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Abstract

Specialized machine learning (ML) models tailored to users’ needs
and requests are increasingly being deployed on smart devices
with cameras, to provide personalized intelligent services taking
advantage of camera data. However, two primary challenges hinder
the training of such models: the lack of publicly available labeled
data suitable for specialized tasks and the inaccessibility of labeled
private data due to concerns about user privacy. To address these
challenges, we propose a novel system SpinML, where the server
generates customized Synthetic image data to Privately traIN a
specializedMLmodel tailored to the user request, with the usage of
only a few sanitized reference images from the user. SpinML offers
users fine-grained, object-level control over the reference images,
which allows user to trade between the privacy and utility of the
generated synthetic data according to their privacy preferences.
Through experiments on three specialized model training tasks,
we demonstrate that our proposed system can enhance the perfor-
mance of specialized models without compromising users’ privacy
preferences.
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1 Introduction

With the exponential growth of smart devices (e.g. smart speakers,
smart monitors, smart watches), machine learning (ML) models are
increasingly being deployed on such smart devices to provide intelli-
gent services for users [39, 58]. A prominent trend in this evolution
is the development of specializedMLmodels that are specifically tai-
lored to the users’ needs and requests, thereby enhancing the user
experience across various applications [6], including smart voice
assistants [15], wearable technologies [8], specialized healthcare,
[57], etc.

Based on the availability and sensitivity of data and computation
needs, specialized ML models can be trained either on the server
or on local devices. For instance, in mobile applications, Google’s
Gboard [21] utilized Federated Learning [40] to enhance the word
prediction models by training them on user’s devices thereby en-
suring personal data privacy. Similarly, Apple utilizes on-device
learning for Siri to improve speech recognition [23] without trans-
mitting personal voice data to central servers. In retail, edge AI
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[69] analyzes customer behavior in-store, enabling personalized
recommendations without sending data to the cloud. These ex-
amples illustrate how the choice between server-based and local
device training is determined by the need to balance performance
optimization with privacy considerations.

Recent advancements in generative AI has further increased the
need for personalized privacy-preserving ML models. For example,
"Apple Intelligence" [29] integrates generative AI models directly
into iPhones, iPads, and Macs. The system takes advantage of large
server-based models using Private Cloud Compute (PCC) which is
designed to process complex AI tasks in the cloud while maintain-
ing user privacy. However, although Apple asserts that personal
data sent to PCC isn’t accessible to anyone other than the user, the
inherent nature of cloud computing introduces risks, such as data
breaches or unauthorized access. Emerging devices like Rabbit’s r1
[31] and Humane’s Ai Pin [30] further illustrate the trend toward
integrating AI capabilities directly into consumer electronics. The
Rabbit r1 is a pocket-sized AI companion that leverages a Large
Action Model (LAM) to understand and execute user intentions
with human-level reasoning. Humane’s Ai Pin is a wearable device
that acts as an intelligent, voice-powered companion, providing
instant AI-powered knowledge and assistance. However, while
both systems emphasize privacy and security, they process user
interactions through cloud-based Large Models and collect various
types of user data, including precise geolocation, device informa-
tion, and usage patterns, to provide personalized assistance. While
these features enhance user experience, they also raise concerns
about the extent of data collection and the potential for privacy
leakage associated with cloud-based AI processing if the data isn’t
adequately protected. In summary, the aforementioned recent real-
world scenarios clearly highlight the growing need for personalized
intelligent services without compromising user’s privacy.

In this paper, we focus on the scenario where the server trains
specialized ML models tailored to unique user requests without
accessing private user data (see Figure 1). The training process starts
when the user sends a specialized ML model training request to the
server through the local device. Then, the server will automatically
train an ML model tailored to user’s request and deploy it on user’s
local device. Particularly, the user’s local device is assumed to have
no labeled dataset, but the user may be willing to share a few
unlabeled data points with the server as references based on the
user’s privacy preference.

There are three major challenges to training such specialized
ML models that can satisfy the unique needs of users. First, public
labeled data or models that fit the specialized tasks are often un-
available (e.g. training an image classifier for uncommon objects).
Second, the server cannot have access to any labeled private data,
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User request

Model weights

ServerUser Device

“I want a model to 
check my dog’s status.”

User request + reference images

Model weights

User-device ML model

“It is playing.”

Reference images

Figure 1: Problem statement. The user sends a request about

the model they need and a few reference images. The server

automatically train a model for the user.

due to privacy concerns and the lack of appropriate data annotation
systems in the local devices. Third, due to the uniqueness of user
request, other users’ data cannot be leveraged to collaboratively
train the specialized model (e.g. using federated learning [33]).

To handle these practical challenges, prior works have suggested
utilizing high-quality synthetic data generated by large Diffusion
Models (DMs) as training data [22, 62]. While this approach pro-
vides a feasible alternative for generating large amounts of training
data, the distribution of the generated synthetic data may signifi-
cantly deviate from the user’s private data, resulting in sub-optimal
model performance. To better tailor the distribution of generated
synthetic data, recent works have proposed methods for customiz-
ing large DMs. Given the prevalence of camera-equipped smart
devices and the usefulness of camera data in multiple applications,
these methods primarily focus on image data. Specifically, they
involve fine-tuning the models on a set of reference images [48] or
incorporating conditional reference image features to the image gen-
eration process [66]. Synthetic data generated by such customized
DMs can significantly enhance the performance of specialized mod-
els [18]. However, customizing DMs on reference images or image
features can lead to privacy concerns, as sensitive information
about users can leak from the reference images or image features
shared with the server. The trade-offs between privacy and utility
of customized synthetic data has not been well explored in prior
research works.

Therefore, in this paper, we propose SpinML, a novel system to
generate customized synthetic image data for specialized model
training, which allows users to flexibly trade between the privacy
and utility of generated synthetic data according to their privacy
preferences. At a high level, our system provides users with fine-
grained, object-level privacy control over the reference images
shared with the server. This enables the selective removal of sen-
sitive objects or features, while non-sensitive objects or features
are retained and shared to maximize the utility of the customized
synthetic data for training specialized models.

Specifically, SpinML comprises three key components designed
to enhance privacy and customization: 1) a light-weight object
detection and segmentation module located on the local device,
which partitions reference images into distinct image segments
(e.g. target objects and background objects); 2) an image sanitizer,
also on the local device, that removes sensitive features from each

image segment according to users’ privacy preferences; 3) a DMfine-
tuning pipeline on the server side, designed to generate customized
image segments and seamlessly merge them into the final synthetic
images.

We evaluate SpinML on three unique specialized model train-
ing tasks: pet status monitoring, human activity monitoring and
non-popular object detection. Specifically, in the first task, the user
request is to train a dog status classification model which can clas-
sify what the user’s dog is doing at home. We consider the case
where the user does not want to share the details of his/her home
environment but may be willing to share some information about
his/her dog to obtain a more accurate model. In the second task,
the user request is to train a human activity classification model
which classifies the activity of a senior person at home. We consider
the case where the image of a senior person is treated as highly
sensitive information while the home background may be shared
for better model accuracy. In the third task, we assume that the
users’ main request would depend on a sub-request to train an
accurate pill bottle detection model. We assume that the pill bottle
contains highly sensitive information (e.g. label), while the user is
willing to share some details about his/her home for better detec-
tion accuracy. Our experimental results on these three case studies
demonstrate the usability of SpinML, which allows user to trade
between privacy and utility flexibly in different situations. By using
SpinML, the performance of specialized models can be enhanced
without compromising users’ privacy preferences.

2 Preliminaries

2.1 Problem Statement

Our goal is to architect a system that achieves private training of
specialized ML models for desirable user requests. On one hand,
the system should have high utility, meaning that the specialized
models trained via this system should achieve high inference accu-
racy on private users’ data. To achieve the utility goal, the system
needs to know enough information about the distribution of users’
local data. On the other hand, the system should have high privacy,
which means it does not breach user privacy when training the
specialized model. To achieve the privacy goal, the system should
not access any sensitive information about users’ local data. At first
glance, the privacy and utility goals appear to be at odds with each
other. In this case, how can we have both high model accuracy and
user privacy at the same time?

Table 1 provides some insights for addressing this challenging
problem. Suppose that the users’ local data can be split into sensitive
parts and non-sensitive parts. For non-sensitive parts, they can
always be kept in order to enhance model utility without hurting
user privacy. For sensitive parts, if they do not affect the specialized
model’s accuracy, then they can be removed to maximize user
privacy without hurting model utility. By contrast, if the sensitive
parts affect specialized model’s accuracy, it is unlikely to have both
high accuracy and high utility. This says, the system has to trade
between privacy and utility by sanitizing the data using different
sanity levels.

With the above insights in mind, we design SpinML, a system
which provides users with fine-grained object-level sanity control
over the reference images they share with the server. With SpinML,
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users can flexibly trade between their data privacy and the utility
of specialized models trained by the server based on their privacy
preferences (see Section 3 for design details).

Utility
Privacy Sensitive Non-sensitive

Affect model
utility

Sanitize them (Either
get privacy or get

utility)

Keep them
(Maximize

utility without
hurting
privacy)

Not affect model
utility

Remove them
(Maximize privacy

without hurting utility)

Do not matter
(Simply keep

them)
Table 1: Insights about how to trade between privacy and

utility.

