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Abstract

Finding the Minimum Spanning Tree or Forest (MSF) of a weighted

graph is one of the most fundamental graph problems. It has many

applications, and there are various algorithms to solve it in quasi-

linear time. However, in a secure computation setting where the

graph is shared between multiple parties, there are no fully satis-

factory solutions. Any prior work on this problem either builds a

circuit that is fed into a generic multi-party computation protocol,

or is limited to graphs that have a unique MSF.

In this work, we first identify privacy and fairness issues that

arise when the MSF is not necessarily unique, i.e., there exist du-

plicate edge weights. Subsequently, we consider the notion of a

Random Minimum Spanning Forest, which defines a distribution

of the desired output in the case where multiple MSFs exist. We

carefully design a protocol for this problem in the semi-honest

security model.

The main insight of our protocol is that we may reveal certain

intermediate results over the entire course of the protocol execu-

tion (provably without impacting security), which are then used

to make decisions that optimize efficiency. No party learns any-

thing about the inputs of other parties except for the produced

MSF, not even the number of input edges. Furthermore, the number

of communication rounds is low for many typical graphs, which

allows running the protocol even when the network latency is high.

Our evaluation shows that, depending on the graph structure and

its weight distribution, our protocol can outperform the previous

baseline by Laud (PoPETs 2015) by up to 2-3 orders of magnitude

in terms of running time.

From another perspective, this work exposes some disadvan-

tages of using generic compilers to obtain MPC protocols, as their

efficiency always equal that of the worst-case input. Our techniques

show that even within the context of MPC, it is possible to obtain a

secure protocol whose running time is not fixed a-priori, but instead

determined by the output that is not known in advance. By care-

fully studying the desired functionality, this allows for significant

efficiency improvements for any realistic inputs.

1 Introduction

The earliest use case for Minimum Spanning Forests (MSF) was

the construction of an optimized electricity network with mini-

mum cost [10]. Since then, the same problem has also been applied
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to computer/telecommunication/water networks, and even less

obvious applications like speech recognition or clustering prob-

lems [18], all of which can be solved efficiently using common

polynomial-time MSF algorithms (e.g. Kruskal’s algorithm [22],

Prim’s algorithm [31], or Borůvka’s algorithm [10]).

However, in a modern world where electricity networks already

exist, a more difficult problem emerges: suppose that two (or more)

companies are considering to merge their networks, in an attempt

to minimize their combined cost. Each company has a set of existing

connections with an associated cost function, and the goal is to

find an MSF on the combined graph. Furthermore, the parties are

not willing to share their entire network, as this might give them a

disadvantage in case the merger turns out to be unsuccessful.

Hence, this problem is an example for a use case of Multi-Party

Computation (MPC): the involved parties need a protocol that com-

putes the MSF on the joint graph, with the guarantee that nobody

learns any additional information about the other party’s graph.

Protocol Setting. The goal of this paper is to develop a secure and

efficient protocol in the MPC setting that solves the MSF problem.

We are always going to assume that the graph consists of a public

set of vertices 𝑉 , while each involved party 𝑝 has a private set of

edges 𝐸 (𝑝 ) . Jointly, all parties need to learn the MSF on the graph

𝐺 = (𝑉 , 𝐸) formed by the set of vertices 𝑉 and the union 𝐸 =

𝐸 (1) ∪ · · · ∪ 𝐸 (𝑘 ) of the private edge sets.
Note that we could also allow the vertex set 𝑉 to be private

initially. In order to identify vertices from different parties with

each other, each vertex would need have to have a corresponding

label (from a possibly large domain). Then, since the MSF (including

all vertices) needs to be published anyways, we can run a set union

protocol, to jointly find all vertex labels that occur at least once in

any party’s input (see e.g. [11]) before starting our MSF protocol

given the now public set of vertices.

Further applications. Minimum Spanning Forests are also com-

monly used to achieve a very simple 2-approximation of the Travel-

ing Salesman Problem (TSP). This is useful especially in the context

of multi-party computation, where there is no hope of solving the

NP-hard problem of TSP optimally.

TSP itself serves as a problem that many others are easily reduced

to, such as vehicle routing, warehouse order-picking, and schedul-

ing problems [27]. Consider Vehicle Routing: in this optimization

problem, routes have to be assigned to a fleet of vehicles [35]. Some

variations of this problem (e.g., if there is one fixed depot with 𝑘

vehicles) directly fit into the TSP framework, and can be approxi-

mated using MSF. Thus, a secure MSF protocol may benefit a set of

small carriers who want to share their resources to save costs, while

simultaneously revealing data only where it is indeed necessary.

Minimum Spanning Forests are also used to infer information

about the centrality of the graph’s vertices (see e.g. [4, 28]). Hence,
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our protocol can be used for privacy-preserving Social Network

Analysis. For example, several law enforcement agencies may want

to jointly find “central” subjects in a graph that represents relation-

ships between entities. Every agency would have knowledge about

a subset of connections, but privacy laws may prohibit them from

sharing their entire data [21]. Using our framework, the agencies

can compute the MSF on the combined graph, which yields the

desired centrality properties.

1.1 The Issue of Duplicate Edge Weights

It is well-known that whenever a graph 𝐺 contains two or more

edges that have some weight 𝑤 , then the MSF of 𝐺 may not be

uniquely defined. This is a subtle issue, and may arise in all of

the applications mentioned above: costs for maintaining certain

electricity lines may be identical, the distances between two pairs

of physical nodes may be so close to each other that they should be

rounded to the same numbers, and edge weights in a social network

could simply be small integers that make collisions very likely.

Tie-Breakers. Therefore, when a graph may contain duplicate

weights, it becomes necessary to assign tie-breakers to all edges.

Whenever two edges have the same weight, their tie-breakers de-

termine which one to prefer. In this way we get a total ordering of

all edges, resulting in a unique MSF.

Relevant previous work [11] requires tie-breakers to be publicly

computable. This means that any party needs to have the ability,

given all information about a edge (their endpoints, their weights,

and the index of the party it belongs to), to calculate its tie-breaker

value. This can be done even for “hypothetical” edges that were

not part of the input. We are going to argue that this leaks more

information than necessary, and potentially impacts fairness.

In the simplest case, suppose that there are two vertices 𝑢 and

𝑣 and a small weight 𝑤 . Then, there are two potential edges 𝑒1
(belonging to party 1) and 𝑒2 (belonging to party 2) with these

endpoints and weight. Suppose that 𝑒2 has the larger tie-breaker

value 𝜋 (𝑒2) > 𝜋 (𝑒1), which is public knowledge. Then, party 2

has an advantage (assuming that 𝑒2 indeed exists): it will learn,

with absolute certainty, whether party 1 did include 𝑒1 in its input

or not (because 𝑒1 would always be preferred over 𝑒2). Clearly,

this reveals more information than necessary: in an “ideal” MSF

protocol, party 2 should not know that 𝑒1 did not exist just because

𝑒1 is not included in the final MSF. For example, in the setting of

two merging electricity networks, this would mean that a network

operator with a given connection may infer that the other one is

not maintaining an identical connection.

The leakage becomes even worse when considering a larger set

of vertices, all reachable from each other using the same small

weight𝑤 . Anyone can compute a list of edges (which would have

low tie-breaker) guaranteed to not exist in the input graph, by only

knowing that they did not appear in the MSF.

Furthermore, depending on the implementation of the tie-breaker,

one party may have an inherent disadvantage (in the sense that

it needs to share many of its edges merely due to the choice of

the tie-breaker). Consider two electricity networks, each having

one large “hub” with many outgoing edges of the same weight. If

the tie-breaker is implemented in such a way that it prefers edges

whose endpoints have lower indices, then the MSF will include

more edges incident to the lower-index hub.

Random Minimum Spanning Forests. The most natural way of

addressing the fairness issue is to assign a uniformly random tie-

breaker value to every edge. In other words, for every weight𝑤 , we

pick a uniformly random permutation of all edges with this weight,

which allows us to decide which edges to prefer. This leads to a

more balanced selection of an MSF among the set of all MSFs.

We call an MSF selected by this procedure a Random Minimum

Spanning Forest, and computing it for a shared graph is the main

problem that we are going to study in this work.

Randomness needs to stay hidden! It may be tempting to just let

everyone sample random tie-breaker values for their own edges, and

then run any standard MSF protocol on the resulting graph (which

now has a uniqueMSF). Unfortunately, this is still provable insecure:

Intuitively, when the MSF output contains an edge of weight 𝑤

which we know had a high tie-breaker value, then the probability

of the input containing another weight-𝑤 edge connecting the

same vertices (e.g. owned by the other party) is very low. (See

Appendix A for a formal proof.) This shows why we need to very

carefully construct a protocol that does not reveal any tie-breaker

values, not even for those edges that belong to the MSF output.

Alternatives. Note that our definition of Random MSFs is not

completely new: There also exists the notion of Random Spanning

Forests [14], a problem in which you are given an unweighted

graph, and need to find an MSF on the graph after independently

assigning random weights to all edges. However, in our scenario, all

edges already have primary weights, and the randomly generated

tie-breaker values are only used to compare two edges that have the

same weight. Our definition also differs from generating a Uniform

Spanning Forest, which selects any MSF from the set of all MSFs

with uniform probability (consider a diamond graph as a minimal

example on which these two notions differ). However, algorithms

generating Uniform Spanning Trees are already expensive in a

non-MPC setting and require more advanced techniques like loop-

erased random walks (e.g. Wilson’s algorithm [36]), and therefore

we cannot expect efficient MPC protocols for this problem.

1.2 Related Work

There is a vast amount of literature on various techniques for

generic multi-party protocols. Usually they require an algorithm

to be written as a binary or arithmetic circuit, which can then be

executed in a secure way [15]. This way, the involved parties can

jointly compute the output of the algorithm without learning any-

thing about each other’s input other than what is already implied

by the final output.

One of the most common ways to do this is Yao’s garbled cir-

cuit method [37] based on binary circuits for two parties in the

semi-honest security model. This protocol requires only a constant

number of communication rounds, independent of the structure

of the circuit. Other protocols depend on the circuit depth [6, 16],

and can handle either a binary or arithmetic domain for a varying

number of parties [13]. There is a variety of different implemen-

tations and frameworks for multi-party computation [19]. Some

frameworks also switch between domains (e.g. binary or arithmetic)
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and the corresponding protocol during the execution in order to

achieve an improved efficiency [12].

Solving Random MSF with Circuits. To solve the MSF problem,

any of the standard MSF algorithms (Kruskal, Prim, Borůvka [10, 22,

31]) can easily be turned into a circuit and then transformed into a

protocol as decsribed above. However, a huge disadvantage of such

an approach is that static circuits do not support random-access

memory. Solving this issue naively would require a linear scan per

memory access. An alternative solution is oblivious RAM (ORAM)

that attempts to emulate a memory in sublinear time per access (as

first formalized by [17], and implementable using e.g. [34]). Unfortu-

nately, these type of operations are still a theoretical construct with

costs too high to be used in practice. See for example the ObliVM

framework [26], in which the authors have also implemented Prim’s

MSF algorithm.

Secure Graph Computation Frameworks. GraphSC is a general

framework for graph algorithms in multi-party computation [30].

Its main feature is the ability of scattering data from vertices to

incident edges, and gathering data from incident edges into a vertex.

While these operations can be parallelized for the whole graph, each

such operation distributes information only locally. Thus, applying

GraphSC to MSF problems would also result in a linear number of

iterations, and at least quadratic communication complexity.

There are multiple other works that focus specifically on dense

graphs, but all of them will always have a communication com-

plexity of at least 𝑂 ( |𝑉 |2), which is infeasible for large but sparse

graphs. One example is a paper by Blanton et al. [7]. The authors

give a protocol solving the MSF problem by simulating Prim’s algo-

rithm on a graph given its adjacency matrix. Another example is

the work by Anagreh et al. [1], which only targets the MSF problem

specifically.

