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Abstract
Thewidespread use of facial recognition (FR) technology has height-
ened concerns about personal privacy. With surveillance systems
becoming ubiquitous, the demand for effective privacy-enhancing
technologies is growing urgent. In response to this challenge, we
introduce DiffPrivate, a versatile technique designed to protect in-
dividuals from FR systems (FRS) through two distinct approaches:
a Perturb-based and an Edit-based approach. The Perturb-based
mode generates robust adversarial samples by manipulating the dif-
fusion process of a latent diffusion model to alter identity-specific
features, ensuring the preservation of visual fidelity to the original
images. On the other hand, the Edit-based approach employs an ad-
ditional DDPM model for fine-grain editing of attributes, allowing
for more precise control over the appearance while subtly shifting
the identity features to evade FRS. By leveraging the strengths of
both modes, DiffPrivate effectively shields an individual’s identity
against advanced defense mechanisms like DiffPure, maintaining
high image quality. Our experiments demonstrate that DiffPrivate
achieves competitive attack performance in terms of success rates
and transferability while producing more natural-looking adver-
sarial images than state-of-the-art methods. Overall, DiffPrivate
represents a significant step towards balancing personal privacy
and image naturalness in the face of advancing FR technology.

1 Introduction
The combination of vast availability of photos on social media and
the increasing integration of surveillance systems is redefining per-
sonal privacy. At the core of this transformation is the widespread
adoption of facial recognition (FR) technology, facilitated by signifi-
cant advancements in deep learning and neural networks [9, 18, 48].
FR systems (FRS) like Amazon Rekognition [1], Face++ [13], and
Clearview.ai [19] already exhibit remarkable accuracy in identifying
individuals from vast online image repositories. As this technol-
ogy continues to advance and proliferate, the scrutiny of individu-
als—both online and offline—will reach unprecedented levels.

With vast amounts of facial data being harvested across various
platforms, often without individual knowledge or explicit consent,
this threat is quickly growing. As FRS are increasingly deployed,
virtually every aspect of our daily life – from routine shopping
excursions [36] to international travel [41] – will therefore quickly
become susceptible to monitoring and tracking. The potential mis-
use of FR technology in contexts such as stalking [52], identity theft
[8], and clandestine governmental surveillance [19, 38, 47] raises
further serious concerns about personal security and autonomy
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Although potential future regulations may address some con-
cerns, the current trends underscore the need for privacy-enhancing
technologies to safeguard individual privacy. Driven by this obser-
vation, there is a growing interest in designing privacy-enhancing
solutions that utilize adversarial machine learning to create images
that deceive various FRS. In this paper, we focus on adversarial at-
tacks that fool automated FRS but still produce high-utility images.

Adversarial Attacks as a Defense: Recent advancements in
countering FRS have primarily centered around the development
of adversarial attacks to modify face images. Of these, early noise-
based techniques [6, 66] often suffer from compromised visual qual-
ity, making their modifications glaringly evident. While Fawkes
system achieved notable success in protecting privacy by adding
subtle modifications, also this strategy struggled with image quality
preservation [50]. Other strategies, including patch-based methods
[29, 51] and image distortion techniques [33, 56, 64], anonymiza-
tion [30, 32] though promising, were limited in practicality and
effectiveness. Additionally, targeted attacks such as clean-label poi-
son attacks [49, 70] have been explored, focusing on manipulating
specific images using image classification models.

GAN-Based Solutions: Recent advancements have leveraged
Generative Adversarial Networks (GANs) [14, 28] to balance pri-
vacy protectionwith retaining non-identifying features. Approaches
like makeup transfer [21, 67] and facial attribute manipulation
[25, 44] enable subtle image modifications. While many early GAN-
based methods maintain some visual appeal, they exhibit relatively
low attack success rates and require retraining for new targets.
To address these limitations, StyleAdv [31] recently combined se-
mantic editing with adversarial attacks, leveraging StyleGAN’s
disentangled latent space [28] for high-quality image reconstruc-
tion and improved success rates. Despite these advancements, there
has been almost no work using diffusion models for adversarial
attacks against FRS. In this work, we aim to design such solutions
and explore to what extent such solutions may help address the
GAN-based methods vulnerability against sophisticated defense
techniques like DiffPure [40] or to increase the transferability of
the attacks. Notably, most GAN-based methods are designed to
attack a particular model (e.g., whitebox attacks that are not very
transferable) or are ineffective against FRS using DiffPure.

Our Diffusion-Based Solution Approach: To address the
above research gap, we introduce DiffPrivate. This method gen-
erates robust adversarial samples using diffusion models, improv-
ing upon the limitations of previous methods like StyleAdv. We
originally chose diffusion models for their generative flexibility,
which are ideal for complex, high-quality manipulations needed
for privacy-preserving facial transformations. However, our results
show that Stable Diffusion also outperforms architectures like Style-
GAN in reconstructing finer details. Furthermore, the sequential
nature of diffusion processes enables more controlled, gradual mod-
ifications, preserving the natural appearance while subtly altering
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identity-specific features. Combining these strengths of diffusion
models allows us to enhance the effectiveness of privacy protection.

DiffPrivate includes two main approaches: one based on Dif-
fAE [43] (Edit-based) and another on Stable Diffusion [46] (Perturb-
based). Although these approaches vary, both start by projecting
real facial images into a diffusion model’s latent space.

In the Perturb-based approach, DiffPrivate modifies the diffusion
process by working with latent codes collected at different steps.
It uses optimized text embeddings to guide the cloaking of faces,
aiming to maintain the original’s appearance. This approach identi-
fies and obscures identity features through “cross-attention maps,"
targeting specific areas for gradual adjustment over multiple diffu-
sion steps to preserve image quality. The Edit-based approach uses
a specialized DiffAE model for detailed editing of facial attributes,
allowing for precise adjustments that distance the identity from
being recognized by FRS. This approach focuses on direct edits to
maintain the natural look of the image.

Both approaches aim to create images that can evade FRS while
preserving human likeness and identity resemblance. Our tests
show that DiffPrivate effectively resists FRS and safeguard visual
integrity, often enhancing the aesthetic quality similar to a “beauty
filter". This dual functionality does not compromise the subject’s
identity, aligning with the vital importance of not altering facial fea-
tures in ways that subjects may perceive negatively. Consequently,
DiffPrivate signifies an advancement in reconciling the necessity
for natural-looking images with privacy protections against FRS.

Our main contributions are summarized as follows:
• We introduce DiffPrivate, a strong adversarial attack against
FRS that provides relatively strong protection, without sacri-
ficing naturalness or image quality.
• While attacking the semantic latent space using a conditional
diffusion model presents challenges, our series of targeted
interventions in the diffusion process allows us to develop
an effective new approach for face anonymization.
• We implement two complementing versions. Our DiffAE ver-
sion achieves high success rate using attribute-based edits to
push the identity toward a target, while our Stable Diffusion
version performs more subtle perturbation-based edits.
• Through comparisons against other state-of-the-art attacks,
DiffPrivate is shown to achieve competitive attack perfor-
mance in terms of attack success rate and transferability.
• Our experiments demonstrate that DiffPrivate producesmore
natural-looking adversarial images than state-of-the-artmeth-
ods and is considerably more robust against advanced FR
defense methods such as DiffPure.

Outline: After giving an overview of related works (§2) and the
models used (§3), we introduce DiffPrivate (§4), detail experiments
(§5), and present results (§6-§9). We then provide an ablation study
(§10), discuss limitations (§11), and conclude (§12).

2 Related Work
Privacy Protection: The development of strategies to undermine
FRS has introduced both poisoning and evasion tactics. Poisoning
attacks, as described by Shan et al. [50], involve altering images
within the gallery sets of FRS.While effective, this method is imprac-
tical for individual users due to the complexity and access required.

On the other hand, evasion attacks present a more user-friendly
alternative, aiming to modify facial images to mislead FRS during
their operational phase [6, 21, 29, 51, 66, 67]. Evasion methods, par-
ticularly those capable of blackbox attacks, are more accessible for
protecting personal privacy [6, 21]. However, the effectiveness of
current techniques varies, with some sacrificing visual quality for
attack success or vice versa.

Adversarial Attacks: Traditional methods to generate adversar-
ial examples have primarily focused on optimizing additive noise
within the pixel domain. Goodfellow et al. [15] introduced the
concept with the Fast Gradient Sign Method (FGSM), highlight-
ing deep neural networks’ vulnerability to perturbations. Madry
et al. [35] enhanced model resilience through adversarial training
with the Projected Gradient Descent (PGD) method, while Car-
lini and Wagner [3] developed a more sophisticated optimization-
based approach, the CW attack, for effective perturbations. Further
advancements included integrating momentum into adversarial
example generation for overcoming local optima [10]. In general,
Fawkes [50], LowKey [6], and other pixel perturbation methods
like Ulixes [7], Face-Off [4] and FoggySight [12] introduce strategic
noise to images, adding noise patterns to faces that, while effective,
can be perceptually noticeable and thus not ideal for all scenar-
ios. Others have created semantic adversarial examples that subtly
alter image attributes to fool binary classifiers, offering insights
into vulnerabilities of classifiers less complex than the methods
used in FRS (like those we attack here) [26]. Recently, the focus has
shifted to using generative models like Variational Autoencoders
(VAEs) and GANs to create more realistic and semantically con-
sistent adversarial examples. This new direction, as explored by
Wong et al.[63], Xiao et al.[65], and Qiu et al. [44], significantly
enhances the sophistication and effectiveness of adversarial attacks,
showcasing the potential of generative models in this domain.

GAN-Based Approaches:GANs offer a promising approach for
creating realistic adversarial images [21, 67]. These methods strike a
balance between maintaining image quality and evading detection,
making them an attractive option for evading FRS. Nonetheless, as
FR technologies evolve, so too must these evasion techniques to
ensure continued effectiveness.

Recent developments like AnonFACES [32] and StyleID [30] offer
new ways to protect privacy. AnonFACES aims to keep images
looking natural while hiding identities, using groups of similar
images to maintain some level of uniqueness without revealing
too much. StyleID uses GANs to change faces in a way that the
person cannot be recognized but keeps important features. Adding
to these ideas, StyleAdv [31] uses StyleGAN’s advanced features to
make high-quality images that are hard for FRS to identify. It keeps
the naturalness of protected photos and is easy to use for editing
and protecting privacy. However, its effectiveness partly relies on
how well the StyleGAN encoder can recreate faces, which is still
a hurdle. These steps forward highlight the ongoing work to find
a balance between keeping images useful and high-quality while
protecting privacy against more advanced recognition systems. In
Sec. 6, we compare our performance against two state-of-the-art
GAN-based approaches (StyleAdv [31], AMT-GAN [21]) and three
perturbation-based approaches (CW [3], PGD [35], Fawkes [50]).