2.2 Threat Model

User. We assume that the user can request the server to build a
specialized vision ML model tailored to a specific task and local,
potentially resource constrained, device. The user request is a text
prompt specifying the requirements for training a specializedmodel,
which will subsequently be deployed locally on the users’ local
device. We assume that there is an absence of publicly available
labeled datasets for training the specialized model. Additionally,
we assume that the user might agree to share a limited number
of sanitized reference images with the server to customize the
generated synthetic data and thereby improve the accuracy of the
specialized model. This consent can be acquired based on different
levels of privacy preferences that will be available to the user.
Server.We assume that the server has substantial computational
resources to fine-tune and deploy large DMs for generating cus-
tomized synthetic data. This data will then be used to train special-
ized local ML models (to be deployed on the user device) tailored
to meet the users’ specific requirements. Additionally, we assume
that the server can be curious, implying that it may attempt to
infer sensitive information from any data shared by the user. This
includes both the text prompts detailing the users’ requests and the
sanitized reference images.

2.3 Why Generic Models may not Work?

There are three major reasons why generic models may not work
well for personalized domains. First, generic models may have a
fixed output format and fine-tuning is required to generate spe-
cialized output, such as predicting new classes. Second, they are
trained on public data and they may not generalize to users’ private
data. To address this, again fine-tuning may be required. Indeed, our
experimental results in Section 5.7 demonstrate that large generic
models perform poorly on personalized domains without additional
fine-tuning. Last, even if a large generic model (e.g. SEEM [70])
generalizes to a user’s private data in some circumstances, it is
challenging to deploy it on mobile devices. In summary, there is
a need to privately train personalized small models that can fit in
local devices.

3 Design

In this section, we present the design of SpinML for private training
of specialized ML models.

3.1 System Overview

Figure 2 demonstrates SpinML, which contains multiple modules
on both the user’s device and the server. Specifically, on the device
side, the system consists of: 1) an object detection and segmentation
model for detecting and isolating target object from the background,
and 2) an image sanitizer module for removing sensitive features
in both the target object and the background (see Section 3.2). The
server-side system consists of three modules: 1) a DM fine-tuning
pipeline to customize the target object and background generation
of synthetic data, 2) a synthetic data generation module, and 3) a
training module to train device-side ML models with the generated
synthetic data (see Section 3.3 for details).

At a high level, SpinML works as follows. First, the user speci-
fies the training objective and requirements of the device-side ML
model in a text request. The user has the option to share a few
unlabeled private images with the server as reference training data.
Suppose the user chooses to share a few reference images, then
the image sanitizer generates sanitized images based on user’s pri-
vacy preference and only sends the sanitized images to the server.
Next, the server fine-tunes a DM [47] to generate customized syn-
thetic data that satisfies user request and follows the distribution of
sanitized reference images. Lastly, the server uses the customized
synthetic data to train a device-side ML model and then sends the
model weights back to depoly the model on the device. We describe
the design details below.

3.2 Device-side System Design

User request. The user request comprises a list of key-value pairs
specifying training requirements for the specialized ML model. As
demonstrated in Table 2, the user request contains four keys: target
object, background, training object, label classes. The target object
and background are used to instruct the server to generate im-
ages containing the specific types of target object and background.
For example, if the user wishes to have a specialized ML model
to monitor their dog’s status in their room, the target object and
the background would be specified as “dog” and “bedroom” respec-
tively, such that the server can generate images of a dog in a room.
Moreover, the training object is used to indicate the functional-
ity of the specialized ML model, and the label classes specify the
categories of the generated images. For instance, in the scenario
involving monitoring the dog’s status, the label classes can include
“eating”, “sitting”, “sleeping”, “playing”, which will be used by the
server to generate dog images with specified status.
Object detection and segmentation module. The purpose of
this module is to identify and separate the objects in the reference
images, which enables fine-grained privacy control for each object
based on the user’s individual privacy preferences. In this work, we
group the objects within an image into two categories: target objects
and background objects. The target objects, which are specified
by the user in their request, are the primary focus of the model’s
training. As an example, if the user request is to train a ML model
to monitor the dog’s status, the target object will be dog.
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L2: Text + raw images

L1: Text + image features
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Customized 
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Sanitized 
target object

Sanitized 
background

Fine-tune DMs to customize 
background inpainting

Text only?

Text only?

N

N

Y

Y

Train user-device ML models

Privacy 
preference
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images
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ML models
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Target object 
generation DM
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inpainting DM
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Model 
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Figure 2: System details of SpinML. The user side consists of two modules: an object detection and segmentation module and

an image sanitizer. The server side consists of three modules: a DM fine-tuning module, a synthetic data generation module,

and a training module for a device-side ML model.

Key Value example
Target object Dog
Background Bedroom

Training objective A ML model detects my dog’s status
Label classes Eating, sitting, sleeping, playing

Table 2: An example of user request, where the goal is to

train a specialized ML model to monitoring the dog’s status

in the user’s room.

The object detection and segmentation module is built based
on YOLO-v8, an off-the-shelf object detection and segmentation
model for end devices [32]. For each reference image, the module
runs the object detection and segmentation model to detect and
segment a list of objects. Based on the target object defined in the
user request, this module splits the images into two distinct seg-
ments: one containing only the target object (the target image) and
another containing all remaining objects (the background image).
This module allows users to control the privacy of different image
segments according to their specific needs.
Image sanitizer. This module is designed to generate text descrip-
tions of the input image segments and remove sensitive features
from them like the target object or background. The text descrip-
tion for the target object is simply the value of the target object
specified in the user request. Similarly, the text description for the
background is simply the value of the background specified in the
user request.

Crucially, the image sanitizer provides three sanitization schemes
to remove sensitive features from the input, which we denote by
𝐿0, 𝐿1 and 𝐿2 respectively. We describe the details of these schemes
below.

(1) 𝐿0: This scheme only generates a text description of the
input image segment (either target object or background)
and sends it to the server. As an example, if the input image
segment contains a dog, the output text of the image sanitizer
under L0 scheme will be “dog”. Note that the text description

of the target object and background can be derived from the
user request (see Table 2 for example). When the input image
segment is highly sensitive, 𝐿0 should be used to maximize
privacy.

(2) 𝐿1: This scheme extracts non-sensitive image features from
the input image segment, and sends both these features and
the text description of the image to the server. Examples of
extracted image features include canny edge, object skeleton,
layout box, etc., which can be used for conditional synthetic
image generation [66]. 𝐿1 is suitable for use when the input
image segment features are considered to be non-sensitive
for users.

(3) 𝐿2: This scheme sends the raw input image segment along
with the text description of the image segment to the server.
When the input image segment is non-sensitive, using 𝐿2 is
recommended to maximize the utility of the sanitized output.

For each reference image, after the object detection and segmen-
tation module has isolated the target object and background, the
image sanitizer processes them in parallel to produce sanitized
versions of both the target object and background. Note that differ-
ent sanitization schemes may be applied to the target object and
background as needed. When 𝐿0 scheme is applied to the target
object or background, the sanitized target object or background is
represented by text descriptions only. When 𝐿1 or 𝐿2 scheme is ap-
plied to the target object or background, the sanitized target object
or background includes both text and sanitized reference images,
which comprise either image features or raw images, depending on
the scheme applied.
User’s privacy preference.We define the user’s privacy prefer-
ence as (𝐿𝑡𝑖 , 𝐿

𝑏
𝑖 ), 𝑖 ∈ {0, 1, 2}, where 𝐿𝑡𝑖 indicates that 𝐿𝑖 scheme is

used by the image sanitizer for the target object and 𝐿𝑏𝑖 indicates
that 𝐿𝑖 scheme is used by the image sanitizer for the background.
This dual parameterization allows the user to choose a different
sanitization level for the target object and the background. Note
that SpinML can be generalized to multi-object scenarios where
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each object has different sanity levels (see Section 7 for a detailed
discussion).

3.3 Server-side System Design

DM fine-tuning module. This module is designed to fine-tune
the DM in order to generate both the customized target object
and the background when sanitized reference images are shared.
Upon receiving the sanitized target object and background from
the user device, it first checks whether the sanitized target object
contains any image data. If the sanitized target object contains text
only (i.e. 𝐿0 is used), the server does not fine-tune the target object
generation DM. Instead, it prompts a pre-trained DM using the
text to generate the target object. In contrast, if the server receives
sanitized reference images (i.e. 𝐿1 and 𝐿2 are used), it fine-tunes
the target object generation DM using these images, in order to
produce synthetic target objects whose distribution is similar to
the distribution of the sanitized reference images. Specifically, if
the sanitized reference images contain image features only (i.e. 𝐿1
scheme is used), this module initially employs ControlNet [66] to
generate a set of new reference images conditional on these image
features. Following this, the module fine-tunes a pre-trained DM
on these new reference images using the DreamBooth algorithm
[48]. If the sanitized reference images are generated by 𝐿2 scheme
(which includes raw images), this module directly fine-tunes the
pre-trained DM on these reference images through the DreamBooth
algorithm.

