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Abstract
This paper proposes Oryx, a system for efficiently detecting cycles

in federated graphs where parts of the graph are held by differ-

ent parties and are private. Cycle identification is an important

building block in designing fraud detection algorithms that operate

on confidential transaction data held by different financial institu-

tions. Oryx allows detecting cycles of various length while keeping

the topology of the graphs secret, and it does so efficiently. Oryx

leverages the observation that financial graphs are very sparse, and

uses this to achieve computational complexity that scales with the

average degree of nodes in the graph rather than the maximum

degree. Our implementation of Oryx running on a single 32-core

AWS machine (for each party) can detect all cycles of up to length

6 in under 5 hours in a financial transaction graph that consists

of tens of millions of nodes and edges. While the costs are high,

Oryx’s protocol parallelizes well and can use additional hardware

resources. Furthermore, Oryx is, to our knowledge, the first system

that can handle this task for large graphs.

1 Introduction
In our complex international financial ecosystem, fraudulent ac-

tivities such as money laundering are commonplace, partly due

to the decentralized and opaque nature of this ecosystem and the

lack of auditing mechanisms. Financial institutions spend a lot of

resources in order to detect and mitigate some of these fraudulent

activities: in 2022, they collectively spent around $274 billion on

financial-crime compliance [5]. A common approach for under-

standing financial transactions, and determining whether they are

anomalous, is to treat account owners as vertices, transactions as

edges, and then study certain structural properties of the resulting

graph. A particularly helpful and important structural property is

that of cycles within the graph [22, 24]. The intuition is that money

is transferred between different accounts but eventually goes back

to an account that belongs to the original sender, which forms a

cycle, and is a strong signal of behaviors such as money laundering.

There is a large literature of works [8, 12, 22, 25, 30] that design

algorithms and build systems for finding cycles or other graph

structural patterns, but they all assume that a single entity holds (or

has visibility into) the entire graph. Allowing financial institutions

to do away with this requirement of having to reveal their entire

transaction graph to a trusted intermediary (as in the status quo)

could unlock impactful audits. Our goal is therefore to privately

find cycles over federated graphs.

The setting of federated graphs closely resembles reality whereby

each financial institution only sees the fraction of transactions
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that are directly involved with its own accounts and cannot see

transactions that occur in other banks or institutions. As such, no

party has a global view of the entire graph and cannot effectively

detect cycles or other patterns besides those that are visible within

their own subgraphs.

Computing privately over federated graphs is not a new problem.

There are prior works in this space [6, 19–21, 23]. But there is one

key difference between the types of computations that these works

target, and those that we study in this paper. In particular, these

prior works aim to compute an aggregate statistic on the graph,

such as PageRank [7]. In other words, if one thinks of each vertex

as holding some data, the goal of the existing works is to compute

some aggregate function over the data held by the vertices. In

contrast, our aim is to identify some property or pattern (cycles in

our particular case) that exists within the graph’s topology. This is

a fundamentally different and more expensive type of computation:

even in the non-private setting, the number of subgraphs one needs

to process—and therefore the computational complexity—grows

exponentially with the average number of neighbors that nodes

have in the graph. As a result, existing works are ill-equipped to

perform computations over the structure of the graph.

To support this challenging domain we propose Oryx, a system

that detects cycles over federated graphs while hiding the graph’s

topology (i.e., the edges between different nodes). Oryx works in

the client-server MPC setting [9, 10] whereby many clients (the

banks in our context) have secret inputs (their subgraphs) and rely

on a few servers to perform the computation on their behalf. Oryx

can be instantiated with two or more semi-honest non-colluding

servers, though our particular implementation uses a three-server

semi-honest protocol that achieves better performance. In financial

settings, these servers could be run by delegates from financial

institutions as well as government regulators. These servers will

learn nothing about the graphs of individual banks besides the

number of vertices and edges, and the result of the cycle detection

computation (including some information about the number of

paths). Wemake this explicit in our ideal functionality in Section 6.1.

A key observation that Oryx leverages to be efficient is the fact

that if the graph represents financial transactions, this graph is

actually very sparse. We see this experimentally from a financial

money laundering dataset released by IBM [3], but can also under-

stand this intuitively: if vertices are people, then a very dense graph

would mean that every person is sending money to nearly every

other person which does not make sense. In reality, most people

have few transactions; a minority of vertices (e.g., companies) have

many transactions. The implication is that the average degree of

a node is very small compared to the maximum degree. A generic

MPC protocol for finding all cycles of a certain length in the graph

would therefore scale exponentially with the maximum degree. In

contrast, Oryx exploits the graph’s sparsity to achieve a similar

computational complexity to the non-private baseline: exponential

in the average degree rather than the maximum degree.
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Oryx makes the following technical contributions:

• Private cycle detection protocol. Oryx introduces a three-

party privacy-preserving cycle detection protocol. The output

of this protocol are all of the cycles of a given length, along with

all of the vertices that participate in each of those cycles. This in-

formation is precisely what prior works in non-federated graphs

aim to collect in order to identify fraudulent transactions [22].

The computational costs ofOryx’s protocol are quasilinear in the

number of subgraphs (which is itself exponential in the average

degree across all nodes) and linear in the length of the cycle.

Note that even non-private cycle detection algorithms that list

all cycles of a certain length have complexity that is linear in the

number of subgraphs. We give the full analysis in Appendix B.

In Oryx, each data owner (e.g., bank) submits secret shares of its

subgraph, including the nodes and edges, to these three parties.

Then, using these shares the servers compute over the full graph

and output the cycles they detect until they reach a pre-set max-

imum length of exploration (i.e., how many hops to consider).

Oryx’s protocol combines a three-server oblivious shuffle pro-

tocol [6] with a tailored private message passing paradigm for

graph pattern matching inspired by prior work [21].

• Efficient parallelization. Oryx proposes an efficient parallel

version of the private cycle detection protocol. This parallelism

allows Oryx to scale with multiple cores and multiple machines

to handle large-scale financial graph data efficiently.

We evaluate Oryx with 3 AWS m5.16xlarge servers co-located

in the same datacenter. We use an anti-money laundering financial

transaction graph dataset from IBM [3] with tens of millions of

vertices and edges, and find that Oryx can detect all cycles of up to

length 6 (which the authors of prior studies have found sufficient

for many applications [22]) in around 4.7 hours.

Limitations. While a lot of our techniques significantly reduce

computational costs over using generic MPC or prior works, the

servers still need to exchange large amounts of data. In financial

settings, this may not be an issue since the servers can be co-located,

in much the same way that stock trading servers and related infras-

tructure is in close proximity to each other. Indeed, our evaluation

assumes such co-location.

Oryx’s protocol also requires upper bounding the maximum de-

gree across all nodes with some value d; d impacts the protocol’s

computation complexity and the amount of memory used by each

server. Depending on the timescale on which one plans to detect

cycles (within the last day versus the last month), d needs to be

adjusted accordingly. In our evaluation we study values of d be-

tween 10 and 300 (meaning at most 300 transactions per account in

the chosen time window for a financial dataset), which we admit

might not be realistic. This limitation is not fundamental: it stems

from the fact that even though Oryx’s algorithms are parallelizable,

our prototype implementation parallelizes across cores rather than

across different machines. As a result, we are bound by the amount

of memory available in a single machine for each of our servers.

Finally, cycle detection is an instance of a large class of compu-

tations called subgraph pattern matching. Other computations in

this class are also useful, but our current implementation does not

support them (we discuss potential extensions in Section 11).

2 Setting and problem statement
2.1 Problem description
• G(V , E) is a directed graph where V is the list of all nodes and

E ⊆ V × V represents all the edges. An edge e is defined as a

tuple of two nodes (v, v′) which denotes that there is a directed

path from v to v
′
and we call this is an out-edge for v and an

in-edge for v
′
. We denote that there are N nodes in G and vi is

the i-th node in V .

• There are B parties who hold partial graph data and are denoted

as Pi for i ∈ [1, B]. Each of them holds a disjoint set of nodes Vi

where i ∈ [1,B] and V1 ∪ V2 ∪ · · · ∪ VB = V .

• For each node v in Vi , Pi knows all the edges of v and the edge

list of Pi is denoted as Ei . E1 ∪ E1 ∪ · · · ∪ EB = E. Note that the

edge lists of two different parties may contain the same edges e

which connects the nodes in the two parties’ disjoint node lists.

• The in(out)-degree of a node v is defined as the number of in-

coming (outgoing) edges of v. We use d to denote the maximum

in-degree and out-degree of all nodes in G.

• A path p of length k is a sequence of k + 1 nodes v1, · · · , vk+1
such that (vi , vi+1) ∈ E for i ∈ [1, k] and v1, · · · , vk+1 are distinct
nodes.

• A cycle C of length k is a special type of path. It is a sequence

of k + 1 nodes v1, · · · , vk+1 such that (vi , vi+1) ∈ E for i ∈ [1, k],
v1, · · · , vk are distinct nodes, but v1 = vk+1.

Problem definition. Given a static directed graph G(V , E) held
by B parties, P1 to PB, and a pre-defined parameter K , three non-

colluding servers, S1, S2, and S3, wish to detect all the cycles with

a maximum length of K in G without leaking any other edge in-

formation besides what is revealed in these cycles. Specifically for

each detected cycle, all the nodes and edges associated with the

cycle will be revealed.

2.2 Threat model and assumptions
Semi-honest adversaries. We model the servers and graph data

holders as honest-but-curious adversaries: they will follow the pre-

scribed protocol but will try to infer graph information (i.e., the

existence of edges between nodes). We also assume these parties

will not collude with each other.

Participants instantiation. The data providers are financial in-

stitutions each holding their customers’ information including ac-

counts and internal transactions. The computing servers can be

instantiated by designated banks or other financial institutions as

well as government regulators.