Laud’s MSF Protocol. Most relevantly, Laud has designed and im-

plemented a protocol specifically for computing MSFs [24]. Unlike

all approaches above (except for the concretely highly inefficient

ORAM-based version), it has sublinear round complexity and run-

ning time that is quasi-linear in |𝑉 | + |𝐸 |. This protocol is based
on Awerbuch’s MSF algorithm [3], which itself is an adaption of

Borůvka’s algorithm. The implementation utilizes the Sharemind

framework [8]. It fulfills semi-honest security, and works for exactly

3 parties.

The approach by Brickell and Shmatikov. In [11], the authors

have a very different approach towards solving graph problems.

It is based on the following observation: some values may be re-

vealed as cleartext without waiting for the entire execution to finish,

which results in significant efficiency savings later on. For example,

consider the single-source-shortest-distance problem. Brickell and

Shmatikov note that it is possible to iteratively find and reveal the

next-closest vertex to all previously discovered ones (there can also

be multiple such vertices). Finding them is simple, because both

parties can locally find the best option among their own edges, and

then the best of the two options can be found using a single secure

comparison.

The authors also give lightweight MSF protocols based on Prim’s

and Kruskal’s algorithms. Both variants would have a linear number

of communication rounds, but we note that it would be possible to

Table 1: Comparison of MSF protocols, in terms of total com-

munication complexity and the number of communication

rounds. We ignore security parameters and other factors

that we may treat as constants (such as the bitlength of edge

weights). Note that [11] (including its Borůvka variant) does

not allow duplicate edge weights.

Protocol Communication Rounds

MSF stays secret-shared

Blanton et al. [7] 𝑂 ( |𝑉 |2) 𝑂 ( |𝑉 |2)
Anagreh et al. [1] 𝑂 ( |𝑉 |2) 𝑂 ( |𝑉 | log |𝑉 |)
ObliVM [26] 𝑂 ( |𝐸 | log2 |𝑉 |) 𝑂 (1)
Laud [24] 𝑂 ( |𝐸 | log2 |𝑉 |) 𝑂 (log2 |𝑉 |)

MSF will be revealed

Brickell / Shmatikov [11] 𝑂 ( |𝑉 |) 𝑂 ( |𝑉 |)
+ Borůvka (Section 3.1) 𝑂 ( |𝑉 |) 𝑂 (log |𝑉 |)

This work (Section 3.2) variable variable

utilize the same observations to get a logarithmic-round protocol

based on Borůvka’s algorithm (see Section 3.1).

Unfortunately, while these protocols are extremely lightweight,

they do not have the capability of computing a Random MSF.

Comparison. We compare all aforementioned approaches in Ta-

ble 1. We distinguish between two settings: in the first one, the

MSF protocol takes a secret-shared graph as input and outputs the

MSF in secret-shared form (this allows using the MSF protocol as a

building block of larger protocols). All of these protocols can also

handle duplicate edge weights with random tie-breakers. On the

other hand, for the protocol by Brickell and Shmatikov [11], it is

necessary that each party initially holds a subset of the input graph,

and the output will always be an MSF in the clear. Our protocol will

be in the same category, but unlike [11] it allows duplicate edge

weights.

Concrete costs. Note that both ObliVM [26] and Laud’s proto-

col [24] have quasi-linear asymptotic cost. However, ObliVM is

very far from practical, as their evaluation shows that computing

the MSF of a graph with 1000 vertices and 3000 edges takes over 10

hours [26]. This is several orders of magnitude worse than Laud’s

protocol [24] (for that reason, we only compare against Laud’s

protocol in Section 5). While [11] is the concretely most efficient

protocol with only one secure comparison per vertex, it has the

major disadvantage of requiring distinct edge weights.

1.3 Our Contributions

We present a novel protocol for the Random MSF problem, which

can be seen as a tradeoff between Laud’s protocol [24] and the

approach by Brickell and Shmatikov [11]: on one hand, our protocol

can handle edges with duplicate weights by computing Random

MSF. On the other hand, its running time is (for many input graphs)

more similar to the lightweight variants based on the ideas by

Brickell and Shmatikov.

We achieve this speedup by avoiding to secret-share the entire

graph. Instead, we analyze the Random MSF problem in detail

to find out what information we are allowed to reveal without
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affecting security, and how this helps with saving unnecessary

secure operations. This has the additional advantage that none

of the parties is able to learn anything about the number of edges

in the other party’s input. This is impossible in MPC frameworks

which inherently leak the input size. Furthermore, our protocol is

round-optimized, so that it may be used with reasonable overhead

in a high-latency network.

While all our techniques would work for any number of parties,

in order to simplify the presentation we will only describe and

evaluate the two-party version. There is more necessity for two-

party protocols in practice, because generic MPC baselines are

already much more efficient for three or more parties based on an

honest majority assumption [20].

Data-dependent running time. An interesting property of our

protocol is that its running time (i.e., communication and round

complexity) is influenced by the structure and weights of the MSF,

which are unknown in the beginning. While it may seem coun-

terintuitive at first, we will show that semi-honest security holds

despite this observation, because all leaked information (including

the running time) may be deduced from the MSF itself.

In Section 5, we provide an empirical evaluation of our protocol’s

efficiency. More edges of identical weight will typically lead to

increased running time, but we show that for randomly generated

graphs with a large range of parameters, and for graphs taken from

TSPLIB [32], our protocol performs better than Laud’s MSF protocol

(we use Laud’s method as a baseline because it is the most efficient

existing MSF protocol that supports computing a Random MSF).

We also believe that our techniques achieving “data-dependent”

running time may be applicable to problems other than finding

MSFs. For generic MPC compilers or frameworks, if they have

a fixed running time, their efficiency is always restricted by the

worst-case input. However, this work shows that it is possible to

create protocols breaking this barrier, by offering improved running

time for any typical inputs (e.g., graphs with a limited number of

duplicate edge weights), while being secure even in the worst-case.

1.4 Paper Organization

We describe all required notation, some background on two-party

computation, and the precise definition of the problem we are

solving in Section 2. We then present our protocol in Section 3, and

describe how to realize its building blocks in Section 4. Section 5

contains details on our implementation and its evaluation, including

a comparison with the baseline.

2 Preliminaries

Note that throughout this work, we let [𝑛] := {0, 1, . . . , 𝑛 − 1} for
any non-negative integer 𝑛 ∈ N.

2.1 Graphs & MSFs

A graph𝐺 = (𝑉 , 𝐸, r,w) is a tuple consisting of a finite set of vertices
𝑉 , a finite set of edges 𝐸, an endpoint function r that maps each

edge 𝑒 ∈ 𝐸 to its endpoints r(𝑒) = {𝑢, 𝑣} ⊆ 𝑉 (with 𝑢 ≠ 𝑣), and a

weight function w : 𝐸 → N. (Note that all graphs we consider in
this work are weighted and undirected as defined above. They may

also contain multiple edges between the same pair of vertices, but

self-loops are not allowed.)

For a set of edges 𝐹 ⊆ 𝐸, we define its total weight as w(𝐹 ) :=∑
𝑒∈𝐹 w(𝑒). We use 𝐹=𝑤 to denote the set of edges restricted to a

certain weight𝑤 , i.e., 𝐹=𝑤 := {𝑒 ∈ 𝐹 | w(𝑒) =𝑤}. The notation r|𝐹
and w|𝐹 denotes the functions r and w restricted to edges 𝐹 (this

will be useful when considering the graph obtained by removing

some edges).

Given a set of edges 𝐹 ⊆ 𝐸 and any vertex 𝑣 ∈ 𝑉 , we define its
boundary

𝛿𝐹 (𝑣) := {𝑒 ∈ 𝐹 | 𝑣 ∈ r(𝑒)}

to be the subset of edges in 𝐹 that are incident to 𝑣 .

Sometimes we write min{w(𝑒) | 𝑒 ∈ 𝛿𝐹 (𝑣)} to be the weight

of the minimum edge incident to 𝑣 . If there is no such edge, this

minimum is defined to be∞.

Minimum Spanning Forests. For a graph 𝐺 = (𝑉 , 𝐸, r,w), we call
(𝑒1, . . . , 𝑒𝑘 ) (𝑘 ≥ 1, 𝑒𝑖 ∈ 𝐸, 𝑒𝑖 ≠ 𝑒 𝑗 for 𝑖 ≠ 𝑗 ) a path on𝐺 , if there exist

vertices 𝑣1, . . . , 𝑣𝑘+1 with r(𝑒𝑖 ) = {𝑣𝑖 , 𝑣𝑖+1} for 𝑖 ∈ [𝑘]. In addition,

this path is simultaneously a cycle, if 𝑣1 = 𝑣𝑘+1. We say that two

vertices 𝑣, 𝑣 ′ ∈ 𝑉 are connected if there exists a path (𝑒1, . . . , 𝑒𝑘 )
with 𝑣 = 𝑣1 and 𝑣

′ = 𝑣𝑘+1.
To select a single MSF if𝐺 has multiple MSFs, we need the notion

of a tie-breaker. A tie-breaker is a permutation 𝜋 of the edges 𝐸,

which assigns a distinct number from [|𝐸 |] to every 𝑒 ∈ 𝐸, i.e.,

𝜋 : 𝐸 → [|𝐸 |] is a bijective function. Given a fixed edge set 𝐸, there

are exactly |𝐸 |! of these permutations, and by 𝐸! we denote the set

consisting of all |𝐸 |! permutations.

We can now define a minimum spanning forest (MSF) of 𝐺 =

(𝑉 , 𝐸, r,w) with tie-breaker 𝜋 : 𝐸 → [|𝐸 |] as a set 𝐹 ⊆ 𝐸 for which

the following three conditions hold:

(1) 𝐹 is spanning: every two vertices 𝑣, 𝑣 ′ ∈ 𝑉 that are connected

on the graph (𝑉 , 𝐸, r,w), are also connected on the graph

(𝑉 , 𝐹, r|𝐹 ,w|𝐹 ),
(2) 𝐹 is a forest: there does not exist any cycle on the graph

(𝑉 , 𝐹, r|𝐹 ,w|𝐹 ), and
(3) 𝐹 isminimum: there is no spanning forest 𝐹 ′ fulfilling (1) and

(2) with w(𝐹 ′) < w(𝐹 ) or w(𝐹 ′) = w(𝐹 ) and ∑
𝑒∈𝐹 ′ 𝜋 (𝑒) <∑

𝑒∈𝐹 𝜋 (𝑒).
For a fixed tie-breaker 𝜋 , there is a unique minimum spanning

forest, which we denote byMSF(𝐺, 𝜋).
The Random MSF MSF(𝐺) is a non-deterministic function that

samples a uniformly random 𝜋 ∈ 𝐸! and returns MSF(𝐺, 𝜋). It is
well-known that for a graph with unique edge weights, there is a

unique MSF, and therefore the chosen tie-breaker 𝜋 does not have

any effect in such a case (i.e.,MSF(𝐺) would be deterministic).

Merging vertices. For a graph 𝐺 = (𝑉 , 𝐸, r,w), and a set of ver-

tices 𝑐 ⊆ 𝑉 , we can merge the vertices in 𝑐 . The resulting graph

(𝑉 ′, 𝐸′, r′,w′) ← merge𝑐 (𝐺) is naturally defined as follows.

• The new vertex set𝑉 ′ = (𝑉 \𝑐) ∪{𝑐} contains a single vertex
𝑐 in place of |𝑐 | individual vertices.
• The new edge set 𝐸′ = 𝐸 \ 𝐸 is as before, except that we

remove any introduced self-loops 𝐸 = {𝑒 ∈ 𝐸 | r(𝑒) ⊆ 𝑐}.
• For any edge 𝑒 that previously connected r(𝑒) = {𝑢, 𝑣} for
some 𝑣 ∈ 𝑐 , we modify its endpoints to be r′ (𝑒) = {𝑢, 𝑐}. All
other endpoints are unmodified.