Diffusion Models: Diffusion models, a class of generative mod-
els, have gained attention for their ability to generate high-quality,
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realistic images by learning to reverse a noise-adding process [20,
39, 53]. Initially introduced by Sohl-Dickstein et al. [53], these mod-
els generate images by gradually removing noise, simulating the
reverse of a diffusion process. Ho et al. [20] further advanced diffu-
sion models by simplifying their training and improving the quality
of generated samples. Nichol and Dhariwal [39] extended these
improvements, refining model architectures and training meth-
ods to produce even more realistic images. In addition to image
synthesis, diffusion models have shown promise in adversarial
machine learning, particularly in improving adversarial robust-
ness [2, 16, 40, 45, 60]. Studies by Gowal et al. [16], Rebuffi et al. [45],
and Wang et al. [60] have leveraged diffusion models to generate
synthetic data for adversarial training, enhancing model resilience.
Moreover, Nie et al. [40] and Carlini et al. [2] have explored the
use of pretrained diffusion models for purifying input images from
adversarial noise, providing both empirical and certified defenses.
Despite these advancements, the potential of diffusion models in
creating adversarial attacks has not been fully explored. This work
aims to investigate this untapped area, contributing to the under-
standing of diffusion models’ capabilities in adversarial contexts.

Non-Digital Attacks: While outside the scope of this paper,
others have shown that adversarial examples also can be created
in the real world. This includes patch-based methods such as Adv-
Hat [29] and Adv-Glasses [51]. While such approaches are not
always practical and visible patches attached on faces often are
easily detected, others have shown that the use of sunglasses impair
face identity recognition more significantly than face masks [42]
but do not target protection against FRS.

3 Background
3.1 Diffusion Model
Diffusion models, a type of generative model, involve two key
stages: (1) a forward process that transforms an input image x0 into
a purely noisy state x𝑇 over𝑇 forward steps, and (2) a reverse process
that reconstructs x0 from x𝑇 through 𝑇 reverse steps.

During the forward process, Gaussian noise is incrementally
added at each step 𝑡 :

𝑞(x𝑡 |x𝑡−1) =N(𝛾𝑡x𝑡−1, 𝛿𝑡 I), (1)
where 𝛾𝑡 is a scaling factor that diminishes the image’s intensity,
I is the identity matrix, and 𝛿𝑡 I is the variance of the Gaussian
noise added at step 𝑡 . Combining the noise over the first 𝑡 steps,
the distribution of the noisy image x𝑡 at any step 𝑡 can then be
expressed relative the original image x0 as follows:

𝑞(x𝑡 |x0) =N(𝜌𝑡x0, (1 − 𝜌𝑡 )I), (2)
where 𝜌𝑡 =

∏𝑡
𝑖=1 (1 − 𝛿𝑖 ). The diffusion model aims to learn the

reverse distribution 𝑝 (x𝑡−1 |x𝑡 ), needed for recovering the original
image from its noisy state. For small differences between steps, this
reverse distribution can be approximated as:

𝑝 (x𝑡−1 |x𝑡 ) =N(𝜈𝜙 (x𝑡 , 𝑡), 𝜏2
𝑡 I), (3)

where 𝜈𝜙 (x𝑡 , 𝑡), often a neural network, predicts the mean of the
reverse Gaussian distribution at each step, and 𝜏2

𝑡 is the variance.
The neural network is trained using a loss function that compares
the actual noise added at each step to the predicted noise:

L =

𝑇∑︁
𝑡=1

Ex0,𝜂𝑡

[
∥𝜂𝑡 − 𝜂𝜙 (x𝑡 , 𝑡)∥2

]
, (4)

where 𝜂𝑡 is the actual noise added to x0 to produce x𝑡 , and 𝜂𝜙 (x𝑡 , 𝑡)
is the noise predicted by the model.

DDIM Framework: The Denoising Diffusion Implicit Model
(DDIM) framework [54] introduced a deterministic reverse process.
Here, the forward process is defined as:

𝑞(x𝑡−1 |x𝑡 , x0) =N
(
𝜌𝑡−1x0 +

√︁
1 − 𝜌𝑡−1

x𝑡 − 𝜌𝑡x0√
1 − 𝜌𝑡

, 0
)
, (5)

which dictates the transition from x𝑡 to x𝑡−1, given the original
image x0. Then, in the reverse process, DDIM first estimates x0
from the noisy image x𝑡 :

𝑔𝜙 (x𝑡 , 𝑡) =
x𝑡 −
√

1 − 𝜌𝑡 · 𝜂𝜙 (x𝑡 , 𝑡)√
𝜌𝑡

, (6)

and then defines the reverse transition using this estimate:

x𝑡−1 =
√
𝜌𝑡−1

(
x𝑡 −
√

1 − 𝜌𝑡𝜂𝜙 (x𝑡 , 𝑡)√
𝜌𝑡

)
+
√︁

1 − 𝜌𝑡−1𝜂𝜙 (x𝑡 , 𝑡) . (7)

Importantly for our purposes, DDIM can thus act both as an en-
coder, generating a latent noise representation x𝑇 from x0, and as a
decoder, reconstructing x0 from x𝑇 .

3.2 Latent Diffusion Model
Latent Diffusion Model [46] is an advanced variant of diffusion
models that employs a Variational Autoencoder (VAE) to encode
high-dimensional data, such as images, into a more manageable,
lower-dimensional latent space. This simplification enables the
diffusion process to operate in the compressed latent space instead
of the original high-dimensional image space.

The VAE comprises two main components: an encoder E and
a decoder D. The encoder function maps an image 𝐼 into a latent
representation 𝑧 = E(𝐼 ), of the image, which the decoder later can
use to reconstruct the image 𝐼 =D(𝑧). In the context of diffusion
models, the forward diffusion process is applied to the latent rep-
resentation 𝑧. Similar to described in the previous subsection, this
process involves incrementally adding Gaussian noise to the latent
representation over 𝑇 steps:

𝑞(𝑧𝑡 |𝑧𝑡−1) =N(𝛾𝑡𝑧𝑡−1, 𝛿𝑡 I), (8)
where 𝑧0 is the initial latent representation, and 𝑧𝑇 is the fully
noised latent representation at the final step.

The reverse process first learns the reverse distribution𝑝 (𝑧𝑡−1 |𝑧𝑡 ),
uses it to iteratively obtained the denoised latent representation 𝑧0,
which is then decoded back into the image space: 𝐼 =D(𝑧0). This
latent diffusion approach, exemplified in Stable Diffusion, reduces
computational complexity while enabling efficient training and
high-quality image generation. It effectively combines the VAE’s
efficiency in encoding images with the diffusion model’s capability
to generate diverse, high-fidelity outputs. In this work, we integrate
targeted manipulation of the above processes within Stable Diffu-
sion to achieve our goals using a novel Perturb-based approach.

3.3 Diffusion Autoencoders
Diffusion Autoencoders (DiffAEs) [43] integrate the powerful im-
age generation capabilities of diffusion models with the semantic
understanding of autoencoders. Unlike standard diffusion models,
which lack interpretable latent codes, DiffAEs combine a learnable
encoder with a diffusion decoder. This two-pronged approach ex-
tracts both high-level meaning and fine-grained details from an
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Figure 1: Overview of the DiffPrivate scenario and use cases

image, creating a code that is not only reconstructs the original
image but also allows for manipulation of its semantic attributes.
These capabilities enable advanced applications such as feature-
based image editing, denoising, and conditioned sampling.

Semantic Encoder: The semantic encoder is designed to map
an input face image 𝐼 into a semantic latent code z = Enc(𝐼 ) that
encapsulates high-level semantics of the face. By manipulating z,
we can induce semantic changes in the image, affecting attributes
like expression, age, or gender in case of facial images.

Conditional DDIM: In the Conditional DDIM framework, as
proposed in DiffAE, the DDIMmodel is conditioned on the semantic
code z and includes a noise prediction network 𝜂𝜙 (x𝑡 , 𝑡, z), with
z serving as an additional input. During the decoding phase, the
reconstructed image 𝐼 = x0 is obtained by executing a deterministic
generative process, described as:

𝑝𝜙 (x𝑡−1 |x𝑡 , z) =
{
N(𝑓𝜙 (x1, 1, z), 0), if 𝑡 = 1,
𝑞(x𝑡−1 |x𝑡 , 𝑓𝜙 (x𝑡 , 𝑡, z)), otherwise,

(9)

where 𝑓𝜙 (x𝑡 , 𝑡, z) = (x𝑡 −
√

1 − 𝜌𝑡 · 𝜂𝜙 (x𝑡 , 𝑡, z))/
√
𝜌𝑡 . Here, 𝑞(·|·, ·)

is defined similarly to the DDIM process described earlier.
During the encoding process, the stochastic code x𝑇 of the in-

put image is obtained using the Conditional DDIM encoder, x𝑇 =

DDIMenc(𝐼 , z), by reversing the deterministic generative process:
x𝑡+1 =

√
𝜌𝑡+1 𝑓𝜙 (x𝑡 , 𝑡, z) +

√︁
1 − 𝜌𝑡+1𝜂𝜙 (x𝑡 , 𝑡, z). (10)

In this process, x𝑇 is encouraged to encode primarily the informa-
tion that is not captured by z, essentially focusing on stochastic or
variable details that are not represented in the semantic code.

In this work, we incorporate DiffAE in our Edit-based approach.

4 DiffPrivate Framework
4.1 Use Case Scenario and General Approach
We consider a scenario where social media users aim to prevent
their profiles from being linked to query photos submitted to a
FR service. The scenario is motivated by the growing practice of
entities like companies and law enforcement agencies scraping
public photos from social media and then using FR technology
to link query photos to identities and accounts. In this quickly
developing scenario, many users may seek to enhance their privacy
by uploading slightly altered images that either (1) cause the wrong
identity to be suggested, (2) introduce ambiguity in query databases,
or (3) increase the likelihood that any FRS model F trained on such
data returns the wrong identity, helping users avoid detection. Fig. 1
illustrates the DiffPrivate approach and these use cases.

Open-source
model

No queries
Blackbox API

Target/Victim

ValidatorPrimary

User

Open-source
or query access

Few QsFull access

Figure 2: Our blackbox security model

To protect user privacy from FRS, we develop methods that allow
users to generate images with adversarial perturbations. The meth-
ods are tunable, allowing users adjusting the desired alteration level
to balance privacy protection and visual resemblance. In addition to
increased control, this flexibility enables future use cases, including
the use of different protection levels for primary subjects and by-
standers. We expect the desired privacy protection to be individual,
but consider user studies determining people’s current interest, ex-
pectation, and desirable properties of such a system as interesting
future work. Although our solutions are defensive, we refer to them
as “attacks" on FRS to align with established terminology.

4.2 Attacker Model
We assume that individuals do not control any of the query photos
submitted for identification, their public appearance, or their phys-
ical appearance when in public. Instead, they can alter and control
the photos they upload to social media. For example, in the above
scenario the user would use DiffPrivate to create a “protected" ver-
sion of the original image, recognizing that this image if shared on
social media may be collected and used either as a “probe" image
or be added (with labels from the social media) to the gallery set G,
or even used for training purposes of the FRS model F .