Similarly, if the server receives sanitized reference images for
the background, it will fine-tune the DM to generate synthetic
background images that are aligned with the reference background
images. Otherwise, it uses the pre-trained DM without any fine-
tuning to generate synthetic background images.
Synthetic data generation module. This module operates in
three sequential steps to produce synthetic data. Initially, it utilizes
the customized target object generation DM to create the target
object using a set of text prompts. Note that the text prompts for
generating the target object consist of all possible combinations of
the text description of the target object and each label class. For
example, in the task of monitoring a dog’s status (see Table 2), the
set of text prompts would include: “a dog is eating," “a dog is sitting,"
“a dog is sleeping," and “a dog is playing". 1 Next, the synthetic data
generation module generates a random background mask for the
target object. Lastly, it employs the customized background gener-
ation DM to fill the background mask and seamlessly integrate the
background with the generated target object. 2 Notably, during our
experiments, we merge the weights of the fine-tuned background
generation DM with those of a pre-trained inpainting DM to create
a customized background inpainting DM specifically tailored for
generating the background.
Specialized ML model training. After the synthetic data gener-
ation module produces a set of synthetic data, this module uses
the synthetic data to train a specialized ML model via supervised
learning. Specifically, for image classification tasks where the text

1Note that image features are used to fine-tune the DM as discussed above.
2Note that the text prompts for generating the background would simply be the text
description of the background shared by the image sanitizer.

prompt explicitly specifies the label of the generated synthetic im-
ages, the label can be directly extracted from the text prompt. For
instance, if the text prompt used for target object generation is “a
dog is running”, the label for this image would be “running”. For
object detection tasks where the text prompt does not explicitly
specify label information, the server automatically obtains the la-
bel during the synthetic data generation process, as the label is
merely the location of the object, see Section 4.3 for a more detailed
discussion.

3.4 Privacy Measurement

As described in Section 3.2, the image sanitizer will share the text
description of the image segments and the sanitized image seg-
ments with the server for customized synthetic data generation.
Therefore, the user’s private information may leak through both
the text description of image segments and the sanitized image seg-
ments. To quantify the privacy leakage from the image sanitizer, we
measure the average Mutual Information (MI) between reference
image segments and the corresponding sanitized reference image
segments generated by the sanitizer. Because MI does not measure
semantic information leakage, we also use Semantic Embedding
Similarity (SIM) as a second metric to measure the semantic infor-
mation leakage between private and generated synthetic images.
We discuss in further detail these two privacy metrics below.
MI is a formal metric based on information theory to quantify
on-average privacy leakage between each reference image and the
corresponding sanitized reference image generated by the image
sanitizer, see [11] for a formal definition of the mutual information
between two random variables and [49] for how to compute the
mutual information between two images. Formally, suppose that
the user is willing to share a set of 𝑁 reference images denoted
as 𝑋 = {𝑥1, ..., 𝑥𝑁 }). With the object detection and segmentation
module, each reference image 𝑥𝑖 will be split into a target object
image 𝑥𝑡𝑖 and a background image 𝑥𝑏𝑖 . We define 𝑋 𝑡 = {𝑥𝑡1, ..., 𝑥𝑡𝑁 }
as the set of reference target object images and 𝑋𝑏 = {𝑥𝑏1 , ..., 𝑥𝑏𝑁 } as
the set of reference background images. After sending the reference
target object and background images to the image sanitizers, a set
of 𝑁 sanitized reference target object images 𝑌 𝑡 = {𝑦𝑡1, ..., 𝑦𝑡𝑁 } and
a set of 𝑁 sanitized reference target object images 𝑌𝑏 = {𝑦𝑏1 , ..., 𝑦𝑏𝑁 }
will be generated and shared with the server. Then, we formally
define our MI-based privacy metric as follows:

𝑀𝐼 (𝑋 𝑗 , {𝑌 𝑡 , 𝑌𝑏 }) = 1
𝑁

𝑁∑︁
𝑖=1

𝐼 (𝑥 𝑗

𝑖
, {𝑦𝑡𝑖 , 𝑦𝑏𝑖 })

𝐼 (𝑥 𝑗

𝑖
, 𝑥

𝑗

𝑖
)

, (1)

where 𝑗 ∈ {𝑡, 𝑏} indicates target object or background, 𝐼 (𝐴, 𝐵) de-
notes themutual information between image𝐴 and𝐵, 𝐼 (𝑥 𝑗

𝑖
, {𝑦𝑡𝑖 , 𝑦𝑏𝑖 })

quantifies how much information the sanitized reference target ob-
ject and background image {𝑦𝑡𝑖 , 𝑦𝑏𝑖 } together leaks about the raw
reference target object image (𝑥𝑡𝑖 ) or background image (𝑥𝑏𝑖 ), and
𝐼 (𝑥𝑖 , 𝑥𝑖 ) quantifies how much information 𝑥𝑖 leaks about itself, i.e.,
the entropy of raw reference image 𝑥𝑖 .

𝑀𝐼 (𝑋 𝑡 , {𝑌 𝑡 , 𝑌𝑏 }) and𝑀𝐼 (𝑋𝑏 , {𝑌 𝑡 , 𝑌𝑏 }) measure the average per-
centage of information leakage about the target object and back-
ground, respectively, in the user’s raw reference images given the
output of the image sanitizer {𝑌 𝑡 , 𝑌𝑏 }. Higher𝑀𝐼 (𝑋 𝑗 , {𝑌 𝑡 , 𝑌𝑏 }) ( 𝑗 ∈
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{𝑡, 𝑏}) means more privacy leakage from the sanitized reference
images output by the image sanitizer.

Note that 𝑀𝐼 (𝑋 𝑗 , {𝑌 𝑡 , 𝑌𝑏 }) ( 𝑗 ∈ {𝑡, 𝑏}) does not consider the
potential information leakage via the text description as the text
description is deterministic (e.g. when the target object is a dog,
the image sanitizer will always send “dog" as the text description
to the server), and thus the MI between the text description and
the raw reference images would be zero. 3 For instance, when 𝐿0 is
applied to the user’s dog images (target object), the server will not
be able to learn any information about how the user’s dog looks
like. However, the server will know that the user has a dog, which
may be considered as sensitive for certain users. To measure the
end-to-end privacy of the whole SpinML system, we define the
following semantic-based privacy metric.
SIM is defined as the Semantic Embedding Similarity (SIM) be-
tween the user’s private images and synthetic images generated by
the server. Specifically, we first employ a large pre-trained vision
embedding model to generate the semantic embedding for each
private and synthetic image. 4 We then calculate the average co-
sine similarity between each pair of private image embedding and
synthetic image embedding. Note that we measure the SIM of the
target object and background separately. Specifically, suppose that
𝑃𝑡 and 𝑃𝑏 are two image sets, containing target object images and
background images in the user’s private dataset respectively, and
𝑄𝑡 and 𝑄𝑏 are two image sets, containing target object images and
background images in the synthetic dataset generated by the server
respectively. Formally, the SIM metric is defined as:

𝑆𝐼𝑀 (𝑃 𝑗 , 𝑄 𝑗 ) = 𝐸
𝑝
𝑗
𝑖
,𝑞

𝑗
𝑖

[𝐶𝑜𝑠 (𝐸𝑚𝑏 (𝑝 𝑗

𝑖
), 𝐸𝑚𝑏 (𝑞 𝑗

𝑖
))], (2)

where 𝑗 ∈ {𝑡, 𝑏} indicates the target object or the background,
𝐶𝑜𝑠 (𝑥,𝑦) measures the cosine similarity between vector 𝑥 and 𝑦,
𝑝
𝑗

𝑖
∈ 𝑃 𝑗 is an image instance from the user’s private dataset,𝑞 𝑗

𝑖
∈ 𝑄 𝑗

is an image instance from the synthetic dataset generated by the
server, and 𝐸𝑚𝑏 (𝑥) denotes the semantic embedding of image 𝑥 .

Note that 𝑆𝐼𝑀 (𝑃𝑡 , 𝑄𝑡 ) measures the average similarity between
the synthetic target object generated by the server and the raw tar-
get object in the user’s private dataset, and 𝑆𝐼𝑀 (𝑃𝑏 , 𝑄𝑏 ) measures
the average similarity between the synthetic background generated
by the server and the raw background in the user’s private dataset.
Higher 𝑆𝐼𝑀 (𝑃 𝑗 , 𝑄 𝑗 ) 𝑗 ∈ {𝑡, 𝑏} indicates more privacy leakage, as it
suggests that the synthetic target object, or background, generated
by the server is more similar to the one in the user’s private dataset.
If the synthetic images generated by the server were the same as
the user’s private images, 𝑆𝐼𝑀 (𝑃 𝑗 , 𝑄 𝑗 ) would be equal to one.