• No weights are modified: w′ = w|𝐸′ .
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2.2 Two-Party Computation

In two-party computation, a functionality 𝑓 is a random function

that specifies the desired output distribution given the two inputs.

Note that we require 𝑓 (𝑥,𝑦) to be a random variable, since in our

case of random MSF’s, the output may involve randomness. Public

input is achievable by letting it be contained of both inputs 𝑥 and

𝑦. For a protocol Π correctly implementing the functionality 𝑓 , the

notion of semi-honest security is given in Definition 2.1, which

follows the definitions in prior work [15, 25].

Definition 2.1. For a set 𝐴 of valid inputs, we say that the two

ensembles 𝑋 = {𝑋 (𝜆, 𝑎)}𝜆∈N,𝑎∈𝐴 and 𝑌 = {𝑌 (𝜆, 𝑎)}𝜆∈N,𝑎∈𝐴 are

computationally indistinguishable (denoted by 𝑋
𝑐≡ 𝑌 ), if for every

non-uniform polynomial-time algorithm𝐷 , there exists a negligible

function negl(·), s.t. for every 𝑎 ∈ 𝐴 and 𝜆 ∈ N:
| Pr[𝐷 (𝑋 (𝜆, 𝑎)) = 1] − Pr[𝐷 (𝑌 (𝜆, 𝑎)) = 1] | ≤ negl(𝜆)

A protocol Π privately computes 𝑓 in the semi-honest security model,

if there exists a polynomial-time algorithm 𝑆1 s.t.

{(𝑆1 (1𝜆, 𝑥, 𝑓 (𝑥,𝑦)), 𝑓 (𝑥,𝑦))}𝜆,𝑥,𝑦
𝑐≡ {(viewΠ

1
(𝜆, 𝑥,𝑦), outputΠ

2
(𝜆, 𝑥,𝑦))}𝜆,𝑥,𝑦 , (1)

where 𝜆 ∈ N, and 𝑥,𝑦 are inputs on which 𝑓 (𝑥,𝑦) is defined, and
the same indistinguishability holds with parties 1 and 2 swapped.

For our case of semi-honest security, protocols can easily be

composed, in the sense that a protocol can call other semi-honest

secure protocols as a subroutine [15].

2.3 Definition of Random MSF Functionality

We consider the problem of sampling a Random MSF inside a two-

party protocol, where the set of vertices𝑉 is public, and each party

𝑝 ∈ {1, 2} has a private set of edges 𝐸 (𝑝 ) (s.t. 𝐸 (1) and 𝐸 (2) are
disjoint) with corresponding endpoints r(𝑝 ) and weights w(𝑝 ) . The
protocol should be computing a RandomMSF of the graph (𝑉 , 𝐸 (1)∪
𝐸 (2) , r(1) ∪ r(2) ,w(1) ∪w(2) ), i.e., on the graph with vertices 𝑉 and

edges resulting from taking the union of the two private edge sets.

Functionality 1 Random Minimum Spanning Forest

Public: Set of vertices 𝑉

functionality RandomMSF(𝐸 (1) , 𝐸 (2) )
return MSF(𝑉 , 𝐸 (1) ∪ 𝐸 (2) , r,w)

end functionality

This desired behavior is formalized in Functionality 1. For sim-

plicity, we are going to assume that 𝐸 (1) ⊆
(𝑉
2

)
× N × {1}, i.e.,

each edge 𝑒 ∈ 𝐸 (1) belonging to party 1 can be written as 𝑒 =

({𝑢, 𝑣},𝑤, 1), s.t. r(𝑒) = {𝑢, 𝑣} and w(𝑒) = 𝑤 . Similarly, we also

assume that 𝐸 (2) =
(𝑉
2

)
× N × {2}, i.e., every 𝑒 ∈ 𝐸 (2) has the form

𝑒 = ({𝑢, 𝑣},𝑤, 2), where r(𝑒) = {𝑢, 𝑣} and w(𝑒) = 𝑤 . As a result,

there can be at most two different edges between the same end-

points 𝑢, 𝑣 ∈ 𝑉 and with the same weight𝑤 ∈ N: one belonging to

party 1, and one belonging to party 2.

The protocol should return an MSF according to the distribution

MSF(𝑉 , 𝐸 (1)∪𝐸 (2) , r,w), where r andw are defined by r(𝑒) = {𝑢, 𝑣}
andw(𝑒) =𝑤 for any edge 𝑒 = ({𝑢, 𝑣},𝑤, 𝑝) ∈

(𝑉
2

)
×N×{1, 2}. As𝑉

is public, we also write an invocation as RandomMSF𝑉 (𝐸 (1) , 𝐸 (2) ).
Note that there is no need to take endpoints r or weights w as an

argument, this information can be inferred from the edges them-

selves, which have the form ({𝑢, 𝑣},𝑤, 𝑝). Furthermore, they will

also gain knowledge about who this edge belongs to (party 𝑝). This

is important whenever two parties both have an edge with identical

endpoints and weight. They will know whether their own or the

opposite party’s edge was selected for the MSF. For convenience,

we let 𝐸 := 𝐸 (1) ∪ 𝐸 (2) denote the combined set of all edges given

in the input.

2.4 Framework

As for any type of MPC, our protocols will be working on secret

values, which can be manipulated whenever two parties agree to

perform some operation on it. Thus, there are two different kinds

of values used in the pseudocode of a protocol: plaintext values

known to either of the two or to both parties, and secret-shared

values not known to anyone. We denote a secret shared value by

J𝑎K, and if party 𝑝 constructs secret shares of a value known to

it, we write Share𝑝 (𝑎). Reveal𝑝 (J𝑎K) reveals secret-share J𝑎K to
party 𝑝 (i.e., the other party sends its share of J𝑎K to party 𝑝), and

Reveal(J𝑎K) reveals it to both parties (i.e., both parties send their

respective share to the other party).

We will use the GMW protocol by Goldreich, Micali, andWigder-

son [16] as a black-box to implement the underlying secret-shares.

This decision is primarily for efficiency reasons: most of the opera-

tions required by our protocol are cheaper in binary form than in

arithmetic form.

Linear operations on secret-shared bits (e.g. XOR and negation)

are free and do not require any communication. Multiplications can

be constructed from 1-out-of-4 oblivious transfer [15]. However,

in order to optimize the online phase, we use Beaver triples, i.e.,

precalculated randommultiplication triples (which are independent

of the circuit) that can be used to mask real multiplications when

running the actual protocol [5]. Multiplications allow us to perform

bit-and, bit-or, and multiplexers on secret-shared bits.

In contrast to constant-round protocols (such as Yao’s garbled

circuits), we have an additional overhead resulting from the number

of communication rounds, which is equal to themultiplicative depth

of the circuit that is run. Therefore, we need to ensure that, besides

from minimizing the number of bit multiplications, we also keep

the multiplicative depth reasonably low.

Secret-shared integers of bitlength 𝐵 can be implemented as 𝐵

separate secret-shared bits. For the most common low-level opera-

tions, we get the following efficiencies by utilizing depth-optimized

circuits [33]. Arithmetic operations (addition and subtraction) re-

quire about log𝐵 communication rounds, and consume 𝑂 (𝐵 log𝐵)
multiplication triples. Comparisons (equality, greater than, . . . ) re-

quire about log𝐵 communication rounds, and consume 𝑂 (𝐵) mul-

tiplication triples.

3 Our Random MSF Protocol

In this section we present our main protocol. In Section 3.1, we

start by describing a simpler protocol based on Borůvka’s MSF

algorithm for graphs with unique edge weights that utilizes ideas
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similar to those used by Brickell and Shmatikov [11]. Then, Sec-

tion 3.2 gives an overview of the full protocol that allows duplicate

weights. Section 3.3 contains a formalized version, and then we de-

scribe optimizations in Section 3.4. We show semi-honest security

in Appendix C.

In Appendix A, we additionally argue why the naive idea, which

would let each party assign a random tie-breaker to their local edges

and then run e.g. the protocol in Section 3.1, would not be secure.

3.1 Warm-up: Finding the MSF of a Graph with

Unique Weights

In their paper on MPC protocols for graph algorithms, Brickell

and Shmatikov describe protocols for computing an MSF (when

the graph has unique weights) based on either Prim’s or Kruskal’s

algorithm [11]. However, both implementations would result in

linear round complexity. We now describe an adaptation of this

protocol, based on Borůvka’s MSF algorithm [10], which would

have logarithmic round complexity.

Borůvka’s MSF algorithm. Borůvka’s algorithm for finding the

unique MSF 𝐹 on a graph𝐺 = (𝑉 , 𝐸, r,w) with unique edge weights,
repeats the following two steps after initializing 𝐹 ← ∅.
• For all vertices 𝑣 ∈ 𝑉 with at least one incident edge, we find

the best incident edge 𝑒 ∈ 𝛿𝐸 (𝑣) (i.e., w(𝑒) < w(𝑒′) for all
other edges 𝑒′ ∈ 𝛿𝐸 (𝑣), 𝑒′ ≠ 𝑒). We add 𝑒 to the MSF 𝐹 .

• For all edges 𝑒 found in the previous step, we merge the two

endpoints r(𝑒) = {𝑢, 𝑣} together: 𝐺 ← merge{𝑢,𝑣} (𝐺).
These steps are repeated until no edges are found anymore (i.e.,

𝐸 = ∅). The set 𝐹 then forms the MSF.

Note that an edge 𝑒 may either be selected by only one of its

endpoints, or by both of them in the same iteration (in which

case the merge-step for 𝑒 is only run once). In contrast to Prim’s

and Kruskal’s algorithms, each iteration can be parallelized (by

computing the best incident edges simultaneously for all vertices),

and adds at least ⌈ |𝑉 |
2
⌉ new edges to the MSF. Therefore, there will

be at most log
2
|𝑉 | iterations.

Correctness follows from the fact that each selected edge must

be contained in the MSF. More specifically,

𝑀𝑆𝐹 (𝐺) = {𝑒} ∪MSF(merge{𝑢,𝑣} (𝐺))

for any edge 𝑒 ∈ 𝛿𝐸 (𝑣) (with endpoints r(𝑒) = {𝑢, 𝑣}) that is the best
incident edge for some vertex 𝑣 ∈ 𝑉 . This observation is similar to

those required for correctness of Prim’s and Kruskal’s algorithms.

Transformation into a 2-party protocol. Applying ideas from [11]

to the algorithm described above, we get a protocol for comput-

ing the MSF on a graph with unique weights, which repeats the

following steps after initializing 𝐹 ← ∅.
• Each party 𝑝 locally finds for each vertex 𝑣 ∈ 𝑉 the best edge

𝑒
(𝑝 )
𝑣 ∈ 𝐸 (𝑝 ) of smallest weight w(𝑒) incident to 𝑣 .

• For each 𝑣 ∈ 𝑉 , the two parties compare the two edges 𝑒
(1)
𝑣

and 𝑒
(2)
𝑣 to check one has the smaller weight. They do so by

utilizing any MPC protocol for integer comparison. The edge

weights are not revealed, but only the comparison outcome.

• The party 𝑝 whose edge was better sends all information

about 𝑒
(𝑝 )
𝑣 (i.e., endpoints and weight) to the other party.
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Figure 1: This is an example for a graph in which weights

occur more than once. There are exactly 15 different MSF’s,

each of them would contain all edges of weight 1 and 3, any

two edges of weight 2, and two additional edges of weight 4

that do not result in a cycle. One possible MSF is indicated

by the thick edges.

• The endpoints r(𝑒) = {𝑢, 𝑣} of all edges 𝑒 discovered in the

previous step are merged together.

Assuming that there is a protocol for comparing two edgeweights

that runs in 𝑘 communication rounds, then the description above

yields an MSF protocol of ≤ 𝑘 · log |𝑉 | rounds. Also note that

the protocol is very lightweight in terms of total communication

complexity, because |𝑉 | · log |𝑉 | secure comparisons are all that is

needed.

3.2 Overview of Our MSF Protocol

The simple protocol above does not work anymore as soon as the

graph contains more than one edge with some particular weight (in

fact, not even Borůvka’s algorithm would work anymore by itself).

