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Abstract
The increasing use of the Internet of Things (IoT) technology has
made our lives convenient, however, it also poses new security
and privacy threats. In this work, we study a new type of privacy
threat enabled by cross-app chains built among multiple seemingly
benign IoT apps. We find that interactions among apps could leak
privacy-sensitive information, e.g., users’ identification, location
and tracking, activity patterns, etc. To tackle this challenge, we intro-
duce PrivacyGuard, which extracts cross-app chains in the form of
trigger-condition-action rules and identifies the corresponding pri-
vacy leakage risk with an inference probability. PrivacyGuard sup-
ports a fine-grained categorization of privacy threats to generate
detailed alerts about privacy leakages. We evaluated PrivacyGuard
on a dataset with 2,101 SmartApps, 2,788 IFTTT rules, and 2,086
OpenHAB rules, respectively. The results show that PrivacyGuard
could uncover hidden privacy leaks that existing studies fail to
detect. For example, 7.67% chains constructed by two seemingly
benign IoT apps could leak at least one type of privacy information,
while over 80% of the leaks involved privacy information regarding
Localization & Tracking and Activity Profiling.
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1 Introduction
IoT cloud platforms such as Samsung’s SmartThings [60],
IFTTT [42], Apple’s HomeKit [5], Google Home [33], and Open-
HAB [56] have been utilized to handle diverse types of devices from
different vendors and facilitate their interactions by through au-
tomation rules. While embracing the connectivity and convenience
introduced by IoT devices and applications, there are increasing
concerns regarding security and privacy risks [8, 14, 15, 31, 44].
A tremendous amount of IoT devices have been deployed in our
everyday life, collecting various types of personal attributes (e.g.,
age, height, weight, address, location, etc.) and highly sensitive
information about the users (e.g., blood pressure, heart rate, pin
code of door lock, door state, etc.). Many IoT devices continuously
sense diverse data types in the smart environment and stream them
to external servers, where the fine-grained data could be used to
profile user behaviors. For example, inferential profiling is used to
develop insight into a user’s health status and movement patterns
from data sensed by Fitbit [28] or occupants’ location and state from
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smart thermostats [29]. However, recent surveys [82] reported that
many users were unaware of the privacy risks in home automation
and trusted IoT manufacturers to protect their privacy.

Sensitive data leaks lead to potential privacy invasion. Pre-
vious studies showed that such leaks could be caused by mali-
cious IoT applications [8, 14, 15], unauthorized access through
IoT frameworks [31, 44], exploitation of customized automation
rules [39, 51, 66], or app-level traffic analysis [1, 50]. For example,
a study on the SmartThings framework identified multiple privacy
threats due to malicious SmartApps stealing sensitive user data [14],
where 138 out of 230 SmartApps were found exposing at least one
sensitive data via the Internet or messaging services. However, its
focus on single IoT apps makes it impossible to uncover potential
privacy leakage risks due to interactions enabled by automation
rules between multiple apps.

In this paper, we extend the scope from single-app to cross-app
privacy threats by considering privacy leakage that can be inferred
from cross-app interactions enabled by user-installed automation
rules. Such rule-based automation is supported by many IoT plat-
forms, e.g., SmartThings, IFTTT, OpenHAB, and HomeKit, using
the trigger-condition-action (TCA) paradigm where an application
contains at least one trigger-action path that can be executed when
a pre-set condition is met. In smart homes with multiple IoT apps,
one malicious app could manipulate another app’s execution state
by activating its trigger events or satisfying its rule conditions. This
can be achieved directly or indirectly by manipulating action events
or physical environment channels shared between two apps. In
these platforms, the adversary could deliberately plant two mali-
cious apps, one with direct access to private data (e.g., triggered by
an event associated with private data) but no external-facing inter-
faces while the other with external interfaces but no access to any
private data. As shown in Section 2.2, both apps are seemingly be-
nign to bypass existing single-app privacy leakage detection. Once
installed in a smart home, they form cross-app chains between
themselves or with other benign apps to disclose users’ private data
to the adversary. We refer to it as cross-app privacy leakage.

Cross-rule privacy leakage was first observed on trigger-action
platformswhen interactingwith IFTTT (if-this-then-that) rules [42].
Existing studies [22, 39, 51, 66] often take an information-flow
approach, where a privacy leakage is defined as any data flowing
from a higher security level (e.g., private world) to a lower security
level (e.g., public world). For example, [66] would report a private
→ public confidentiality violation for an IFTTT applet if you take a
new photo, post it to Twitter, because a personal photo (private data)
would be disclosed to a Twitter post (public access) via this rule.
However, these approaches provide little information about data
leakage types (e.g., location, health, personal, etc.), which is useful
for assessing the leakage severity. Besides, they mainly focus on the
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chains formed between IFTTT rules, which are deterministic, but
not across IoT apps, which are inferrable with a probability. In this
work, we detect privacy violations and return informative alerts
about the types of private data being leaked, the relevant channels
or interactions, and the leakage conditions and likelihood.

To better alert users, we present a new framework for privacy
leakage detection, named PrivacyGuard. This framework supports
finer-grained privacy threat identification across multiple platforms,
including SmartThings, IFTTT, and OpenHAB, to help users take
appropriate precautions based on the types of sensitive informa-
tion at risk and their specific privacy concerns. To inform users
about the likelihood of privacy leaks, we quantify the probability
of privacy inference, allowing users to evaluate the possibility of
privacy threats and make more informed decisions regarding app
permissions and usage. This enables users to be more cautious and
avoid integrating high-risk app combinations. To identify potential
leaks across multiple apps, we generate device profiles, infer de-
vice types and states associated with each trigger-condition-action
rule, capture app interactions with cross-app rules, build cross-app
chains, calculate inference probabilities, identify types of privacy
leakage threats, and provide a graphical user interface for users.
PrivacyGuard aims to provide a comprehensive solution for privacy
analysis and privacy threat detection in IoT apps, helping develop-
ers and users make informed decisions to safeguard user privacy.
The main contributions are summarized as follows:
• We identified a new cross-app privacy leakage risk in IoT apps
and performed a systematic study on the inference threats.
• We formalized the cross-app chaining problems and defined the
trigger-condition-action relations to associate the apps.
• We inferred the device’s profile from its usage context, ensuring
accurate modeling of devices with different sensitivity levels.
• We computed the probability of privacy inference, which mea-
sures both direct exposure and implicit inference threats.
• We evaluated PrivacyGuard using large-scale real-world datasets
consisting of 2,101 SmartApps, 2,788 IFTTT applets, and 2,086
openHAB rules, and demonstrated its effectiveness.

2 Background and The Problem
2.1 Background of IoT Platforms
IoT platforms such as SmartThings, IFTTT, and OpenHAB use IoT
apps to interact with IoT devices and execute actions, enabling users
to establish event-based rules where automations are triggered by
specific events or conditions defined by the user.
Basic Concepts and Terminology. IoT sensors collect inputs
from the physical environment, while the actuators control physi-
cal objects based on the received commands. Based on their func-
tionalities, we have simple sensors/actuators typically dedicated
to a single usage, and multi-linking sensors/actuators, which can
be linked to multiple devices. For instance, a humidity sensor is a
simple sensor that measures only the humidity, and a button sensor
is a multi-linking sensor controlling different devices. Meanwhile,
an IoT device can be linked to multiple sensors/actuators, e.g., a
smart lock with a built-in camera has a camera sensor, a lock sensor,
and a lock actuator. In this work, we do not differentiate a simple
sensor/actuator from its attached device, e.g., a humidity sensor
and a humidity device are used interchangeably.

Listing 1: SmartApp snippet of elvis-has-left.

1i npu t " door " , " c a p a b i l i t y . c on t a c t S en s o r " , t i t l e : " door c l o s e d ? "
2i npu t " thermo " , " c a p a b i l i t y . the rmos ta t " , t i t l e : " the rmos ta t "
3i npu t "mode " , " enum" , o p t i on s : [ " Auto " , " Heat " , " Cool " ]
4de f i n s t a l l e d ( ) { s u b s c r i b e ( door , " c on t a c t . c l o s e d " , hand l e r ) }
5de f hand l e r ( e v t ) { run In ( 6 0 , check ) }
6de f check ( ) {
7i f ( mode == " Auto " ) { thermo . auto ( ) }
8e l s e i f ( mode == " Heat " ) { thermo . heat ( ) }
9e l s e i f ( mode == " Cool " ) { thermo . c oo l ( ) }
10}

Listing 2: IFTTT snippet of colorful-inside-temperature.

1{ ' id ' : ' / t r i g g e r s / t ado_hea t i ng . t empe ra tu r e_above_ th r e sho ld ' ,
2'name ' : ' Temperature r i s e s above th r e sho ld ' ,
3' d e s c r i p t i o n ' : ' F i r e s when tempera tu re r i s e s above a va lue ' ,
4' s e r v i c e _ s l u g ' : ' t ado_hea t ing ' ' ,
5' serv i ce_name ' : ' tado Heating ' } ,
6{ ' id ' : ' / a c t i o n s / i f _ n o t i f i c a t i o n s . s e n d _ n o t i f i c a t i o n ' ,
7'name ' : ' Send a n o t i f i c a t i o n from the IFTTT app ' ,
8' d e s c r i p t i o n ' : ' Send a n o t i f i c a t i o n to your dev i c e s ' ,
9' s e r v i c e _ s l u g ' : ' i f _ n o t i f i c a t i o n s ' ,
10' serv i ce_name ' : ' No t i f i c a t i o n s ' }

Listing 3: OpenHAB snippet of Turn-light-on-if-presence.