Furthermore, we assume a “blackbox” model where we do not
have access to the FRS models F that we are attacking (and hence
defending the user against) but have access to at one or more
other FRS models that we can use to execute our adversarial attack.
This assumption is realistic as there are many open-source models
and APIs available, but the users may not always know what FRS
they need to protect themselves against. However, it also places
an additional weight on the need for a highly transferable solution
and/or the user generating enough samples to pollute the FRS.

We employ a “blackbox" model assumption unlike the security
model used in [31], which permits a limited number of queries
to a victim model (we refer to their model as “semi-blackbox")
or models that have allowed even more API queries [11]. In our
blackbox scenario (Fig. 2), we pragmatically assume access only to
an open-source model, referred to as the “primary" model, and some
limited queries to a “validator" model (both differ from the “victim"
model), and refer to the model that we try to protect the user from
as the “victim/target" model. Our approach, with its stricter security
model, demonstrates enhanced robustness compared to existing
methods. Sec. 5.2 outlines and further motivates our evaluation in
both blackbox and semi-blackbox settings.

4.3 Attacker Goals and Variations
In this paper, we consider two distinct goals targeting each of the
two desirable properties described above:
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• Attribute-based Edits: In this scenario, we aim to edit
the image enough that we can shift the identity to a target
identity, helping the user create images that potentially could
be used to pollute the database of the FRS and/or damage a
model trained on such polluted dataset. Here, we think of an
attacker that may even apply strong defenses (e.g., DiffPure)
but that may use publicly collected images for their database
(and training of their FRS model). For this reason, we want
the ability to create images that the FRS map to a different
targeted identity with some significant probability.
• Perturbation-based Alterations with Wide Protection:
In this scenario, we aim to perturb the image just enough to
fool FRS enough that they would return the wrong identity,
while people would still recognize the person. As the users
typically do not know who the attacker is or what model
they are attacking, it is important that this attack is highly
transferable and protects against a wide range of FRS.

Furthermore, to ensure high utility, the generated images should
be of high quality, have a high degree of naturalness, and in the
second case closely resemble the person in the photo (even though
the FRS is fooled to believe otherwise).

4.4 Formal Goals and High-Level Approach
To achieve the above goals, we present two variations of our at-
tack, both built using the same high-level approach, but incorpo-
rating slightly different loss functions and diffusion models. Specif-
ically, we present one somewhat simpler solution using DiffAE for
attribute-based edits and one somewhat more complex variation
that applies perturbation-based alterations with Stable Diffusion.

In both cases, we attack a FRS assumed to use an unknown
machine learning model M and embedding function F , which
have been trained on a dataset D consisting of paired data points
( ®𝑋𝑖 , ®𝑦𝑖 ), where ®𝑋𝑖 represents an input with specific dimensions
(height, width, channels), ®𝑦𝑖 represents the corresponding ground-
truth label (potentially poisoned) with 𝐾 possible categories.

Adversarial Attack Strategy: As attackers, our objective is to
manipulate input data ®𝑋 orig

𝑖
into adversarial examples ®𝑋 adv

𝑖 . These
manipulated inputs aim to deceive the model into producing either
a desired target label ®𝑦tgt

𝑖
or any label other than the true label ®𝑦𝑖 .

Recent GAN-based Progress: Systems like StyleAdv [31] and
StyleID [30] have successfully manipulated the identity using a
latent-space approach leveraging StyleGAN [28]. In addition to
StyleGAN being excellent for sampling high-quality images [69],
much of the above works’ success also came from leveraging Style-
GANs highly disentangled latent space for image editing.

While these works have proven successful and there are multiple
works proposing different methods for the StyleGAN encoder, there
are always deviations, especially when it comes to the facial domain.
Motivated by the strong and flexible encoders provided by diffusion
models, in this work, we set out to find and incorporate similar
models like StyleGAN for the diffusion context. Specifically, we
look closer at to what extent similar solutions can be achieved using
manipulations of the latent spaces of a diffusion model. After some
exploration, we have found two approach variations to achieve the
above goals: (1) an Edit-based version usingDiffAE and (2) a Perturb-
based version using Stable Diffusion. Despite differing mechanisms,

Target face

Stoch Enc
Sem

 Enc

C
ond. D

ec

Input face

Optimizing

Protected Face

Figure 3: Our Edit-based approach utilizes a diffusion autoen-
coder [43], takes the input face, and calculates the input’s
stochastic encoding 𝑥𝑡 and semantic latent code 𝑧𝑠𝑒𝑚 . The
goal is to optimize 𝑧𝑠𝑒𝑚 by minimizing a loss function that
pushes the identity toward a target identity.

both approaches share a fundamental goal of manipulating facial
images to thwart FRS while preserving visual appeal.

High-level Similarities and Differences: Both approaches use
optimization algorithms and diffusion models to iteratively refine
modifications that subtly alter facial images, impeding FRS iden-
tification. However, they differ somewhat in how this is achieved.
In particular, our Edit-based version using DiffAE models focuses
on manipulating semantic latent codes within the diffusion model
framework, while the perturbation-based version uses Stable Diffu-
sion to intervene in the diffusion process. Furthermore, our Edit-
based version prioritizes maintaining high visual quality and pre-
serving facial features, whereas the perturbation-based edits empha-
size introducing subtle modifications deep into the diffusion process
to elude recognition by FRS. These core differences underscore the
flexibility of our solution approach to achieve the overarching goal
of enhancing facial privacy protection using diffusion models.

4.5 Edit-Based Version using DiffAE
When looking for a good replacement to StyleGAN, we found that
DiffAE seems to tick all the boxes that StyleGAN offers and more:
(1) bi-directional encoding and decoding, (2) highly disentangled la-
tent codes for effective real image editing, and (3) a diffusion-based
approach with a deep computational graph, suitable for robust
adversarial attacks. Our initial strategy therefore involves using
DiffAE to create adversarial samples. Specifically, echoing the objec-
tives of StyleAdv, we seek to find a semantic latent code 𝑧𝑠𝑒𝑚 that
can generate an adversarial sample that ideally is indistinguishable
to human observers, yet capable of tricking FR technology.

Taking this simple approach, as depicted in Fig. 3, we first input
an image1 into DiffAE, where it is encoded into a stochastic code 𝑥𝑡
and a semantic latent code 𝑧𝑠𝑒𝑚 . We then enter an optimization loop
with respect to 𝑧𝑠𝑒𝑚 , seeking a modified version 𝑧𝑠𝑒𝑚 that fulfills
our loss function criteria.

Our goal is to produce an adversarial image I𝑎𝑑𝑣 that effectively
bypasses FRS. We achieve this by optimizing the semantic code
z𝑠𝑒𝑚 of the input image I, resulting in an adversarial semantic code
1Our choice of imagery in Figs. 3 and 4 are illustrative of DiffPrivate preserving complex
backgrounds and keeping other visual elements intact, a task that prior methods like
StyleID and StyleAdv find challenging.
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𝑧𝑠𝑒𝑚 . This modified code, along with x𝑡 , is then processed through
the DDIM decoding method to generate I𝑎𝑑𝑣 :

I𝑎𝑑𝑣 = DDIM𝑑𝑒𝑐 (x𝑡 , 𝑧𝑠𝑒𝑚) . (11)
In practical terms, particularly for targeted privacy protection,

our objective is encapsulated in the following optimization problem:
min
𝑧𝑠𝑒𝑚
L𝐼𝐷 (I𝑎𝑑𝑣) =D(F (I𝑎𝑑𝑣), F (I𝑡𝑔𝑡 )), (12)

where I𝑡𝑔𝑡 represents the facial image of the target identity, D is
the cosine distance, and F is the FR model. It is noteworthy that in
real-world scenarios, access to F may not be available.

For better-preserving features of the original image, such as a
facial landmark, we integrate a landmark loss, which calculates L2
distance of the facial landmark of input face I and adversarial face
I𝑎𝑑𝑣 : L𝐿𝑀 = ∥LM(I) − LM(I𝑎𝑑𝑣)∥, where LM is a facial landmark
detection model. The optimization problem now becomes:

min
𝑧𝑠𝑒𝑚
L𝐼𝐷 (I𝑎𝑑𝑣) = 𝜆𝐼𝐷L𝐼𝐷 + 𝜆𝐿𝑀L𝐿𝑀 , (13)

where 𝜆𝐼𝐷 and 𝜆𝐿𝑀 are hyperparameters balancing the loss terms.
Algorithm 1 presents our Edit-based method (based on DiffAE)

for generating adversarial images that alter the appearance of the
input image I with the goal of misleading FRS. The inputs consist
of the original image I, iteration count 𝑁 , mixing coefficient 𝛾 ,
learning rate 𝜂, identity loss weight 𝜆𝐼𝐷 , landmark stability weight
𝜆𝐿𝑀 , encoder function 𝐸𝑛𝑐 , original latent code 𝑧𝑜𝑟𝑔 , target latent
code 𝑧𝑡𝑔𝑡 , and validation threshold 𝜃 . The outputs are the adversarial
image I𝑎𝑑𝑣 and the optimized mixing parameter 𝛼 .

The algorithm starts by encoding the input image into a latent
representation z and transforming it using 𝐷𝐷𝐼𝑀𝑒𝑛𝑐 to x𝑇 . The
methodology initializes a vector 𝛼 (0) as zero, representing no initial
mixing between 𝑧𝑜𝑟𝑔 and 𝑧𝑡𝑔𝑡 . This zero vector allows the genera-
tion of a semantic latent code 𝑧𝑠𝑒𝑚 , which is then processed with
𝐷𝐷𝐼𝑀𝑑𝑒𝑐 to render the initial adversarial image I(0)

𝑎𝑑𝑣
.

The algorithm employs an iterative optimization loop using the
Adam optimizer. Here, gradient updates to 𝛼 minimize a loss func-
tion that balances identity and landmark stability costs, weighted
by 𝜆𝐼𝐷 and 𝜆𝐿𝑀 . This continuous adjustment of 𝛼 aims at finding an
optimal blend of 𝑧𝑜𝑟𝑔 and 𝑧𝑡𝑔𝑡 that makes the resulting adversarial
image deviate sufficiently from the original to outwit FRS while
still conforming to the provided validator criteria 𝜃 .

The loop terminates when the adversarial image satisfies the
validator condition or reaches the iteration limit 𝑁 , finalizing with
𝛼𝑜𝑝𝑡 and 𝑧𝑠𝑒𝑚 used to decode the final adversarial image I𝑎𝑑𝑣 . This
procedure offers a systematic approach to editing the image’s latent
space for desired adversarial effects.

4.6 Perturb-Based Version w. Stable Diffusion
While DiffAE and the above approach provide an intuitive method
for crafting the adversarial sample, as we will later show, this
method tends to push the identity toward the target identity. This is
actually the design intention of the DiffAE model, in which the de-
coupled latent space 𝑧𝑠𝑒𝑚 is highly disentangled, with small changes
in this latent space reflecting the visible change in pixel space. How-
ever, to achieve imperceptible adversarial perturbations, we adopt
a more integral approach, as described next.

