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Abstract
Ensuring the authenticity and credibility of daily media on inter-

net is an ongoing problem. Meanwhile, genuinely captured im-

ages often require refinements before publication. Zero-knowledge

proofs (ZKPs) offer a solution by verifying edited image without

disclosing the original source. However, ZKPs typically come with

high costs, particularly in terms of prover complexity and proof

size. This paper presents VIMz, a framework for efficiently proving

the authenticity of high-resolution images using folding-based zk-

SNARKs; a type of proving system that minimizes computational

overhead by recursively folding multiple evaluations of the same

constraints into a compact proof. As a complete proof system, VIMz

proves the integrity of both the original and edited images, as well

as the correctness of the transformation without revealing inter-

mediate images within a chain of edits—only the final result is

disclosed. Moreover, VIMz maintains the anonymity of the original

signer and all subsequent editors while proving the authenticity of

the final image. We also compare VIMz with the system model in

Coalition for Content Provenance and Authenticity (C2PA) from

different perspectives and show that VIMz offers higher level of

security guarantee by eliminating the need to trust the editing envi-

ronment. Experimental results show that VIMz performs efficiently

in both prover and verifier sides. It can prove the transformations

on 8K (33MP,i.e., 100MB) images with up to 13%∼25% faster than the

competition, while reaching to a peak memory of only 10 GB. More-

over, VIMz has a verification time of under 1 second and achieves

succinct proofs of less than 11 KB for all resolutions, which is more

than 90% improvement compared to the competition. VIMz’s low

memory complexity allows for proving multiple transformations

in parallel to achieve a 3.5× additional speedup on average.
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1 Introduction
With the growing accessibility of generative AI, ensuring media

originality and authenticity is becoming challenging. A notable

example occurred in 2023 when the recipient of the Sony World

Photography Award declined the honor to reveal that the image was

generated byAI [25]. Currently, it is relatively easy to create realistic
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face-swapped videos and images using consumer-level GPUs and

libraries like DeepFaceLab [3]. Furthermore, popular text-to-image

models such as Midjourney [5], DALL•E [2], and Stability AI [15]

are accessible through affordable monthly subscriptions. Therefore,

it is necessary to assess the sources of information an distinguish

between original and synthetically produced or altered media.

To this end, leading corporations are actively engaged in research

on detecting deepfakes [34, 36, 47]. Several studies aim to train

models for detecting artifacts or forensic noises in AI-generated

media [28, 52, 53], and some others explore utilization of advance

watermarks [45]. Ideally, a perfectmodel would distinguish between

authentic and artificially generated images without relying on any

trust assumptions. Nevertheless, recent reviews [36] emphasize a

significant accuracy gap between generative AI and deepfake detec-

tion models still. This suggests that even on limited datasets, such

techniques fall short of being reliable for real-world applications.

Another solution involves embedding signed image metadata

(e.g., location, photographer, date, and time) within the image data

and recording signed edits applied to the original image. A notable

initiative of this approach is the Coalition for Content Provenance

and Authenticity (C2PA) [9] project. From a cryptographic stand-

point, approaches like the C2PA solution rely on digital signatures.

When a user captures a photo, the camera or a specific software

application (e.g., Truepic [16] on mobile phones) adds metadata to

the photo and signs it. The photo is then refined by some trusted

editing software (e.g., Adobe Photoshop). As edits are applied to the

image, newly signed metadata is appended to the existing records.

In an ideal world, trusting the software to handle the signatures

and their corresponding private keys would make the proposed

C2PA protocol complete. However, in practice, such reliance on

software has been shown to introduce direct and serious attack vec-

tors [35, 37, 39, 40, 46]. To this end, as suggested in the C2PA trust

model [8], the software should be run within trusted execution envi-

ronment (TEE) e.g., Intel SGX [21], which, in turn, introduces a new

layer of trust assumption and opens new attack vectors [19, 29, 41].

Another drawback of approaches like C2PA is that the privacy

of the media provider, e.g., photographer, is not guaranteed by the

protocol trustlessly. At some point, the media provider is required

to disclose confidential data to at least one trusted party.

A more ideal and secure approach would involve the ability to

prove the authenticity of the refined image solely with a valid sig-

nature of the original image, without relying on additional trust as-

sumptions in third parties or specific software. This can be achieved

by leveraging techniques like SNARKs
1
to generate a succinct

proof for the edited image that is publicly verifiable by every-

one [30, 42, 49]. Unlike the approach of C2PA, the SNARKs proving

systems do not require any kind of trust during proof generation.

1
Succinct Non-Interactive Arguments of Knowledge.
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Consequently, anyone can publicly verify whether the refined im-

age aligns with the provided proof or not.

However, the main drawback of this approach is the computa-

tional complexity of the prover, particularly with the increasing res-

olutions of images to 4K and 8K. For example, in related work [30],

complete
2
proof generation (proof of valid transformations along

with proof of integrity) for one convolution-based transformation

on an HD image demands up to 309 GB of RAM and takes over 21

minutes of computation on a 64-core AWS server [30].

To tackle the challenge of high memory requirements, we pro-

pose breaking down each transformation into a series of recursive

steps. Then, we prove the correctness of each step within an incre-

mentally verifiable computation (IVC) framework. Finally, we “fold”
these steps together using Nova’s folding scheme [33], resulting in

a compressed SNARKs that proves the entire transformation pro-

cess. This method limits peak memory usage to only the maximum

resources needed for computations within a single step, and there-

fore, significantly reduces overall memory requirements. The out-

come is VIMz
3
(Verifiable Image Manipulation using folding-based

zkSNARKs), which, is the first system of its kind to leverage the

higher efficiency of folding-based zkSNARKs. Implementation of

VIMz is entirely open-source
4
and comprises various programming

stacks, including Python, Circom and Rust.

VIMz has low memory requirement for proving image transfor-

mations of high resolutions. Our experiments demonstrate that it

is feasible to prove transformations on images ranging from HD to

8K resolutions using only a midrange laptop with an Intel Core i5

CPU. Additionally, we show that even on such a hardware, multiple

VIMz instances can run in parallel to prove a sequence of edits,

achieving 3.5× additional speedup in proving time.

VIMz offers several advantages over the state of the art. Firstly,

VIMz generates succinct proofs,with proof sizes for 8K (33 MP)

images being less than 11 KB—up to 90% smaller than competing

solutions [22, 38]. Additionally, VIMz achieves 20% faster proving

time compared to these alternatives. Moreover, unlike the com-

petition [22, 38], VIMz provides “complete proofs” that verify not

only the correctness of transformations but also the hashes of both

the original and transformed images. This ensures that each proof

serves as a binding commitment to the resulting transformed image.

Therefore, we can securely prove the authenticity of a sequence of

transformations while keeping the intermediate images confiden-

tial, a capability not offered by competitors such as [22] or [38].

Since VIMz operates without trust assumptions on the prover,

it preserves the privacy of all editors. In contrast, approaches like

C2PA require the editor to sign edits, which in turn, reveals the

signer’s identity during verification. Our protocol goes further by

not only preserving the editor’s identity but also anonymizing the

identity of the original image signer. We achieve this while ensuring

that the original signer possesses an authorized private key.

The key contributions of this paper are as follows:

• IVC-based proofs of image manipulation: We introduce

the first proving framework for image manipulation using

2
In this context, a “complete" proof involves not only proofs for correct transformation

but also hashing both the original and resulting images, serving as proofs of integrity.
The hash acts as a binding factor for verification against a claimed refined image.

3
Pronunciation: /’wimzi/, like the word whimsy!

4
Github link: https://github.com/zero-savvy/vimz

folding-based zkSNARKs
4
, namely VIMz, that enables effi-

cient IVC proofs of image provenance.

• Succinct proofs of image manipulation: We achieve a

proof size of around 10 KB for images with 8K (33 MP)

resolution,which is 92% smaller than the competition. This

characteristic makes VIMz well-suited to be integrated into

blockchain-based applications.

• Optimized proofs of integrity: We propose a folding-

friendly image hashing method that outperforms the compe-

tition [22] in both proving time and memory efficiency. This

enables proving image hashes both before and after trans-

formation. To further increase the efficiency, we introduce

a lossless compression technique for pixel data within the

Pallas/Vesta field, reducing the number of hashes by 30×.
• Memory efficiency: Our analysis measured a peak memory

usage of just 2.9 GB, 5.6 GB, and 9.5 GB when proving trans-

formations in HD, 4K, and 8K resolutions, respectively. This

allows VIMz to prove such transformations on a midrange

laptop with only 16 GB of RAM.

• Fastest Prover: VIMz provides the fastest prover compared

to the competition.

• Chained edits proved in parallel: Unlike the competi-

tion [22, 38], VIMz allows unlimited chained transformations.

The prover is only required to disclose the last refined image,

while all intermediate versions remain confidential. This

feature, combined with low memory requirements, enables

running multiple instances of VIMz in parallel to speedup

the process by more than 3.5× on average.

• C2PA Compatibility: We demonstrate that VIMz can be

viewed as an enhanced version of C2PA, providing higher

security guarantees with fewer trust assumptions, while

also preserving the privacy of both the image signer (cre-

ator/owner) and the editors.

• Privacy-preserving proofs of imagemanipulation:VIMz

allows to efficiently anonymize both the original image signer

and subsequent editors.

The remainder of the paper is structured as follows. Section 2 offers

the necessary background to comprehend the paper. In Section 3,

we analyze potential approaches for image provenance and provide

the rationale behind the construction of VIMz. Section 4 offers an

overview of the protocol, detailing the statements and analyzing

the soundness of the proofs generated by VIMz. Section 5 details the

circuit design alongwith optimizations in both circuit and execution

levels. Section 6 presents experimental analysis of VIMz during the

proof generation for transformations different resolutions up to

8K (33 MP). Section 7 compares VIMz against related work. Finally,

in Section 8, we conclude the paper.

2 Background
Table 1 presents the terminology of the paper. We generally borrow

the mathematical representations from [32, 33]. The rest of the

section overviews the main concepts employed to build VIMz.

2.1 SNARKs
Let R be a binary relation for an NP language 𝐿R , where 𝜆 is the

security parameter. The argument system for R is defined as a
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Table 1: Terminology of the Paper

Notation Description
𝛼 , 𝛽 We refer to the pixel matrices of the original and the

transformed image as 𝛼 and 𝛽 , respectively.

𝛼 {𝑅 |𝐺 |𝐵} Red, Green, and Blue color plains of the image 𝛼 .

𝛼𝑖 , 𝛽𝑖 𝑖-th row of images 𝛼 and 𝛽 .

𝛼𝑖, 𝑗 Pixel value in the 𝑖-th row and 𝑗-th column of 𝛼 .

𝐻 Poseidon [26] hash function. 𝐻 : Z2

𝑝 → Z𝑝

𝐻𝜎 Hash value of an entire image row with 𝑛 pixels:

𝐻𝜎 : Z𝑛𝑝 → Z𝑝 = 𝐻 (𝛼𝑖,𝑛−1 |𝐻 (𝛼𝑖,𝑛−2 |𝐻 (𝛼𝑖,𝑛−3 |
. . . |𝐻 (𝛼𝑖,2 |𝐻 (𝛼𝑖,1 |𝐻 (𝛼𝑖,0 |0))) . . . )).

ℎ𝑖 Cumulative hash value of rows of an image,

e.g., ℎ𝑖 ← 𝐻 (ℎ𝑖−1 |𝐻𝜎 (𝛼𝑖 ))
𝐻𝜙 Hash value of an entire image with 𝑛 × 𝑚 pixels:

𝐻𝜙 : Z𝑛×𝑚𝑝 → Z𝑝 = ℎ𝑛 .

