
Are Neuromorphic Architectures Inherently Privacy-preserving?
An Exploratory Study

Ayana Moshruba
George Mason University
amoshrub@gmu.edu

Ihsen Alouani
Centre for Secure Information

Technologies (CSIT)
Queen’s University Belfast

i.alouani@qub.ac.uk

Maryam Parsa
George Mason University

mparsa@gmu.edu

Abstract
While machine learning (ML) models are becoming mainstream,
including in critical application domains, concerns have been raised
about the increasing risk of sensitive data leakage. Various privacy
attacks, such as membership inference attacks (MIAs), have been
developed to extract data from trained ML models, posing signifi-
cant risks to data confidentiality. While the predominant work in
the ML community considers traditional Artificial Neural Networks
(ANNs) as the default neural model, neuromorphic architectures,
such as Spiking Neural Networks (SNNs) have recently emerged as
an attractive alternative mainly due to their significantly low power
consumption. These architectures process information through dis-
crete events, i.e., spikes, to mimic the functioning of biological
neurons in the brain. While the privacy issues have been exten-
sively investigated in the context of traditional ANNs, they remain
largely unexplored in neuromorphic architectures, and little work
has been dedicated to investigate their privacy preserving prop-
erties. In this paper, we investigate the question whether SNNs
have inherent privacy preserving advantage. Specifically, we inves-
tigate SNNs’ privacy properties through the lens of MIAs across
diverse datasets, in comparison with ANNs. We explore the impact
of different learning algorithms (surrogate gradient and evolution-
ary learning), programming frameworks (snnTorch, TENNLab, and
LAVA), and various parameters on the resilience of SNNs against
MIA. Our experiments reveal that SNNs demonstrate consistently
superior privacy preservation compared to ANNs, with evolution-
ary algorithms further enhancing their resilience. For example, on
the CIFAR-10 dataset, SNNs achieve an AUC as low as 0.59 com-
pared to 0.82 for ANNs, and on CIFAR-100, SNNs maintain a low
AUC of 0.58, whereas ANNs reach 0.88. Furthermore, we inves-
tigate the privacy-utility trade off through Differentially Private
Stochastic Gradient Descent (DPSGD) observing that SNNs incur a
notably lower accuracy drop than ANNs under equivalent privacy
constraints.
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1 Introduction
As ML systems become more sophisticated and widespread, individ-
uals are increasingly relying on these systems, entrusting themwith
personal and professional data. Consequently, the risk of sensitive
information exposure [65] is growing significantly in multiple sec-
tors [6] including healthcare [1], finance [79], national security [78],
education [15] and consumer services [39]. It is particularly alarm-
ing in fields such as healthcare, where the confidentiality of patient
data is extremely sensitive, as a breach could result in severe per-
sonal and financial implications, which can affect patient care and
institutional credibility [30, 44, 80]. In finance, the integrity of fi-
nancial transactions and records is fundamental for maintaining
market stability and preventing fraud [88], while in national se-
curity, safeguarding classified information is essential to protect
national interests and prevent threats to public safety [34].

This has led to the development of various privacy attacks target-
ing ML models to extract sensitive information, including Model In-
version Attacks [17], Attribute Inference Attacks [20], Model Steal-
ing Attacks [31], and Membership Inference Attacks (MIAs) [72].
In MIAs, an adversary seeks to ascertain if a specific data point
was part of the dataset used to train the model. This intrusion
risks exposing classified information about individuals in the train-
ing dataset, potentially compromising personal data confidential-
ity [74].

Designed to replicate the dynamic behavior of biological neu-
rons [18], SNNs process information through discrete, temporally
encoded spikes [63], enabling them to handle time-sensitive data ef-
ficiently [26]. Their suitability for edge computing [73] and resource-
constrained environments further enhances their value, as SNNs
effectively process real-world spatiotemporal patterns [82]. This
capability positions SNNs as a promising alternative to traditional
neural networks for applications requiring dynamic, real-time data
processing. While the security of SNNs has been investigated in
the literature [12, 81], relatively little attention has been given to
their privacy-preserving capabilities.

This work addresses the privacy concerns associated with SNNs
through a structured investigation of three core areas: (i) the re-
silience of ANN and SNN models to Membership Inference Attacks
(MIAs), (ii) the factors influencing the privacy-preserving proper-
ties of SNNs, and (iii) the privacy-utility trade-off in ANN and SNN
models using the DPSGD algorithm.

We consider that the potential resilience of SNNs against MIAs is
based on two key aspects. Firstly, the non-differentiable and discon-
tinuous nature of SNNs may weaken the correlation between the
model and individual data points, making it more challenging for an
attacker to identify the membership of a particular data point in the
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training set [47]. Secondly, the unique encoding mechanisms em-
ployed by SNNs introduce an additional layer of stochasticity [53]
and variability to the data representation. This added complexity
can make it more difficult for an attacker to deduce the unique char-
acteristics of individual data points, thereby making them more
indistinguishable.

Investigating the resilience of SNNs against MIAs, our experi-
mental results consistently demonstrate that SNNs exhibit higher
resilience to MIAs across the datasets including MNIST, F-MNIST,
Iris, Breast Cancer, CIFAR-10, and CIFAR-100. This is evidenced by
the lower Area Under the Curve(AUC) values for the Receiver Oper-
ating Characteristic(ROC) curves in SNNs compared to their ANN
counterparts. Furthermore, our exploration domain encompasses
various learning algorithms (surrogate gradient-based and evolu-
tionary learning), programming frameworks (snnTorch, TENNLab,
and LAVA), and a wide range of parameters within them, providing
a comprehensive analysis of the factors influencing the inherent
privacy preserving properties of SNNs. This in-depth exploration
indicated that evolutionary learning algorithms shown to boost this
resilience more effectively compared to the gradient based methods.

In order to enhance data privacy and explore the compromises
between privacy and utility, we study the implementation of the
DPSGD algorithm as a privacy defense mechanism [85]. This intro-
duces controlled noise into the training process, making it harder
for attackers to infer the presence of specific data points. How-
ever, improved privacy often comes at the cost of reduced model
performance, known as the privacy-utility trade-off [77]. Through
the experiments, we observe that SNNs exhibit a notably lower
performance drop compared to ANNs for the same level of privacy
guarantee. This finding further reinforces our hypothesis regarding
the inherent privacy-preserving properties of SNNs.