Id alignment. We assume these financial institutions agree on the

same id for each account and all ids are positive integers. For each

account, only the data holder institution knows the detailed account

information (the name of the account holder, balance information,

value of internal transfers, etc.). Financial institutions with whom

the account has transactions also see some basic information of the

account required for processing transactions such as the name of

account holder, type of account, etc. All other financial institutions

only see that the id exists but know nothing about the account.
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3 Can we use Generic MPC?
Secure multi-party computation (MPC) frameworks [4, 14, 28] allow

mutually distrusting parties to compute any arbitrary function that

can be expressed as a boolean or arithmetic circuit on secret inputs

without revealing anything else beyond the output of the function.

A prior study [6] points out that it is challenging to run graph

algorithm using generic MPC frameworks. The key challenge is

that if one wishes to hide the graph’s topology (as is the case in our

setting), the circuit cannot directly follow this topology and must

instead hide which node or edge is being processed by performing

some (potentially noop) action on every node. For example, to find

a neighbor of a given node, the circuit needs to iterate through

every node in the graph.

To address this limitation of generic MPC frameworks, recent

works [6, 19–21] propose protocols for computing graph analytics

such as PageRank [7] while hiding the graph’s topology. These

works represent a huge improvement over generic MPC frame-

works, but they are unfortunately not applicable to our setting.

There are two key reasons for this. The first is that graph analytics

computes some aggregate function over the data held by various

nodes, so the protocol only needs to maintain a constant amount of

space in which it collects and updates the result. This is not at all

the case in pattern matching tasks such as cycle detection, where

we are not interested in computing an aggregate value from data

held by nodes but instead in some property about the structure of

the graph itself. This requires tracking all relevant subgraphs that

satisfy the property, the number of which grows exponentially as

one explores deeper into the graph.

The second reason is that existing works adapt a node-centric

programming paradigm proposed by graph processing frameworks

such as Pregel [18], while (non-private) subgraph matching frame-

works [25] typically adopt a different but more suitable subgraph-

centric programming paradigm. It is challenging to express a sub-

graph pattern matching task using the current frameworks sup-

ported by private graph analytics. To address this, this paper pro-

poses a way to bring subgraph-centric programming ideas to MPC.

4 Non-private cycle detection
We start by giving a non-private cycle detection protocol to demon-

strate the idea of the subgraph-centric programming paradigm [25],

which is a major departure from the paradigm adopted by prior pri-

vate graph analytics works. Here each subgraph represents a path

of a specific length. We then discuss the intuition behind converting

this non-private method into a privacy-preserving protocol.

Figure 1 gives the pseudocode for non-private cycle detection.

The protocol runs in rounds where it finds out cycles with a specific

length in the graph. Initially, paths of length one are initialized with

all the edges in the graph. Then, in each round, the computation is

divided into two phases, extension and filter.

In the extension phase, we iterate through each path found in the

previous step. For each path, we find all the outgoing edges of the

last node in the path and append the neighbor node of each edge to

the existing path (lines 6–10 in Figure 1). Appending the neighbor

node results in a new path with one more node.

Then, in the filter phase, we examine each newly generated path

and find out which path forms a cycle by verifying whether the

1: function Non-priv-cycle(V , E, K)

2: paths← E

3: for k ∈ [2,K] do
4: # Phase 1: extension

5: new_paths← [ ]
6: for p in paths do
7: # Traverse all outgoing edges of the last node.

8: for (p[-1], neighbor) ∈ E do
9: np← p.append (neighbor)
10: new_paths.append (np)
11: # Phase 2: filter

12: paths← new_paths

13: cycles← K ∗ []
14: for p in paths do
15: # Remove paths with repeating nodes.

16: for i ∈ [1, k − 1] do
17: if p[i] = p[−1] then
18: paths.remove(p)
19: continue

20: # Detect cycles.

21: if p[0] = p[−1] then
22: paths.remove(p)
23: cycles[k].append (p)
24: return cycles

Figure 1: Pseudocode for non-private cycle detection. The
inputs are the list of nodes V , the list of edges E, and the
maximum length of cycles to detect K . It outputs the detected
cycles with length from 2 to K in the graph.

first and last node are the same. The detected cycles are removed

from the list of paths. For each path, we also check whether the

newly appended node occurs in the path twice. The repeating nodes

mean that there is a cycle with a smaller length inside the path.

Since cycles with smaller length have already been detected in the

previous round we do not need to include them for the next round

of extension. For example, a path of a→ b→ c → d → b includes

the cycle b→ c → d → b which has been previously detected.

4.1 Adding privacy to the strawman approach
To turn the non-private cycle detection strawman into a private

protocol, we need to support the two phases extension and filter

obliviously without leaking the graph topology. To achieve this

goal, we first need a way to encode the graph including nodes,

edges, and all the paths that are generated during execution such

that the computing parties cannot learn the topology of the graph

from the encoded data. Then, we need to design a protocol that can

operate directly on this encoded data. In this section, we give some

design choices in Oryx and defer the details to later sections.

Encoding the data. Prior works on private graph analytics [6, 19–

21] store the graph (a set of nodes and a set of edges) as secret

shares; each computing party receives one share of the graph, and

all shares are needed to recover the graph. In Oryx, we follow these

works and also store graphs as secret shares.
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How to compute over secret shares. The goal of Oryx is to com-

pute the entire process in Figure 1 in a private way. Specifically,

each server inputs its secret shares of the graph (E and V ) and the

protocol only outputs the detected cycles (i.e., cycles, the return

value of the pseudocode). All the intermediate results including the

generated paths are stored as secret shares without being revealed

in the clear so no servers ever know the exact values of the paths.

We now discuss how the two phases, extension and filter, can be

conducted over secret shares.

Since all the generated paths in each round are stored as secret

shares, and the filtering computation is performed on each path, we

can implement the filter phase using generic MPC frameworks [4,

14, 28]. The servers use their local shares of one path to run an

MPC to first check whether the path contains repeating nodes; the

servers then remove all paths with repeating nodes. Over the paths

with no repeating nodes, the servers run MPC again by inputting

their local shares of the path and only output whether the path

forms a cycle. Finally, the servers exchange their local shares of the

cycles to reveal the nodes.

The difficult part is how to do the extension in an oblivious way

without leaking edge information. Recall that our edges and gen-

erated paths are stored as secret shares. Thus, to run extension on

a path, the servers need to fetch the neighboring nodes without

knowing who they are. There are two challenges here. The first

challenge is efficiency: how to find the neighbors of a node in an

efficient way without naively traversing through each node and do-

ing comparisons one by one. The second challenge comes from the

potential to leak too much information: how can we avoid leaking

the number of newly generated paths associated with each node

given that different nodes have different numbers of neighbors.

To address the first challenge, we borrow ideas from existing

works [6, 19–21] that use an oblivious sort operation to significantly

reduce the amount of comparisons needed to find the neighbors

of a node. We defer the details to Section 5. To deal with the sec-

ond challenge, we pad each node’s neighbor lists to the maximum

degree with dummy neighbors so that each node has the same num-

ber of neighbors. Then, at a later stage, we remove the paths that

contain dummy neighbor nodes in an oblivious way, as otherwise

the number of paths would grow exponentially with the maximum

degree. Removing these paths leaks the number of total paths of a

specific length across all nodes in the graph. This is a significant

improvement because instead of leaking per-node information, we

leak a single aggregate value. We discuss this further in Section 6.1.

5 Oblivious message passing
In this section we review the idea introduced in GraphSC [21] of

using oblivious sorting as a way to obliviously pass data from one

node to its neighbors. This idea has been used in a lot of follow up

works [6, 19, 20]. We will use the PageRank protocol as an example.

Strawman message passing. In a PageRank task, each node has

its own rank score and the goal is to pass a node’s rank score to its

neighboring nodes so that all nodes’ scores can be updated. The

main challenge is how to pass a node’s data to its neighboring

nodes while maintaining privacy. For simplicity, we assume that all

nodes have the same number of neighbors n. The total number of

nodes is denoted as |V |, and the total number of edges is denoted

1: function GraphSC-Pass(tuples)

2: var ← 0

3: for t in tuples do
4: if t.isNode then
5: var ← AGG(var , t.data)
6: else
7: t.data← var ; var ← 0

Figure 2: Pseudocode for passing data between sorted tuples.

as |E | = n|V |. The naive way of doing this is as follows. First, we

loop through all nodes. For each node i, we have an inner loop that

goes over every other node j, and we check to see if j is a neighbor

of i. If so, we update i’s data so that it incorporates the data of j

(e.g., we update the rank by applying some aggregate function on

the two values). This results in a total of n|V |2 comparisons.

5.1 Message passing in GraphSC
The previous naive approach is very expensive, which is why

GraphSC [21] proposed the following improvement.

Representing the graph. GraphSC encodes both nodes and edges

in the same format in order to make it hard to differentiate the

two. Specifically, both are encoded as a tuple (src, dst, data). When

src = dst, this tuple indicates a node with id src. Otherwise, it

indicates an outgoing edge from node src to node dst. The data

field is used to store values such as the rank score of each node in

PageRank. The tuples are then split as secret shares.

Passing data. There are two rounds of data passing in GraphSC.

First, the data of each node i is passed to its outgoing edge tuples

(i.e., all edge tuples that contain src = i) by setting the data field of

these edge tuples to be the data value of node i. Second, for each

node j, an aggregate function is applied over the data fields of all

the edge tuples where dst = j to compute an aggregate value. This

aggregate value is then written to the data field of node j.

Message passing with sorted tuples. To allow passing data from

the source nodes to the outgoing edges, the servers first obliviously

sort the tuples based on the src field in the tuple (src, dst, data). For
node and edge tuples with the same src value, the sorting ensures

that the node tuples always appear before the edge tuples. Likewise

for the second data pass, we sort the tuples based on the dst field

and ensure that for tuples with the same dst value, the node tuple

always appear after the edge tuples.

After the first sort, the tuple for node i is the closest node tu-

ple that appears before i’s out edges (edge tuples with src = i).

