
Efficient Verifiable Differential Privacy with Input Authenticity in
the Local and Shuffle Model

Tariq Bontekoe

University of Groningen

Groningen, The Netherlands

t.h.bontekoe@rug.nl

Hassan Jameel Asghar

Macquarie University

Sydney, Australia

hassan.asghar@mq.edu.au

Fatih Turkmen

University of Groningen

Groningen, The Netherlands

f.turkmen@rug.nl

Abstract
Local differential privacy (LDP) enables the efficient release of ag-

gregate statistics without having to trust the central server (aggre-

gator), as in the central model of differential privacy, and simultane-

ously protects a client’s sensitive data. The shuffle model with LDP

provides an additional layer of privacy, by disconnecting the link

between clients and the aggregator. However, LDP has been shown

to be vulnerable to malicious clients who can perform both input

and output manipulation attacks, i.e., before and after applying the

LDP mechanism, to skew the aggregator’s results.

In this work, we show how to prevent malicious clients from

compromising LDP schemes. Our only realistic assumption is that

the initial raw input is authenticated; the rest of the processing

pipeline, e.g., formatting the input and applying the LDP mecha-

nism, may be under adversarial control. We give several real-world

examples where this assumption is justified. Our proposed schemes

for verifiable LDP (VLDP), prevent both input and output manip-
ulation attacks against generic LDP mechanisms, requiring only
one-time interaction between client and server, unlike existing alter-

natives [37, 43]. Most importantly, we are the first to provide an

efficient scheme for VLDP in the shuffle model. We describe, and

prove security of, two schemes for VLDP in the local model, and one

in the shuffle model. We show that all schemes are highly practical,
with client run times of less than 2 seconds, and server run times

of 5–7 milliseconds per client.

Keywords
differential privacy, shuffle model, verifiable computing

1 Introduction
Most distributed data sharing applications either assume that the

data obtained from a source is honestly obtained via the true in-

put, or deviates arbitrarily from it. Accordingly, one abstracts these

sources as either honest or malicious, with the received data inherit-

ing corresponding labels. However, we argue that in many practical

scenarios, the data processing pipeline at the source, from gathering

raw input to formatted data to be sent to a central server, has more

structure, which is not captured by such a simple abstraction [15].

The pipeline consists of several sequential components, that pass

information to one another culminating in the final formatted data.

In this case, we may realistically assume that the adversary only

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(2), 543–563
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0076

controls some components of the source, rather than the entire

pipeline. This makes it possible to verify the validity of the claimed

raw input and any subsequent processing on it, if the component

receiving the raw input is outside adversarial reach. Our target

scenario is collection and release of data from multiple distributed

sources by a central server using differential privacy (DP) [27]. More

specifically, we focus on the local [36] and shuffle [22] models of DP

where the distributed nodes (data holders) do not trust the server

(aggregator) with their formatted inputs in the clear. On the other

hand, the server needs to ensure that the data received from the

clients is correctly obtained from the true, raw input. The following

use cases further motivate the aforementioned threat model.

In sensor networks, the main program of a sensor device decides

which sensors to read data from and what data to send in a pre-

scribed format to the server. The sensor device contains various

sensors, which are individual hardware components, e.g., chips (see

for example [40]). An adversary could (indirectly) take control of

the sensor device by replacing this main program with its own

malicious program, which may influence the local data processing

pipeline. But, such a program does not corrupt the physical sensor

itself, nor the raw data it produces.

Consider the case of energy companies obtaining the total (or

average) power consumption of a group of households fitted with

smart meters at regular time intervals. This data may reveal private

information such as the sleeping patterns of house occupants [42].

Privacy to individual households can be provided by applying LDP

to smartmeter readings. Smartmeters do not currently support such

functionality, and implementing it in all of them is not cost-efficient.

Fortunately, LDP could be applied via an app outside the smart

meter. However, as this app is outside the trusted environment,

it can be manipulated to serve a malicious purpose, i.e., it might

output completely different data, and thereby skew statistics.

Smartphones and wearables share their location via GPS sensors,

which can be used for crowd estimation to identify hotspots or

for crowd control. Crowd estimation does not require exact GPS

coordinates of individual devices; a coarse-grained aggregate loca-

tion distribution often suffices. This is an excellent use case of LDP

to release a location histogram. But, naive use of LDP may allow

an attacker to send arbitrary locations, skewing the distribution.

Here again we can assume raw GPS coordinates from the sensors

as being true (operating system space), but the application sending

location information to the server may be malicious (user space).

Many other applications fit this narrative, such as smartphone

(e.g., accelerometer) or smart home (e.g., temperature) sensors. Raw

values (events) from such sensors are collected in the operating

system (OS) space, before the applications running in the user space

can process them further for a given task, e.g., gesture detection.

Last but not least, the raw inputs may be generated within a trusted

543

https://orcid.org/0000-0002-5331-4033
https://orcid.org/0000-0001-6168-6497
https://orcid.org/0000-0002-6262-4869
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0076

Proceedings on Privacy Enhancing Technologies 2025(2) Tariq Bontekoe, Hassan Jameel Asghar, and Fatih Turkmen

computing module. We give several concrete examples of trusted

components in Section 5.1. Thus, we assume a setup where raw

data is processed securely and correctly via one component (e.g.,

a secure enclave, OS space, a hardware module) before another

program, possibly adversarial, further processes it before sending

the formatted input to a server.

Assuming that the raw data is produced by a trusted component
at a client enables us to verify it using digital signatures. However,
we also need to verify that the same input is used in the rest of the

processing pipeline; all without revealing the raw input!

Our Contributions.

• We propose three schemes for efficient verifiable LDP (VLDP).

Our first (baseline) scheme requires multiple interactive rounds

between client and server, similar to comparable works [37, 43].

However, unlike these works, our second scheme reduces the

server load by requiring only one such round through random-

ness expansion techniques. Our final scheme further decreases

the load on the server while simultaneously offering security in

the shuffle model and in the presence of colluding clients.

• We present the first scheme for VLDP in the shuffle model [22].
In this model, a trusted shuffler shuffles the locally randomized

inputs from the nodes, with the net effect of privacy amplifica-

tion [8]. The shuffle model scheme cannot be straightforwardly

constructed through our LDP schemes, since the requirements

for verifiability and input authenticity on the one hand, and un-

linkability (necessary for the shuffle model) on the other hand

oppose one another. Our VLDP scheme in the shuffle model only

adds marginal overhead for the client: approximately 1.8 seconds

versus 0.6 and 1.1 seconds for our other schemes.

• All our schemes protect against both input and output manipula-
tion attacks as defined in [37]. In fact, we are the first to deal with

input manipulation attacks, i.e., where an attacker can arbitrarily

change the initial input while carrying out the rest of the LDP

algorithm faithfully. We do this by relying on digital signatures

created by a trusted component. Similarly, we ensure protection

against output manipulation, in which the attacker tries to send

arbitrary outputs to the server, by using verifiable randomness

and zero-knowledge proofs.

• We implement our VLDP schemes for the 𝑘-ary randomized re-

sponse (𝑘-RR) mechanisms for both histograms and real-valued

data as described in [8]. Unlike existing works, which only tar-

get specific randomizers, our schemes can be applied to generic

randomizers. In fact, as long as the randomization used in the

LDP mechanism can be approximated using a fixed number of

uniformly random bits, our protocol can accommodate it. Hence,

our solutions can be extended to many other LDP mechanisms,
e.g., Laplace or Staircase RR [27, 54], as detailed in Section 4.1.