This paper offers the following notable contributions in the field
of data privacy, particularly in the context of SNNs:

• SNNs exhibit higher resilience against MIAs compared to ANNs,
with lower AUC scores on CIFAR-10 (SNN: 0.59 vs. ANN: 0.82)
and CIFAR-100 (SNN: 0.58 vs. ANN: 0.88), highlighting their
potential as a more secure alternative in privacy sensitive appli-
cations.
• Evolutionary learning algorithms outperform gradient based
methods in MIA resilience, maintaining a consistent AUC of 0.50
across all parameters for Iris and Breast Cancer datasets, com-
pared to 0.57 and 0.55 AUC scores for gradient-based algorithms,
respectively.
• Privacy-utility trade off analysis revealing that SNNs incur a
lower accuracy drop compared to ANNs when applying DPSGD:
For F-MNIST, with privacy guarantees ranging from 0.22 to 2.00,
the average accuracy drop is 12.87% for SNNs comparatively
lower than the 19.55% drop observed in ANNs.

We emphasize that while this investigation highlights SNNs’
enhanced privacy characteristics, our findings specifically address
privacy preservation applications. The architectural properties of
SNNs that enable efficient hardware implementation and reduce
computational overhead make them particularly appealing for re-
source constrained environments. However, these findings do not
suggest an overall superiority of SNNs over ANNs across different
application domains. Rather, we base this work on the intuition

that SNNs’ unique information processing mechanisms may of-
fer specific advantages in privacy preservation, which warrants
systematic investigation in this particular domain.

2 Background
2.1 Neuromorphic Architecture
Neuromorphic architectures [45] are designed to mimic the neural
structures and functionalities of the biological brain, offering an
alternative to the traditional von Neumann computing systems [4].
These architectures integrate memory and processing units, en-
abling massive parallel processing [49] and event driven computa-
tion [28]. By modeling neurons and synapses that communicate via
discrete spikes or events [43], neuromorphic systems can process
data asynchronously, reducing power consumption and latency.
Hardware implementations like IBM’s TrueNorth [2] and Intel’s
Loihi [9] demonstrate the potential for scalable, energy efficient
architectures capable of performing complex tasks with a structure
resembling biological neural networks.

SNNs constitute the foundational architecture of neuromorphic
systems, operating through a mechanism where neurons accumu-
late membrane potential over time and generate discrete spike
events upon reaching a threshold potential. This temporal encod-
ing paradigm fundamentally differentiates SNNs from traditional
neural networks, as information is encoded in both spike timing and
frequency. The computational models of SNNs span from elemen-
tary integrate-and-fire neurons [5] to sophisticated biologically in-
spired implementations such as the Hodgkin Huxley model, which
incorporates detailed ionic conductance dynamics. The event driven
nature of spike-based computation intrinsically aligned with neuro-
morphic hardware architectures, enabling efficient asynchronous
processing. This integration of temporal dynamics and synaptic
plasticity in SNNs facilitates adaptive learning mechanisms partic-
ularly suited for applications demanding real time processing and
minimal latency [67].

The architectural distinctiveness of SNNs, characterized by spike
based information encoding and asynchronous processing, intro-
duces computational complexities that potentially influence their
susceptibility to privacy attacks. While traditional ANNs demon-
strate vulnerability to Membership Inference Attacks through their
deterministic output patterns and continuous gradients, SNNs oper-
ate via discrete, non-differentiable spike events [90]. The temporal
dynamics of spike generation and the stochastic nature of neuronal
activation contribute to output variability. The membrane potential
accumulation in SNN neurons, coupled with probabilistic firing
thresholds, generates diverse spike patterns for comparable inputs.
This intrinsic variability and the discontinuous activation charac-
teristics inherent to SNNs potentially obscure input-output rela-
tionships, thereby complicating the pattern recognition essential
for successful MIAs. Although these properties, particularly when
combined with differential privacy techniques like DPSGD, sug-
gest enhanced privacy preservation capabilities, such assumptions
require rigorous validation. This investigation examines whether
the spike based computational paradigm of SNNs exhibits superior
resilience to performance degradation under privacy constraints
compared to traditional ANNs.
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Figure 1: Architectural overview of the experimental framework. The methodology has 3 components: (i) comparative privacy
assessment between ANNs and SNNs through MIA (yellow), (ii) exploration of SNN specific privacy characteristics considering
surrogate gradient and evolutionary algorithms (green), and (iii) Comparative evaluation of privacy-utility trade offs through
DPSGD (blue)

2.2 Membership Inference Attack (MIA)
constitute a class of privacy vulnerabilities that enable adversaries
to determine whether specific data points were used in a model’s
training dataset. These attacks exploit differential behavioral pat-
terns in model responses between training and non-training sam-
ples [60]. Neural networks typically demonstrate heightened predic-
tion confidence and distinctive error distributions for previously en-
countered training samples compared to unseen data [51]. Through
systematic analysis of these response characteristics, adversaries
can extract sensitive training set information, potentially compro-
mising data privacy [10] in domains handling confidential data.
The implementation of MIAs encompasses both the development
of specialized attack models and the application of statistical infer-
ence methods to differentiate between model responses to training
and non-training samples. The efficacy of these attacks correlates
strongly with the degree of model overfitting and the distinctive-
ness of individual sample responses. Beyond immediate privacy
implications, MIAs serve as indicators of model generalization de-
ficiencies [19], highlighting vulnerabilities in the neural network
architecture.

2.3 Differentially Private Stochastic Gradient
Descent (DPSGD)

Differential Privacy (DP) [11] establishes a mathematical frame-
work that quantifies and bounds the privacy risk when operating
on sensitive data. The framework ensures that statistical queries
on a dataset remain nearly unchanged regardless of the inclusion
or exclusion of any individual record, providing formal privacy
guarantees. This privacy guarantee is parameterized by 𝜖 (privacy
budget) and 𝛿 (failure probability), formalized through the following
inequality:

𝑃 (𝑀 (𝐷) ∈ 𝑆) ≤ 𝑒𝜖𝑃 (𝑀 (𝐷 ′) ∈ 𝑆) + 𝛿

where 𝐷 and 𝐷 ′ are datasets differing by one element,𝑀 is a ran-
domized algorithm, and 𝑆 is a subset of possible outputs. This
inequality limits the probability of𝑀 producing an output within 𝑆
when applied to 𝐷 is limited by the exponential of 𝜖 . This probabil-
ity is then multiplied by the probability of𝑀 producing the same
output from 𝐷 ′. Additionally, it is adjusted by a small term 𝛿 . In
this context, 𝜖 controls the sensitivity of the output to variations in
the input, where smaller values of 𝜖 indicate enhanced privacy by
limiting the permissible changes in output probabilities. 𝛿 , ideally a
small value near zero, accounts for the rare cases where this privacy
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guarantee might fail, thus ensuring that changes to any single data
point in 𝐷 minimally affect the output, reinforcing data privacy
across the dataset.