1Switch p r e s ence " home pre s ence " < presence >
2Switch l i g h t " room l i g h t " < l i g h t >
3r u l e "when a r r i v e home turn on the l i g h t "
4when Item pre s ence changed
5then
6i f ( p r e s ence . s t a t e == OFF ) { s e n dNo t i f i c a t i o n ( " ema i l " , "msg " ) }
7e l s e i f ( p r e s ence1 . s t a t e == ON) { l i g h t . sendCommand (ON) }
8end

Adevice’s state, represented by one ormultiple attributes, reflects
its current status or action. In SmartApps, a device is associated with
capabilities, each consisting of attributes and commands, defining
how an app interacts with the device. We can modify a device’s
attributes using the commands, directly impacting the device state.
For instance, a device with the lock capability has a lock attribute.
Executing the unlock command changes the device state to unlocked.
IoT Platforms and Apps. Many users deploy multiple IoT plat-
forms simultaneously. We consider three popular platforms, Smart-
Things, IFTTT, and OpenHAB, to provide a comprehensive and
practical analysis of privacy leakages in IoT environments. They
use different programming languages and trigger-condition-action
paradigms to interact with IoT devices. To analyze cross-platform
interactions, we convert and normalize IoT apps into a unified for-
mat, from which we derive potential cross-app interactions. This
involves identifying the trigger-condition-action paradigms, the
device accessed or controlled by each app, the device states, and
the commands/methods that each app is permitted to perform.

SmartApps are written in Groovy1. It utilizes the subscription
or scheduling functions to subscribe to events. The trigger can be
a device event or a pre-defined event (e.g., timer, mode, or app
touch), which activates a handler function to execute an action
when the condition specified in the handler function is satisfied.
Listing 1 shows an example app called elvis-has-left, which in-
volves the door and thermostat devices. It subscribes to the door’s
close event, which acts as the trigger, and controls the thermo-
stat. IFTTT applets and OpenHAB rules follow a simple “if-this-
then-that” structure. For example, the applet in Listing 2 contains
a trigger event “tado_heating.temperature_above_threshold” and
1The SmartThings platform has an ongoing transition from Groovy to Node.js. As the
main logic of Groovy and Node.js SmartApps is very similar, the rule extraction and
app analysis methods used in this work can be easily extended to Node.js SmartApps.
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an action “if_notifications.send_notification”. While IFTTT uses
a plain JSON format and explicitly defines the trigger and action
endpoints, OpenHAB adopts a Java-compatible domain-specific
language, where the triggers are defined as statements in the when
block, and the conditions and actions are located in the then script
block. For example, in Listing 3, the trigger is the presence event
and the actions are determined by its state. Besides, OpenHAB de-
fines things, items, and channels to represent physical entities (e.g.,
devices, web services) as well as their properties.

We also use text information in IoT apps, such as app descriptions,
prompts, and code annotations, to derive their functionalities and
identify the associated devices. For example, a SmartApp has a
definition and preferences block to inform users about its purpose
and associated devices, while IFTTT applets and OpenHAB apps
use app names and descriptions to outline their functionalities.
Cross-Rule Chain. Trigger-action rules can be chained together [2,
39, 66, 70]. For example, IFTTT applets can be directly linked if (1)
one rule’s action matches the trigger of another, called explicitly
chaining [70]; or (2) one rule’s action and the other rule’s trigger are
connected to the same physical medium (e.g., temperature), known
as implicitly chaining. A chain may have two or more TCA rules.
Taint Sinks. IoT apps define specific method calls to transmit data
externally, known as taint sinks. Popular sinks include messag-
ing call interfaces for notifications within the mobile app or SMS
messages to recipients, internet services API for HTTP requests
between the app and external servers, and online network API for
emails and social media updates that expand the app’s data reach
to online networks. For instance, email.send_me_email in IFTTT,
sendSms() in Smartthings, and sendNotification() in OpenHAB.

2.2 The Problem and Our Motivation
When multiple apps are installed in an IoT environment, their
interactions may result in cross-app chains with potential privacy
leakage. Take apps in Listings 1 and 2 as example, which are real-
world apps in the SmartAppZoo [71] and an IFTTT applet [76]
datasets. Listing 1 is to set the thermostat once the door is closed for
a certain time and Listing 2 will send a push notification when the
temperature is above a threshold. Sharing the temperature channel,
two apps form a cross-app chain so that Listing 1 can activate the
trigger of Listing 2. If both apps are malicious and installed by the
victim user, the notification will be sent to the attacker, allowing
him to infer the status of the door.

However, existing detection approaches often fail to detect
such leakage through cross-app interactions with taint sinks. First,
they can bypass static and dynamic detection approaches such as
SAINT [14] and IoTWatch [8] since there is no taint sink in Listing 1
nor taint source in Listing 2. Besides, according to information-flow-
based approaches [22, 66], both devices (door and thermostat) are
associated with a restricted physical label, while the notification has
a private label. Therefore, the interactions between two apps in-
volve information flows without any violations, i.e., from restricted
physical to restricted physical and from restricted physical to private.
Finally, some detection approaches such as SafeChain [39] consider
only privacy leakages due to publicly observable data (e.g., lights
on/off) but not through the taint sinks (e.g., notifications). There-
fore, they cannot identify the cross-app leakage if the taint sink

is in the last app on the cross-app chain. This new privacy threat
due to IoT app interactions calls for a systematic study on potential
privacy leakage risks.

To tackle this problem, we face three design challenges: (1) How
to describe privacy considerations and identify device-specific sensitive
data precisely? SAINT [14] considers all device states and state
variables sensitive, while [66] and [39] rely on a privacy policy to
assign privacy labels private, public and other to device attributes.
Both schemes are too coarse-grained to provide a precise privacy
categorization. (2) How to discover cross-app chains based on device
usage and identify sensitive data exposure? Existing privacy leakage
approaches [22, 39, 66] focus solely on analyzing IFTTT applets,
neglecting the examination of multiple IoT platforms. Additionally,
they failed to account for device context and usage, where the same
capability may control devices at varying sensitivity levels. Finally,
(3) How to draw privacy inference? This requires the calculation of
the inference probability to accurately measure the likelihood of
leakage, as well as the utilization of chain combinations to draw
precise inferences regarding user privacy.

2.3 Threat Model
We consider an IoT environment with multiple IoT apps installed,
including both benign and malicious apps. The latter has seemingly
benign triggers and sinks chosen by an attacker. They could form
cross-app chains among themselves or with other benign apps to
infer users’ private data and send it to unauthorized recipients.

We assume that the victim user would install at least one mali-
cious app. First, by not acting as a data sink itself or not requesting
access to any private data, the malicious apps appear benign under
existing privacy checks. Non-technology-savvy users may acciden-
tally install and misconfigure malicious apps. Besides, to attract
downloads, the adversary could develop malicious, general-purpose
apps that control multiple devices or squatting apps that mimic
popular devices. Additionally, the adversary is assumed to know
the installed apps to construct cross-app chains. This knowledge
could be obtained if multiple malicious apps are installed by the
same victim or from multiple vulnerable devices manipulated by
the attacker [16, 21, 24, 25, 39]. Moreover, a strong adversary could
infer smart home configurations by intercepting and analyzing en-
crypted network traffic. The interaction of trigger or action events
between IoT apps and devices can be inferred from traffic behavior
(e.g., packet flow, heartbeat) [1, 34, 55, 69, 81]. By analyzing iden-
tified IoT devices and sequences of events, we could deduce the
IoT apps used in the smart home environment [35, 50, 81]. Finally,
we assume the attackers cannot circumvent the security measures
of IoT platforms, exploit side channels, or observe information
through the sinks, similar to previous studies [8, 14, 19, 20, 39].

3 Privacy Threat Categorization
Existing studies on IoT app privacy often adopt coarse-grained
privacy labels. They either consider all types of device information
sensitive [8, 14] or use over-general privacy labels such as private,
public, or other [22, 39, 66], which are not informative about the
privacy leakages. In practice, informative privacy implications are
desired, which help users understand the privacy risks and imple-
ment precise privacy controls tailored to the unique needs of IoT
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Cluster Devices

Activity activity sensor,bathtub,bed,shower,sleep sensor
Appliance blender,blind,boiler,cleaner,coffee-maker,A/C,cooker,cooktop,cooler,curtain,

dishwasher,dryer,fan,faucet,fireplace,freezer,fryer,heater,kettle,light,microwave,
mop,mower,oven,printer,projector,refrigerator,stove,tv,vacuum,washer

Car car,vehicle
Door door,garage door,gate,window
Fitness step sensor,watch,wristband
Health body mass index sensor,body weight sensor,health,medicine
Location geolocation
Lock lock
Monitoring camera,audio,image,speech,video
Music player,soundbar,speaker
Presence location mode,occupancy sensor,presence sensor

Table 1: Clusters of privacy-sensitive devices.

devices. In this work, we design fine-grained privacy labels and
assign them to different IoT devices (or device clusters).
Device Clusters. IoT devices gather and process various types
of data, some of which are privacy-sensitive. To assess potential
privacy risks, we need to identify devices handling sensitive data,
which is challenging due to device diversity and data heterogeneity.

We first collected a list of 88 types of supported devices from
popular IoT platforms, i.e., Google Smart Home, Apple HomeKit,
and SmartThings [5, 33, 60]. Using the spaCy NLP library [65], we
computed the word embeddings of device names and applied the
Agglomerative clustering [64] to group them based on the distances.
Subsequently, we cross-referenced the clusters with the official
service categories in IFTTT [42] and merged smaller clusters. For
instance, cleaners and vacuums were in the same cluster. They
were merged with the boiler cluster to form the appliance cluster.
Finally, we adjusted the remaining categories according to their
privacy implications. For example, as the sensory data related to
the bed devices often indicates sleep patterns or occupancy, we
move it from the appliance cluster to a new activity cluster. We also
added new clusters for the lock, door, and presence devices that
are frequently used in IoT apps. Table 1 lists the final clusters of
privacy-sensitive IoT device types.