For example, suppose the servers initially have the shares they

received from clients in an arbitrary but consistent order. Say the

shares represent tuples [2, 2, 3], [2, 3, 0], [3, 3, 1], [1, 2, 0], [1, 1, 2].
After sorting, the list is [1, 1, 2], [1, 2, 0], [2, 2, 3], [2, 3, 0], [3, 3, 1],
which contains the first node tuple, followed by its edge, followed

by the next node tuple, etc. Then the servers do a linear pass over

all tuples to move data from the source node to the outgoing edges

as shown in Figure 2.

The linear pass runs as follows: the servers begin iterating through

the tuples from the start of the sorted list and use a global variable
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Ideal functionality F of cycle detection

Parties: Pi for i ∈ [1,B], S1, S2, and S3.

Public parameters:
• d: maximum degree of every node in graph G.

Inputs:
• Vi , Ei: list of nodes and edges from each Pi .

Desired output:
• Ck : set of cycles of length k in G for k ∈ [2,K].
Additional output (i.e., leakage):
• |Vi | + |Ei |: sum of the number of nodes and edges for

each party Pi .

• pnk : number of paths of length k in G for k ∈ [1,K].

Figure 3: Ideal functionality of Oryx.

var during the iteration. When encountering a node tuple, var is

written as the data field of the tuple. Otherwise, the tuple is an edge

tuple and the aggregate function is applied over var and data of

the tuple (for simplicity, we assume the aggregate function does

additions over the inputs). The result after applying the aggregate

function is written to the data field of the edge tuple. In the example

above, var is first written as 2 when it encounters the first tuple

[1, 1, 2]. And then var is written to the data field of edge tuple

[1, 2, 0] and it becomes [1, 2, 2] after the update.
The second pass to send data from the edges to the destination

nodes runs in a similar way but with a sorted list that arranges all

edges before their destination nodes.

The complexity of the Bitonic sorting network [15] used in

GraphSC is O(( |V | + |E |) log2 ( |V | + |E |)), and the linear pass takes

O( |V | + |E |). As a result, the total complexity of private PageR-

ank with sorting is O(( |V | + |E |) log2 ( |V | + |E |)). If we assume

the average number of neighbors is n, then |E | = n|V |, which re-

sults in O((n + 1) |V | log2 ((n + 1) |V |))—better than the strawman

approach’s running time of O(n|V |2).
Recent work by Araki et al. [6] proposed using efficient shuffle

and sort protocols to further improve the efficiency of GraphSC

assuming three non-colluding servers.

6 Privacy-preserving cycle detection
In this section, we describe our systemOryx which supports privacy-

preserving cycle detection. We start by stating the desired privacy

guarantee of Oryx, then give an overview of the end-to-end cycle

detection protocol, describe the data format for edges and generated

paths in Oryx, and talk about the details of each stage in order to

achieve our privacy guarantee. Oryx consists of various subrou-

tines. Our particular instantiation of these subroutines uses three

servers since they were the most efficient protocols that we know

of at present. However, if a better instantiation for any of these

subroutines becomes available, Oryx could use those instead.

6.1 Privacy guarantee of Oryx
The privacy guarantee of Oryx is given by the functionality F in

Figure 3. The graph is held by B parties, P1, P2, . . . , PB and we have

three computing servers, S1, S2, and S3. F takes the graph as an

input and it outputs the detected cycles up to length K , which is

precisely what we want. However, F also leaks additional infor-

mation, owing to the fact that Oryx is not perfect. Specifically, F
outputs (1) the sum of the number of nodes and edges for each

party Pi because in Oryx we will not ask parties to pad the number

of their tuples with dummy entries (though we could); (2) the total

number of paths in the graph of up to length K . This second leakage

is the most fundamental and is specific to the way in which Oryx

computes cycles efficiently and avoids increasing the number of

paths exponentially with the maximum degree d.

What does this leakage mean in practice? Leaking pn1, which

is the number of paths of length 1 is equivalent to leaking |E |.
Leaking |Vi | + |Ei | for all Pi means that an adversary can recover

|V | =∑
i
( |Vi | + |Ei |) − |E |. Finally, computing pnk+1/pnk leaks the

average outgoing edges of all nodes in the entire graph G. We do not

have a proof that this leakage will not allow an adversary to learn

whether a particular pair of nodes in the graph has an edge or not

with much higher probability than its prior, or other information

about the structure of any of the parties’ subgraphs (aside from

trivial graphs). However, based on our survey of state-of-the-art

techniques for reconstructing graphs from partial knowledge [13]

they require significantly more information than what we leak.

We thus conclude that there does not exist any known way to

recover the topology of the graphs of any of the parties from the

information that we leak, and we conjecture that doing so is actually

hard since we only leak aggregate information (e.g., total number

edges, vertices, and average out degree).

6.2 Overview of Oryx

The protocol consists of three stages. The first stage operates

as an initialization phase, during which each data holder (Pi∈[B] )
creates secret shares of its graph. Then Stage 2 and Stage 3 run in

rounds in which the servers detect cycles of a specific length k. We

give the overview of each stage here and defer the details of each

stage to later sections.

Stage 1: Graph data holders create secret shares. Each Pi∈[B] first
formats its local graph data (i.e., the nodes and edges it owns) in

the same way (§6.3) and creates secret shares of the formatted

tuples. We use an edge tuple to include both the node ids and all

the outgoing edges of the node. The secret shares of both edges and

generated paths are indistinguishable. Then, Pi sends one secret

share to a computing server respectively. The servers each receive

secret shares from all Pi∈[B] , and then use the secret shares to

compute cycles.

Stage 2: Computing servers run oblivious path extension. In each

round of detecting cycles of length k, each server holds the secret

shares of the edges and the paths of length k − 1. The goal for the
oblivious path extension protocol is to input these secret shares,

and output the secret shares of edges and paths of length k. Paths

of length k are generated by extending each path p of length k − 1
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1: Struct Tuple
2: src

3: id

4: vec = [v1
1
, . . . , v1

k
, v

1

k+1], . . . , [v
d

1
, . . . , vd

k
, v

d

k+1]︸                                              ︷︷                                              ︸
d

Figure 4: Data format definition of a tuple in Oryx.

using the outgoing neighbor nodes of the last node in p (as shown

in lines 6–10 in Figure 1). For example, suppose node 2 has two

neighbors 3 and 4. Given an input path [1, 2], the output paths are
[1, 2, 3] and [1, 2, 4].

We capture the above functionalitywith the function ( [esk]1, [esk]2,
[esk]3) ← Ob-Extend( [sk]1, [sk]2, [sk]3), where [sk]1, [sk]2, [sk]3
are input and [esk]1, [esk]2, [esk]3 are output shares for each of the

servers S1, S2, S3, respectively. We show how to build this function

in Section 6.5.

Stage 3: Computing servers run oblivious filtering. In the oblivious

filtering stage, the servers take as input secret shares of edges and

generate paths of length k (i.e., the outputs from runningOb-Extend

in Stage 2). The servers filter out invalid paths (as shown in lines

16–18 in Figure 1), and detect and reveal cycles (as shown in lines

21–23 in Figure 1). Note that only detected cycles are revealed along

with the nodes that form each cycle. Each server then formats secret

shares of edges and valid paths to be used for cycle detection of

length k + 1 in the next round.

We capture the above functionality with the function (ck , [sk+1]1,
[sk+1]2, [sk+1]3) ← Ob-Filter( [esk]1, [esk]2, [esk]3). Here, the re-

vealed cycles with length k are denoted ck and the secret shares of

paths and edges to be used in the next round are [sk+1]1, [sk+1]2, [sk+1]3.
We show how to build this function in Section 6.6.

6.3 Data format and secret sharing
To ensure that the secret shares of both edges and generated paths

are indistinguishable, we format them into the same structure. In

Oryx, given the length of cycles to detect, k, and the maximum

node degree, d, we format the edges or a path as shown in Figure 4.

Each tuple begins with a non-negative integer src which indicates

a path if src = 0 or the edges of node src otherwise. The tuple also

has an id field which is a unique number among all tuples; this field

is only used as a tie-breaker for the sorting operation which we

will detail in later sections. Then it has field vec, which consists

of d vectors where each vector contains k + 1 positive integers.

Note that the size of the tuples increases with the round of cycle

detection (i.e., as k increases).

For a path [v1, . . . , vk], the formatted tuple has d vectors, each

with k + 1 elements. All of the d vectors in vec are the same (dupli-

cates of each other). In each vector, the first k elements are the nodes

of the path [v1, . . . , vk] and the last element is an empty placeholder

0. As shown in the example in Figure 5 with d set to 2, we repre-

sent the path of [1, 2, 3] as {src = 0, vec = ( [1, 2, 3, 0], [1, 2, 3, 0])}.
The reason to have the d copies of the path vector is for oblivious

extension which we will detail in section 6.5.

To represent edges, we use a tuple to represent all the neighbors

from the outgoing edges of a node src. Additionally, the neighbor list

of each node is padded with dummy zeros to match the maximum

degree d. For example, in the graph shown in Figure 5 with d = 2,

we use [2, 0] as the neighbor list of node 1. Node 1 has a single

neighbor, node 2, and we use the dummy id 0 to pad the neighbor

list to two elements. We set src field in the tuple to u indicating that

it represents the neighbor list of node u. Then we set the first k

elements of the d vectors in vec, [vi
1
, . . . , vi

k
]i∈[d ] , to zeros. And we

set the last element of the d vectors, v
i

k+1 for i = 1 to d, to the nodes

in the padded neighbor list of node u individually. For example,

{src = 1, vec = ( [0, 0, 0, 2], [0, 0, 0, 0])} represents the neighbor

nodes of node 1 with k = 3.

Sharing method. In Oryx, all these tuples are encoded using

replicated secret shares. Assume each tuple t is an ℓ-bit string. The

original tuple data holder creates three random secret shares, a, b, c.