DPSGD implements these theoretical guarantees in the context
of neural network training by incorporating calibrated noise into
the gradient computation process. In DPSGD, the key step involves
perturbing the gradients computed during each training iteration
with noise that is calibrated to the sensitivity of the function being
optimized. This sensitivity measures how much the output of a
function can change in response to changes in its input, which in
the context of machine learning, translates to how much a single
training example can influence the overall model parameters. The
noise added is typically drawn from a Gaussian distribution [32],
scaled according to 𝜖 and the desired level of privacy guarantee, 𝛿 .
The function of DPSGD can be expressed mathematically as:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
(
𝑔𝑡 + N(0, 𝜎2I)

)
where 𝜃𝑡 represents the model parameters at iteration 𝑡 , 𝜂 is the
learning rate, 𝑔𝑡 is the gradient of the loss function with respect to
𝜃𝑡 , clipped to a norm bound 𝐶 , and N(0, 𝜎2I) denotes the Gaussian
noise added to the gradient, with 𝜎 being determined by 𝐶 , 𝜖 , and
𝛿 .

3 Methodology
This investigation examines the comparative privacy resilience of
SNNs and ANNs through a systematic experimental framework
comprising three distinct phases: (1) assessment of privacy vulner-
abilities through MIA in both architectures, (2) analysis of SNN
specific privacy characteristics across diverse algorithmic imple-
mentations, and (3) evaluation of privacy-utility trade offs through
the implementation of DPSGD. The experimental methodology and
interrelationships between architectural components are illustrated
in Figure 1.

3.1 Comparison of Privacy Vulnerability
between ANNs and SNNs

The comparative privacy risk assessment utilizes MIAs across equiv-
alent ANN and SNN architectures, implementing convolutional
baseline models, ResNet18, and VGG16 configurations. The exper-
imental framework employs shadow models trained on labeled
datasets (Figure 1, top-right) to emulate the target model charac-
teristics, while attack models are developed to ascertain training
set membership of individual data points. Privacy vulnerability is
quantified through AUC metrics for both architectures, enabling
systematic comparison of their susceptibility to MIAs (Figure 1,
yellow block).

3.2 Algorithmic Exploration within the SNN
Architecture

The second phase examines SNN privacy resilience across diverse
algorithmic implementations through three distinct frameworks:
Surrogate Gradient Algorithm, Evolutionary Algorithm, and In-
tel’s LAVA framework. The Surrogate Gradient implementation
evaluates the baseline SNN model using three distinct encoding
mechanisms from the snnTorch [13] library: Delta, Latency, and
Delta Modulation (Figure 1, left section, "SNN Exploration Space").

Table 1: Model Architectures and Configurations

Network Variant Structure Parameters*
Baseline ANN • 2 Conv (32,64 filters) ∼2.3M(ConvNet) • 2 MaxPool

• 2 FC (1000, num_classes)
• ReLU

SNN • 2 Conv (32,64 filters) ∼2.3M• 2 MaxPool
• LIF neurons
• Temporal processing

ResNet18 ANN • 4 BasicBlocks (64→512) ∼11.7M• GroupNorm
• Skip connections
• Adaptive pool

SNN • 4 BasicBlocks (64→512) ∼11.7M• GroupNorm+BNTT
• Spike residuals
•Membrane threshold

VGG16 ANN • 13 Conv (64→512) ∼138M• 5 MaxPool
• 3 FC (4096, classes)
• GroupNorm, ReLU

SNN • 13 Conv (64→512) ∼138M• 5 AvgPool
• Binary spikes
•Membrane reset

*Params vary with input channels (1/3) and classes (10/100)

This analysis examines how encoding methods affect privacy vul-
nerability by correlating spike generation mechanisms with MIA
efficacy.

The EvolutionaryAlgorithm implementation, utilizing the TennLab
framework, modulates architectural parameters including popula-
tion size, crossover rate, mutation rate, processor configurations,
and encoder settings. This parameter space exploration evaluates
how architectural variations influence SNN susceptibility to MIAs
(Figure 1, green block).

3.3 Privacy-Utility Trade-off Analysis
The final experimental phase implements DPSGD across both ANN
and SNN architectures ((Figure 1, bottom) to quantify the privacy-
utility trade-offs. The DPSGD implementation incorporates Gauss-
ian noise during gradient computation, establishing differential
privacy guarantees while measuring the corresponding impact on
model performance. The analysis spans convolutional, ResNet18,
and VGG16 architectures, evaluating both model accuracy and
resilience through attack AUC metrics under equivalent privacy
constraints (Figure 1, blue block).

4 Experimental Framework and Setup
4.1 Dataset and Model Architecture
The proposed method is evaluated on both image and tabular
datasets. For image classification tasks, MNIST [38] and Fashion-
MNIST [84], comprising 28×28 grayscale images across 10 classes,
are utilized. CIFAR-10 [62] and CIFAR-100 [71], containing 32×32
RGB images with 10 and 100 classes, respectively, are also included.

246



Are Neuromorphic Architectures Inherently Privacy-preserving?
An Exploratory Study Proceedings on Privacy Enhancing Technologies 2025(2)

Two tabular datasets, Iris [54], consisting of 4 features and 3 classes,
and Breast Cancer [92], comprising 30 features and 2 classes, are
used.

The experimental evaluation encompasses both image and tabu-
lar datasets. The image classification tasks utilize MNIST [38] and
Fashion-MNIST [84], comprising 28×28 grayscale images across 10
classes, and CIFAR-10 [62] and CIFAR-100 [71], containing 32×32
RGB images with 10 and 100 classes, respectively. The tabular
datasets include Iris [54] (4 features, 3 classes) and Breast Can-
cer [92] (30 features, 2 classes).