It is worthmentioning that while the text prompt contains seman-
tic information based on which the synthetic image is generated,
the associated leakage from the prompt cannot be measured by
comparing original and synthetic images. To measure the seman-
tic information leakage between text prompts and private images
directly we use a pre-trained vision-language model proposed in
[64] to map both text prompts and private images into the same
embedding space, and then compute the SIM metric between the

3Note that, in general, to formally calculate the MI between a text and an image, we
could map both into a common embedding space, and then estimate the MI between
the two embeddings.
4Note that we use Blip2 [38] to generate the semantic embedding of each image.

text prompt embedding and the private image embedding as a mea-
surement of semantic information leakage from text prompts. We
report results of this metric in Section 5.2.
Remark: The privacy metrics we define here measure on-average
privacy, rather than worst-case privacy guarantees such like dif-
ferential privacy (DP) [14]. There are two reasons for not using
DP as a privacy metric in our context. First, it would be very chal-
lenging to estimate the worst-case privacy bound (𝜖 value) that
might be provided when sharing, say, image features, since there is
no direct DP noise addition. Second, achieving worst-case privacy
guarantees can significantly degrade the utility of the sanitized
reference images. Indeed, as we show in Section 5.5, adding noise
of variable levels performs worse than using the 𝐿0 scheme (i.e. not
sharing any image data/features) with respect to both accuracy and
privacy (when using MI as the privacy metric), and, to achieve any
meaningful 𝜖 to offer worst case privacy, one would have to add so
much noise that the model accuracy would be prohibitively low for
any practical usage.

4 Experimental setup

4.1 Real-world Tasks and Datasets

Pet status monitoring. This task involves training a mobile ML
model to monitor the status of pets for the user. We create a user
dataset containing husky dogs, with behaviors categorized into four
statuses: playing, eating, sitting, sleeping. We refer to this dataset as
husky dataset, and use it to evaluate the accuracy of the end-device
ML model trained by the server.
Human activitymonitoring.This task focuses on training an end-
device MLmodel to monitor the daily activities of senior individuals
within a home environment. We utilize a subset of the Toyota
Smarthome dataset [13], which contains 16.1K video clips with 31
activity classes performed by 18 senior people in a large house with
7 cameras. Specifically, we sample the image frames of a single
senior person engaging in four activities: eating, drinking, walking,
reading. We refer to the sampled data as the human dataset.
Non-popular object detection. This task involves fine-tuning
an object detection model to detect non-popular objects. As a case
study, we consider the task of detecting a (medicine) pill bottle in a
bedroom environment, and we create an image dataset consisting
of a pill bottle in a bedroom to evaluate the detection accuracy of a
corresponding end-device ML model. This dataset is named as the
bottle dataset.

4.2 Models and Synthetic Datasets

We employ the YOLO-v8 segmentation model [32] in the object
detection and segmentation module to separate the target object
from the background. For the generation process, we utilize Stable-
Diffusion-v1.5 [47] as the pre-trained DiffusionModel (DM) for both
the target object and the background generation in our experiments.
We describe how we generate customized synthetic datasets for
each task in detail below.
Pet status monitoring. In this task, we consider the background
to be sensitive and hence apply 𝐿0 sanitization scheme to it. For the
target object (i.e. the husky dog in this case), we assume that the
user may have different privacy preferences. Therefore, we apply
all three different sanitization schemes for the target object (𝐿0, 𝐿1
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and 𝐿2). This results in three different user privacy preferences: (𝐿𝑡0,
𝐿𝑏0 ), (𝐿

𝑡
1, 𝐿

𝑏
0 ), (𝐿

𝑡
2, 𝐿

𝑏
0 ). For each user privacy preference, we generate

1,600 synthetic images (400 for each image class), and use them to
train a dog status classifier. Note that for (𝐿𝑡0, 𝐿

𝑏
0 ), we use the pre-

trained DM without fine-tuning to generate synthetic images. For
(𝐿𝑡1,𝐿

𝑏
0 ), we select the canny edge as the image feature, and the image

sanitizer extracts the canny edge of the target object and shares
it with the server. The server then uses ControlNet [66], which
takes both the canny edge and the text description of the target
object (i.e. “a dog") as input, to generate a set of synthetic reference
dog images with the same canny edge. The synthetic reference
dog images are further used to fine-tune DM for customized target
object generation. For (𝐿𝑡2, 𝐿

𝑏
0 ), the image sanitizer directly shares

the target object (i.e. the husky dog) in these reference images with
the server, and the server will fine-tune the DM to generate images
containing husky dogs which are similar to the one shared by the
image sanitizer.
Human activity monitoring. In this task, we consider the target
object (i.e. the senior person) as highly sensitive and apply the 𝐿0
and 𝐿1 sanitization schemes to it. For the background (i.e. the home
environment), we assume that the user may have different privacy
preferences and thus we consider all three sanitization schemes for
it (ranging from 𝐿0 to 𝐿2). This leads to six different user privacy
preferences: (𝐿𝑡0, 𝐿

𝑏
0 ), (𝐿

𝑡
0, 𝐿

𝑏
1 ), (𝐿

𝑡
0, 𝐿

𝑏
2 ), (𝐿

𝑡
1, 𝐿

𝑏
0 ), (𝐿

𝑡
1, 𝐿

𝑏
1 ), (𝐿

𝑡
1, 𝐿

𝑏
2 ). For

each user privacy preference, we generate 1,600 synthetic images
(400 for each image class), which are used to train a human activity
classifier. Note that for the 𝐿𝑏1 scheme, we select the canny edge as
the image feature, and the image sanitizer shares the canny edges
of the background with the server. For the 𝐿𝑡1 scheme, we select the
human pose as the image feature, and the image sanitizer shares
the human pose of the target object with the server.
Non-popular object detection. In this task, the pill bottle, i.e.
the target object, is considered to have highly sensitive content,
e.g. a medical pill label, and hence we apply either the 𝐿0 or the 𝐿1
scheme to it. For the background, we assume that the user may be
willing to share the raw image (i.e. the bedroom), and thus we offer
all three sanitization schemes for it (ranging from 𝐿0 to 𝐿2). In total,
we implement six user privacy preferences: (𝐿𝑡0, 𝐿

𝑏
0 ), (𝐿

𝑡
0, 𝐿

𝑏
1 ), (𝐿

𝑡
0,

𝐿𝑏2 ), (𝐿
𝑡
1, 𝐿

𝑏
0 ), (𝐿

𝑡
1, 𝐿

𝑏
1 ), (𝐿

𝑡
1, 𝐿

𝑏
2 ). For each user privacy preference, we

generate 1,600 synthetic images where the pill bottles are randomly
placed in the image and the location of each pill bottle is the label.
Note that we select the canny edge as the image feature for the 𝐿1
scheme for both the target object and the background.

4.3 Training and Testing

For the pet status and human activity monitoring tasks, we use
MobileNet-v2 [50] as the backbone, and then add a linear layer fol-
lowed by a softmax layer as our specialized end-device ML models.
Note that we use the classification accuracy as the metric to mea-
sure the performance of the specialized models. For the non-popular
object detection task, we use the pre-trained YOLO-v8 detection
model [32] as the specialized model. To measure the performance
of this specialized model, we use mAP50 (mean average precision
calculated at an intersection over union (IoU) threshold of 0.50) as
the metric, which is commonly used in object detection.

During the training process, we use 80% of the synthetic data for
training and the remaining 20% of the synthetic data for validation.
For each user privacy preference in each task, we train each spe-
cialized model for 5 epochs and select the model with the highest
validation accuracy as our final model. During the testing phase,
we test the accuracy of these specialized models on real-world data
(see Section 4.1 for more details).

5 Evaluation

5.1 Utility

We first evaluate the utility of customized synthetic data with vari-
ous user privacy preferences, using the performance of specialized
ML models as the metric (i.e. accuracy for the husky and human
datasets, and mAP for the bottle dataset). We report the model per-
formance results on the three tasks in Table 3. Note that we report
the model performance on both the validation sets of the generated
synthetic data and on the users’ private data on their local devices
which represents the “real world" dataset. Unless otherwise stated,
we focus on the real-world dataset results since they are the one
that matter in practice.

First, we observe that using the 𝐿2 scheme for target object
or background sanitization can significantly improve the model
accuracy trained with the customized synthetic data on all three
real-world datasets. This is expected since 𝐿2 sends the parts of the
raw reference images (target object or background) to the server,
which enables the fine-tuned DMs to generate synthetic images
that closely resemble these raw reference images.

Next, we observe that using the 𝐿1 scheme for target object
or background sanitization may not always lead to better model
accuracy. Since 𝐿1 sends features (canny edge for husky and bot-
tle datasets and human pose for human dataset) of the reference
images to the server, whether these image features can help to gen-
erate better synthetic images depends on whether these features
are important to the model utility. For instance, prior works have
shown that canny edges are important features for object detec-
tion [36]; Indeed, during our experiments on the bottle dataset, we
consistently observe that using the 𝐿1 scheme effectively boosts
the performance of specialized models. Moreover, whether the cus-
tomized synthetic data can improve the model accuracy depends on
whether the shared features can be leveraged to fine-tune the DM
properly. As an example, for the husky dataset, without knowing
the label (i.e. the status of the dog) of each canny edge image, the
server may not know the proper correlation between the canny
edge and the status of the dog, and thus the DMmay not be properly
fine-tuned (see Section 5.3 for a detailed discussion).