The three secret shares are three ℓ-bit strings that satisfy t = a⊕b⊕c.
The three computing servers each hold two of the three shares. S1

holds a and b, S2 holds b and c, and S3 holds a and c. The shares

held by Si are denoted as [s]i , for i = 1 to 3. We will keep using this

notation of secret shares held by each server in later sections.

Subroutines. We define the following to format edges and paths

and create secret shares of the formatted tuples.

• Gen-Edges-Share(k, u, e) → (ts1, ts2, ts3). Takes the node u and

the padded outgoing neighbor list e, [v1, . . . , vd], of node u. Out-
puts three secret shares, [ts]1, [ts]2, [ts]3, of the formatted tuple

for detecting cycles of length k.

• Gen-Path-Share(k, p) → (ts1, ts2, ts3). Takes an integer k and

path p of length k−1 and outputs three secret shares, [ts]1, [ts]2, [ts]3,
of the formatted tuple for detecting cycles of length k.

6.4 Create secret shares of graph
Each data holder Pi∈[B] holds its own disjoint node listVi and creates

secret shares of both edge and path tuples for detecting cycles of

length k = 2. For each node u ∈ Vi , Pi:

(1) Creates an empty list of nodes l. For each u such that (v, u) ∈ E,
u is appended to l. The list l is padded to length d with dummy

nodes of zeros.

(2) [ets]1, [ets]2, [ets]3← Gen-Edges-Share(k = 2, u, e = l).
(3) [pts]1, [pts]2, [pts]3← Gen-Path-Share(k = 2, p = (u, v)).
Each Pi nowhas the three secret shares of its edge and path tuples,

( [etsi]1, [etsi]2, [etsi]3) and ( [ptsi]1, [ptsi]2, [ptsi]3). Pi sends one of
its secret shares, [etsi] j and [ptsi] j , to each computing server Sj , for

j ∈ [1, 3]. The tuples are now formatted correctly but with id fields

not populated yet, which are used as the tie-breakers for sorting.

We denote these secret shares by Sj from all Pi as [s_no_idk=2] j .
The servers populate the id fields for these tuples by assigning

each tuple the index i of the tuple in the list of all secret shares

starting from 1. We assume that the index is an integer of m bits

meaning the maximum possible index is 2
m − 1. Recall that we use

the replicated secret shares, a, b, c, and each secret share of a server

has two out of the three shares. For secret share a in [s_no_idk=2]1
and [s_no_idk=2]3, S1 and S3 set the id field in a, [id]a, to i. And for

[id] fields in the other two secret shares b and c, the servers set the

corresponding fields to 2
m − 1 (i.e., an integer of all m bits being

ones). Note that [id]a ⊕ [id]b ⊕ [id]c = i ⊕ 1 . . . 1 ⊕ 1 . . . 1 = i. By

manipulating the local secret shares this way, we set the original
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Figure 5: One round of cycle detection. Two data holders (blue and red) generate secret shares of their graphs and send the
shares to three computing servers who run Oryx. The maximum degree of all nodes is d = 2. The grey cells represent edges and
the white cells represent paths. At the end of a round, the grey cells and white cells are grouped together, while the internal
sequences are random and not sorted.

value of a tuple’s id to the index i as desired. The secret shares with

id assigned are denoted as [sk=2]1, [sk=2]2, [sk=2]3. We denote the

process of the three servers populating the ids as ( [s]1, [s]2, [s]3) ←
Assign-Id( [s_no_id]1, [s_no_id]2, [s_no_id]3).

6.5 Oblivious extension
This section details how to transform the extension phase in Figure 1

into an oblivious operation. The oblivious path extension protocol

runs in the following two steps, as illustrated in Figure 5. In the first

step, the servers execute an oblivious sort protocol, grouping all

path tuples that end with node u alongside the edge tuple of node

u. The sorting also ensures that the edge tuple of node u always

appears before the path tuples that end with node u. In the second

step, the servers perform a linear traversal of all the tuples to first

pass the node u’s neighbor nodes to the path tuples that end with

node u. Then, each path tuple that ends with node u can extend

the existing path by adding one more edge, using the previously

passed neighbor list of node u.

Subroutines. Here we give some notation of the subroutines that

will be used in the construction.

• Ob-Shuffle( [s]1, [s]2, [s]3) → ([rs]1, [rs]2, [rs]3). Takes secret
shares of a list of tuples from three servers, ( [s]1, [s]2, [s]3),
and outputs the randomized secret shares of the shuffled list of

tuples, ( [rs]1, [rs]2, [rs]3). Note that each server receives only

one secret share of the shuffled list.

• Ob-Sort (cmp, [s]1, [s]2, [s]3) → ([os]1, [os]2, [os]3). Takes a com-

parator circuit cmp for comparing tuples and secret shares of

a list of tuples from three servers, ( [s]1, [s]2, [s]3), and outputs

the secret shares of the sorted list of tuples in ascending order,

( [os]1, [os]2, [os]3), based on cmp. Our construction follows the

recent work by Araki et al. [6], which first shuffles the tuples

using Ob-Shuffle and then does the comparison-based sorting

over the randomly permuted tuples.

Step 1: Sort edge and path tuples. The pseudocode of the com-

parator to sort tuples is given in Figure 6. Note that all inputs and

intermediate results are secret shares, and only the final comparison

result is revealed in plain text. The servers first compute the node

value n by XORing src and v
1

k
in each tuple (line 2 and 3 in Figure 6).

When t is an edge tuple, src is the node id and v
1

k
will be 0 (§6.3).

And when t is a path tuple, src is 0 and v
1

k
is the last node in the
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1: function Priv-Cmp-On-Tuples(t1, t2)

2: n1 ← t1.src ⊕ t1.v
1

k

3: n2 ← t2.src ⊕ t2.v
1

k

4: if n1 ≠ n2 then
5: return (n1 > n2)
6: else if t1.src ≠ t2.src then
7: return (t1.src < t2.src)
8: else
9: return t1.id > t2.id

Figure 6: Pseudocode of the comparator function to sort tu-
ples to determine which tuple of t1 and t2 is larger. The tuple
follows the data format in Figure 4. The input tuples t1 and t2

are stored in secret shares. All the computation are conducted
over secret shares and only the final comparison boolean re-
sult is revealed in clear.

1: function Priv-Neighbor-Passing(tuples)

2: neighbors← [0, . . . , 0︸  ︷︷  ︸
d

]

3: for t in tuples do
4: if t.isEdgeTuple then
5: for i ∈ [1, d] do
6: neighbors[i] ← t.v

i

k+1
7: else
8: for i ∈ [1, d] do
9: t.v

i

k+1 ← neighbors[i]

Figure 7: Pseudocode of oblivious neighbor passing and path
extension. d is the maximum degree in the graph. The input
tuples (i.e., all the path and edge tuples) are stored in secret
shares and follow the format in Figure 4.

path. Thus, n will be either src of an edge tuple or v
1

k
in a path. The

comparison using n groups the edge tuple of node u and the paths

that end with u together. When two tuples have the same n, we

further compare src of the two tuples. As src of path tuple will be 0,

a path tuple that ends with node u is always larger than the edge

tuple of node u. For paths that end with the same node both src

fields would be zeros. We use the id fields, each of which is unique

among all tuples in a round, as the tie-breaker. It ensures there are

no equal tuples in the comparison and there is a strict sequence

of all tuples after sorting. This approach prevents any additional

information from being leaked regarding the number of tuples that

end with the same node during the comparison-based sorting.

The servers run ( [osk]1, [osk]2, [osk]3) ← Ob-Sort (cmp, [sk]1,
[sk]2, [sk]3), where k is the cycle length of the current round, using

the comparator described in Figure 6. ( [osk]1, [osk]2, [osk]3) are the
secret shares of sorted tuples.

Step 2: Neighbor passing and path extension. The pseudocode of

Step 2 (neighbor passing and path extension in Figure 5) is shown

in Figure 7. It runs in a similar way to GraphSC (as shown in

Figure 2), but tailored for our use case. The servers maintain a

variable neighbors, which is a vector of d integers. They perform

a linear pass over all the tuples. If an edge tuple is encountered,

neighbors is updated as the current tuple’s neighbors (line 4–6 in

Figure 7). Otherwise, neighbors is written to v
i

k+1 for i ∈ [1, d] to
add the neighbor to the path.

For example, when the servers encounter the first tuple in Fig-

ure 5, representing the neighbor list of node 1, the servers privately

evaluate whether the current tuple is an edge tuple. As it is an edge

tuple, they then privately assign the values of this tuple’s neighbor

nodes information to the neighbors variable. Now, neighbors is pri-

vately set to {2, 0} (i.e., the neighbors of node 1). The servers then
proceed to the next tuple which is the first path tuple of [4, 1] in Fig-
ure 5, stored as secret shares of {src = 0, vec = ( [4, 1, 0], [4, 1, 0])}.
Again, the servers privately evaluate the tuple’s type, and then

extend the path by setting the last elements (i.e., two zeros) in the

path tuple to the elements in the neighbors variable. After extension,

the path tuple is written as {src = 0, vec = ( [4, 1, 2], [4, 1, 0])} by
setting the original two zeros as {2, 0}.

We abstract the above with the following subroutine.

• Ob-Extend( [osk]1, [osk]2, [osk]3) → ([esk]1, [esk]2, [esk]3). It takes
the secret shares of sorted tuples, ( [osk]1, [osk]2, [osk]3), and out-
puts the secret shares with newly extended path tuples ( [esk]1,
[esk]2, [esk]3).

6.6 Oblivious filtering
In this section, we address how to make the filtering phase of the

non-private protocol in Figure 1 oblivious. This process is shown in

the oblivious filtering phase of Figure 5. It takes the outputs from

the oblivious extension protocol as inputs, which is the secret shares

of the path tuples after extension. The goal of oblivious filtering

is to filter out invalid extended paths (i.e., the paths that end with

invalid node id 0 or with repeating nodes) and then perform cycle

detection on the valid paths; revealing the cycles found. It runs in

the following three steps: (1) find path tuples and extract d path

vectors from each extended path tuple; (2) filter out invalid paths

and detect cycles over the valid paths; and (3) format valid path

tuples and edges tuples for the next round of detection.