• We implement and evaluate our protocols on two real-world

datasets: a smart meter dataset to get the approximate energy

consumption per household, and a GPS dataset to obtain the

histogram of locations. Our results show that the protocols are

highly practical and scalable. Each client takes a maximum of 2

seconds for a single LDP message, and the server takes less than

7 milliseconds per client. Furthermore, the communication cost

is only 200–485 bytes per client value (plus a small additional

one-time message), as we show in Section 7.3.

2 Related Work
In alignment with our scope, we restrict our discussion to protocols

for verifiable differential privacy [15], while observing that, to the

best of our knowledge, no constructions for verifiable DP in the

shuffle model can be found in existing academic literature.

Local Model. The earliest work in this area appears to be on cryp-

tographic 𝑘-RR from Ambainis et al. [3]. They do mention an even

earlier work by Kikuchi et al. [38], who reinvented the notion of

RR for voting and provided cryptographic constructions to protect

against cheating voters. According to [3], the schemes from [38] are

less efficient and provide weaker security guarantees than theirs.

The main security concern addressed by [3] is the privacy of the

server (interviewer). Namely, the client (respondent) should not

know the randomized outcome of her true input, because otherwise

the respondent may end the protocol. To ensure this and to verify

that the RR mechanism is correctly computed, they propose several

protocols based on oblivious transfer, Pedersen commitments and

zero-knowledge proofs. Randomness in the protocol is guaranteed

by ensuring that the commitment parameters evaluate exactly to

the probability of the correct or wrong response, requiring this

probability to be a rational number. The communication cost there-

fore suffers for high precision. Their threat model is different from

ours since we do not require privacy of the outcome of the LDP

mechanism, and furthermore, it is not clear how their protocol can

be extended to the shuffle model.

Kato et al. [37] extend [3] to several other variants of LDP (𝑘-

RR, unary encoding (OUE), local hashing (OLH)). However, their

techniques are similar and once again assume that only the output

can be manipulated, and the user otherwise uses the true value.

Therefore, they do not ensure that the correct input is being used,

which, in our case, can be verified through digital signatures.

The constructions of [3] and [37] are improved by Song et al. [51],

who also use an approach based on random sampling. A client com-

mits to a vector of entries that corresponds to the distribution of the

randomized raw input. Subsequently, the server requests openings

of a subset of these commitments, to obtain a perturbed sample, and

obtain sufficient guarantees about the correctness of the received

commitment vector. The authors show how to implement their

techniques for 𝑘-RR and OUE randomizers. The communication

and computation costs are clearly an improvement over prior work,

however due to the used approach, the communication costs still

suffer for high precision. Additionally, we do not see a clear way to

efficiently extend their work to other randomizers.

In [44], the authors propose LDP with verifiable computing to

extract binary attributes from anonymous credentials (e.g., older

than 18). These binary attributes are certified through a third party

using signatures, e.g., government or bank issued anonymous cre-

dentials. They do not give details on how this signature verification

is done. They do provide detailed verifiable algorithms for binary

RR and the exponential mechanism [41] to sample attributes in a

range (e.g., the age). Unlike us, they do not provide protocols for

𝑘-RR, the shuffle model, and their protocols are not scrutinized

using rigorous security definitions.

The closest work to ours is from [43] who tackle the problem of

releasing an attribute associatedwith a transaction in a differentially

private manner while maintaining the anonymity of a transaction

544

Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model Proceedings on Privacy Enhancing Technologies 2025(2)

in a blockchain system for cryptocurrencies. They demonstrate

their scheme using binary RR, although they do mention that the

scheme can be generalized to non-binary attributes, without giving

further details (as we show in Section 4.1, this is not trivial). The

private attribute is signed by a registration authority, so that it can

be verified if the correct input was used in the RR mechanism. They

also check if the random coins used for RR are unbiased, through

an interactive protocol between client and server. Finally, the client

provides a NIZK proof as a proof of correct application of the RR

mechanism. Our protocol has one element inspired by [43], namely

generating joint randomness. But, unlike them, our protocols apply

to generic LDP randomizers, protect against input manipulation,

and provide LDP in the shuffle model. Moreover, apart from our

baseline protocol, we only require a single round of interaction

between client and server, which greatly reduces the communica-

tion load of both. This does come at the cost of a more expensive

NIZK proof for each client, but this trade-off pays off quickly (see

Section 7). Additionally, we do not suffer from the latency and

scalability drawbacks caused by their dependence on blockchain.

Central Model. The construction from [45] is for verifying DP in

the central model as opposed to the local model. The main threat

model tackled in their paper is a dishonest analyst who may pub-

lish wrong results, banking on the inherent noise in DP, which is

different than ours. The work from [53] uses a similar threat model

to [45]. Randomness, however, is generated interactively between

the curator and a “reader” (an entity interested in verifying the

claims of the analyst). The work from [10] tackles the problem of

verifiable DP in the single curator and multiparty setting. In the for-

mer, one server collects all client inputs. The server then provides

differentially private answers to a third party, the analyst. In the

multiparty setting, multiple servers receive inputs (secret shared)

from clients and then compute the differentially private answer to

a query that is then presented to the analyst. Input verification is

limited to range checks, rather than verifying their exact values.

Concurrent to our work, Bell et al. [9] present their construction

for verifying private probabilistic mechanisms. They consider a

similar setting to [10] but provide stronger security guarantees.

However, their solution only enables the server to answer count-

ing queries and provide differential privacy through additive noise.

Specifically, they show how to use the binomial mechanism, and

leave possible extensions to other randomizers for future work.

Contrary to [9], we do offer verifiability for generic LDP randomiz-

ers. Our techniques could potentially be extended to their work to

support a wider variety of randomizers.

Finally, we note the scheme for confidential proofs of DP training

from [50]. The authors show how to prevent output manipulation

in DP-SGD [1] training of machine learning models in the central

model. They use zero-knowledge proofs in combination with com-

mitments to the entire dataset. However, due to enormous circuit

size of a zero-knowledge proof for DP-SGD training, their method

relies on interactive schemes with a heavy communication load.

This makes their approach unsuitable for the local model.

Other Works. Another related work to ours, but which does not

consider DP, is the ADSNARK system [7] for proving computation

on authenticated data while maintaining privacy. Like us, they as-

sume a trusted source that can provide authenticated initial data.

The client is required to compute a function of this data and send

the result to the server. To verify that the client has done the com-

putation correctly, they propose their ADSNARK protocol based

on Succinct Non-Interactive Arguments of Knowledge (SNARKs).

Unlike us however, their setting is not distributed, and does not

consider DP client inputs. Finally, we would like to point out several

works showing the susceptibility of LDP to input manipulation (or

data poisoning) attacks [19, 21, 39, 58], which highlight the need

for cryptographic solutions for the integrity of initial data and their

subsequent processing like our schemes.

3 Preliminaries and Building Blocks
We describe the building blocks used in our protocols with specific

attention to zero-knowledge proofs and differential privacy.

PRGs from PRFs. A pseudo-random function (PRF) family is defined

as a family of functions implemented by a key𝑘 ∈ K , whereK is the

key space. A function PRF(𝑘, 𝑥) from this family deterministically

maps an input 𝑥 ∈ X to an output 𝑦 ∈ Y. For a randomly chosen 𝑘 ,

PRF(𝑘, ·) is indistinguishable from a true random function. We can

use PRFs to construct pseudo-random number generators (PRGs) [14,
Section 4.4]: if wewish to sample a random bitstring fromYℓ

, we de-

fine ℓ distinct, fixed input values 𝑥1, . . . , 𝑥ℓ ∈ X. Then, we can define
a PRG with seed 𝑘 ∈ K as PRG(𝑘) = PRF(𝑘, 𝑥1) | | . . . | |PRF(𝑘, 𝑥ℓ) .
We use this PRG construction to realize our schemes.