Last, we find that specialized models trained on synthetic data
may overfit the training data, and hence they may fail to generalize
to the real-world testing data well. As shown in Table 3, the model
accuracy on synthetic validation data (see Section 4.2) is higher than
that in the real-world testing data for the Husky and Human use
cases, since synthetic validation data has the same distribution with
the synthetic training data, while the real-world testing data does
not. To mitigate the overfitting issue, we sample the training data
from synthetic data generated by different schemes, and we observe
this approach may help improve the model accuracy. For example,
on the husky dataset (see Table 3a), combining the synthetic data
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Privacy preference Accuracy
Synthetic data Real-word data

(𝐿𝑡0 , 𝐿
𝑏
0 ) 87.88% 63.46%

(𝐿𝑡1 , 𝐿
𝑏
0 ) 83.45% 57.05%

(𝐿𝑡2 , 𝐿
𝑏
0 ) 88.74% 64.74%

(𝐿𝑡2 , 𝐿
𝑏
2 ) 98.33% 65.38%

(𝐿𝑡0 , 𝐿
𝑏
0 ) + (𝐿𝑡1 , 𝐿

𝑏
0 ) 81.82% 62.82%

(𝐿𝑡0 , 𝐿
𝑏
0 ) + (𝐿𝑡2 , 𝐿

𝑏
0 ) 83.10% 73.08%

(a) Husky dataset which contains images of husky dogs exhibit-

ing four statuses: playing, running, sitting, and sleeping.

Privacy preference Accuracy
Synthetic data Real-word data

(𝐿𝑡0 , 𝐿
𝑏
0 ) 74.26% 41.20%

(𝐿𝑡0 , 𝐿
𝑏
1 ) 66.04% 44.05%

(𝐿𝑡0 , 𝐿
𝑏
2 ) 61.48% 49.42%

(𝐿𝑡1 , 𝐿
𝑏
0 ) 77.50% 41.54%

(𝐿𝑡1 , 𝐿
𝑏
1 ) 74.79% 45.23%

(𝐿𝑡1 , 𝐿
𝑏
2 ) 81.46% 42.21%

(𝐿𝑡2 , 𝐿
𝑏
2 ) 86.25% 44.22%

(𝐿𝑡0 , 𝐿
𝑏
2 ) + (𝐿𝑡1 , 𝐿

𝑏
2 ) 70.21% 45.39%

(b) Human dataset which contains images of a single senior per-

son in a home environment engaged in four activities: eating,

drinking, walking, and reading.

Privacy preference Accuracy (mAP50)
Synthetic data Real-word data

(𝐿𝑡0 , 𝐿
𝑏
0 ) 86.75% 20.85%

(𝐿𝑡0 , 𝐿
𝑏
1 ) 91.93% 57.52%

(𝐿𝑡0 , 𝐿
𝑏
2 ) 90.94% 87.96%

(𝐿𝑡1 , 𝐿
𝑏
0 ) 76.01% 93.59%

(𝐿𝑡1 , 𝐿
𝑏
1 ) 91.86% 95.88%

(𝐿𝑡1 , 𝐿
𝑏
2 ) 73.42% 97.94%

(𝐿𝑡2 , 𝐿
𝑏
2 ) 64.98% 99.21%

(𝐿𝑡0 , 𝐿
𝑏
2 ) + (𝐿𝑡1 , 𝐿

𝑏
2 ) 78.90% 98.32%

(c) Bottle dataset which contains images of a medicine pill bottle

located in a bedroom.

Table 3: Utility evaluation results. Note that we use accuracy

as the utility metric for the husky and human datasets, and

mAP50 (mean average precision calculated at an intersection

over union (IoU) threshold of 0.50) as the utility metric for

the bottle dataset.

generated with 𝐿0 and 𝐿2 for the target object increases model
accuracy on real-world data by 8.34%. Last, note that in the pill
bottle use case, the pill bottle generated by the diffusion model
is less distinguishable under the (𝐿𝑡2, 𝐿

𝑏
2 ) scheme as compared to

the other schemes, resulting in inconsistent accuracy results. We
believe this is due to the relatively small diffusion model that we
use due to resource limitations, see Section 7 for a more detailed
discussion.

Note that on the human dataset the specialized model trained
on synthetic data has low accuracy (below 50%) as compared to
the models trained for the other two case studies / datasets. This is
mainly because for the human activity monitoring task, video input
rather than just images may be needed for the model to classify such
human activities accurately, see prior work [12] and a discussion
about the reasons for this limitation in our study in Section 7.

5.2 Privacy

Next, we evaluate the privacy of customized synthetic data with
various user privacy preferences using the two privacy metrics
mentioned in Section 3.4. We report the results in Table 4. Note that
MI measures the average mutual information between the user’s
raw reference images and the sanitized reference images shared
with the server. Higher MI value indicates that sanitized reference
images shared with the server leak more privacy information about
the user’s raw reference images. SIM quantifies the semantic embed-
ding similarity between the user’s private image and the generated
synthetic images or the text prompts used for generating synthetic
images. A higher SIM value indicates that the synthetic images gen-
erated by the server are more similar to the user’s private images,
thereby leaking more private information. Moreover, for each of
these two privacy metrics, we report the privacy leakage w.r.t. the
target object and background separately to demonstrate where the
privacy leakage takes place.

On the Husky and Human datasets, we observe that both the
synthetic data generated by 𝐿1 and 𝐿2 schemes exhibit higher SIM
scores compared with the data generated by 𝐿0, as expected (see Ta-
ble 4a and Table 4b). This indicates that the synthetic data generated
by 𝐿1 and 𝐿2 are more similar to the user’s private data compared
to 𝐿0, causing more privacy leakage. Specifically, for the Husky
dataset, the SIM scores for the target object and background both
increase as we move from 𝐿0 to 𝐿2. For the Human dataset, a similar
trend is observed, with the SIM scores for both the target object
and background increasing from 𝐿0 to 𝐿2.

In terms of MI, for the Husky dataset, there is a significant in-
crease in MI for both the target object and background as we move
from 𝐿0 to 𝐿2, indicating a higher degree of privacy leakage, as
expected (see Table 4a). For the Human dataset, the MI for both the
target object and background also increases from 𝐿0 to 𝐿2, though
the increase is more moderate compared to the Husky dataset (see
Table 4b). On both datasets, (𝐿𝑡2, 𝐿

𝑏
2 ) privacy preference leads to the

highest MI and SIM scores.
On the Bottle dataset (see Table 4c), we observe a similar trend

with respect to SIM scores. Despite the increased SIM scores ob-
served with 𝐿1 and 𝐿2 schemes, it is worth noting that these in-
creases are relatively modest in this case study, indicating only a
moderate enhancement in the similarity of the synthetic data to the
user’s private data. In terms of MI, the MI for the target object and
background shows a significant increase from 𝐿0 to 𝐿2 as before,
indicating a higher degree of privacy leakage, as expected. Consis-
tent with results on other two datasets, (𝐿𝑡2, 𝐿

𝑏
2 ) privacy preference

leads to both the highest MI and SIM scores.
Last, in Table 4d, we report the SIM score of text prompts and

private images to measure the semantic information leakage from
prompts. Note that we use as baseline the SIM score of an empty
text prompt. As demonstrated in Table 4d, the SIM score of text
prompts is close to the baseline. This indicates that the semantic
similarity between private images and text prompts is similar to
that between private images and an empty prompt, implying that
the information leakage from text prompts is small.
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(a) MI, Target. (b) MI, Background. (c) SIM, Target. (d) SIM, Background.

(e) MI, Target. (f) MI, Background. (g) SIM, Target. (h) SIM, Background.

(i) MI, Target. (j) MI, Background. (k) SIM, Target. (l) SIM, Background.

Figure 3: Privacy-utility trade-off results. Note that privacy leakage is measured by MI and SIM, and we report leakage w.r.t.

Target object and Background separately. The model utility represents the performance of the specialized model trained on

synthetic data. The top-left part of these figures indicates both higher privacy and higher utility. Note that lines of a certain

color, when present, connecting various points in the graphs illustrate the effect on the privacy-utility trade-off by fixing either

the target object or background privacy preference while varying the other.