𝑓𝑇 Transformation function: 𝛽 ← 𝑓𝑇 (𝛼,𝑈in)

F𝑇 Folding-friendly verifiable image transformer (Defi-
nition 4.4)

𝑈 𝑖
in, 𝑈

𝑖
out Public input and output of 𝑖-th step in IVC.

𝜅 Kernel matrix in convolution.

𝑂𝑝
Merkle proof checker 𝑂𝑝 : Z𝑚+⌈log𝑛⌉𝑞 → B, which
takes as input the Merkle path, the root, and𝑚 addi-

tional values to open the commitment at a leaf.

Vsig Verifies a signature against the given message and

public key:Vsig : Z3

𝑞 → B.

quadruple probabilistic polynomial algorithms Π = (G,P,V,S)
and a deterministic encoder K , where:
• 𝑝𝑝 ← G(1𝜆): The generator samples the public parameter

𝑝𝑝 w.r.t. the security parameter 𝜆.

• (𝑝𝑘, 𝑣𝑘) ← K(𝑝𝑝, 𝑠): The prover and verifier key pair is de-

rived from the commonly defined structure 𝑠 and the public

parameter 𝑝𝑝 using the deterministic encoder.

• 𝜋 ← P(𝑝𝑘,𝑢,𝑤): Proving algorithm stating (𝑝𝑝, 𝑠,𝑢,𝑤) ∈ R.
• 𝑏 ←V(𝑣𝑘,𝑢, 𝜋): Verification algorithm, where 𝑏 ∈ {0, 1}.
• 𝜋 ← S(𝑝𝑝,𝑢, 𝜏): Simulator outputs 𝜋 given trapdoor 𝜏 .

Formally, the properties of [zk]SNARKs are as follows.

Definition 2.1. A non-interactive argument for R is a SNARK if

it satisfies:

• Completeness: An honest prover with valid witness should

convince any verifier. Formally, for any PPT adversary A:

𝑃𝑟


𝑝𝑝 ← G(1𝜆)
(𝑠, (𝑢,𝑤))) ← A(𝑝𝑝)

V(𝑣𝑘,𝑢, 𝜋) = 1 (𝑝𝑝, 𝑠,𝑢,𝑤) ∈ R
(𝑝𝑘, 𝑣𝑘) ← K(𝑝𝑝, 𝑠)
𝜋 ← P(𝑝𝑘,𝑢,𝑤)


= 1

• Knowledge Soundness: A dishonest prover (adversary),

should not be able to convince any verifier. To formally define

this we require that for all PPT adversariesA there exists an

extractor E that can compute witness given any randomness

𝜌 , such that:

𝑃𝑟


𝑝𝑝 ← G(1𝜆)

V(𝑣𝑘,𝑢, 𝜋) = 1, (𝑠, (𝑢,𝑤))) ← A(𝑝𝑝)
(𝑝𝑝, 𝑠,𝑢,𝑤) ∉ R (𝑝𝑘, 𝑣𝑘) ← K(𝑝𝑝, 𝑠)

𝑤 ← E(𝑝𝑝, 𝜌)

 = negl(𝜆)

• Zero-knowledge: If the argument dos not reveal anything

beyond the truth of the statement, we label it as zero-knowledge.

Formally, there must exist a PPT simulator S such that for

all PPT adversaries A following distributions are indistin-

guishable:

D1 =


𝑝𝑝 ← G(1𝜆)
(𝑠, (𝑢,𝑤))) ← A(𝑝𝑝)

(𝑝𝑝, 𝑠,𝑢, 𝜋) (𝑝𝑝, 𝑠,𝑢,𝑤) ∈ R
(𝑝𝑘, 𝑣𝑘) ← K(𝑝𝑝, 𝑠)
𝜋 ← P(𝑝𝑘,𝑢,𝑤)


D2 =


(𝑝𝑝, 𝜌) ← S(1𝜆)
(𝑠, (𝑢,𝑤))) ← A(𝑝𝑝)

(𝑝𝑝, 𝑠,𝑢, 𝜋) (𝑝𝑝, 𝑠,𝑢,𝑤) ∈ R
(𝑝𝑘, 𝑣𝑘) ← K(𝑝𝑝, 𝑠)
𝜋 ← S(𝑝𝑝,𝑢, 𝜌)


2.2 Incrementally Verifiable Computation (IVC)
IVC allows verification of computations done by repeatedly ap-

plying the same function. More precisely, for a given function 𝑓 ,

with initial input 𝑧0, IVC allows for generating a proof Π𝑖 stating

that 𝑧𝑖 = 𝑓 𝑖 (𝑧0), given a proof Π𝑖−1 stating 𝑧𝑖−1 = 𝑓 𝑖−1 (𝑧0). An
interesting property of IVC schemes is that they support additional

auxiliary inputs for 𝑓 . While the main input for each iteration of

applying 𝑓 comes from previous step, the auxiliary input 𝜔𝑖 in each

step is independent from other steps. Therefore, IVC schemes fur-

ther extend the completeness and soundness properties as follows.

Definition 2.2. We can define IVC by PPT algorithms (G,P,V)
and deterministic encoder K satisfying:

• Completeness: For any PPT adversary A:

𝑃𝑟



𝑝𝑝 ← G(1𝜆)
𝑓 , (𝑖, 𝑧0, 𝑧𝑖−1, 𝑧𝑖 ,𝑤𝑖−1,Π𝑖−1) ← A(𝑝𝑝)

V(𝑣𝑘, 𝑖, 𝑧0, 𝑧𝑖 = 𝑓 (𝑧𝑖−1, 𝜔𝑖−1)
𝑧𝑖 ,Π𝑖 ) = 1 (𝑝𝑘, 𝑣𝑘) ← K(𝑝𝑝, 𝑓 )

V(𝑣𝑘, 𝑖 − 1, 𝑧0, 𝑧𝑖−1,Π𝑖−1) = 1

Π𝑖 ← P(𝑝𝑘, 𝑖, 𝑧0, 𝑧𝑖 ; 𝑧𝑖−1, 𝜔𝑖−1,Π𝑖−1)


= 1

• Knowledge Soundness: ∀𝑛 ∈ N, and expected polynomial

time adversaries P∗, there exists expected polynomial time

extractor E, such for any randomness 𝜌 , following probabil-

ity is negligible:

𝑃𝑟


𝑝𝑝 ← G(1𝜆)

𝑧𝑛 ≠ 𝑧, 𝑓 , (𝑧0, 𝑧,Π) ← P∗ (𝑝𝑝; 𝜌)
V(𝑣𝑘, 𝑛, 𝑧0, 𝑧,Π) = 1 (𝑝𝑘, 𝑣𝑘) ← K(𝑝𝑝, 𝑓 )

(𝜔0, . . . , 𝜔𝑛−1) ← E(𝑝𝑝, 𝑧0, 𝑧; 𝜌)
𝑧𝑖 ← 𝑓 (𝑧𝑖−1, 𝜔𝑖−1) ∀𝑖 ∈ {1, . . . , 𝑛}


2.3 Nova Proving System
Nova [33] employs an efficient folding-based SNARK to achieve

efficient IVC. Folding schemes are cryptographic primitives that

simplify the verification of two NP statements into checking a

single NP statement. This allows the prover to incrementally prove
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Figure 1: The folding scheme structure in Nova [33].

correct execution for sequential computations represented by the

form𝑦 = 𝐹 𝑙 (𝑥), where 𝐹 is the computation, 𝑥 is the input, and 𝑙 > 0.

Notably, Nova provides one of the fastest transparent5 prover and
a relatively minimal verifier circuit of about 10,000 multiplication

gates [33]. Figure 1 presents an overall overview of the folding-

based IVC structure in Nova.

The Nova-rust library [10] fully implements the Nova proving

system and verifies the compressed output of IVC in the Spartan [48]

to achieve compact SNARKs proof. Additionally, the implementa-

tion offers support for multiple frontends to define steps in Nova,

such as Circom [18] through the nova-scotia library [11].

3 Motivation and Design Strategies
Over the past decade, various strategies have been proposed to

combat disinformation in media. While these approaches may not

always be directly comparable, we aim to highlight their individ-

ual strengths and weaknesses and provide the rationale behind

the design of VIMz. Table 2 outlines the distinctive features and

advantages of these approaches.

3.1 Possible Techniques for Media Provenance
C2PA. From a cryptographic perspective, approaches like the

C2PA solution rely on digital signatures. In these methods, when a

user captures a photo, the camera [1] or a specific software applica-

tion (e.g., Truepic [16] onmobile phones) adds metadata and signs it.

When the photo is edited using trusted software tools (e.g., Adobe

Photoshop), new metadata is appended to the existing records,

enabling verifiable edit history. In an ideal scenario, trusting the

software to handle the signatures and private keys would make

the C2PA protocol complete. However, in practice, such reliance

on software can lead to severe vulnerabilities for both the prover

and verifier sides [29, 35, 46]. To mitigate this, the C2PA trust

model [8] suggests executing the software within a trusted execu-

tion environment (TEE), which introduces an additional layer of

trust assumptions and limits performance. Furthermore, specific

attacks on well-known TEEs, such as Intel SGX [41, 50, 51], can

compromise the overall protocol.

ML-based detection models. Several studies focus on develop-

ing AI models that can effectively differentiate between real and

artificial images. Some of this work targets detecting manipula-

tion artifacts or forensic traces in AI-generated media [28, 52, 53],

while others explore alternative methods, such as using advanced

watermarks [24, 45]. Ideally, a perfect model would distinguish be-

tween authentic and artificially generated images without relying

5
Transparent SNARKs do not require trusted setup.

Table 2: Different Approaches for Media Provenance

Tech.

Trust

Assumption

Guarantee Complexity

Intg.
♦

Priv.
♦

Acc.
♦

Prove Verify

C2PA Dig. Sig.

Origin
★
&

Editor/TEE
❂ ✓ ✗ ✓ low low

ML ML/AI Model & TEE
❂

N/A ✓ ✗ N/A high

VC SNARKs Origin
★ ✓ ✓ ✓ high low

♦ Intg., Priv. and Acc. stand for integrity, privacy, and accuracy assurance,

respectively.
★
The original image is untampered.

❂
At some point, the

prover or the verifier require trusted execution environments (TEE).

on trust assumptions for the camera or metadata signatures. How-

ever, recent reviews [36] highlight a significant gap in accuracy

and realism between generative AI models and detection models.

This suggests that, even on limited datasets, such techniques are

not reliable for real-world applications. Additionally, distinguishing

between genuine refinements and misinformation transformations

presents challenges during the training process of these models.

Verifiable Computation (VC). This approach aims to achieve

proofs of authentic image refinements on an original source with-

out requiring trust in the prover or the proving mechanism. To

achieve this, the proofs must incorporate a opening of a commit-

ment that binds the witness to the original source, such as a hashing

method. This ensures that the authenticity of the refined image can

be proven without ever revealing the original image to any party.

To further enhance this approach, each proof can also incorporate

computations of creating a new commitment for the transformed

image. This means that the proofs not only prove knowledge of

an opening for the previous commitment (for the original image),

but also calculate a new commitment for the transformed image.

While this increases the complexity on the prover side, it allows

chaining proofs and transformations, thus reducing overall veri-

fication complexity. Theoretically, VC-based approaches hold the

potential for ultimate accuracy in detecting artificially generated

media while preserving the confidentiality of the original source.

However, the major hurdle lies in the high complexity of the prover,

which limits the practical adoption of this method. We note that

the assumption of trustworthy signatures on the original source is

not limited to photographed images. Different digital media con-

tent sources, such as generative models, can also sign the images

they produce, demonstrating that the VC approach is not limited

to specific hardware or software.