Commitment Schemes. A commitment scheme 𝐶 (𝑥, 𝑟) takes as in-
put a value 𝑥 and randomness 𝑟 , and outputs a commitment cm.

The pair (𝑥, 𝑟) is called the opening of the commitment. A secure

commitment scheme should be both hiding and binding. Binding
means that, given a commitment 𝐶 (𝑥, 𝑟), it should be hard to out-

put a pair (𝑥 ′, 𝑟 ′), with 𝑥 ′ ≠ 𝑥 , such that𝐶 (𝑥 ′, 𝑟 ′) =𝐶 (𝑥, 𝑟). Hiding
implies that, given two commitments to distinct input values, it

should be hard to determine which commitment belongs to which

input value, i.e., given 𝑥0 ≠ 𝑥1 and cm𝑏 = 𝐶 (𝑥𝑏 , 𝑟), for a random
secret bit 𝑏 and random secret 𝑟 , it should be hard to determine 𝑏.

Digital Signature Schemes. A signature scheme Sig is a 3-tuple of
p.p.t. algorithms (KeyGen, Sign,Verify), where KeyGen generates

the keys, Sign creates a signature 𝜎 for a message 𝑚, and Verify
asserts whether 𝜎 is valid for𝑚. We only require that the signature

scheme be secure against existential forgeries under a chosen message
attack (EUF-CMA), i.e., an adversaryA should not be able to create

a valid message-signature pair (𝑚′, 𝜎 ′) for a new message𝑚′ ≠𝑚.

3.1 Zero-Knowledge Proofs
In our constructions, we rely upon non-interactive zero-knowledge
proofs (NIZKs). NIZKs are used to prove the existence of a se-

cret witness 𝑤 for a given, public statement 𝑥 , such that the pair

satisfies some NP-relation R, i.e., (𝑥,𝑤) ∈ R. Specifically, we
consider NIZKs in the common reference string (CRS) model [13,

25, 33], which can be defined as a 4-tuple of p.p.t. algorithms

(Setup, Prove,Verify, Sim). The Setup algorithm generates the eval-

uation ek and verification vk keys (and a simulation trapdoor trap)
for a given relation R. Prove uses ek to create a valid proof 𝜋 for

a given statement-witness pair (𝑥,𝑤), and Verify uses vk to assert

the correctness of 𝜋 for a given statement 𝑥 . Finally, Sim uses the

trapdoor trap and ek to create a simulated proof for a statement 𝑥 .

545

Proceedings on Privacy Enhancing Technologies 2025(2) Tariq Bontekoe, Hassan Jameel Asghar, and Fatih Turkmen

A secure NIZK scheme should satisfy the following (informal)

properties. Completeness: given a true statement, an honest prover

should be able to convince an honest verifier. Soundness: if the state-
ment is false, no prover should be able to convince the verifier that

it is true. Zero-knowledge: a proof 𝜋 should reveal no information

other than the truth of the public statement 𝑥 , specifically it should

leak no information about the witness𝑤 . (Note: our constructions

only require honest-verifier zero-knowledge.)

However, we are not just interested in knowing that a witness

exists, we also want to confirm that the prover knows this witness.
Therefore, in the remainder of our work we will look at NIZK proofs
of knowledge (NIZK-PKs), which are NIZKs that additionally also

satisfy knowledge soundness. Knowledge soundness is a stronger
version of soundness that additionally requires the existence of

an extractor EA that can produce a valid witness given complete

access to the adversary A’s state. In our implementation, we use

zk-SNARKs [11]: NIZK-PK schemes that are also succinct, i.e., the

verifier runs in poly(𝜆 + |𝑥 |) time and the proof size is poly(𝜆).

3.2 Differential Privacy
Differential privacy (DP) [27] is a formal way of describing database

privacy. It provides precise measures for how much information

about a dataset is leaked by (partial) disclosure through queries on

the dataset. Consider a database 𝑋 containing 𝑛 entries from the

domain X, i.e., 𝑋 ∈ X𝑛
. We consider two databases 𝑋,𝑋 ′ ∈ X𝑛

as

neighbors, denoted 𝑋 ∼ 𝑋 ′, if they differ in exactly one entry.

Definition 1 (Differential Privacy [27]). A randomized algorithm

M : X𝑛 → Y is (𝜖, 𝛿)-differentially private, if for all 𝑋 ∼ 𝑋 ′ ∈ X𝑛

and for all𝑇 ⊆ Y, we have Pr[M(𝑋) ∈ 𝑇] ≤ 𝑒𝜖 Pr[𝑀 (𝑋 ′) ∈ 𝑇] +𝛿 .
Any (𝜖, 𝛿)-DP randomization algorithm has two highly useful

properties, following [8]:

Lemma 1 (Post-processing [27]). If M is (𝜖, 𝛿)-DP, then for
every (deterministic or randomized)M′,M′ ◦M is also (𝜖, 𝛿)-DP.

Lemma 2 (Seqential composition [28]). IfM1, . . . ,M𝑛 are
(𝜖, 𝛿)-DP, then the composed algorithm M′ = (M1, . . . ,M𝑛) is
(𝜖′, 𝛿 ′+𝑛𝛿)-DP for any 𝛿 ′ > 0 and 𝜖′ = 𝜖 (𝑒𝜖 −1)𝑛+𝜖

√︁
2𝑛 log(1/𝛿 ′).

Shuffle Model. In the shuffle model, there are 𝑛 clients, each of

whom holds a data entry 𝑥𝑖 ∈ X. The shuffle model considers three

algorithms, following the definitions of [22]:

• A randomizer R : X → Y that takes as input a data entry 𝑥𝑖 and

outputs a value 𝑥𝑖 ∈ Y.1
• A shuffler S : Y𝑛 → Y𝑛

that takes as input a vector of 𝑛 mes-

sages and outputs these in a random order. Specifically, on input

(𝑥1, . . . , 𝑥𝑛), S, outputs (𝑥𝜋1 , . . . , 𝑥𝜋𝑛), where 𝜋 is a uniform ran-

dom permutation of [𝑛].
• An aggregator, or analyst, C : Y𝑛 → Z, that takes as input a

vector of 𝑛 messages (𝑥𝜋1 , . . . , 𝑥𝜋𝑛) and outputs an estimation of

𝑓 (𝑥1, . . . , 𝑥𝑛).
Definition 2 (DP in the Shuffle Model [22]). A protocol (R,S, C)
is (𝜖, 𝛿)-DP if the protocol S(R(𝑥1), . . . ,R(𝑥𝑛)) is (𝜖, 𝛿)-DP.

As a consequence of Lemma 2 and Lemma 1, there is a composi-

tion property equivalent to Lemma 2 for the shuffle model [22].

1
We only consider the single-message shuffle model. The more general shuffle model

allows for an array of𝑚 messages to be output byM.