The architectural implementations, as detailed in Table 1, are
composed of three model configurations that are adapted for both
ANN and SNN frameworks. The baseline architecture is imple-
mented with dual convolutional layers for image processing and
fully connected layers for tabular data analysis. ResNet18 is con-
structed with four basic blocks that incorporate group normal-
ization and residual connections, while VGG16 is designed with
13 convolutional layers, progressively expanding from 64 to 512
channels, and culminating in three fully connected layers.

In the SNN variants, ReLU activations are replaced with leaky
integrate-and-fire (LIF) neurons, and temporal processing mecha-
nisms are incorporated. The implementation framework employs
PyTorch [33] for ANN architectures, while snnTorch is used for
the baseline model and SpikingJelly [14] is utilized for ResNet and
VGG16 configurations.

4.2 MIA

Figure 2: Membership Inference Attack(MIA) Framework

The MIA framework employs a dual model architecture as illus-
trated in Figure 2. The experimental setup includes a ’target’ model
and a ’shadow’ model, where we evaluate three different architec-
tures: baseline model, ResNet18, and VGG16. The shadow model

simulates the target model’s functionality by training on 80% of the
corresponding dataset while maintaining architectural parity. For
the attack phase, we employ a Support Vector Machine (SVM) as
our attack model, chosen for its effectiveness as a binary classifier
to determine whether a data point is a member or non-member of
the training set. We evaluate the models by querying with their
respective training and test sets, labeling the responses as ’IN’ if
the data was in the model’s training set and ’OUT’ otherwise. To
reduce classifier bias towards more frequent classes, we implement
undersampling of the predominant class. The SVM attack model,
trained on these labeled predictions from the shadow model, pro-
vides a quantified measure of the model’s susceptibility to MIA
through its ability to accurately classify membership status.

4.3 DPSGD
The DPSGD implementation utilizes the Opacus Privacy Engine
[87], as illustrated in Figure 3. The DPSGD algorithm 1 begins by
selecting a minibatch 𝐿𝑡 uniformly sampled from the set of indices
{1, . . . , 𝑁 } with size 𝐿. For each data point 𝑥𝑖 in the minibatch, the
gradient of the loss function L(𝜃𝑡 , 𝑥𝑖 ) with respect to the param-
eters 𝜃𝑡 is computed as 𝑔𝑡 (𝑥𝑖 ). These gradients are then clipped
using an 𝐿2 norm operation, 𝑔𝑡 (𝑥𝑖 ) = 𝑔𝑡 (𝑥𝑖 )/max(1, ∥𝑔𝑡 (𝑥𝑖 )∥2/𝐶).
Gaussian noise N(0, 𝜎2𝐶2𝐼 ) is added to the average of the clipped
gradients, with 𝜎 being the noise scale, to ensure differential pri-
vacy. The noisy gradient 𝑔𝑡 is used to update the model parameters:
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡𝑔𝑡 .

To investigate the privacy-utility tradeoff, we define the same
target privacy budget (𝜀) of range 0.1-2.00, while fixing the pri-
vacy compromise 𝛿 = 1𝑒 − 5 and evaluate the utility of the SNN
architectures comparatively with their ANN counterparts.

Algorithm 1 DPSGD Algorithm
1: Input: Dataset {𝑥1, . . . , 𝑥𝑁 }, loss function L(𝜃 ) =

1
𝑁

∑𝑁
𝑖=1 L(𝜃, 𝑥𝑖 )

2: Parameters: Learning rate 𝜂, noise scale 𝜎 , batch size 𝐿, gradi-
ent norm bound 𝐶

3: Initialize 𝜃0 randomly
4: for 𝑡 = 1 to 𝑇 do
5: Take a random sample 𝐿𝑡 with sampling probability 𝐿

𝑁

6: for each 𝑖 ∈ 𝐿𝑡 do
7: Compute gradient 𝑔𝑡 (𝑥𝑖 ) ← ∇𝜃L(𝜃𝑡 , 𝑥𝑖 )
8: Clip gradient 𝑔𝑡 (𝑥𝑖 ) ← 𝑔𝑡 (𝑥𝑖 )

max(1, ∥𝑔𝑡 (𝑥𝑖 ) ∥2
𝐶

)
9: end for
10: Add noise 𝑔𝑡 ← 1

𝐿

(∑
𝑖∈𝐿𝑡 𝑔𝑡 (𝑥𝑖 ) + N (0, 𝜎2𝐶2𝐼 )

)
11: Update parameters 𝜃𝑡+1 ← 𝜃𝑡 − 𝜂𝑔𝑡
12: end for
13: Output: Return 𝜃𝑇 and compute privacy cost (𝜖, 𝛿)

4.4 SNN Exploration Space
In the SNN exploration space as shown in Figure 1, we investigate
two major learning algorithms: surrogate gradient based learn-
ing [50] and evolutionary learning [69].
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Figure 3: Differential Privacy via Stochastic Gradient Descent (DPSGD) Algorithm

4.4.1 Surrogate Gradient based Learning: Surrogate gradient
methodologies facilitate SNN training through differentiable ap-
proximations of the non differentiable spiking activation function,
enabling gradient based optimization techniques. These algorithms
substitute the discrete spike function gradient with continuous,
differentiable surrogates, permitting backpropagation based train-
ing while preserving the essential characteristics of spike-based
computation. The experimental implementation employs two dis-
tinct approaches: the Arc tangent surrogate gradient algorithm [61]
implemented via snnTorch [75] framework, and the biologically-
inspired Spike Timing Dependent Plasticity (STDP) [7] learning
mechanism through Intel’s LAVA framework [29].
SnnTorch Framework:

The snnTorch framework, built upon PyTorch, provides special-
ized implementations for Spiking Neural Networks. Our experi-
mental framework implements the arc tangent learning algorithm,
which provides differentiable approximations of the spiking acti-
vation function. This implementation is evaluated across MNIST,
F-MNIST, Iris, and Breast Cancer datasets to assess architectural re-
silience against membership inference attacks. In SNN architectures,
the encoding mechanism determines the transformation of input
signals into temporal spike patterns, fundamentally influencing
the network’s computational characteristics and performance met-
rics. Our investigation examines the relationship between encoding
methodologies and privacy preservation characteristics across three
distinct encoding schemes [13]:

• Rate Encoding: Transforms input features into spikes by rep-
resenting each feature as a probability of spike occurrence
at each time step, with the neuron’s firing rate directly tied
to the intensity of the input signal. For our experiments, we
set number of steps to 10.
• Latency Encoding: Encodes information based on the timing
of spikes, where inputs with higher values result in earlier
spikes, effectively using the temporal dimension to convey

input magnitude. We used time step of 10 and set the RC
constant, Tau to 5, and Threshold to 0.1 for our experiments.
• Delta Encoding: Event-driven and produces spikes in re-
sponse to changes in input features over time, making it
adept at capturing dynamic variations in data. In our experi-
ments, we set the threshold to 0.1.

