective against all CL methods and the normal training method.

With this study, we hope to draw the community’s attention to the

unintended privacy risks of emerging machine-learning techniques

and develop new attack benchmarks and defense solutions.
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1 Introduction
Key to the success of machine learning (ML), especially deep learn-

ing (DL), is the advancement of algorithms, software, and hardware

in training models on large-scale datasets. The traditional way to

train a neural network (NN) is by feeding the training pipeline

with random mini-batches in a sequence sampled from the training
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dataset. In other words, NN is forced to “remember” samples repeat-

edly in random order. On the other hand, human always learns the

easy concepts first and then the hard ones, as guided by curricula.

Given that NN is inspired by the human brain [69], curriculum learn-

ing (CL), which simulates human learning by ordering the training

data with difficulty scores and repeating the order across training

epochs, has been proposed [3]. With a “teacher” network, the dif-

ficult scores can be generated ahead of the samples and guide the

training process. Previous studies have shown that CL can achieve

both fast learning speed and high test accuracy [81, 89], and CL

has been adopted in many application domains like computer vi-

sion [3, 15, 70, 80], natural language processing [3, 25, 52, 82, 101],

and claiming prominent successes [89].

Despite the huge success of ML, the privacy issues of ML are

becoming more and more concerning, given that the training data

could contain a large amount of sensitive information. The two

most notable privacy attacks are the membership inference attack

(MIA) [38, 75] and the attribute inference attack (AIA) [78], where

MIA aims to infer whether a given data sample is used to train the

target model and AIA aims to infer the sensitive attribute of a data

sample. Numerous attacks have emerged and have demonstrated

that privacy threats are real (e.g., over 80% MIA accuracy against

CIFAR100 [72]). Recent studies have also shown the data samples

are not equally vulnerable under privacy attacks [94], and the attack

effectiveness could differ across target classes [38], target individu-

als [55], and subgroups [7]. Yet, all previous works assume standard,

stochastic training is employed by the target model. Hence, one

interesting and important research problem is how new training
techniques impact privacy for the overall population and individual
samples. In this work, we specifically study the privacy risks of

CL. We are particularly motivated because CL modifies the data

order and repeatedly feeds the same samples, which differs from

other learning techniques such as self-supervised learning [53]. In

general, CL lets a model treat samples differently based on their

difficulty levels
1
, and we are interested in whether CL introduces

disparate impact on privacy of subgroups, aggravating “privacy un-
fairness” [99]. Furthermore, Shumailov et al. [76] studied the connec-

tion between data ordering and backdoor attacks, which indicates

data ordering could have negative impacts. This further motivates

us to investigate the privacy risks of CL.

1
The terms “difficulty level” and “difficulty score” are interchangeable.
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Our Study. We take a quantitative approach to measure the pri-

vacy risks of CL. We selected two popular CL methods, bootstrap-

ping [27] and transfer learning [91], as the evaluation objects, and

constructed two other curriculummethods, named baseline curricu-

lum and anti-curriculum, to understand the impact of data ordering

and repeating, respectively. We selected 9 real-world, large-scale

datasets (6 are image datasets and 3 are tabular datasets), trained

target models with those CL methods and a normal method, and

attacked the models with representative MIA and AIA methods.

Regarding MIA, our evaluation shows that the target models

become slightly more vulnerable under CL. For example, the aver-

age attack accuracy (trained on ResNet-18 with transfer leaning)

on our selected image datasets ranges from 0.01% to 2.46%. More

importantly, we found CL has a much bigger impact on the sam-

ples within the difficult group compared to the easy group, with

the biggest gap of 4.23% in terms of attack accuracy for CIFAR100

(ResNet-18 is the architecture). This observation sustains both im-

age and non-image datasets. We found the reason is that the data

order influences the learning process in a way that makes the model

memorize difficult samples better, which is supported by measuring

the memorization scores. Regarding AIA, we found CL does not

increase the attack accuracy, which can be explained by the fact

that the sensitive attribute to be inferred is not influenced by data

ordering and repeating.

In addition to understanding the attacks, we also study existing

defenses under the CL settings, including MemGuard [38], Mixup-

MMD [48] and AdvReg [62]. The result shows that none of them

can mitigate the threats from MIA, especially when CL is used to

train the target models. Though DP-SGD [1] is another important

defense, we found it cannot be applied to the CL settings, as CL

breaks the DP guarantee due to data ordering and repeating.

Inspired by CL and a recent MIA that calibrates membership

scores to achieve better attack accuracy [90], we consider the diffi-

culty score as input for calibration and proposed a newMIAmethod,

named Diff-Cali (difficulty calibrated MIA). Our attack not only

brings the difficult samples to a more vulnerable stage but also

achieves a higher true-positive rate at low false-positive rate re-

gions. With this study, we hope to draw more attention to the

privacy risks introduced by the new learning techniques and moti-

vate the development of new protection mechanisms.

Contributions. The contributions of this work are summarized

as follows.

• We take the first step to understanding the privacy risks

introduced by CL.

• We conduct a comprehensive analysis to quantify the privacy

risks and our results show CL introduces disparate impacts

to samples separated by difficulty levels.

• We propose a new MIA that exploits the difficulty scores for

better attack performance.

2 Preliminary
2.1 Curriculum Learning
Curriculum learning (CL) [3] is designed to emulate the concept of

the human learning process. The general idea is to have a curriculum
that imposes a structure on the training data so the “student” ML

models can learn from the easier samples before the harder ones. As

a result, training ML models under CL observes a shorter duration

of convergence and higher testing accuracy [3, 24, 27, 91]. For

example, Weinshall et al. proposed to use transfer learning to build

the curriculum and achieved 0.5% to 3.5% higher accuracy than a

model trained in the normal setting [91]. CL has gained significant

interest from the ML community, powering real-world applications

in many domains. Section 7 provides a more detailed survey.

Below, we formalize CL following the definition of Hacohen

et al. [27]. Let X = {𝑋𝑖 }𝑁𝑖=1 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 be the training dataset,

where 𝑁 is the number of samples, 𝑥𝑖 is a data point, and 𝑦𝑖 is the

label of 𝑥𝑖 . 𝑇 is the ML model to be trained. Assuming Stochastic

Gradient Descent (SGD) is used for optimization, and each training

iteration takes a mini-batch ofX, and a sequence of𝑀 mini-batches

B1, . . . ,B𝑀 will be used for each epoch. The standard training

procedure will sample X uniformly to generate the mini-batches.

Instead, CL uses a difficulty measurer 𝑓 (X,𝐶) to generate difficult

scores for X, and a training scheduler sorts X by the difficult scores

in an ascending order ahead of training.𝐶 is the curriculum, and we

will elaborate on its common options in Section 4.1. A sequence of

subsets X′
1
, . . . ,X′

𝑀
⊆ X are extracted from X after sorting, and the

size of X′𝑖 is determined by a pacing function 𝑔(𝑖). A mini-batch B𝑖
is sampled uniformly fromX′𝑖 . Algorithm 1 summarizes the process.

Noticeably, slight changes can be applied (e.g., skip the step of mini-

batch sampling), but they should not affect the conclusions drawn

from this study.

Algorithm 1: Curriculum learning framework.

Input: Training dataset X = {Xi}Ni=1, difficulty measurer

f(X,C), pacing function g(i), number of iterations M,

number of epochs E, target model T
1 X ← 𝑓 (X,𝐶);
2 for 𝑒 ∈ 1, . . . , 𝐸 do
3 for 𝑖 ∈ 1, . . . , 𝑀 do
4 X′𝑖 ← X[1, . . . , 𝑔(𝑖)];
5 B𝑖 ← 𝑠𝑎𝑚𝑝𝑙𝑒(X′𝑖 );
6 𝑇 ← 𝑡𝑟𝑎𝑖𝑛 (𝑇,B𝑖 )

2.2 Privacy Risks in Machine Learning
Prior works have shown that the ML models could memorize sen-

sitive information from the training data, which can be inferred

by an adversary who keeps querying the model. Two major types

of attacks are MIA [62, 63, 72, 75] and AIA [59, 78], which have

been extensively studied. The detailed literature survey of privacy

attacks and other attacks is left to Section 7.

Membership Inference Attack (MIA). Given a target model 𝑇

and any adversary’s external knowledge 𝐾 , the goal of MIA is to

determine whether a data sample 𝑥 was used to train the model.

Formally, we have:

A𝑀𝐼 : 𝑥,𝑇 , 𝐾 ↦→ 1 or 0 (1)

where𝑇 is the target model and𝐾 is the adversary’s external knowl-

edge, e.g., the distribution of the training data for 𝑇 . 1 (0) denotes

the sample is a member (non-member).
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MIA can lead to serious privacy threats. For example, given a

model trained on clinical records of cancer patients to determine

the medicine dosage [38], the attacker can learn whether a person

has cancer by applying MIA to the model. We follow previous

work [11, 50, 72, 75, 79] and assume that the adversary only has

black-box access to 𝑇 , which means that the adversary can only

query 𝑇 with the data sample and obtain its corresponding output.

Then, A𝑀𝐼 predicts membership with the output of 𝑇 . Section 4.2

elaborates the details.

Attribute Inference Attack (AIA). Different from MIA, the goal

of AIA is to infer attributes of a data sample that are not related to

the target model’s original classification task. A specific attack sce-

nario is when AIA is used to infer some hidden sensitive attributes.

For instance, a target model is trained to conduct gender classifi-

cation, while AIA aims to infer the political view of a data sample.

Such attribute is often hidden when training the target model. How-

ever, due to the intrinsic over-learning property of ML [78], a target

model may try to capture attributes not directly relevant to its task.

Note that AIA is different from property inference attack (PIA) [22]

which infers a property about the entire dataset rather than a sam-

ple: e.g., PIA can tell whether a training dataset is gender-balanced.

Instead of having direct access to the sample, we follow previous

work [59, 78] and consider the adversary only has its representation
(e.g., embedding) generated by a target model 𝑇 . Formally, AIA can

be defined as:

A𝐴𝐼 : ℎ ↦→ 𝑠 (2)

where ℎ is a sample’s representation provided by 𝑇 and 𝑠 is the

sample’s sensitive attribute predicted by A𝐴𝐼 .

Compared to MIA, the connection between AIA and CL might

be less direct, but we are motivated to study this issue because CL

makes the samples trained in the later batches introduce a greater

impact on the trained model, and we suspect these samples are

more vulnerable under AIA. Moreover, a recent study [35] suggests

learning the underlying training distribution, which might not

always be public, can boost AIA. In Appendix E, we elaborate the

details of AIA.

3 Datasets and Target Models
In this work, we aim to quantify the privacy risks introduced by CL

through the lens of MIA and AIA. To this end, we select popular

datasets and models that are used for ML classification tasks. In our

study, a total of 9 unique datasets are used, with 8 datasets used

for MIAs and 3 datasets used for AIA. Among these datasets, 6 of

them are image datasets, while the remaining 3 datasets consist of

non-image data.

Datasets. Regarding MIA, we use the following 8 datasets, which

are also adopted by previous work [32, 51, 60, 75]. They are CI-

FAR100 [44], Tiny ImageNet [47], Place100, Place 60 [100], SVHN [64],

Purchase [75], Texas hospital stays [75] and Locations [95]. We fo-

cus on image datasets mainly (the first 5 datasets), but tabular

datasets are also evaluated. Due to page limits, we defer the de-

tailed description of the MIA datasets to Appendix A. Regarding

the AIA datasets, we use Place100, Place60 and another dataset

UTKFace [97]. We describe them in Appendix A as well.

Target Models. We adopt three popular neural network architec-

tures of different learning capacities as the target models’ archi-

tectures for the image datasets. They are ResNet-18 [29], ResNet-

34 [29] and MobileNet [73]. We adopt cross-entropy as the loss

function and SGD as the optimizer. We train all models for 200

epochs with a batch size of 128 by default. The learning rate is

set to 0.12. For the non-image dataset Purchase and Location, we

choose a 3-layer MLP with the same number of epochs and batch

size. The number of neurons in the hidden layer is 256. For the Texas

dataset, we use a 5-layer MLP with 512 neurons in the hidden layer

because this dataset contains more features. To avoid fortuitous

outcomes, all experiments are repeated five times with different

random seeds, and the standard deviations are presented.