Our intuition here is that diffusion models, with their depth
computational graph, would cancel out the modification in feature
space which does not match pixel space. To fool the models into

Algorithm 1 Edit approach based on DiffAE
1: Input: I, 𝑁 , 𝛾 , 𝜂, 𝜆𝐼𝐷 , 𝜆𝐿𝑀 , 𝐸𝑛𝑐 , 𝑧𝑜𝑟𝑔 , 𝑧𝑡𝑔𝑡 , 𝜃
2: Output: adversarial image I𝑎𝑑𝑣 , optimized 𝛼
3: ⊲ Image Encoding
4: z = 𝐸𝑛𝑐 (I) , x𝑇 = DDIM𝑒𝑛𝑐 (I, z)
5: ⊲ Initialization for Optimized 𝛼
6: 𝛼 (0) ← 0, where 0 is a zero vector of the same size as 𝑧𝑜𝑟𝑔
7: 𝑧 (0)𝑠𝑒𝑚 ← 𝑧𝑜𝑟𝑔 · 𝛼 (0) + 𝑧𝑡𝑔𝑡 · (1 − 𝛼 (0) )
8: I(0)

𝑎𝑑𝑣
= DDIM𝑑𝑒𝑐 (x𝑇 , 𝑧 (0)𝑠𝑒𝑚 )

9: Initialize Adam parameters:𝑚0 ← 0, 𝑣0 ← 0, 𝑡 ← 0
10: Initialize 𝑖 ← 0
11: while Validator(I, I(𝑖 )

𝑎𝑑𝑣
) < 𝜃 and 𝑖 < 𝑁 do

12: Update 𝑧 (𝑖+1)
𝑠𝑒𝑚 ← 𝑧𝑜𝑟𝑔 · 𝛼 (𝑖+1) + 𝑧𝑡𝑔𝑡 · (1 − 𝛼 (𝑖+1) )

13: I(𝑖 )
𝑎𝑑𝑣

= DDIM𝑑𝑒𝑐 (x𝑇 , 𝑧 (𝑖 )𝑠𝑒𝑚 )
14: L(I(𝑖 )

𝑎𝑑𝑣
) = 𝜆𝐼𝐷 · L𝐼𝐷 (I(𝑖 )𝑎𝑑𝑣

) + 𝜆𝐿𝑀 · L𝐿𝑀 (I(𝑖 )𝑎𝑑𝑣
)

15: 𝑡 ← 𝑡 + 1
16: 𝑔← ∇

𝛼 (𝑖 ) L(I
(𝑖 )
𝑎𝑑𝑣
)

17: 𝑚𝑡 ← 𝛽1 ·𝑚𝑡−1 + (1 − 𝛽1 ) · 𝑔
18: 𝑣𝑡 ← 𝛽2 · 𝑣𝑡−1 + (1 − 𝛽2 ) · 𝑔2

19: �̂�𝑡 ←𝑚𝑡 /(1 − 𝛽𝑡1 )
20: 𝑣𝑡 ← 𝑣𝑡 /(1 − 𝛽𝑡2 )
21: 𝛼 (𝑖+1) ← 𝛼 (𝑖 ) − 𝜂 · �̂�𝑡 /(

√
𝑣𝑡 + 𝜖 )

22: 𝑖 ← 𝑖 + 1
23: end while
24: 𝛼𝑜𝑝𝑡 ← 𝛼 (𝑖 ) , 𝑧𝑠𝑒𝑚 ← 𝑧

(𝑖 )
𝑠𝑒𝑚 , I𝑎𝑑𝑣 = DDIM𝑑𝑒𝑐 (x𝑇 , 𝑧𝑠𝑒𝑚 )

helping us craft adversarial samples carrying hidden features that
do not match their visual representation, we need to make the
modification deep into individuals passing of the diffusion process.

While crafting adversarial samples for diffusion models through
diffusion process intervention often presents challenges, we high-
light two hurdles specific to this approach: (1) the need for an
accurate inversion method like StyleGAN’s encoder or DiffAE’s
semantic encoder to project real images onto the latent space; and
(2) memory efficiency, as the optimization process requiring inter-
action with the diffusion process can be memory intensive. Given
these challenges, we opt for Stable Diffusion as our base model.
This has several advantages. Most importantly, as a latent diffusion
model, where the diffusion occurs in a compressed VAE latent space,
Stable Diffusion significantly reduces memory costs and, crucially,
delivers high-quality images, as supported by the research literature
and the wide availability of supporting work around the model.
This allows us to leverage existing solutions and tailor them to our
specific needs. For inversion, we choose the advanced Null-text
inversion technique proposed by Mokady et al. [37].

To integrate our solution into the inversion process, we first
employ DDIM inversion to obtain a sequence of latent codes 𝑧
at various timesteps within the diffusion process. As illustrated in
Fig. 4, the process commences with the original image’s direct latent
codes 𝑧0 and progressively introduces noise until reaching 𝑧𝑇 . With-
out optimization, initiating the denoising process from 𝑧𝑇 would
merely yield a reconstructed version 𝑧0 that deviates substantially
from the original 𝑧0. Subsequently, the inversion process pivots
towards optimizing the null-text, or unconditional prompt, that
serves as input to Stable Diffusion. This optimization effectively
brings the inverted codes closer to their originals while preserving
the original image’s prompt description. This preservation is crucial
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Figure 4: Our Perturb-based approach utilizes a Stable Dif-
fusion model, which goes through an inversion process that
optimizes the null-text embedding, allowing accurate recon-
struction of the original identity, then goes through a diffu-
sion loop where cross attention maps are extracted, facili-
tating an optimization process pushing the identity features
gradually away from the original while keeping the identity
resemblance intact.

Algorithm 2 Perturbation approach based on Stable Diffusion

1: Input: I, 𝑁 , 𝜂, 𝜆𝐼𝐷 , 𝜆𝑠𝑒𝑙 𝑓 , Invert𝑁𝑢𝑙𝑙 , 𝜃
2: Output: adversarial image I𝑎𝑑𝑣
3: ⊲ Null-text inversion
4: 𝑧𝑇 , {∅𝑡 }𝑇𝑡=1 = Invert𝑁𝑢𝑙𝑙 ({z𝑡 }𝑇𝑡=1,∅, C, 𝑁 )
5: ⊲ Attack Generation
6: 𝑧 (0)

𝑎𝑑𝑣
← z

7: I(0)
𝑎𝑑𝑣

= VAE𝑑𝑒𝑐 (𝑧 (0)𝑎𝑑𝑣
)

8: Initialize Adam parameters:𝑚0 ← 0, 𝑣0 ← 0, 𝑡 ← 0
9: 𝑖 ← 0
10: while 𝑖 < 𝑁 and Validator(I, I(𝑖 )

𝑎𝑑𝑣
) < 𝜃 do

11: 𝑧
(𝑖 )
𝑎𝑑𝑣

, I𝑚𝑎𝑠𝑘 = DDIM𝑙𝑎𝑡𝑒𝑛𝑡 ({∅𝑡 }𝑇𝑡=1, 𝑧
(𝑖 )
𝑎𝑑𝑣
)

12: I(𝑖 )
𝑎𝑑𝑣

= VAE𝑑𝑒𝑐 (𝑧 (𝑖 )𝑎𝑑𝑣
) ⊕ I𝑚𝑎𝑠𝑘

13: L(I(𝑖 )
𝑎𝑑𝑣
) = 𝜆𝐼𝐷 · L𝑖𝑑𝑒𝑛 (I(𝑖 )𝑎𝑑𝑣

) + 𝜆𝑠𝑒𝑙 𝑓 · L𝑠𝑒𝑙 𝑓 (I(𝑖 )𝑎𝑑𝑣
)

14: 𝑡 ← 𝑡 + 1
15: 𝑔← ∇

𝑧
(𝑖 )
𝑎𝑑𝑣

L(I(𝑖 )
𝑎𝑑𝑣
)

16: 𝑚𝑡 ← 𝛽1 ·𝑚𝑡−1 + (1 − 𝛽1 ) · 𝑔
17: 𝑣𝑡 ← 𝛽2 · 𝑣𝑡−1 + (1 − 𝛽2 ) · 𝑔2

18: �̂�𝑡 ←𝑚𝑡 /(1 − 𝛽𝑡1 )
19: 𝑣𝑡 ← 𝑣𝑡 /(1 − 𝛽𝑡2 )
20: 𝑧

(𝑖+1)
𝑎𝑑𝑣

← 𝑧
(𝑖 )
𝑎𝑑𝑣
− 𝜂 · �̂�𝑡 /(

√
𝑣𝑡 + 𝜖 )

21: 𝑖 ← 𝑖 + 1
22: end while
23: 𝑧𝑎𝑑𝑣 ← 𝑧

(𝑖 )
𝑎𝑑𝑣

, I𝑎𝑑𝑣 = VAE𝑑𝑒𝑐 (𝑧𝑎𝑑𝑣 )

for our technique, allowing us to extract a cross-attention map that
focuses on facial regions requiring protection.

Formally, null-text inversion optimizes a unique unconditional
embedding ∅ initiated with the null-text embedding while keeping
the model and the conditional textual embedding unchanged. This
process can be either global, using a single embedding, or timestamp-
specific, with distinct embeddings ∅𝑡 optimized for each timestamp
𝑡 , each initialized from the embedding of the previous step ∅𝑡+1.

The full algorithm utilizes DDIM inversion to produce a se-
quence of noisy latent codes 𝑧∗

𝑇
, . . . , 𝑧∗0 . For each timestamp 𝑡 =

𝑇, . . . , 1, an optimization is performed for 𝑁 iterations to mini-
mize

𝑧∗𝑡−1 − 𝑧𝑡−1 (𝑧𝑡 ,∅𝑡 , C)
2 . Here, 𝑧𝑡−1 (𝑧𝑡 ,∅𝑡 , C) denotes apply-

ing the DDIM sampling step using the respective embeddings and
conditional embedding. This process, while less expressive than full
model fine-tuning, is efficient and well-suited for pivotal inversion,
leading to the final edited image using the optimized unconditional
embeddings {∅𝑡 }𝑇𝑡=1, enabling efficient editing operations on the
input image. In brief, we can summarize the process as follows:

𝑧𝑇 , {∅𝑡 }𝑇𝑡=1 = Invert𝑁𝑢𝑙𝑙 ({z𝑡 }𝑇𝑡=1,∅, C, 𝑁 ). (14)
The primary aim of this approach is to craft an adversarial image

I𝑎𝑑𝑣 capable of eluding FR technologies. This is accomplished by
modifying the latent code z𝑎𝑑𝑣 of an input image I, thus produc-
ing a perturbed latent code z𝑎𝑑𝑣 . Subsequently, this altered code,
in conjunction with {∅𝑡 }𝑇𝑡=1, is subjected to the DDIM decoding
process to create 𝑧𝑎𝑑𝑣 :

𝑧𝑎𝑑𝑣 = DDIM𝑙𝑎𝑡𝑒𝑛𝑡 (prompt, {∅𝑡 }𝑇𝑡=1, z𝑎𝑑𝑣) . (15)
Like equation (12), particularly when aiming at targeted privacy

preservation, the goal is defined by the following optimization:
min
𝑧𝑎𝑑𝑣
L𝐼𝐷 (I𝑎𝑑𝑣) =D(F (I𝑎𝑑𝑣), F (I𝑡𝑔𝑡 )), (16)

where I𝑎𝑑𝑣 = VAE𝑑𝑒𝑐 (𝑧𝑎𝑑𝑣), I𝑡𝑔𝑡 is a target facial image, D denotes
the cosine distance, and F represents the FR framework.