3.2 Selection Rationale of Proof System
As shown in previous studies [30], the main limitation of VC-based

approaches is the memory complexity, especially on the prover side.

This is because the entire original image is treated as witness data

for the proofs, and the proof system requires access to it as a whole.

However, we noticed that certain types of proof systems can iterate

over the witness data and verify the entire witness incrementally,

i.e., IVC. Folding schemes, such as Nova [33] or HyperNova [32],

are efficient for achieving IVC in strictly recursive functions, where

the prover can only apply the exact same function in each iteration.

In these schemes, the time complexity for the prover at any step 𝑖 is

proportional to the size of the function applied at that step and the
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total number of functions 𝑙 , and the proof size remains independent

of the number of iterations [32]. As discussed in the rest of this

section, we argue that a majority of authentic and permissible

transformations in photography and the news industry [7] can

potentially be implemented iteratively.

3.3 Compatibility with C2PA
Our approach, like C2PA [9], relies on the assumption that a trust-

worthy entity, such as a tamper-proof camera, signs the original

image. This assumption is currently practical, with companies like

Sony [1] supporting signatures in professional camera line-ups and

applications like Truepic [16] claiming trustworthy handling of

camera modules in smartphones. Recent advancements in device at-

testation protocols [23] further support the achievement of verified

signatures on the original image.

However, VIMz can be seen as an updated version of C2PA,

where the requirement for trusted editors is eliminated. This re-

moves restrictions on the proving or verifying software/environ-

ment, making VIMz far easier to adopt and integrate into available

frameworks compared to C2PA. Consequently, VIMz enables im-

age verification without disclosing the editor’s identity, thereby

preserving editor privacy. Furthermore, VIMz preserves the con-

fidentiality of the original image and the identity of the image

signer (creator/owner) while securely verifying the signer’s authen-

ticity through membership proofs (Section 4.4).

4 VIMz Protocol
This section begins by overviewing our trust model and security

assumptions, followed by an overview of the VIMz protocol. We

then define a folding-based circuit design for proofs of image trans-

formation and analyze its soundness.

4.1 Target Application and Security Goals
We target scenarios where images undergo edits while retaining ver-

ifiable authenticity, which is essential for applications like journal-

ism, social media, and intellectual property management. A typical

use case envisions a trusted entity (e.g., camera) signing a high-

resolution image at the moment of capture/creation for authenticity,

followed by an editor refining the image through transformations

such as brightness adjustments. The goal is to ensure the correct-

ness of these edits while safeguarding privacy by linking the final

edited image to the original version without exposing intermediate

edits, the editor’s identity, or the signer’s public key, while being

authenticated anonymously. Therefore, the desired system should

guarantee: (1) the integrity of all transformations, (2) secure linkage

of the final edited image to the original version, (3) while preserving

the privacy of intermediate edits and protecting the editor’s work-

flow. Additionally, (4) the editor’s identity and (5) the original image

signer’s public key must remain anonymous to the verifier. Finally,

the system should (6) efficiently handle high-resolution images

and multiple transformations, ensuring practicality for real-world

applications.

4.2 Trust and Adversary Model
The trust model in our protocol relies on the basic assumption

that the original image is untampered. This assumption is upheld

through a valid signature associated with the image. The signature

is generated either by a tamper-proof camera (like the Sony Alpha 7

IV camera [1] or the Truepic Lens SDK for mobile devices [16]) or an

trusted entity. This assumption alignswith prior work [9, 30, 42] and

forms a critical foundation for any protocol in this area. However,

unlike the trust model of C2PA [9], we do not necessitate additional

trust assumptions. Both the editor and the storage components

in our protocol are considered untrusted. Precisely, anyone can

publicly verify the proofs without prior knowledge of the original

image beyond its public signature.

Adversarial Model. We consider a PPT adversary A with the

capability to eavesdrop, intercept, or manipulate any number of

messages. We also assume that the adversary can compromise the

functionality of any software, including VIMz, thereby gaining full

control over it. However, the following cryptographic tools remain

secure under any PPT adversary:

• Collision-resistance hash functions: Such as Poseidon,

which we specifically utilize [26].

• Digital signature schemes: Such as ECDSA or EdDSA.

• Nova and Spartan proving systems: Forging a false proof
in such systems is not possible by a PPT adversary [33, 48].

4.3 Overview of the Protocol
VIMz allows users to demonstrate that specific refinements have

been applied to an original image 𝛼 (with hashℎ𝛼 ) to produce image

𝛽 (with hash ℎ𝛽 ). Figure 2 presents the high-level overview of the

protocol that consists of three phases:

• Commitment Phase: A trusted entity (such as a camera

or an application like Truepic) signs the hash of the original

image with its authenticated key. This signature serves as

the commitment to the image 𝛼 .

• Proving Phase: The prover, with access to the original im-

age, applies a set of transformations and generates proofs

for each transformation. The prover then sends the proofs

along with the final transformed image to the verifier.

• Verification Phase: The verifier checks correctness of the
original image’s signature using verified public keys of the

trusted entity and validates the proof of transformed image.

For the rest of this section, we focus on the proving phase and

analyze the security of the proofs generated by VIMz. In Appendix F,

we design a C2PA-compatible marketplace on top of this protocol.

Definition 4.1. Let ℎ𝛼 and ℎ𝛽 be the hashes of images 𝛼 and 𝛽 ,

respectively. We set 𝑈out = {ℎ𝛼 , ℎ𝛽 } and consider 𝑈in to be some

configuration parameter for the image transformation function 𝑓𝑇 .

let 𝑆 [𝑓𝑇 ,𝑈in,𝑈out] represent a statement with public values 𝑓𝑇 ,𝑈in,

and𝑈out , proving that:

𝑆
[
𝑓𝑇 ,𝑈in,𝑈out

]
=
{
∃ 𝛼, 𝛽

�� 𝛽 = 𝑓𝑇 (𝛼,𝑈in)
and ℎ𝛼 = 𝐻𝜙 (𝛼) and ℎ𝛽 = 𝐻𝜙 (𝛽)

} (1)

The statement in Definition 4.1 benefits from two main principals:

(1) It can be sequentially chained for multiple transformations

performed on an original source, resulting in a final refined

image. In this process, the output of each transformation

serves as the input for the next one.
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(2) The original image, as well as any intermediate images in

the transformation chain, can be kept private. The prover is

only required to reveal the final image to the verifier.

4.4 Anonymization of the Image Signer
The protocol outlined in Figure 2 provides the option to ensure the

privacy of both the original image signer and the prover. In VIMz,

proofs are securely bound to the original (𝛼) and transformed (𝛽)

images solely through their hashes. Consequently, when proving

the relationship between the two images, there is no association

with the identities of the prover or the original signer. This design

removes the need for the prover to authenticate their identity, as

verification focuses exclusively on the validity of the proof, not on

the identity of the prover.

To anonymize the identity of the original image signer, we as-

sume the existence of a commitment to a set of 𝑛 verified public

keys, which was established during a secure ceremony between the

manufacturer of authenticated cameras and some trusted authori-

ties. We assume the commitment is in form of a Merkle tree with

root T and a height of ⌈log𝑛⌉. Instead of disclosing the 𝑠𝑖𝑔𝛼 to the

verifier or any other party, the prover would generate a zkSNARKs

proof to demonstrate the following statement.

Definition 4.2. Assume that all verified public keys are committed

to aMerkle tree with root T , where each public key 𝑝𝑘𝑖 is hidden us-
ing a random nonce 𝑟𝑖 . We define the function 𝑂𝑝 : Z3+⌈log𝑛⌉

𝑞 → B
as follows: 𝑂𝑝 (𝑝𝑘𝑖 , 𝑟𝑖 ,T , 𝑀𝑃𝑖 ) verifies whether the combination of

𝑝𝑘𝑖 and 𝑟𝑖 is a correct opening of a commitment that belongs to

a Merkle tree with root T , using the Merkle path 𝑀𝑃𝑖 . We also

define Vsig : Z3

𝑞 → B such that Vsig (𝑚, sig, 𝑝𝑘) verifies signature
sig against message𝑚 and the public key 𝑝𝑘 . Let 𝑆 [ℎ𝛼 ,T] represent
a statement with public values T and ℎ𝛼 = 𝐻𝜙 (𝛼), demonstrating

that:

𝑆 [ℎ𝛼 ,T] =
{
∃ sig𝛼 , 𝑀𝑃𝑖 , 𝑟𝑖 , 𝑝𝑘𝑖

��V𝑠𝑖𝑔 (ℎ𝛼 , sig𝛼 , 𝑝𝑘𝑖 ) = 1

and 𝑂𝑝 (𝑝𝑘𝑖 , 𝑟𝑖 ,T , 𝑀𝑃𝑖 ) = 1

} (2)

Theorem 4.3. The statement in Definition 4.2 ensures that the
image 𝛼 is signed by an authentic public key, while preserving the
anonymity of the signer identity.

Proof Sketch. The correctness of Theorem 4.3 is based on the

collision resistance of𝐻 , the security of the digital signature scheme,

the binding and hiding properties of the commitment scheme, and

the soundness and zero-knowledge properties of the underlying

zkSNARKs. Since ℎ𝛼 and T are public inputs of 𝑆 , a valid claim suc-

cessfully binds ℎ𝛼 to T . The soundness property of the zkSNARKs

ensures that ℎ𝛼 is correctly signed by 𝑝𝑘𝑖 , which is an authentic

public key given that the prover provides a valid opening of the

commitment using 𝑀𝑃𝑖 as the witness. Furthermore, due to the

zero-knowledge property of the zkSNARKs, no information about

the auxiliary inputs of the statement (such as 𝑝𝑘𝑖 , 𝑀𝑃𝑖 , 𝑠𝑖𝑔𝛼 , and

𝑟𝑖 ) is revealed to any parties. □

4.5 Folding-based Proofs of VIMz
Our goal is to provide proofs for ensuring both the accurate exe-

cution of transformations and the computation of hashes for the

Trusted Entity Verifier

  or  

[  or ]

Prover

  s.t.  

Optional step to
 preserve privacy

of the signer

Figure 2: Overview of the protocol.

original and transformed images to uphold integrity. However, as

demonstrated by previous work [30], this approach leads to com-

plex circuits and computationally demanding proof generation. To

address this challenge, we employ a row-by-row folding technique

for each image, leveraging the IVC in Nova.

Figure 3 illustrates the proposed method for row-by-row tra-

versal to validate image transformations within VIMz. During this

traversal, cumulative hash values up to each step (ℎ𝑖𝛼 and ℎ𝑖
𝛽
) are

passed to the subsequent step to ensure the integrity of auxiliary

inputs. The final step (step 𝑛) produces the hash of both the original

and transformed images, denoted asℎ𝑛𝛼 andℎ𝑛
𝛽
respectively. Figure 4

depicts the dataflow for constructing ℎ𝑖𝛼 in VIMz. Since each step

must adhere to the same behavior (due to the folding constraint),

the hash result of the first row (𝐻𝜎 (𝛼1) in Figure 4) must also be

hashed with a value from the previous state. Therefore, we set the

initial given hash value as 0. The calculation of ℎ𝑖
𝛽
follows the exact

same method as ℎ𝑖𝛼 .

Some configuration values, such as the contrast adjustment factor

or the starting point position in cropping, demand additionally

publicly verifiable data. This supplementary data is denoted as 𝑢𝑖

in Figure 3.