4 Methodology
In this section, we describe the curriculum designs experimented

with by our study, the implementation of the basic MIA, our pro-

posed MIA, and the defense techniques to be tested. The implemen-

tation of the basic AIA is described in Appendix E.

4.1 Curriculum Designs
We choose two popular curriculum learning (CL) methods, which

are highlighted in surveys like Wang et al. [89] and have open-

source implementations [26, 83], to train the target model. We

expect our major observations (described in Section 5) are also

applicable to other CL methods, like self-paced curriculum [40, 45],

and automated curriculum [24], because they share similar high-

level ideas (e.g., self-paced curriculum differs from bootstrapping

only in that self-paced curriculum does not let the curriculum

completely guide its learning process). Below we explain the two

CL methods.

• Bootstrapping [27]. The target model 𝑇 is first trained

without CL, then it serves as a difficulty measurer (𝑓 in Al-

gorithm 1) to order the training samples by their loss.

• Transfer learning [91]. Different from bootstrapping, a

pre-trained model is used for the difficulty measurer. We

use inception-v3 [84]
3
as the pre-trained model to evaluate

the image datasets. The evaluation on tabular datasets with

transfer learning is skipped, as we did not find a widely used

pre-trained model in such a setting.

To better assess the improvement brought by the above two CL

methods and their vulnerabilities under attacks, we establish two

other methods for comparison.

• Baseline curriculum. It uses a random curriculum that is

irrelevant to the data samples’ difficulty. This curriculum is

then used across all training epochs. The normal training

process is different in that a random order is drawn for every

training epoch.

• Anti-curriculum. It shares the same difficulty measurer

with bootstrapping but arranges the samples from difficult

to easy, reversing the outcome of bootstrapping.

2
This learning rate is empirically chosen and has a very limited effect on attack

accuracy. For example, when using a learning rate of 0.001, the MIA accuracy is

affected by less than 0.2% when attacking a ResNet-18 model trained on CIFAR100.

3
It is a widely-used image recognition model that achieves over 78.1% accuracy on the

ImageNet dataset [13].
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For the pacing function 𝑔, we choose varied exponential pac-

ing [27], exponentially increasing the fraction of data by steps (a

step denotes the iterations with the same output of 𝑔). According

to [27], different pacing functions perform similarly.

In summary, the four CLmethods differ in the difficulty measurer

and each CL method feeds training data using the same curriculum

(or ordering) across all epochs. The baseline and anti-curriculum

methods help us understand the contribution of data ranking and

order fixing separately (e.g., anti-curriculum can be considered as

using a wrong curriculum but still repeating the order across epochs

as advised by CL).

As described in Section 2.1, CL can accelerate the training process

to reach higher accuracy. We first validate this claim by evaluating

the training performance and the testing accuracy and compar-

ing them to the normal training method, which does not use any

curriculum as guidance.

Table 1 validates the effectiveness of CL. At least one of the four

CL methods can outperform the normal training by 0.06% to 4.42%,

and the corresponding average training accuracy is given in Ap-

pendix B (Training Accuracy). The maximum standard deviation in

Table 1 is 0.0221 while 32 out of 37 results have a standard devia-

tion less than 0.01. This indicates the difference among various CL

methods is statistically significant. It is worth noticing that boot-

strapping and transfer learning always outperform normal training,

and anti-curriculum performs the worst consistently. Interestingly,

we observe that the baseline performs as well as the transfer learn-

ing curriculum for Place100 and Place60, which means the transfer

learning curriculum does not suit these two datasets well. Figure 1

validates the major motivation of adopting CL, i.e., reaching higher

accuracy while converging faster. Throughout most of the training,

bootstrapping and transfer learning reach higher accuracy faster

than all the other methods. At the same time, it takes the longest for

the anti-curriculum to reach the same training accuracy compared

to all other methods. This indicates that repeating a meaningful

data order improves training. This observation aligns with the dis-

covery from previous work [27, 93]. Finally, CL is expected to have

a disparate impact on classification accuracy across samples. Be-

sides the analysis in Section 5, we also use t-distributed stochastic

neighbor embedding (t-SNE) to visualize this impact. More details

including the visualization are in Appendix B (t-SNE Study).

4.2 Basic MIA
After providing a high-level overview of MIA in Section 2.2, we now

delve into the details, focusing on the three well-known attacks:

NN-based (Neural Network-based) [71, 75], metric-based [79], and

label-only attacks [11, 50].

NN-based attack assumes a vector of prediction posteriors (e.g.,
confidence scores or loss) of all class labels can be returned by the

target model 𝑇 when querying 𝑇 with a data sample 𝑥 . It is also

assumed that the adversary has a shadow dataset (D) that has the

same distribution and format as 𝑇 ’s private training dataset. D is

used to train a set of shadow models S that behave similarly as 𝑇

(e.g., having the same architecture as 𝑇 like previous work [72, 75,

79]). The attacker trains an attack model A𝑀𝐼 using S. In particular,

the attacker queries every shadow model S with the samples from

its own training dataset and a disjoint testing dataset. The prediction

posteriors of all samples and whether they are in training (denoted

member) or testing (denoted non-member) are used as input to

train A𝑀𝐼 . Finally, the attacker queries 𝑇 with a sample of interest

𝑥 and uses the prediction posteriors as the input to A𝑀𝐼 to predict

the membership status.

Compared to the NN-based attack, the model A𝑀𝐼 of metric-

based attacks does not need to be trained. Instead, A𝑀𝐼 generates

a privacy risk score from the output of 𝑇 and compares it to class-

specific thresholds.

For the label-only attack, it assumes only the prediction label

instead of the prediction posteriors are returned from 𝑇 . Still, the

adversary can continuously add adversarial perturbations to the

input sample 𝑥 until its prediction label has been changed. The key

insight is that themagnitude of the adversarial perturbation is larger

for the member sample as 𝑇 gives a more confident prediction. D
and S can be used to select a threshold to separate the perturbation

magnitudes of members and non-members.

MIA Models. Following the original setting of the NN-based

attacks [75], we adopt a 3-layer MLP with 64 and 32 hidden neurons,

and 2 output neurons, as our attack model A𝑀𝐼 . We use cross-

entropy as the loss function and Adam as the optimizer with a

learning rate of 0.01. A𝑀𝐼 is trained for 100 epochs. For metric-

based attacks, we follow the implementation of Song et al. [79]

and consider 4 metrics, including correctness, confidence, entropy,

and modified entropy. The associated attack methods are named

metric-corr, metric-conf, metric-ent, and metric-ment. For label-

only attacks, we leverage the implementation from ART [86].

Related research has shown that NN-based attacks often achieve

better attack accuracy compared to metric-based and label-only

attacks [32, 72, 75]. Thus, we use NN-based attack (specifically

black-box-top3) for most of our evaluation in Section 5.

4.3 Our Proposed MIA
Given that CL orders training samples by difficulty, impacting the

model, we investigate the potential enhancement of MIA when the

target model is trained under CL. For this purpose, we propose

a novel MIA method called Diff-Cali specifically tailored for CL.

We first introduce calibrated MIA, which serves as inspiration for

designing Diff-Cali, followed by the details of Diff-Cali.

Calibrated MIA. Recently, Watson et al. [90] proposed to use a

calibrated membership score instead of the standard membership

score (e.g., loss) to determinewhether a sample is amember. Assume

𝑠(𝑇, 𝑥 ) is the original membership score, where𝑇 is the target model,

and 𝑥 is a sample. The calibrated membership score 𝑠𝑐𝑎𝑙 (𝑇, 𝑥) is

defined as follows:

𝑠𝑐𝑎𝑙 (𝑇, 𝑥) = 𝑠(𝑇, 𝑥) − ES←A(D)[𝑠(S, 𝑥)] (3)

where S are shadow models
4
that behave similarly as 𝑇 , D is the

shadow dataset, functions 𝑠(𝑇, 𝑥) and 𝑠(S, 𝑥) output the member-

ship scores from target and shadow models, A randomly samples

subsets of D to train S, and E computes the expectation of 𝑠(S, 𝑥 ).
Finally, 𝑠𝑐𝑎𝑙 (𝑇, 𝑥) is compared to a fixed threshold 𝜃 , and a sample

is considered a member if 𝑠𝑐𝑎𝑙 (𝑇, 𝑥) ≥ 𝜃 .

4S are named as reference models in [90], which resemble shadow models [75] as

they are also trained on the same data distribution of𝑇 .
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Dataset

Method

Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

Tiny ImageNet 0.3842 ± 0.0027 0.4002 ± 0.0043 0.3776 ± 0.0036 0.3798 ± 0.0035 0.3803 ± 0.0043

CIFAR100 0.6081 ± 0.0053 0.6232 ± 0.0078 0.5991 ± 0.0098 0.6099 ± 0.0045 0.6127 ± 0.0221

Place100 0.2992 ± 0.0054 0.3159 ± 0.0059 0.2967 ± 0.0037 0.3088 ± 0.0060 0.3007 ± 0.0053

Place60 0.4756 ± 0.0041 0.4903 ± 0.0040 0.4815 ± 0.0025 0.4847 ± 0.0071 0.4707 ± 0.0154

SVHN 0.9592 ± 0.0004 0.9598 ± 0.0006 0.9566 ± 0.0005 0.9593 ± 0.0006 0.9599 ± 0.0006

Purchase 0.4931 ± 0.0055 0.5324 ± 0.0037 0.4760 ± 0.0055 0.5289 ± 0.0043 -

Texas 0.4809 ± 0.0072 0.4975 ± 0.0066 0.4606 ± 0.0101 0.4877 ± 0.0095 -

Location 0.5861 ± 0.0107 0.5914 ± 0.0027 0.5563 ± 0.0156 0.5838 ± 0.0077 -

Table 1: Target model’s average test accuracy on different datasets. ResNet-18 is used for all image datasets, and MLP for
non-image datasets Purchase, Texas, and Location. Transfer learning CL does not apply to non-image datasets. The target
model accuracy is relatively low except for SVHN because we use a subset of the original training data.
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Figure 1: The training accuracy of different training methods with ResNet-18 on CIFAR100 along the increase of epochs (total
of 90 epochs). Bootstrapping, transfer learning, and baseline reach higher accuracy faster and converge to a better result.

Previous MIA methods could have a high false positive rate

(FPR) on non-members, often over-represented in the samples to be

tested by the attacker. Equation 3 addresses this issue by using the

difference between the target model and shadow models to derive

the membership signal: if 𝑥 is non-member to S, it is also more

likely non-member to 𝑇 , therefore 𝑠𝑐𝑎𝑙 (𝑇, 𝑥) should be small. The

evaluation results in [90] show the area under ROC curve (AUC)

can be improved “by up to 0.10” (e.g., after calibrating the loss-based

membership score with Equation 3).

Difficulty CalibratedMIA (Diff-Cali). Calibrated MIA compares

𝑠𝑐𝑎𝑙 (𝑇, 𝑥) of all samples to a fixed threshold 𝜃 , and we argue that 𝜃

can be calibrated as well. We observe that a CL curriculum re-orders

the samples by their difficulty before the target model is trained, and

such strategy changes how a sample is memorized and vulnerable

under MIA (see Section 5.1 and Section 5.2). More specifically, we

observe that CL makes the target model more vulnerable to MIA,

and this impact is even more pronounced for difficult samples

(Finding 1 in Section 5.1). Therefore, we can update 𝜃 according

to the curriculum and make the attack model more accurate. We

assume the attacker can generate a curriculum similar as the one

used by the target model. For example, the attacker can use the

publicly released pre-trained model to generate the curriculum.

Alternatively, the attacker can train shadow models similar to the

target model and build a curriculum according to loss from them.