5.3 Privacy-Utility Trade-offs

In this subsection, we compare the privacy-utility trade-off perfor-
mance of customized synthetic data generated with various user
privacy preferences in Figure 3. Note that the privacy leakage is
measured by MI and SIM, which represents the mutual informa-
tion between the sanitized reference images and the raw reference
images, and the semantic similarity between generated synthetic
images and the user’s private images respectively. The model util-
ity represents the performance of the specialized model trained
on synthetic data. The top-left part of these figures indicates both
higher privacy and higher utility.
Husky dataset. As illustrated in Figures 3a-3d, (𝐿𝑡0, 𝐿𝑏0 ) provides
the user with the highest privacy for both the target object and the
background (i.e. both MI and SIM privacy leakage are the smallest).
This is expected since no reference images or image features are
shared with the server under the (𝐿𝑡0, 𝐿𝑏0 ) privacy preference. In
contrast, we observe that the synthetic data generated by (𝐿𝑡2, 𝐿𝑏0 )
have the lowest privacy but the highest utility, since the raw target
object (i.e. husky dog) is shared with the server for customized
synthetic data generation. Moreover, as we change the sanitization
level of the target object from 𝐿0 to 𝐿2, the privacy leakage of the
target object significantly increases, while the privacy leakage of
the background is not significantly changed, as expected. Since the
sanitization level of the background is fixed at 𝐿0, changing the

sanitization level of the target object should not affect the privacy
leakage of the background. That said, note that in practice we still
observe a slight increase of MI privacy leakage in the background
(see Figure 3b). This is mainly because the segmentation module
cannot perfectly segment the target object from the background,
thereby injecting some correlation among the target object and the
background. It is also worth noting that from (𝐿𝑡0, 𝐿𝑏0 ) to (𝐿𝑡2, 𝐿𝑏0 ),
the user trades the privacy of the target object (husky dog) for bet-
ter model accuracy without significantly hurting the background
privacy. How to choose the privacy and utility trade depends on
the user’s preference in practice.
Human dataset. In Figures 3e-3h, we can see that, as expected,
(𝐿𝑡0, 𝐿𝑏0 ) provides the user with the highest privacy for both the
target object (the senior person) and the background (home envi-
ronment) on human dataset, while having the worst utility. Ad-
ditionally, when the background sanitization level is fixed, as we
change the sanitization level of the target object from 𝐿0𝑡 to 𝐿𝑡1,
the privacy leakage of the target object slightly increases while
the privacy of the background is not affected. When the sanitiza-
tion level of the target object is fixed, changing the sanitization
level of the background from 𝐿𝑏0 to 𝐿𝑏1 slightly increases the privacy
leakage of the background without degrading the privacy of the
target object. Moreover, we observe that when the background has
sanitization level 𝐿𝑏2 (i.e. (𝐿𝑡0, 𝐿𝑏2 ) and (𝐿𝑡1, 𝐿𝑏2 )), both the MI and SIM
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Privacy
preference

MI SIM
Target Object Background Target Object Background

(𝐿𝑡0 , 𝐿
𝑏
0 ) 0.00% 0.00% 0.62 0.55

(𝐿𝑡1 , 𝐿
𝑏
0 ) 0.89% 0.70% 0.72 0.57

(𝐿𝑡2 , 𝐿
𝑏
0 ) 39.83% 11.31% 0.72 0.57

(𝐿𝑡2 , 𝐿
𝑏
2 ) 39.83% 71.48% 0.72 0.59

(a) Husky dataset. Note that the target object in this dataset is husky

dog, and the background can be both indoor and outdoor environ-

ment. We assume that the user mainly cares about the background

privacy in this application.

Privacy
preference

MI SIM
Target Object Background Target Object Background

(𝐿𝑡0 , 𝐿
𝑏
0 ) 0.00% 0.00% 0.54 0.46

(𝐿𝑡0 , 𝐿
𝑏
1 ) 0.02% 0.33% 0.54 0.55

(𝐿𝑡0 , 𝐿
𝑏
2 ) 2.48% 99.21% 0.54 0.56

(𝐿𝑡1 , 𝐿
𝑏
0 ) 0.46% 0.39% 0.56 0.49

(𝐿𝑡1 , 𝐿
𝑏
1 ) 0.42% 0.68% 0.55 0.56

(𝐿𝑡1 , 𝐿
𝑏
2 ) 2.97% 98.48% 0.55 0.58

(𝐿𝑡2 , 𝐿
𝑏
2 ) 3.45% 98.48% 0.64 0.58

(b) Human dataset. Note that the target object in this dataset is the

senior person, and the background is a home environment. We as-

sume that the user mainly cares about the target object privacy in

this application.

Privacy
preference

MI SIM
Target Object Background Target Object Background

(𝐿𝑡0 , 𝐿
𝑏
0 ) 0.00% 0.00% 0.65 0.50

(𝐿𝑡0 , 𝐿
𝑏
1 ) 0.00% 0.30% 0.65 0.53

(𝐿𝑡0 , 𝐿
𝑏
2 ) 0.24% 99.99% 0.65 0.59

(𝐿𝑡1 , 𝐿
𝑏
0 ) 0.07% 0.03% 0.63 0.51

(𝐿𝑡1 , 𝐿
𝑏
1 ) 0.04% 0.30% 0.66 0.59

(𝐿𝑡1 , 𝐿
𝑏
2 ) 0.24% 99.99% 0.65 0.60

(𝐿𝑡2 , 𝐿
𝑏
2 ) 0.28% 99.99% 0.84 0.60

(c) Bottle dataset. Note that the target object is the pill bottle, and the

background is a home environment. We assume that the user mainly

cares about the target object privacy in this application.

Dataset Target Object Background
Baseline SpinML Baseline SpinML

Husky 0.2393 0.2695 0.2270 0.2418
Human 0.2049 0.2429 0.2049 0.2526
Bottle 0.2322 0.2371 0.2088 0.2856

(d) Privacy leakage from text prompt. Note that we compute the

SIM metric between text prompts and raw images and use an empty

prompt as the baseline.

Table 4: Privacy evaluation results. Note thatMImeasures the

mutual information between the sanitized references images

shared with the server and the raw reference images. We re-

port theMI w.r.t target object and background separately, and

the MI value is normalized by the entropy of the raw image

(see Section 5.2). SIM measures cosine similarity between the

semantic embedding’s of the user’s private images and the

synthetic images generated by the server. Higher values of

SIM indicate that more privacy information is being leaked.

privacy leakage of the background is significantly higher, since the
raw background images are shared with the server. However, this

also brings higher utility gain for the user. In practice, by changing
the sanitization level of the background from 𝐿𝑏0 to 𝐿𝑏2 , the user
can trade between the privacy of the background and the utility of
the model, without hurting the privacy of the target object (senior
person).
Bottle dataset. As shown in Figures 3i-3l, (𝐿𝑡0, 𝐿𝑏0 ) provides the
user with the highest privacy for both the target object (the bottle)
and the background (bedroom environment), while the utility is
the lowest. Changing the sanitization level of the background from
𝐿𝑏0 to 𝐿𝑏2 increases the privacy leakage of the background, while
not affecting the privacy of the target object. Moreover, this brings
significant utility gain. In practice, if the user mainly cares about
the privacy of the pill bottle, then the user can choose to trade the
privacy of the background for higher model accuracy.

5.4 Key Insights from Privacy-Utility Analysis

Insight 1: 𝐿0 → 𝐿2 may increase utility with limited privacy

decrease.We observe that, as expected, increasing the sanitization
level from 𝐿0 to 𝐿2 leads to less privacy and more utility. Specifically,
compared with 𝐿0, using 𝐿1 on the target object or background will
slightly increase the privacy leakage while using 𝐿2 on the target
object or background will significantly increase the privacy leakage.
However, varying the sanitization level of the target object from
𝐿0 to 𝐿2 will not significantly change the privacy leakage of the
background, and vice versa. This allows users to effectively balance
between privacy and utility, in use cases where only some parts of
the image data are sensitive, see, for example, the (𝐿𝑡2, 𝐿𝑏0 ) point in
Figures 3b and 3d in the husky dog use case, and the (𝐿𝑡0, 𝐿𝑏2 ) point
in Figures 3e and 3g in the senior person use case.
Insight 2: Whether 𝐿1 scheme offers utility gain or not de-

pends on the application.When 𝐿1 is used, which means addi-
tional features are shared with the server, whether the customized
synthetic data can improve the model accuracy depends on whether
the DM can be properly fine-tuned on the shared features. Consider
the husky dataset. The shared edge images of the target objects (i.e.
husky dogs) are not associated with labels, hence the DM does not
have information about the correlation between different canny
edge images and the status of the dog. For example, the canny edge
of a sleeping dog will be different from the canny edge of a dog
which is playing. Without knowing the label of each canny edge
shared with the server, the DM may use the canny edge of a sleep-
ing dog to generate a dog which is playing. In this case, the DM
cannot be fine-tuned properly and hence sharing the canny edge
does not benefit the training of the specialized ML model. Simi-
larly, for the human dataset, the shared pose images are also not
associated with labels. In this case, the DM has limited information
about which specific activities the pose represents, and thus the
specialized model accuracy is not significantly improved using the
customized synthetic data. In contrast, for the bottle dataset, the
label is the location of the pill bottle, which can be obtained during
the synthetic data generation process (see Section 4 for details). In
this case, the canny edge images of pill bottles can be leveraged
properly to fine-tune the DM and thus enhance the accuracy of the
specialized ML model, see how the the (𝐿𝑡1, 𝐿𝑏𝑖 ) points are consis-
tently superior to the (𝐿𝑡0, 𝐿𝑏𝑖 ) points, 𝑖 ∈ {0, 1, 2} in the pill bottle
detection use case in Figures 3i-3l.
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Insight 3: Users can trade between privacy and utility differ-

ently for different applications. The proposed SpinML effec-
tively allows users to choose their level of privacy based on utility
gains in different situations, as motivated by Table 1 in Section 2.1.
If the user cares more about utility in an application, then they can
choose to trade privacy on less sensitive objects in order to gain
more utility. In contrast, if the privacy of certain objects is more
important to users, the utility provided by these objects needs to
be traded for privacy. Figures 3a-3l depict a number of situations
where such privacy-utility trades take place, and also highlight use
cases where privacy can be achieved without a sizable loss in utility.