LDP Algorithm for Reals [8]

input: 𝑘 ∈ N, 𝑥 ∈ [0, 1], 𝛾 ∈ [0, 1]
𝑥 ← ⌊𝑥𝑘 ⌋ + Ber(𝑥𝑘 − ⌊𝑥𝑘 ⌋)
𝑏 ← Ber(𝛾)
if 𝑏 = 0 do

�̃� ← 𝑥

else

�̃� ←$ {0, 1, . . . , 𝑘 }
return �̃�

LDP Algorithm for Histograms [8]

input: 𝑘 ∈ N, 𝑥 ∈ [𝑘], 𝛾 ∈ [0, 1]
𝑏 ← Ber(𝛾)
if 𝑏 = 0 do

�̃� ← 𝑥

else

�̃� ←$ {1, . . . , 𝑘 }
return �̃�

Figure 1: LDP randomizers for reals and histograms.

Local Differential Privacy (LDP). When one replaces the shuffler S
by an identity function, i.e., the vector of messages is not shuffled,

we are left with the well-known model for LDP [36]:

Definition 3 (Local Differential Privacy). A randomized algorithm

R : X → Y is (𝜖, 𝛿) − 𝐿𝐷𝑃 , if for all pairs 𝑥, 𝑥 ′ ∈ X, and for all

𝑇 ⊆ Y, we have Pr[R(𝑥) ∈ 𝑇] ≤ 𝑒𝜖 Pr[R(𝑥 ′) ∈ 𝑇] + 𝛿 .

The purpose of the shuffle mechanism is to amplify the privacy

achievable via LDP. We give a concrete example of this in Section 4.

In the remainder of this work, when we refer to an LDP algorithm,

we will only denote the local randomizer, unless stated otherwise.

4 DP Algorithms
We consider two LDP algorithms, both of which appear in [8]. The

first locally randomizes a real-number input 𝑥 ∈ [0, 1]. The goal of
the aggregator is to output the sum of these inputs from 𝑛 users.

The second algorithm takes as input an integer 𝑥 ∈ [𝑘] for 𝑘 ≥ 2,

and locally randomizes it. The application in this case is a histogram

of values in [𝑘]. The algorithms are shown in Figure 1.

In the LDP algorithm for reals, without loss of generality, we

assume 𝑥 ∈ [0, 1]. For a precision level 𝑘 , we first encode 𝑥 as an

integer as 𝑥 = ⌊𝑥𝑘⌋ + Ber(𝑥𝑘 − ⌊𝑥𝑘⌋) [8]. It is easily verified that

this encoding ensures that E(𝑥/𝑘), which is the expected value of

the decoded 𝑥 , is exactly E(𝑥). This makes the range of 𝑥 equal

to {0, 1, . . . , 𝑘}. This algorithm is 𝜖-DP, as long as
1−𝑘𝛾/(𝑘+1)
𝛾/(𝑘+1) ≤ 𝑒

𝜖
.

Equating the left hand side to the right hand side, we get 𝛾 = 𝑘+1
𝑒𝜖+𝑘 .

Thus, we can set 𝛾 to this value given 𝜖 and 𝑘 . If R is (𝜖, 𝛿)-LDP,
then the mechanismM : X𝑛 → Y𝑛

defined asM(𝑥1, . . . , 𝑥𝑛) =
R𝑛 = (R(𝑥1), . . . ,R(𝑥𝑛)) is also (𝜖, 𝛿)-DP.

For the LDP algorithm for histograms we can determine 𝛾 using

the same equation as above. However, we need to replace each

occurrence of 𝑘 by 𝑘 − 1, due to the different range for 𝑥 .

Aggregator. The aggregator for the LDP histogram algorithm simply

outputs the histogram, i.e., the number of inputs for each 𝑖 ∈ [𝑘]. For
the LDP algorithm for reals, the aggregator should de-bias first. Let

𝑥𝑖 be the 𝑖-th user’s input, let 𝑥𝑖 be the same input with precision

𝑘 , and 𝑥𝑖 the 𝑖-th user’s output of the LDP algorithm. Then, as

shown in Appendix A.1, the aggregator outputs
1

1−𝛾

(∑𝑛
𝑖=1

�̃�𝑖

𝑘
− 𝛾𝑛

2

)
,

as estimate of
1

𝑘

∑𝑛
𝑖=1 𝑥𝑖 [8], which itself estimates

∑𝑛
𝑖=1 𝑥𝑖 .

Shuffle Model. In the shuffle model, the inputs from all parties

are first shuffled randomly, and then given to the aggregator. This

546

Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model Proceedings on Privacy Enhancing Technologies 2025(2)

results in privacy amplification, as the aggregator now does not

know which input belongs to which user. The shuffle model of DP

employs a shuffler S : Y𝑛 → Y𝑛
, which is a random permutation

of its inputs. The algorithmM ≔ S◦R𝑛 : X𝑛 → Y𝑛
then provides

(𝜖, 𝛿)-DP against the curator, but with the advantage that the local

randomizer R need only be (𝜖0, 0)-LDP, with 𝜖0 greater than 𝜖 .

Ignoring logarithmic terms, 𝜖0 is proportional to 𝑛 and inversely

proportional to 𝛿 . Given a value of 𝜖, 𝛿 and 𝑛, we can use the script

provided by [8] to obtain a value of 𝜖0 which uses a tighter analysis

than given by the implicit bounds in the paper. For instance, for

the LDP histogram mechanism described above with 𝑘 = 10, i.e.,

𝑘-ary RR, with 𝑛 = 100 participants, 𝛿 = 10
−6

and 𝜖 = 0.1, we

get 𝜖0 ≈ 1.0032 through the Bennett bound. Thus, we can use the

mechanism 10 times more than the LDP mechanism alone.

4.1 LDP inside NIZK
To verify the above LDP algorithms inside a NIZK circuit, we need

to define how we evaluate an LDP algorithm in a deterministic
fashion, given a fixed number of uniform random bits. It must be

deterministic in the sense that we need to be able to ‘recreate’ ran-

dom sampling inside the NIZK circuit. Moreover, we observe that

the NIZK proof is computed over a given, fixed, agreed upon re-

lation R. Therefore, the (maximum) number of random bits used

should be fixed and known up front. This has the downside that

we cannot sample exactly from each distribution, but rather need

to sample from approximate distributions. We tackle both issues

simultaneously, by defining how to use a uniform random bitstring

𝜌 of length ℓ , such that the distribution of LDP.Apply(𝑥 ; 𝜌) is sta-
tistically close to the true randomized LDP algorithm.

Our Approximate Sampling Methods. Approximations for NIZK en-

coding of LDP randomizers can be designed for most well-known

distributions. For the LDP randomizers defined in Figure 1, we only

need to approximate the Bernoulli distribution and the Discrete Uni-

form distribution. Figure 2 shows two algorithms for sampling from

these distributions. We give an additional example in Appendix A.2.

These samplingmethods clearly match our requirements, and are

also statistically close to the true distributions, with the statistical

distance decreasing exponentially in ℓ . These approximate sampling

algorithms replace the random sampling steps in Figure 1. We give

an exact specification of the resulting algorithms in Appendix A.3.

For a sufficiently large bitsize of 𝜌 , these algorithms are statistically

close approximations of the true LDP algorithms. Moreover, the

approximation error decreases exponentially in |𝜌 |.

Generalization to Other Randomizers. The previous construction
can be generalized to many other distributions, thereby supporting

our claim that our schemes are applicable to a wide class of local

randomizers. The essential difference in the construction across ran-

domizers is showing how to efficiently (approximately) sample from

the underlying distributions used by the randomizer. The rest of

the adaptations to the NIZK proof are straightforward. Thus, below

we discuss (at a high level) approaches for approximate sampling

from other representative or state-of-the-art LDP randomizers to

provide further evidence for the feasibility of encoding them inside

NIZK circuits. Additionally, we discuss estimates for |𝜌 |, since this
dominates the computation cost (see also Section 7).