To provide further clarification and adhere to the original nota-

tion of Nova [33], we redefine the following symbols: ∀𝑖 ∈ N : 𝜔𝑖 =

(𝛼𝑖 , 𝛽𝑖 ) and 𝑧𝑖 =𝑈 𝑖+1
in =𝑈 𝑖

out . Additionally, we define a function to

better describe the computations done in each step as follows:

Definition 4.4. A folding-friendly verifiable image trans-
former is a function with three inputs. This function can be applied

in each step of the folding scheme as illustrated in Figure 3, as fol-

lows:

F𝑇 : (Z𝑚×3
256

,Z𝑝 ,Z𝑝 ) → (Z𝑚
′×𝑘′

256
,Z𝑝 ,Z𝑝 )

F𝑇 (𝛼𝑖 , ℎ𝑖−1𝛼 , ℎ𝑖−1
𝛽
) =


𝛽𝑖 = 𝑓𝑇 (𝛼𝑖 )
ℎ𝑖𝛼 = 𝐻 (ℎ𝑖−1𝛼 , 𝐻𝜎 (𝛼𝑖 ))
ℎ𝑖
𝛽
= 𝐻 (ℎ𝑖−1

𝛽
, 𝐻𝜎 (𝛽𝑖 )))

(3)

For simplicity, we begin by formalizing a transformation that does

not require any configuration data. This means we omit 𝑢𝑖 val-

ues shown in Figure 3. Thus, a valid VIMz proof’s public input

should only contain two zeros: {0, 0}, and the resulting public out-

put should be {ℎ𝑛𝛼 , ℎ𝑛𝛽 }.
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We reduce the knowledge soundness of VIMz proofs to two

fundamental assumptions: 1) the soundness property of the IVC

scheme [33], and 2) the collision resistance of the Poseidon hash

function [26]. Let 𝛽 ′ represent the transformed image finally re-

vealed by the PPT adversary P∗, and let 𝛽 denote the truly trans-

formed image from the original source 𝛼 . Therefore, we can com-

pute the probability that an adversarial prover breaks the soundness

of proofs generated by VIMz as follows:

𝑃𝑟



( (
𝛼 ′ ≠ 𝛼 ∧ 𝐻𝜙 (𝛼 ′) = ℎ𝑛𝛼

)
𝑝𝑝 ← G(1𝜆)

∨
(
𝛽 ′ ≠ 𝛽 ∧ 𝐻𝜙 (𝛽 ′) = ℎ𝑛

𝛽

)
𝛼 ′, 𝛽 ′, F𝑇 , (𝑧0, 𝑧,Π)←P∗ (𝑝𝑝 ; 𝜌)

∨
(
𝑧0 = {0, 0} (𝑝𝑘, 𝑣𝑘) ← K(𝑝𝑝, F𝑇 )

∧ 𝑧 ≠ {ℎ𝑛𝛼 , ℎ𝑛𝛽 }
) )

(𝜔0, . . . , 𝜔𝑛−1)←E(𝑝𝑝, 𝑧0, 𝑧; 𝜌)
∧ V(𝑣𝑘, 𝑛, 𝑧0, 𝑧,Π) = 1 𝑧𝑖 ← F𝑇 (𝑧𝑖−1, 𝜔𝑖−1) ∀𝑖 ∈ N𝑛


(4)

Theorem 4.5. The probability of a PPT adversary breaking the
soundness of VIMz proofs (Equation 4) is negligible.

Proof sketch. Arguing that the above probability is negligi-

ble in the PPT adversarial model is straightforward. This follows

from the collision resistance of the hash function 𝐻 and the sound-

ness property of Nova. Our argument proceeds in two parts: If

the adversary submits a valid proof with valid public parameters

but manages to verify with either 𝛽 ′ ≠ 𝛽 or 𝛼 ′ ≠ 𝛼 , such that

𝐻𝜙 (𝛽 ′) = 𝐻𝜙 (𝛽) = ℎ𝑛
𝛽
or 𝐻𝜙 (𝛼 ′) = 𝐻𝜙 (𝛼) = ℎ𝑛𝛼 . In either case,

the adversary must find a collision in 𝐻 , which has a negligible

probability due to the collision resistance of 𝐻 . Alternatively, if the

adversary manages to successfully verify a malformed proof Π′

using public parameters other than 𝑧 = {ℎ𝑛𝛼 , ℎ𝑛𝛽 } and 𝑧0 = {0, 0},
the probability of this for a PPT adversary is negligible according

to the soundness property of the employed IVC scheme. Therefore,

the overall probability of a PPT adversary breaking the soundness

of proofs generated by VIMz is negligible. □

Note on Supported Transformations.We realize that image trans-

formers can be classified based on their compatibility with row-

based folding iteration. Therefore, we label one group as ”folding-
friendly" transformations that rely on local pixel values or their

immediate neighbors (the rows above and below) for computa-

tion. Examples include convolution-based transformers (e.g., blur),

grayscale, contrast, brightness, crop and resize (using interpolation).

These transformations fit well within a row-by-row processing

model, as the results depend only on nearby pixels, meaning the

same transformation function can be applied repeatedly across the

image rows without needing information from distant parts of the

image. In contrast, “non-folding-friendly" transformations —such as

rotation, affine transformations, and shear— introduce a challenge

with row-by-row processing. Although these transformations could

theoretically be applied row by row, the issue lies in the spatial relo-

cation of pixels in the output. For example, in rotation, pixels from
a single row may be relocated to entirely different positions across

the image, but the row-based function can only generate output

row by row. This mismatch makes these transformations unsuitable

for this approach, as they require a more global understanding of

pixel positions to ensure accurate evaluations.

However, the majority of common image transformations are

folding-friendly. As shown in Section 5.1, VIMz can efficiently prove

all permitted image manipulation according to the news industry

standards [7]. Additionally, most widely-used image enhancements

in applications and social media, such as convolution-based trans-

formations and color-space mappings, are folding-friendly and effi-

ciently supported by VIMz.

5 Implementation
In this section, we detail the design and implementation of an

efficient prover based on folding schemes. We note that while VIMz

primarily focuses on proving image transformations, other types

of data with a bounded two-dimensional, iterable structure, such as

computations over large matrices or convolutional neural networks,

can also be adapted for this approach.

Figure 5 illustrates the overall architecture of the VIMz prover.

To support standard image transformations, we have developed a

Python interface that allows a prover to apply their desired list of

transformations to the original source. The software then generates

suitable inputs for the circuits based on Nova’s folding scheme. The

final 𝜋SNARK is a valid proof of the statement in Equation 1. We use

Nova to fold proofs of media authenticity and the Nova-Scotia [11]

to define steps for Nova in Circom language [18]. Formore details on

the software and specific commands to execute the proof generation

properly, refer to the Artifact Appendix
6
.

5.1 Details of Circuit Design
5.1.1 Grayscale. The grayscale filter is a process that transforms

the color planes of an image into the gray spectrum, as depicted in

the following equation:

𝑔𝑟𝑎𝑦 = (𝛼𝑅 ∗ 0.299) + (𝛼𝐺 ∗ 0.587) + (𝛼𝐵 ∗ 0.114) (5)

6
VIMz is available as open-source in: https://github.com/zero-savvy/vimz
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Figure 5: Overview of the VIMz prover.

Applying the grayscale effect to the image is straightforward. As

illustrated in Figure 3, the transformed image is evaluated row-by-

row against the original. Algorithm 1 outlines the details of the 𝑖-th

step during the iterations for evaluating the grayscale transforma-

tion. The algorithm takes two types of inputs, private and public.

The private inputs 𝛼𝑖 and 𝛽𝑖 contain pixel values of the 𝑖-th row

of the original and transformed image, respectively. On the other

hand, public inputs ℎ𝑖−1𝛼 and ℎ𝑖−1
𝛽

represent the cumulative hash

results of the original and transformed images, respectively, up to

the (𝑖 − 1)-th step.

Algorithm 1: Grayscale (Step 𝑖)

Public Input :ℎ𝑖−1𝛼 , ℎ𝑖−1
𝛽

Private Input :𝛼𝑖 , 𝛽𝑖
Public Output :ℎ𝑖𝛼 , ℎ𝑖𝛽

1 for 𝑗 : 0→ 𝑙𝑒𝑛(𝛼𝑖 ) do
2 /* Multiplied by 1000 to handle decimal

values in F𝑞, e.g., 0.299 → 299. */

3 val ← (𝛼𝑅
𝑖, 𝑗 ∗ 299) + (𝛼𝐺𝑖, 𝑗 ∗ 587) + (𝛼𝐵

𝑖, 𝑗 ∗ 114)
4 assert 1000 > |𝑣𝑎𝑙 − 𝛽𝑖, 𝑗 × 1000|
5 ℎ𝑖𝛼 ← 𝐻 (ℎ𝑖−1𝛼 |𝐻𝜎 (𝛼𝑖 ))
6 ℎ𝑖

𝛽
← 𝐻 (ℎ𝑖−1

𝛽
|𝐻𝜎 (𝛽𝑖 ))

An essential consideration in Algorithm 1 is the multiplication

by 1000 to ensure accurate decimal calculations within the integer

format of elements in the field F𝑞 in equation 5. To compare val
with the given grayscale values (𝛽𝑖, 𝑗 in the algorithm), we assert

that the distance between val and 𝛽𝑖, 𝑗 × 1000 is less than 1000.

The allowance for a distance larger than 0 (but less than 1000)

accounts for rounding errors when capping the grayscale value

to an integer. Ultimately, the circuit updates the cumulative hash

values by digesting its private inputs (𝛼𝑖 and 𝛽𝑖 ), preparing them

for the subsequent step (lines 5 and 6).

5.1.2 Contrast And Brightness Adjustments. The approach
for realizing brightness or contrast adjustments is similar to that

for grayscale. To avoid repetition, we do not discuss them here, but

Resize
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Figure 6: Implementation of resize in Nova.

provide complete algorithms in Appendix A and Appendix B. It’s

important to note that applying contrast or brightness adjustments

can result in pixel values exceeding the valid range (0-255). There-

fore, it is essential to cap the result within this standard range, as

depicted in Equation 6 below.

cap𝑘
0
(𝑥) =Min(Max (0, 𝑥), 𝑘) (6)

To implement cap functionality over F𝑞 , we need to start by deter-

mining the sign of the resulting value. If the sign was negative, the

value must be capped at zero. However, in F𝑞 , −𝑥 is equivalent to

𝑞 − 𝑥 , and there is no inherent sign. To identify the sign, a com-

parison is made directly with 𝑞 − 𝑥 . If 𝑞 − 𝑥 is greater than 𝑥 , the

value is positive; otherwise, it is negative and should be capped at

zero. Additionally, when the value is positive, a comparison with

255 is necessary to cap it at 255 if it exceeds this value. Appendix C

provides circuit-level code for implementing cap in VIMz.

5.1.3 Resize. Resizing an image differs from other transforma-

tions as it cannot be executed exactly row-by-row. Depending on

the vertical resize ratio
height(𝛼 )
height(𝛽 ) = 𝑘

𝑘′ , a set of 𝑘 rows from the

original image compresses into 𝑘 ′ rows, where 𝑘 ′ < 𝑘 . For instance,

when resizing an HD image to SD resolution, 720 rows of the origi-

nal image compress into 480 rows, resulting in a simplified resize

ratio of
720

480
or

3

2
. Consequently, in each step of the designed circuit

for resizing, three rows of the original image are evaluated against

two rows of the transformed image
7
. Figure 6 represents resizing

an HD to SD resolution in this setting. Given that the original and

destination sizes are fixed during the benchmarks, constant weights

can be used for bilinear interpolation in the resize algorithm.