A cross-attention map is employed to enhance the retention
of original image features, such as facial landmarks. This map is
a binary mask I𝑚𝑎𝑠𝑘 highlighting the crucial regions of both the
input face I and the adversarial face I𝑎𝑑𝑣 . This mask is then utilized
on the adversarial image, ensuring that in subsequent iterations,
only pivotal facial regions undergo modification: I𝑎𝑑𝑣 = I𝑎𝑑𝑣 ⊕ I𝑚𝑎𝑠𝑘 .
Additionally, to ensure the structural integrity of the original image,
a self-attention loss L𝑠𝑒𝑙 𝑓 , derived from the self-attention layers of
the U-Net in Stable Diffusion, is integrated into the process.

Thus, the optimization challenge is reformulated as:
min
𝑧𝑎𝑑𝑣
L𝐼𝐷 (I𝑎𝑑𝑣) = 𝜆𝐼𝐷L𝐼𝐷 + 𝜆𝑠𝑒𝑙 𝑓 L𝑠𝑒𝑙 𝑓 , (17)

where 𝜆𝐼𝐷 and 𝜆𝑠𝑒𝑙 𝑓 are the hyperparameters used to balance the
respective loss terms.

Algorithm 2 presents our perturbation method. The inputs con-
sist of the original image I, iteration count 𝑁 , learning rate 𝜂, iden-
tity retentionweight 𝜆𝐼𝐷 , self-consistencyweight 𝜆𝑠𝑒𝑙 𝑓 , the null-text
inversion function Invert𝑁𝑢𝑙𝑙 , and a threshold 𝜃 for termination.
The output is the adversarial image I𝑎𝑑𝑣 .

The method begins with a null-text inversion step, using the
Invert𝑁𝑢𝑙𝑙 function to generate a latent representation 𝑧𝑇 and a
null latent path ∅𝑡 𝑡 = 1𝑇 . From the original latent code z, an ap-
proximate image I𝑎𝑑𝑣 (0) is then reconstructed via a VAE decoder.

At the core of the algorithm is an optimization loop using the
Adam optimizer to refine the latent code 𝑧 (𝑖 )

𝑎𝑑𝑣
, ensuring it diverges

enough to bypass FRS while preserving perceptual similarity to
the original image I. The adversarial updates incorporate a dynam-
ically masked version of the image, enhancing the robustness of
the resultant adversarial traits. Two loss functions, L𝑖𝑑𝑒𝑛 and L𝑠𝑒𝑙 𝑓 ,
weighted by 𝜆𝐼𝐷 and 𝜆𝑠𝑒𝑙 𝑓 , respectively, guide the training to bal-
ance between disguising the identity and maintaining fidelity to the
original image. The loop terminates when the adversarial image’s
validator score stays below the threshold 𝜃 , after which the final
adversarial image I𝑎𝑑𝑣 is reconstructed from the last updated latent
code 𝑧𝑎𝑑𝑣 using the VAE decoder.
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5 Experimental Setup
5.1 Datasets
We leverage three significant datasets to evaluate the performance
of FR and image generation/editing algorithms: Labeled Faces in the
Wild (LFW) [22], Celebrity Faces Attributes (CelebA) [34] and its
high-quality variant CelebA-HQ [27], as well as the Flickr-Faces-HQ
(FFHQ) [28] dataset. These datasets are chosen for their benchmark
status in various domains related to facial image analysis, including
recognition, generation, and editing. A detailed description of each
dataset is provided in Appendix B.

By combining LFW, CelebA/CelebA-HQ, and FFHQ datasets, our
evaluation framework enables a comprehensive assessment of FR
and image generation/editing algorithms across different datasets.
LFW provides a benchmark for FR accuracy in uncontrolled en-
vironments, while CelebA and CelebA-HQ offer a rich source of
annotated facial images for attribute editing. FFHQ, with its high-
resolution and diverse images, provides cross validation dataset to
compensate CelebA/CelebA-HQ. Together, these datasets ensure a
robust and diversified testing ground for our algorithms, facilitating
meaningful comparisons with related works.

5.2 Evaluation Settings
In our evaluation, we explore different options, including targeted/un-
targeted whitebox/blackbox attacks against FRS. Our approach uses
five well-known FR models: Facenet [48], IR152, IRSE50 (ArcFace)
[9], MobileFaceNet (termed as MobileNet in this paper) [5], and
IR101 (CurricularFace) [23]. To enhance the transferability of the
attack across different systems and inspired by StyleAdv [31], we
designate one of these models as a primary model (a whitebox
model) and one a second model as validator model (semi-blackbox).
Like StyleAdv, we use the first model for identity loss in our opti-
mization process and the validator model (e.g., a third-party service
or API), which we query up to three times in our experiments. This
limitation simulates realistic attack scenarios where an attacker
might have restricted opportunities to test their approach without
being detected. Finally, we assume no access to the other three mod-
els. This means that we assume no access to their internal details
or parameters, which is a common scenario in real-world attacks.

When reporting our results, we call attacks against the primary
models aswhitebox attacks (as we have access to the primarymodel),
attacks against the validator model as semi-blackbox [31] attack (as
we only can query its API a very limited number of times but do
not assume any access to the model itself, only the primary model),
and we consider attacks against other models as blackbox attacks
(assuming no access to them).

5.3 Evaluation Metrics
To assess the effectiveness of the privacy protection mechanism, we
introduce ametric called the Privacy Protection Rate (PPR). The PPR
is designed to directly measure the ability of the altered images to
prevent correct recognition by an FRS. By evaluating the likelihood
of mismatching the altered image with the original identity, it offers
a practical assessment of our approach’s ability to prevent identity
leaks. PPR’s alignment with standard benchmark practices, such
as the LFW benchmark (which typically assess whether a pair of

images belong to the same identity based on a threshold), makes it
more relevant than traditional metrics like recognition accuracy or
true positive rates, which may not fully reflect privacy protection
in real-world scenarios. The PPR metric is based on the cosine
similarity distance, 𝑑cosine, and is defined as follows:

PPR =
1
𝑁

∑︁
I

⊮
(
𝑑cosine (F (I𝑜𝑟𝑔), F (I𝑝𝑡𝑑 )) < 𝜏

)
× 100%, (18)

where ⊮ is the indicator function, 𝑁 the total number of face images
I, 𝜏 a predefined threshold value, and I𝑜𝑟𝑔 and I𝑝𝑡𝑑 are the original
and protected face images, respectively. In this context, F is a face
embedding model (feature extractor), referred to as FRS throughout
our paper, which generates a vector representation of facial features
for each image. Here, 𝑑cosine is defined as:

𝑑cosine (®𝑢, ®𝑣) =
1
𝜋

arccos
(
®𝑢 · ®𝑣
∥®𝑢∥∥®𝑣 ∥

)
, (19)

reflecting the distance based on cosine similarity, as described pre-
viously. To align with privacy protection standards, we set the
threshold 𝜏 for each victim model to where they achieve 1 × 10−3

False Acceptance Rate (FAR). Deciding on this threshold for a par-
ticular system is critical, as it directly impacts the protection rate.
Furthermore, we adhere to a rigorous LFW benchmark to estab-
lish this threshold, serving as a standard for evaluating all related
works when compared with ours. More information regarding the
determination of this threshold can be found in Appendix D.

While users employing our approach do not need to know the
threshold of the target model they are protecting against or the
structure of blackbox models, the threshold of the primary model is
important. Depending on what model is used, these thresholds can
be obtained either by extracting them from the evaluation section
of the corresponding papers, by following the process described
in Appendix D, or by using the results we provide in that section.
In general, there is a tradeoff between ease of crafting adversarial
samples (easier when threshold selected for a small FAR target) and
transferability across models (worse with small FAR target).

In addition to PPR, we employ the Learned Perceptual Image
Patch Similarity (LPIPS) [68] to evaluate the naturalness and quality
of the protected face images. LPIPS has been chosen specifically for
its ability to mirror human visual perceptionmore closely compared
to traditional metrics like SSIM [59] or MS-SSIM [61]. LPIPS is
designed to assess the perceptual difference between images based
on high-level features extracted by deep neural networks, which
tend to align better with human judgment of image quality and
similarity. This is particularly important in our context where subtle
visual changes, which might significantly alter machine recognition
performance, might still be perceived as minor by human observers.

While SSIM and MS-SSIM effectively measure structural simi-
larity, they often do not adequately account for perceptual aspects
like texture and color dynamics, which are important for assess-
ing natural appearance on social media. Since our goal is to create
images that appear natural and consistent with human perception
while deceiving FRS, LPIPS serves as a more appropriate metric,
ensuring that the modifications made preserve the overall aesthetic
and perceptual quality perceived by human viewers.

Combined, PPR and LPIPS provide a comprehensive assessment
of the efficacy of our privacy protection mechanism, covering as-
pects of privacy, visual fidelity, and perceptual quality.
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Table 1: Comparison with state-of-the-art methods on
CelebA-HQ and FFHQ datasets for targeted blackbox attacks.

Methods
CelebA-HQ FFHQ

PPR (%) ↑ LPIPS ↓ PPR (%) ↑ LPIPS ↓IRSE50 IR101 IR152 IRSE50 IR101 IR152
PGD [35] 0.00 0.53 0.00 0.06 0.00 0.00 0.53 0.07
CW [3] 13.02 1.03 3.54 0.18 7.04 2.01 6.05 0.18
Fawkes [50] 1.52 1.53 14.03 0.04 1.02 1.04 10.52 0.04
AMT-GAN [21] 2.04 0.52 5.09 0.09 1.53 1.52 4.52 0.12
StyleAdv [31] 41.53 45.54 75.53 0.14 20.52 25.03 60.04 0.16
DiffPrivate 88.02 86.54 98.03 0.05 92.03 95.02 98.53 0.06

6 Qualitative and Quantitative Comparisons
We first present a direct comparison against some of the most
related works (see Sec. 2): CW [3], PGD [35], Fawkes [50], AMT-
GAN [21], and StyleAdv [31]. Here, our selection of specific models
for the blackbox context, shown in Table 1, is based on rigorous
prior investigations. For instance, Fawkes primarily uses FaceNet in
its optimization, making it unsuitable as a blackbox model for our
evaluations. Instead, we need at least onemodel, such asMobileFace,
as a validator due to its characteristics as the shallowest model,
which, as we discuss in Sec. 7, presents the greatest challenge in
terms of attack resistance.