The Activity, Health, and Fitness clusters may exhibit certain
similarities. Within the Activity cluster, the devices and sensors are
designed to monitor an individual’s daily routines and habits. They
can track activities such as sleep patterns, shower usage, time spent
in bed, and physical activity. These activities can offer insights into
an individual’s overall lifestyle and behavioral patterns. Devices
and sensors categorized under the Health cluster are directly related
to an individual’s physical health status. Medicine data includes
information about medications or treatments, while parameters like
body mass index and body weight serve as crucial health indicators.
Monitoring these aspects is vital for evaluating and preserving an
individual’s health. Devices within the Fitness cluster are typically
employed in fitness-related contexts. For instance, wristbands and
watches are commonly used to monitor activity data, including met-
rics like step count, distance traveled, and other fitness parameters.
Step sensors are instrumental in tracking movement and exercise,
making them relevant to fitness monitoring. The Health cluster
includes personal identifiers and sensitive medical conditions, mak-
ing it the most sensitive among these three clusters. On the other
hand, the Activity cluster involves insights into an individual’s
daily routines and habits, which are also more sensitive compared
to the Fitness cluster. Hence, it is important to maintain a clear
distinction between these three clusters due to the sensitivity and
the unique nature of the data.

Privacy Label Device Clusters

(A) Identification Monitoring
(B) Localization & Tracking Activity,Appliance,Car,Door,Location,Lock,

Monitoring,Music,Presence
(C1) Activity Profiling Activity,Appliance,Car,Monitoring,Music
(C2) Health Profiling Fitness,Health
(D) Lifecycle Transitions Health,Location,Monitoring

Table 2: Privacy labels associated with different device clusters.

Privacy Labels. IoT privacy can be defined as a threefold guar-
antee for awareness of privacy risks imposed by smart things and
services, individual control over the collection and processing of
personal information, and awareness and control of subsequent
use and dissemination of personal information [85]. Following this
definition, Ziegeldorf et al. identified seven threat categories in
the context of IoT. Four of them are relevant to home automation
systems: (A) identification threat of associating an identifier of any
kind from ID to camera data. (B) localization and tracking threat of
determining a person’s location, for example, from GPS, geoloca-
tion, or presence data. (C) profiling threat of correlating data and
other profiles to infer individuals’ interests. A broad spectrum of
data can be used for profiling, therefore, we further classify it into
(C1) activity profiling that uncovers physical activities, daily life,
living habits, and routines, etc., and (C2) health profiling that re-
veals health conditions or treatment. And (D) lifecycle transitions
threat that involves private information associated with changes
in control during an item’s lifecycle, such as photos left on a used
camera or location data remaining on a used phone.

With a small number of device clusters, we manually assign
privacy labels to each cluster according to its privacy implications.
A device cluster may receive one or multiple privacy labels. For
instance, the Health cluster deals with health and biometrics data
and thus has a risk of exposing Lifecycle Transitions and Health
Profiling data. We identified all device clusters with at least one
privacy threat, as shown in Table 2, and explained the rationale of
manual label assignment in Appendix A.

4 Cross-App Privacy Leakage
4.1 Cross-App Rule Chaining
The cross-app privacy leakage occurs only when the rules of multi-
ple installed apps can be chained together.
Rule Chaining and App Chaining. Rules can be chained in
two ways. First, two rules are chained if one’s action activates
the other’s trigger, referred to as an activate relation. Secondly,
they are chained if one’s action satisfies the condition of the other,
referred to as an enable relation.

As shown in Figure 1(a), the action 𝑎R1 directly fires the trigger
𝑡R2 , so rules 𝑅1 and 𝑅2 have an activate relation represented by the
dashed arrow. As shown in Figure 1(b), the action 𝑎R3 enables the
condition 𝑐R4 . Hence, 𝑅3 and 𝑅4 form an enable relation. Two apps
are chained if their rules form an activate or an enable relation. In
Figure 1(c), multiple apps A1, ...,A𝑛 can be linked together if their
rules R1, ...,R𝑛 are chained. The first app and the last app are called
the entry and exit apps, respectively.
Relations between Events andRules. Rules can be chained either
explicitly or implicitly[70]. Explicit rule chaining occurs when the
action event of one rule activates or enables another rule on the same
device. Similarly, when the action event of one rule influences the
physical channel shared with the trigger event or condition event
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tR1 cR1 aR1

R1

tR2 cR2 aR2

R2

tR4 cR4 aR4

R4

tR3 cR3 aR3

R3

tRm cRm aRm

Rm

tR1 cR1 aR1

R1

tR2 cR2 aR2

R2

tRn cRn aRn

(a) (b)

(c) 

Rn

Figure 1: (a) Activate Relation; (b) Enable Relation; (c) Multiple-App Chain.

of another rule on different devices, this action implicitly activates
or enables another rule. Therefore, rule chaining is associated with
trigger, condition, and action events, as well as the devices and
physical channels involved.
Device and physical medium. Consider a device 𝑠 with a set of com-
mands denoted as C(𝑠) and attributes with values denoted as A(𝑠)
and V(𝑠), respectively. A device may associate with an optional
physical channel, denoted as 𝑠 .𝑐ℎ𝑎𝑛𝑛𝑒𝑙 , which either influences the
device to change (some of) its attribute value(s) or gets influenced
by some device commands.
Event. An event 𝑒 on a device may execute a subset of commands,
denoted as C(𝑒), and change the values of a subset of attributes,
denoted asA(𝑒) andV(𝑒), respectively. The execution of the event
occurs under a condition (called a constraint), which involves a
subset of device attributes, i.e., A(𝑒.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡). The constraint is
satisfied if these attributes hold values in V(𝑒.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡). Next,
we formally define the match and influence relations.
Definition 1 (match). Events 𝑝 and 𝑞 have a match relation if they
occur on the same device and by calling commands in C(𝑝), 𝑝
changes the device state so that the constraint of 𝑞 is satisfied.

𝑚𝑎𝑡𝑐ℎ(𝑝, 𝑞) ≡ (𝑠 (𝑝) = 𝑠 (𝑞))
∧ ((∀ 𝑎𝑡𝑡𝑟 ∈ ( A(𝑝) ∩ A(𝑞.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)))
⇒ (𝑎𝑡𝑡𝑟 .𝑣𝑎𝑙𝑢𝑒 ∈ V(𝑞.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)))

Definition 2 (influence). Events 𝑝 and 𝑞 have an influence relation if
they occur on different devices but share the same physical channel.

𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑝, 𝑞) ≡ (𝑠 (𝑝) ≠ 𝑠 (𝑞))
∧ (𝑠 (𝑝) .𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑠 (𝑞) .𝑐ℎ𝑎𝑛𝑛𝑒𝑙)

Based on these definitions, we further define the triggered and
enabled relations between two rules, i.e., 𝑅𝑖 with an action event 𝑎
and 𝑅 𝑗 with a trigger event 𝑡 . 𝑅 𝑗 has a condition, which is a set of
constraints extracted from all the execution paths from the entry
point to sinks excluding the constraint of the trigger event 𝑡 . We
denote the condition events of a TCA rule as B = {𝑏1, ..., 𝑏𝑘 }.

Definition 3 (activate). 𝑅𝑖 activates 𝑅 𝑗 if 𝑎 and 𝑡 hold either a match
or an influence relation.

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 (𝑅𝑖 , 𝑅 𝑗 ) ≡ (∀ 𝑎 ∈ 𝑅𝑖 , 𝑡 ∈ 𝑅 𝑗 ,

(𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑡) ∨ 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑎, 𝑡)))

Definition 4 (enable). 𝑅𝑖 enables 𝑅 𝑗 if 𝑎 and at least one of the
condition events of 𝑅 𝑗 hold either a match or an influence relation.

𝑒𝑛𝑎𝑏𝑙𝑒 (𝑅𝑖 , 𝑅 𝑗 ) ≡ (∀ 𝑎 ∈ 𝑅𝑖 , (∃ 𝑏 ∈ B,
(𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑏) ∨ 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑎, 𝑏))))
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Figure 2: Examples of the probability inference for cross-app chains. 𝑃𝐸 and
𝑃𝐼 denote the execution and inference probabilities, respectively.

4.2 Privacy Inferences from Cross-App Chains
Next, we explain privacy inferences drawn from cross-app chains.
Privacy Inferences. When multiple apps form a cross-app chain
and the execution of the action event of the exit app is observed, one
could infer that: (1) at least one trigger of the entry app is activated,
and if so (2) along the path from this trigger to the executed action
of the exit app, all the trigger events are activated, all the condi-
tions are satisfied, and all the actions are executed. We proceed
by identifying the devices and device states associated with these
triggers, conditions, and actions, retrieving their privacy labels, and
inferring potential privacy leakage of the cross-app chain.

For example, two apps in Figure 2(a) are chained together, since
the action 𝑎1 can activate the trigger 𝑡2. App 𝐴1 has two triggers,
𝑡1 and 𝑡3, and three TCA rules leading to action 𝑎1. Meanwhile,
app 𝐴2 with triggers 𝑡2 and 𝑡4 has two TCA rules leading to ac-
tion 𝑎2. From the execution of 𝑎2, we can infer that conditions 𝑐4
and 𝑐5 are deterministically satisfied. If 𝑐4 or 𝑐5 is associated with
privacy-related data or devices (e.g., a lock), this inference results in
privacy leakage. We could also infer that either the trigger 𝑡2 or 𝑡4 is
activated, however, we cannot determine which trigger is executed
since they have an equal activation probability. Similarly, if 𝑡2 is
activated by 𝑎1, we cannot determine whether 𝑡1 or 𝑡3 was activated,
or which condition was satisfied, because three TCA rules in 𝐴1
share the same action. This example illustrates a probability-based
inference method for cross-app privacy analysis. An app’s triggers
or conditions can be activated or enabled by several apps, and each
app can have multiple TCA rules that share the same action. As a
result, most probability inferences are non-deterministic.