Algorithm 2 provides the abstract functionality implemented in

each step of the resize transformation. In the down-scaling based

on bilinear interpolation, at most, four pixels from the original

image have an effect on a pixel in the resized image. Lines 5 and

6 of the algorithm calculate the resulting pixel values based on

the weights in the bilinear interpolation down-scaling. Similar to

previous transformations, the inability to use float values in F𝑞
necessitates asserting that the resulted weighted value val has a
distance of less than 6 from 𝛽𝑖, 𝑗 × 6 (line 7 of the Algorithm 2).

5.1.4 Crop. When applying crop in a row-by-row traverse, it be-

comes crucial for each step to determine whether its corresponding

row (𝛼𝑖 ) falls within the crop area. Figure 7 provides a high-level

overview of this approach. Specifically, if the current step is within

the crop area, the crop evaluation takes effect; otherwise, it needs

to be skipped as illustrated in Algorithm 3.

Unlike the rest of the transformations, this algorithm has only

one private input, 𝛼𝑖 , in each step. This is because the values of the

cropped image must exactly match the one for the corresponding

7resize circuit requires less steps. e.g., HD to SD requires only
720

3
= 480

2
= 240 steps.
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Algorithm 2: Resize (Step 𝑖): HD→SD

Public Input :ℎ𝑖−1𝛼 , ℎ𝑖−1
𝛽

Private Input :𝛼 [𝑖 ..𝑖+𝑟𝛼 ] , 𝛽 [𝑖 ..𝑖+𝑟𝛽 ]
Public Output :ℎ𝑖𝛼 , ℎ𝑖𝛽

1 /* 𝑟𝛼 = 3, 𝑟𝛽 = 2*/

2 foreach 𝑐 ∈ [𝑅,𝐺, 𝐵] do
3 for 𝑖 : 0→ 𝑟𝛽 do
4 for 𝑗 : 0→ 𝑙𝑒𝑛(𝛽𝑖 ) do
5 weight ← 2 − 𝑖
6 val ← (𝛼𝑐𝑖, 𝑗∗2 + 𝛼𝑐𝑖, 𝑗∗2+1) ∗ weight

+(𝛼𝑐𝑖+1, 𝑗∗2 + 𝛼𝑐𝑖+1, 𝑗∗2+1) ∗ (3 − weight)
7 assert 6 > |𝑣𝑎𝑙 − 𝛽𝑐𝑖, 𝑗 × 6|

8 ℎ𝑖𝛼 ← 𝐻 (ℎ𝑖−1𝛼 |𝐻𝜎 (𝛼𝑖 ))
9 ℎ𝑖

𝛽
← 𝐻 (ℎ𝑖−1

𝛽
|𝐻𝜎 (𝛽𝑖 ))

pixels from the original image. The algorithm takes three additional

public inputs besides ℎ𝑖−1𝛼 and ℎ𝑖−1
𝛽

. The 𝑖row indicates the index of

the current row, while 𝑥 and 𝑦 represent the column and row of

the starting point of the crop, respectively.

Line 3 of the algorithm computes the hash value of the cropped

area along the horizontal dimension. This operation involves a

dynamic subset selection from the array 𝛼𝑖 based on runtime inputs

provided to the circuit. In the R1CS setting, memory access must be

predetermined at compilation. A possible workaround is to fix the

crop location before compiling the circuit, treating it as a constant,

i.e., 𝑥 and 𝑦 will be fixed as part of the circuit’s template.

Lines 4 to 8 check whether to use the ℎtemp value based on the

index of the row. This way, ℎ𝛽 will only be updated if the current

row is within the crop area. Similar to the dynamic array selection,

traditional if-else statements are not directly realizable in R1CS

setting. Therefore, wemust compute all potential conditional results

and subsequently select the appropriate one based on the inputs.

The actual implementation of the if-else statement in Algorithm 3

involves the code described in Appendix D.

5.1.5 Selective Crop. A drawback of the previous approach,

which involves fixing 𝑥 and 𝑦, is that it requires a unique veri-

fication key (𝑣𝑘) for each crop location. While this isn’t a major

issue in most cases and is standard practice in related works [22, 38],

as verifying or generating the 𝑣𝑘 by compiling the public ZK circuit

is relatively inexpensive on the verifier’s side, it becomes problem-

atic in constrained environments like when a Solidity-based smart

contract serves as the verifier.

To achieve a dynamic subset selection of size widthcrop from the

given row, we require widthcrop times multiplexers each support-

ing an input size of |width𝛼 − widthcrop | values. These multiplexers

enable selection of all possible subsets for a given row, then deter-

mine which of these subsets should be propagated based on the

given 𝑥 value.

5.1.6 Convolution-based Transformations. Two widely used

effects based on convolution are blur and sharpness adjustment.

Algorithm 4 provides an abstraction of the designated circuit for
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Figure 7: Crop in a row-by-row setup.

Algorithm 3: Selective Crop (Step 𝑖)

Public Input :ℎ𝑖−1𝛼 , ℎ𝑖−1
𝛽

, 𝑖row , 𝑥 , 𝑦

Private Input :𝛼𝑖
Public Output :ℎ𝑖𝛼 , ℎ𝑖𝛽 , 𝑖row , 𝑥 , 𝑦

1 widthcrop ← width(𝐶𝑟𝑜𝑝 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
2 heightcrop ← height (𝐶𝑟𝑜𝑝 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
3 ℎtemp ← 𝐻𝜎 (𝛼𝑖 [𝑥 : 𝑥 + widthcrop])
4 if 𝑦 ≤ 𝑖row < 𝑦 + heightcrop then
5 ℎ𝑖

𝛽
← 𝐻 (ℎ𝑖−1

𝛽
|ℎtemp)

6 else
7 ℎ𝑖

𝛽
← ℎ𝑖−1

𝛽

8 ℎ𝑖𝛼 ← 𝐻 (ℎ𝑖−1𝛼 |𝐻𝜎 (𝛼𝑖 ))
9 𝑖row ← 𝑖row + 1

convolution. It is crucial to note that while calculations are done

row-by-row, values from 𝑘 previous and next rows are needed to

apply a kernel matrix 𝜅 of size (2𝑘 + 1) × (2𝑘 + 1).

Algorithm 4: Convolution (Step 𝑖)

Public Input :ℎ𝑖−1𝛼 , ℎ𝑖−1
𝛽

, 𝜅, ℎ𝛼 [ (𝑖−𝑘 )→(𝑖+𝑘−1) ]
Private Input :𝛼 [ (𝑖−𝑘 )→(𝑖+𝑘 ) ] , 𝛽 [ (𝑖−𝑘 )→(𝑖+𝑘 ) ]
Public Output :ℎ𝑖𝛼 , ℎ𝑖𝛽 , ℎ𝛼 [ (𝑖−𝑘+1)→(𝑖+𝑘 ) ]

1 weight ← ∑
𝑝,𝑗 :0→(2𝑘+1) 𝜅𝑝, 𝑗

2 foreach 𝑐 ∈ [𝑅,𝐺, 𝐵] do
3 for 𝑗 : 0→ 𝑙𝑒𝑛(𝛼𝑖 ) do
4 val ← 0

5 for𝑚 : 0→ 𝑙𝑒𝑛(𝜅) do
6 for 𝑛 : 0→ 𝑙𝑒𝑛(𝜅) do
7 val+ = 𝛼𝑐𝑚,𝑗+𝑛 × 𝜅𝑚,𝑛

8 val ← cap255×weight
0

(𝑣𝑎𝑙) ///optional

9 assert weight > |𝑣𝑎𝑙 − 𝛽𝑐𝑖, 𝑗 × weight |

10 for𝑚 : 0→ 2𝑘 − 1 do
11 assert 𝐻𝜎 (𝛼𝑖−𝑘+𝑚) == ℎ𝛼𝑖−𝑘+𝑚
12 ℎ𝛼𝑖−𝑘+𝑚+1 ← 𝐻𝜎 (𝛼𝑖−𝑘+𝑚+1)
13 ℎ𝑖𝛼 ← 𝐻 (ℎ𝑖−1𝛼 |𝐻𝜎 (𝛼𝑖 ))
14 ℎ𝑖

𝛽
← 𝐻 (ℎ𝑖−1

𝛽
|𝐻𝜎 (𝛽𝑖 ))

To enforce consistency of input rows between steps, the common

input rows hashes are verified against each other. To this end, the
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first 2 × 𝑘 input rows are compared with values passed by the

previous step, and the hashes of the last 2 × 𝑘 rows is passed to the

next step (lines 10 to 12 of the algorithm).

5.2 Private Proofs of Authentic Image signer
The statement defined in Definition 4.2 aligns precisely with the

scenario implemented in [6]. Their library provides an interface

to prove membership in a group of ECDSA public keys without

disclosing information about the specific public key, which was de-

rived from an ECDSA signature. According to their benchmarks [6],

proving the statement in Definition 4.2 takes only 4 seconds on a

midrange laptop, demonstrating that for a given hash value, a sig-

nature exists from a key within a group of 2
20 ≈ 1million authentic

keys. Verifying the proof requires just 300 ms, and the proof size is

approximately 2 KB.

5.3 Optimization
5.3.1 Lossless Pixel Compression before Hashing. As noted
in prior work [30], calculating the entire hash of auxiliary inputs

adds up to the majority of constraints in the ZK circuit. To mitigate

this, we propose a lossless compression technique for pixel values

to reduce the number of constraints by nearly 30×. The primary

concept involves packing as many pixel values as possible within a

field element.

Using Pallas/Vesta curves in our setup, each field element 𝑒 ∈ F𝑞
can range from 0 to 𝑞−1, where 𝑞 = 2

254+455 . . . 353. Consequently,
each field element can carry up to 254 bits of information. Given

that every RGB value spans from 0 to 255 (equivalent to 8 bits or

one byte), we can concatenate up to 10 complete pixel values (three

R/G/B values for each pixel) that translate to a valid number in F𝑞
as is shown in Figure 8.

Now, in order to validate the integrity of an image, we require

30× less number of hashes over the field F𝑞 . However, this method

necessitates decompression before validating the transformed pixel

values. Appendix E implements the decompression circuit in Circom.

5.3.2 Parallel Proof Generation. The implementation of VIMz

leverages the memory and space efficiency of the Nova proving

system. Our experimental results, detailed in Section 6, demonstrate

a maximum memory peak of only 3.2 GB of RAM when proving

transformations on an HD-resolution image, while also computing

the hash of both the original and transformed images. This under-

scores the practicality of VIMz, even on consumer-level commodity

hardware and enables simultaneous execution of multiple instances

of VIMz, allowing for parallel proof generation. Figure 9 illustrates

a scenario with three distinct transformations applied to an im-

age. VIMz can concurrently run multiple instances, proving each

effect separately but in parallel. Calculating the hash of both input

and transformed images in each step establishes a chain of hashes

(e.g., ℎ𝛼 , ℎ𝑐𝑜𝑛𝑡 , ℎ𝑔𝑟𝑎𝑦 , and ℎ𝑟𝑒𝑠 in Figure 9) that ensures integrity

between steps. The final proof comprises all of the hashes and their

corresponding partial proofs (𝜋 , 𝜋 ′, and 𝜋 ′′). Section 6 includes

experimental results for running multiple instances of VIMz in

parallel on various platforms (Table 5).

0 1 2 3 4 5 6 7 8 9 10 11 . . . 
Each pixel contains three R/G/B values

10 pixels (30 RGB values) concatenated 

0x 37 E1 90 4C B3  .  .  .  42 17 DF 8E 05
r0g0b0r1g1b8r9g9b9 g8

pixel 9 pixel 8

. . .

pixel 0pixel 1
. . .