Subroutines. Here we define some subroutines used later.

• Check-Tuple-Type( [t]1, [t]2, [t]3) → (type). Takes the secret

shares of a tuple, [t]1, [t]2, [t]3, and outputs a boolean type

which is true if the tuple is an edge tuple or false otherwise.

• Parse-Path( [pt]) → ([p1], . . . , [pd]). Takes a secret share [pt] of
a path tuple (§6.3), and outputs d vectors [p1], . . . , [pd]. Specifi-
cally, the share is:

[pt] =
{
[src] = [s]
[vec] = ( [[v1

1
], . . . , [v1

k+1]], . . . , [[v
d

1
], . . . , [vd

k+1]])

}
where, pi = [[vi

1
], . . . , [vi

k+1]] for i ∈ [1, d]. Note that this is a
computation done by each server locally.

• Private-Filter-Path( [p]1, [p]2, [p]3) → valid. Takes the secret

shares of a path vector of length k (i.e., a vector of k + 1 nodes),
( [p]1, [p]2, [p]3), and outputs a boolean variable valid which

indicates whether this path is a valid path or not. The details are

shown in Figure 8.

• Private-Cycle-Detection( [p]1, [p]2, [p]3) → detected. Takes the

secret shares of a path vector of length k (i.e., a vector of k + 1
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1: function Private-Filter-Path(p)

2: if p[−1] == 0 then
3: return False

4: # Skip comparing the first node with the last one.

5: for i ∈ [1, len(p) − 1] do
6: if p[i] == p[−1] then
7: return False

8: return True

Figure 8: Pseudocode of Private-Filter-Path subroutine used
in oblivious filtering protocol (§6.6). The input are secret
shares of a path p. And all the computation are conducted
over secret shares and only leaks the final boolean variable
to indicate whether this path p is a valid one.

nodes), ( [p]1, [p]2, [p]3), and outputs a boolean variable detected,
which indicates whether it forms a cycle by privately evaluating

whether the first and the last nodes in the path are the same.

Step 1: Extract paths. The servers first perform an oblivious shuf-

fle over the outputs from the oblivious extension phase to obfuscate

the sequence of originally sorted tuples by running ( [stk]1, [stk]2,
[stk]3)← Ob-Shuffle( [esk]1,[esk]2,[esk]3). For each tuple t in the

shuffled tuples stk , the servers run (type) ←Check-Tuple-Type( [t]1,
[t]2, [t]3) to check the type of the tuple t. For all edge tuples, the

servers store their local shares, denoted as [edgesk]i for i ∈ [1, 3].
For each path tuple pt, each Si parses its local share [pt]i into local

secret shares of d paths with ( [p1]i , . . . , [pd]i)←Parse-Path( [pt]i)
for i ∈ [1, 3]. For example, given a path tuple pt = {src = 0, vec =

( [4, 1, 2], [4, 1, 0])}, with d = 2, each server parses its local shares of

pt and obtains the local shares of [4, 1, 2] and [4, 1, 0] respectively.

Step 2: Filter out invalid paths and detect cycles. Before filtering

out invalid paths, the servers shuffle the tuples again. The servers

then use the Private-Filter-Path subroutine as defined in Figure 8

to privately check whether each path tuple is valid or not. A valid

tuple should consist of all non-zero nodes and should not contain

repeating nodes. All invalid paths are removed. For each valid

path pt, the servers run Private-Cycle-Detection( [pt]1, [pt]2, [pt]3)
to check whether the current path forms a cycle. When a cycle

is detected, the servers reveal their local shares to each other to

reconstruct and reveal the cycle with all nodes. For all valid and

non-cycle path tuples, each server retains the local share. These

tuples are denoted as pathsk , and the local shares are denoted as

[pathsk]i for i ∈ [1, 3].

Step 3: Format tuples for next round. As mentioned in Section 6.3,

the tuples of edges and paths have different sizes across cycle de-

tection rounds. Thus, the servers need to set their local shares of

edgesk and pathsk of length k to the proper format for use in the

round of length k + 1.
For each local share of an edge tuple [etk]i = {[src] = [s]i , [vec] =

( [[v1
1
]i , . . . , [v1

k+1]i], . . . , [[v
d

1
]i , . . . , [vd

k+1]i])} of Si for i ∈ [1, 3], Si
appends a zero before each [vd

1
]i . So the local share is updated:{

[src] = [s]i ,
[vec] = ( [0, [v1

1
]i , . . . , [v1

k+1]i], . . . , [0, [v
d

1
]i , . . . , [vd

k+1]i])

}

Appending a zero of each of the local shares is equivalent to ap-

pending a zero element to the original edge tuple since 0⊕ 0⊕ 0 = 0.

Now, the edge tuples have the format for detecting cycles of length

k+1. Note that servers still only see their local shares so the original
value of the edge tuple is still kept secret. This process of formatting

the edge tuple is denoted as Extend-Edge-Share(etk)→etk+1.
For each path vector pk = [v1, . . . , vk+1] in pathsk , each servers

uses the local shares of a path vector to create local shares of a

path tuple to detect cycles of length k + 1. As an example, for a

path vector [1, 2, 3], each server uses its local share of the vec-

tor to compute a share of the formatted tuple {src = 0, vec =

( [1, 2, 3, 0], [1, 2, 3, 0])} with d = 2. The process is performed lo-

cally so the original values of the vector remain secret. They com-

pute as follows. Si with [pk]i = [[v1]i , . . . , [vk+1]i] creates a local
path tuple share [ptk+1]i = {[src] = 0, [[vj

1
] = [v1]i , . . . , [vj

k+1] =
[vk+1]i , [vj

k+2] = 0]
j∈[1,d ] }. Note that Si sets its local share for the src

field of the tuple as zero, and this is equivalent to setting the original

value of src as zero aswell. Similarly, the tuple’s last elements in each

vector v
j

k+2 for j ∈ [1, d] are also set to zeros. The process of format-

ting a path is denoted as Format-Path-From-Share(pk)→(ptk+1).
After this step the servers can tell which tuples indicate edges

or paths and the secret shares are not indistinguishable. However,

the next round begins with an oblivious shuffle (the first step in

the sorting), so both original sequences and values of secret shares

are obfuscated and randomized again. After formatting the tuples,

servers assign the id fields of the tuples by running the Assign-Id

subroutine. These tuples with id assigned are denoted as [sk+1]i for
i ∈ [1, 3] as the local secret shares held by Si .

6.7 Security
We formalize the security of Oryx with the following theorem and

give the proof in Appendix A.

Theorem 1. Oryx securely implements the ideal functionality in

Figure 3 under the threat model of Section (§2.2).

6.8 Complexity analysis
Here we summarize the computation complexity of Oryx. The full

analysis is available in Appendix B.

Let v be the total number of vertices, n be the average number

of neighbors, and d be the maximum degree. In a round of cycle

detection of length k, the number of total subgraphs to process is

T = v · nk−1. Oryx’s computational complexity for that round is

O(kT (d + log(T ))). Note that even non-private protocols for cycle

detection will be linear in T , as they have to at least iterate through

each subgraph and do the path extension.

7 Parallel cycle detection
Parallelism is essential for the efficiency of Oryx, which currently

runs sequentially over each tuple. In this section, we discuss how

to transform our protocol to a parallel version.

Except for the oblivious shuffle, sort, and neighbor passing sub-

routines, all other operations as shown in Figure 5 are performed

over each tuple with no dependencies on other tuples, thus mak-

ing it embarrassingly parallel (they can run on independent MPC
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instances). Now we discuss how to support parallelism of the re-

maining subroutines.

7.1 Parallel oblivious shuffle
We instantiate the oblivious shuffle with the three-server shuffle

protocol of Araki et al. [6]. The main computation involves (1)

computing XOR over two messages, where each message consists

of multiple tuples; and (2) permuting the list of tuples using a

seed agreed by two out of the three parties. XOR operations on

multiple tuples can be computed in parallel. The permutation is a

lightweight computation involving the relocation of tuples from

their original positions to the permuted index. As such, it does not

require parallelization.

7.2 Parallel oblivious sort
In the sorting operation, all tuples are initially shuffled, followed by

a comparison-based sort over the shuffled tuples, which is quicksort

in Oryx. In each round of quicksort, the data is split into multiple

partitions. In each partition, a pivot is selected, then we perform

comparisons between the pivot and each tuple. Therefore, once a

pivot is chosen for each partition, the comparisons between each

tuple and its respective pivot can be performed in parallel.

7.3 Parallel oblivious neighbor passing
For parallelism, all the tuples are split evenly into M partitions,

with the intention of processing these M partitions of tuples simul-

taneously. However, the challenge in creating a parallel version

of oblivious neighbor passing (Figure 7) is that the value of the

neighbors variable, when the loop encounters a tuple, depends on

the types and values of the previous tuples. As a result, for each

parallel task, we require an additional step to privately compute the

values of neighbors (still in secret share format), which are intended

to be passed to the first tuple in its respective partition. We refer to

these values as the start_neighbors of each partition.

As neighbors will only be updated when the servers encounter

an edge tuple, finding the start_neighbors of each parallel task is

equivalent to find the nearest edge tuple before the first tuple in this

partition. One intuitive approach would be for each processor to

iterate over all previous tuples from the end to the beginning to

find out the start_neighbors. However, since the protocol needs to

be oblivious, the protocol has to finish iterating through all tuples

even though an edge tuple is found before reaching the beginning.

Given t tuples in each partition, each task m ∈ [1,M] needs to
iterate through t · (m − 1) tuples. This means that for the last tuple

the servers need to go through all the tuples in the current round

making the parallelism useless.