We implement this idea for NN-based MIA. When the attack

model A𝑀𝐼 outputs the prediction posteriors for an input 𝑥 , the

posterior of the label “member” is compared against 𝜃 , and 𝑥 is

predicted as a member when the posterior is larger. When train-

ing A𝑀𝐼 , we adjust 𝜃 based on samples’ difficulty level to im-

prove the training accuracy, and the pseudo-code is shown in Al-

gorithm 2. Specifically, in each epoch, the calibrated membership

scores 𝑠𝑐𝑎𝑙 (𝑇,D) are generated for ∀𝑥 ∈ D, and we use the loss to

compute 𝑠 (Line 2). Next, we try to find the threshold 𝜃0 (ranging

from 0 to 0.1 based on our empirical study) that achieves the best

accuracy in separating members and non-members from D (Line

3). After that, A𝑀𝐼 is updated by minimizing the training loss on

D (Line 4) by adjusting the threshold with the following function:

𝑔(𝑥,𝐶, 𝜃0) =
( |D|−𝐶(𝑥 )) (𝜃0 − 0.0001)

|D|−1 + 0.0001 (4)

where 𝐶(𝑥) indicates the rank of sample 𝑥 given by curriculum 𝐶 .

The rank for the easiest sample is 1, while the most difficult is |D|.
𝑔(𝑥,𝐶, 𝜃0) is to assign a threshold 𝜃 from [0.0001, 𝜃0] (0.0001 is the

initial threshold suggested by [90]) to each 𝑥 based on its difficulty

level (determined by a curriculum 𝐶), that is, calibrating threshold
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of each 𝑥 based their difficulty level. The most difficult sample

compares to 0.0001, the easiest one compares to 𝜃0, and others

compare to 𝜃 that is ranged in [0.0001, 𝜃0]. The more difficult 𝑥 has

a smaller threshold, meaning that we are lowering the bar for them

to be predicted as members compared to the easy samples. During

the testing phase, the threshold for a sample 𝑥 is also adjusted with

𝑔(𝑥,𝐶, 𝜃0).

Algorithm 2: Training the attack model and adjusting

threshold under Diff-Cali. “pred” is “prediction”.

Input: Target model𝑇𝑇𝑇 , reference model SSS, shadow dataset

DDD, labels of shadow dataset 𝐿𝐿𝐿, attack modelA𝑀𝐼A𝑀𝐼A𝑀𝐼 ,

curriculum𝐶𝐶𝐶 , number of epochs 𝐸𝐸𝐸

1 for 𝑒 ∈ 1, . . . , 𝐸 do
2 𝑠𝑐𝑎𝑙 (𝑇,D) = 𝑠 (𝑇,D) − 𝑠 (𝑆,D);
3 𝜃0 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜃

pred(A𝑀𝐼 , 𝐿, 𝑠𝑐𝑎𝑙 (𝑇,D));

4 A𝑀𝐼 ← 𝑡𝑟𝑎𝑖𝑛 (A𝑀𝐼 , 𝑠𝑐𝑎𝑙 (𝑇,D) , 𝑔 (𝑥,𝐶, 𝜃0));

Diff-Cali follows the direction of addressing the issue caused

by over-represented non-members [5, 90]. On top of those works,

Diff-Cali is customized under CL to amplify the effects of MIA. To

demonstrate the benefit of Diff-Cali, we compare it with the score-

based membership attack after difficulty calibration with default

threshold in Cal [90].

Overall, Diff-Cali outperforms Cal by 4.0% to 9.9% of attack accu-

racy while maintaining the same AUC. Besides, Diff-Cali improves

MIA’s TPR at extremely low FPR, making the difficult sample more

vulnerable. This focus (on the low FPR regime) is the setting with

the most practical consequences, i.e., de-identifying even a few

users contained in a sensitive dataset is far more significant than

making an average-case statement like ‘most people are not in the

sensitive dataset’ [5]. Moreover, we conclude that the knowledge

of the actual curriculum being used is not required for the perfor-

mance boost from introducing Diff-Cali (See Figure 4). The detailed

evaluation of Diff-Cali across all metrics such as attack accuracy,

confidence score, and TPR at low FPR are presented in Section 5.3.

Some recent works suggest to use class-specific thresholds [79],

which are especially beneficial for unbalanced datasets. We did not

adjust the threshold by classes because our thresholds have been

fine-tuned with difficulty levels, and they are effective for both

balanced and unbalanced datasets.

4.4 Defense Methods
Some defense methods have been proposed to reduce the success

rate of privacy attacks, in particular, MIA. We are interested in

how they perform under curriculum learning and our proposed

attack. To this end, we select DP-SGD [1], MemGuard [38], Mixup-

MMD [48] and AdvReg [62]. DP-SGD andMemGuard represent two

directions in privacy protection, while MixupMMD and AdvReg

are two more recent defense methods. Below, we explain the four

defense methods.

DP-SGD. Differentially-Private Stochastic Gradient Descent (DP-

SGD) modifies the stochastic gradient descent (SGD) algorithm and

integrates (𝜖, 𝛿)-DP [16] to provide provable privacy guarantee.

Definition 1. ((𝜖, 𝛿)-DP) An algorithmM(·) satisfies (𝜖, 𝛿)- dif-
ferential privacy ((𝜖, 𝛿)-DP), if and only if for any pair of datasets 𝑉
and 𝑉 ′ that differs in only one element and for any possible output
set 𝑂

Pr [M(𝑉 ) ∈ 𝑂] ≤ 𝑒𝜖 Pr [M(𝑉 ′) ∈ 𝑂] + 𝛿. (5)

DP-SGD first randomly groups the samples by batches. Within

a batch, after a per-sample gradient is computed, DP-SGD clips it

to a maximum norm 𝐶 and Gaussian noise is added to the gradi-

ent aggregated within the batch, with standard deviation 𝛿𝐶 . The

output of the trained model will satisfy (𝜖, 𝛿)-DP.

Because DP-SGD relies on random sampling, the DP guarantees

in DP-SGD could be invalidated under CL, because the model will

be trained with the same or public curriculum. Thus, we only show

results of DP-SGD in normal training, and use it as a baseline to

compare with the other methods.

MemGuard. Different from DP-SGD, MemGuard does not change

the training process. At a high level, it obfuscates the predictions

of the target model by adding noises to its output. It is designed to

defend against MIA in particular, while DP-SGD deals with all sorts

of privacy risks. Assuming an attack model A𝑀𝐼 has been trained

with shadow training [75], and A𝑀𝐼 (𝑇 (𝑥), 𝑦) outputs a confidence

score ranging in [0, 1], where 𝑇 (𝑥) is the prediction of the target

model and 𝑦 is the label for 𝑥 . A sample is considered a member if

the score is larger than 0.5 and a non-member if smaller than 0.5.

MemGuard has two phases. In Phase 1, it crafts adversarial noise

and adds it to 𝑇 (𝑥) to force A𝑀𝐼 (𝑇 (𝑥), 𝑦) to be 0.5 to confuse the

attacker, while the distance between the original prediction and

the noisy prediction is minimized. In phase II, the adversary adds

the noise to the original prediction with a certain probability of

trade-off the utility and privacy.

MixupMMD. Li et al. [48] found a model vulnerability under MIA

relates to the difference between the training and testing accuracy,

and they proposed MixupMMD to intentionally reduce the training

accuracy to validation accuracy. A new penalty, Maximum Mean

Discrepancy (MMD), is used by the regularizer.

AdvReg. Nasr et al. [62] proposed to mitigate MIA by formulating

the defense as a min-max optimization problem. Given a validation

set that serves as “non-members”, AdvReg introduces an adversar-

ial classifier to infer the membership status using the posteriors

generated from the target model. The optimization goal is to mini-

mize the original classification loss and maximize the loss of the

adversarial classifier.

5 Evaluation Results
In this section, we present the evaluation results of MIA when CL

is applied to train the target model. We also attempt to explain the

observations from the angle of data memorization and show the

impact of CL on the existing defenses. We highlight our insights

with text boxes. In Appendix E, we report the evaluation about AIA,

but in general, CL is less vulnerable under AIA compared to MIA.

Evaluation Setup. To evaluate MIA, we split each dataset de-

scribed in Section 3 into three disjoint parts: one for training the

target model, one for training a shadow model, and one for testing

both the target and shadow model.
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Dataset

Method

Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

Tiny ImageNet 0.9193 ± 0.0000 0.9385 ± 0.0000 0.9116 ± 0.0001 0.9207 ± 0.0000 0.9439 ± 0.0000

CIFAR100 0.8577 ± 0.0011 0.8751 ± 0.0001 0.8376 ± 0.0001 0.8582 ± 0.0001 0.8718 ± 0.0001

Place100 0.9425 ± 0.0000 0.9549 ± 0.0001 0.9335 ± 0.0001 0.9416 ± 0.0001 0.9617 ± 0.0001

Place60 0.8773 ± 0.0022 0.8987 ± 0.0001 0.8625 ± 0.0001 0.8827 ± 0.0001 0.8902 ± 0.0001

SVHN 0.5570 ± 0.0000 0.5605 ± 0.0002 0.5514 ± 0.0001 0.5599 ± 0.0003 0.5580 ± 0.0003

Purchase 0.9524 ± 0.0016 0.9453 ± 0.0024 0.9118 ± 0.0122 0.9458 ± 0.0015 -

Texas 0.6749 ± 0.0092 0.7068 ± 0.0139 0.5950 ± 0.0161 0.7039 ± 0.0122 -

Location 0.9153 ± 0.0066 0.9194 ± 0.0048 0.8980 ± 0.0038 0.9169 ± 0.0038 -

Table 2: Accuracy of NN-based MIA on models trained on 8 datasets. Transfer learning CL does not apply to non-image dataset
Purchase, Texas and Location.

To evaluate the defense methods, we split each dataset into five

parts as some advanced methods need reference datasets for train-

ing. More details about the defenses can be found in Section 5.4. All

experiments were repeated 5 times to minimize the fortuitous out-

comes, and the mean value and standard deviation were reported.

Evaluation Metrics. First, we compute the attack accuracy, mea-

sured by the correct predictions (member/non-member) versus

all predictions, to assess the effectiveness of MIA/AIA, and the

classification accuracy of the target model to assess the impact of

curriculum learning and defenses. Second, to better understand the

attack results, we retrieve the confidence scores of members and

non-members, respectively. Note that the confidence score indi-

cates the likelihood of a sample being classified as a member or

non-member. Third, we compute the true-positive rate (TPR) at the

false-positive rate (FPR) of the attacks. As noted by Carlini et al. [5],

attacks should emphasize the member guesses over non-member

guesses, so they should be evaluated by considering TPR at low FPR.

This cannot be precisely modeled by metrics like overall accuracy,

precision, or recall.

5.1 Evaluation of Basic MIA
We start with the experiments on the 5 image datasets (CIFAR100,

Tiny ImageNet, Place100, Place60, and SVHN), using ResNet-18 as

the target model architecture and later ResNet-34 and MobileNet

for comparison. The evaluation of the tabular datasets (Purchase,

Texas hospital stays, and Locations) is presented at the end. The

attack models are described in Section 4.2.

MIA Accuracy. We found that models trained using meaningful

CL methods (i.e., bootstrapping and transfer learning) are slightly

more vulnerable to MIA. Table 2 shows the accuracy of NN-based

black-box-top3 MIA [75] by datasets and CL methods. All experi-

ments are repeated five times with different random seeds and the

standard deviations are presented. Additionally, we run McNemar’s

test and verify that the difference among models trained with var-

ious curriculum methods are statistically significant (i.e., p-value

< 0.05). The biggest attack accuracy improvement observed for im-

age datasets is 2.46% (Tiny ImageNet with transfer learning) while

the biggest improvement for non-image datasets is 3.20% (Texas

with bootstrapping). Among different CL methods, bootstrapping

and transfer learning are the most vulnerable, with an average of

1.29% and 1.44% improvement in the attack accuracy against the

normal training, respectively. For baseline CL, the attack accuracy

decreases for Place100, whereas a slight increase is observed for

the attack accuracy on other datasets. For anti-curriculum CL, the

attack accuracy decreases for all datasets. This result indicates both

the data repeating (reflected by the results of baseline) and ordering

(reflected by the results of bootstrapping and anti-curriculum) of CL

(explained in Section 4.1) contribute to the vulnerability under MIA.