LAVA Framework:
LAVA is an innovative open source software framework designed

for neuromorphic computing [63]. It provides a versatile and flex-
ible environment for developing, simulating, and deploying neu-
romorphic applications. By abstracting hardware details through
a process-based model, LAVA enables the creation of scalable and
modular systems that can operate asynchronously across various
neuromorphic and conventional hardware platforms. The frame-
work supports rapid prototyping and detailed optimization, mak-
ing it accessible to both researchers and developers interested in
leveraging the unique capabilities of neuromorphic technologies.
LAVA aligns particularly well with Intel’s Loihi chip [9], a special-
ized neuromorphic processor. LAVA provides a seamless interface
for developing applications that can efficiently run on Loihi. The
LAVA framework also supports Spike-Timing-Dependent Plasticity
(STDP), a biological learning rule that adjusts synaptic strengths
based on the precise timing of spikes. This mechanism allows SNNs
to learn temporal patterns and adapt to dynamic inputs. In our
experiment, we used framework to evaluate the model’s resilience
against privacy attack (MIA).

4.4.2 Evolutionary Learning Algorithm: Evolutionary algo-
rithms, such as the Evolutionary Optimization for Neuromorphic
Systems (EONS) [69], are capable of enabling the rapid prototyping
of SNN applications. These applications can be adapted to hard-
ware constraints and various learning scenarios, including clas-
sification [67, 68] and control tasks [56, 66]. EONS, implemented
within the TENNLab framework, facilitates the co-design process
between neuromorphic hardware and software, helping developers

248



Are Neuromorphic Architectures Inherently Privacy-preserving?
An Exploratory Study Proceedings on Privacy Enhancing Technologies 2025(2)

Figure 4: ROC curves comparing ANN and SNN models across different datasets: (a) MNIST, (b) F-MNIST, (c) CIFAR-10, and (d)
CIFAR-100.

Table 2: Comparison of ANN and SNN Resilience to MIA Across Diverse Datasets

Dataset Architecture ANN SNN
Train Acc Test Acc Attack AUC Train Acc Test Acc Attack AUC

MNIST
Baseline 99.96(±0.01)% 99.21(±0.03)% 0.59(±0.008) 99.95(±0.05)% 99.22(±0.02)% 0.52(±0.002)
ResNet18 99.98(±0.10)% 99.57(±0.04)% 0.61(±0.005) 99.96(±0.009)% 99.51(±0.06)% 0.51(±0.006)
VGG16 99.67(±0.05)% 99.50(±0.02)% 0.61(±0.007) 99.58(±0.12)% 99.37(±0.14)% 0.51(±0.004)

F-MNIST
Baseline 99.52(±0.13)% 92.77(±0.20)% 0.64(±0.011 99.42(±0.32)% 92.44(±0.19)% 0.54(±0.008)
ResNet18 98.72(±0.21)% 93.66(±0.15)% 0.67(±0.004) 99.12(±0.09)% 91.79(±0.03)% 0.53(±0.003)
VGG16 97.14(±0.17)% 93.06(±0.20)% 0.62(±0.005) 96.53(±0.29)% 90.34(±0.19)% 0.55(±0.011)

CIFAR-10
Baseline 99.24(±0.08)% 73.20(±0.43)% 0.82(±0.095) 99.13(±0.45)% 72.99(±0.33)% 0.59(±0.005)
ResNet18 97.65(±0.51)% 90.81(±0.24)% 0.63(±0.021) 96.74(±0.44)% 86.85(±0.13)% 0.55(±0.011)
VGG16 97.45(±0.41)% 88.74(±0.29)% 0.67(±0.013) 79.77(±0.31)% 74.92(±0.20)% 0.53(±0.003)

CIFAR-100
Baseline 98.31(±0.19)% 42.46(±0.35)% 0.88(±0.016) 99.42(±0.59)% 39.92(±0.67)% 0.58(±0.019)
ResNet18 98.66(±0.23)% 70.92(±0.48)% 0.77(±0.009) 88.43(±0.27)% 60.65(±0.74)% 0.66(±0.002)
VGG16 81.61(±0.17)% 58.32(±0.52)% 0.70(±0.019) 60.53(±0.22)% 52.32(±1.36)% 0.58(±0.004)

Iris Baseline 100(±0.0)% 96.67(±2.34)% 0.77(±0.13) 97.04(±0.34)% 96.67(±0.0)% 0.57(±0.020)
Breast Cancer Baseline 99.54(±0.04)% 97.37(±0.24)% 0.65(±0.008) 99.62(±0.0)% 96.98(±0.17)% 0.55(±0.017)

optimize neural network structures within the constraints of neuro-
morphic hardware. EONS interacts seamlessly with a wide variety
of devices [69], architectures [70], and application [58] without

necessitating any modifications to its underlying algorithm. This
approach, implemented within the TENNLab framework, utilizes an
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Figure 5: Overfitting analysis in ANN and SNN models across datasets: (a) F-MNIST, (b) Breast Cancer, and (c) CIFAR-10

Figure 6: ROC curves showing the impact of Rate, Latency, and Delta modulation encoding under MIA for (a) MNIST, (b)
F-MNIST, (c) CIFAR-10, (d) Iris, and (e) Breast Cancer datasets.

evolutionary algorithm to optimize neuromorphic network struc-
ture and weights. This process begins with generating a population
of potential network solutions, which can be either randomly cre-
ated or seeded with pre-existing networks [69]. The EONS process
then evaluates these networks for fitness based on user-defined
criteria and uses common genetic algorithm selection techniques
such as tournament or fitness score to choose the most promising
networks for reproduction. During reproduction, selected parent
networks undergo crossover to swap segments of their structure
and merging, which combines their entire structures into a single
offspring. Mutation operations introduce random modifications to
a network’s nodes and edges, enhancing diversity and adaptation

in the population. These operations are performed on a generalized
network representation consisting of nodes and edges, allowing
flexibility and adaptability across different hardware implementa-
tions. The entire EONS cycle, designed to optimize network pa-
rameters and structure efficiently, repeats until achieving desired
performance metrics.