The inferences made based on cross-app interactions reveal in-
formation about device states of all the devices associated with the
triggers, conditions, and actions in the app chain, which may be
privacy-sensitive. As discussed in Section 3, these device clusters
with one or multiple privacy labels are considered sensitive. In
certain scenarios, we can precisely identify the devices in use. For
instance, in SmartThings rules, the device ID can be obtained from
the rule’s JSON files. This allows us to determine the exact device
used in the rule by accessing the device IDs of each device. Similarly,
in some IFTTT applets, the exact device can be identified through
the service name defined in the IFTTT documentation.

However, there are scenarios where the devices associated with
the rules are unknown. In such cases, we can deduce the device
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from its textual descriptions or system-defined interfaces. Smart-
Things employs a capability-based permission model to regulate a
SmartApp’s access to a SmartDevice. This model maintains a list
of capabilities [61], outlining each capability’s purpose, use cases,
commands, attributes, etc. Most capabilities can be directly mapped
to specific devices in a deterministic manner. For instance, the
presence capability is exclusively associated with presence sensors.
Nonetheless, certain capabilities can be linked to different devices,
and in such instances, we can only infer the devices from the textual
descriptions. For example, capabilities like switch, button, outlet,
and switchLevel can grant access to all devices with on/off function-
ality. We need to extract information about the device, called device
profile, from the app’s textual data, and privacy labels need to be
assigned to each device based on this information.
Privacy Leakage Risks. A privacy risk occurs when data with
privacy indication is disclosed, not all cross-app chains have a pri-
vacy leakage risk. For example, SmartThings provides two APIs, i.e.,
messaging and Internet, for apps to interact with external services.
Only if an app uses these APIs to send sensitive data out without
informing the users [8] or send data to unknown endpoints, it poses
a privacy risk. Therefore, only the cross-app chains whose exit app
has taint sinks are considered to have potential privacy leakage
risks. Furthermore, the simultaneous occurrence of two or more
sinks may indicate a strong correlation between the events that trig-
gered them, which can be used to infer the likelihood of a common
trigger, condition, or action being executed.

5 PrivacyGuard Design
In this section, we introduce PrivacyGuard, a privacy analysis tool
designed to identify potential privacy leakage risks in a multi-app
multi-platform environment. As depicted in Figure 3, PrivacyGuard
extracts text data from apps, infers device types and states (i.e.,
device profile generator), analyzes the app and constructs TCA rules
(i.e., rule constructor), identifies cross-app chains (i.e., chain builder),
and conducts privacy inference analysis (i.e., privacy threat detector).

5.1 Device Profile Generator
Multi-linking sensors or actuators such as switches, buttons, or
acceleration sensors can be connected to privacy-sensitive or non-
sensitive devices. They do not inherently exhibit sensitivity when
used alone. Instead, their sensitivity depends on the context and
usage, for example, when controlling privacy-sensitive devices (e.g.,
a switch sensor linked to a lock, or an acceleration sensor linked to
a door). To accurately infer privacy indications, we create a device
profile for each device, including device type and state.
Text Data Extraction. Each IoT app has a human-written app
description about its main functionalities and behavior. For example,
it guides the users to configure the devices to control during Smar-
tApp installation. Besides, the input prompts, section prompts, and
variable names in the preferences block statements provide useful
information to assist the user in this process. For example, an input
prompt which door, a section prompt select a door, or a variable
named garageDoor indicate a door-type device being operated. For
OpenHAB rules, the device usage and context are often located in
the rule description and item definition, such as “room light”. In
IFTTT, the functionalities of triggers and actions can be deduced
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Figure 3: The architecture of PrivacyGuard.

from their identifiers, names, and descriptions, e.g., the action turn
on lights controls a light device with the attribute light on.
Device Type Deduction. We infer the devices and their states
involved in each rule component from the text data. The app de-
scriptions often contain fuzzy information about the device. For
example, a SmartApp co2-vent has a description Turn on a switch
when𝐶𝑂2 levels are too high, but its section prompt specifies that the
switch is connected to a ventilation fan. So, we extract the capability
from each input statement, the input prompt, section prompt, vari-
able names from the input statement, and the app description from
the definition block. In OpenHAB rules and IFTTT applets, clues
about devices and attribute values can be found in the description,
label text, ID name, and variable name.

We take a Natural Language Processing (NLP) approach to ana-
lyze the text data. To deduce the device, we conduct a part-of-speech
(POS) tagging using the spaCy NLP library [65] and extract the
nouns and proper nouns as candidates, which are then matched
against the device type names used across different IoT platforms.
This comparison is guided by a requirement that their similarity
score must surpass a pre-set threshold of 0.6 [43]. However, the
texts may contain multiple distinct nouns, and the frequency of
their occurrences plays a significant role in contributing to the
overall outcome. To capture this, we assign a weight to each text
such that a noun’s score is calculated by multiplying its occurrence
count by the text’s weight. Since the app description is considered
less significant compared to other texts, we assign it a proportion-
ally lower weight for its nouns. This approach allows us to consider
all nouns from all texts, with each noun having a unique score that
reflects both its frequency and contextual importance.

Next, we compare each noun with every known device type
name to form pairs and measure their similarity. If the similarity is
below a predefined threshold, the pair is discarded. For each valid
pair, a score is calculated by multiplying the noun’s score by its
similarity to the device type name. These pairs are then sorted in
descending order based on their scores. The device type name from
the pair with the highest score is selected as the associated device
type for that noun. This process is repeated for each candidate noun
to determine the device type that appears most frequently, which
is then selected as the resulting device type.
Device State Inference. Since devices in SmartApps are linked
to specific capabilities, and OpenHAB rules use similar actions to
SmartApps, such as on/off, open/close, there’s no need to infer device
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Figure 4: The CFG Diagram of Listing 1.

states in those cases. However, IFTTT applets present a different
challenge: some devices support more actions on the IFTTT plat-
form. For example, Philips Hue can perform additional actions such
as blinking, color looping, and toggling. To accommodate these, we
use the device attributes and values in SmartThings as a reference to
map a device to its possible attributes and values. For devices with
additional actions, we add extra attributes and values to represent
these actions. We then infer the device state by extracting verbs
and their corresponding adpositions, matching them with potential
actions through word similarity score comparisons. For instance,
in the phrase turn off the light, the adposition off is associated with
the verb turn, indicating that the light is being turned off.

5.2 Rule Constructor
IoT apps have common structures that make it easier to extract TCA
rules. We refer to the trigger, condition, or action as a component
of a TCA rule. Our process involves identifying each component,
applying the corresponding device profile, and constructing the
rules for each IoT app on different platforms. We illustrate this
approach with a code snippet in Listings 1, 2, and 3 as examples.
Rule Modeling. Listing 2 is an IFTTT applet whose trigger and
action can be directly identified from the JSON file. We excluded
the filter code about when an applet should be run or skipped. Ig-
noring the filter code does not affect our model, as we aim to detect
the execution of the rule when it is triggered. Each IFTTT applet
offers at least one trigger-action pair. The ID of the trigger and
action follows the format: /endpoint type/API endpoint slug. The
endpoint type can be a trigger or an action, and the API endpoint
slug contains the service slug and service command. A service slug
corresponds to an IoT device or a service, while a service command
provides information about the device attribute value. For exam-
ple, temperature_above_threshold indicates that the temperature is
above the threshold.

For SmartApps and OpenHAB rules, we first construct the Ab-
stract Syntax Trees (ASTs). For SmartApps, we directly use the
ScriptToTreeNodeAdapter function provided by Groovy. As the script
block of OpenHAB rules is syntax-compatible with Groovy, except
for type casts. We use regular expressions to deal with type cast-
ing and extract the ASTs. From the AST of each app, we build a
control flow graph (CFG) for static analysis, similar to prior app
analysis approaches [2, 21, 44]. For example, Figure 4 shows the
CFG diagram of the app in Listing 1.
Action Nodes Extraction. With the AST, we search for method
call nodes. In SmartApps, the subscribe or schedule method call
nodes, such as Line 4 in Listing 1, serve as the entry node of an
app. In OpenHAB, the when statement such as Line 4 in Listing 3
serves as the entry node. Method call nodes consist of a receiver,
a method name, and an argument list, such as thermo.auto() and
light1.sendCommand(ON) in Line 7 of Listings 1 and 3.

Action nodes are method call nodes that can be categorized
into actuator nodes and sink nodes. Actuator nodes represent com-
mands that interact with physical devices to change their states,
while sink nodes communicate with external channels. We filter
out method call nodes where the receivers are associated with de-
vices, and the method names are defined as actions in the official
reference, categorizing them as actuator nodes(e.g., thermo.auto()
and light1.sendCommand(ON)). Additionally, we consider method
call nodes involving taint sinks as sink nodes(e.g., sendNotification).
Permission and Constraint Identification. In SmartApps, we ex-
tract devices’ identifiers and capabilities from input method call
nodes (e.g., Line 1 in Listing 1). Similarly, in OpenHAB, we identify
all properties of home automation from items definitions (e.g., Line
1 in Listing 3). We refer to these as permission nodes. Method nodes
represent functions that can be invoked within other functions,
such as check() in Line 6 of Listing 1. The method call nodes and
their argument lists are recorded to build a CFG. In particular, we
extract method call paths from each method call node to its nearest
method node, logging all the conditions encountered along the way.
For example, we can extract a method call path between nodes
thermo.auto() (Line 7 in Listing 1) and check() (Line 6 in Listing 1),
which has a condition mode==Auto. With all the method call paths,
we construct the paths from the entry node to the action nodes.