The consistent performance of bootstrapping and anti-curriculum

indicates that data ordering plays a bigger role.
Regarding the impact of datasets, we foundmore complex datasets

(e.g., with more classes of labels) tend to have higher attack accu-

racy in general. For example, the average MIA accuracy is 94.39%

for Tiny ImageNet (200 classes), 87.18% for CIFAR100 (100 classes),

96.17% for Place100 (100 classes), 89.02% for Place60 (60 classes),

and 55.80% for SVHN (10 classes), all under transfer learning. The

same effects have also been observed in other works [75].

Regarding the metric-based and label-only attacks, the result

is similar to the NN-based attack, as suggested by the evaluation

on CIFAR100, shown in Table 3. The only exception is metric-corr,

which performs worse than other attacks with bootstrapping. This

result can be explained by the assumption of metric-corr that the

target model is trained to predict correctly on its training data,

which may not generalize well on the test data. In the rest of the

evaluation, we fix the attack model to black-box-top3, and the

NN-based attack in the rest of the paper primarily refers to black-

box-top3, unless indicated otherwise.
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Figure 2: MIA accuracy on CIFAR-100, Tiny ImageNet.
ResNet-18 is used for target model training.
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Attack

Method

Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

NN-based [75] 0.8577 ± 0.0011 0.8751 ± 0.0001 0.8376 ± 0.0002 0.8582 ± 0.0001 0.8718 ± 0.0001

Metric-corr [79] 0.6920 ± 0.0000 0.6820 ± 0.0000 0.6905 ± 0.0000 0.6930 ± 0.0000 0.6855 ± 0.0000

Metric-conf [79] 0.8600 ± 0.0000 0.8810 ± 0.0000 0.8458 ± 0.0000 0.8553 ± 0.0000 0.8740 ± 0.0000

Metric-ent [79] 0.8490 ± 0.0000 0.8750 ± 0.0000 0.8320 ± 0.0000 0.8435 ± 0.0000 0.8685 ± 0.0000

Metric-ment [79] 0.8620 ± 0.0000 0.8820 ± 0.0000 0.8463 ± 0.0000 0.8568 ± 0.0000 0.8760 ± 0.0000

Label-only [86] 0.8200 ± 0.0082 0.8263 ± 0.0082 0.7963 ± 0.0117 0.8050 ± 0.0045 0.8088 ± 0.0074

Cali [90] 0.7889 ± 0.0012 0.8272 ± 0.0009 0.7532 ± 0.0004 0.7781 ± 0.0025 0.8148 ± 0.0013

Diff-Cali 0.8519 ± 0.0003 0.8670 ± 0.0006 0.8382 ± 0.0006 0.8438 ± 0.0008 0.8614 ± 0.0006

Table 3: Average accuracy of NN-based, metric-based, label-only and Diff-Cali attacks on models trained on CIFAR100 with
ResNet-18.

Figure 2 shows the attack accuracy of samples from different

difficulty levels. More specifically, we construct the test dataset as

half member samples and half non-member samples. Member sam-

ples are divided into different difficulty levels while non-member

samples across each difficulty level are fixed. Figure 2 demonstrates

that using a meaningful curriculum (i.e., bootstrapping and transfer

learning) introduces a higher increase of attack accuracy on the

difficult samples compared to the simple samples (e.g., 7% vs. 2.5%

on CIFAR100). Hence, the impact of curriculum is more pronounced

on difficult samples than on simple samples.

Confidence Score. Since the key contribution of CL is to factor

in the samples’ difficulty levels during the training procedure, here

we evaluate how difficulty levels impact the samples’ vulnerability

individually. Intuitively, the difficult member samples should be

harder to attack than the easy member samples. As we can see from

Figure 3a, and Figure 3b, the confidence scores of difficult member

samples are closer to the score distribution of non-member samples.

On the other hand, difficult non-member samples could be easily

attacked, as they have significantly lower confidence scores. How-

ever, since CL forces the model to learn the samples in a repetitive

manner, we want to find out whether samples will be remembered

by the model differently. To assess and quantify the possible privacy

risk discrepancy caused by CL, we first arrange samples according

to their difficulty level. Then, we use the confidence score and at-

tack accuracy to analyze individual samples. Note that we train a

separate model and use the sample loss given by this model as a

guide to determine how difficult a sample is. This model is used

solely for getting the difficulty levels of all samples and is different

from the target model in our following evaluation.

Figure 3 depicts the attack model’s confidence score by samples’

difficulty levels, when CIFAR100 and Tiny ImageNet are tested.

Though the difficult samples are not more vulnerable than the easy

samples, the gap in confidence scores is much narrower (espe-
cially for the confidence score of members). Take the target model

in CIFAR100 as an example, our attack model can recognize the

most difficult member samples (scored as difficulty level 9) from

this model with over 7.83% (absolute growth from 72.19% to 80.02%)

more confidence, thanks to transfer learning (Figure 3a). Interest-

ingly, for the most difficult member samples, it is even possible

for anti-curriculum to have a higher confidence score compared

to the normal training (Figure 3c). This observation indicates that

enforcing difficult samples to the training process first does not nec-

essarily make the model more likely to forget them. If we perceive

feeding difficult samples first to a model as negative, the repetition

of a curriculum can possibly compensate for such a negative effect,

i.e., making the target model memorize the difficult samples better

than a normal ML where these samples are presented at random

times throughout training. In Appendix C, we show the confidence

scores on the other image datasets, including SVHN (Figure 11),

Place100 (Figure 12) and Place60 (Figure 13). The trend is similar.

TPR at Low FPR. In addition to the attack accuracy, we mea-

sured the relationship between TPR and low FPR, as explained in

“Evaluation Metrics” (Section 5). Following Carlini et al. [5], we

present the ROC curve for the attacks with both linear scaling and

log scaling to emphasize the low-FPR regime. Figure 4a and Fig-

ure 4b demonstrate the ROC curve for NN-based attack. The results

show that using curriculum increases ROC. The TPR of transfer

learning and bootstrapping are generally higher than the others

except at extremely low FPR (< 10
−4
). This indicates CL introduces

disparate impact to members and non-members for most samples.

Moreover, the NN-based attack fails to achieve a TPR better than

random chance at any FPR below 0.045, indicating potential for

further improvement.

Loss Distribution. The previous evaluation presents a macro-

level understanding of CL’s impact on MIA. Here we present a

micro-level analysis by examining the loss distribution between

members and non-members in models trained with normal and CL

methods. Due to the space limitation, here we only show the results

of ResNet-18 trained on Tiny ImageNet in Figure 5 which shows a

clearer discrepancy in terms of the loss distributions compared to

other datasets. Note that the loss scores are normalized. As one can

see, there is a clear difference between their loss distributions, e.g.,

bootstrapping makes the overall members’ loss much lower and

the members’ loss distribution less overlapped with non-members’,

especially for those members with higher difficulty levels. In Sec-

tion 5.2, we also reason this observation from the perspective of

data memorization.

Target Model Architectures. To understand the impact of the

architecture of the target model, we launched MIA against ResNet-

34 and MobileNet and compared the results against ResNet-18.

Table 4 demonstrates the average attack accuracy of MIA when tar-

get models are trained with ResNet-18, ResNet-34, and MobileNet,
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Figure 3: Attackmodel’s confidence score for bothmember and non-member samples on CIFAR-100 and Tiny ImageNet. ResNet-
18 is used for target model training, and data samples are arranged according to their difficulty scores from bootstrapping.

Architecture

Method

Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

ResNet-18 0.8577 ± 0.0011 0.8751 ± 0.0001 0.8376 ± 0.0002 0.8582 ± 0.0001 0.8718 ± 0.0001

ResNet-34 0.8564 ± 0.0001 0.8746 ± 0.0003 0.8481 ± 0.0002 0.8559 ± 0.0002 0.8715 ± 0.0002

MobileNet 0.7979 ± 0.0001 0.8308 ± 0.0000 0.7763 ± 0.0002 0.8318 ± 0.0000 0.8430 ± 0.0001

Table 4: The average accuracy of NN-based attacks on models trained on different network architectures with CIFAR100.
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Figure 4: TPR/FPR of NN_based MIA and Diff-Cali under dif-
ferent trainingmethod trained with ResNet-18 on CIFAR100.

respectively. It shows that they all share a similar trend of how

CL affects MIA. Though MobileNet turns out to be less vulnera-

ble (5.85% and 5.93% less attack accuracy compared to ResNet-34

and ResNet-18, respectively), bootstrapping, transfer learning, and

baseline all increase the overall attack accuracy compared to nor-

mal training. Figure 6 demonstrates the results by difficulty levels

on ResNet-34 and MobileNet when training with Tiny ImageNet,

which can be viewed together with Figure 2b about ResNet-18.
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Figure 5: Loss distribution for models trained on Tiny Ima-
geNet with ResNet-18.

MobileNet again turns out to be less vulnerable (4% less attack accu-

racy compared to ResNet-34 and ResNet-18), bootstrapping, transfer

learning, and baseline all increase the overall attack accuracy and

narrow down the gap between difficult and easy samples. As such,

the privacy concerns in CL cannot be addressed by changing the

target models’ architectures. This observation is consistent with

other works [32, 50] about MIA vs. architectures. On a different

note, we speculate that MobileNet is less vulnerable compared to

ResNet due to its more limited learning capacity, which results in

less over-fitting and memorization, making it more robust against

MIA. We discuss the overfitting issue further in Section 6.

Non-image Datasets. As shown in Table 2, most experiments

remain to have the same trend they are showing in image datasets.

For Purchase, however, attack accuracy on normal training is 0.71%

higher than bootstrapping for example. This shows that CL does not

always empower MIA more. In Figure 14 of Appendix C, we show

the confidence score of members and non-members on Purchase,

and the result is similar to the image datasets, where the impact of

CL is more prominent on difficult samples.

621



Proceedings on Privacy Enhancing Technologies 2025(1) Joann Qiongna Chen, Xinlei He, Zheng Li, Yang Zhang, and Zhou Li

0 2 4 6 8
Difficulty Level

0.89

0.90

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

Normal 
Bootstrapping 
Anti-curriculum
Baseline 
Transfer Learning

(a) ResNet-34

0 2 4 6 8
Difficulty Level

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

(b) MobileNet

Figure 6: MIA accuracy for target model trained on Tiny
ImageNet with ResNet-34 and MobileNet, respectively.

In the meantime, we found the changes caused by different CL

methods are more drastic on the non-image datasets, compared to

the image datasets. For example, Texas has a more prominent attack

accuracy drop (8.0%) on anti-curriculum. The non-image datasets

are relatively simple, containing only binary features after pre-

processing, hence they are more likely to be impacted by CL. Table 1

also shows the target model accuracy varies more for the non-image

datasets under CL.

Finding 1: CL makes the target model more vulnerable to MIA,

and the impact of CL on difficult samples is more pronounced

than on simple samples.

Finding 2: Both data ordering and data repeating make a model

more vulnerable under MIA, while data ordering plays a bigger

role in influencing the vulnerability of a model under MIA.

5.2 Analysis with Data Memorization
The previous experiments show that the impact of CL on difficult

samples is more pronounced than on simple samples. Here, we

attempt to explain this observation with a more principled analysis.

Recent works [17, 18] suggest the effectiveness of MIA could be

tied to how well the target modelmemorizes individual data sample.

The notion of memorization is formally defined as [17]:

mem(A,D, 𝑖) := 𝑃𝑟
𝑇∼𝐴(𝐷 )

[𝑇 (𝑥𝑖 ) = 𝑦𝑖 ] − 𝑃𝑟
𝑇∼𝐴(𝐷\𝑖 )

[𝑇 (𝑥𝑖 ) = 𝑦𝑖 ] (6)

where A denotes the training algorithm, D denotes the training

dataset, 𝑇 is the trained model, (𝑥𝑖 , 𝑦𝑖 ) denotes one sample with

its ground-truth label, and D\𝑖 denotes D with 𝑖-th sample re-

moved. The model is likely to memorize the data sample if adding

(𝑥𝑖 , 𝑦𝑖 ) to training significantly changes the model’s prediction on

𝑦𝑖 . Though Equation 6 models the memorization of a single data

sample, we can easily extend it to quantify the memorization of

multiple samples at once.