The issue is that for a vertex 𝑣 ∈ 𝑉 , there may be multiple edges (say,

𝑒𝑣 and 𝑒
′
𝑣) incident 𝑣 , while all of them have the same best weight

w(𝑒𝑣) = w(𝑒′𝑣). Then, to avoid cycles in the MSF, one of these edges

needs to be picked through employing a tie-breaker. Our protocol is

going to achieve this for a uniformly random tie-breaker 𝜋 , without

leaking anything about 𝜋 .

Isolatable subgraphs. In our protocol, we will rely on what we

call an isolatable subgraph:

Definition 3.1. Given a graph 𝐺 = (𝑉 , 𝐸, r,w), an isolatable sub-

graph of weight𝑤 is a set 𝑐 ⊆ 𝑉 of vertices of size ≥ 2, s.t.

• all vertices in 𝑐 are pairwise reachable from each other us-

ing only edges of weight exactly 𝑤 , while none of them is

incident to any edge of weight < 𝑤 , and

• all edges 𝑒 ∈ 𝐸 that leave 𝑐 (i.e., 𝑒 has exactly one endpoint

in 𝑐) have weight w(𝑒) > 𝑤 .

Consider the graph in Figure 1, which will be our running ex-

ample. The two vertex sets {0, 1, 2} and {6, 7} are both isolatable

subgraphs of weights 1 and 3, respectively (in fact, these are the

only two isolatable subgraphs).

An isolatable subgraph 𝑐 has the following interesting property,

which we show in Appendix B:

Lemma 3.2. Given a graph 𝐺 = (𝑉 , 𝐸, r,w) and an isolatable

subgraph 𝑐 ⊆ 𝑉 of weight𝑤 , the distribution of MSF(𝐺) is identical
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Figure 2: For the example graph given in Figure 1, this figure

depicts the isolatable subgraphs and their merging process.

In the beginning, {0, 1, 2} and {6, 7} are isolatable subgraphs
of weights 1 and 3, respectively. After merging {0, 1, 2}, we

see that {{0, 1, 2}, 3, 4} is a new isolatable subgraph of weight

2. After merging those vertices, {{{0, 1, 2}, 3, 4}, 5} is a new

isolatable subgraph of weight 3. Finally, the three vertices

{{{{0, 1, 2}, 3, 4}, 5}, {6, 7}, 8} form an isolatable subgraph of

weight 4. After merging these, only one vertex remains. Gen-

erating and combining Random MSF’s for all isolatable sub-

graphs encountered during this process may result in the

thick edges, which together form an MSF.

to the distribution of

MSF(𝑐, 𝐸, r|�̃� ,w|�̃�) ∪MSF(merge𝑐 (𝐺)) ,
which samples the two MSFs on 𝑐 and merge𝑐 (𝐺) independently of

each other, and then takes their union. The set 𝐸 = {𝑒 ∈ 𝐸=𝑤 | r(𝑒) ⊆
𝑐} denotes the set of all edges between two vertices in 𝑐 .

This lemma tells us that we can regard the tie-breakers of the

edges in 𝑐 and the tie-breakers of the remaining edges in merge𝑐 (𝐺)
completely independent of each other! In other words, we do not

need to sample the tie-breaker permutation for the entire graph

𝐺 , but instead we can simply compute Random MSFs on 𝑐 and on

merge𝑐 (𝐺) independently of each other and then merge the results.

This process will result in exactly the same output distribution as

directly computing a Random MSF on the entire graph 𝐺 .

The above can also be seen as a generalization of the observation

behind Kruskal’s algorithm for unique-weight graphs: this algo-

rithm would repeatedly choose the globally lowest-weight edge

into the MSF, and merge its two endpoints. In our case, we choose

a set of vertices connected through low weights, add their MSF, and

merge all vertices in it together.

With this in mind, our protocol will naturally follow the follow-

ing strategy: find any isolatable subgraph 𝑐 , compute a Random

MSF for it, and then continue on the remaining graph merge𝑐 (𝐺).
This will be repeated until no edges remain (note that whenever

there exists at least one edge, there must also be at least one isolated

component). See Figure 2 for an example.

The first question is: Even if we are able to find isolatable sub-

graphs, would it be secure reveal them to both parties? The answer to

this is yes – irrespectively of the exact output ofMSF(𝑐, 𝐸, r|�̃� ,w|�̃�)

for isolatable subgraphs 𝑐 , the merging sequence will be identical.

Given only the final MSF (i.e., the protocol’s output), it will be

possible to “retrace” isolatable subgraphs. For example, in Figure 2,

if we were to remove all non-MSF edges, we can see that {0, 1, 2}
and {6, 7} are still the only isolatable subgraphs, and similarly after

performing the merges.

Finding isolatable subgraphs. Now we discuss how our protocol

finds all isolatable subgraphs in a secure way.

Step 1: Similar to the Borůvka-based algorithm (Section 3.1), we

first compute and reveal for each vertex 𝑣 ∈ 𝑉 the value

𝑤𝑣 =min{w(𝑒) | 𝑒 ∈ 𝛿𝐸 (𝑣)} ,

i.e., the weight of its best incident edge. Doing so is simple, assuming

the existence of an integer comparison protocol: each party 𝑝 locally

computes𝑤
(𝑝 )
𝑣 :=min{w(𝑒) | 𝑒 ∈ 𝛿𝐸 (𝑝 ) (𝑣)}, and secret-shares this

value. Then, they securely computemin(J𝑤 (1)𝑣 K, J𝑤 (2)𝑣 K), and reveal
the outcome.

Revealing these values is secure, because they can be simulated

given any MSF (see Lemma C.1 for details). In addition, the above

can be executed for all vertices in parallel, yielding a protocol with

a constant number of communication rounds!

Step 2: We can now (locally, without communication) group the

vertices into sets 𝑆𝑤 = {𝑣 ∈ 𝑉 | 𝑤𝑣 =𝑤} of vertices with the same

best weight𝑤𝑣 . For example, in Figure 2, we would get 𝑆1 = {0, 1, 2},
𝑆2 = {3, 4}, 𝑆3 = {5, 6, 7}, and 𝑆4 = {8}.

All of these sets contain candidates in the following sense: each

isolatable subgraph (i.e., {0, 1, 2} and {6, 7}) needs to be a subset of

one of the sets 𝑆𝑤 . But how can we “extract” isolatable subgraphs?

We will do so with a sub-protocol that implements Functionality 2.

Functionality 2 Connectivity

Public: Set of vertices 𝑉 , and a subset 𝑆 ⊆ 𝑉
functionality Connectivity((𝐸 (1) , r(1) ), (𝐸 (2) , r(2) ))

Remove all vertices from 𝑆 that may reach any vertex in𝑉 \𝑆
through edges in 𝐸 (1) ∪ 𝐸 (2)

Partition 𝑆 into disjoint sets 𝑐1 ⊔ · · · ⊔ 𝑐ℓ = 𝑆 , s.t. any two

vertices 𝑢, 𝑣 ∈ 𝑆 are in the same 𝑐𝑖 iff they are reachable from

each other through edges in 𝐸 (1) ∪ 𝐸 (2)
return 𝑐1, . . . , 𝑐ℓ

end functionality

We will abuse notation by writing Connectivity𝑉 ,𝑆 (𝐸, r) for
the combined set of edges 𝐸 = 𝐸 (1)∪𝐸 (2) . This is defined as running
Connectivity on the input (𝐸 (1) , r(1) ), (𝐸 (2) , r(2) ).

Now we can see that Connectivity𝑉 ,𝑆𝑤 (𝐸=𝑤, r|𝐸=𝑤 ) directly
gives us all isolatable subgraphs of weight 𝑤 (because each 𝑐𝑖 is

internally connected using edges of weight𝑤 , and no edge of weight

𝑤 leaves 𝑐𝑖 ). For example, with the graph in Figure 2, we would

reveal the following values to both parties:

Connectivity𝑉 ,{0,1,2} (𝐸=1, r|𝐸=1 ) → {0, 1, 2}
Connectivity𝑉 ,{3,4} (𝐸=2, r|𝐸=2 ) → ⊥
Connectivity𝑉 ,{5,6,7} (𝐸=3, r|𝐸=3 ) → {6, 7}
Connectivity𝑉 ,{8} (𝐸=4, r|𝐸=4 ) → ⊥
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As for step 1, we need to argue about why revealing these outputs to

both parties is secure. The reason is again that this information may

be inferred from any MSF (i.e., running Connectivity as above

using only edges from any given MSF will yield the exact same

output). We formally show this in Lemma C.2.

Functionality 2 can be realized in different ways, which we dis-

cuss in Section 4.1.

Repeat: After completing step 1 and step 2, we merge all isolat-

able subgraphs that have been found. We repeat until convergence

(i.e., no edges remain).

Combining MSFs: The final MSF will be computed as the union

of the individual Random MSFs found for each isolatable subgraph.

We discuss a protocol IsolatedMSF to compute a Random MSF for

an isolatable subgraph 𝑐 in Section 4.2.

3.3 Formalized MSF Protocol

Protocol 3 formally describes our Protocol. The initial state of end-

points r(1) , r(2) , and weights w(1) , w(2) are inferred directly from

the edges, which have the form 𝑒 = ({𝑢, 𝑣},𝑤, 𝑝).

Protocol 3 Random Minimum Spanning Forest

1: Public: 𝑉

2: protocol RandomMSF(𝐸 (1) , 𝐸 (2) )
3: 𝐶 ← ∅ ⊲ set of isolatable subgraphs, handled at the end

4: while true do

5: 𝑊 ← ∅ ⊲ set of weights seen during this iteration

6: for 𝑣 ∈ 𝑉 (in parallel) do

7: Party 𝑝:𝑤
(𝑝 )
𝑣 ← min{w(𝑒) | 𝑒 ∈ 𝛿𝐸 (𝑝 ) (𝑣)}

8: 𝑤𝑣 ← Reveal(min(Share1 (𝑤 (1)𝑣 ), Share2 (𝑤 (2)𝑣 )))
9: if 𝑤𝑣 ≠ ∞ then𝑊 ←𝑊 ∪ {𝑤𝑣} end if

10: end for

11: if𝑊 = ∅ then break end if

12: for𝑤 ∈𝑊 (in parallel) do

13: 𝑆𝑤 ← {𝑣 ∈ 𝑉 | 𝑤𝑣 =𝑤}
14: 𝑐1, . . . , 𝑐ℓ ← Connectivity𝑉 ,𝑆𝑤 ((𝐸

(1)
=𝑤 , r(1) |𝐸 (1)=𝑤

),
(𝐸 (2)=𝑤 , r(2) |𝐸 (2)=𝑤

))
15: for 𝑖 = 1, . . . , ℓ do

16: Party 𝑝: 𝐸 (𝑝 ) ← {𝑒 ∈ 𝐸 (𝑝 )=𝑤 | r(𝑝 ) (𝑒) ⊆ 𝑐𝑖 }
17: 𝐶 ← 𝐶∪{(𝑐𝑖 , (𝐸 (1) , r(1) |�̃� (1) ), (𝐸 (2) , r(2) |�̃� (2) ))}
18: Party 𝑝: (𝑉 , 𝐸 (𝑝 ) , r(𝑝 ) ,w(𝑝 ) )

← merge𝑐𝑖
(𝑉 , 𝐸 (𝑝 ) , r(𝑝 ) ,w(𝑝 ) )

19: end for

20: end for

21: end while

22: 𝐹 ← ∅ ⊲ the MSF

23: for (𝑐, (𝐸 (1) , r̃(1) ), (𝐸 (2) , r̃(2) )) ∈ 𝐶 (in parallel) do

24: 𝐹 ← 𝐹 ∪ IsolatedMSF𝑐 ((𝐸 (1) , r̃(1) ), (𝐸 (2) , r̃(2) ))
25: end for

26: return 𝐹

27: end protocol

The loop in lines 6 to 10 resembles step 1 as described in Sec-

tion 3.2, i.e., it computes the best incident weight𝑤𝑣 for each vertex

𝑣 ∈ 𝑉 . The loop in lines 12 to 20 resembles step 2: for each group

𝑆𝑤 ⊆ 𝑉 of vertices that have the same best weight 𝑤 , we utilize

Connectivity to find all subsets 𝑐1, . . . , 𝑐ℓ of 𝑆𝑤 that form isolat-

able subgraphs. All isolatable subgraphs are then merged. Finally, in

lines 22 to 25, we then compute individual RandomMSFs separately

for every isolatable subgraph 𝑐 .