We identify condition nodes with an if or a switch statement
by traversing backward along the path. Predicate constraints are
constructed from the boolean expression in an if statement or
by combining associated case statement(s). Then, we examine the
conditions on the paths and identify all the variables associated
with permission nodes, which are potential connection points for
chaining TCA rules. We check if a variable is in the parameter list
of the current method node and then recursively retrieve the parent
node and/or its siblings along the path to locate the associated
permission nodes. For example, in Listing 1, the variable evt in the
parameter list of the function handler can be associated with the
capability contactSensor based on the subscription (Line 4), thereby
linking to the device door.

In SmartApps, potential triggers involve event subscriptionmeth-
ods that subscribe event handlers to device attribute values, loca-
tions, or app touches, e.g., subscribe(door, contact.closed, handler)
in Line 4 of Listing 1, or schedule call functions such as schedule
or run* that trigger event handler methods at a specific time. For
OpenHAB rules, they follow the format “when trigger, if condition,
then action”, the when statements serve as subscription nodes, e.g.,
Line 4 of Listing 3. These subscription nodes contain trigger node
information, allowing us to construct the TCA rule starting from
action nodes and traversing backward to subscription nodes using a
graph traversal algorithm. Additionally, we identify the correspond-
ing constraints of each trigger from the subscription method and
its event handler [21, 24]. Specifically, if the trigger subscribes to a
device event (e.g., contact.closed), its constraint can be directly de-
rived from that event. Otherwise, if it subscribes to all device events
(e.g., contact), the event handler needs to compare the event’s value,
which becomes the constraint of the trigger. The other conditions
on the path are parsed as the constraints of conditions.
Rule Generation. After modeling the rule and combining it with
the device profile of each component, we generate the TCA rules
and eliminate duplicate rules to avoid redundant cross-app chains.
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Trigger Condition Action Type

device: door
attribute: contact
operator: =
value: closed

device: user-defined
attribute: mode
operator: =
value: auto

device: thermostat
attribute: mode
operator: =
value: auto

SmartApp
Actuator

device: presence
attribute: presence
operator: =
value: present

device: light
attribute: switch
operator: =
value: on

OpenHAB
Actuator

device: thermostat
attribute: temperature
operator: >
value: threshold

device: sink
attribute: notification
operator:
value:

IFTTT
Sink

Table 3: Example rules extracted from Listings 1, 2, and 3.

Rule Assembly. The trigger and condition constraints follow a spe-
cific structure: name.attribute-operator-value. Each component of
a TCA rule is linked to a device type, an attribute, and their corre-
sponding values. Therefore, we break down each component into 4
parts: device type, attribute, operator, and value. For instance, the
action light.on associated with the capability switch is decomposed
into: device(light), attribute(switch), operator(==), and value(on).
Table 3 shows three TCA rules extracted from Listing 1, 2, and 3.
Duplicate Rule Removal. Duplicate rules can lead to redundant
cross-app chains, resulting in decreased efficiency and potentially
incorrect outcomes. When two rules share identical triggers and
conditions, and the associated action involves the same device type
and state (for actuator rules) or utilizes any taint sinks (for sink
rules), we classify these rules as identical. In the case of actuator
rules, the action activates the triggers or enables the conditions
of the other rule. If any two rules have the same action with the
same device type and state, the actions can be connected to the
same chains, indicating they are identical. For sink rules, if two
rules share identical triggers and conditions but use different taint
sinks, they serve the same purpose of sending messages externally
and are therefore considered identical. After recognizing duplicate
rules, we eliminate them to prevent redundant processing.

5.3 Chain Builder
To create cross-app chains, we need to connect two separate TCA
rules through an action-trigger/action-condition pair. The TCA
rules can be categorized into actuator rules and sink rules. Actuator
rules involve actions carried out by actuator nodes, whereas the
actions within sink rules function as sink nodes, which implies that
sink rules do not affect or connect with other triggers or conditions.
Therefore, only the actuator rules can activate or enable other rules.
Rule Merging.When multiple rules share the same action, they
can potentially activate or enable the same set of rules or chains. To
reduce redundancywhen building cross-app chains and simplify the
calculation of rule execution likelihood (Section 5.4), we combine
TCA rules with the same action into what we call a merged rule.
The merged rules create several branches. Each branch represents
a different TCA rule sharing the same action. Within a merged rule,
each branch has an equal likelihood of leading to the execution of
that action. The number of merged rules depends on the number
of unique actions of the app.
Rule Connection. Rules can be explicitly or implicitly chained
based on the actions match or influence on other triggers or condi-
tions. Two rules are explicitly chained if they operate on the same

Channel Actuator Devices Sensors

Humidity dehumidifier,fan,humidifier,vent humidity
Leakage faucet,sprayer,sprinkler,valve water
Location location presence
Luminance light illuminance
Motion blind,curtain,cleaner,door,fan,garage door,

gate,mop,vacuum,window
motion

Power A/C,cooler,fireplace,heater,kettle,stove,oven gas,power
Smoke fireplace,heater,purifier,stove,oven carbon dioxide, smoke,

carbon monoxide
Sound alarm,player,soundbar,speaker,tv sound
Temperature A/C,cooler,fan,fireplace,heater,stove,oven,

thermostat
temperature

Table 4: Physical channels and the associated devices.

device with the same device state. For implicit chaining, we fol-
lowed the approach in [24] to discover shared physical channels.We
identified 9 physical channels with corresponding actuator devices
and sensors, as shown in Table 4. Compared to [24], our results
include two new physical channels, sound and power. Note that our
focus is not on discovering physical channels but on identifying
physical channels enabling cross-app chains with the influence re-
lation. Furthermore, the influence relation is one-way, flowing from
the actuator device to the sensor.

Two rules connected through an action-trigger pair or an action-
condition pair form an activate or enable relation, respectively. We
can connect two rules by examining the relationship between the
action node and the trigger/condition node in each rule, resulting
in four distinct types of connections, i.e., match-activate, influence-
activate,match-enable, and influence-enable. To connect twomerged
rules, we examine the action of one merged rule against all the
triggers and conditions of the other merged rule.
Cross-app Chain Generation. Given a set of apps, we extract all
the merged actuator rules and merged sink rules from each app to
generate cross-app chains. We start with a sink rule and connect
it with all other rules via available paths until the chains cannot
be extended further. Then, we extract the chains reaching their
maximum lengths along all paths. More details are presented in
Appendix B. We used two stacks, nodes and paths, to track the
current rule and the chains that have not yet reached the maximum
length. Besides, we record the rules that have been visited in the
visited set to avoid loops. Next, we find all adjacent rules that can
activate or enable the current rule. No adjacent rules indicate that
the current chain has reached its maximum length along the path.

5.4 Privacy Threat Detector
Given a set of IoT apps, PrivacyGuard generates a list of cross-app
chains that consist of multiple TCA rules, which can potentially leak
user privacy. To measure the risk of leaks, we design a probability-
based method. The probability serves as a measure of confidence to
compare the risks. A higher probability indicates greater confidence
about the derived privacy leakage threat.
Execution Probability.We calculate the likelihood of the triggers
being activated, the conditions being satisfied and the actions being
executed, which is defined as the execution probability (𝑃𝐸 ). With
a single TCA rule, the execution of its action indicates that its
triggers are activated and its conditions are met. So, the execution
probability is 100%. However, when 𝑛 TCA rules share the same
action, the execution probability of each component (a trigger, a
condition, or an action) of each rule is 1/𝑛. The overall execution
probability of a component is the sum of its execution probabilities
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Figure 5: The interface and privacy alerts generated by PrivacyGuard.

across the rules. As shown in Figure 2(a), the action 𝑎1 in the app
𝐴1 is associated with three rules: 𝑅1 = 𝑡1 → 𝑐1 → 𝑐3 → 𝑎1,
𝑅2 = 𝑡1 → 𝑐1 → 𝑐2 → 𝑐3 → 𝑎1, and 𝑅3 = 𝑡3 → 𝑐2 → 𝑐3 → 𝑎1.
Therefore, the execution probabilities of the triggers, conditions
and actions in each rule are 1/3, from which we compute the overall
execution probability of each component: 𝑃𝐸𝑡3 = 1/3, 𝑃𝐸𝑡1 = 𝑃𝐸𝑐1 =

𝑃𝐸𝑐2 = 2/3, and 𝑃𝐸𝑐3 = 𝑃𝐸𝑎1 = 1.
Chaining Probability.We denote the probability that two rules
can be chained together as the chaining probability (𝑃𝐶 ). It is de-
termined by two factors: (1) the connection probability about how
likely a chain can be constructed with match or influence relation,
and (2) the number of rules connected to the second rule. For chains
established via the match relation, the connection probability is
100%. For example, the rules turn on the light and activate by the
light are chained deterministically. However, in chains established
through the influence relation, where two rules operate on different
devices sharing the same physical channel, the connection probabil-
ity may be lower. An adversary could exploit specific conditions to
increase the connection probability. For instance, since illuminance
is affected by factors such as weather, time of day, and light sources,
the connection probability based on the light-illuminance relation
could reach 100% at night. Similar to previous work [21, 24, 70], we
assume that the attacker is aware of scenarios where the connection
probability is deterministic, using a 100% connection probability
for analysis. The chaining probability between two rules is calcu-
lated by dividing the connection probability by the number of rules
linked to the second rule, i.e., 1/𝑛. For example, in Figure 2(a), the
chaining probability between 𝑎1 and 𝑡2 is 𝑃𝐶𝑎1,𝑡2