Specifically, we evaluate ResNet-18 trained with CIFAR100. We

first leave out 800 most difficult data samples (4% of all samples)

and train a model without these data via bootstrapping (“not seen”).

Then, we train the model under CL according to data memorization:

the curriculum makes the 800 data samples either be seen at the be-

ginning (“first seen”), end (“last seen”), or random places (“random”)

of each training epoch. Figure 7 depicts the prediction probability

of the true labels of the 4 scenarios. Data memorization under CL

Not Seen First Seen Random Last Seen
Scenario

0.0

0.2

0.4

0.6

0.8

1.0

Pr
[T

(x
i)=
y i

]

Figure 7: Memorization: violin plots of prediction probability
of 800 most difficult samples, according to bootstrapping CL.
The horizontal bars of each violin represent the minimum
and maximum of the prediction probability.

can be assessed by comparing “first seen”, “last seen”, and “random”

to “not seen”, following the idea of Equation 6. We observe that

other than “not seen”, the other three scenarios memorize the diffi-

cult samples fairly well (higher prediction probability of the true

class). It turns out that data ordering has a strong impact on data

memorization, e.g., “last seen” provides the strongest memoriza-

tion compared to “first seen” and “random”. The impact on difficult

samples is more pronounced under CL because they are memorized

better after data ordering. Another concept often considered to be

connected to memorization is data valuation. In Appendix D, we

elaborate on the topic of data Shapley and study if our observation

in this section can be explained from the angle of data valuation.

Finding 3: CL forces the model to memorize the difficult samples

harder, which makes them more vulnerable.

5.3 Evaluation of Diff-Cali
In order to fully utilize the information of difficulty levels exposed

by CL, we propose Diff-Cali as described in Section 4.3. Overall, the

NN-based attack still has a slightly better attack accuracy compared

to Diff-Cali, but Diff-Cali has higher confidence scores for difficult

samples and has better TPR at the low FPR regime.
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Figure 8: Diff-Cali’s accuracy formodels trained onCIFAR100
and Tiny ImageNet with ResNet-18.

Attack Accuracy. Table 3 presents the accuracy of Diff-Cali,

which is about 1% lower compared to NN-based attack on all CL

methods. Figure 8 depicts the attack accuracy on CIFAR100 and

Tiny ImageNet. Though Diff-Cali achieves slightly lower accuracy
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(a difference of less than 1.44%) compared to NN-based attack, with

adaptive calibration, we are able to make the difficult samples
more vulnerable: For example, the attack accuracy of difficulty

level at 9 and 0 are 86.47% and 86.32% for transfer learning under

CIFAR100. The most difficult samples now can be predicted 2.64%

and 2.35% more accurately for normal and anti-curriculum ML,

respectively. Overall, Diff-Cali is able to overcome the privacy risk

discrepancy of different samples through calibration and results

in better attack accuracy for difficult samples for normal ML and

anti-curriculum ML.

Confidence Score. Like the evaluation of basic MIA, we show the

confidence scores of samples according to their difficulty level in Fig-

ure 15 and Figure 16 of Appendix C. Overall, we are able to achieve

confidence scores greater than 0.7807 (normal) for CIFAR100 and

0.8678 (normal) for Tiny ImageNet for all member samples, whereas

the minimum member confidence score from NN-based is 0.6889

for CIFAR100 and 0.8333 for Tiny ImageNet (Figure 3). In short,

we are able to improve the normal training confidence score for

all members by 3.29% for CIFAR100 and 3.45% for Tiny ImageNet.

Similarly, we reduce the confidence score of non-members (note

that a lower confidence score means less chance to be misclassified

as non-members) by 0.0414 for CIFAR100 and 0.1751 for Tiny Ima-

geNet. Unlike previous NN-based attack, the accuracy of Diff-Cali

does not share a similar trend as the confidence score because the

final prediction of the membership status of Diff-Cali is not based

on the confidence score solely.

TPR at Low FPR. In Figure 4, we show that Diff-Cali can achieve

much higher TPR at low FPR (< 10
−4
). We present the ROC curve

for the attacks with both linear scaling and log scaling to emphasize

the low-FPR regime. Figure 4c and Figure 4d demonstrate the ROC

curve for Diff-Cali. The results show that using curriculum increases

ROC (Figure 4a, Figure 4c). We observe that our proposed Diff-Cali

performs better at low FPR. More specifically, Figure 4b shows that

NN-based attack fails to achieve a TPR better than random chance

at any FPR below 0.045 while Diff-Cali can be better than random

guessing at all times.

Finding 4: Diff-Cali improvesMIA performance in terms of TPR at

low FPR, making the difficult samples not only more vulnerable

compared to other attacks but also more vulnerable than the

simple samples.

5.4 Evaluation of Defense
We evaluate how the defenses including DP-SGD, MemGuard, Mix-

upMMD, and AdvReg perform under the normal setting or CL.

Table 5 shows the attack accuracy on ResNet-18 which is trained

with CIFAR100. Because MixupMMD and AdvReg require reference

datasets for defense deployment, we equally divided CIFAR100 into

5 parts for fair comparison among all the defense techniques. More

specifically, all target models in Table 5 are trained with only 12, 000

data points, which also explains why the accuracies are lower.

Regarding DP-SGD, 𝜖 and 𝛿 in our evaluation are 124, 496 and

1𝑒 − 5. We have a large 𝜖 because we have 200 epochs of training

and ResNet-18 contains a large number of parameters. We did not

change these settings for a fair comparison with other defense

techniques. Previous studies have used large 𝜖 for DP-SGD in order

to achieve good model accuracy [34, 46]. Based on a recent work [4],

we are able tomake 𝜖 10 times smaller after proper parameter tuning

while achieving similar target accuracy. The 𝜖 can be brought down

even first with a large batch size. Pulling tricks of DP-SGD based on

the above recent work can further boost the tradeoff. Note that we

still use small batch size for DP-SGD evaluation though that results

in large 𝜖 . This is because we want to keep parameters across all

target models the same for a fair MIA evaluation, and we have

limited computing resources for handling large batch numbers.

Because of the conflicting requirement of DP-SGD and CL, we

only present the result of DP-SGD under the normal setting. DP-

SGD is able to curb the MIA accuracy from 90.3% to 50.8%, which

is close to random guess (i.e., member or non-member), though at

the cost of a significant drop in the target model’s classification

accuracy (from 48.0% to 17.4%). This observation is consistent with

previous works [46, 48]. We also found DP-SGD is effective against

Diff-Cali (e.g., attack accuracy for normal is dropped to 53.67%).

For MemGuard, due to its design, NN-based MIA accuracy is

fixed to 50% when the defender knows what MIA method is per-

formed by the attacker, reaching the same level as DP-SGD. In the

meantime, the classification task of the target model is not impacted

by MemGuard. However, it is not effective against label-only at-

tacks, as it does not change the label. Our evaluation shows that

the label-only attack accuracy can still reach up to 84.5% even with

MemGuard deployed. MixupMMD decreases the MIA accuracy

(e.g., 91.4% to 83.1% for bootstrapping) but it is much higher than

DP-SGD. Interestingly, it increases the target model accuracy (e.g.,

from 51.4% to 54.4% for bootstrapping), which might be attributed

to its new regularizer. AdvReg can also increase target accuracy

(e.g., 51.4% to 54.2% for bootstrapping) but like MixupMMD it is not

effective in mitigating MIA (e.g., MIA accuracy is even increased

from 91.4% to 91.6% for bootstrapping). This observation concurs

with a previous work [79].

Overall, there is still room for improvement in defenses. Potential

futurework can follow the direction of preserving certain properties

brought by an ML technique (e.g., fast convergence and higher final

performance by CL) and mitigating privacy risks generically.

Finding 5: Except DP-SGD, none of the studied defenses can

significantly drop the MIA accuracy. DP-SGD cannot deliver the

DP guarantee under CL.

6 Discussion
Limitations. 1) The research on ML privacy has been grow-

ing strong in recent years, and numerous attacks, variations, and

defenses have emerged. Admittedly, not all attack methods (e.g.,

adaptive attack [79] and LiRA [5]) and defense techniques (e.g.,

PATE [67]) have been examined. Though LiRA is more effective

than the basic MIA attacks we experimented, it requires multiple

shadow models while all other attacks on our paper need one. To

fairly compare with LiRA, the current datasets need to be divided

into much smaller subsets, which will lead to worse performance

of all target models and shadow models. Thus, we did not examine

LiRA in this work. However, we believe our key conclusions (e.g.,

the difficult samples become more vulnerable when trained with
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None DP-SGD MemGuard MixupMMD AdvReg

Target MIA Target MIA Target MIA Label-only Target MIA Target MIA

Normal 48.0 90.3 17.4 50.8_±0.07 48.0 50.0 83.0 54.1 81.6_±0.02 51.2 89.2_±0.01
Bootstrapping 51.4 91.4_±0.03 - - 51.4 50.0 84.5 54.4 83.1_±0.02 54.2 91.6_±0.02
Transfer 48.9 91.3_±0.03 - - 48.9 50.0 84.5 55.7 76.1_±0.03 50.4 92.8_±0.04
Baseline 50.0 91.5_±0.02 - - 50.0 50.0 84.0 55.0 84.4_±0.02 53.0 91.6_±0.01
Anti-curriculum 49.3 89.5_±0.02 - - 49.3 50.0 81.3 52.6 79.1_±0.02 52.1 87.3

Table 5: The average accuracy of MIA (± standard deviation) on target model trained on CIFAR100 with ResNet-18 and different
defense methods. All numbers are in percentage, entry without ± STD means the STD is less than 0.01%.

(a) Normal (b) Bootstrapping (c) Anti-curriculum (d) Baseline (e) Transfer Learning

Figure 9: The training and test accuracy over 200 epochs for target model ResNet-18 on CIFAR-100.

Epoch (Network)

Method

Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

100 (ResNet-18) 0.8390 ± 0.0001 0.8468 ± 0.0001 0.8153 ± 0.0002 0.8461 ± 0.0000 0.8670 ± 0.0000

200 (ResNet-18) 0.8577 ± 0.0011 0.8751 ± 0.0001 0.8376 ± 0.0002 0.8582 ± 0.0001 0.8718 ± 0.0001

100 (ResNet-34) 0.8356 ± 0.0001 0.8466 ± 0.0001 0.8310 ± 0.0000 0.8502 ± 0.0000 0.8577 ± 0.0001

200 (ResNet-34) 0.8564 ± 0.0001 0.8746 ± 0.0003 0.8481 ± 0.0002 0.8559 ± 0.0002 0.8715 ± 0.0002

100 (MobileNet) 0.6475 ± 0.0002 0.6764 ± 0.0002 0.6012 ± 0.0002 0.6695 ± 0.0002 0.6744 ± 0.0002

200 (MobileNet) 0.7979 ± 0.0001 0.8308 ± 0.0000 0.7763 ± 0.0002 0.8318 ± 0.0000 0.8430 ± 0.0001

Table 6: The average accuracy (± standard deviation) of NN-based attacks on target models on CIFAR100 trained with different
epochs and network architectures.

CL) hold generically, due to the fundamental designs of the cur-

riculum. 2) Overfitting can impact a target model’s memorization

of the training data, which in turn affects membership leakage,

as discussed later in this section. Early stopping is a well-known

method to limit such memorization and may help mitigate mem-

bership leakage. We acknowledge that this technique is not utilized

in the paper. 3) We mainly evaluated the privacy attack on image

and tabular datasets, with widely used models like ResNet and

MLP. The two popular CL methods including bootstrapping and

transfer learning are tested. Admittedly, not all data types (e.g., text

and speech), models and CL methods are covered. Particularly, the

newer model structures, such as the transformer-based model (e.g.,

Vision Transformer [14]), could result in larger privacy leakage,

due to their better model capacity, and we leave the investigation

as a future work. 4) Not all ML privacy attacks are tested, such as

model inversion attacks [21, 96], as we suspect they are less likely

to be impacted by CL. In the end, we want to mention that our

motivation and efforts are comparable to other works that study

the privacy of special ML settings like contrastive learning [32]. 5)

We provided a few ways to calculate the difficulty score, such as

bootstrapping and transfer learning, which rely on only one model.