B̃er(𝛾 ; 𝜌)

input: 𝛾 ∈ [0, 1], 𝜌 ∈ {0, 1}ℓ

Interpret 𝜌 as an integer

if 𝜌 ≤ ⌊𝛾 · (2ℓ − 1) ⌋ do
𝑏 ← 1

else

𝑏 ← 0

return 𝑏

Ũnif([𝑙𝑏,𝑢𝑏]; 𝜌)

input: 𝑙𝑏,𝑢𝑏 ∈ Z : 𝑙𝑏 < 𝑢𝑏, 𝜌 ∈ {0, 1}ℓ

Interpret 𝜌 as an integer

Δ← ⌊2ℓ /(𝑢𝑏 − 𝑙𝑏 + 1) ⌋
for 𝑗 in{0, . . . ,𝑢𝑏 − 𝑙𝑏 − 1}
if 𝑗 · Δ ≤ 𝜌 < (𝑗 + 1) · Δ do

return 𝑙𝑏 + 𝑗

return𝑢𝑏

Figure 2: Algorithms for approximately sampling from the
Bernoulli and Discrete Uniform distribution.

• Laplace noise [27] is often used in LDP to perturb continuous

input values. For approximate Laplace sampling, one can first

sample a sign bit (by taking the first bit of 𝜌) and then sam-

ple an exponentially distributed ‘distance’ ℓ . The latter can be

approximated arbitrarily closely by sampling ℓ from a Poisson

distribution as described in [26]: one samples ℓ in binary, where

the 𝑖-th bit has a predefined bias 𝛾𝑖 , i.e., it is sampled from B̃er(𝛾𝑖).
The size of 𝜌 for this approach is |𝜌 | ≈ |ℓ | · precision(B̃er), e.g.,
for 64-bit precision, we have |𝜌 | ≈ 512 bytes.

• RAPPOR [31] was developed by Google and used as part of the

Chrome browser. It adds LDP noise to users’ responses to ques-

tions. First it encodes a raw input using a Bloom filter of size ℓ𝐵 ,

i.e., by hashing the input to a bit vector using different hash func-

tions for each vector entry. Bloom filters generally use simple

hash functions, that are evaluated at little cost inside a NIZK cir-

cuit. The resulting bit-vector is subsequently transformed using

Bernoulli random sampling. Thus, we can use B̃er (Figure 2) to

approximate this efficiently. The amount of random bits required

is |𝜌 | ≈ ℓ𝐵 · precision(B̃er), e.g., for 64-bit precision and a 20-bit

Bloom filter, we have |𝜌 | ≈ 160 bytes.

• Staircase Randomized Response (SRR) [54] is a recent LDP algo-

rithm for perturbing location data. It requires sampling from a

‘staircase’ shaped distribution, where locations close to the true

one are more likely to be sampled than locations further away.

SRR relies on a specific bit-string encoding of locations with

length ℓ (no more than 46 bits in practice), where the common

prefix length is inversely proportional to the distance between

two locations. Thus, given a true location 𝑥 , we compute three

values from 𝜌 ; the length of the common prefix, the value of the

first different bit-pair, and the remaining bits. The first two can be

sampled using Ũnif (Figure 2) and the latter can be taken directly

from 𝜌 . The resulting LDP value 𝑥 is then computed using simple

if-else statements. We need |𝜌 | ≈ ℓ + 2 · precision(Ũnif) for this
approach, e.g., for 64-bits precision, we have |𝜌 | ≈ 22 bytes.

Many more randomizers can be approximated similarly. Gauss-
ian noise can be approximated by repeated Bernoulli random sam-

pling [26]. Similarly, generic Randomized Response (RR) [35, 57]
or Subset Selection mechanisms [55, 59] are easily computed using

(repeated) Bernoulli or Uniform random sampling. [56] presents a

general framework for LDP randomizers for frequency estimation.

This framework splits randomizers in an encoding and a pertur-

bation step. The listed encodings — direct, histogram, unary, and

547

Proceedings on Privacy Enhancing Technologies 2025(2) Tariq Bontekoe, Hassan Jameel Asghar, and Fatih Turkmen

Untrusted environment

Trusted environment

Generate
Randomness

RandomizeObtain and
Sign data

1. Request data

2. Signed data

Generate
Randomness

0. Interactively generate randomness for client i

3. DP output and
NIZK proof

Shuffle Verify

4. Shuffled DP outputs and
NIZK proofs from n clients

Aggregate
results

5. Shuffled
DP outputs

3. DP output and
NIZK proof

3. … 3. …

Client 1 Client 2 Client n

…

Client i Server

Publish
result

6. Aggregated
output

0. Interactively generate randomness for clients 1, 2, …, n

(one independent protocol run per client)

Shuffler

Figure 3: System model for the VLDPPipeline. For multiple time steps 𝑗 , the clients reiterate the steps as explained further on.
When using the ‘regular’ local model, the shuffler is removed and the messages of step 3 are sent directly to the server instead.

local hashing (like in RAPPOR) — are all easily expressed in NIZK
circuit constraints and will have small to negligible overhead. The

listed perturbations are either based on RR or Laplace noise, which

we have discussed above.

Finally, we observe that stateful LDP randomizers (such as [30]),

i.e., randomizers whose behavior depends on previous calls to it,

would require theNIZK proof to additionally verify the state update.

Whilst verifying this update is not a problem per se, it would require

the previous state as input to the proof, which is not directly sup-

ported by our constructions (see Section 6). Since the overwhelming

majority of LDP randomizers is not stateful, we leave a solution to

this challenge as future work.

5 Verifiable DP in the Local and Shuffle Model
First, we describe the threat model. Next, we sketch our system

model and give a formal definition for a VLDP scheme that is

applicable to both the local and the shufflemodel. Finally, we present

formal security definitions.

5.1 Threat Model
There are three types of actors in the shuffle model: clients, shuffler

and server (see also Figure 3). The shuffler can be ignored for the

local model. We describe the threat model according to each actor.

5.1.1 Clients. We assume that all client programs may potentially

behave maliciously, or collude with other clients, meaning that

they could deviate from our scheme arbitrarily, or attempt to use

false input data. However, client programs have no control over the

trusted environment and can only obtain signed input data 𝑥 from

it, with signature 𝜎𝑥 = Sig.Signsk𝑖 (𝑥 | |𝑡𝑥). Each client 𝑖’s trusted

environment contains a unique secret key sk𝑖 , which cannot be

accessed by the potentially malicious client program. Recall that

we use the term trusted environment to denote any controlled

environment outside adversarial reach, e.g., secure enclave, OS

space, or hardware module.

Examples of Trusted Environments. Our model is applicable in

situations where a trusted environment is viable. Given that the

presence of trusted environments in consumer hardware is increas-

ingly strong, this is a reasonable requirement. A concrete example

is Apple’s Secure Enclave [5]; implemented on iPhones and wear-

ables like Apple watches and HomePods. The enclave supports

EdDSA and ECDSA signatures (see our discussion in Section 7.1).

Our protocol minimizes processing within the enclave to input

signing only. Thus, the trusted module can be small. The rest of the

pipeline is executed outside the enclave, and is not assumed to be

trustworthy.