= 1, because only
one app 𝐴1 can be linked to the trigger 𝑡2 of app 𝐴2.
Inference Probability. In a cross-app chain, by observing the
execution of the exit app’s action, an attacker could infer the status
of each trigger, condition or action in the apps along the chainwith a
certain likelihood, referred to as inference probability (𝑃𝐼 ). A privacy
leakage is defined as a direct exposure if its inference probability
is 100% or an implicit inference if the probability is larger than
50%. When two apps are connected, the inference probability of a
component in the first app is the product of these three probabilities:

its execution probability in the first app, the chaining probability
between the two apps, and the inference probability of the trigger
or condition in the second app. If the app is the exit app in the
chain, the execution probability is the inference probability. For
example, the inference probability of the trigger 𝑡1 in Figure 2(a)
can be calculated by 𝑃𝐼𝑡1 = 𝑃𝐸𝑡1 × 𝑃𝐶𝑎1,𝑡2

× 𝑃𝐼𝑡2 = 1/3.
Multiple-Sink Inference. Each cross-app chain has only one exit
point, known as a sink. The inference probabilities discussed above
are based on observing the execution of this single sink, called
single-sink inference. In multiple cross-app chains with multiple
sinks, we can observe the execution of all the sinks and combine
the inference probabilities for the same component across different
chains. This results in an increase in the overall inference proba-
bility called multiple-sink inference. If 𝑛 cross-app chains share a
common component whose inference probability in the 𝑘-th chain
is 𝑃𝐼𝑘 , the overall inference probability that this component is exe-
cuted in at least one chain is 𝑃𝐼 = 1 −∏𝑛

𝑘=1

(
1 − 𝑃𝐼𝑘

)
. For example,

consider two cross-app chains with sinks 𝑎2 and 𝑎4 as shown in
Figure 2. If both sinks are activated, the overall inference probability
𝑃𝐼𝑡1 increases to 4/9, and 𝑃𝐼𝑐3 increases to 2/3.
Privacy Alerts. PrivacyGuard detects potential cross-app chains
and calculates the associated inference probabilities. Figure 5 shows
the interface of PrivacyGuard and the privacy alerts for the user.
Two examples of single-sink andmultiple-sink inferences are shown
at the top. Each provides a list of privacy-sensitive cross-app chains
and the corresponding privacy threats. At the bottom, it visualizes
the cross-app chains with privacy risks, where different IoT apps
are represented by different colors, and triggers, conditions, or
actions are represented by different shapes. The apps on the cross-
app chains are connected by colored arrows with labels of the
connection types.

6 Evaluations and Analysis
We implemented PrivacyGuard in both Groovy and Python, and
evaluated its performance through experiments and case studies.
We ran PrivacyGuard on a desktop computer with a 3.60GHz 12-
core Intel I7-12700K processor and 16GB of RAM. To test with
real-world data, we built a comprehensive dataset, excluding apps
that did not include identifiable IoT devices, subscriptions, or that
were malicious apps created for testing purposes [8]. The resulting
dataset included 6,975 apps: 2,101 SmartApps from the SmartAp-
pZoo dataset [71], 2,788 IFTTT applets [76], and 2,086 OpenHAB
rules sourced from third-party apps on GitHub. Among these, 105
were classified as fat apps (those connecting to 10 or more devices).
During our static analysis, we identified 17 typos and 6 previously
unrecognized capabilities in the SmartApps, which we manually
corrected and added to our dataset.

6.1 Correctness of PrivacyGuard
Device Profile Inference.We evaluated PrivacyGuard’s capability
to accurately identify device profiles (i.e., device types and states).
First, we manually analyzed the text data and source code of 184
SmartThings official apps and 100 OpenHAB rules to obtain the
ground truth about device types and states. We adopted the results
from Safechain [39] for IFTTT applets and selected 935 IFTTT ap-
plets associated with these devices. Next, we compared the ground
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Platforms # Truth Names Accuracy

SmartThings 184 Device Type 96.6%
Device States 100%

IFTTT 935 Device Type 93.0%
Device States 96.2%

OpenHAB 100 Device Type 91.0%
Device States 100%

Table 5: The accuracy of device profile inference.

Privacy Label Direct Exposure Implicit Inference

(A) Identification audio,camera,video audio,camera,video
(B) Localization & Tracking location,door,lock,presence,

fan,cooler,heater
location,door,lock,presence,
cooler,fan

(C1) Activity Profiling fan,cooler,heater,player,
A/C,light

cooler,fan,heater,player,light

(C2) Health Profiling watch,health,wristband watch,health,wristband
(D) Lifecycle Transitions audio,camera,health audio,health
Table 6: Sensitive devices associated with different privacy threats.

truth with the results from the automated analysis to evaluate Pri-
vacyGuard’s performance in device profile inference. Table 5 shows
the accuracy on each platform.

We also manually reviewed several incorrect cases. For example,
we cannot infer activate scene as a LIFX light due to the lack of
contextually relevant terms to associate it with light. Similarly, Pri-
vacyGuard associated the app it moved to a motion device based on
its description when movement is detected, although it is associated
with an acceleration device.
Rule and Chain Extraction.We randomly selected 300 TCA rules
from 184 official SmartApps and 200 TCA rules from randomly cho-
sen IFTTT applets and OpenHAB rules. The results showed that
PrivacyGuard accurately extracted these TCA rules. Next, we ran-
domly chose 100 IoT apps to construct cross-app chains and manu-
ally verified the chains identified by PrivacyGuard. We confirmed
that all of these chains were correct.

6.2 Cross-App Chains and their Patterns
Two-App Chains. Using a dataset of 6,870 IoT apps (excluding 105
fat apps), we extracted TCA rules from the apps and constructed
chains involving two apps each. We explored how likely a cross-
app chain could be formed. A total of 7,458,979 two-app chains
were identified. The fat apps were excluded because they would
create a huge number of connections with other apps, potentially
introducing bias. Among these chains, 15.40% involve sink apps,
and 7.67% has the potential to leak at least one type of privacy data.

We also observed interesting interaction patterns that may as-
sist attack design. For example, among all the two-app chains,
95.43% and 4.57% are formed through the activate and enable re-
lations, respectively. Additionally, 38.19% are established through
the influence relation via shared physical channels, with the most
popular physical channel being thermostat-temperature and light-
illuminance. The chains created with the match relation frequently
involve device pairs light-light and switch-switch.
Multiple-AppChains.We simulated real-world usage scenarios of
IoT apps to evaluate the likelihood of forming multiple-app chains.
Specifically, we randomly selected 5 to 30 apps from two datasets:
one without and one with the fat apps, and constructed all possible
cross-app chains. Each experiment was repeated 5,000 times, and
calculated the average values for the metrics used.
Average Number and Length of Chains. In the multiple-app exper-
iments, we considered all possible chains with varying lengths. As

Figure 6: The average (a) number and (b) length of cross-app chains without
and with a fat app.

shown in Figure 6, the average number of chains increases linearly
with the number of installed apps. Similarly, both the average and
maximum lengths of the chains show a linear trend. With a small
number of installed apps (e.g., 5), it is less likely to form a cross-
app or even two-app chain. When the number of apps increases
(e.g., 25), on average one two-app or three-app chain could exist.
If we include one fat app, the change to form the cross-app chain
increases significantly. This means installing many apps or a fat
app would increase the cross-app privacy risk.
Probability of Risky Chains. Among all cross-app chains, we iden-
tified the ones with privacy leakage risks and measured the propor-
tion of these risky chains. The average probability of constructing
at least one risky chain increases with the number of installed apps,
e.g., from 3.28% with 5 apps to 20.97% with 30 apps. With fat apps,
the probability rose to 5.60% with 5 apps and 30.06% with 30 apps.
Therefore, users should be cautious about the number of IoT apps
they install and limit the use of fat apps.
Typical Sensitive Devices.We further extracted the typical sensitive
devices involved in cross-app chains and calculated their occur-
rence frequency related to each type of privacy leakage through
direct exposure and implicit inference. Table 6 reported the top-80%
devices in each type ordered by frequency. We avoided the fat
apps in this experiment to obtain a clear picture of the common
devices involved. We found that most devices are associated with
two privacy threats, Localization & Tracking and Activity Profiling.
In contrast, the Health Profiling threat is associated with relatively
fewer devices. Certain devices such as cameras are associated with
multiple privacy labels, they should be used cautiously or possibly
restricted from integration with specific apps or services by users.
In future research, information about typical sensitive devices can
be used to develop and implement appropriate privacy controls and
measures aimed at safeguarding privacy information.
Average Number of Risky Chains with Different Privacy Threats.
We measured the average number of risky chains related to each
type of privacy threat, under direct exposure and implicit inference,
respectively. We analyzed three scenarios and reported the results
in Figure 7: (1) a single sink with direct exposure, (2) a single
sink with implicit inference, and (3) multiple sinks with implicit
inference. The results of the three scenarios are reported in three
groups (in the dashed squares) from left to right, respectively. In
the first two groups, the right columns include privacy leaks within
a single app (i.e., chains with length 1). Besides, the experiments
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Figure 7: Average number of risky chains with different privacy threats.