In our experiments we depict the impact of different EONs pa-
rameters, encoders and neuro processors inside the framework on
the vulnerability of the SNN model against MIA on Iris and Breast
Cancer dataset.
Population Size: In the EONS approach, population consists of po-
tential solutions that form the genetic pool for evolution. This initial
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population can be randomly generated or seeded with pre-existing
solutions. Each network is evaluated, and the best-performing net-
works are selected for reproduction. In our experiments, we vary
the population size over 50, 100, 200 and 400 to understand its
impact on resilience against MIAs.
Mutation Rate: The mutation rate in the EONS approach speci-
fies the frequency at which random changes are introduced to the
solutions. These mutations are essential for exploring new solu-
tion spaces and preventing the population from stagnating in local
optima. Mutations can be structural, such as adding or deleting
nodes and edges, or they can involve changes to parameters like
thresholds or weights. In our experiments, we vary the mutation
rate over 0.1, 0.5 and 0.9 to study its effects on the inherent privacy
preservation in SNNs.
Crossover Rate: The crossover rate determines how often parts
of two solutions are recombined to create new solutions, enhanc-
ing genetic diversity. In EONS, the algorithm uses a node-edge
recombination method, where it mixes components from parent
networks to form child networks. By varying the crossover rate,
the algorithm maintains a diverse genetic pool which is essential
for exploring the solution space and identifying high-performing
network configurations. By varying the crossover rate over 0.1, 0.5
and 0.9, we aim to explore its impact on the resilience of SNNs
against MIAs.
Neuroprocessors:We explore 3 neuroprocessors available in the
TENNLab framework:
• RISP [59]: A lightweight neuro processor employing an inte-
grate and fire model with discrete time steps for accumulat-
ing and evaluating action potentials, suitable for networks
with integer synaptic delays.
• Caspian [36]: Provides a high-level API and a fast spiking
simulator integrated with FPGA [37] architecture, enhancing
development and deployment of neuromorphic solutions in
size, weight, and power-constrained environments.
• RAVENS [16]: A versatile neuroprocessor from TENNLab
with multiple implementations including software simu-
lation, microcontroller, FPGA, ASIC [21], and Memristive
ASIC [83](mRAVENS), catering to a wide range of computa-
tional needs in neuromorphic systems.

Encoding Techniques:
• Flip Flop Technique: It assigns inverted percentage values
in even-numbered bins, ensuring smoother transitions and
preserving information about minimum values. It is effective
in applications like proximity sensing in LIDAR systems [57].
• Triangle Technique: It smooths input space by overlapping
bins where values rise to 100% at bin boundaries and then
fall, facilitating a more gradual representation of input data.
This is useful in refined control applications.

5 Results
5.1 MIA Assessment
This section presents a comprehensive evaluation of ANN and SNN
architectural resilience against MIAs across baseline, ResNet18,
and VGG16 configurations. The privacy vulnerability is meausured
using ROC-AUC metrics, where lower values indicate enhanced

privacy preservation. Each experiment was repeated three times,
with Table 2 reporting the mean and standard deviation. The low
standard deviations across all metrics indicate the statistical stability
of the results.

The experimental results, illustrated in Figure 4 and Table 2,
demonstrate consistent privacy advantages of SNNs while main-
taining competitive accuracy. For MNIST, while both architectures
achieve comparable test accuracy (≃ 99%), SNNs exhibit lower
AUC values (0.51-0.52) compared to ANNs (0.59-0.61). This privacy
advantage becomes more pronounced in F-MNIST, where SNNs
maintain AUC values between 0.53-0.55 while achieving 90-92% test
accuracy, compared to ANNs’ higher vulnerability (AUC 0.62-0.67)
at similar accuracy levels.

The privacy advantage becomes more pronounced in complex
datasets. For CIFAR-10, the baseline SNN maintains an AUC of 0.59
compared to ANN’s 0.82, while ResNet18 and VGG16 SNN variants
achieve AUCs of 0.55 and 0.53, respectively, substantially lower
than their ANN counterparts (0.63 and 0.67). This trend persists in
CIFAR-100, where the baseline SNN demonstrates an AUC of 0.58
versus ANN’s 0.88, with ResNet18 and VGG16 SNN implementa-
tions maintaining AUCs of 0.66 and 0.58 compared to ANNs’ 0.77
and 0.70. The ROC curves in Figure 4 visually demonstrate this en-
hanced privacy preservation across all architectural configurations.
Notably, this privacy advantage does not significantly compromise
model utility, as evidenced by the competitive accuracy metrics
maintained across implementations.

Key Finding 1:

SNNs demonstrate enhanced privacy preservation across
all architectural configurations compared to ANNs, while
maintaining competitive accuracy.

5.2 Is SNN resilience driven by ANN overfitting?
To assess whether the improved resilience of SNNs is simply a
result of ANN overfitting, the relationship between architectural
privacy advantages and model generalization is examined across
multiple datasets, including F-MNIST, Breast Cancer, and CIFAR-10.
Overfitting is known to increase a model’s vulnerability to MIA by
reducing its generalizability. Overfitted models tend to memorize
training data, which increases the likelihood that an adversary can
successfully infer whether a particular data point was part of the
training set, thus leading to a higher MIA AUC.

As demonstrated in Figure 5, both ANN and SNN models ex-
hibit comparable levels of overfitting, as reflected by the similar
gaps between their training and testing accuracies. For example,
in F-MNIST(Figure 5a), the average overfitting for ANN is 4.13%,
while for SNN, it is 4.67%. In the Breast Cancer dataset(Figure 5b),
the average overfitting values are much lower, at 1.57% for ANN
and 2.63% for SNN. These results indicate that overfitting occurs
similarly in both ANNs and SNNs, ruling out overfitting in ANNs
as the sole explanation for the enhanced resilience of SNNs against
MIAs.