5.5 Sanitization via Noise Addition

Noise addition is a well established method to protect privacy (e.g.
[14, 65]). In this subsection and in contrast to the previous sani-
tization methods, we explore adding random noise on the user’s
reference images. Specifically, we consider the Husky dataset and
add Gaussian noise with varying variance 𝜎2 to the target object
(i.e. husky dog) in the user’s reference images. We use the noisy
reference images to fine-tune the DMmodel to generate customized
husky dog images, train the specialized model, and then test the
model accuracy versus utility. To explore how different amount of
noise affects the privacy and utility, we add Gaussian noise with
three different levels of variance: low (𝜎 = 5), middle (𝜎 = 10),
and high (𝜎 = 50). Lower variance indicates less obfuscation noise
and hence less privacy (larger 𝜖 value in the DP bound [14]), while
higher variance indicates more obfuscation noise and hence more
privacy (smaller 𝜖 value).

Variance Privacy leakage (MI) Utility
MI SIM Accuracy

Low (15.10%, 5.07%) (0.71, 0.58) 44.23%
Mid (12.84%, 4.77%) (0.69, 0.58) 42.31%
High (9.45%, 4.55%) (0.65, 0.58) 42.31%

N/A (𝐿0) (0.00%, 0.00%) (0.62, 0.55) 63.46%
Table 5: Privacy-utility trade-off results of adding obfusca-

tion noise on husky dataset. Note that (𝑥,𝑦) in the MI/SIM

privacy column means MI/SIM privacy leakage of target ob-

ject and background respectively, and higher values indicate

more privacy leakage and hence less privacy. The last row is

the results of SpinML when the privacy preference is set as

(𝐿𝑡0, 𝐿𝑏0 ). We use the accuracy of specialized ML models as the

utility metric.

As reported in Table 5, when the variance of Gaussian noise
increases from low to high value, the privacy leakage with respect
to both MI and SIM will decrease, while the utility also decreases,
as expected. The fourth row in the table repeats, for comparison
purposes, the MI/SIM privacy leakage and model accuracy when
the 𝐿0 sanitization scheme is applied on the target object. (Recall
that under 𝐿0 we only share the deterministic text description and
the MI leakage in this case is zero.) Notably, sharing a reference
image where we add noise on the target object causes the utility
to drop significantly as compared to 𝐿0, while there is no privacy

benefit: the privacy leakage increases since, in addition to sharing
the text, we also share a noisy image. From the model accuracy
results it is evident that DM fine-tuning based on a noisy image is
counterproductive.

In terms of DP guarantees, even for the largest value of 𝜎 con-
sidered, which will yield the smallest 𝜖 , the corresponding 𝜖 value
is very large (larger than one thousand due to the high associated
sensitivity of the dataset [14]) which represents a completely mean-
ingless value in terms of the DP bound. Last, while there are more
efficient methods to apply noise in images for DP purposes, e.g.
adding the noise in a latent space [35], intuitively, DP’s requirement
to guarantee a privacy bound under any distribution will make it
very hard, if not impossible, to get both good privacy and usable
utility in our setting when an image segment is both sensitive and
of sizable utility.

Therefore, we conclude that adding obfuscation noise to refer-
ence images will significantly decrease the utility of the generated
customized synthetic data and make them unusable in practice,
without offering any practical privacy gains over the proposed
sanitization schemes.

5.6 Generalization to multiple objects

In this subsection, we conduct a case study by extending the non-
popular object detection task when there are three image segments:
pill bottle, photo frame, and bedroom background. We consider
the pill bottle and photo frame as sensitive objects. We report the
detection accuracy of the pill bottle with mAP50 as the utility
evaluation metric while applying sanitization levels 𝐿0 and 𝐿1 for
both sensitive objects.

Privacy preference Accuracy (mAP50)
Synthetic data Real-word data

(𝐿𝑡10 , 𝐿𝑡20 , 𝐿𝑏0 ) 93.02% 44.68%
(𝐿𝑡10 , 𝐿𝑡20 , 𝐿𝑏1 ) 92.82% 71.95%
(𝐿𝑡10 , 𝐿𝑡20 , 𝐿𝑏2 ) 94.04% 72.18%
(𝐿𝑡10 , 𝐿𝑡21 , 𝐿𝑏0 ) 93.74% 42.84%
(𝐿𝑡10 , 𝐿𝑡21 , 𝐿𝑏1 ) 94.26% 53.06%
(𝐿𝑡10 , 𝐿𝑡21 , 𝐿𝑏2 ) 94.49% 77.78%
(𝐿𝑡11 , 𝐿𝑡20 , 𝐿𝑏0 ) 83.69% 93.56%
(𝐿𝑡11 , 𝐿𝑡20 , 𝐿𝑏1 ) 84.75% 88.93%
(𝐿𝑡11 , 𝐿𝑡20 , 𝐿𝑏2 ) 83.80% 94.41%
(𝐿𝑡11 , 𝐿𝑡21 , 𝐿𝑏0 ) 78.73% 92.07%
(𝐿𝑡11 , 𝐿𝑡21 , 𝐿𝑏1 ) 87.82% 93.78%
(𝐿𝑡11 , 𝐿𝑡21 , 𝐿𝑏2 ) 71.15% 94.61%
(𝐿𝑡12 , 𝐿𝑡22 , 𝐿𝑏2 ) 83.65% 99.47%

Table 6: Utility evaluation results for two objects dataset

which contains images of a medicine pill bottle and personal

photo frame randomly located in a bedroom.Note thatwe use

mAP50 (mean average precision calculated at an intersection

over union (IoU) threshold of 0.50) as the utility metric for

the two objects dataset.

As reported in Table 6, when varying the sanitization level of
the background from 𝐿𝑏0 to 𝐿𝑏2 while applying sanitization level 𝐿0
to both the pill bottle and photo frame, the utility increases while
maintaining privacy for the sensitive target objects. When varying
the sanitization level of the second sensitive object (photo frame) for
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varying sanitization levels of the background, we can see that the
utility remains consistent indicating that the second target object
doesn’t affect the accuracy of the pill bottle detection. In contrast,
when the sanitization level of the pill bottle is increased from 𝐿

𝑡1
0

to 𝐿
𝑡1
1 irrespective of the sanitization levels for the second target

object and background, the utility improves significantly.
The privacy leakage of the bill bottle and background are not

affected by the addition of the photo frame and remain the same as
reported in Table 4c. We compute the privacy leakage of the photo
frame when varying its sanitization level using the MI metric. We
find the privacy leakage to be small, specifically 0.00% for the 𝐿0
and 1.43% for the 𝐿1 scheme. This is consistent with the privacy
leakage results for the pill bottle as reported in Table 4c.

These findings suggest that for users primarily interested in
maintaining privacy for the target objects, there is an opportunity
to balance privacy and utility by adjusting the sanitization levels for
the background. By allowing slightly higher privacy leakage for non-
sensitive components (background), it is possible to achieve higher
model accuracy for detecting the target objects. This emphasizes
that a strategic trade-off between sanitization levels across different
image segments can lead to better detection performance while still
maintaining a reasonable level of privacy for sensitive objects.

5.7 Using generic segmentation/detection

models

We investigate how a large foundation model which specializes in
object segmentation and detection may perform in the three use
cases we consider, without considering the practical challenges
from using such models as described in Section 2.3, i.e. fixed output
format, weak generalization to personalized data, and prohibitively
large size for end devices. We select SEEM [70] as it is a state of the
art model for segmentation/detection.

In the Husky dataset where dogs are categorized as eating, sitting,
sleeping, or playing, and the Human dataset were human activities
are classified as eating, drinking, walking and reading, we adapted
the SEEM model, which is primarily designed for object segmenta-
tion/detection, to evaluate its capability in detecting objects based
on their specific states. Specifically, we modified the text prompts
given to the SEEM model to include information about the state of
the object. SEEM achieved detection scores of 97% and 98%, respec-
tively. Yet, it exhibits limitations when classifying objects based
on specific states, e.g. dog sitting versus sleeping, resulting in low
classification accuracy as seen in Table 7. This is consistent with
our intuition that such models may not perform well unless they
are fine-tuned to learn personalized tasks, which is very expensive
to do in practice.

In the Bottle dataset focusing on pill bottles in a bedroom, SEEM’s
detection score was 17.30%, which was notably low compared to

Dataset Accuracy/mAP50
Husky 0.00%
Human 1.60%
Bottle 17.30%

Table 7: SEEM’s performance on three datasets. Note that we

report accuracy of SEEM on Husky and Human dataset, and

mAP50 of SEEM on Bottle dataset.

a dataset of beer bottles in a bedroom, where it achieved 99% ac-
curacy. This disparity underscores SEEM’s challenges in detecting
uncommon objects.

In contrast to SEEM, SpinML addresses these limitations by
fine-tuning smaller, task-specific models that are optimized for per-
formance on resource-constrained devices. This adaptability makes
SpinML a valuable tool for personalized ML model training and
deployment, especially in environments with limited computational
resources.