Correctness. By definition of 𝑤𝑣 and Connectivity, it is clear

that each 𝑐𝑖 will always be an isolatable subgraph of the current

state of the graph. Therefore, correctness follows directly from

Lemma 3.2 (which is proven in Appendix B).

Security. In Appendix C, we prove that Protocol 3 fulfills semi-

honest security.

3.4 Optimizations

It is not guaranteed that every vertex 𝑣 ∈ 𝑉 will always be contained

in some isolatable subgraph. For any given weight𝑤 , this affects

exactly all vertices in 𝑆𝑤 \ 𝑐1 \ · · · \ 𝑐ℓ . These vertices will stay

untouched in the current iteration, which potentially leads to more

iterations and hence more communication rounds.

However, in many cases the following optimization is useful:

Suppose𝑊 = {𝑤1, . . . ,𝑤𝑘 } is the set of all weights that have been
discovered in the current iteration, sorted in increasing order. Fur-

thermore, suppose that there was only one isolatable subgraph 𝑐 of

the smallest weight𝑤1.

Now, let 𝑑 := 𝑆𝑤2
\ 𝑐1 \ · · · \ 𝑐ℓ be the set of vertices with second-

best weight not covered by any isolatable subgraph. Then, after the

current iteration, we know for sure that {𝑐} ∪𝑑 forms an isolatable

subgraph. Therefore, we may take care of this isolatable subgraph

immediately, by adding it to 𝐶 and merging its vertices.

To seewhy {𝑐}∪𝑑 is an isolatable subgraph, recall that all vertices

in 𝑑 must be reachable by some vertex in 𝑉 \ 𝑑 through edges of

weight𝑤2. However, the only candidates for vertices connected to

𝑑 through edges of weight𝑤2 are in 𝑐 (because all other vertices in

𝑆𝑤3
, . . . , 𝑆𝑤𝑘

do not have any incident edges of weight𝑤2).

For example, revisit the graph in Figure 2. The smallest weight is

𝑤1 = 1, and the second-smallest weight is𝑤2 = 2. While 𝑐 = {0, 1, 2}
is an isolatable subgraph, the two vertices in 𝑑 = {3, 4} are not part
of any isolatable subgraph. However, after merging {0, 1, 2}, the set
{{0, 1, 2}, 3, 4} must now form an isolatable subgraph of weight 2.

The optimization described abovemay be generalized: aftermerg-

ing {𝑐} ∪ 𝑑 , if there was no other isolatable subgraph of weight

𝑤2, then the resulting vertex will form an isolatable subgraph to-

gether with all untouched vertices in 𝑆𝑤3
, and so on. Thus, in the

example graph in Figure 1, this optimization would allow not only

for merging {{0, 1, 2}, 3, 4}, but also for merging {{{0, 1, 2}, 3, 4}, 5}
afterwards.

The described optimization does not require any communication,

because it can be done locally by each party. On the other hand, note

that the described optimization is heuristic in the sense that it may

not be useful for all input graph. However, our evaluation (see Sec-

tion 5) showed that for “normal” graphs (e.g., randomly generated

graphs), it may significantly reduce the number of rounds.

Other practical considerations. Orthogonally to the optimization

above, note that it can happen that the protocol attempts to compute

𝑤𝑣 = min{w(𝑒) | 𝑒 ∈ 𝛿𝐸 (𝑣)} multiple times for the same vertex

𝑣 ∈ 𝑉 . However, since it is guaranteed that the value of𝑤𝑐 does not

change, this recomputation does not need to take place explicitly.
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The values from the previous iteration can be cached and re-used.

The same can be done for any calls to Connectivity.

4 Building Blocks

Our Random MSF protocol described in Section 3 makes use of two

building blocks – Connectivity and IsolatedMSF. Both of these

subprotocols work on subgraphs of the original graph (𝑆𝑤 in the

case of Connectivity, and 𝑐 in the case of IsolatedMSF).

In both subprotocols, all input edges will have the same weight.

Unfortunately, this means that there are no tricks (unlike in our

main protocol) to reveal any intermediate values to speed up the

protocol without leaking any information. Furthermore, there is

another difficulty: Because Connectivity and IsolatedMSF are

only called for subgraphs, they even need to ensure that the input

size (i.e., the number of edges in those subgraphs) stays hidden.

Otherwise, an adversary may gain too much information – even if

the number of edges in the original graph is allowed to be leaked.

As a result, the two protocols described in this section are expen-

sive: the number of bit multiplications is in the order of 𝑘3, where

𝑘 is the number of vertices in the subgraph. This is why our main

protocol has its best performance when there is a low number of

edges with the same weight. Adding more edges with equal weight

requires running these two subprotocols on larger instances.

4.1 Implementing Connectivity

We first describe ways of implementing Functionality 2. Publicly

given is the set of vertices 𝑉 , and a subset 𝑆 ⊆ 𝑉 of size |𝑆 | = 𝑘 .

The private input for party 𝑝 is a set of edges 𝐸 (𝑝 ) .
Because the size |𝐸 (𝑝 ) | needs to stay hidden, we work on adja-

cency matrices instead of lists: The first step is to secret-share the

(symmetric) adjacency matrix𝑀 ∈ {0, 1} (𝑘+1)×(𝑘+1) , where𝑀 [𝑖, 𝑗]
denotes whether there exists at least one edge between the 𝑖-th

vertex in 𝑆 and the 𝑗-th vertex in 𝑆 . Note that we consider 𝑉 \ 𝑆
as one single vertex that corresponds to be the (𝑘 + 1)-th row and

column in 𝑀 . The secret-sharing of 𝑀 can be easily obtained by

having each party compute𝑀 (𝑝 ) locally (i.e., the adjacency matrix

when restricted to edges in 𝐸 (𝑝 ) ), and then taking the bit-wise OR.

The goal is to jointly compute J𝑀𝑘K, because 𝑀𝑘 [𝑖, 𝑗] denotes
whether there exists a path of length ≤ 𝑘 between the 𝑖-th and the

𝑗-th vertex. Because no simple path can be longer than 𝑘 edges,

the entry𝑀𝑘 [𝑖, 𝑗] denotes whether 𝑖 and 𝑗 are reachable from each

other using any path. Thus, given the revealed matrix 𝑀𝑘
, any

party can compute the sets 𝑐1, . . . , 𝑐ℓ .

We propose two different ways of computing J𝑀𝑘K.

First option. We use repeated squaring on matrices. That is, we

compute ⌊log
2
𝑘⌋ matrices

J𝑀K, J𝑀2K, J𝑀4K, J𝑀8K, . . . ,

where J𝑀2ℓK← J𝑀 ℓK · J𝑀 ℓK. Then, J𝑀𝑘K can be computed as the

product of a subset of these matrices.

Each matrix multiplication takes 𝑂 (𝑘3) multiplications over

𝑂 (log𝑘) rounds. As a result, the overall communication cost is

𝑂 (𝑘3 log𝑘), and the number of rounds is 𝑂 (log2 𝑘) (because all

J𝑀2
ℓ
K’s need to be computed sequentially).

Second option. Here, we iteratively compute

J𝐴ℓK := J(𝑀 [: ℓ + 1, : ℓ + 1])ℓK

for increasing ℓ ∈ [𝑘], where𝑀 [: ℓ +1, : ℓ +1] denotes the first ℓ +1
rows and columns of𝑀 . Thus, each matrix𝐴ℓ contains information

about which pairs among the first ℓ+1 vertices in 𝑆 are connected to
each other (using only edges among these ℓ + 1 vertices). Repeating
this for 𝑘 times, we will get the desired matrix J𝐴𝑘K = J𝑀𝑘K.

For a fixed ℓ , the corresponding matrix𝐴ℓ is computed as follows:

first, we calculate

J𝐴ℓ [𝑖, ℓ + 1]K←
∨
𝑗∈[ℓ ]

J𝐴ℓ−1 [𝑖, 𝑗]K ∧ J𝑀 [ 𝑗, ℓ + 1]K

for each 𝑖 ∈ [ℓ], which denotes whether the “new” vertex ℓ + 1 is
reachable from the 𝑖-th vertex. Then, we use this to update

J𝐴ℓ [𝑖, 𝑗]K← J𝐴ℓ−1 [𝑖, 𝑗]K ∨ (𝐴ℓ [𝑖, ℓ + 1] ∧𝐴ℓ [ 𝑗, ℓ + 1])

for all 𝑖, 𝑗 ∈ [ℓ], to take paths through the (ℓ + 1)-th vertex into

consideration for the reachability between 𝑖 and 𝑗 .

Each iteration requires 𝑂 (𝑖2) multiplications, and log 𝑖 rounds.

Thus, the overall communication is 𝑂 (𝑘3) multiplications, and the

number of rounds is 𝑂 (𝑘 log𝑘).

Summary. The first approach has lower round complexity, while

the second approach has lower communication complexity. In our

implementation we utilize the second option, because the protocol

is only feasibly for small 𝑘 anyways, so the round complexity of

𝑂 (𝑘 log𝑘) is not a significant issue.

4.2 Implementing IsolatedMSF

Note that we can think of IsolatedMSF as a protocol that com-

putes a Random MSF on an unweighted graph. Hence, it crucially

depends on tie-breaker values. Unfortunately, we cannot simply

sample tie-breaker values for all edges, because the running time

of IsolatedMSF needs to be independent of the number of edges!

Our implementation loosely follows Kruskal’s algorithm [22] for

computing an MSF. Interestingly, Kruskal does not need to know

all edge weights (or, in our case, tie-breakers) at the same time—it

suffices to know which edge currently has the smallest weight. Its

endpoints are then merged together. Hence, in our protocol, we

just pick the “best” edge on-the-fly: we sample a uniformly random

edge (whose endpoints are not merged yet) and pretend that its

tie-breaker is smaller than all others. This eliminates the need to

assign tie-breakers to all edges.

A formal version is described in Protocol 4. It uses the following

secret-shared variables:

• 𝑢𝑖 (for 𝑖 ∈ [𝑛]) denotes the union-find data structure. Two

vertices 𝑖 and 𝑗 are reachable from each other using previ-

ously selected edges iff 𝑢𝑖 = 𝑢 𝑗 .

• 𝑎𝑑 (𝑖, 𝑗,𝑝 ) denotes the number of edges in 𝐸
(𝑝 )
𝑖 𝑗

, which is the

set of edges in 𝐸 (𝑝 ) that connect vertices 𝑖 and 𝑗 . However,

whenever vertices 𝑖 and 𝑗 become reachable from each other

through previously selected edges, we update 𝑎𝑑 (𝑖, 𝑗,𝑝 ) ← 0.

• 𝑠𝑑 (𝑖, 𝑗,𝑝 ) denotes the index of the edge within 𝐸
(𝑝 )
𝑖 𝑗

that has

been selected to be part of the MSF (or ⊥, if no edge from

𝐸
(𝑝 )
𝑖 𝑗

has been selected).
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Here, 𝑑 (𝑖, 𝑗, 𝑝) = (𝑝 − 1) · 𝑛 (𝑛−1)
2
+ 𝑗 · ( 𝑗−1)

2
+ 𝑖 is a bijection, which

for every pair 0 ≤ 𝑖 < 𝑗 < 𝑛 and every 𝑝 = 1, 2, assigns a different

index between 0 and 𝑁 − 1, where 𝑁 := 𝑛 · (𝑛 − 1). This allows us
to write 𝑎 and 𝑠 as flattened arrays of lengths 𝑁 .