Another example is kernel-space vs user-space in Linux-based

OSes. Apps can only access user-space memory. Thus any mali-

cious app on a victim phone can not directly access hardware; only

indirectly via the kernel [4]. We recognize that attacks on trusted

environments or kernels (jailbreaks) exist. Yet, they would also

apply to any work based on trusted execution environments (TEEs).

Additionally, it is not straightforwardly clear if there is an approach

for significantly reducing the reliance on some sort of trusted envi-

ronment. The idea of loosening or removing this assumption is left

to future work.

5.1.2 Server. We assume the server to be semi-honest, i.e., it will
not deviate from the scheme, but does try to obtain as much in-

formation as possible whilst following the scheme. Moreover, the

server is assumed to be a non-colluding entity. Finally, we assume

that the server can verify which pk𝑖 ’s are known/trusted public

keys belonging to a trusted environment, e.g., by means of a public

key infrastructure or whitelist of trusted keys.

5.1.3 Shuffler. For the scheme in the shufflemodel, we assume that

the shuffler is an honest-but-curious, independent, non-colluding
party. In this work, for the sake of clarity, we will assume that the

shuffler is a trusted third party. In practice, different methods exist

for implementing a shuffler, e.g., using mixnets. We discuss these in

Appendix B. The actual choice of implementation for the shuffler is

out of scope for this work, as our focus lies on constructing efficient,

548

Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model Proceedings on Privacy Enhancing Technologies 2025(2)

implementation-agnostic, secure VLDP schemes for the local and

shuffle model. Note that it is common for works in the shuffle model

to leave this discussion out of scope [8, 22].

5.2 System Model
LetVLDPPipeline denote the high-level structure of a VLDP scheme,

which describes the workings of the VLDP scheme with 1 server

and 𝑛 clients for 𝑇 time steps (one for each message). A schematic

overview is shown in Figure 3. First, GenRand ensures that the

client has the necessary inputs to construct verifiably true random

values later on. It can be seen as a sort of preprocessing, where

client and server together generate client-specific randomness to

be used in the 𝑗-th time interval (𝑡 𝑗−1, 𝑡 𝑗], for 𝑗 ∈ [𝑇].
Client 𝑖 generates a VLDP value 𝑥𝑖, 𝑗 for the 𝑗-th time interval

by first requesting a fresh raw input value 𝑥𝑖, 𝑗 from the trusted

environment at time 𝑡
𝑖, 𝑗
𝑥 ∈ (𝑡 𝑗−1, 𝑡 𝑗]. In response, the trusted en-

vironment returns a signed input value 𝑥 with signature 𝜎
𝑖, 𝑗
𝑥 =

Sig.Signsk𝑖 (𝑥𝑖, 𝑗 | |𝑡
𝑖, 𝑗
𝑥), where sk𝑖 is the secret key of 𝑖’s trusted envi-

ronment, which we assume has been generated beforehand. This

signature can be verified using the corresponding pk𝑖 . Subsequently,
𝑖 calls Randomize to verifiably perturb 𝑥𝑖, 𝑗 and obtain 𝑥𝑖, 𝑗 and a cor-
rectness proof 𝜋𝑖, 𝑗 , both of which are sent to the shuffler (or directly

to the server in the local model). The shuffler collects all messages

for (𝑡 𝑗−1, 𝑡 𝑗]: ((𝑥1, 𝑗 , 𝜋1, 𝑗), (𝑥2, 𝑗 , 𝜋2, 𝑗), . . . , (𝑥𝑛,𝑗 , 𝜋𝑛,𝑗)) and forwards

these in random order ((𝑥?1, 𝑗 , 𝜋?1, 𝑗), (𝑥?2, 𝑗 , 𝜋?2, 𝑗), . . . , (𝑥?𝑛 , 𝑗 , 𝜋?𝑛 , 𝑗))
to the server, thus ensuring that the server cannot determine which

message belongs to which client.

For each received (𝑥?𝑖 , 𝑗 , 𝜋?𝑖 , 𝑗), the server runs Verify, to ensure

that 𝑥?𝑖 , 𝑗 is correctly randomized from a value 𝑥 , with 𝑡𝑥 ∈ (𝑡 𝑗−1, 𝑡 𝑗]
signed by a valid pk

?𝑖
. Finally, the server uses all valid values to

evaluate and publish its desired output 𝑓 (𝑥?1, 𝑗 , . . . , 𝑥?𝑛 , 𝑗).
Definition 4 (VLDP Scheme). A VLDP scheme for an LDP algo-

rithm LDP.Apply : X → Y is a 5-tuple of p.p.t. algorithmsVLDP
for any number 𝑛 ≥ 1 of clients and one prover:

• Setup(1𝜆) → pp: Given the security parameter 𝜆, this algorithm

returns public parameters pp. This is a tuple containing theNIZK
relation R, parameters of a public key signature scheme pp

sig

and a commitment scheme pp
comm

. Optionally, it also returns a

vector ®𝑠 of 𝑇 PRF seeds.

• KeyGen(pp) → (ek, vk, pk𝑠 , sk𝑠 , 𝐿): Given the public parameters

pp, this algorithm returns the evaluation ek and verification key

vk for theNIZK proof, and the server’s public and secret signature

keys (pk𝑠 , sk𝑠) along with a list 𝐿. The list 𝐿 is populated with

the identities of clients that have already been processed in a

given time interval.

• GenRand(pp, aux) → out𝑖𝑐 : This interactive protocol between a

single client and server takes as input the public parameters pp
and optional auxiliary information aux. The output of the client
is defined as out𝑖𝑐 , which contains client-generated randomness,

commitment to this randomness, server generated randomness,

and a server signed signature binding the server generated ran-

domness with the commitment to client’s randomness. Depend-

ing on the scheme’s instantiation, out𝑖𝑐 can be used for multiple

time intervals or only for one.

• Randomize(pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥, 𝑡𝑥 , 𝜎𝑥) → (𝑥, 𝜋, 𝜏𝑥): Client 𝑖 uses
pp, ek, a timestamp 𝑡 𝑗 , its output out𝑖𝑐 from GenRand, the true

input value 𝑥 with timestamp 𝑡𝑥 and signature 𝜎𝑥 to compute an

LDP value 𝑥 , a NIZK proof 𝜋 , and a vector of public values 𝜏𝑥 .
2

• Verify(pp, vk, 𝑡 𝑗 , 𝑥, 𝜋, 𝜏𝑥) → 𝑥 ∪ ⊥: The server uses pp, vk, a
timestamp 𝑡 𝑗 , 𝑥 , 𝜋 , and 𝜏𝑥 to verify whether 𝑥 was computed

honestly. If so, it returns 𝑥 , and ⊥ otherwise.
2

5.3 Security definitions
A VLDP scheme should satisfy at least completeness, soundness, and
zero-knowledgeness. Below, we provide the formal definitions of

all these properties. The experiments used in the definitions are

detailed in Appendix C.1, together with our formal security proofs.

Completeness guarantees that for any authenticated input 𝑥 ,

created in the right time interval, the output of an honest client

will be accepted by an honest server with probability 1.

Definition 5 (Completeness). A scheme VLDP for an LDP

method LDP.Apply : X → Y with security parameter 𝜆 is com-

plete if for any 𝑛 = poly(𝜆), any 𝑇 = poly(𝜆), and for all p.p.t. A,

we have Pr

[
⊥ ∈ ExpComp

A (1𝜆, 𝑛,𝑇)
]
≤ negl(𝜆), with ExpComp

A as

defined in Figure 9.

On the other hand, soundness guarantees that no dishonest client

can make a server accept an output, that is not an honest random-

ization of an authentic input 𝑥 , except with negligible probability.