Figure 8: Lossless compression of pixel values.
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Figure 9: Proving multiple transformations in parallel.

5.4 Configurability
We denote the hyperparameters of transformations as part of the

𝑈 𝑖
in and𝑈

𝑖
out values in the folding scheme. In the current implemen-

tation, several transformations have at least one hyperparameter,

such as contrast or brightness factors, or the starting position (𝑥,𝑦)

in selective crop. Each folding step passes these values to the next

step unchanged. As these hyperparameters are part of𝑈 𝑖
in and𝑈

𝑖
out ,

they will ultimately be visible to the verifier as public inputs and

outputs of the VIMz proofs. Consequently, the number of hyper-

parameters affects prover and verifier complexity; however, this

overhead is negligible compared to the overall computation and

communication complexity.

In terms of support for new transformations, defining them in

VIMz is straightforward. Depending on the computations, a trans-

formation may require a few hyperparameters, which will become

part of𝑈 𝑖
in and 𝑈

𝑖
out . The remaining step involves defining the cal-

culation in Circom for one iteration. For transformations requiring

access to neighboring rows (e.g., convolution-based transforma-

tions like blur and sharpness), techniques outlined in Algorithm 4

can be applied to enforce integrity of shared rows between steps.

For more technical details on adding new transformations in VIMz,

refer to Appendix G.

6 Experimental Result
To showcase the practicality of VIMz, we have executed multiple

benchmarks across two set of hardware, a midrange Dell Latitude
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Table 3: Experimental Setup Configuration

Dell Latitude 5531 Dedicated Server

C
P
U

Model Intel
®
Core i5-12500H AMD Ryzen 9 7950X3D

Freq. 3.3∼4.5 GHz 4.2∼5.7 GHz
Cores

❇
12 16

Cache
♦

18 MB 145 MB

Memory 16 GB 128 GB

SSD 512 GB 2 TB

OS Ubuntu 22.04 LTS

❇
Number of physical cores.

♦
Total cache size (L1+L2+L3).

Table 4: Proving HD Resolution (1280×720)

Time (s)

Peak

Memory

midrange Laptop Server

Trans.
♦

Key. Gen. Proving Key. Gen. Proving

Crop
★

3.8 187.1 3.5 133.0 0.7 GB

Resize
★

11.5 187.0 6.6 135.7 2.5 GB

Contrast
❂

11.7 479.4 6.5 371.7 2.4 GB

Grayscale
❑

8.2 279.6 3.7 240.6 1.3 GB

Brightness
❂

11.3 474.0 6.5 372.5 2.4 GB

Sharpness 11.8 614.1 6.8 455.8 2.8 GB

Blur 11.5 555.3 6.6 406.0 2.5 GB

Sel. Crop
★

11.9 914.5 7.4 898.8 3.2 GB

♦
All measurements include proving the accurate execution of transfor-

mations, alongside computing the hash values of both the 𝛼 and 𝛽 to

achieve trustless and private proofs of integrity.
★
HD to SD.

❂ Contrast and brightness adjustments with an accuracy of 0.1.

❑ Grayscale transformation with an accuracy of 0.001.

laptop versus a dedicated server. Table 3 outlines the systems used

for benchmarking in our experiments.

6.1 Prover Complexity
All of our benchmarks report the overhead of proving the complete

proofs of VIMz (proving both the transformation along with the

hash of the input and output images).

HD Resolution. Table 4 provides the proof generation perfor-

mance for various transformations. Key takeaways include VIMz’s

low memory consumption, fast proving process and a very short

key generation time. As indicated by the results, generating com-

plete proofs
8
for a single HD transformation requires a maximum

of 3.2 GB of RAM, which is practical even on constrained systems.

Parallel Proof Generation. Utilizing parallelization technique,

as discussed in Section 5.3.2, enables us to boost the performance

further with minimal memory overhead. Table 5 provides perfor-

mancemetrics for executing parallel proof generations. In this setup,

chained transformations are proven concurrently, with the longest

proof generation time reported as theMax time, while the Avg time

is computed as
Max time

# of transformations
. Due to parallel execution,

overall memory consumption exceeds that of a single transforma-

tion. However, as VIMz instances share libraries, memory usage is

less than the sum of memory requirements of Table 4.

8
Proving transformation along with hashes of both 𝛼 and 𝛽 .

Table 5: Parallel Proof Generation for HD (1280×720)

Time (s) Peak Memory
♣

Transaction

List
★

Laptop Server

Laptop Server

Max Avg Max Avg

C-G 573.2 287 378.3 190 3.0 GB 2.8 GB

C-S 801.0 400 482.6 242 4.3 GB 4.4 GB

C-G-R 672.4 225 395.1 132 5.2 GB 5.0 GB

C-S-R 883.1 295 501.7 168 6.1 GB 6.0 GB

C-S-R-G 1013.8 254 532.4 134 7.1 GB 6.7 GB

C-S-R-G-B 1234.7 247 577.3 116 8.8 GB 8.6 GB

★ C, G, R, S, and B stand for Contrast, Grayscale, Resize, Sharpness, and

Brightness, respectively. The underline indicates the transformation

with the highest prove time, i.e., resulting in the Max time.

♣
The peak memory reported here represents the total (summation)

peak memory usage across all instances of VIMz executed in parallel.

A notable observation from Table 5 is that as the number of trans-

formations performed in parallel increases, the overall performance

improves significantly on average. For instance, compared to the

results for a single transformation from Table 4, the overall average

performance increases by up to 3.5×. This suggests that in the con-

text of integrating VIMz with real-world editors such as Photoshop

or GIMP, the proof generation process for each transformation

could be initiated in the background immediately.

Another takeaway is the fact that unlike the scenario of proving

a single transformation, the performance gap between the laptop

and the server widens when proving in parallel. Here, the advantage

of larger cache size and higher number of physical cores in Ryzen 9

CPU demonstrates its superiority over the laptop CPU.

4K Resolution. Table 6 provides performance measurements

of prover for 4K resolution. These results imply that it is pos-

sible to provide proofs of authentic image manipulations using

folding-based zkSNARKs even for large images. We note that the

same parallelization method can also be applied to the 4K proving

scenario that will further boost performance.

6.2 Verifier and Communication Complexity
Table 7 provides proofs size and the verification time, which cor-

respond to the size and verification time of a Spartan SNARKs

proof [48]. It takes less than a second on the laptop and to verify

VIMz proofs. VIMz maintains nearly constant proof sizes around

10 to 11 KB regardless of resolution. Notably, these proofs can be

verified on-chain in Solidity [13, 14] and are well within Ethereum’s

transaction size limits. Therefore, it is possible to have a transac-

tion containing multiple chained VIMz proofs to support building a

trustless C2PA-compatible marketplace as we show in Appendix F.

7 Related Work
The rationale for employing VC in the context of media provenance

is to generate secure proofs of authentic image refinements with-

out requiring trust in the prover. By opening a commitment that

binds the image to its original source (e.g., using a hash), we prove

the authenticity without revealing the original image. Additionally,

each proof can compute a new commitment for the transformed
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Table 6: Proving 4K Resolution (3840×2160)

Laptop Server

Transform. Proving (s) Memory Proving (s) Memory

Crop
★

1541 2.5 GB 1210 2.8 GB

Resize
★

1301 4.0 GB 974 4.7 GB

Contrast 3525 5.5 GB 2834 6.2 GB

Brightness 3384 5.4 GB 2823 6.2 GB

Grayscale 2169 3.1 GB 1596 3.1 GB

Sharpness 4599 8.0 GB 3657 8.4 GB

Blur 4097 7.4 GB 3231 7.5 GB

Sel. Crop
★

7259 9.3 GB 7302 10.3 GB

★
4K to 2K.

Table 7: Verifier Complexity

Verification Time (s)

Proof Size (KB)

Server Laptop

Crop 0.5 s / 0.5 s 0.9 s / 0.9 s 10.5

Resize 0.3 s 0.5 s 10.2

Grayscale 0.2 s 0.3 s 9.9

Cont. / Bright. /

Sharp. / Blur

0.3 s 0.5 s 10.3

image, allowing for chained proofs and reduced verification com-

plexity, albeit with a significant increase in prover complexity. Even

without commitment generation for the transformed image, the

high prover complexity in most of the related work posed a serious

challenge for practical adoption.

Photoproof [42] pioneered this idea by demonstrating the usabil-

ity of cryptographic proofs in general for verification of operations

like crop, flip, or adjustments to contrast and brightness. However,
their underlying proof system was not efficient enough and as a

result, their experiments where limited to low resolution images of

only 128, which is not practical in real world. A subsequent study in

2022, ZK-IMG [30] utilized the Halo2 [4], which is a more efficient

method of achieving SNARKs based on Plonky2 [12] proof system.

As a result, ZK-IMG was able to achieve higher efficiency and was

able to generate complete proofs in HD resolution (1280 × 720).

However, as elaborated in Section 3.1, the main drawback of works

like [30] is that the entire original and transformed images are

given to the proof system, such as Halo2, at once. This means that

in practice, the prover must execute a large amount of arithmetic in

one round of proving, resulting in very high memory complexity.

Consequently, ZK-IMG reported a peak memory usage of more

than 300 GB of RAM while generating a complete proof for im-

ages in HD resolution. In contrast, VIMz addresses the problem of

high memory complexity by utilizing folding-based proof systems.

VIMz’s peak memory consumption is bound to the computations

done in only one row of an image, achieving a far lower memory

requirement of just 2.8 GB for generating complete proofs of HD

image transformations. In addition to lower memory consumption,

VIMz achieves up to 3× faster proving times compared to [30]. We

compared VIMz to [30] in the final section of Table 8.

Another study [17] employed sumcheck protocol [20] to prove

the correctness of convolution function evaluations. However, their

focus was on convolution functions and did not report any analysis

for other types of image manipulation. Moreover, [17] does not

incorporate concrete steps for providing proofs for opening any

kind of commitment to the input data and as a result does not

provide proofs of integrity. Therefore, [17] does not fully implement

the complete proof system required to preserve the confidentiality

of the original source. In contrast, VIMz, similar to other related

work [30], incorporate proofs of hash for both the original and

transformed image to securely bind the zkSNARKs proofs to both

images, while preserving confidentiality of the original image.

In another work [31], authors provide verifiable image redaction

by grouping pixels into larger blocks, such as 16 × 16, to improve

overall performance. In contrast to [31], VIMz proves precise (per

pixel) transformation evaluations. Moreover, while [31] focuses

solely on proofs of redactions, VIMz provides a wider range of

image transformations, such as grayscale, sharpness, and contrast.
We acknowledge that the method in [31], which involves increasing

the granularity of the blocks, improves the prover’s performance

by lowering precision. However, this approach cannot be applied

to most image transformations, as the commitment does not have

enough data to cover all pixel values in the witness.

Two concurrent works to our paper, [22] and [38], also aim to

reduce prover complexity. We compare the performance of VIMz

to these works in Table 8 in terms of both prover and verifier

complexity. In [22], the authors propose proving construction of

a polynomial commitment for an original image source that was

previously committed using a specific lattice-based hash. The new

commitment can then be used to efficiently prove a transformation

on the original image. The main drawback of [22] is the commit-

ment performance, which results in either longer proving times or

significantly higher memory usage compared to the competition.

To provide a more detailed comparison with their hashing mech-

anism, we benchmark the performance of hash proofs in Table 9.

Our results indicate that folding-based hash proofs are generally

more efficient than lattice-based hash proofs of [22], offering up to

2× faster proving times and requiring 97% less memory.