Protocol 4 Random Spanning Forest for an unweighted graph

1: Public: Set of vertices 𝑉

2: protocol IsolatedMSF((𝐸 (1) , r(1) ), (𝐸 (2) , r(2) ))
3: J𝑢𝑖K← J𝑖K ∀𝑖 ∈ [𝑛]

4:

J𝑎𝑑 (𝑖, 𝑗,𝑝 )K← Share𝑝 ( |𝐸 (𝑝 )𝑖 𝑗
|)

J𝑠𝑑 (𝑖, 𝑗,𝑝 )K← J⊥K

}
∀0 ≤ 𝑖 < 𝑗 < 𝑛, 𝑝 = 1, 2

5: for 𝑛 − 1 times do

6: [J𝐴0K, . . . , J𝐴𝑁−1K]←PrefixSum( [J𝑎0K, . . . , J𝑎𝑁−1K])
7: J𝑟K← RandInt(J𝐴𝑁−1K)
8: J𝑔𝑧K← J𝐴𝑧K

?

> J𝑟K ∀𝑧 ∈ [𝑁 ]
9: ((J�̃�K, J𝑣K), J𝑔K) ← FindFirst( [(J𝑢𝑖K, J𝑢 𝑗 K), J𝑔𝑧K]𝑧∈[𝑁 ])
10: J𝑢𝑖K← if J𝑢𝑖K

?

= J𝑣K then J�̃�K else J𝑢𝑖K ∀0 ≤ 𝑖 < 𝑛

11:

J𝑎𝑧K← if J𝑢𝑖K
?

= J𝑢 𝑗 K then 0 else J𝑎𝑧K
J𝑠𝑧K← if J𝑔𝑧K ∧ ¬J𝑔𝑧−1K

then J𝑟K − J𝐴𝑧−1K else J𝑠𝑧K


∀𝑧 = 𝑑 (𝑖, 𝑗, 𝑝)
∈ [𝑁 ]

12: end for

13: 𝐹 ← ∅
14: for 0 ≤ 𝑖 < 𝑗 < 𝑛 and 𝑝 = 1, 2 do

15: Send Reveal𝑝 (J𝑠𝑑 (𝑖, 𝑗,𝑝 )K) to party 𝑝

16: if party 𝑝 determines that 𝑠𝑑 (𝑖, 𝑗,𝑝 ) ≠ ⊥ then

17: Party 𝑝: 𝑒 ← 𝑠𝑑 (𝑖, 𝑗,𝑝 ) -th element in 𝐸
(𝑝 )
𝑖 𝑗

18: Party 𝑝 sends 𝑒 to the other party

19: 𝐹 ← 𝐹 ∪ {𝑒}
20: end if

21: end for

22: return 𝐹

23: end protocol

In each of the 𝑛 − 1 iterations, this protocol chooses a uniformly

random edge and updates all variables in the following way:

• First, we compute the prefix-sums 𝐴0, . . . , 𝐴𝑁−1 of the array
𝑎0, . . . , 𝑎𝑁−1. Note that 𝐴𝑁−1 is the number of remaining

edges that could be selected without introducing a cycle.

• Then, we generate a uniformly random integer 𝑟 between 0

and 𝐴𝑁−1 (exclusive). Note that 𝑟 corresponds to the integer

𝑧 for which 𝐴𝑧 > 𝑟 ≥ 𝐴𝑧−1. This 𝑧 = 𝑑 (𝑖, 𝑗, 𝑝) indicates that
an edge between vertices 𝑖 and 𝑗 , belonging to party 𝑝 has

been selected.

• In order to update the union-find data structure that we

obtain by merging 𝑖 and 𝑗 , we need the secret-shares J𝑢𝑖K
and J𝑢 𝑗 K, where 𝑖 and 𝑗 correspond to the lowest 𝑧 = 𝑑 (𝑖, 𝑗, 𝑝)
for which 𝑔𝑧 := 𝐴𝑧

?

> 𝑟 is true. We obtain these secret-shares

through FindFirst( [(J𝑢𝑖K, J𝑢 𝑗 K), J𝑔𝑧K]𝑧∈[𝑁 ]).
• Finally, we update the union-find data structure, set values

of 𝑎𝑧 to 0where necessary, and update 𝑠𝑧 (because we picked

the (𝑟 −𝐴𝑧−1)-th edge of 𝐸
(𝑝 )
𝑖 𝑗

into our MSF).

Then, the protocol reveals all values of 𝑠𝑑 (𝑖, 𝑗,𝑝 ) to party 𝑝 , who

sends the 𝑠𝑑 (𝑖, 𝑗,𝑝 ) -th edge within 𝐸
(𝑝 )
𝑖 𝑗

to the other party. All edges

communicated in this way will together form the MSF.

Note that IsolatedMSF makes use of the following three sub-

protocols (where 𝐵 is the bitlength of the secret-shares of 𝑎𝑑 (𝑖, 𝑗,𝑝 )
and 𝑠𝑑 (𝑖, 𝑗,𝑝 ) , i.e., 2

𝐵
is an upper bound on the number of edges in

the input):

• PrefixSum(J𝑎0K, . . . , J𝑎𝑁−1K) is trivially implemented using

𝑁 − 1 secure additions. Using the Ladner-Fischer adder [23],
this requires in total 𝑂 (𝑁 · 𝐵 log𝐵) bit multiplications and

𝑂 (𝐵 log𝐵) communication rounds.

• RandInt(J𝑀K) computes a uniformly random number in

the range [0, 𝑀), where𝑀 itself is secret-shared. We realize

this using [9, Algorithm 7]. Note that this protocol has an

error probability of ≤ 1

2
𝜅 if a pool of 𝜅 generated numbers

is used. The number of multiplications is 𝑂 (𝐵 · 𝜅), and the

number of communication rounds is 𝑂 (log𝐵 + log𝜅).
• FindFirst(𝐿) takes a list 𝐿 of secret-shares of the form

J𝐿𝑖K = (J𝑥𝑖K, J𝑔𝑖K), where 𝑔𝑖 is a single bit. It returns the

first element J𝐿𝑖K for which 𝑔𝑖 = 1. This procedure can be

realized through𝑂 (log |𝐿 |) iterations, each of them merging

any two neighboring elements together. The total number of

multiplications is𝑂 ( |𝐿 | ·log𝑛) (with log𝑛 being the bitlength

of 𝑥𝑖 ), and the number of rounds is 𝑂 (log |𝐿 |).

In total, IsolatedMSF requires 𝑂 (𝑛 · 𝐵 · 𝜅 + 𝑛3 · (log𝑛 + 𝐵 log𝐵))
multiplications, and 𝑂 (𝑛 · (𝐵 log𝐵 + log𝑛 + log𝜅)) rounds.

5 Evaluation

Our protocol’s efficiency depends on the graph structure and its

weights. In the best case, it will have 𝑂 ( |𝑉 |) communication and

𝑂 (log |𝑉 |) rounds, but in the worst case (when all edges have the

same weight) it may require 𝑂 ( |𝑉 |3 log |𝑉 |) communication and

𝑂 ( |𝑉 | log |𝑉 |) rounds due to running IsolatedMSF on a size-|𝑉 |
subgraph. More generally, in a graph with𝑚 isolatable subgraphs

of size 𝑛 (with distinct weights), the overall communication will be

𝑂 (𝑚 · 𝑛3 log𝑛), with 𝑂 (log |𝑉 | · 𝑛 log𝑛) rounds. Due to the large

variance, we will give an empirical evaluation in the following.

We have implemented our RandomMSF protocol in C++, based

on the semi-honest two-party computation framework ABY [12].

For every “stage” of our protocol that reveals some intermediate

result (i.e., weight comparisons in line 8, Connectivity in line 14,

and IsolatedMSF in line 24), we create a new circuit, evaluate it

using ABY, and then proceed with the remaining protocol whose

execution path depends on the output values of the previous cir-

cuit evaluation. To save memory and improve the running time,

our circuits utilize SIMD gates whenever the same instructions are

executed for several inputs in parallel (e.g., any two calls toConnec-

tivity on the same number of vertices would be run simultaneously

in SIMD copies of the same gates).

Hardware setup. We evaluate our implementation on pairs of

AWS instances with AMD EPYC processors with 8 cores and 16

GiB memory. We consider two settings:

• LAN : Two servers in the same availability zone. The round-

trip time is 0.27 ms, and the bandwidth is about 5 Gbps.
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Figure 3: Time required for generating multiplication triples

in the offline phase. Left: LAN setup, right: WAN setup.

• WAN : One server on the US west coast, and one server on

the US east coast. The round-trip time is 60 ms, and the

bandwidth is about 390 Mbps.

Parameters. In all cases, we choose the statistical security param-

eter 𝜅 = 40 for calls to RandInt. We select the bitlength 𝐵 = 32

for any secret-shared values that represent numbers of edges (e.g.

J𝑎𝑧K’s in IsolatedMSF, Protocol 4). This means that no party is

allowed to input more than 2
32
edges of any given weight.

Separating offline and online phase. In an input-independent of-

fline phase we can preprocess multiplication triples (MT’s; also

called beaver triples [5]), which saves time during the online phase

that is run once both parties know their inputs. An MT can be

consumed when multiplying two secret-shared bits with each other.

An MT-based multiplication requires each party to send one bit to

the other party (this is essentially the only source of communicated

data in our MSF protocol). Until it is consumed, an MT requires 3

bits of storage by each party.

ABY uses OT-extension to generate multiplication triples [2, 29].

Figure 3 shows how much time this requires on our hardware setup.

We can see that our LAN setup can generate almost 20 · 106 MT’s

per second, and our WAN setup can generate about 3.1 · 106 MT’s

per second. Each MT requires about 16 byte of communication in

both directions.

Baseline. We use Laud’s protocol [24] as our baseline, because it

is the most optimized existing protocol for computing MSFs that

can be adapted towards our notion of a Random MSF.

We directly take the numbers from Laud’s paper [24], but also

note that it is expected that Laud’s protocol will slow down further

when computing a RandomMSF (due to additional secret-shared

values). Furthermore, it is implemented in the information-theoretic

3-party framework Sharemind [8], and therefore likely to be slower

in a two-party setting. Its evaluation is based on hardware with 12

cores and 48 GiB of memory. Laud only considers the LAN setting

with a bandwidth of only 1 Gbps.

5.1 Random Graphs

We generated graphs with |𝐸 | = 3|𝑉 | edges that have uniformly

random (but distinct) endpoints. Those edges are split among the

two parties, s.t. each party’s input contains
|𝐸 |
2

edges.

Because our protocol’s running time depends on the edgeweights

and graph structure (instead of merely the input size), we need an-

other parameter to determine how “difficult” a graph is for our

protocol to process. We do so by choosing all edge weights uni-

formly at random between 0 and𝑤 · |𝐸 |, for some fixed𝑤 ∈ R. For
example, when𝑤 = 0.05, then every possible weight will be used by

20 different edges on average. When decreasing𝑤 , we can expect

our protocol to become slower, because more edges will share the

same weight.

Figure 4 shows the required time and amount of communication

by our protocol (which is proportional to the number of bit multi-

plications), for different values of the parameter𝑤 . For example, for

a graph with 2 · 105 vertices and parameter𝑤 = 0.05, our protocol

requires 107 seconds in the LAN setup, and about 804 seconds (13.4

minutes) in the WAN setup. The amount of communicated data

has a size of roughly 925 MiB (due to roughly 3.7 · 109 secret bit
multiplications).

Comparison with baseline. We compare the results for our lowest

choice of𝑤 (𝑤 = 0.05) with Laud’s protocol in Figure 5. For a fair

comparison, because Laud does not require any offline phase, in the

same figure we also state the combined time required for online and

offline phase. This is estimated using the numbers from Figure 3.