Instead, we find start_neighbors as in Figure 9. In the first round

of computation, each task tries to find the nearest_neighbors within

its partitioned data by iterating from the beginning to end. Since the

data is evenly partitioned, there is a possibility that one partition

might not contain an edge tuple. Thus, each task also computes

a boolean value encountered_edge to indicate whether there is an

edge tuple within this partition. In the second round, each task m

only iterates through the nearest_neighbors found by previous tasks

1 tom−1. This is lightweight compared to the naive solution which

requires iterating through t · (m−1) elements. Once start_neighbors

1: function Priv-Find-Start-Neighbors(tuples[M])

2: nearest_neighbors← [[

d︷  ︸︸  ︷
0, . . . , 0], . . . , [

d︷  ︸︸  ︷
0, . . . , 0]︸                         ︷︷                         ︸

M

]

3: start_neighbors← nearest_neighbors

4: encountered_edge← [false, . . . , false︸           ︷︷           ︸
M

]

5: for m ∈ [1,M] do
6: # Round 1

7: for t ∈ tuples[m] do
8: if t.isEdgeTuple then
9: nearest_neighbors[m] ← t.neighbors

10: encountered_edge[m] ← true

11: # Round 2

12: Task m ≥ 2 waits for the tasks 1 to m − 1 to finish.

13: if _update_neighbors← encountered_edge[m − 1]
14: start_neighbors[m] ← nearest_neighbors[m − 1]
15: for i in [m − 2, 1] do
16: if _update_neighbors ← (!if _update_neighbors &

encountered_edge[i])
17: if if _update_neighbors == True then
18: start_neighbors[m] ← nearest_neighbors[i]
19: return start_neighbors

Figure 9: Pseudocode of obliviously finding starting neigh-
bors of in totalM parallel tasks. Each taskm processes its own
partitioned data tuples[m]. Both inputs and outputs are stored
in secret share format and nothing else in leaked during the
computation.

are determined for each task, each task continues as the original

protocol while initializing neighbors with the found start_neighbors

instead of all zeros (line 2 in Figure 7).

8 Implementation
Oryx consists of around 3K lines of C++. For the oblivious shuffle

protocol, we implement the three-server shuffle protocol proposed

by Araki et al. [6]; for the oblivious sort protocol, we implement a

prior protocol [6, 11, 16] that first shuffles and then does comparison

sort over the shuffled tuples. We implement the parallel version of

quicksort as the sorting algorithm. We use emp-toolkit’s sh2pc [28]

library as the MPC.

Run MPC with two servers. In Oryx, we use the three-server

shuffle protocol, but for other MPC tasks, we only use two servers

for computation. The detailed process of running the MPC tasks

using two servers is as follows. As each server holds two out of

three secret shares, a, b, c such that a ⊕ b ⊕ c =m where m is the

original data. One server S1 could compute XOR over its local share

as s1 (e.g., s1 = a ⊕ b) and another server S2 can use one of its secret

shares as s2 (e.g., s2 = c) such that s1 ⊕ s2 = m. Then the two server

input s1 and s2 respectively to run the computations in 2PC.

Reassign secret shares. In some MPC subroutines, such as the

path extension, the final outputs are also secret shares, but they
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are held by only two servers since only two servers are involved

in the MPC tasks. When the third server is required for oblivious

shuffle, the two servers holding the two output secret shares o1 and

o2 can reconstruct the secret shares back to replicated secret shares

as follows. S1 randomly generates a
′
and b

′
such that a

′ ⊕ b
′ = o1

and sends b
′
to S2 and a

′
to S3. S2 use c

′ = o2 and sends c
′
to S3.

Now each server holds two out of the three shares a
′
, b
′
, c
′
.

Optimizations of oblivious sort. We followed the oblivious sorting

used by Araki et al. [6]. We optimized it by selecting the pivot in

quicksort using median values obtained from randomly sampled

elements in each partition. We also directly sort all tuples, avoid-

ing further recursion in quicksort, when the size of elements in a

partition falls below a threshold of t tuples.

9 Evaluation
In this section, we answer the following questions:

(1) What are the costs of each subroutine in Oryx?

(2) What are the end-to-end costs (including both computation

and network communication) of Oryx’s protocol?

Evaluation setting. We run all of our experiments onAWSm5.16xlarge

instances (32-core Intel Xeon and 256 GB RAM) with Ubuntu 20.04.

All instances are launched in US East (Ohio) and we allocate one

instance for each computing party. Note that by leveraging the par-

allelism of Oryx’s protocol, it is possible to scale out Oryx further

by employing multiple servers for each computing party, but we

have not yet implemented this.

Parameters. We represent node ids using 23-bit integers, allowing

for a maximum of 2
23
nodes in the graph. We use 25-bit integers

to represent tuple ids, supporting a maximum of 2
25

tuples for

processing. For quicksort, we set the number of randomly sampled

tuples to find the median to 7, and we set the threshold to directly

sort all tuples to 10.

Datasets. We use two datasets. The first is a synthetic graph

with 1,000 vertices and 3,500 edges; 5 nodes have 300 neighbors.

This serves as a microbenchmark where a few nodes in the graph

have a much higher degree than the others and a higher max de-

gree d (100 to 300) is required. The second dataset was published

by IBM [3] and represents financial transactions, including some

money laundering activities. We preprocess the second dataset by

limiting the maximum degree d to 10. This ensures that the memory

of our servers is enough to complete the experiment (to support

larger d we would need either servers with more memory or an

implementation that uses many servers). The resulting graph com-

prises 7,339,522 vertices and 9,328,103 edges. The numbers of cycles

from length 2 to 6 are 499,141; 152,170; 60,868; 25,717; and 11,071

respectively.

Graph partitioning. There are four graph data holders, each pos-

sessing one-fourth of the total nodes for both datasets, as described

in Section 2.1. Each data holder creates secret shares of their local

graph, following the procedure outlined in Stage 1 of the protocol

(Section 6.2), and sends these secret shares to the three computing

servers. Note that the number of graph holders does not impact the

performance of the protocol, only the size of the graph does.
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Figure 10: Microbenchmark for shuffle.

Number of tuples 2
18

2
20

2
22

2
24

Sorting 40.587 76.850 224.032 853.138

Neighbor passing
d = 2 1.640 3.330 11.388 43.692

d = 4 2.150 5.261 19.288 75.582

d = 8 3.498 9.564 35.632 139.397

Type checking 0.747 1.153 3.017 8.506

Filtering
k = 3 0.976 1.615 5.051 19.045

k = 4 0.974 1.908 6.515 24.497

k = 5 0.999 2.518 7.994 29.882

Figure 11: Latency measured in seconds of the sort, neighbor
passing, tuple type checking, and filtering subroutines.

9.1 Costs of each subrountine
We measure the costs of the servers running the five subroutines

as depicted in Figure 5: (1) shuffling tuples; (2) sorting over shuffled

tuples; (3) neighbor passing and path extension; (4) checking tuples’

types over shuffled tuples; and (5) filtering invalid paths and cycle

detection. For all subroutines, we measure the latency of servers

from beginning to end. We also use tcpdump [2] to measure the

total network traffic. We report the mean of values over five runs.

Costs of shuffle. The total network traffic varies among the three

servers, with S2 experiencing the highest network traffic load. The

network traffic of S1 and S3 accounts for 1/4 and 3/4 of that of S2,

respectively. Here we only report the communication costs of S2;

the latency and communication costs are shown in Figure 10a and

Figure 10b with varied number of tuples T , maximum degree d, and

the length of cycles k. The results show that both metrics increase

sublinearly with d and k, and linearly with T .

Costs of sort. Since the sorting algorithm is data-oblivious, mean-

ing that it operates independently of the distribution of the tuples’

types, the sorting runtime should remain constant when given the

same number of tuples; the costs are not related to k (§B). We run

the evaluation over a set of tuples, half of which are path tuples

and the other half are edge tuples. The maximum degree is d = 10

and the cycle length is k = 4. The latency and communication costs
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Number of tuples 2
18

2
20

2
22

2
24

Sorting 2.956 11.190 40.983 127.050

Neighbor passing
d = 2 1.233 3.306 11.144 36.909

d = 4 2.220 5.399 21.606 52.206

d = 8 3.869 15.826 41.108 119.770

Type checking 0.203 0.819 2.569 5.804

Filtering
k = 3 0.604 2.440 8.461 22.596

k = 4 0.849 3.166 11.844 28.579

k = 5 1.086 4.373 16.458 47.999

Figure 12: Network traffic measured in GB of the sort, neigh-
bor passing, tuple type checking, and filtering subroutines.

are shown in Figure 11 and Figure 12 respectively. The complexity

is, as expected, quasilinear in T .

Costs of neighbor passing and path extension. As only the max-

imum degree d and the number of tuples T impacts the runtime

of this subrountine, we fix the length of cycles k to 4 and run the

evaluation over a set of tuples, half of which are path tuples and

the other half are edge tuples. We display the latency and commu-

nication costs in Figure 11 and Figure 12 for different values of d

and T . Both metrics grow linearly with both d and T .

Costs of tuple type checking. Checking the types of each tuple

only uses the s field, and hence the runtime is only related to the

number of tuples. We therefore run the evaluation over sorted

tuples, half of which are path tuples and the other half are edge

tuples. As with prior experiments, we keep d = 10 and k = 4.

The latency and communication costs are shown in Figure 11 and

Figure 12 respectively—both metrics increase linearly with T .

Costs of filtering and cycle detection. In this subrountine, the

maximum degree d affects the number of tuples T . However, for

simplicity, we omit d and directly experiment with different values

of T . We fix the percentage of cycles in all path tuples to 0.5%, as this

does not impact the runtime. We experiment with varying percent-

ages of valid paths in all path tuples, specifically 5%, 10%, and 15%.

This choice aligns with our end-to-end evaluation, where the major-

ity of path tuples are invalid. The latency remains nearly the same,

while the communication costs experience a slight increase with

different percentages of valid paths. This outcome is expected since

checking cycles over each valid path involves only one comparison,

and the percentage of valid paths is relatively small. Consequently,

this component is relatively minor in the overall computation. We

report the latency and network communication for a graph with

a percentage of valid paths set to 15% in Figure 11 and Figure 12

respectively. We vary the number of tuples T and the cycle length

k. Both metrics grow linearly with k and T .