In [38], the authors divide the image into smaller tiles to reduce

prover complexity. This approach generates multiple independent

proofs for each tile, necessitating separate verification processes.

Both the total proof size and verification time increase linearly with

the number of tiles. Moreover, implementing transformations like

resizing or convolution-based operations (e.g., blur or sharpness) is

challenging since each tile lacks access to neighboring pixels, lead-

ing to potential errors, as noted by the authors in [38]. In contrast,

VIMz uses folding schemes to effectively handle such transforma-

tions without errors. As explained in Section 5.1 and Algorithm 4,

VIMz can incorporate neighboring pixel data and verify it securely,

ensuring accurate convolution implementations. In benchmarks,

as shown in Table 8, for 33 MP transformations, VIMz achieves

faster proving times, over 170× faster verification times, and over

90% smaller proof sizes compared to [38]. We also note that their

underlying proving system is Groth16 [27], which necessitates a

trusted setup for each specific circuit. Therefore, their experimental

approach is impractical for real-world scenarios, as the community

would need to conduct a separate MPC ceremony for every trans-

formation and tile size they wish to support. In contrast, our proofs

are transparent and do not require any trusted setup ceremony.
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Table 8: Comparison with Related Work

Prover Cost Verifier Cost

Trans. Work

proof

gen. (min)

Mem.

(GB)

Verify

(s)

proof

size (KB)

Public
✛

inp. (KB)

(6632 × 4976) 33 MP

resize
★

[38] 56.5 3.4 107.7 140 >8000

[22]
❂

24×3 + 5 >57 2 + 196 150 + 5 >8000

op [22]
❂

60×3 + 5 >72 2 + 0.2 150 + 28 >8000

VIMz 49 9.5 0.3 10.5 0.064

crop
★

[38] 62.25 3.4 107.7 140 >8000

[22]
❂

24×3 + 8×3 >57 2 + 196 150 + 5 >8000

op [22]
❂

60×3 + 8×3 >72 2 + 0.2 150 + 28 >8000

VIMz 46 3.9 0.6 10.5 0.064

(2048 × 1365) Resolution

gray.

[38] 14.9 4.5 21.9 28 >2666

[22]
❂

4×3 + 3.37 >10 2 + 18 150 + 5 >2666

op [22]
❂

6×3 + 3.37 >10 2 + 0.2 150 + 28 >2666

VIMz 11.5 2.4 0.4 10 0.064

(1280 × 720) HD Resolution

sharp.

[30] 21.67 305.3 0.009 14.9 0.064

VIMz 7.58 2.8 0.3 10.3 0.064
★
33 MP to 2048×1365. ✛

Size of public inputs required for verification.

❂
In [22], reported proof times for commitment are for 30 MP not 33 MP.

Moreover, there are two proofs required to be verified: commitment (of size 5

or 28 KB) and transformation (of size 100∼200 KB, avg=150 KB). We applied

a factor of ×3 because [22] only reports results for a single color channel.

Here, we opted to multiply the time rather than the RAM usage, as the latter

would exceed the memory limit of their own setup.

Beyond general performance metrics and significantly smaller

proof size, VIMz offers several advantages over [22] and [38]. Both

of those work do not incorporate calculations of the hash value for

the transformed images in their proofs. Consequently, the verifier

circuit requires the entire transformed image as input, which can be

up to 8 MB, as seen in Table 8. Therefore, their proof size, combined

with the public inputs for the proof (i.e., the transformed image), far

exceeds the limitations of common block sizes in public blockchains,

e.g., Ethereum block size is around 100 KB. This makes their work

incompatible for future adoptions in blockchain-based applications.

In contrast, VIMz proves the hash of the transformed image

within the proof itself, generating a compact commitment for the

transformed image. As a result, the verification process of the proof

only involves the hash of the transformed image for verification, not

the entire image data, making it more compatible with constrained

verifiers. Another advantage of proving transformed image hashes

within the main proof is the capability to support chained transfor-

mations. This allows multiple edits to be proven in sequence with-

out revealing intermediate images. Additionally, it enables proving

chained edits in parallel, which, as shown in Section 5.3.2, can im-

prove the prover’s performance by an additional 3.5× speedup. We

note that the comparisons in Table 8 do not include the results of

parallel execution of VIMz instances for a fair comparison.

Table 9: Hash proofs in VIMz Compared to Related Work
The reported results reflect proving all three RGB channels together.

Time (s)

Peak

Memory

midrange Laptop Server

Key. Gen. Proving Key. Gen. Proving

VIMz HD
❂

2.4 123 2.4 103 0.5 GB

VIMz 4K
✹

6.0 724 5.3 631 1.2 GB

VIMz 33 MP
✫

11.1 2661 9.4 2196 2.2 GB

VIMz 33 MP

(monochrome)
▲ 11.0 875 9.2 743 1.9 GB

[22] 30 MP

(monochrome)

– – - 1440 72 GB

❂
1280×720 ✹

3840×2160 ✫
6632×4976 ▲

Only one color plane for

the sake of comparison with results reported in [22]. Unlike the hash proof

results in [22], VIMz doesn’t require proving additional commitments by

relying solely on image hashes in transformation proofs, which leads to

overall lower memory and computational complexity.

8 Discussion and Future Work
This paper showcases the practicality of generating proofs for

valid image manipulations using folding-based zkSNARKs. We

present VIMz, an open-source platform that can efficiently operate

on consumer-level hardware. It can prove the transformations on

8K (33MP,i.e., 100MB) images under 50 minutes, reaching to a peak

memory of only 10 GB, while proof size is just around 10 KB and

verification time is under 1 second. VIMz’s succinct proofs enable

the development of a privacy-preserving, trustless marketplace

for authentic media. Appendix F provides further design details

for such a marketplace. As a complete proof system, VIMz proves

the integrity of both the original and edited images, as well as the

correctness of the transformation without revealing intermediate

images within a chain of edits—only the final result is disclosed.

We further introduce a privacy-preserving option to the protocol,

where the original image owner’s identity remains confidential,

while still enabling a trustless authenticity check of the signer.

VIMz, similar to C2PA and other VC-based methods, assumes

a trustworthy signature on the original image. However, VIMz ex-

tends C2PA by eliminating the need for trusted editors, enabling

easier integration into existing frameworks, while guaranteeing

editor and original signer’s privacy. As VIMz is built on folding

schemes, it is particularly suited for folding-friendly transforma-

tions, where the final value of the resulting image is determined

by neighboring pixel values. Other types of image manipulation

like affine transformations or rotations, which involve shifting

pixel positions, can be expensive or incompatible with VIMz’s row-

by-row commitment scheme. Thus, a potential future direction is

to explore efficient folding-based mechanisms that support such

transformations. Currently, VIMz supports a limited set of folding-

friendly transformations, but this can be expanded to include more

configurability with additional hyperparameters, such as dynamic

convolution kernels, to accommodate arbitrary global image effects.

Future work may also incorporate advancements in folding-based

schemes [32, 43, 44], some of which have already been integrated

into the underlying Nova protocol [43]. Finally, optimizing VIMz

for greater efficiency could make it more suitable for deployment

on mobile devices.
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A Contrast Adjustment Algorithm
contrast adjustment algorithm as follows:

Algorithm 5: Contrast (Step 𝑖)

Public Input :ℎ𝑖−1𝛼 , ℎ𝑖−1
𝛽

, cf
Private Input :𝛼𝑖 , 𝛽𝑖
Public Output :ℎ𝑖𝛼 , ℎ𝑖𝛽 , cf

1 /* repeat for each color (R, G, B) */

2 foreach 𝑐 ∈ [𝑅,𝐺, 𝐵] do
3 for 𝑗 : 0→ 𝑙𝑒𝑛(𝛼𝑖 ) do
4 val ← (𝛼𝑐𝑖, 𝑗 − 128) ∗ cf + 12800
5 val ← cap25500

0
(𝑣𝑎𝑙)

6 assert 100 > |val − 𝛽𝑖, 𝑗 × 100|

7 ℎ𝑖𝛼 ← 𝐻 (ℎ𝑖−1𝛼 |𝐻𝜎 (𝛼𝑖 ))
8 ℎ𝑖

𝛽
← 𝐻 (ℎ𝑖−1

𝛽
|𝐻𝜎 (𝛽𝑖 ))

B Brightness Adjustment Algorithm

Algorithm 6: Brightness (Step 𝑖)

Public Input :ℎ𝑖−1𝛼 , ℎ𝑖−1
𝛽

, 𝑏𝑓

Private Input :𝛼𝑖 , 𝛽𝑖
Public Output :ℎ𝑖𝛼 , ℎ𝑖𝛽 , 𝑏𝑓

1 /* repeat for each color (r, g, b) */

2 foreach 𝑐 ∈ [𝑟, 𝑔, 𝑏] do
3 for 𝑗 : 0→ 𝑙𝑒𝑛(𝛼𝑖 ) do
4 val ← 𝛼𝑐𝑖, 𝑗 ∗ 𝑏𝑓
5 val ← cap25500

0
(𝑣𝑎𝑙)

6 assert 100 > |𝑣𝑎𝑙 − 𝛽𝑐𝑖, 𝑗 × 100|

7 ℎ𝑖𝛼 ← 𝐻 (ℎ𝑖−1𝛼 |𝐻𝜎 (𝛼𝑖 ))
8 ℎ𝑖

𝛽
← 𝐻 (ℎ𝑖−1

𝛽
|𝐻𝜎 (𝛽𝑖 ))

C Cap Functionality Implementation in Circom
Listing 1 provides circuit-level code for implementing cap in Circom
language.

1 template Cap(n) {
2

3 // n must be eual to ceil(log(max_limit))
4 signal input max_limit
5 signal input calced_value;
6 signal output final_value;
7

8 component lt[4];
9 component selector;
10 component gt_selector;
11

12 // find sign of calced_value

13 lt[0] = LessEqThan(n);
14 lt[1] = LessEqThan(n);
15 lt[0].in[1] <== 0 - calced_value;
16 lt[0].in[0] <== calced_value;
17 lt[1].in[0] <== max_limit;
18 lt[1].in[1] <== calced_value;
19

20 gt_selector = Mux1();
21 gt_selector.c[1] <== max_limit;
22 gt_selector.c[0] <== calced_value;
23 gt_selector.s <== lt[1].out;
24

25 selector = Mux1();
26 selector.c[0] <== gt_selector.out;
27 selector.c[1] <== 0;
28 selector.s <== lt[0].out;
29

30 final_value <== selector.out;
31 }

Listing 1: Cap functionality implementation in Circom.

D Implementation of IF-Else Statement in R1CS
Algorithm 7 provides the logic to realize If-Else statement us-

ing multiplexer and comparison gates in R1CS setting. Listing 2

implements this algorithm in Circom.