Qualitative Comparison: Fig. 5 offers a visual example com-
parison between our work and related works, in which we include
direct “face-to-face" comparisons for representative set of example
faces. We observed that: (1) perturbation-based methods in pixel
space, such as PGD, CW, and Fawkes, exhibit a common draw-
back wherein the noisy effect is visibly apparent. This can hinder
usability for applications like posting protected images on social
media, given the human sensitivity to artifacts on faces. (2) GAN-
based methods, including AMT-GAN and StyleAdv, suffer from
some degree of visible distortions, an inherent limitation of GAN
models. (3) Our method, which employs semantic editing to make
images more attractive, yields the most visually pleasing results.
This approach has potential applications as a beautifying face filter,
akin to those frequently used in popular apps such as Instagram
or Camera360. (4) Our perturbation approach in the latent space
demonstrates an advantage in preserving small details in photos,
including background elements, hair, and more obscure objects
like hands, phones, hats, etc. The comparisons demonstrate that
our diffusion-based method for creating protected images produces
higher image quality relative to the compared methods. It surpasses
GAN-based alternatives in achieving consistent results, a critical
factor for applications within the facial domain.

Image Quality: The evaluation of image quality, as quantified
by the LPIPS metric, reveals significant insights into the efficacy
of various adversarial methods when using DiffPrivate in Perturb-
based mode for this evaluation.

As shown in Table 1, pixel-perturbation based methods, includ-
ing PGD, CW, and Fawkes, exhibit relatively low LPIPS scores.
Notably, Fawkes achieves the lowest score among them, which can
be attributed to Fawkes incorporating LPIPS into its loss function
during optimization to minimize perceptual differences. In contrast,
GAN-based methods such as AMT-GAN and StyleAdv demonstrate
higher LPIPS scores, suggesting more substantial alterations to the
image that potentially compromise its natural appearance. Our

method, DiffPrivate, effectively maintains a balance between pri-
vacy enhancement and utility preservation. It achieves a signif-
icantly lower LPIPS score compared to GAN-based approaches,
aligning more closely with the scores of pixel-perturbation meth-
ods. This outcome underscores DiffPrivate’s ability to maintain the
visual integrity of images while providing robust privacy protection,
highlighting its advantageous position in reconciling the tradeoffs
between adversarial effectiveness and image quality.

Privacy Protection Rate: In our comprehensive comparison
with state-of-the-art methods on the CelebA-HQ and FFHQ datasets
for targeted blackbox attacks, as presented in Table 1, we rigorously
use the LFW benchmark to set the threshold at a specified False
Acceptance Rate (FAR), as detailed in Appendix D. This rigorous
approach, coupled with the employment of advanced FRS models,
significantly influences the evaluation of protection rates, provid-
ing a stark contrast to the methods used in prior works such as
Fawkes (and PGD, CW-based methods such as Face-off [4], and
FoggySight [12]). These earlier studies either relied on classifier
models or focused solely on the FaceNet model, which may not
reflect the efficacy against more current and accurate FRS models.

A notable observation is that the PPR for CelebA-HQ are gener-
ally higher than those for FFHQ. This discrepancy can be attributed
to the intrinsic differences between the two datasets. CelebA-HQ,
with its more uniform and curated collection of images, may in-
herently facilitate the generation of adversarial examples that are
more effective across a variety of models. In contrast, FFHQ, known
for its diversity in age, ethnicity, and image quality, presents a
more challenging scenario for adversarial attacks, likely due to the
increased variability and complexity of the dataset. This further
underscores the necessity of a robust evaluation framework that
encompasses a wide range of real-world conditions.

Furthermore, our evaluation strictly observes the blackbox crite-
ria, setting us apart from semi-blackbox settings reported in studies
like StyleAdv [31], which show near-perfect protection. Under our
stringent blackbox evaluation framework, where we assume no
knowledge of or query access to the model (except for a limited use
of a validator model not included in the blackbox models list), we
find that pixel-perturbation based methods such as PGD, CW, and
Fawkes exhibit negligible transferability to blackbox models. This
is evidenced by their low or zero PPR scores across all evaluated
FRS models. Similarly, AMT-GAN shows limited effectiveness, at-
tributed to a training process that may not adhere to the stricter
threshold levels we implement. StyleAdv, while achieving moderate
results, falls short of its previously reported outcomes under a less
stringent semi-blackbox setup.

The standout performance of our method, DiffPrivate, demon-
strates its advantages, achieving the highest PPR scores across both
datasets and all models tested. This underscores the importance of
both a rigorous evaluation protocol and the selection of evaluation
models that closely mirror real-world application scenarios. The
results, as shown in Table 1, highlight the pivotal role of choos-
ing appropriate thresholds and models in accurately assessing the
protection rate, affirming the effectiveness of our approach in safe-
guarding against unauthorized FR attempts. Finally, we note that
the high achieved success in the blackbox model scenario, the most
challenging of the three threat models, suggests effectiveness in
the less restrictive whitebox and semi-blackbox contexts as well.
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Figure 5: Visualizations of protected face images generated by different face protection methods on CelebA-HQ.

7 Transferability of Protection
Semi-blackbox Attack: In the semi-blackbox evaluation, detailed
in Fig. 6, we explore the effectiveness of DiffPrivate under the as-
sumption that users have whitebox access to a primary model and
limited query access to the validator model that (in this case) rep-
resents the unauthorized FRS they aim to protect against. This
evaluation, deemed resource-intensive, was conducted as a tar-
geted adversarial attack on the FFHQ dataset due to its greater
challenge and closer representation of real-world scenarios com-
pared to CelebA-HQ (as discussed in Sec. 6).

We utilize Stable Diffusion as the base generative model with
diffusion steps set to 20, a guidance scale of 2.5, and a default prompt
of “a person", our approach employs an Adam optimizer with a
learning rate of 5 × 10−3. Crucially, we limit the optimization loop
to a maximum of 250 iterations, conducting only three occasional
checks with the validator at steps 50, 100, and 250 to determine
if an adversarial image meets the validator’s requirements. If the
adversarial image does not pass the validator’s criteria by the final
check at iteration 250, the process is terminated.

The resultant heatmap illustrates the PPR achieved across vari-
ous combinations of primary and validator models. For instance,
with MobileFace as the primary model and IR101 as the validator,
a PPR of 65% indicates that, within the 250-iteration limit, 65% of
the test samples succeeded in generating an adversarial image that
could evade detection.

The heatmap reveals significant variability in protection efficacy,
highlighting the impact of model combinations on adversarial suc-
cess. Notably, when models serve as their own validators (known
as whitebox attacks), the PPR approaches or reaches 100%. Con-
versely, lower PPRs in cross-model evaluations, such as the 22.5%
observed when IR152 and IRSE50 serve as validators for each other,
reflect the increased difficulty of evading unfamiliar FRSs. These
observations underline the critical role of model familiarity and
the adversarial model’s adaptability in designing effective privacy
protection strategies.

However, there are also several semi-blackbox attacks (where
the primary model differ from the validator model) that are highly

63



Proceedings on Privacy Enhancing Technologies 2025(2) Minh-Ha Le and Niklas Carlsson

IR10
1

Fac
eN

et
IR15

2
IRSE

50

Mob
ileF

ace

Validator Models

IR101

FaceNet

IR152

IRSE50

MobileFace

Pr
im

ar
y 

M
od

el
s

100 64 46 98 98

100 100 40 70 86

66 88 100 100 83

78 78 22 100 99

65 78 22 99 100
0%

25%

50%

75%

100%

Figure 6: The success in the PPR of crossing attack between
primary and validator models

successful (e.g., IR101 against IRSE50 andMobileFace). The effective-
ness in these cases suggests that certain features learned by IR101
are robust enough to generalize across different models, including
IRSE50 and MobileFace. This indicates a transferability of the ad-
versarial modifications that is not model-specific but potentially
applicable across a spectrum of models with varying architectures.
Here, IRSE50 is most sensitive to such semi-blackbox attacks in 3
out of 4 cases (i.e., with IR101, IR152, MobileFace as primarymodels).
When FaceNet is the primary model, IR101 is most vulnerable and
when IRSE50 is the primary model, MobileFace is most vulnerable.

Blackbox Attacks: Fig. 7 presents the results of our evalua-
tion on the transferability of adversarial protection across different
blackbox models, utilizing a combination of primary models and
validators. This setup aims to assess the effectiveness of adversarial
edits against models to which the user is assumed to have no knowl-
edge or access. The evaluation highlights a pattern of transferability
that bears resemblance to the findings from the heatmap presented
in Fig. 6, underlining the consistency of our adversarial protection
strategy across varied settings.

Two distinct cases emerge from our analysis: (1) Utilizing IR152
as a validator, which is a deep CNN model renowned for its high
accuracy on the LFW benchmark, results in the lowest PPR, particu-
larly when paired with FaceNet or IRSE50 as primary models. This
observation suggests that despite IR152’s high accuracy, it may be
more susceptible to adversarial attacks, corroborating the tradeoff
between accuracy and robustness documented in prior research
[15, 35, 57]. (2) Conversely, selecting MobileFace as the validator
consistently yields the highest PPR across all primary models, es-
pecially when used in conjunction with FaceNet or IR101. This
indicates that MobileFace, despite being the model with the shal-
lowest architecture and the lowest accuracy among those evaluated,
offers superior robustness against adversarial attacks. These results
underscore the nuanced relationship between model complexity,
accuracy, and vulnerability to adversarial manipulation, reinforcing
the importance of considering these factors in the development and
evaluation of privacy-enhancing technologies.

8 Robustness of Protection
In our analysis, represented in Fig. 8, we specifically assess the
efficacy of various adversarial protection methods on the CelebA-
HQ and FFHQ datasets, with a particular focus on the CelebA-HQ

dataset for evaluating the DiffPuremethod. This targeted evaluation
stems from the prerequisite that DiffPure requires a DDPM model
trained exclusively on CelebA-HQ for faces, thereby limiting its
purification effects to this dataset alone. Given the ineffectiveness
of pixel-based perturbation methods in blackbox settings—often
resulting in negligible protection rates—we opt for a whitebox
evaluation framework to discern robustness.

Across the datasets, our method consistently exhibits high ro-
bustness against purifying methods when compared to alternatives.
This is particularly evident on the CelebA-HQ dataset, where the
robustness of our protection method outperforms that on the FFHQ
dataset. Notably, pixel-perturbation methods such as PGD, CW, and
Fawkes are highly susceptible to noise-canceling techniques like
Gaussian Blurring and Total Variance Minimization, which can sig-
nificantly diminish their protection rates. Other purifying methods
generally reduce the protection efficacy of these pixel-perturbation
methods by approximately half. Remarkably, DiffPure effectively
neutralizes the protective capability of all methods except for Ours
and StyleAdv. AMT-GAN, while consistently holding a moderate
protection rate against other purifying methods, is also vulnerable
to DiffPure.