The consistency in overfitting patterns across both architectures
demonstrated through comparable generalization gaps indicates
that ANN’s increased vulnerability to MIAs cannot be attributed
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Figure 7: ROC curves comparing the impact of EONs Parameters in TennLab Framework under MIA on (a)Breast Cancer and
(b)Iris Dataset

to differential overfitting behavior. Despite similar levels of overfit-
ting, SNNs consistently exhibit lower MIA AUC values compared to
ANNs. This finding establishes that the enhanced privacy preserva-
tion in SNNs originates from inherent architectural characteristics
rather than advantages in generalization capability, as both ar-
chitectures demonstrate comparable overfitting tendencies while
exhibiting distinctly different privacy vulnerabilities.

5.3 SNN Exploration Space Assessment:
This section examines SNN privacy characteristics across different
learning algorithms, frameworks, and their associated parameters.

5.3.1 Surrogate Gradient Algorithm In this section we ana-
lyze the effects of different encoding schemes within the snnTorch
framework and the LAVA framework.

Impact of Encoding Schemes in snnTorch Framework: Fig-
ure 6 illustrates the differential impact of snnTorch’s three encoding
schemes on SNN vulnerability to membership inference attacks. For
lower complexity datasets such as MNIST (Figure 6a) and F-MNIST
(Figure 6b), Rate and Delta encoding mechanisms demonstrate
comparable privacy preservation characteristics, with AUC values
converging around 0.51 and 0.53 respectively. The CIFAR-10 dataset
(Figure 6c) exhibits a broader vulnerability profile across all encod-
ing implementations, with AUC values extending to 0.58, indicating
slightly elevated susceptibility compared to simpler datasets. In the

Iris dataset (Figure 6d), the impact of encoding choice becomes
more pronounced, with Delta encoding demonstrating marginally
higher vulnerability (AUC = 0.56), suggesting increased encoding
sensitivity in lower-dimensional datasets. Despite these variations
across datasets and encoding methods, the consistently lower range
of AUC values underscores the inherent privacy preserving charac-
teristics of SNN architectures.

Impact of LAVA Framework:
The LAVA framework implementation employs a sophisticated

three-layer feed-forward neural network architecture incorporating
Leaky Integrate-and-Fire (LIF) neurons with pre-trained synaptic
weights. The experimental results, illustrated in Figure 8, show
substantial privacy advantages in the LAVA-based SNN architecture,
achieving an AUC of 0.52. This represents a significant 14.75%
reduction in vulnerability compared to the conventional PyTorch-
based ANN implementation, highlighting the framework’s efficacy
in preserving privacy while maintaining neuromorphic computing
capabilities.

5.3.2 Evolutionary Algorithm: Figures 7a and 7b present com-
prehensive evaluations of Evolutionary Optimization parameters
within the TennLab Framework across the Breast Cancer and Iris
datasets respectively. The Iris dataset demonstrates robust privacy
preservation across multiple parametric variations: population size
modifications (Figure 7b(i)) yield AUCs ranging from 0.50 to 0.53,
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Figure 8: Impact of MIA on MNIST Dataset in LAVA Frame-
work

while variations in crossover rates (Figure 7b(iii)) and mutation
rates (Figure 7b(ii)) consistently maintain AUCs approaching 0.50,
indicating stable privacy protection. The Breast Cancer dataset
exhibits similarly robust characteristics, maintaining AUC values
near 0.50 across diverse parameters including population size vari-
ations (Figure 7a(i)), crossover rate adjustments (Figure 7a(iii)),
and different processor implementations (Figure 7a(iv)) such as
RISP, Caspian, and Ravens. When compared to surrogate gradient
learning implementations (Table 2), where Iris and Breast Cancer
datasets demonstrated AUCs of 0.57 and 0.55 respectively, evolution-
ary algorithms consistently achieve superior privacy preservation
with significantly lower AUC values. This enhanced resilience to
membership inference attacks is particularly noteworthy given
the practical hardware implementation capabilities of evolution-
ary algorithms within the TennLab framework. The combination
of robust privacy preservation and hardware practicality suggests
that evolutionary optimization approaches may offer compelling
advantages for secure neuromorphic computing applications.

Key Finding 2:

Different SNN algorithms (surrogate gradient methods,
STDP, and evolutionary optimization) demonstrate consis-
tent privacy preservation across architectures and param-
eters, with evolutionary algorithms showing particular
promise in combining privacy resilience with hardware
practicality.

5.4 Privacy-Utility Trade off Assessment
The privacy-utility evaluation implements DPSGD across both ar-
chitectures with a standardized privacy budget (𝜖) range of 0.22-
2. The comparative analysis, presented in Figure 9 and Table 3,
quantifies accuracy degradation as the differential between base-
line accuracy (pre-DPSGD) and DPSGD implementation accuracy

throughout training epochs. The results demonstrate enhanced util-
ity preservation in SNN implementations across all datasets under
equivalent privacy constraints. On the MNIST dataset (Figure 9a),
SNNs show an average accuracy reduction of 6.65% compared to
ANNs’ 7.89%. This pattern extends to F-MNIST (Figure 9b), where
SNNs demonstrate a 12.58% accuracy decrease versus ANNs’ 19.55%.
CIFAR-10 (Figure 9c) maintains this trend with SNNs showing
27.87% reduction compared to ANNs’ 34.43%, indicating sustained
utility preservation even with increased data complexity. The en-
hanced utility preservation extends to tabular datasets, with Breast
Cancer (Figure 9e) showing minimal SNN accuracy degradation
of 1.93% compared to ANNs’ 6.23%. Similarly, the Iris dataset (Fig-
ure 9d) demonstrates SNN accuracy reduction of 19.04% versus
ANNs’ 29.63%. These results highlight SNNs’ consistent ability
to maintain utility under privacy constraints across diverse data
modalities.

Key Finding 3:

Under equivalent differential privacy budget, SNNs con-
sistently demonstrate lower accuracy degradation than
ANNs across all datasets, indicating better utility preser-
vation while maintaining privacy guarantees.