However, there are more sophisticated methods to measure diffi-

culty scores that might give CL an even larger boost. For example,

using difficulty measurements from an ensemble of models, such

as MobileNet and ResNet. 6) Due to the conflicting requirements of

CL and DP-SGD, we did not test the original DP-SGD on models

trained under CL. We have not found a study that combines them

but we believe such a study would be interesting and necessary.

Evaluation Metrics. For privacy attacks like MIA, whether and

how it is effective is determined by the evaluation metrics. Attack

accuracy is the one adopted in the beginning and is still widely

used today, but recent studies have suggested metrics have to be

carefully selected to fully understand the results. Following Carlini

et al. [5], we adopt TPR at low FPR as another metric. We also view

the results under confidence scores to shed light on the divergent

impacts of CL into samples, which reveal new insights that are not

captured by other metrics. Other metrics like precision/recall [5]
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and disparate vulnerability [94] can be considered and we believe

this research direction still needs new input.

Overfitting. We acknowledge that overfitting can affect a target

model’s memorization of the training data, thereby making MIA

easier. To further study this topic and its impact, we use CIFAR100

as an example and train target models for both 100 and 200 epochs.

We then compared their overfitting levels (measured by the differ-

ence between training and test accuracy) and their corresponding

MIA accuracy. Figure 9 shows the training and test accuracy over

200 epochs, which demonstrate the overfitting levels over time

are comparable among different CL methods. Table 6 shows the

MIA accuracy for target models trained for 100 and 200 epochs

using different network architectures. This demonstrates that both

overfitting and CL strategies can increase a model’s vulnerability

to MIA. Building on this, we will investigate how these factors

contribute to model vulnerabilities in future work. Specifically, we

will examine the convergence process, focusing on techniques like

data augmentation and regularization to mitigate overfitting, while

evaluating the impact of CL strategies on model vulnerability. Fur-

thermore, early stopping can serve as a potential mitigation for

membership leakage, as indicated in previous research work [79].

7 Related Work
Curriculum Learning (CL). The idea of CL was first introduced

by Bengio et. al [3]. Researchers have then developed many new

designs such as predefined CL [41], self-paced CL [40], CL by trans-

fer learning [91] and other automated CL [24]. CL is proved to be

effective in the domain of reinforcement learning [19, 20, 58, 61],

computer vision [3, 15, 70, 80], natural language processing [3, 25,

52, 82, 101], speech [6, 56, 98], etc. Note that the concept of self-

paced[45] learning can often be confused with CL bootstrapping.

They share a similar idea of using an iterative procedure to assign

higher weights to training examples that have lower costs with

respect to their chosen hypothesis. Bootstrapping differs in that

the difficulty score is generated based on the model accuracy rather

than a hypothesis [27].

Membership Inference Attack (MIA). Section 4.2 has surveyed

some representative works about MIA. Here we describe other

notable works. On top of the original MIA [75], Salem et al. [72]

proposed three more powerful attacks by relaxing the assumptions

made by Shokri et al. [75]. Nasr et al. [63] investigated privacy risks

in centralized and federated learning scenarios under both black-

box and white-box settings. Recent works show that MIA can be

further enhanced by adopting flexible thresholds [36], calibrated dif-

ficulty level [90], and loss trajectory [54]. Besides the generalML set-

tings, recent works examined special settings like contrastive learn-

ing [32, 51], Generative Adversarial Networks (GAN) [8, 10, 33],

and Graph Neural Networks (GNN) [30, 31, 92]. However, none

of them investigated curriculum learning, and we aim to fill this

knowledge gap. To mitigate MIA, researchers have proposed a few

defensive mechanisms, like DP-SGD [1], MemGuard [38], Mixup-

MMD [48], and AdvReg [62], as described in Section 4.4. PATE [67]

uses teacher models to supervise the training of the student model

and adds Laplacian noise to the teacher models’ output. Salem et

al. [72] leverage model stacking and dropout to reduce overfitting.

Attribute Inference Attack (AIA). AIA presents another notable

threat to ML privacy. Appendix E surveyed the key works under

AIA. In addition, He et al. [32] show that AIA is more vulnerable

to models trained by contrastive learning. Recently, Song et al. [77]

show that AIA is also effective against language models. Jayaraman

et al. propose a new white-box AIA method that achieves better

accuracy [35]. We focus on the black-box setting.

Other Attacks Against ML Models. MIA and AIA can be consid-

ered as attacks on the data privacy of ML. Model privacy, integrity,

and availability have also been investigated, resulting in numerous

studies. Model stealing aims to learn the parameters [42, 43, 66,

74, 85] or hyperparameters [65, 88] of a target model, and model

inversion, whose goal is to recover the training dataset [21, 96].

There also exists some works focus on protecting a model’s own-

ership [2, 9, 12, 37, 49, 57, 68, 87] to defend against model stealing

attacks and other attacks like network pruning and fine-tuning.

8 Conclusion
In this work, we perform the first quantitative study to understand

how curriculum learning (CL) , a widely used technique that accel-

erates model training, and affects the privacy of the trained model.

Specifically, we trained target models under 6 image datasets and

3 tabular datasets and performed membership inference attacks

(MIA) and attribute inference attacks (AIA) against them to assess

the privacy risk in CL. Our results show that the target model be-

comes slightly more vulnerable to MIA but not so under AIA. We

also found MIA has a significantly larger impact on samples with

high difficulty levels. By exploiting the leakage from difficulty lev-

els, we design a new MIA, termed Diff-Cali, which achieves similar

overall accuracy with much better TPR at low FPR and can infer

difficulty samples from normal ML more accurately. Finally, we

evaluate the existing defenses like MemGuard, MixupMMD, and

AdvReg in the CL setting, and our results show that none of them

are effective when the model is trained under CL. With this study,

we hope to draw attention to potential future work that preserves

certain properties introduced by advances ML techniques (e.g., fast

convergence and higher final performance by CL) while mitigating

privacy risks generically.

Acknowledgments
This work is partially funded by NSF CNS-2220434 and the Euro-

pean Health and Digital Executive Agency (HADEA) within the

project “Understanding the individual host response against Hepati-

tis D Virus to develop a personalized approach for the management

of hepatitis D” (D-Solve) (grant agreement number 101057917).

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.

2018. Turning Your Weakness Into a Strength: Watermarking Deep Neural

Networks by Backdooring. In USENIX Security Symposium (USENIX Security).
USENIX, 1615–1631.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

Curriculum learning. In Proceedings of the 26th annual international conference
on machine learning. 41–48.

625



Proceedings on Privacy Enhancing Technologies 2025(1) Joann Qiongna Chen, Xinlei He, Zheng Li, Yang Zhang, and Zhou Li

[4] Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. 2022. Automatic

clipping: Differentially private deep learning made easier and stronger. arXiv
preprint arXiv:2206.07136 (2022).

[5] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and

Florian Tramer. 2022. Membership inference attacks from first principles. In

2022 IEEE Symposium on Security and Privacy (SP). IEEE, 1897–1914.

[6] Antoine Caubrière, Natalia Tomashenko, Antoine Laurent, Emmanuel Morin,

Nathalie Camelin, and Yannick Estève. 2019. Curriculum-based transfer learn-

ing for an effective end-to-end spoken language understanding and domain

portability. arXiv preprint arXiv:1906.07601 (2019).

[7] Hongyan Chang and Reza Shokri. 2021. On the privacy risks of algorithmic

fairness. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 292–303.

[8] Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. 2020. GAN-Leaks: A

Taxonomy of Membership Inference Attacks against Generative Models. InACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM, 343–

362.

[9] Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun, Peng Cheng, Shouling Ji,

Xingjun Ma, Bo Li, and Dawn Song. 2022. Copy, Right? A Testing Framework for

Copyright Protection of Deep Learning Models. In IEEE Symposium on Security
and Privacy (S&P). IEEE.

[10] Junjie Chen, Wendy Hui Wang, Hongchang Gao, and Xinghua Shi. 2021. PAR-

GAN: Improving the Generalization of Generative Adversarial Networks Against

Membership Inference Attacks. In ACM Conference on Knowledge Discovery and
Data Mining (KDD). ACM, 127–137.

[11] Christopher A. Choquette Choo, Florian Tramèr, Nicholas Carlini, and Nicolas

Papernot. 2021. Label-Only Membership Inference Attacks. In International
Conference on Machine Learning (ICML). PMLR, 1964–1974.

[12] Tianshuo Cong, Xinlei He, and Yang Zhang. 2022. SSLGuard: A Watermarking

Scheme for Self-supervised Learning Pre-trained Encoders. In ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM, 579–593.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 248–255.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,

Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,

Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020).

[15] Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Nevatia, and Leonidas J Guibas.

2020. Curriculum deepsdf. In European Conference on Computer Vision. Springer,
51–67.

[16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[17] Vitaly Feldman. 2020. Does learning require memorization? a short tale about a

long tail. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing. 954–959.

[18] Vitaly Feldman and Chiyuan Zhang. 2020. What neural networks memorize

and why: Discovering the long tail via influence estimation. Advances in Neural
Information Processing Systems 33 (2020), 2881–2891.

[19] Francesco Foglino, Matteo Leonetti, Simone Sagratella, and Ruggiero Seccia.

2019. A gray-box approach for curriculum learning. InWorld Congress on Global
Optimization. Springer, 720–729.

[20] Pierre Fournier, Cédric Colas, Mohamed Chetouani, and Olivier Sigaud. 2019.

CLIC: Curriculum Learning and Imitation for object Control in non-rewarding

environments. IEEE Transactions on Cognitive and Developmental Systems (2019).

[21] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion

attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC conference on computer and communications
security. 1322–1333.

[22] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita Borisov. 2018.

Property Inference Attacks on Fully Connected Neural Networks using Permu-

tation Invariant Representations. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 619–633.

[23] Amirata Ghorbani and James Zou. 2019. Data shapley: Equitable valuation of

data for machine learning. In International Conference on Machine Learning.
PMLR, 2242–2251.

[24] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray

Kavukcuoglu. 2017. Automated curriculum learning for neural networks. In

international conference on machine learning. PMLR, 1311–1320.

[25] Junliang Guo, Xu Tan, Linli Xu, Tao Qin, Enhong Chen, and Tie-Yan Liu. 2020.

Fine-tuning by curriculum learning for non-autoregressive neural machine

translation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 7839–7846.

[26] Guy Hacohen. 2019. https://github.com/GuyHacohen/curriculum_learning.

[27] GuyHacohen and DaphnaWeinshall. 2019. On the power of curriculum learning

in training deep networks. In International Conference on Machine Learning.
PMLR, 2535–2544.

[28] Zayd Hammoudeh and Daniel Lowd. 2022. Training Data Influence Analysis

and Estimation: A Survey. arXiv preprint arXiv:2212.04612 (2022).

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 770–778.

[30] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and Yang Zhang.

2021. Stealing Links from Graph Neural Networks. In USENIX Security Sympo-
sium (USENIX Security). USENIX, 2669–2686.

[31] Xinlei He, Rui Wen, Yixin Wu, Michael Backes, Yun Shen, and Yang Zhang. 2021.

Node-Level Membership Inference Attacks Against Graph Neural Networks.

CoRR abs/2102.05429 (2021).

[32] Xinlei He and Yang Zhang. 2021. Quantifying and Mitigating Privacy Risks of

Contrastive Learning. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS). ACM, 845–863.

[33] Benjamin Hilprecht, Martin Härterich, and Daniel Bernau. 2019. Monte Carlo

and Reconstruction Membership Inference Attacks against Generative Models.

Privacy Enhancing Technologies Symposium (2019).