9.2 End-to-end evaluation
We use three servers and the two datasets described in Section 9

(small synthetic dataset and large dataset from IBM). The evaluation

concludes when the servers detect cycles up to length 6. We chose
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Figure 13: End-to-end results of Oryx on small dataset.
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Figure 14: End-to-end completion time of Oryx on the large
IBM dataset with varying detection cycle length.

length 6 because it strikes a balance between keeping the number

of subgraphs T manageable (which scales exponentially with k and

is an issue even in the non-private protocol, not just in Oryx), and

being useful in practice, as identified by prior work that detected

fraudulent activities in Alibaba with cycle length 6 [22]. We report

metrics as the mean over three runs.

9.2.1 Evaluation on small synthetic dataset. We start by studying

the number of tuples that Oryx must process as a function of the

maximum degree d and the length of the cycle to be detected. We

can immediately observe that cycle detection, even with Oryx’s op-

timizations, is a high-complexity operation: as shown in Figure 13a,

the number of tuples T in each round of cycle detection grows

exponentially with the average number of neighbors (n). Note that

without Oryx’s filtering optimization, the number of tuples would

be exponential in the maximum degree d rather than in n, and

hence much worse than what is depicted in Figure 13a since n ≪ d.

We also study the end-to-end completion time and show the

results in Figure 13b. If we focus on the completion time for a given

round k but under a different maximum degree d, we find that the

time grows linearly with dT . If we then look at the completion

time under the same maximum degree d but with different cycle

length (i.e., different rounds) k, the completion time is also linear

with kT . These results are consistent with our complexity analysis

in Section B, which indicates that the total end-to-end completion
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time is linear with respect to the total number of processed tuples

T , the cycle length k, and the maximum degree d.

9.2.2 Evaluation on IBM’s financial dataset.

Local storage. Each server locally stores two out of three secret

shares, with each share being 2.2 GB of data. This requires a total

of 4.4 GB of local storage for each server.

Peak memory usage. During the entire run, the peak memory

usage is around 230 GB memory.

Total network traffic. As we run the MPC program using only

two servers, these two servers handle the majority of data exchange

during execution. Due to the substantial network traffic, it is not

feasible to capture packets using tcpdump. Instead, we rely on the

native cloudwatch [1] metrics for inbound and outbound network

traffic provided by AWS. These metrics provide an upper bound

estimate of the total network traffic for each end-to-end run as

the total network traffic encompasses other parts of traffic on each

instance, in addition to what is incurred by the end-to-end run. On

average, each of the two servers needs to exchange approximately

20.7 TB of data for a complete end-to-end run. This significant

network traffic characterizes Oryx as network-bound, necessitating

high network bandwidth for deployment.

Completion time. The time breakdown for each round of detect-

ing cycles of length k is in Figure 14. In rounds with cycle length

2 to 6, the number of processed tuples are 16,666,380; 18,100,272;

19,995,417; 22,267,002; and 25,190,191. As both the number of pro-

cessed tuples and the length of cycles for detection increase, the

completion time also grows. In most rounds, the process can be

completed within half to one hour, while the most time-consuming

round, used to detect cycles of length 6, can be finalized within

1.5 hours. These costs are practical for applications such as money

laundering as they typically run in the background.

10 Related work
Private graph algorithms. GraphSC [21] first studied private

graph analytics, and this was improved by Araki et al. [6] who in-

troduce an efficient 3-server shuffle protocol. Other works [19, 20]

use four servers but they leak differentially private information

about the degrees of nodes. In all cases, these works do not handle

cycle detection or other tasks that analyze the graph’s structure.

Vorstermans’s masters thesis [26] proposed the only other work

in the literature for privately detecting cycles over federated graphs.

The techniques used by Vostermans are very different to Oryx: they

rely on MPC over adjacency matrix multiplications. A consequence

of Vostermans use of adjacency matrices is that the computational

complexity of their proposal grows exponentially with the total

number of vertices, which is essentially the maximum possible node

degree in the graph. In contrast, Oryx’s computation scales with

the average node degree, which in the sparse graphs that we target,

is significantly smaller.

Outsourcing graph pattern queries. Prilo [29] and OblivGM [27]

enable a single data owner to outsource its graph to some untrusted

service and then perform private subgraph pattern queries on this

graph. The target domain for these works is different from Oryx:

Oryx targets federated graphs that belong to different data owners.

In terms of techniques, Prilo uses trusted hardware (very different

from Oryx), while OblivGM uses non-colluding servers (similar to

Oryx) but provides a weaker privacy guarantee [31].

11 Discussion
Support node and edge attributes. In some graphs nodes or edges

might have attributes and it might be desirable to detect cycles only

within vertices or edges that have a specific attribute. To achieve

this, we can include the attributes of vertices and edges in the tuples.

Then, in the filtering phase, Oryx can inspect the attributes when

checking whether a path forms a desired cycle.

Support more subgraph patterns. Oryx can be extended to sup-

port more subgraph pattern matching queries besides cycles. This

extension requires a change in the logic of the extension phase

to determine the source vertices for extension instead of always

using the last vertex in the path. Oryx’s neighbor passing and path

extension can still be reused as a building block for matching new

subgraph patterns.

Source code
Our code is available at:

https://github.com/eniac/oryx.
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A Security proof
We first give the formal description of our protocol and then do a

simulation proof [17] to prove that our construction leaks no more

information than the outputs from the ideal functionality (§6.1).

A.1 Oryx’s protocol of cycle detection
Oryx’s protocol of cycle detection

Step 0 (Create secret shares of graph):

Each partial graph holder Pj , where j ∈ [1,B] holds its
own disjoint node list Vj . Pi create secret shares of both

edge and path tuples. For each node u ∈ Vi , Pi computes

as follows.

• Pj creates an empty list of nodes l. For each u such that

(v, u) ∈ E, u is appended to l. And the list l is padded

to length d with dummy nodes of zeros.

• [etsj]1, [etsj]2, [etsj]3 ← Gen-Edges-Share(k = 2, u, e =

l).
• [ptsj]1, [ptsj]2, [ptsj]3 ← Gen-Path-Share(k = 2, p =

(u, v)).

• [etsj]i and [ptsj]i are denoted as [tsj]i for j ∈ [1,B].
Each Pj

j∈[1,B] sends [tsj]i to Si . And all secret shares

from all Pj
j∈[1,B] are denoted as [s_no_id2]i for i ∈ [1, 3].

S1, S2, and S3 assign ids to the tuples using its lo-

cal shares by running ( [sk=2]1,[sk=2]2,[sk=2]3)←Assign-Id

( [s_no_id2]1,[s_no_id2]2, [s_no_id2]3).

For k ∈ [2,K], the servers repeat the following steps.

Step 1 (Sort the edges and paths):

• S1, S2, S3 run the oblivious sort operation over

the secret shares using the comparator as in

Figure 6 as follows. ( [osk]1, [osk]2, [osk]3)←Ob-

Sort (cmp, [sk]1, [sk]2, [sk]3).
• ([osk]1, [osk]2, [osk]3) are the secret shares of the sorted
tuples.

Step 2 (Obliviously extend paths):

• The servers run the oblivious extend protocol to extend

the path as follows.

( [esk]1,[esk]2,[esk]3)←Ob-Extend( [osk]1, [osk]2,
[osk]3).
• ([esk]1,[esk]2,[esk]3) are the secret shares of the tuples
after neighbor passing and extension.

Step 3 (Extract paths from path tuples)

• The servers first shuffle all the secret

shares and obtain the shuffled secret

shares by running ( [stk]1, [stk]2, [stk]3) ←
Ob-Shuffle( [esk]1,[esk]2,[esk]3).
• Over the shuffled tuples, the servers check

each tuple t in the shuffled tuples stk to check

the tuple type, we denote the process as

(typesk)←Check-Tuple-Type( [stk]1, [stk]2, [stk]3)
and use typesk to denote the found types of all shuffled

tuples.

• We denote all found path tuples as ptk and edge

tuples as etk . Each server Si , for i ∈ [1, 3], parse
its local shares [ptk]i into [pathsk]i by running

( [pathsk]i)←Parse-Path( [pt]i).
Step 4 (Filter out invalid paths and detect cycles):

• The servers filter out invalid paths in pathsk by running

validk←Private-Filter-Path( [pathsk]1,[pathsk]2,
[pathsk]3). validk is a vector of boolean values for all

paths in pathsk indicating whether a tuple is valid or

not.

• We denote vpathsk as the valid paths and

for each path in vpathsk , the servers run

isCyclek←Private-Cycle-Detection( [vpathsk]1,
[vpathsk]2,[vpathsk]3). isCyclek is the vector of all

boolean values for all valid paths in vpathsk indicating

whether the path forms a cycle.
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• For each cycle, the servers reveal the local shares of the

cycles and we use Ck to denote all the detected cycles

along with the nodes that form each cycle.

• We denote all the non-cycle and valid paths as vptk .

Step 5 (Pad tuples for next round):

• For each edge tuple in etk , each Si locally runs

Extend-Edge-Share to pad the edge tuples for next

round of detection. We denote the process as

[pad_etk]i←Extend-Edge-Share( [etk]i) for i ∈ [1, 3].
And [pad_etk]i represents all padded edge tuples.

• For each path tuple in vptk , each Si locally runs

Format-Path-From-Share to pad the path tuples for

next round of detection. We denote the process

as [pad_ptk]i←Format-Path-From-Share( [vptk]i). And
[pad_ptk]i represents all padded path tuples.

• [pad_etk]i and [pad_ptk]i are denoted as [s_no_idk+1]i
for i ∈ [1, 3]. And the servers assign ids to the

tuples by running ( [sk+1]1,[sk+1]2,[sk+1]3)←Assign-Id

( [s_no_idk+1]1,[s_no_idk+1]2, [s_no_idk+1]3).
• [sk+1]i is the local secret share of Si to be used in next

round of cycle detection of length k + 1.