6 Related Work
As machine learning systems handle increasingly sensitive data,
the potential for privacy violations becomes increasingly signif-
icant. Li et al. [42] categorize these privacy challenges into two
primary areas: privacy attacks and privacy preserving techniques.
Privacy attacks have emerged as a significant concern in ML due
to the growing realization that models can inadvertently leak sen-
sitive data. These attacks can broadly be classified into different
types, such as model inversion attacks, model extraction attacks,
MIA. Model inversion attacks [17] reconstruct input data from
outputs, while extraction attacks [31] replicate model’s functional-
ity without direct access to its architecture or parameters. Among
these, MIAs are notable for inferring whether a specific data point
was used in training. According to the survey conducted by Hu et
al. [27], MIAs were first proposed in the context of genomic data by
Homer et al. [25] where an attacker could identify an individual’s
genome in a dataset based on summary statistics. Later, Shokri et
al.[74] introduced the first systematic MIA framework, showing
how adversaries could use shadow models to infer training data
membership. Salem et al. [64] reduced the complexity by demon-
strating that a single shadow model can perform well compared to
using multiple models, and they introduced metric based attacks
that rely on confidence scores and entropy without the need for
identical data distribution between shadow and target models. Nasr
et al. [48] further expanded MIA into white box settings, demon-
strating that attackers with access to internal model parameters can
perform even more effective MIAs. Melis et al. [46] extended MIA
to federated learning, highlighting vulnerabilities in distributed
learning settings, where multiple parties collaboratively train a
model. Song and Mittal [76] highlighted the increased privacy risks
in generative models such as GANs, where membership inference
attacks could be carried out on synthetic data generators. Recent
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Figure 9: Model Performance over increasing Privacy Budget (𝜀) with DPSGD across (a) MNIST, (b) F-MNIST, (c) CIFAR-10, (d)
Iris, and (e) Breast Cancer datasets.

Table 3: Privacy-Utility Trade off Comparison between ANN and SNN

Dataset Privacy Budget Range ANN Avg Accuracy Drop SNN Avg Accuracy Drop

MNIST 0.22 - 2.00 7.89(±0.14)% 6.65(±0.08)%
Fashion-MNIST 0.22 - 2.00 19.55(±0.84)% 12.58(±0.78)%
CIFAR-10 0.22 - 2.00 34.43(±0.20)% 27.87(±0.11)%
Breast Cancer 0.22 - 2.00 6.23(±0.33)% 1.93(±0.47)%
Iris 0.22 - 2.00 29.63(±0.81)% 19.04(±0.72)%

work by Ilyas et al. introduced LiRA (Likelihood Ratio Attack) [8],
a method that further improves the accuracy of MIAs by lever-
aging confidence scores more effectively to distinguish training
from non-training data points. In 2024, Zarifzadeh et al. [89] in-
troduced RMIA, a high-power membership inference attack that
outperforms prior methods like LiRA and Attack-R, demonstrating
superior robustness, particularly at low false positive rates (FPRs),
using likelihood ratio tests.

To counteract these privacy attacks, several privacy preserv-
ing techniques have been developed.These techniques range from
cryptographic approaches like homomorphic encryption(HE) [86]
and secure multi-party computation(SMPC) [91] to learning based
defenses such as model obfuscation [23] and knowledge distilla-
tion [22]. However, these methods often suffer from computational

inefficiencies, particularly in large scale systems. Another approach
is Federated Learning(FL) [40], which enables collaborative model
training without sharing raw data, but remains vulnerable to at-
tacks like MIA. Among these, Differential Privacy(DP) [11] has
gained prominence due to its strong theoretical guarantees and
practical applicability in machine learning settings. It provides a
systematic framework for protecting individual data points by in-
troducing noise during computations. In ML, this concept has been
adapted through various algorithms, with DPSG) [77] being the
most prominent which applies DP principles by adding noise to
the gradient updates during training, offering a practical way to
maintain privacy while training large models without significantly
compromising accuracy.
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While much of the data privacy research has centered around
ANNs, expanding these investigations to SNNs is necessary. SNNs
not only offer performance levels comparable to ANNs but also
exhibit superior energy efficiency and hardware integration capa-
bilities, positioning them as promising candidates for exploring
inherent privacy features. Although privacy attacks on neuromor-
phic architectures remain underexplored, existing studies have yet
to confirm SNNs’ potential resistance to such threats. However, sig-
nificant strides have been made in privacy preserving techniques
within the neuromorphic domain. For instance, recent efforts by
Han et al. [24] focus on developing privacy preserving methods for
SNNs, particularly utilizing FL and DP to address both computa-
tional efficiency and privacy challenges. Li et al.[41] introduced a
framework that combines Fully Homomorphic Encryption (FHE)
with SNNs, enabling encrypted inference while preserving SNNs’
energy efficiency and computational advantages. Similarly, Nikfam
et al.[52] developed an HE framework tailored for SNNs, offer-
ing enhanced accuracy over Deep Neural Networks(DNNs) under
encryption, while balancing computational efficiency. Addition-
ally, Safronov et al.[35] proposed PrivateSNN, a privacy preserving
framework for SNNs that employs differential privacy to mitigate
membership inference attacks, maintaining the energy efficient
nature of SNNs.

7 Conclusion
The increasing deployment of machine learning systems in pri-
vacy sensitive domains has heightened the need for architectures
that inherently protect data privacy while maintaining computa-
tional efficiency. This investigation addresses these requirements
through a thorough examination of privacy characteristics in SNNs,
evaluating their resilience against privacy attacks compared with
traditional neural architectures. The discrete, event driven nature
of spike based processing and temporal dynamics in SNNs may
inherently limit information leakage compared to the continuous
activations in ANNs, providing natural defense mechanisms against
privacy attacks.

The experimental analysis establishes enhanced privacy preser-
vation in SNN architectures, with attack AUC values significantly
lower than traditional ANNs across all evaluated datasets (CIFAR-10:
0.59 vs 0.82; CIFAR-100: 0.58 vs 0.88). The privacy gain is particularly
pronounced when employing evolutionary learning algorithms,
which demonstrate superior resilience compared to gradient-based
methods. Additionally, SNNs exhibit improved utility preservation
under differential privacy constraints, maintaining higher accu-
racy levels compared to ANNs when implementing DPSGD across
diverse datasets.

While these findings highlight SNNs’ potential for privacy sensi-
tive applications, particularly in resource constrained environments,
they are focused on privacy preservation applications. Despite their
privacy advantages, SNNs face challenges including complex train-
ing processes, potential scalability limitations, and and reliance
on specialized hardware, which is necessary for optimal perfor-
mance. However, within the scope of privacy preservation, their
unique computational characteristics offer promising directions
for secure neural architectures. Future research directions include

hardware implementation analysis through Intel’s Loihi neuromor-
phic processor, expanding privacy threat models, and integrating
differential privacy mechanisms with evolutionary optimization
in the TennLab framework. These investigations aim to further
understand and enhance privacy preservation capabilities in neu-
romorphic architectures while maintaining their computational
advantages.
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