Algorithm 7: IF-Else Statements in R1CS

1 MUX .𝑖𝑛[0] ← 𝑣𝑎𝑙_1 //if 𝑖 < 𝑦 ∨ 𝑖 > 𝑦 + ℎcrop
2 MUX .𝑖𝑛[1] ← 𝑣𝑎𝑙_2 //if 𝑦 ≤ 𝑖 < 𝑦 + ℎcrop
3 𝑔𝑡𝑒 ← Circuit (GreaterThanEqual)
4 𝑔𝑡𝑒.𝑖𝑛[0] ← 𝑖row

5 𝑔𝑡𝑒.𝑖𝑛[1] ← 𝑦

6 𝑙𝑡 ← Circuit (LessThan)
7 𝑙𝑡 .𝑖𝑛[0] ← 𝑖row

8 𝑙𝑡 .𝑖𝑛[1] ← 𝑦 + heightcrop
9 𝑀𝑈𝑋 .𝑠 ← 𝑔𝑡𝑒.𝑜𝑢𝑡 × 𝑙𝑡 .𝑜𝑢𝑡

10 next_crop_hash← MUX .out

1 // if the row is within the cropped area
2 component selector = Mux1();
3 selector.c[0] <== prev_crop_hash;
4 selector.c[1] <== trans_hasher.hash;
5

6 component gte = GreaterEqThan (12);
7 gte.in[0] <== row_index;
8 gte.in[1] <== crop_start_y;
9

10 component lt = LessThan (12);
11 lt.in[0] <== row_index;
12 lt.in[1] <== crop_start_y + heightCrop;
13

14 selector.s <== gte.out * lt.out;
15 next_crop_hash = selector.out;

Listing 2: If-Else statement implementation in Circom.
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E Decompression Circuit
1 template Decompressor (){
2 signal input in;
3 signal output out[10][3];
4 component toBits = Num2Bits (240);
5 component toNum[10][3];
6 toBits.in <== in;
7 for (var i=0; i<10; i++) {
8 for (var j=0; j<3; j++) {
9 toNum[i][j] = Bits2Num (8);
10 toNum[i][j].in[0]<== toBits.out[i*24+j*8];
. . . ...
17 toNum[i][j].in[7]<== toBits.out[i*24+j*8+7];
18 out[i][j] <== toNum[i][j].out;
19 }
20 }
21 }

Listing 3: Decompressor circuit in circom.

F C2PA-Compatible Marketplace
Assuming the original image remains untampered and is signed

with a trusted and authorized key linked to a real or organiza-

tional entity
9
, we propose an approach that eliminates the need

for pre-registration of the original image before publishing the

edited version. To achieve this, we force any editor to prove their

knowledge of specific transformations performed on an authentic

original source, resulting in the final refined image. More precisely,

the prover is required to submit a claim following the format out-

lined in Definition 4.1.

Figure 10 provides an overview of the proposed protocol. There

are two potential scenarios for submitting a new edited version of

an original source:

(1) Sender has direct rights to the original image: In this

case the smart contract verifies the proof and finalizes the

transaction accordingly.

(2) Sender lacks rights to the original image: The sender
must additionally provide a signed declaration from the en-

tity holding the rights to the original image to confirm own-

ership transfer.

In the proposed model, each original content can have only one

owner, implying that all edited versions of an original image belong

to a single owner. In our ownership model, all edited versions of an

image reference the original image, and the original image points to

its owner. This structure ensures that the cost of ownership transfer

remains independent of the number of edited versions, as only one

storage field in the contract needs updating
10
.

Another consideration in the protocol design is that the per-

centage of photos taken by artists that ultimately get published is

typically low. Therefore, registering every unedited image to the

blockchain before editing and finalizing is not a scalable solution.

To address this, we propose a method allowing honest users to

register commitments to an original image simultaneously with

submitting the finalized edited version.

9
The trusted entity could be of any type, such an authentic tamper-proof camera, a

generative AI model, or a DAO of digital artists.

10
We acknowledge that there are various approaches to address ownership of an

original source and its refined versions, depending on the application and target

scenario. However, in this paper, our focus is on ensuring the accountability of media

in compliance with C2PA.
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Figure 10: Trustless and C2PA-compatible marketplace.

G Artifact Appendix
Making sure that images shared online are authentic and trustwor-

thy is a big challenge. But let’s be real: most images need some

tweaking before they go public. Zero-knowledge proofs (ZKPs)

can help by verifying edited images without needing to reveal the

original. The problem? ZKPs are often costly, especially when it

comes to prover complexity and proof size. That’s where VIMz

comes in. VIMz is a framework designed to prove the authenticity

of high-resolution images efficiently using folding-based zkSNARKs

(powered by the Nova proving system) [32, 33, 43]. With VIMz, we

can verify that both the original and edited images are legit, along

with the correctness of the transformations, all without revealing

any intermediate versions—only the final image is exposed. Plus,

VIMz keeps the identities of the original creator and subsequent

editors private while proving the final image’s authenticity, making

it ideal for privacy-preserving, trustless marketplaces compatible

with C2PA standards. It’s efficient enough to handle 8K (6632 ×
4976) images on a mid-range laptop with minimal memory and

proof size, offering fast verification and parallel processing capa-

bilities. We formally prove the security of VIMz on Section 4 of

paper.

Our tests show that VIMz is fast and efficient on both the prover

and verifier sides. For example, you can prove transformations on

8K (33MP) images using just a mid-range laptop, hitting a peak

memory usage of 10 GB. Verification takes less than 1 second,

and proof sizes come in at under 11 KB no matter the resolution.

Plus, the low complexity of VIMz means you can prove multiple

transformations in parallel, boosting performance by up to 3.5× on

the same machine.

VIMz is fully open-source and available on a public GitHub repos-

itory
11
. Within this repository, you will find all the code necessary

for implementing zero-knowledge circuits in the Circom language,

which can be used with Nova. The repository is organized into four

directories:

11
https://github.com/zero-savvy/vimz
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• circuits: Contains the underlying ZK circuits of VIMz in

circom language.
• contracts: Contains high-level Solidity smart contracts (see

Appendix F) that provide the infrastructure for a C2PA-

compatible marketplace on EVM-based blockchains.

• nova: Contains the main cargo-based package for building

and installing VIMz using nova protocol.
• py_modules: Houses the Python interface (GUI) of VIMz,

facilitating image editing and preparation of input files for

the VIMz prover.

• samples: Holds images in standard resolutions (e.g., SD, HD,

4K) along with pre-built JSON files of supported edits to be

fed into the VIMz prover.

To further assist developers, we have provided scripts for build-

ing Circom circuits and running VIMz in both single-threaded and

multi-threaded modes to benchmark its performance on any com-

modity hardware with minimal effort.

Further Developments: [Note: This process requires knowl-
edge of ZKP and familiarity with the Circom language and Nova

proving system.] If someone wishes to customize the protocol,

following changes must be made in the respected directories:

(1) py_modules: update image_formatter.py.
(2) circuits: Add the new .circom circuit w.r.t. to necessary

properties of the Nova-Scotia [11].

(3) nova/src: updating the main.rs file accordingly.

G.1 Description & Requirements
G.1.1 How to access. VIMz is publicly accessible in open-source

format via Github: https://github.com/zero-savvy/vimz and Zenodo

DOI: https://zenodo.org/doi/10.5281/zenodo.12516127.

G.1.2 Hardware dependencies. None.

G.1.3 Software Dependencies. All experiments in our research are

reproducible using commonly available commodity hardware run-

ning Linux operating systems. To simplify the benchmarking pro-

cess, we have included sample input JSON files for the VIMz prover

in the samples/JSON directory. Furthermore, we have provided

several scripts to streamline the installation, building and bench-

marking process.

G.1.4 Benchmarks. To streamline the benchmarking process, we

have included scripts in the repository that automate the execution

of individual or multiple (parallel) instances of VIMz. These scripts

utilize the sample JSON files available in the repository for testing

purposes.

G.2 Artifact Installation & Configuration
VIMz relies on several libraries and packages for proper execution,

including rust, NodeJS, and Python3. Below, we outline general
commands to install the main dependencies required by VIMz.

• For Installing Node JS:

curl -o- https://raw.githubuserconten
t.com/nvm-sh/nvm/v0.39.3/install.sh |
bash

Figure 11: Python GUI of VIMz.

source ~/.bashrc

nvm install v16.20.0

• For Installing rust:

curl --proto '=https' --tlsv1.2 -sSf
https://sh.rustup.rs | sh -s --
--default-toolchain none -y

• Additional build-essential libraries and packages:

sudo apt install gcc

sudo apt install build-essential
nlohmann-json3-dev libgmp3-dev nasm

• For installing circom:

git clone https://github.com/iden3/
circom.git

cd circom

cargo build --release

cargo install --path circom

• For installing snarkjs:

npm install -g snarkjs

Once you have installed these dependencies, you can proceed with

setting up and running VIMz. To obtain the latest version of VIMz,

clone its GitHub repository using the following command:

git clone https://github.com/zero-savvy/vimz

Head to the nova directory:

cd vimz/nova

build and install vimz using cargo:

cargo build
cargo install --path .

verify installation of vimz:

vimz --help
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G.3 Experiment Workflow
To streamline the evaluation process, we have provided pre-generated

sample input JSON files for VIMz prover along with automated

scripts to execute them. Our performance evaluations of VIMz

prover, as presented in Table 4, Table 5, and Table 6 in the paper,

can be reproduced with minimal effort using the provided scripts

and samples. In general, the vimz command requires the following

inputs:

vimz --function <FUNCTION>
--resolution <RESOLUTION> --input <FILE>
--circuit <R1CS FILE> --output <FILE>
--witnessgenerator <BINARY/WASM FILE>

You can access more detailed information about the required

inputs by running the following command:

vimz --help

G.4 Major Claims
In Section 6, we claim certain proving times of VIMz on different

platforms, including a commodity hardware (DELL Latitude lap-

top). These claims can be easily verified and reproduced using the

provided sample files and scripts.

G.5 Evaluation
G.5.1 Experiment (E1). [Proofs of HD resolution] [2 human-minutes

+ 10 compute-minutes]

[How to] Using the samples provided in the samples/JSON/HD/
directory and the provided benchmark.sh script in the main direc-

tory.

[Preparation] Follow the steps below:

(1) go to the circuits directory:

cd vimz/circuits

(2) build ZK circuits using the provided script in this directory:

./build_circuits.sh

[Execution] Go to the main directory of vimz repo and run any

number of transformations as you prefer using the provided script:

./benchmark.sh [list-of-transformations]

• Example 1: benchmarking a single transformation:

./benchmark.sh contrast
or

./benchmark.sh blur
or

./benchmark.sh grayscale

• Example 2: benchmarking parallel execution of multiple

transformations:

./benchmark.sh contrast blur
or

./benchmark.sh resize blur shapness

Figure 12: Example standard output generated by VIMz
prover.

NOTE: Since the proof generation process can be time consuming,

it is recommended to initially benchmark with only one transfor-

mation at a time (replicating the results presented in Table 4). Once

these results are verified, you can proceed to run multiple transfor-

mations in parallel to replicate the results shown in Table 5.

[Results] The script generates a file (or multiple files, one per

given transformation) with a .output suffix in the same directory.

These files contain the standard output of running the vimz com-

mand directly, as shown in Figure 12. The output includes various

performance metrics. The total proof generation time can be calcu-

lated as the sum of two numbers: RecursiveSNARK creation and

CompressedSNARK::prove: from the output.

G.6 Customization
For running the python-based GUI and applying different transfor-

mations other than the ones given in samples directory, following

steps must be taken:

cd vimz/py_modules/
virtualenv venv; source venv/bin/activate
pip install -r requirements.txt
python python_formatter.py

we recommend the following steps to redesign or add a new

transformation to the VIMz process:

(1) py_modules: Edit or add the preferred transformation to the

Python file image_formatter.py. This file contains useful
utility functions, such as compress(), which handle the cre-

ation of a pre-processed suitable JSON file input for the VIMz

prover.

361



Proceedings on Privacy Enhancing Technologies 2025(2) Dziembowski et al.

(2) circuits: Define the circuit that verifies and calculates the

hash of both the original and transformed images in Circom.

Ensure that the circuit follows necessary properties of the

Nova-Scotia framework [11].

(3) nova/src: Define the new method in the main.rs Rust file
to ensure proper execution by VIMz. This phase is responsi-

ble for executing steps and proving them recursively using

witness generators from Circom inside the Nova protocol.
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