We can see that our protocol outperforms Laud’s protocol by a

factor of almost 100×. When considering the online phase only, the

difference is even higher (about 200×). Furthermore, for fixed 𝑤 ,

while the time for Laud’s protocol increases with the number of

edges, the performance of our protocol is essentially independent

of |𝐸 | (see the right-hand side of Figure 5).

We note that higher choices of𝑤 (as depicted in Figure 4, e.g.𝑤 =

0.2 or even completely unique weights) would lead to even larger

discrepancies between our protocol and that by Laud. Conversely,

when choosing 𝑤 too small (the most extreme case would be to

have a graph with edges of identical weights only), it is expected

that Laud’s protocol becomes the better choice at some point.

5.2 TSPLIB Graphs

To further demonstrate that our protocol is useful in practice when

used as a 2-approximation of the Traveling Salesman Problem, we

consider several randomly selected graphs from TSPLIB collec-

tion [32]. All of these graphs are complete, meaning that there

exists an edge between each pair of vertices. All of them contain

many edges with identical weights.

Figure 6 contains the results for graphs with up to 1500 vertices.

We do note that for several inputs from TSPLIB with less than 1500

vertices (not depicted in Figure 6), our protocol’s required resources

blow up so quickly (due to too many edges of the same weight) that

we were unable to run the entire protocol. However, on other inputs,

our protocol significantly outperforms Laud’s protocol, because the

baseline requires the entire input to be secret-shared.

5.3 In-depth Runtime Analysis

We now provide some more insight into what is the most time-

consuming part of our protocol. Note that our protocol RandomMSF

can be split into two phases:

• Phase 1 (lines 4 to 21) iteratively computes the best inci-

dent weight for each vertex (which is very cheap) and runs

Connectivity on vertices with the same weight.

• Phase 2 (lines 22 to 25) simultaneously computes Isolat-

edMSF for all isolatable subgraphs found before.
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Figure 4: The amount of time in the online phase, and the number of bit multiplications required by our protocol on random

input graphs with |𝐸 | = 3|𝑉 |. Left: LAN setting, middle: WAN setting, right: amount of communication (note that every byte of

communication means that 4 MTs have been consumed). Edge weights are either chosen uniquely (blue line), or uniformly at

random in the range [0,𝑤 · |𝐸 |). All numbers are averaged over 3 runs with independently generated graphs.

Figure 5: Comparison of our protocol with that by Laud in

the LAN setting, for a random graph with weight parameter

𝑤 = 0.05. Left: |𝐸 | = 3|𝑉 |, right: |𝐸 | = 6|𝑉 |. For our protocol,
we display both the online running time, and the combined

running time that includes the time for generating MT’s.

Figure 6: The time required by our protocol (compared with

Laud’s protocol) for several TSPLIB graphs in the LAN setting.

We display both the online running time, and the combined

running time that also includes the offline time for generat-

ing MT’s.

Both Connectivity and IsolatedMSF require communication that

grows cubic in the number of vertices of the provided subgraph.

These two subprotocols are responsible for the vast majority of the

running time.

Figure 7 contains the results for a random graph with of size

|𝑉 | = 2 · 105 and varying weight parameter𝑤 . It shows that, despite

phase 1 having many iterations (typically between 100 and 200 for

|𝑉 | = 2 ·105 vertices), RandomMSFmostly outweighs the rest of the

protocol due to its high costs. However, this discrepancy becomes

smaller when considering theWAN setting where the number of

communication rounds plays a bigger role.

For the same graphs, the right-hand side of Figure 7 shows the

distribution of sizes of isolatable subgraphs on which IsolatedMSF

needs to be run. Naturally, lower𝑤 means that isolatable subgraphs

will be larger (up to almost 25 when𝑤 = 0.05), hence resulting in

more expensive calls to RandomMSF in phase 2.

5.4 Individual Performance of Connectivity

and IsolatedMSF

We also benchmark the two subprotocols by themselves, in order to

test which subgraph sizes still feasible for our protocol to process.

Figures 8 and 9 contain the results for Connectivity and Iso-

latedMSF, respectively. We can see that testing connectivity for

up to 150 vertices, and computing a Random MSF of an isolatable

subgraph with up to 60 vertices is doable within reasonable time.

Figure 10 depicts the number of multiplications for a single call to

either of the subprotocols.

Running 𝑘 SIMD instances simultaneously (as shown in the

figures for 𝑘 = 100 and 𝑘 = 1000), significantly decreases the per-

instance time. For example, in the LAN setting, 1000 instances

of Connectivity for 150 vertices is merely 2.5 as expensive as a

single instance. The main reason is that most of the time is spent

on constructing the binary circuit that is then passed to ABY and

reused for all 𝑘 instances.
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Figure 7: The two figures on the left (LAN setting and WAN setting, respectively) show the time required for a random graph

with |𝑉 | = 2 · 105, |𝐸 | = 3|𝑉 | and weight parameter𝑤 = 0.05, split into the two phases. The figure on the right-hand side displays

the number of edges discovered as part of an isolatable subgraph of a particular input size (≥ 3). All remaining edges of the MSF

(e.g., about 133 000 for𝑤 = 0.05) not depicted are found inside an isolatable subgraph of exactly 2 vertices.

Figure 8: Time required by 𝑘 simultaneous runs of Connec-

tivity in dependency of the input size (i.e., the number of

vertices |𝑆 |). Left: LAN setting, right:WAN setting.

Figure 9: Time required by 𝑘 simultaneous runs of Isolat-

edMSF in dependency of the input size (i.e., the number of

vertices |𝑉 |). Left: LAN setting, right:WAN setting. Technical

restrictions do not allow us to test configuration in which

the number of bit multiplications becomes too large.

These numbers may be used as a guideline to estimate what

graphs (not randomly generated as in Section 5.1) are still within

scope of our protocol. For example, a graph with up to 100 isolatable

subgraphs of size 50 each may still be doable in under two minutes

in the LAN setting.

6 Conclusion

In this work, we have presented a novel protocol for computing a

Minimum Spanning Forest in a semi-honest, two-party computation

Figure 10: Number of multiplications for a single run of

Connectivity (left) or IsolatedMSF (right) in dependency

of the input size (i.e., the number of vertices |𝑆 | or |𝑉 |). Recall
that each multiplication consumes one MT, and requires

communicating 2 bits (1 bit in each direction).

setting. Importantly, we are able to handle non-unique edge weights

in a fairness-preserving way.

The performance highly depends on the graph structure and its

weights, but our evaluation shows that we gain large improvements

over the baseline for many settings. Our protocol also has a low

round-complexity, making it useful even for a WAN setting, and it

is independent of the number of edges.

There is still much potential for improvements, e.g. in the sub-

protocols Connectivity and IsolatedMSF whose running time

quickly grow if there are many edges with the same weights. It

may be useful to fall back to alternative solutions (such as ORAM)

to counter cubic growth in these cases.

Independently of the MSF problem, our work also sheds light on

the importance of analyzing a problem, instead of simply applying

general-purpose MPC compilers. Our work constructs a protocol

that yields significant improvements for “typical” inputs. These

techniques, i.e., revealing information (in a secure way) that is ex-

pected to speed up the protocol on any realistic inputs, and therefore

breaks the “worst-case barrier” of general MPC frameworks, might

also be useful for applications other than MSFs.
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Figure 11: Two different graphs that can be distinguished

when the tie-breaker 𝜋 is leaked.

Theorem A.1. Suppose Π is a protocol implementing Functional-

ity 1, i.e., it outputsMSF(𝐺, 𝜋) for a uniformly random 𝜋 : 𝐸 → [|𝐸 |].
If one of the parties 𝑝 is able to determine (given its view of the pro-

tocol execution) the relative ordering of their own edges 𝐸 (𝑝 ) w.r.t. 𝜋
(i.e., for all edges 𝑒, 𝑒′ ∈ 𝐸 (𝑝 ) they know whether 𝜋 (𝑒) < 𝜋 (𝑒′) or
𝜋 (𝑒) > 𝜋 (𝑒′)), then this protocol is not secure.

Proof. W.l.o.g. assume that party 1 is able to infer the relative

ordering of their own edges 𝐸 (1) w.r.t. 𝜋 . We show that there is

no simulator for party 1 satisfying the necessary conditions for

semi-honest security (Definition 2.1).

We construct two graphs that party 1 will be able to distinguish

with non-negligible probability, even when the same MSF is re-

turned by protocol Π for both input graphs. They are shown in

Figure 11. In both graphs, we have four vertices𝑉 = {1, 2, 3, 4}, and
the input of party 𝐸 (1) is always defined as 𝐸 (1) = {𝑒1, 𝑒2, 𝑒3}, where
r(𝑒1) = {1, 2}, r(𝑒2) = {2, 3}, and r(𝑒3) = {3, 4}. The difference is
that, in the first graph, party 2 has the single edge 𝐸 (2) = {𝑒4}
with r(𝑒4) = {1, 3}, while it has the single edge 𝐸 (2) = {𝑒4} with
r(𝑒4) = {2, 4} in the second graph. All weights w(𝑒) = 0 (for

𝑒 = 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒4) are equal. This is why the generated MSF cru-

cially depends on the chosen permutation 𝜋 .

For any tie-breaker 𝜋 : 𝐸 (1) ∪ 𝐸 (2) → [4] of the first graph, let
𝐹 (𝜋) := MSF(𝑉 , 𝐸 (1) ∪ 𝐸 (2) , 𝜋) be the MSF generated for 𝜋 . For

any tie-breaker 𝜋 : 𝐸 (1) ∪ 𝐸 (2) → [4] of the second graph, let

𝐹 (𝜋) :=MSF(𝑉 , 𝐸 (1) ∪ 𝐸 (2) , 𝜋) be the MSF generated in the second

graph on tie-breaker 𝜋 .

By semi-honest security (Equation (1)), there must be a simula-

tor 𝑆 simulating the view of party 1. This theorem’s assumption

additionally states that the tie-breaker restricted to the edges of

party 1 (let us denote this by the unique 𝜋 ′ : 𝐸 (1) → [3] for which
𝜋 ′ (𝑒) < 𝜋 ′ (𝑒′) iff 𝜋 (𝑒) < 𝜋 (𝑒′)) can be extracted from the view,

and therefore we may assume that 𝑆 itself outputs this tie-breaker.

Thus, the following distributions are indistinguishable:

{(𝑆 (𝐸 (1) , 𝐹 (𝜋)), 𝐹 (𝜋))} 𝑐≡ {(𝜋 ′, 𝐹 (𝜋))} (2)

{(𝑆 (𝐸 (1) , 𝐹 (𝜋)), 𝐹 (𝜋))} 𝑐≡ {(𝜋 ′, 𝐹 (𝜋))} (3)

We now analyze the case in which the protocol outputs 𝐸 (1) as its
final Random MSF (i.e., 𝐹 (𝜋) = 𝐸 (1) or 𝐹 (𝜋) = 𝐸 (1) , respectively).
Note that in both graphs, the probability of this happening is exactly

1

3
(in the first graph, 𝐹 (𝜋) = 𝐸 (1) happens iff 𝜋 (𝑒1), 𝜋 (𝑒2) < 𝜋 (𝑒4),

and in the second graph, 𝐹 (𝜋) = 𝐸 (1) happens iff 𝜋 (𝑒2), 𝜋 (𝑒3) <
𝜋 (𝑒4)).