ID App Name Device 𝑡 Device 𝑐 Device 𝑎

𝑃1 strobe when I am home and someone arrives presence alarm
𝑃2 turn on when door unlocks lock switch
𝑃3 its too hot temperature sink
𝑃4 ready for rain door sink
𝑃5 door open warning light door light
𝑃6 notify me when motion stops for more than

2 minutes
motion illuminance sink

𝐼1 turn on my hue light when I get out of bed bed light

𝑃7 initial state event streamer
alarm
switch

sink1
sink2

𝐼2 turn heater on by switch switch heater
𝑂1 turn off A/C after leaving home presence A/C

Table 7: The IoT apps and devices used in the case study.

were taken under two settings, i.e., without and with fat apps.
The top and bottom rows of Figure 7 show the results of the two
settings, respectively.

The fat app significantly increases the number of risky chains
in all five privacy threat categories. Among the identified threats,
Localization & Tracking and Activity Profiling are prevalent, while
detecting Identification remains challenging. This suggests that
users should be aware of their location and activity patterns, includ-
ing daily routines and habits. Without fat apps, the leakage due to
direct exposure is relatively low. The privacy leakage due to implicit
inference (Figures 7(e)-(f)) are notably higher than that from direct
exposure (Figures 7(a)-(b)). Additionally, Figures 7(i)-(j) show that
multiple-sink inference can also contribute to privacy leaks.

Similar to existing detection approaches, PrivacyGuard can de-
tect privacy leaks in single apps. In the single-sink setting, counting
single-app leakage, i.e., Figures 7(c), (d), (g), and (h), increases the
number of chains with privacy leakage. Moreover, Figures 7(d) and
(h) show that as the number of apps increases, a fat app is more
likely to connect to other apps. This decreases the likelihood of
a direct chain between two apps. It makes direct exposure more
challenging but simplifies the implicit inference.

6.3 Privacy Leakage Analysis
To provide a detailed examination and demonstrate the effective-
ness of PrivacyGuard, we present case studies using real-world
IoT apps with typical devices such as alarms, doors, lights, locks,
thermostats, motion detectors, and temperature sensors[9]. The
apps listed in Table 7, along with their names and associated devices
for each component, include 𝑃1 to 𝑃7 as SmartApps, 𝐼1 and 𝐼2 as

Case Cross-App Chain Connection1 Device(𝑃𝐼 ) & Label Leak2

𝐿1
𝐼1 → 𝑃6
𝑃5 → 𝑃6

IE
IE light(1):B,C1 SD

𝐿2
𝑃4
𝑃5 → 𝑃6 IE door( 34 ):B TF

𝐿3
𝑃1 → P7
𝑃2 → P7

MA
MA

presence(1):B
lock(1):B

SD
SD

𝐿4 O1 → 𝑃3 IA presence(1):B
A/C(1):B,C1 SD

𝐿5 𝑃2 → I2 → 𝑃3 MA→ IE lock(1):B
heater:B,C1 SD

1 Match(M), Influence(I), Activate(A), Enable(E)
2 Single-Sink(S), Multiple-Sink(T), Direct-Exposure(D), Implicit-Inference(F)

Table 8: The privacy leakages identified in the case study.

IFTTT applets, and 𝑂1 as an OpenHAB rule. 𝑃1 to 𝑃6 and 𝐼1 are
deployed in the original scenario, while 𝑃7, 𝐼2, and𝑂1 are intention-
ally used to induce leakage from the original scenario. We extract
the TCA rules of each app and construct a chaining graph, shown
in Figure 8. Figure 8(a) illustrates the chaining graph of the original
scenario, while Figures 8(b) to (d) depict the chaining graphs of
scenarios with intentional leakage. By constructing the TCA rules
for each app, we found that 𝑃4 has two branches that share the
same action, which means that each trigger in both branches has
an execution probability of 1/2. In contrast, the TCA components
in the remaining apps have an execution probability of 1.

Table 8 shows the details of the identified privacy leaks in each
case, including the case number, cross-app chain, chain connection
type, privacy-sensitive devices with their inference probabilities,
the privacy label if leakage exists, and the type of leak. First, we ex-
amine whether the original scenario in Figure 8(a) could potentially
leak sensitive information. App 𝑃4 is an individual app with a sink.
When the sink is activated, the trigger door.open in 𝑃4 has an infer-
ence probability of 1

2 , and no leakage is detected. Both apps 𝐼1 and
𝑃5 can form a chain through the physical channel light-illuminance,
via an influence-enable relation with 𝑃6. When 𝑃6 sends a message,
the trigger bed.out in 𝐼1 and door.open in 𝑃5 both have an inference
probability of 1/2, without causing a privacy leak. However, the
action light.on is executed deterministically, leading to a privacy
leak categorized under Localization & Tracking and Activity Pro-
filing, as shown in case 𝐿1. In case 𝐿2, since 𝑃4 and 𝑃5 share the
same trigger, a multiple-sink implicit inference can increase the
inference probability of door.open to 3/4, resulting in a privacy leak
classified as Localization & Tracking.
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Figure 8: The chaining graphs of apps in the case study: (a) the original scenario; (b) malicious exit app; (c) malicious entry app; (d) malicious middle app.

We added malicious apps that intentionally leak privacy-
sensitive information. Each malicious app 𝑃7, 𝐼2, and 𝑂1 appears
to be benign. In the original scenario 𝑃1, 𝑃2, and 𝑃3 do not leak
any information. However, when these apps are chained together,
privacy leakage occurs. In case 𝐿3 (i.e., Figure 8(b)), we deliberately
include a fat app 𝑃7, whose sinks are connected to 𝑃1 and 𝑃2 via
a match-activate relation. In case 𝐿4 (i.e., Figure 8(c)), turning off
the air conditioning causes the temperature to exceed a threshold,
which connects𝑂1 and 𝑃3 through an influence-activate relation. In
case 𝐿5(i.e., Figure 8(d)), 𝐼2 connects 𝑃2 and 𝑃3, acting as a bridge to
leak information from the entry app 𝑃2. In each case, the inference
probabilities are 1 due to the direct exposure from a single sink,
leading to the triggers presence.present, presence.not present, and
lock.unlock, which leak information about Localization & Tracking.
Additionally, the actions A/C.off and heater.on also disclose infor-
mation related to Localization & Tracking and Activity Profiling.

6.4 System Performance
We conducted two performance evaluations: (1) processing time,
which measures the one-time effort needed to extract TCA rules,
and (2) calculation time, which evaluates the time required to build
cross-app chains and generate privacy threat results for a set of apps.
Processing time depends on the number and complexity of IoT apps.
On average, processing takes 3,835.85 milliseconds per SmartApp,
0.23 milliseconds per IFTTT applet, and 225.54 milliseconds per
OpenHAB rule. Calculation time averages about 7.00 milliseconds
for 5 apps and 772.69 milliseconds for 30 apps. This overhead is
reasonable for a smart home environment.

7 Related work
IoT Security and Privacy. Various aspects of IoT security have
been studied in the literature, e.g., firmware security [17, 83], au-
thentication [41, 75, 78], device identification [12, 52, 57], privileges
[18, 31, 62], and access control [4, 37, 45, 63, 79]. [24, 25] discovered
the attacker’s ability to exploit physical channels, while [36, 58, 81]
explore side-channel attacks. [32, 54] proposed mechanisms for
information flow control, [44] introduce context-based permission

systems, and [16, 67] studied policy enforcement. [8, 14] employ
code analysis to trace sensitive information, [1, 50] explore privacy
issues through traffic analysis, [6, 7] investigate compromised de-
vices that leak sensitive data, [11, 39, 51, 66, 74] study the security
and privacy risks associated with IFTTT rules.
Cross-App Risk Analysis. Research efforts have been dedicated
to detecting cross-app risks in IoT environments. [15, 16, 21, 24]
investigate cross-app interference through static code analysis of
Smartapps, [40, 70] utilize NLP tools to perform conflict analysis in
IFTTT recipes,[39] analyzes the privacy leakage of IFTTT chain,
[2, 16, 77] identify conflicts in both Smartapps and IFTTT applets,
and [68, 77] use model checker to discover conflicts between apps.
In addition, [53] explores violations in cross-vendor interactions,
[24, 25] investigates physical channel interference between apps.

Cross-app risks exist in Android apps, as they enable cross-app
communication through Inter-Component Communication (ICC),
which provides APIs for components to exchange data and reuse
functions between different apps, introduces risks such as privacy
leakage [46, 48, 59, 73, 80], privilege escalation [10, 23, 30, 38, 84],
and collusion attacks [13, 26, 27]. Due to differences in platforms
and ecosystems, the risk of cross-app exploitation in Android apps
arises from the abuse of ICC APIs, existing studies have not been
able to establish cross-app chains, making it difficult for attackers to
glean information leakage from such chains. Additionally, Android
apps primarily interact with sensors on smartphones, which limits
the potential scope of attacks. [30] introduces the risk of an app
with permissions performing a privileged task for a malicious app,
[47] combines different apps into a single APK to perform cross-
app analysis, [46, 49, 72] detect inter-component information leaks
by static taint analysis, [23] hijacks a defective privileged app to
forward attacking intents, [59] models ICC links and increases the
privacy leak detection rates, [84] detects privilege escalation by con-
trol flow graph, [26, 27] build ICC maps and flow analysis to detect
collusion attack, [73] explores the privacy risk in cross-app content
sharing activities, [3] detects malicious inter-app communication
activities in dynamically loaded code.
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Tool Name Platforms Static Analysis Dynamic Analysis Multiple Apps Privacy Categorization Device Profile Privacy Inference Inference Probability

Soteria[15] SmartThings � � � � � � �
IoTGuard[16] SmartThings,IFTTT � � � � � � �
HomeGuard[21] SmartThings � � � � � � �
SAINT[14] SmartThings � � � � � � �
IoTWatch[8] SmartThings � � � � � � �
Surbatovich[66] IFTTT � � � � � � �
SafeChain[39] IFTTT � � � � � � �
PrivacyGuard SmartThings,IFTTT,OpenHAB � � � � � � �

Table 9: Comparison between PrivacyGuard and existing approaches for IoT privacy leakage detection. (�: include, �: not include)

Comparison to Existing Works. Table 9 compares PrivacyGuard
with the most relevant works. Surbatovich et al. [66] and Cobb et
al. [22] build an information flowmodel to analyze integrity/secrecy
violations. However, their work fails to consider actual attribute
values and neglects the privacy threat that arises from a chain
of safe rules. SafeChain [39] utilizes dynamic analysis and model
checking to detect privilege escalation and privacy leakage between
IFTTT rules. However, their approach works only online, doesn’t
cover all trigger-action leaks, ignores taint sinks, and limits chain
length to 2 without handling multiple chains or measuring threat
levels. All the studies mentioned use coarse-grained privacy labels.