The observed patterns underscore the nuanced interaction be-
tween adversarial protection methods and purifying techniques,
highlighting the critical importance of designing protection strate-
gies that are resilient not only to direct adversarial attacks but
also to subsequent purification attempts. Our method’s strong
performance against various purifying methods on CelebA-HQ
validates its effectiveness and highlights potential limitations of
pixel-perturbation approaches for robust adversarial protection.

9 Protection with Attributes Editing
We next analyze the relative protection offered by editing different
attributes. For each scenario, we show results from representative
models, noting that our model selections and comparisons are con-
sistent with the model selection in Sec. 6 (i.e., the primary model is
FaceNet and the validator model is MobileFace) and are generally
in line with the tradeoff between model accuracy and robustness
captured in Sec. 7 (e.g., blackbox results for FaceNet with Mobile-
Face as validator (Fig. 7a) are outstanding for the LFW datasets,
although there will be deviations when we test on other datasets).

Semi-Blackbox Setting: Fig. 9 illustrates the PPR across various
attributes for the DiffPrivate Edit-based method in a semi-blackbox
setting, whereMobileFace serves as both the validator and the target
unauthorized FRS. Notably, the performance across attributes on the
CelebA-HQ dataset is predominantly high, a result that aligns with
expectations considering CelebA-HQ’s use in training the classifier
for DiffAE, which guides the attribute editing process. This training
alignment ensures a high degree of attribute manipulation success.

Conversely, the FFHQ dataset presents a more varied set of out-
comes, with some attributes experiencing a protection rate de-
cline to as low as 70-80%. Attributes such as Blurry and Pale Skin
demonstrate lower protection rates, which could be attributed to
the inherent challenges in editing these features in a manner that
significantly alters the FRS’s perception without compromising
natural appearance. This variability in success rates underscores
the complexity of attribute-based adversarial editing in diverse
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Figure 7: Attacker transferable between cross blackbox models
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Figure 8: Protection percentage on CelebA-HQ and FFHQ.
Note that DiffPure is not applicable in the case of FFHQ as
this method requires a DDPMmodel trained on CelebA-HQ
and the purification only works effectively on this dataset

datasets. The high protection rates for attributes like Smiling or
Wearing Lipstick in CelebA-HQ, compared to FFHQ, suggest a direct
correlation between the training data of the guiding classifier and
the effectiveness of attribute manipulation. This observation points
to the potential need for selecting the right attributes in optimizing
the privacy protection efficacy of edit-based methods, particularly
in semi-blackbox settings with only limited access to target FRS.

Blackbox Setting: Here, we summarize key observations from
a comprehensive evaluation of the protection rates across various
attributes in a blackbox setting (primary: FaceNet, validator: Mo-
bileFace) comparing performance on the CelebA and FFHQ datasets
across multiple FRS models: IRSE50, IR152, IR101, and MobileFace
(numeric results are provided in Table 2 of Appendix C.1).

Notably, attributes such as High Cheekbones and Smiling demon-
strate high protection rates across both datasets, indicative of the

effectiveness of our protection methods in preserving key facial fea-
tures while ensuring privacy. In contrast, attributes like Blurry and
Wearing Hat exhibit variable protection rates, reflecting the chal-
lenges in consistently obfuscating certain features across different
FRS models. A particularly intriguing observation is the generally
higher protection rates on CelebA compared to FFHQ, which may
be attributed to the former’s training alignment with the classifier
used in DiffAE for guiding attribute editing. The varied success
rates across attributes underscore the nuanced complexity of editing
facial features for privacy protection, with some attributes (e.g., 5 o
Clock Shadow, Big Nose) achieving lower protection rates on FFHQ,
potentially due to the dataset’s greater diversity and complexity.
These findings highlight the importance of adapted approaches in
adversarial editing to maximize protection efficacy across diverse
facial attributes and recognition systems.

10 Ablation Study
In our ablation study, we explore the efficacy of DiffPrivate on Edit-
based and Perturb-based methods: for Edit-based we selectively
choose the target attribute as “Attractive". This study utilizes IRSE50
as the primary model and FaceNet as the validator, with FaceNet’s
detection threshold 𝜃 varying from 0.235 to 0.425, corresponding to
a False Acceptance Rate (FAR) ranging from 1×10−4 to 1×10−1. This
range is indicative of the privacy budget, essentially representing
the degree of imagemodification permissible for crafting adversarial
samples. It is critical to note that a lower FAR equates to a less
stringent detection threshold, thereby facilitating the generation of
adversarial samples with fewer alterations (details in Appendix D).

Dividing the threshold spectrum into 10 discrete steps, we present
in Fig. 10 a visualization depicting how variations in the privacy bud-
get influence image quality. Our observations reveal that the Edit-
based method, which allows for targeted modifications on selected
attributes, tends to yield visually appealing outcomes. Nonetheless,
it is observed that the extent of identity alteration becomes more
pronounced as the budget increases. Conversely, the DiffPrivate
approach employing a Perturb-based methodology, typically results
in less visual modifications when compared to the Edit-based strat-
egy. This distinction underscores the inherent tradeoff between
maintaining visual fidelity and achieving desired privacy levels.
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Figure 9: The PPR crossing attributes for Edit-based approach
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Figure 10: Visualizations of protected face images using DiffPrivate (Perturb-based method first row and Edit-based method
second row) at different protection budgets denoted by 𝜃 .

11 Limitations and Future Work
Target Scope and Vulnerability to Advanced Attacks: Refer-
ring to the SoK paper by Wenger et al. [62], our paper falls within
the category of “Attacking to Evade Identification". Furthermore,
our method, similar to approaches like Fawkes [50], focuses on
fooling FRS rather than deceiving human perception. However, as
noted by Todt et al. [58], adversarial attack methods, including ours,
are relatively vulnerable to advanced attackers who can build/train
reverse models with knowledge of the method. This is an inherent
drawback of adversarial approaches (see [58] for detailed analysis
of robustness against reversion and image quality based on user
study and human evaluation). For enhanced robustness against such
reversibility, we recommend anonymization methods like Deep-
Private [24], StyleID [30], and AnonFACES [32], which completely
alter facial resemblance, and at the cost of lower usability.

Dependency on Generative Model Quality: The effective-
ness of DiffPrivate depends on the performance of the underlying
generative model, Stable Diffusion in our case. While Stable Diffu-
sion excels in generativity, flexibility, and reduced bias compared to
GANs [55, 69], the quality of reconstructed images is directly linked
to its capabilities. Although it generally performs well, it occasion-
ally still shows biases towards certain demographic groups that
could impact the uniformity and fairness of our privacy protection.

Computational Efficiency: The reliance on deep diffusionmod-
els, which require significant computational resources for training
and inference, might limit the accessibility of our methods to users
with lower computational capabilities. Optimizing efficiency with-
out compromising effectiveness remains future work.

Adaptability toAdvances in FRS:Ourmethod is tested against
state-of-the-art FRS, but as adversarial defenses evolve, its future
effectiveness is not guaranteed. The fast-changing landscape de-
mands ongoing updates to ensure our approach remains effective.

Extended Use Cases: Our diffusion-based models, DiffPrivate,
are designed not only to protect individual users’ online personas
on social media but can also be used to address broader privacy
concerns, including as a component to help safeguarding bystander
privacy in public datasets [17]. When images captured in social
or public spaces are shared, bystanders - whose privacy may be
compromised - can have their faces anonymized using DiffPrivate.
This approach preserves the utility of these datasets for research or
public safety while respecting individual privacy rights. Interesting
future work include user studies determining people’s current in-
terest, expectation, and desirable privacy levels from such systems.

12 Conclusion
In conclusion, DiffPrivate leverages the diffusion process to cre-
ate facial images that protect users’ privacy. Our thorough testing
highlights the important technical decisions behind DiffPrivate and
its ability to work effectively with blackbox models. This work
represents one of the initial attempts to use diffusion models for ad-
versarial attacks aimed at safeguarding biometric privacy. Through
this approach, we offer a novel solution that not only challenges
FRS but also maintains the natural appearance of the images. Our
findings underscore DiffPrivate’s potential as a robust tool against
the evolving landscape of FR technology, pushing forward the ca-
pabilities for privacy protection in digital spaces. Our code can be
found here: https://github.com/minha12/DiffPrivate.
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Supplementary Material
A Facial Recognition System
FRS typically have two primary functions: face verification and face
identification.

Face Verification: In face verification, we aim to determine
whether two face images, ®𝑋1 and ®𝑋2, belong to the same individual.
We achieve this by:

(1) Embedding: Each image is transformed into a low-dimensional
space using a deep learning model denoted by F . This results
in embedding vectors ®𝑒1 and ®𝑒2 for the respective images.

(2) Distance Calculation: We compute the distance between these
vectors using a distance function 𝐷 = 𝑑 (®𝑒1, ®𝑒2).

(3) Thresholding: This distance is compared to a threshold 𝜏 . If
𝐷 ≤ 𝜏 , we conclude the images belong to the same person;
otherwise, they differ.

The threshold 𝜏 balances the False Acceptance Rate (FAR) and False
Rejection Rate (FRR) of the system. A lower 𝜏 reduces FAR but
increases FRR, and vice versa.

Face Identification: Given a probe image 𝑋 and a gallery set𝐺
of known identities, face identification seeks to identify the corre-
sponding identity in 𝐺 for 𝑋 . The process follows:

(1) Embedding: Similar to face verification, 𝑋 is transformed
into a low-dimensional embedding 𝑒 using the same model
F .

(2) Distance Calculation: We calculate the distance𝐷𝑖 𝑗 between 𝑒
and each embedding 𝑒𝑖 𝑗 in𝐺 for every identity 𝐼𝑖 (containing
𝑛𝑖 embeddings).

(3) Thresholding: Depending on the implementation, the probe
is identified with the identity having either the: (a) minimum
mean distance 𝑖∗ = arg min𝑖

(
1
𝑛𝑖

∑𝑛𝑖
𝑗=1 𝐷𝑖 𝑗

)
or the (b) smallest

individual distance 𝑖∗ = arg min𝑖
(
min𝑗 𝐷𝑖 𝑗

)
(4) Optional Thresholding: A rank threshold 𝑟 can be included. In

this case, if the rank 𝑟 ∗ of the best-matching identity 𝑖∗ is less
than or equal to 𝑟 , the identification is successful; otherwise,
𝑋 is classified as unknown.

Similar to face verification, a lower rank threshold 𝑟 decreases
FAR but increases FRR, while a higher 𝑟 increases FAR but lowers
FRR. Therefore, like threshold 𝜏 , 𝑟 must be carefully chosen to
optimize system performance and balance FAR and FRR according
to the specific application.