[34] Bargav Jayaraman and David Evans. 2019. Evaluating differentially private

machine learning in practice. In 28th USENIX Security Symposium (USENIX
Security 19). 1895–1912.

[35] Bargav Jayaraman and David Evans. 2022. Are Attribute Inference Attacks Just

Imputation?. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. 1569–1582.

[36] Bargav Jayaraman, Lingxiao Wang, Katherine Knipmeyer, Quanquan Gu, and

David Evans. 2020. Revisitingmembership inference under realistic assumptions.

arXiv preprint arXiv:2005.10881 (2020).

[37] Hengrui Jia, Christopher A. Choquette-Choo, Varun Chandrasekaran, and Nico-

las Papernot. 2021. EntangledWatermarks as a Defense againstModel Extraction.

In USENIX Security Symposium (USENIX Security). USENIX, 1937–1954.

[38] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and Neil Zhenqiang

Gong. 2019. MemGuard: Defending against Black-Box Membership Inference

Attacks via Adversarial Examples. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 259–274.

[39] Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya Kailkhura, Ce

Zhang, Bo Li, and Dawn Song. 2021. Scalability vs. utility: Do we have to

sacrifice one for the other in data importance quantification?. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8239–8247.

[40] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann.

2015. Self-paced curriculum learning. In Twenty-Ninth AAAI Conference on
Artificial Intelligence.

[41] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. 2018. Men-

tornet: Learning data-driven curriculum for very deep neural networks on

corrupted labels. In International Conference on Machine Learning. PMLR, 2304–

2313.

[42] Sanjay Kariyappa, Atul Prakash, and Moinuddin K. Qureshi. 2021. MAZE: Data-

Free Model Stealing Attack Using Zeroth-Order Gradient Estimation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 13814–
13823.

[43] Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh, Nicolas Papernot, and

Mohit Iyyer. 2020. Thieves on Sesame Street! Model Extraction of BERT-based

APIs. In International Conference on Learning Representations (ICLR).

[44] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of

features from tiny images. (2009).

[45] MPawanKumar, Benjamin Packer, andDaphne Koller. 2010. Self-Paced Learning

for Latent Variable Models.. In NIPS, Vol. 1. 2.

626

https://github.com/GuyHacohen/curriculum_learning


A Comprehensive Study of Privacy Risks in Curriculum Learning Proceedings on Privacy Enhancing Technologies 2025(1)

[46] Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis,

and Abhradeep Thakurta. 2022. Toward training at imagenet scale with differ-

ential privacy. arXiv preprint arXiv:2201.12328 (2022).

[47] Ya Le and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS
231N 7, 7 (2015), 3.

[48] Jiacheng Li, Ninghui Li, and Bruno Ribeiro. 2021. Membership Inference Attacks

and Defenses in Classification Models. In Proceedings of the Eleventh ACM
Conference on Data and Application Security and Privacy. 5–16.

[49] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. 2019. How to Prove

Your Model Belongs to You: A Blind-Watermark based Framework to Protect In-

tellectual Property of DNN. InAnnual Computer Security Applications Conference
(ACSAC). ACM, 126–137.

[50] Zheng Li and Yang Zhang. 2021. Membership Leakage in Label-Only Exposures.

In ACM SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 880–895.

[51] Hongbin Liu, Jinyuan Jia, Wenjie Qu, and Neil Zhenqiang Gong. 2021. En-

coderMI: Membership Inference against Pre-trained Encoders in Contrastive

Learning. In ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM.

[52] Jinglin Liu, Yi Ren, Xu Tan, Chen Zhang, Tao Qin, Zhou Zhao, and Tie-Yan Liu.

2020. Task-level curriculum learning for non-autoregressive neural machine

translation. arXiv preprint arXiv:2007.08772 (2020).

[53] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang,

and Jie Tang. 2021. Self-supervised learning: Generative or contrastive. IEEE
Transactions on Knowledge and Data Engineering 35, 1 (2021), 857–876.

[54] Yiyong Liu, Zhengyu Zhao, Michael Backes, and Yang Zhang. 2022. Membership

Inference Attacks by Exploiting Loss Trajectory. In ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2085–2098.

[55] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng Wang,

Haixu Tang, Carl A. Gunter, and Kai Chen. 2018. Understanding Membership

Inferences on Well-Generalized Learning Models. CoRR abs/1802.04889 (2018).

[56] Reza Lotfian and Carlos Busso. 2019. Curriculum learning for speech emotion

recognition from crowdsourced labels. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 27, 4 (2019), 815–826.

[57] Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum. 2022. SoK: How

Robust is Image Classification Deep Neural Network Watermarking?. In IEEE
Symposium on Security and Privacy (S&P). IEEE.

[58] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. 2019. Teacher–

student curriculum learning. IEEE transactions on neural networks and learning
systems 31, 9 (2019), 3732–3740.

[59] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting Unintended Feature Leakage in Collaborative Learning. In IEEE
Symposium on Security and Privacy (S&P). IEEE, 497–512.

[60] Fatemehsadat Mireshghallah, Mohammadkazem Taram, Praneeth Vepakomma,

Abhishek Singh, Ramesh Raskar, and Hadi Esmaeilzadeh. 2020. Privacy in deep

learning: A survey. arXiv preprint arXiv:2004.12254 (2020).

[61] Sanmit Narvekar and Peter Stone. 2018. Learning curriculum policies for rein-

forcement learning. arXiv preprint arXiv:1812.00285 (2018).

[62] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2018. Machine Learning

with Membership Privacy using Adversarial Regularization. In ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM, 634–646.

[63] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive Privacy

Analysis of Deep Learning: Passive and Active White-box Inference Attacks

against Centralized and Federated Learning. In IEEE Symposium on Security and
Privacy (S&P). IEEE, 1021–1035.

[64] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-

drew Y Ng. 2011. Reading digits in natural images with unsupervised feature

learning. (2011).

[65] Seong Joon Oh, Max Augustin, Bernt Schiele, and Mario Fritz. 2018. Towards

Reverse-Engineering Black-Box Neural Networks. In International Conference
on Learning Representations (ICLR).

[66] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Knockoff Nets:

Stealing Functionality of Black-Box Models. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 4954–4963.

[67] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and Úlfar Erlingsson. 2018. Scalable Private Learning with PATE. In

International Conference on Learning Representations (ICLR).

[68] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. 2018. DeepSigns: A

Generic Watermarking Framework for IP Protection of Deep Learning Models.

CoRR abs/1804.00750 (2018).

[69] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning

representations by back-propagating errors. nature 323, 6088 (1986), 533–536.

[70] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. 2019. Guided curriculum

model adaptation and uncertainty-aware evaluation for semantic nighttime

image segmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 7374–7383.

[71] Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and Yang

Zhang. 2020. Updates-Leak: Data Set Inference and Reconstruction Attacks in

Online Learning. In USENIX Security Symposium (USENIX Security). USENIX,
1291–1308.

[72] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and

Michael Backes. 2019. ML-Leaks: Model and Data Independent Membership

Inference Attacks and Defenses on Machine Learning Models. In Network and
Distributed System Security Symposium (NDSS). Internet Society.

[73] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottle-

necks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 4510–4520.

[74] Yun Shen, Xinlei He, Yufei Han, and Yang Zhang. 2022. Model Stealing Attacks

Against Inductive Graph Neural Networks. In IEEE Symposium on Security and
Privacy (S&P). IEEE, 1175–1192.

[75] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.

Membership Inference Attacks Against Machine Learning Models. In IEEE
Symposium on Security and Privacy (S&P). IEEE, 3–18.

[76] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Nicolas Paper-

not, Murat A Erdogdu, and Ross J Anderson. 2021. Manipulating sgd with data

ordering attacks. Advances in Neural Information Processing Systems 34 (2021),
18021–18032.

[77] Congzheng Song and Ananth Raghunathan. 2020. Information Leakage in Em-

bedding Models. In ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 377–390.

[78] Congzheng Song and Vitaly Shmatikov. 2020. Overlearning Reveals Sensitive

Attributes. In International Conference on Learning Representations (ICLR).

[79] Liwei Song and Prateek Mittal. 2021. Systematic Evaluation of Privacy Risks of

Machine Learning Models. In USENIX Security Symposium (USENIX Security).
USENIX.

[80] Petru Soviany, Claudiu Ardei, Radu Tudor Ionescu, and Marius Leordeanu. 2020.

Image difficulty curriculum for generative adversarial networks (CuGAN). In

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. 3463–3472.

[81] Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. 2021. Curriculum

learning: A survey. arXiv preprint arXiv:2101.10382 (2021).

[82] Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. 2009. Baby Steps:

How “Less is More” in unsupervised dependency parsing. (2009).

[83] Ritwick Sundar. 2020. https://github.com/rsundar96/curriculum-learning-

acceleration.

[84] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. 2016. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
2818–2826.

[85] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.

2016. Stealing Machine Learning Models via Prediction APIs. In USENIX Security
Symposium (USENIX Security). USENIX, 601–618.

[86] Trusted-AI. 2023. https://github.com/Trusted-AI/adversarial-robustness-

toolbox.

[87] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2017.

EmbeddingWatermarks into Deep Neural Networks. In International Conference
on Multimedia Retrieval (ICMR). ACM, 269–277.

[88] Binghui Wang and Neil Zhenqiang Gong. 2018. Stealing Hyperparameters in

Machine Learning. In IEEE Symposium on Security and Privacy (S&P). IEEE,
36–52.

[89] Xin Wang, Yudong Chen, and Wenwu Zhu. 2021. A survey on curriculum

learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

627

https://github.com/rsundar96/curriculum-learning-acceleration
https://github.com/rsundar96/curriculum-learning-acceleration
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox


Proceedings on Privacy Enhancing Technologies 2025(1) Joann Qiongna Chen, Xinlei He, Zheng Li, Yang Zhang, and Zhou Li

[90] Lauren Watson, Chuan Guo, Graham Cormode, and Alexandre Sablayrolles.

2022. On the Importance of Difficulty Calibration in Membership Inference

Attacks. In International Conference on Learning Representations (ICLR).

[91] Daphna Weinshall, Gad Cohen, and Dan Amir. 2018. Curriculum learning by

transfer learning: Theory and experiments with deep networks. In International
Conference on Machine Learning. PMLR, 5238–5246.

[92] FanWu, Yunhui Long, Ce Zhang, and Bo Li. 2022. LinkTeller: Recovering Private

Edges from Graph Neural Networks via Influence Analysis. In IEEE Symposium
on Security and Privacy (S&P). IEEE, 2005–2024.

[93] Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. 2021. When Do Curric-

ula Work?. In International Conference on Learning Representations. https:

//openreview.net/forum?id=tW4QEInpni

[94] Mohammad Yaghini, Bogdan Kulynych, and Carmela Troncoso. 2019. Disparate

Vulnerability: on the Unfairness of Privacy Attacks Against Machine Learning.

CoRR abs/1906.00389 (2019).

[95] Dingqi Yang, Daqing Zhang, and Bingqing Qu. 2016. Participatory cultural

mapping based on collective behavior data in location-based social networks.

ACM Transactions on Intelligent Systems and Technology (TIST) 7, 3 (2016), 1–23.

[96] Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song.

2020. The secret revealer: Generative model-inversion attacks against deep

neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 253–261.

[97] Zhifei Zhang, Yang Song, and Hairong Qi. 2017. Age progression/regression

by conditional adversarial autoencoder. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 5810–5818.

[98] Siqi Zheng, Gang Liu, Hongbin Suo, and Yun Lei. 2019. Autoencoder-based

semi-supervised curriculum learning for out-of-domain speaker verification.

System 3 (2019), 98.

[99] Da Zhong, Haipei Sun, Jun Xu, Neil Gong, and Wendy Hui Wang. 2022. Under-

standing disparate effects of membership inference attacks and their counter-

measures. In Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security. 959–974.

[100] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.

2017. Places: A 10million image database for scene recognition. IEEE transactions
on pattern analysis and machine intelligence 40, 6 (2017), 1452–1464.

[101] Yikai Zhou, Baosong Yang, Derek F Wong, Yu Wan, and Lidia S Chao. 2020.