Thus, by combining (2) and (3), we know that, conditioning on

the output being equal to 𝐸 (1) , it will be impossible to distinguish

between the distribution of 𝜋 ′ on graph 1 and graph 2:

{𝜋 ′ | 𝐹 (𝜋) = 𝐸 (1) } 𝑐≡ {𝜋 ′ | 𝐹 (𝜋) = 𝐸 (1) }
However, this does not hold. By checking the condition 𝜋 (𝑒1) <

𝜋 (𝑒2) < 𝜋 (𝑒3) (testing this merely requires knowledge 𝜋 ′), it is
easy to distinguish between these two distributions:

• In the first graph, this conditions holds for exactly two tie-

breakers 𝜋 : when 𝜋 (𝑒1) < 𝜋 (𝑒2) < 𝜋 (𝑒3) < 𝜋 (𝑒4) and when

𝜋 (𝑒1) < 𝜋 (𝑒2) < 𝜋 (𝑒4) < 𝜋 (𝑒3).
• In the second graph, this condition holds for only one tie-

breaker 𝜋 : 𝜋 (𝑒1) < 𝜋 (𝑒2) < 𝜋 (𝑒3) < 𝜋 (𝑒4).
□

B Correctness

Proof of Lemma 3.2. We are given a graph (𝑉 , 𝐸, r,w), and an

isolatable subgraph 𝑐 ⊆ 𝑉 of weight𝑤 . Let 𝐸 := {𝑒 ∈ 𝐸=𝑤 | r(𝑒) ⊆
𝑐} be the set of all edges that connect two vertices in 𝑐 and have

weight𝑤 , and let 𝐸′ := 𝐸 \ {𝑒 ∈ 𝐸 | r(𝑒) ⊆ 𝑐} be the set of all edges
that do not connect two vertices in 𝑐 .

We need to prove that

MSF((𝑉 , 𝐸, r,w), 𝜋) with 𝜋 ← 𝐸!

has the same distribution as

MSF((𝑐, 𝐸, r|�̃� ,w|�̃�), �̃�) ∪MSF(merge𝑐 (𝐺), 𝜋 ′)
with �̃� ← 𝐸! and 𝜋 ′ ← 𝐸′! ,

where 𝜋 , �̃� , and 𝜋 ′ are uniformly sampled.

Fix any tie-breaker 𝜋 ∈ 𝐸! on edges 𝐸. We define �̃� ∈ 𝐸! as the
corresponding permutation restricted to 𝐸 (i.e., s.t. �̃� (𝑒) < �̃� (𝑒′)
holds iff 𝜋 (𝑒) < 𝜋 (𝑒′) for all 𝑒, 𝑒′ ∈ 𝐸), and we define 𝜋 ′ ∈ 𝐸′! as
the corresponding permutation restricted to 𝐸′. Then, it suffices to

show that the two spanning trees

MSF((𝑉 , 𝐸, r,w), 𝜋)
=MSF((𝑐, 𝐸, r|�̃� ,w|�̃�), �̃�) ∪MSF(merge𝑐 (𝐺), 𝜋 ′)

are equal, because any pair (�̃�, 𝜋 ′) ∈ 𝐸!×𝐸′! is generated by exactly
the same amount of 𝜋 ’s.

Since both sides of the equation will have the same size, we only

need to prove that every edge in 𝐹 := MSF((𝑐, 𝐸, r|�̃� ,w|�̃�), �̃�) is
also in 𝐹 := MSF((𝑉 , 𝐸, r,w), 𝜋), and every edge that is in the set

𝐹 ′ :=MSF(merge𝑐 (𝐺), 𝜋 ′) is also in 𝐹 .

• Let 𝑒 ∈ 𝐹 be some edge in the MSF of the isolatable subgraph.

For the sake of contradiction, assume 𝑒 ∉ 𝐹 . Adding 𝑒 to

𝐹 would result in a cycle (otherwise 𝐹 was not a forest),

and furthermore all edges 𝑒′ ∈ 𝐹 on the cycle need to be

“better” than 𝑒 , i.e., either w(𝑒′) < w(𝑒), or w(𝑒′) = w(𝑒)
and 𝜋 (𝑒′) < 𝜋 (𝑒) (otherwise 𝐹 was not minimum).

As a result, no edge on the cycle may leave the isolatable

subgraph 𝑐 (because all edges leaving 𝑐 have weight > 𝑤 =

w(𝑒)). Hence, every such 𝑒′ is in 𝐸. Furthermore, at least one

of the edges of the cycle must cross the cut of 𝑐 induced by 𝑒 ,

and therefore replacing 𝑒 by 𝑒′ in 𝐹 would result in another
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spanning forest 𝐹 \ {𝑒} ∪ {𝑒′} ⊆ 𝐸 on 𝑐 , which is better than

𝐹 itself. This contradicts the fact that 𝐹 is minimum.

• Let 𝑒 ∈ 𝐹 ′ be some edge in the MSF of the graph merge𝑐 (𝐺).
For the sake of contradiction, assume 𝑒 ∉ 𝐹 . As before, adding

𝑒 to 𝐹 would result in a cycle, and all edges 𝑒′ on the cycle

are better than 𝑒 .

Consider the cut (𝑆,𝑇 ) (with 𝑆,𝑇 ⊆ 𝑉 ′) on merge𝑐 (𝐺) in-
duced by 𝑒 . W.l.o.g. assume that the merged vertex 𝑐 is in 𝑆 .

Then, (𝑆 \ {𝑐} ∪ 𝑐,𝑇 ) forms a cut on𝐺 crossed by 𝑒 , and the

cycle must contain another edge 𝑒′ that crosses this cut. This
means that at most one endpoint of 𝑒′ is in 𝑐 , and therefore

𝑒′ ∈ 𝐸′. As a result, we could replace 𝑒 by 𝑒′ in 𝐹 ′, and receive
another spanning forest 𝐹 \ {𝑒} ∪ {𝑒′} ⊆ 𝐸′ on merge𝑐 (𝐺),
which is better than 𝐹 itself. This contradicts the fact that 𝐹 ′

is minimum.

□

C Security

Security of Protocol 3 (RandomMSF) is based on the following

two lemmas. Intuitively, they show that all intermediate values

revealed in our protocol (i.e., values𝑤𝑣 in line 8 and the output of

Connectivity in line 14) may be simulated given an arbitrary MSF,

i.e., given any output of RandomMSF.

Lemma C.1. Let 𝐺 = (𝑉 , 𝐸, r,w) be a graph, and let 𝐹 ⊆ 𝐸 be an

MSF of 𝐺 . Then, for any vertex 𝑣 ∈ 𝐺 , the weight of its best outgoing

edge is the same for both 𝐸 and 𝐹 :

min{w(𝑒) | 𝑒 ∈ 𝛿𝐸 (𝑣)} =min{w(𝑒) | 𝑒 ∈ 𝛿𝐹 (𝑣)}

Proof. Because of 𝐹 ⊆ 𝐸, it is obvious that the right-hand side

cannot be strictly smaller than the left-hand side. So for the purpose

of a contradiction, assume that

min{w(𝑒) | 𝑒 ∈ 𝛿𝐸 (𝑣)} < min{w(𝑒) | 𝑒 ∈ 𝛿𝐹 (𝑣)}.

That is, there is an edge 𝑒 ∈ 𝛿𝐸 (𝑣) with w(𝑒) < min{w(𝑒) | 𝑒 ∈
𝛿𝐹 (𝑣)}. We can define a new set of edges 𝐹 ′ := 𝐹 ∪ {𝑒} by adding

𝑒 to the MSF 𝐹 . The graph (𝑉 , 𝐹 ′, r|𝐹 ′ ,w|𝐹 ′ ) must contain a cycle,

because otherwise 𝐹 was not spanning.

Now remove any edge 𝑒′ ∈ 𝛿𝐹 (𝑐) on the cycle to obtain 𝐹 ′′ :=
𝐹 ′ \ {𝑒′}. Then, 𝐹 ′′ is still a spanning forest (because removing an

edge 𝑒′ from a cycle does not impact reachability, and because there

exists no cycle anymore). Furthermore, due to w(𝑒) < w(𝑒′), 𝐹 ′′
would be a spanning forest with w(𝐹 ′′) < w(𝐹 ), a contradiction to

𝐹 being minimum. □

Lemma C.2. Let 𝐺 = (𝑉 , 𝐸, r,w) be a graph, and let 𝐹 ⊆ 𝐸 be an

MSF of 𝐺 . Furthermore, let 𝑐 be an isolatable subgraph of weight𝑤

in 𝐺 . Then, the following equation holds:

Connectivity𝑉 ,𝑐 ((𝐸=𝑤, r|𝐸=𝑤 ))
= Connectivity𝑉 ,𝑐 ((𝐹=𝑤, r|𝐹=𝑤 ))

Proof. Any two vertices 𝑢, 𝑣 ∈ 𝑐 that are connected through

edges in 𝐹=𝑤 are trivially also connected through edges in 𝐸=𝑤 (be-

cause of 𝐹≤𝑤 ⊆ 𝐸≤𝑤 ). Similarly, any vertex 𝑣 ∈ 𝑐 that is connected
to some vertex in 𝑉 \ 𝑐 through edges in 𝐹=𝑤 is also connected to

some vertex in 𝑉 \ 𝑐 through edges in 𝐸=𝑤 .

Now, for the sake of contradiction, suppose that 𝑢, 𝑣 ∈ 𝑐 are

reachable from each other using only edges in 𝐸=𝑤 , but not using

edges in 𝐹=𝑤 . Then at least one of the edges 𝑒 ∈ 𝐸=𝑤 on the path

between 𝑢 and 𝑣 can be added to 𝐹=𝑤 without creating a cycle.

Denote its endpoints by r(𝑒) = {𝑢′, 𝑣 ′}. If we add 𝑒 to 𝐹 to obtain

𝐹 ′ := 𝐹 ∪ {𝑒}, then 𝐹 ′ must contain a cycle (otherwise 𝐹 was not a

spanning forest).

Assume that all edges in the cycle have weight ≤ 𝑤 . Then, in fact,

none of those edges on the cycle can weight have strictly less than

𝑤 , because that would mean that 𝑐 is not an isolatable subgraph

(since there would be some path 𝑢 { 𝑢′ { 𝑣 ′ { 𝑣 using only

edges of weight ≤ 𝑤 , and at least one of them would have weight

strictly less than 𝑤 ). But this contradicts the assumption that 𝑢′

and 𝑣 ′ are not reachable using only edges in 𝐹=𝑤 .

In conclusion, there exists some edge 𝑒′ on the cycle in 𝐹 ′ with
weight w(𝑒′) > 𝑤 . Then, 𝐹 ′′ := 𝐹 ′ \ {𝑒′} no longer contains a cycle
and hence 𝐹 ′′ is a spanning forest. However, we have w(𝐹 ′′) <
w(𝐹 ), which is a contradiction to 𝐹 being minimum.

Analogous reasoning shows that whenever a vertex 𝑣 ∈ 𝑐 can
reach any vertex in 𝑉 \ 𝑐 using edges in 𝐸=𝑤 , then it can also reach

some vertex in𝑉 \ 𝑐 using edges in 𝐹=𝑤 . Therefore, the two outputs

of Connectivity are identical. □

Theorem C.3. Protocol 3 privately computes Functionality 1 in

the semi-honest security model.

Proof. We construct the following simulator 𝑆 , which takes the

protocol output (i.e., an MSF 𝐹 ) as input, and returns the view of

any fixed party. This simulator simply follows the execution of

Protocol 3 (on edges 𝐹 ), and simulates all communicated values as

follows:

• When encountering line 8 that computes best incidentweight

𝑤𝑣 , simulate 𝑤𝑣 as min{w(𝑒) | 𝑒 ∈ 𝛿𝐹 (𝑣)}. This is equal to
the actual value in the real execution, due to Lemma C.1.

Therefore, all communication in this step may be simulated

using semi-honest security of the underlying protocol that

computes𝑤𝑣 .

• When encountering line 14 that runs Connectivity, sim-

ulate its output as Connectivity𝑉 ,𝑆𝑤 ((𝐹=𝑤, r|𝐹=𝑤 )). This
is equal to the actual value in the real execution, due to

Lemma C.2. Therefore, all communication in this step may

be simulated using semi-honest security of the Connectiv-

ity protocol.

• When encountering line 24 that runs IsolatedMSF, simulate

its output as the set 𝐹 , with 𝐹 ⊆ 𝐹 being the set of MSF

edges that connect vertices in 𝑐 . All communication in this

step may be simulated using semi-honest security of the

IsolatedMSF protocol.

□
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