SAINT [14] provides a static taint analysis tool to identify possi-
ble data-leak paths in individual SmartApps, considering five types
of taint sources, including device states. IoTWatch [8] utilized NLP
to classify text data into privacy labels, including device informa-
tion and states. While some device states may lead to compromising
inferences, not all of them are sensitive, and they only focus on
individual apps, neglecting cross-app privacy leaks where an app
is considered leakage-free if no sensitive data is transmitted out
of its sinks. As a result, data-leak paths identified by SAINT and
IoTWatch may contain several false positives.

Soteria [15], IoTGuard [16], and HomeGuard [21] investigated
property violations caused by cross-app interactions in SmartApps.
Similarly, we utilize static analysis on associated rules/chains, but
our focus is on a different privacy leakage problem. In our scenario,
two apps may not be chained together even if their trigger and
action are associated with the same capability, such as a switch,
because the switch can control devices at different sensitivity levels.
Therefore, we extract text data such as descriptions, prompts, and
variable names in static analysis to construct device context/usage,
a factor not considered in their approaches.

None of the existing works provide a systematic categorization of
device privacy, and they overlook privacy inference threats within
app conditions. PrivacyGuard stands out as the only privacy analy-
sis tool that comprehensively addresses privacy inference threats
across different platforms and provides additional processing for
probability-based inference in static analysis.

8 Discussion and Future Work
PrivacyGuard proposes finer-grained privacy labels, infers device
profiles, provides inference probabilities to users, and identifies pri-
vacy leakage risks in cross-app chains. PrivacyGuard enhances user
awareness of how data can be indirectly leaked through interactions
between multiple apps, even if each app is trusted individually.

Finer-grained privacy labels offer detailed information, allowing
users to understand specific privacy risks and make decisions about
which apps or devices to use based on their privacy preferences

and concerns. This ensures that users only share data they are com-
fortable with, reducing unnecessary exposure. Device profiles are
essential for multi-linking sensors/actuators that may link to multi-
ple devices, which might or might not access sensitive data. Users
can use the device profile generator to select apps that align with
their desired device usage, based on the textual data within the apps.
Inference probabilities offer a confidence metric for assessing pri-
vacy risks. When included in privacy alerts, this metric helps users
understand the potential risks in the interactions among a group
of apps. Conversely, attackers can exploit inference probabilities to
identify the most vulnerable cross-app chains and target those with
the highest likelihood of leaking privacy-sensitive information.

Our current design uses text data from apps to identify device
types and states, and we gather supported devices from different IoT
platforms. However, some devices may not be included, leading to
errors or unrecognized identification. Our method relies heavily on
app text, making it easy for attackers to intentionally provide mis-
leading information to deceive users. We plan to explore additional
resources to address these limitations in the future. Additionally, we
assume that devices are connected via a physical channel mapping,
but factors such as location and environmental conditions affect
their ability to interact. To accurately model cross-app chains in
future work, we plan to explore the real physical interactions be-
tween devices. Finally, user participation is essential for accurately
reflecting users’ privacy preferences, we plan to integrate a user
preferences module into our privacy label classification process,
which will better address users’ privacy needs in future work.

9 Conclusion
In this paper, we present PrivacyGuard, a static cross-app privacy
leakage analysis tool, to detect privacy-sensitive information leak-
age caused by cross-app chains. We provide a systematic catego-
rization of privacy-sensitive devices. We formalize the concept of
cross-app privacy inferences and explain how such inferences can
be drawn from cross-app chains, giving the inference probabil-
ity. We implement the prototype of PrivacyGuard and evaluate its
correctness and effectiveness using a large-scale dataset of real-
world IoT Apps. Our results demonstrate that PrivacyGuard can
effectively detect privacy leakage enabled by cross-app chains.
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A Privacy Label Assignment
Here, we explain the rationale behind the privacy label assignment.
Identification. Identification denotes the potential risk of exposing
the real identities of individuals. For instance, a camera in the Mon-
itoring cluster can be used for security, monitoring, or photography.
When cross-referenced with facial databases, the camera data poses
a risk of face recognition. Similarly, access to audio clips or speech
data of a person, such as audioCapture and speechRecognition, can
be used to recognize an individual.
Localization and Tracking. When individuals are localized or
tracked, the potential risks include stalking, harassment, and even
physical harm. The geolocation feature, with attributes like latitude,
longitude, and speed, has the potential to leak precise location in-
formation. Additionally, devices associated with presence can reveal
information about home occupancy and user presence. Presence
information can also be inferred from certain activities, for example,
turning on the lights, taking a shower, or sleeping in bed strongly
suggests that the user is at home, while driving a car indicates the
user is away from home.
Activity and Health Profiling. Profiling data reveals the patterns
and habits, which may potentially leak personal and private aspects
of an individual’s life. Analyzing activity data can lead to insights
into an individual’s behaviors and preferences. Everyday actions
such as showering or going to bedmight uncover one’s daily routine.
Similarly, the status of a car while driving could reveal a driver’s
habits, while cameras could broadcast a user’s day-to-day activities.
Devices associated with music could expose an individual’s musical
tastes, while fitness and health data could outline sensitive health
conditions. These insights may be used for targeted advertising,
influencing decisions, or even predicting future actions.
Lifecycle Transitions.When ownership of smart devices changes,
there is a potential risk of privacy-sensitive information associated
with the device being leaked. For instance, health data such as Body
mass index (BMI) and sleep patterns collected by medical devices
could reveal the health condition of the previous user. Similarly,
location data stored in devices related to location services might
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expose the address of the previous user. In addition, audio, video,
and photos of the previous user could be unintentionally disclosed.
Devices storing such data pose a risk of privacy violations due
to the threat of lifecycle transition. As ownership shifts from one
individual to another, the mishandling of data during this process
can result in the compromise of sensitive information.

B Chain Generation Algorithm
The algorithm starts by choosing a sink rule and then constructs
all possible chains that reach their maximum length, ending at this
sink rule. It uses two stacks to keep track of the current rule and
the chains being formed, and maintains a set of visited rules to
avoid cycles. The process involves identifying adjacent rules that
can either activate or enable the current rule, and continues until no
more adjacent rules are available. This approach effectively builds
chains that achieve the maximum length.

Algorithm 1: Cross-App Chain Generation
Input: a sink rule: 𝑠𝑖𝑛𝑘
Output: list of chains: 𝑐ℎ𝑎𝑖𝑛𝑠

1 Function getCrossAppChainsFromSink(𝑠𝑖𝑛𝑘):
2 𝑐ℎ𝑎𝑖𝑛𝑠, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← ∅, ∅
3 𝑛𝑜𝑑𝑒𝑠, 𝑝𝑎𝑡ℎ𝑠 ← 𝑠𝑡𝑎𝑐𝑘 (), 𝑠𝑡𝑎𝑐𝑘 ()
4 𝑛𝑜𝑑𝑒𝑠.𝑝𝑢𝑠ℎ(𝑠𝑖𝑛𝑘)
5 𝑝𝑎𝑡ℎ𝑠.𝑝𝑢𝑠ℎ( [𝑠𝑖𝑛𝑘])
6 while not nodes.empty() do
7 𝑛𝑜𝑑𝑒 = 𝑛𝑜𝑑𝑒𝑠.𝑝𝑜𝑝 ()
8 𝑝𝑎𝑡ℎ = 𝑝𝑎𝑡ℎ𝑠.𝑝𝑜𝑝 ()
9 if 𝑛𝑜𝑑𝑒 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
10 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

11 end
12 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 += 𝑛𝑜𝑑𝑒

13 𝑎𝑑 𝑗𝑎𝑐𝑒𝑛𝑡𝑠 ← 𝑔𝑒𝑡𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑡𝑅𝑢𝑙𝑒𝑠 (𝑛𝑜𝑑𝑒)
14 if 𝑎𝑑 𝑗𝑎𝑐𝑒𝑛𝑡𝑠.𝑒𝑚𝑝𝑡𝑦 () then
15 𝑐ℎ𝑎𝑖𝑛𝑠 += 𝑝𝑎𝑡ℎ

16 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

17 end
18 foreach 𝑟𝑢𝑙𝑒 ∈ 𝑎𝑑 𝑗𝑎𝑐𝑒𝑛𝑡𝑠 do
19 𝑛𝑜𝑑𝑒𝑠.𝑝𝑢𝑠ℎ(𝑟𝑢𝑙𝑒)
20 𝑝𝑎𝑡ℎ𝑠.𝑝𝑢𝑠ℎ(𝑝𝑎𝑡ℎ + 𝑟𝑢𝑙𝑒)
21 end
22 end
23 return 𝑐ℎ𝑎𝑖𝑛𝑠
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