Uncertainty-aware curriculum learning for neural machine translation. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. 6934–6944.

A Datasets
MIADatasets. We use the following 8 datasets for MIA evaluation,

which are also adopted by previous work [32, 51, 60, 75] to study

MIA. They are CIFAR100 [44], Tiny ImageNet [47], Place100, Place

60[100], SVHN [64], Purchase[75], Texas hospital stays[75] and

Locations [95]. We focus on image datasets mainly (the first 5

datasets), but tabular datasets are also evaluated. Below are the

detailed descriptions for the datasets.

• CIFAR100 [44]. This dataset consists of 60, 000 colored

images in 100 classes, with 600 images per class. The size of

each image is 32 × 32.
• Tiny ImageNet [47]. This is a subset of the ImageNet

dataset[13]. It contains 100, 000 colored images of 200 classes

(500 for each class). The size of each image is 64 × 64.
• Place100. This dataset is a subset of Places365[100] dataset,

which is composed of more than 1.8 million images with

365 scene categories. Place100 is generated by randomly

selecting 100 scene categories with 600 random images per

category.

• Place60. This dataset is similar to Place100, except that it

has 60 classes containing 1, 000 images each.

• SVHN [64]. The Street View House Numbers (SVHN)

dataset is a real-world image dataset containing over 600, 000

digit images. This dataset includes images of house numbers

taken from Google Street View images. The size of each

image is 32 × 32.
• Purchase. This is a tabular dataset about purchase styles.

Following Shokri et al. [75], we leverage the Purchase-100

dataset (abbreviated as Purchase) and use 10, 000 records for

training. The dataset itself contains 197, 324 records from

100 classes, where each record has 600 binary features.

• Texas hospital stays. This dataset contains information

about inpatient stays in several health facilities. Following

Shokri et al. [75], our task is to predict a patient’s main

procedure. After pre-processing, the resulting dataset has

67, 330 records and 6, 170 binary features.

• Locations [95] . The original dataset was released by

Foursquare about itsmobile users’ location “check-ins”, which

has 11,592 users and 1,136,481 check-in records. Our task is

to predict the user’s geo-social type (128 in total). Here we

use the version pre-processed by Shokri et al. [75], which

has 446 binary features.

AIA Datasets. Datasets with multiple attributes are required

for AIA. To this end, we adapt Place100 and Place60 used as MIA

datasets to AIA setting as they both contain multiple attribute labels.

More specifically, the model for Place100 outputs whether a sample

is an indoor scene, while the sensitive attribute is the category of

the scene, which contains 100 labels. Place60 has the total number of

categories as 60. In addition to Place100 and Place60, we introduce

UTKFace [97] specifically for AIA study.

• UTKFace [97]. This is a large-scale facial dataset, which

consists of over 20, 000 face images with annotations of age,

gender, and ethnicity. In our evaluation, we set gender clas-

sification as the the task for target model, and the sensitive

attribute to be inferred is ethnicity, which includes 5 classes.

B More Results of CL
Training Accuracy. Training accuracy corresponding to datasets

in Table 1 are listed in Table 7. All numbers are in percentage.

t-SNE Study. To investigate the disparate impact CL has on the

classification accuracy across samples. we use t-distributed stochas-

tic neighbor embedding (t-SNE) to visualize the classification tasks

carried out by bootstrapping and normal ML on the most difficult

batch of data of SVHN. Figure 10 shows all samples within the

difficult batch, and it turns out bootstrapping can separate samples

from group “1”, “2” and “3” better than normal training.

C More Confidence Scores of MIA
Here we present the confidence scores of different MIA evaluation

results to supplement Section 5. In particular, Figure 11, Figure 12,

and Figure 13 present the results about the three image datasets in-

cluding SVHN, Place100 and Place60. Figure 14 presents the results

about the tabular dataset Purchase. Figure 15 and Figure 16 present

the results of Diff-Cali on Tiny ImageNet and CIFAR100.
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Method

Dataset

Tiny ImageNet CIFAR100 Place100 Place60 SVHN Purchase Texas Location

Normal 100.0 100.0 100.0 100.0 100.0 100.0 96.770 100.0

Bootstrapping 100.0 100.0 100.0 99.996 100.0 100.0 94.030 100.0

Transfer 100.0 99.997 100.0 99.972 100.0 / / /

Baseline 100.0 99.993 100.0 100.0 100.0 99.990 95.600 100.0

Anti-curriculum 99.963 100.0 100.0 99.918 100.0 100.0 97.410 100.0

Table 7: The average training accuracy of datasets in Table 1. Image datasets are trained on ResNet-18 while non-image datasets
are trained on MLP. Numbers are all in percentage. We observe that all training accuracies are nearly 100%. Note that for
non-image datasets, we skip the transfer method as there is no commonly used pre-trained model for the tabular dataset.
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Figure 10: t-SNE of the classification results on the difficult
batch of SVHN.

0 2 4 6 8
Difficulty Level

0.495

0.500

0.505

0.510

0.515

0.520

Co
nf

id
en

ce
 S

co
re

Normal 
Bootstrapping 
Anti-curriculum 
Baseline 
Transfer Learning

(a) SVHN member

0 2 4 6 8
Difficulty Level

0.20
0.25
0.30
0.35
0.40
0.45
0.50

Co
nf

id
en

ce
 S

co
re

(b) SVHN non-member

Figure 11: Attack model’s confidence score for both member
and non-member samples on SVHN. ResNet-18 is used for
target model training, and data samples are arranged accord-
ing to their difficulty scores from bootstrapping.
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Figure 13: Attack model’s confidence score for both member
and non-member samples on Place60. ResNet-18 is used for
target model training, and data samples are arranged accord-
ing to their difficulty scores from bootstrapping.
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Figure 12: Attack model’s confidence score for both member
and non-member samples on Place100. ResNet-18 is used
for target model training, and data samples are arranged
according to their difficulty scores from bootstrapping.
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Figure 14: Attack model’s confidence score for both member
and non-member samples on Purchase.MLP is used for target
model training, and data samples are arranged according to
their difficulty scores from bootstrapping.

D Difficulty Level vs. Shapley Value

In Section 5.2, we show there is a strong tie between data memo-

rization with difficulty level, which explains why the difficult sam-

ples are more vulnerable under CL. On the other hand, samples of

different difficulty levels could provide different values to the model,

so we are also interested in whether this observation Section 5.2

can be explained from the angle of data valuation. Specifically, we

choose Shapley value [23] as the metric, as it has the “strongest the-

oretical foundation” in data valuation research [28]. In essence, the

data with high Shapley values are ones that on average contribute
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Figure 15: Diff-Cali’s member and non-member confidence
score for models trained on Tiny ImageNet with ResNet-18.
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Figure 16: Diff-Cali’s member and non-member confidence
score for models trained on CIFAR100 with ResNet-18.

significantly to a model’s prediction performance. We follow most

of the experiment steps in this section and only change how the

samples are selected for “not seen” (i.e., selected based on their

Shapley values rather than difficulty levels).
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Figure 17: Shapley: violin plots of prediction probability of
800 most valuable samples according to KNN-Shapley.

KNN-Shapley. Calculating Shapley values is intractable for a

DNN model that is trained on a large dataset, as it requires a model

to be retrained for 2
𝑛
times, where 𝑛 is the number of data points,

to assess the contribution of one data point versus all possible sub-

sets of the training set [28]. To address this scalability issue, Jia et

al. [39] proposed KNN-Shapley, which uses a lightweight KNN sur-
rogate model to reduce the overhead of model retraining. The time

complexity is reduced to 𝑂(𝑛𝑙𝑜𝑔𝑛) and still, a good approximation

of Shapley values can be obtained. As such, we use KNN-Shapley

to calculate the Data Shapley values.
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Figure 18: Reverse Shapley: violin plots of prediction prob-
ability of 800 least valuable samples according to KNN-
Shapley.

Figure 17 and Figure 18 show the prediction probability of true

label with 800 most and least valuable data samples according to

KNN-Shapley. From the results of "not seen", we observe that the

least valuable data have higher prediction accuracy on average

(51%), meaning that their absence in training has less impact com-

pared to the more valuable data as presented in Figure 17. Similarly,

feeding the least valuable data first or at last to the training does

not affect the prediction much.

Then, we compare the impact of difficulty level and Shapley

value on data memorization, from Figure 7 and Figure 17. Though

both show that the absence of the most difficult or valuable data

leads to poor prediction and seeing these data lastly benefits more

than seeing them first during training, these changes are much

more drastic for difficult samples (Figure 7) than the valuable sam-

ples (Figure 17). For example, the median prediction probability of

the “not seen” difficult samples and valuable samples are 39.19%

and 56.01%. As such, the data reordering of CL makes the difficult

samples more vulnerable, but not so for the valuable samples.

E AIA
In this section, we describe our setup of AIA and the evaluation

result.

Basic AIA method. Song et al. proposed an inference-time attack

and model-repurposing attack [78] for AIA, and here we focus on

the first attack and follow the same setting as this work.We consider

the model evaluation to be partitioned [78] or the model is trained

under federated learning [59]. The target model 𝑇 is split into two

parts, i.e., an encoder and a classifier, and the adversary has black-

box access to the encoder 𝐸. The attacker has an auxiliary dataset

𝐷 containing pairs of (𝑥, 𝑠) where 𝑠 is the sensitive attribute. The

embeddingsℎ can be generated by querying 𝐸, i.e.,ℎ = 𝐸(𝑥 ),∀𝑥 ∈ 𝐷 .
All pairs of (ℎ, 𝑠) will be used to train the attack model A𝐴𝐼 and

later used to predict the values of 𝑠 in the target model 𝑇 .

AIA Model. Our A𝐴𝐼 is a 3-layer MLP with 128 hidden neurons

in each hidden layer. We use cross-entropy as the loss function

and SGD as the optimizer with a learning rate of 0.01. The attack

model is trained for 100 epochs. The dimension of each sample’s

embedding (i.e., second to the last layer’s output) is 512 for ResNet-

18, 512 for ResNet-34, and 1024 for MobileNet. To train the target

model𝑇 , we use the label for the original classification (e.g., gender).

To train A𝐴𝐼 , we use the label from another field (e.g., race).
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Method

Dataset

Place100 Place60 UTKFace

Normal 0.107±0.003 0.173±0.002 0.528±0.005
Bootstrapping 0.092±0.003 0.168±0.004 0.515±0.006
Transfer Learning 0.104±0.001 0.150±0.005 0.512±0.006
Baseline Curriculum 0.079±0.004 0.143±0.001 0.506 ±0.008
Anti-Curriculum 0.033±0.001 0.128±0.005 0.517±0.007

Table 8: Average accuracy of AIA (± standard deviation) on
model trainedwith differentmethods. ResNet-18 is the target
model architecture.
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Figure 19: Attribute inference attack accuracy on UTKFace

Evaluation of AIA. We split the AIA datasets in the same way

as the MIA evaluation as described in Section 5 (Evaluation Setup).

We evaluate the 4 CL methods and normal training under the AIA

setting as described above. Table 8 demonstrates the overall attack

accuracy. Generally, our results indicate that CL does not make

the target model more vulnerable. This somehow contradicts a

study [32] showing that a model is more vulnerable under AIA

when trained under special settings, i.e., contrastive learning. Inter-

estingly, the normal training yields the highest average attack ac-

curacy (e.g., 0.107 for Place100), even compared to anti-curriculum.

UTKFace has a much higher attack accuracy because the baseline

accuracy (random guessing based on majority class labels) of UTK-

Face is already quite high (42.1%). Our further investigation also

shows that the attack accuracy is about the same for samples in

different groups of difficulty levels (Figure 19). We speculate that

this is because the attributes of a sample themselves are already

very complex and hard to learn. Besides, the difficulty score (e.g.,

bootstrapping) is calculated based on the original ML task, which

emphasizes the specific attribute the original ML task tries to learn.

That means the data ranking is effective only for the attribute cho-

sen for the classification task but does not influence the sensitive

attribute that one intends to infer.

Finding 6: The model trained under CL is less vulnerable under

AIA compared to MIA.
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