6 Related Work

Diffusion Models. The diffusion model (DM) was first introduced
by Sohl et al. [56]. It involves a forward diffusion process that in-
crementally adds noise to data, and a reverse diffusion process
that reconstructs the original data from noise. Later, Jonathan et al.
[24] demonstrated that DMs can efficiently generate high-quality
synthetic images, surpassing previous methods such as Variational
Autoencoders (VAEs) [37] and Generative Adversarial Networks
(GANs) [20]. To generate high-resolution synthetic images, Latent
DMs (also known as Stable Diffusion Models) were proposed by
Rombach et al. [47], conducting diffusion and denoising processes
in latent space. Additionally, various conditioning mechanisms in-
troduced in [47] have transformed DMs into flexible conditional
image generators, supporting applications like text-to-image and
super-resolution image generation. Recent advancements have in-
corporated specific conditioning during the denoising phase to
align synthetic images more closely with reference images in terms
of edges, depth, and structure [27, 66, 67], fostering more controlled
and realistic image generation.
Synthetic Data Generation. Extensive research has demonstrated
that combining synthetic data with real data can enhance the
performance of machine learning models across critical vision
and control applications, such as image classification, semantic
segmentation, face recognition, and autonomous vehicle control
[7, 9, 22, 41, 42, 44, 52, 53, 60, 62, 68]. These studies have employed
a range of generative models, from GANs [20] to Stable Diffusion
[47], to create synthetic datasets for model training. While pre-
vious efforts have primarily focused on using synthetic data to
complement real-world training data for improving model per-
formance, our work investigates scenarios where users need to
train specialized ML models on specific tasks involving private
data distributions, and where labeled real-world data is unavailable.
Therefore, customized synthetic data needs to be generated for
training specialized ML models. To achieve the goal of tailoring
the distribution of generated synthetic data, recent works have
proposed various methods, including fine-tuning the models on a
set of reference images [48] or incorporating conditional reference
image features to the image generation process [66]. Different from
these works, we further study the privacy leakage problem when
customizing the synthetic data generation process, and propose a
novel framework that allows user to balance the privacy and utility
of customized synthetic data, based on their privacy preferences.
Data Obfuscation Prior works have explored various data ob-
fuscation methods, which add noise into user data to protect their
private information. For example, [5, 10, 51] explored the addition of
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information-theoretical-based noise into real-world user data to pro-
vide on-average privacy guarantees. The authors in [25, 26, 45, 65]
proposed to inject generative adversarial privacy (GAP) noise into
user data, whichmay exhibit better on-average privacy-utility trade-
offs on many real-world applications. [17, 34, 46] designed different
DP noise addition mechanisms, which add DP noise into user data
to achieve worst-case privacy guarantees. In [1, 35, 61], researchers
have explored the usage of Encoder-Decoder neural networks to
map the image data into a latent vector and then add noise into
the latent vector, which achieves better privacy-utility trade-offs
compared with adding noise to image data directly. Note that the
data obfuscation methods proposed in these works are orthogonal
to our proposed SpinML, since they can be employed as additional
sanitization schemes on top of the image sanitizer in SpinML. As
an example, we explore how Gaussian DP mechanism can be used
as an additional sanitization scheme in SpinML, though it may lead
to low accuracy as we demonstrated in Section 5.5.
Privacy-preserving Machine Learning. Prior works have in-
vestigated how to train ML models at a server without collecting
users’ private local data, using federated learning (FL) [33, 40]. In
FL, instead of sharing private data to the server, users train the
model locally on their private data and then send the local model
updates to the server. However, prior works (e.g. [19, 19, 63]) have
demonstrated that the model updates shared with the server in FL
can also leak privacy. To mitigate this privacy leakage, a number of
privacy-enhancing mechanisms have been proposed for FL, which
include homomorphic encryption [4], secure aggregation [54, 55]
and adding DP noise into model updates [2, 16, 59]. Different from
the above works in FL, SpinML proposes to privately train special-
ized models under scenarios where there may be a lack of labeled
data required for training, and the user may have a unique request
for a personalized task and hence other users’ data may not be lever-
aged effectively to collaboratively train the corresponding model.
Last, note that federated, and, more general, distributed learning,
may be applied on top of SpinML if there are other users’ data that
can be collaboratively used for the same training task.

In summary, the key novelty of ourwork is the design of a general
framework which offers users fine-grained, object-level privacy
control over the data/images shared with the server. With SpinML,
users can set the sensitivity of image objects/regions differently
based on their privacy preferences and flexibly trade the privacy of
less sensitive objects for better application-specific utility.

7 Discussion, Limitations and Future Work

System cost and overhead. We clarify that the majority of the
computational and storage cost from running SpinML is on the
server side, since the server needs to fine-tune the DMs, generate
synthetic training data, and then train the specialized ML models.
The user-device only needs to run a light-weight object detection
and segmentation model on a few reference images, which has a
negligible runtime cost and overhead on local devices [32].
Generalization tomulti-object scenarios.Note that SpinML can
be generalized to multi-object scenarios, where the user can have
different privacy preferences for multiple objects/segments in the
image. In this case, the image sanitizer in SpinML will run sanitiza-
tion on all objects in parallel and then share them with the server.

The server will customize the DM to generate each one of these
objects and then merge them into the synthetic images.
Other image sanitizers. SpinML offers a general framework for
users to trade between the privacy and utility during private train-
ing of specialized models. Other image sanitizers with different
sanitization schemes can be easily integrated into SpinML. Future
work may explore how to design more principled image sanitizers,
e.g. using Reinforcement Learning and other techniques, to opti-
mize the privacy and utility trade-offs in SpinML given appropriate
objective functions.
Effects of user labels. In our current threat model, we assume that
the user does not provide any labeled reference images. However,
in practice, the user may be willing to label a few reference images
and share them with the server in order to obtain a more accurate
specialized model. (Note that the labeling process may degrade
the user experience and requires the design of a labeling system.)
Future work can explore to what extend a few labeled reference
images may boost the utility of specialized model training.
Synthetic video data generation. Our current experiments are
limited to using a text-to-image diffusion model for image data
generation, due to the lack of open-sourced high-quality video dif-
fusion models and the high runtime cost for video data generation.
However, for certain computer vision tasks like human activity
monitoring, in order for the ML models to achieve good accuracy,
they need to take video data as input [12]. Futurework could explore
how to leverage video diffusion models for customized synthetic
video data generation.
Advanced and future diffusion models. Our experiments use
the Stable-Diffusion-v1.5 model for customized synthetic data gen-
eration. In practice, with more computation resources, the server
could use larger diffusion models (e.g. Stable-Diffusion XL [3]) to
generate synthetic data with better quality. Moreover, with the
rapid development of generative AI, more advanced and efficient
image and video generation models (e.g. GPT-4o [43]) will appear
and hence the customized synthetic data generation performance
of SpinML will be further enhanced.
Advanced object detection and segmentation models. The cur-
rent design of SpinML is limited to using a pre-trained off-the-shelf
object detection and segmentation model which may not always
detect and segment objects correctly. We can improve the robust-
ness of object detection and segmentation on user’s private data by
leveraging SpinML to generate customized synthetic training data
and fine-tune the object detection and segmentation module. More-
over, we expect future object detection and segmentation models
will have high accuracy without the need for fine-tuning.

8 Conclusion

In this work, we propose SpinML, a novel system to generate cus-
tomized synthetic image data for specialized ML model training,
where the user only needs to share a few sanitized reference images.
Moreover, the proposed system provides users with fine-grained
and object-level privacy control of sanitized reference images, al-
lowing them to balance privacy and utility according to their pref-
erences. Our experiments across three distinct model training tasks
demonstrate that SpinML achieves good model accuracy without
compromising the privacy of sensitive user information.
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A Visualization Results

We provide some examples of the generated synthetic images under
different sanitization schemes in Figure 4-6.

B Model Training Configurations

B.1 DM Fine-tuning

We select Stable-Diffusion-v1.5 [47] as our DM, and we fine-tune
it using DreamBooth algorithm [48] to generate both customized
target object and the background during our experiments. We use
the diffusers library from Huggingface [28] to fine-tune DM. Specif-
ically, we set learning rate as 2e-6, the specical token as xyz->style,
the prior loss weight as 0.01, and the gradient accumulation step as
2 in DreamBooth algorithm. We fine-tune the model for 800 steps.

B.2 Specialized ML Model Training

MobileNet. For the pet status and human activity monitoring tasks,
we use MobileNet-v2 [50] as the backbone, and then add a linear
layer followed by a softmax layer. We set learning rate as 0.001,
batch size as 128, and training epoch as 5. We split the synthetic
dataset into 90% training dataset and 10% validation dataset, and
we select the model with the highest validation accuracy during
training as the final model.
YOLOv8 Model. For the non-popular object detection task, we use
the pre-trained YOLO-v8 detection model [32] as the specialized
model. We set learning rate as 0.01, batch size as 16, and training
epoch as 5. We also split the synthetic dataset into 90% training
dataset and 10% validation dataset, and select the model with the
highest validation accuracy. Note that when we generate the syn-
thetic images with non-popular target objects (i.e. the pill bottles),
we randomly place the target objects in the images and then use
the fine-tuned background DM models to fill up the background.
Therefore, we can directly obtain the labels of the target objects,
i.e. the positions of target objects.
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Figure 4: Visualization results of Husky dataset.
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Figure 5: Visualization results of Human dataset.
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Figure 6: Visualization results of Bottle dataset.
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