A.2 Simulation proof
Without loss of generality, we assume that S1 is the adversary in the

proof. We build a simulator Sim for one of the computing servers

and use A to denote an adversary who corrupts S1. In following

simulation, when three secret shares are inputs, A inputs its own

secret share and Sim inputs another two secret shares. Recall that

F is the ideal functionality given in Figure 3.

Sim for S1

Step 0 (Create secret shares of graph):

• F outputs |Vi | + |Ei | for i ∈ [1,B], pn1, and Ck , pnk

for k ∈ [2,K] to Sim. |E | = pn1 and |V | is derived by

computing |V | =∑
i
( |Vi | + |Ei |) − |E |.

• Sim first creates an empty graph G
′
with |V | nodes with

no edges. For each edge e
′
in the detected cycles Ck for

k ∈ [2,K], the edge e′ is added to G
′
.

• Sim takes a greedy approach to try and add edges into

G
′
such that the numbers of paths of length 2 to K are

cpath2, . . . , cptahk respectively, there are no other cycles

and exactly |E | edges in G
′
.

• Sim creates the secret shares of the graph G
′
as in Sec-

tion 6.3. The total number of tuples is |V | + |E |. And
these secret shares are denoted as gsi for i ∈ [1, 3].
• Sim partition gsi into [ts′ j]i for j ∈ [1,B] such that the

number of tuple secret shares of [ts′ j]i is |Vj | + |Ej |.
• All [ts′ j]1 of all j ∈ [1,B] are sent to A.

• [ts′ j]i of all j ∈ [1,B] are denoted as [s_no_id′
k
]i for

i ∈ [1, 3].

• Sim and A assign ids by running

( [sk=2′]1,[sk=2′]2,[sk=2′]3)←Assign-Id

( [s_no_id′
2
]1,[s_no_id′2]2, [s_no_id′2]3).

For k ∈ [2,K], Sim and A repeat the following steps.

Step 1 (Sort the edges and paths):

• Sim and A run the oblivious sort operation over

the secret shares using the comparator as in

Figure 6 as follows. ( [osk ′]1, [osk ′]2, [osk ′]3)←Ob-

Sort (cmp, [sk ′]1, [sk ′]2, [sk ′]3).
Step 2 (Obliviously extend paths):

• The servers run the oblivious extend protocol to extend

the path as follows.

( [esk ′]1,[esk ′]2,[esk ′]3)←Ob-Extend( [osk ′]1,
[osk ′]2,[osk ′]3).

Step 3 (Extract paths from path tuples)

• Sim and A shuffle all the secret shares

by running ( [stk ′]1, [stk ′]2, [stk ′]3) ←
Ob-Shuffle( [esk ′]1,[esk ′]2,[esk ′]3).
• Sim and A check the tuple type

of all shuffled tuples by running

(typesk ′)←Check-Tuple-Type( [stk ′]1, [stk ′]2, [stk ′]3).
typesk

′
is the found types of all shuffled tuples.

• We denote all found path tuples as ptk
′
and edge tuples

as etk
′
.

• A parses its local shares [ptk ′]1 into [pathsk ′]1 by run-

ning ( [pathsk ′]1)←Parse-Path( [pt′]1).
• Sim parses its local shares [ptk ′]2 and [ptk ′]3 into

[pathsk ′]2 and [pathsk ′]3 as A does above.

Step 4 (Filter out invalid paths and detect cycles):

• Sim and A filter out invalid paths by running

validk
′←Private-Filter-Path( [pathsk ′]1,[pathsk ′]2,

[pathsk ′]3). validk ′ is a vector of boolean values for all

paths in pathsk
′
indicating whether a tuple is valid or

not.

• We denote vpathsk
′
as the valid paths. Sim and A run

isCyclek
′←Private-Cycle-Detection( [vpathsk ′]1,

[vpathsk ′]2,[vpathsk ′]3). isCyclek ′ is the vector of all

boolean values for all valid paths in vpathsk
′
indicating

whether the path forms a cycle.

• For each cycle, Sim andA reveal the local shares of the

cycles which is Ck .

• We denote all the non-cycle and valid paths as vptk
′
.

Step 5 (Pad tuples for next round):

• For each edge tuple in etk , A locally run

[pad_etk ′]1←Extend-Edge-Share( [etk ′]1). And Sim

does the same for its local shares.

• For each path tuple in vptk , A locally runs

[pad_pt′
k
]
1
←Format-Path-From-Share( [vptk ′]1).

And Sim does the same for its local shares.
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• [pad_et′
k
]
i
and [pad_pt′

k
]
i
are denoted as [s_no_id′

k+1]i
for i ∈ [1, 3]. And Sim and A assign ids to the

tuples by running ( [s′
k+1]1,[s

′
k+1]2,[s

′
k+1]3)←Assign-Id

( [s_no_id′
k+1]1,[s_no_id

′
k+1]2, [s_no_id

′
k+1]3).

The view of S1 in the real world includes:

• |V |, |E |
• [tsi]1, |Vi | + |Ei | for i ∈ [1,B]
• For k = 2 to K :

– [s_no_id
k
]1

– [sk]1, [osk]1, [esk]1, [stk]1
– [ptk]1, [etk]1, [vptk]1
– [pathsk]1, [vpathsk]1
– typesk , validk , isCyclek

– [pad_et
k
]1, [pad_ptk]1

– Ck , pnk

The view of A in the ideal world includes:

• |V |, |E |
• [ts′i]1, |Vi | + |Ei | for i ∈ [1,B]
• For k = 2 to K :

– [s_no_id′
k
]1

– [sk ′]1, [osk ′]1,[esk ′]1,[stk ′]1
– [ptk ′]1,[etk ′]1, [vptk ′]1
– [pathsk ′]1, [vpathsk ′]1
– typesk

′
, validk

′
,isCyclek

′
,

– [pad_et
k

′]1, [pad_ptk ′]1
– Ck , pnk

Now we compare the two views in both worlds. All the secret

shares in both views are uniform random numbers thus are in-

distinguishable. So we only need to compare the number of se-

cret shares in both views. [tsj]1 and [ts′j]1 have the same size of

|Vi | + |Ei | for j ∈ [1, B]. [s_no_idk]1,[sk]1,[osk]1,[esk]1, typesk , and
[s_no_id′

k
]1,[sk ′]1,[osk ′]1,[esk ′]1, typesk ′ all have pnk−1 + |V | ele-

ments. [ptk]1 and [ptk ′]1 both represents the number of path tuples

with pnk−1 elements. [pathsk]1, [pathsk ′]1 are induced from [ptk]1
and [ptk ′]1 with d × pnk−1 elements. [etk]1 and [etk ′]1 both repre-

sents the number of edge tuples and have |V | elements. [vpathsk]1,
[vpathsk ′]1 are secret shares of valid paths and cycles with pnk+|Ck |
elements. [vptk]1, [vptk ′]1 are secret shares of valid paths with pnk

elements. [pad_et
k

′]1 and [pad_etk]1, [pad_ptk]1 and [pad_ptk ′]1
are induced from [etk]1 and [etk ′]1, [vptk]1 and [vptk ′]1 respec-
tively, thus have the same size.

Nowwe compare the remaining non-secret-shared outputs. typesk

and typesk
′
have the same amount of zeros and ones as the num-

bers of edge and path tuples are the same in both worlds. The exact

distributions of values are uniform random as they are the results

of obliviously shuffled data. For the similar reasoning, typesk and

typesk
′
, isCyclek and isCyclek

′
are indistinguishable. Now we con-

clude the proof that the views in both worlds are indistinguishable.

B Complexity analysis
In this section, we analyze the computation complexity of Oryx.

We denote the total number of nodes as v, the average number of

neighbors as n, the maximum degree as d. In a round of detecting

cycles of length k, the number of total subgraphs (tuples) to process

in that round is T = v · nk−1. In each round of detecting cycles of

length k, with maximum degree d, the size of each tuple is O(kd).
Each comparison between two numbers in MPC has constant cost

when the bit length of the numbers is fixed. For simplicity, we will

omit including this constant in the following analysis.

Shuffle for sort. The computation complexity of the shuffle opera-

tion proposed by Araki et al. [6] is linear to the number of tuples and

the size of each tuple. Thus, it has O(kdT ) computation complexity.

Sort over shuffled tuples. The oblivious sort operation first shuf-

fles all the data with O(kdT ) complexity. Then the servers use

comparison-based sorting such as quicksort over tuples each with

size of O(k) (as in Figure 6) with O(kT log(T )) complexity. In total,

the complexity is O(kT (d + log(T ))).

Neighbor passing and path extension. The neighbor passing and

path extension takes a linear pass over each tuple. In each iteration,

the protocol does one comparison over the src field, and then either

reads or writes the variable, neighbors, which has d elements. As a

result, it has complexity of O(dT ).

Shuffle in filtering. In the first shuffle operation during the fil-

tering phase, T tuples are shuffled, with each tuple having a size

of kd. Therefore, the first shuffle has complexity of O(kdT ). The
second shuffle involves shuffling the path vectors, and their count

is at most dT , with each path vector having a size of O(k). Thus,
the second shuffle’s complexity is O(kdT ).

Check the type of tuples. To evaluate which tuples are path tuples

in all the shuffled tuples, servers perform one comparison of the

src field for each tuple. In total, this is O(T ).

Filtering and cycle detection. The filtering and cycle detection

involve comparing the last elements with all the previous nodes of

each tuple, requiring k comparisons. Given there are at most dT

path vectors in total as each path tuple is parsed into d vectors, this

part has computation complexity of O(kdT ).

Padding tuples. Padding tuples for the next round iterate through

each tuple and has O(T ) complexity.

Total computation complexity. In total, our protocol has compu-

tation complexity of O(kT (d + log(T ))).
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