B Detailed Dataset Description
Labeled Faces in the Wild (LFW): The LFW dataset consists
of over 13,000 facial images of more than 5,700 individuals. It has
been designed to assess the performance of FR algorithms under
uncontrolled, real-world conditions. The standard LFW benchmark,
focusing on face verification, involves comparing 6,000 pairs of faces
to determine whether they depict the same person. This benchmark
is critical for evaluating the effectiveness of FRS in diverse and
challenging scenarios. We utilize LFW in our evaluation framework
to benchmark the FR capabilities of the systems.

CelebA andCelebA-HQ:CelebA is a large-scale facial attributes
dataset designed to support research in facial attribute recognition,
face detection, and landmark localization. It contains over 200,000
images of more than 10,000 celebrities, each annotated with 40
attribute labels and five landmark locations. CelebA-HQ, a high-
quality subset of CelebA, comprises 30,000 images at a resolution
of 1024×1024 pixels. These datasets are benchmarks for general
tasks in image generation and editing, providing a diverse and com-
prehensive resource for evaluating algorithm performance in these
domains. In our work, CelebA serves as the training dataset for the
classifier of the DiffAE model, while CelebA-HQ is used as training
data for the DiffPure model on faces.

Flickr-Faces-HQ (FFHQ): The FFHQ dataset consists of 70,000
high-quality images at 1024×1024 resolution, showcasing a wide
diversity in age, ethnicity, and background among the subjects. It is
particularly useful for training and testing style-based generative
models, such as StyleGAN, for tasks like image generation, manip-
ulation, and style transfer. The FFHQ dataset’s emphasis on image
quality and diversity makes it an ideal training dataset (in-domain)
for the DiffAE model, setting a high standard for generative image
quality and style transfer evaluation.

C Additional Results
C.1 Blackbox Evaluation with Attribute Editing
Table 2 provides a comprehensive evaluation of the protection
rate across various attributes in a blackbox setting, comparing
performance on the CelebA and FFHQ datasets across multiple FRS,
including IRSE50, IR152, IR101, and MobileFace.
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Table 2: Comparison of different blackbox models across attributes on CelebA and FFHQ datasets.

Attribute CelebA FFHQ
IRSE50 IR152 IR101 MobileFace IRSE50 IR152 IR101 MobileFace

5 o Clock Shadow 26.0 55.5 30.5 24.5 41.5 62.5 31.5 36.5
Arched Eyebrows 43.0 64.0 34.0 35.5 42.5 63.5 36.0 34.5
Attractive 41.0 68.5 40.5 34.5 46.0 69.5 45.0 39.0
Bags Under Eyes 46.0 65.5 44.0 42.5 57.5 70.0 38.5 45.0
Bald 41.0 64.0 32.0 30.0 47.0 66.0 27.5 35.5
Bangs 48.0 65.0 33.0 36.0 49.5 64.0 38.0 42.0
Big Lips 34.0 63.0 33.0 25.0 45.5 63.0 37.5 34.0
Big Nose 32.5 64.0 36.0 30.5 50.5 66.5 39.0 36.5
Black Hair 32.0 60.0 31.0 26.0 40.0 66.5 32.0 33.5
Blond Hair 37.0 59.0 36.0 23.0 42.0 57.0 31.5 30.5
Blurry 48.0 62.0 33.0 29.5 38.0 50.0 19.0 23.5
Brown Hair 42.0 61.0 35.0 31.0 45.0 62.0 39.0 34.5
Bushy Eyebrows 29.5 57.5 28.0 24.0 32.0 55.0 24.5 25.5
Chubby 44.0 66.5 37.0 31.5 43.5 60.0 30.5 35.5
Double Chin 44.5 64.0 36.5 34.5 49.0 67.5 40.5 37.0
Eyeglasses 47.5 54.0 31.0 42.0 51.5 57.5 28.0 42.0
Goatee 32.5 53.0 32.0 27.0 48.0 58.5 27.0 40.5
Gray Hair 32.5 53.0 27.0 27.5 43.5 62.0 30.5 35.0
Heavy Makeup 35.5 68.5 39.0 34.0 42.0 68.0 41.5 41.5
High Cheekbones 51.0 74.5 47.5 40.0 64.0 78.0 53.5 53.0
Male 34.0 54.0 25.5 28.0 52.5 62.0 32.5 40.0
Mouth Slightly Open 62.0 69.0 53.5 46.5 65.5 71.0 51.0 46.5
Mustache 31.0 55.5 27.5 30.5 40.0 52.0 24.0 36.5
Narrow Eyes 63.5 72.0 51.5 44.5 61.0 69.0 45.5 48.0
Oval Face 51.0 70.5 40.0 35.5 44.0 62.5 37.5 32.5
Pale Skin 42.0 59.5 36.5 32.5 41.5 59.5 33.5 30.5
Pointy Nose 42.0 62.0 37.0 33.5 46.0 67.5 34.5 41.0
Receding Hairline 51.0 64.0 38.5 36.0 45.0 61.5 26.0 39.0
Rosy Cheeks 41.0 67.0 35.5 27.0 46.0 63.0 37.5 36.0
Sideburns 27.5 50.5 25.5 28.0 51.5 65.5 32.0 45.0
Smiling 57.0 67.0 49.5 44.0 66.5 73.0 58.0 52.5
Straight Hair 46.5 61.5 35.5 34.5 52.0 65.0 34.5 37.5
Wavy Hair 51.5 64.5 38.0 36.0 46.5 62.5 34.5 36.5
Wearing Earrings 39.0 63.5 33.0 29.5 38.5 61.5 34.0 34.0
Wearing Hat 52.5 69.0 41.5 37.5 55.5 65.0 35.5 39.0
Wearing Lipstick 33.5 71.0 36.0 31.0 44.0 69.0 44.0 40.5
Wearing Necklace 43.5 62.5 35.0 35.0 45.0 61.5 32.0 38.0
Wearing Necktie 34.5 54.0 27.0 28.0 48.0 62.0 30.5 37.0
Young 36.0 64.0 36.5 28.5 45.0 70.5 40.5 38.5

D Detection Threshold at FAR Target
The effectiveness of facial recognition systems is essential in appli-
cations where high security and accurate identity verification are
necessary. A crucial part of evaluating these systems involves set-
ting an appropriate detection threshold 𝜃 that determines whether
two facial images represent the same individual. This threshold
plays a vital role in balancing the tradeoff between system usabil-
ity and security, specifically in reducing false acceptances without
significantly increasing false rejections. This section presents the
mathematical formulation and approach for setting the detection
threshold 𝜃 to achieve a desired FAR using the LFW dataset.

D.1 Operational Definitions
Before explaining the methodology, it is important to define the
key metrics:

• True Positive (TP): Correctly identifying a match between
different images of the same individual.
• False Positive (FP): Incorrectly identifying amatch between
images of different individuals.
• True Negative (TN): Correctly identifying no match be-
tween images of different individuals.
• False Negative (FN): Incorrectly identifying no match be-
tween different images of the same individual.
• False Accept Rate (FAR): The probability of incorrectly
granting access to an unauthorized individual, calculated as
FAR = FP

FP+TN .

D.2 Methodology
The process of determining the detection threshold 𝜃 for a specified
FAR involves the following steps:
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Table 3: Detection thresholds and performance metrics for various FRS models at specified FAR targets on the LFW dataset

Model FAR Target Threshold FAR Achieved AUC Accuracy

MobileFace

1 × 10−5 0.37153 0.00067

0.95012 0.9285
1 × 10−4 0.37177 0.00067
1 × 10−3 0.3875 0.00133
1 × 10−2 0.42018 0.00967
1 × 10−1 0.45514 0.10033

IRSE50 (ArcFace)

1 × 10−5 0.39523 0.00033

0.95068 0.93667
1 × 10−4 0.39547 0.00033
1 × 10−3 0.4 0.001
1 × 10−2 0.4231 0.01
1 × 10−1 0.4571 0.09967

IR152 (ArcFace)

1 × 10−5 0.38873 0.00033

0.94749 0.94233
1 × 10−4 0.38897 0.00033
1 × 10−3 0.4277 0.00133
1 × 10−2 0.44566 0.01033
1 × 10−1 0.47085 0.10067

FaceNet

1 × 10−5 0.23503 0.00067

0.95338 0.9405
1 × 10−4 0.23527 0.00067
1 × 10−3 0.3352 0.001
1 × 10−2 0.37393 0.01
1 × 10−1 0.42536 0.1

IR101 (CurricularFace)

1 × 10−5 0.41383 0.00033

0.94774 0.94183
1 × 10−4 0.41407 0.00033
1 × 10−3 0.4332 0.00133
1 × 10−2 0.45104 0.01033
1 × 10−1 0.47432 0.10067

(1) Similarity Score Calculation: Calculate similarity scores
for pairs of images within the LFW dataset. These scores
represent the degree of similarity between images, as deter-
mined by the facial recognition model.

(2) FAR Calculation for Various Thresholds: For a range
of thresholds, calculate the FAR as FAR(𝜃 ) = FP(𝜃 )

FP(𝜃 )+TN(𝜃 ) ,
where FP(𝜃 ) and TN(𝜃 ) are the counts of false positives and
true negatives, respectively, for the threshold 𝜃 .

(3) Target FAR Achievement: Find the threshold 𝜃 that yields
an FAR closest to the desired target FARtarget, thus optimizing
the balance between security and usability.

D.3 Optimization Problem
The optimization problem to identify the ideal detection threshold
can be expressed as:

min
𝜃
|FAR(𝜃 ) − FARtarget | (20)

This problem aims to minimize the absolute difference between
the FAR at a given threshold and the target FAR, ensuring the facial
recognition system operates within the desired security levels.

D.4 Implementation Considerations
In practice, applying this method requires careful analysis of the
similarity score distribution and may involve calibration techniques
to adjust scores before applying the detection threshold. Addition-
ally, the choice of optimization technique, such as binary search,

depends on whether the FAR changes monotonically with respect
to 𝜃 .

D.5 Experimental Results
We evaluated several facial recognition models on the LFW dataset
to determine the detection threshold (𝜃 ) required to achieve specific
FAR. Themodels tested includeMobileFace, IRSE50 (ArcFace), IR152
(ArcFace), FaceNet, and IR101 (CurricularFace). Each model was
assessed at FAR targets of 1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, and
1 × 10−1 to determine the corresponding threshold (𝜃 ) and actual
FAR achieved. Additionally, the Area Under the Curve (AUC) and
accuracy of each model were recorded to provide a comprehensive
evaluation of performance.

As indicated in Table 3, with a lower FAR, the threshold re-
quirement is lower, making it easier to craft adversarial samples.
However, this also leads to less transferability across models. For
instance, lower thresholds provide effective protection but may not
generalize well across different facial recognition systems.

These results highlight the variability in performance across
different models and FAR targets. Notably, while some models per-
form exceptionally well at lower FAR targets, the accuracy and AUC
provide additional layers of insight into their overall effectiveness
in facial recognition tasks.
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