Definition 6 (Soundness). A schemeVLDP for an LDP method

LDP.Apply : X → Y with security parameter 𝜆 is sound if, for any

𝑛 = poly(𝜆), any 𝑇 = poly(𝜆), for all p.p.t. A, and ∀(𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗) ∈
X × Y, we have��

Pr

[
LDP.Apply(𝑥𝑖, 𝑗 ; 𝜌𝑖, 𝑗) = {𝑦𝑖, 𝑗 }𝑖, 𝑗

��𝜌𝑖, 𝑗 ←$ {0, 1}∗
]

− Pr
[
ExpSnd-Real

A,𝑆∗ (1𝜆, 𝑛,𝑇 , {𝑥𝑖, 𝑗 }𝑖, 𝑗) = {𝑦𝑖, 𝑗 }𝑖, 𝑗
���

⊥ ∉ ExpSnd-Real

A,𝑆∗ (1𝜆, 𝑛,𝑇 , {𝑥𝑖, 𝑗 }𝑖, 𝑗)
] ��� ≤ negl(𝜆),

with ExpSnd-Real

A as defined in Figure 10, where 𝑆∗ denotes an honest
server that the adversary can interact with.

The zero-knowledge property guarantees that the server learns

nothing about the original input value 𝑥 , other than what could

already be learned from its randomization 𝑥 .

Definition 7 (Zero-knowledge). A scheme VLDP for an LDP

method LDP.Apply : X → Y with security parameter 𝜆 is zero-

knowledge if for any 𝑛 = poly(𝜆), any 𝑇 = poly(𝜆), there exists a
p.p.t. simulator S = (S1,S2), such that for all p.p.t. adversaries A,

and ∀(𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗) ∈ X × Y, we have{
ExpZk-Real

A (1𝜆, 𝑛,𝑇 , {𝑥𝑖, 𝑗 }𝑖, 𝑗) = (·, {𝑦𝑖, 𝑗 }𝑖, 𝑗)
}

𝑐≡
{
ExpZk-Sim

A,S (1
𝜆, 𝑛,𝑇 , {𝑦𝑖, 𝑗 }𝑖, 𝑗)

}
,

with ExpZk-Real

A and ExpZk-Sim

A,S as defined in Figure 11.

Additionally, for a VLDP scheme to be secure in the shufflemodel,

we require shuffle indistinguishability, i.e., the server cannot discern
an output sent by client 𝑖 from an output sent by client 𝑖′.

2
We leave out the index-pair (𝑖, 𝑗) for 𝑥, 𝑡𝑥 , 𝜎𝑥 , �̃�, 𝜋, 𝜏𝑥 to improve legibility.

549

Proceedings on Privacy Enhancing Technologies 2025(2) Tariq Bontekoe, Hassan Jameel Asghar, and Fatih Turkmen

Definition 8 (Shuffle indistinguishability). A scheme VLDP
for an LDP method LDP.Apply : X → Y with security parameter

𝜆 has shuffle indistinguishability if for every p.p.t. adversary A:

2| Pr[ExpInd

A (𝜆) = 1|ExpInd

A (𝜆) ≠ ⊥] −
1

2
| ≤ negl(𝜆), with ExpInd

A
as defined in Figure 12.

6 Our Constructions for VLDP
In this section, we present our three VLDP schemes and explain

the components that together form their respective construction

of VLDPPipeline. Each scheme improves upon the previous one,

culminating in an efficient VLDP scheme that can be applied in the

shuffle model. Appendix C.2 contains formal security analyses.

(1) The Base scheme achieves verifiable LDP in the local model. Its

GenRand protocol is loosely inspired by the VerRR algorithm

in [43] and should be run once per time interval (and client).

The other algorithms are novel constructions, which together

form a scheme that, unlike [43], also provides security against

input manipulation attacks for authenticated data, supports

generic LDP algorithms, and does not require a blockchain.

(2) The Expand scheme provides the same guarantees, but enables

clients to reuse their output out𝑖𝑐 of GenRand for every time

interval. This significantly decreases the computation and com-

munication load of the server, making the scheme suitable for

sequential composition of DP.

(3) The Shuffle scheme has the same communication efficiency as

Expand, but also achieves VLDP in the shuffle model.

6.1 Base Scheme
Figure 4 describes the Base scheme in detail. Each client 𝑖 obtains

fresh randomness for time interval 𝑗 by running an independent

instance of GenRandbase with the server. Together, they compute

the necessary values to construct a true random value 𝜌𝑖, 𝑗 for later

use in Randomizebase. The bit length of 𝜌 will be equal to the output

of the PRF used to generate 𝜌 , and is denoted by |𝜌 |. In case the

required number of bits ℓ needed to evaluate LDP.Apply() is lower
than |𝜌 |, we can simply ignore the unused bits. However, in case

ℓ > |𝜌 |, we need to evaluate the PRF on one or more additional

inputs, depending on ℓ , and concatenate the results. For clarity,

we assume that ℓ ≤ |𝜌 | in our scheme definitions, since it can be

extended easily using this method. In our experimental evaluations

(Section 7), we evaluate the influence of ℓ on the performance.

In an instance of GenRandbase, client 𝑖 first generates its own
random bits 𝜌

𝑖, 𝑗
𝑐 (we explicitly show the use of a PRF in step 1

and 2 of Figure 4 to resemble the later schemes). Subsequently, 𝑖

computes a commitment cm𝑖, 𝑗
𝜌𝑐 to 𝜌

𝑖, 𝑗
𝑐 , and shares it along with its

trusted environment’s public key pk𝑖 , and a time interval marker 𝑡 𝑗
with the server. The eventual randomness is then also bound to 𝑡 𝑗 ,

such that the client cannot create a large batch of random values,

and then pick a specific value from this batch. That would clearly

violate the requirements for verifiable randomization.

The server first checks whether pk𝑖 indeed belongs to 𝑖 , and that
𝑖 did not previously construct a random value for 𝑡 𝑗 , i.e., whether

(𝑖, 𝑡 𝑗) ∉ 𝐿. Next, the server generates a valid PRF seed 𝑘
𝑖, 𝑗
𝑠 and

computes 𝜎
𝑖, 𝑗
𝑠 = Sig.Signsk𝑠 (pk𝑖 | |cm

𝑖, 𝑗
𝜌𝑐 | |𝑘

𝑖, 𝑗
𝑠 | |𝑡 𝑗). The server then

sends (𝑘𝑖, 𝑗𝑠 , 𝜎
𝑖, 𝑗
𝑠) to 𝑖 , who verifies 𝜎𝑖, 𝑗𝑠 . Note that, rather than using a

VLDPPipeline
base

1: pp← Setup
base
(1𝜆)

2: Server computes (ek, vk, pk𝑠 , sk𝑠 , 𝐿) ← KeyGen
base
(pp)

3: for Each client 𝑖 in{1, . . . , 𝑛} (in parallel)

4: for 𝑗 in {1, . . . ,𝑇 }

5: Client 𝑖 obtains out𝑖,𝑗𝑐 = GenRand
base
(pp, 𝑡 𝑗)

6: Client 𝑖 obtains fresh (𝑥𝑖,𝑗 , 𝑡𝑖,𝑗𝑥 , 𝜎
𝑖,𝑗
𝑥 = Sig.Signsk𝑖 (𝑥 | |𝑡𝑥))

7: Client 𝑖 runs (�̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗) = Randomize
b.
(pp, ek, 𝑡 𝑗 , out𝑖,𝑗𝑐 , 𝑥𝑖,𝑗 , 𝑡

𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥)

8: Server obtains �̃�𝑖,𝑗 = Verify
base
(pp, vk, 𝑡 𝑗 , �̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗)

9: Server computes result from all �̃�𝑖,𝑗

KeyGen
base
(pp)

1: (ek, vk) ← NIZK-PK.KeyGen(R
base
)

2: (sk𝑠 , pk𝑠) ← Sig.KeyGen(pp
sig
)

3: 𝐿 ← ∅
4: return (ek, vk, pk𝑠 , sk𝑠 , 𝐿)

Setup
base
(1𝜆)

1: pp
sig
← Sig.Setup(1𝜆)

2: pp
comm

← Comm.Setup(1𝜆)

3: ®𝑡 = (𝑡0, . . . , 𝑡𝑇)

4: pp = (R
base

, pp
sig

, pp
comm

, ®𝑡)
5: return pp

R
base

Given (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , cm
𝑖,𝑗
𝜌𝑐

, 𝜌
𝑖,𝑗
𝑠 , �̃�𝑖,𝑗) , the

prover knows (𝑡𝑖,𝑗𝑥 , 𝑥𝑖,𝑗 , 𝜎
𝑖,𝑗
𝑥 , 𝜌

𝑖,𝑗
𝑐 , 𝑟

𝑖,𝑗
𝜌𝑐
) s.t.:

1: 𝑡
𝑖,𝑗
𝑥 ∈ (𝑡 𝑗−1, 𝑡 𝑗]

2: Sig.Verifypk𝑖 (𝜎
𝑖,𝑗
𝑥 , 𝑥𝑖,𝑗 | |𝑡𝑖,𝑗𝑥) = 1

3: cm𝑖,𝑗
𝜌𝑐

= Comm(𝜌𝑖,𝑗𝑐 ; 𝑟
𝑖,𝑗
𝜌𝑐
)

4: 𝜌𝑖,𝑗 = 𝜌
𝑖,𝑗
𝑐 ⊕ 𝜌

𝑖,𝑗
𝑠

5: �̃�𝑖,𝑗 = LDP.Apply(𝑥𝑖,𝑗 ; 𝜌𝑖,𝑗)

GenRand
base
(pp, 𝑡 𝑗) — Client 𝑖

1: 𝑘
𝑖,𝑗
𝑐 ←$ {0, 1}∗

2: 𝜌
𝑖,𝑗
𝑐 = PRF(𝑘𝑖,𝑗𝑐 , 0)

3: 𝑟
𝑖,𝑗
𝜌𝑐
←$ {0, 1}∗

4: cm𝑖,𝑗
𝜌𝑐

= Comm(𝜌𝑖,𝑗𝑐 ; 𝑟
𝑖,𝑗
𝜌𝑐
)

5: Send (pk𝑖 , cm
𝑖,𝑗
𝜌𝑐

, 𝑡 𝑗) to server

6: Receive (𝑘𝑖,𝑗𝑠 , 𝜎
𝑖,𝑗
𝑠) from server

7: If Sig.Verifypk𝑠 (𝜎
𝑖,𝑗
𝑠 , pk𝑖 | |cm

𝑖,𝑗

𝑘𝑐
| |𝑘𝑖,𝑗𝑠 | |𝑡 𝑗)

≠ 1, abort

8: return out𝑖,𝑗𝑐 = (𝜌𝑖,𝑗𝑐 , 𝑟
𝑖,𝑗
𝜌𝑐

, cm𝑖,𝑗
𝜌𝑐

, 𝑘
𝑖,𝑗
𝑠 , 𝜎

𝑖,𝑗
𝑠)

GenRand
base
(pp, 𝑡 𝑗) — Server

1: Receive (pk𝑖 , cm
𝑖,𝑗
𝜌𝑐

, 𝑡 𝑗) from client 𝑖

2: If pk𝑖 does not belong to 𝑖 , abort

3: If (𝑖, 𝑡 𝑗) ∈ 𝐿, abort
4: 𝐿 ← 𝐿 ∪ {𝑖, 𝑡 𝑗 }

5: 𝑘𝑠 ←$ {0, 1}∗

6: Send (𝑘𝑖,𝑗𝑠 , 𝜎
𝑖,𝑗
𝑠) to client 𝑖

Randomize
b.
(pp, ek, 𝑡 𝑗 , out𝑖,𝑗𝑐 , 𝑥𝑖,𝑗 , 𝑡

𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥)

1: 𝜌
𝑖,𝑗
𝑠 = PRF(𝑘𝑖,𝑗𝑠 , 0)

2: 𝜌𝑖,𝑗 = 𝜌
𝑖,𝑗
𝑐 ⊕ 𝜌

𝑖,𝑗
𝑠

3: �̃�𝑖,𝑗 = LDP.Apply(𝑥𝑖,𝑗 ; 𝜌𝑖,𝑗)

4:
®𝜙𝑖,𝑗 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , cm

𝑖,𝑗
𝜌𝑐

, 𝜌
𝑖,𝑗
𝑠 , �̃�𝑖,𝑗)

5: ®𝑤𝑖,𝑗 = (𝑡𝑖,𝑗𝑥 , 𝑥𝑖,𝑗 , 𝜎
𝑖,𝑗
𝑥 , 𝜌

𝑖,𝑗
𝑐 , 𝑟

𝑖,𝑗
𝜌𝑐
)

6: 𝜋𝑖,𝑗 = NIZK-PK.Proveek (®𝜙𝑖,𝑗 ; ®𝑤𝑖,𝑗)

7: 𝜏𝑖,𝑗 = (pk𝑖 , cm
𝑖,𝑗
𝜌𝑐

, 𝑘
𝑖,𝑗
𝑠 , 𝜎

𝑖,𝑗
𝑠)

8: Send (�̃�𝑖,𝑗 , 𝜏𝑖,𝑗) to server

Verify
base
(pp, vk, 𝑡 𝑗 , �̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗)

1: Parse 𝜏𝑖,𝑗 = (pk𝑖 , cm
𝑖,𝑗
𝜌𝑐

, 𝑘
𝑖,𝑗
𝑠 , 𝜎

𝑖,𝑗
𝑠)

2: If pk𝑖 does not belong to 𝑖 , abort

3: If Sig.Verifypk𝑠 (𝜎
𝑖,𝑗
𝑠 ,

pk𝑖 | |cm
𝑖,𝑗

𝑘𝑐
| |𝑘𝑖,𝑗𝑠 | |𝑡 𝑗) ≠ 1, abort

4: 𝜌
𝑖,𝑗
𝑠 = PRF(𝑘𝑖,𝑗𝑠 , 0)

5:
®𝜙𝑖,𝑗 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , cm

𝑖,𝑗
𝜌𝑐

, 𝜌
𝑖,𝑗
𝑠 , �̃�𝑖,𝑗)

6: If NIZK-PK.Vfyvk (𝜋𝑖,𝑗 , ®𝜙𝑖,𝑗) ≠ 1, abort

7: return �̃�𝑖,𝑗

Figure 4: Base scheme: VLDP with one server and 𝑛 clients.

signature, the server could instead maintain a list of (pk𝑖 , cm
𝑖, 𝑗
𝜌𝑐) for

each client and compare this state in Verify
base

later. We, however,

choose this approach to minimize the server’s storage load.

In Randomizebase, the client computes the server part of the

randomness 𝜌
𝑖, 𝑗
𝑠 from 𝑘

𝑖, 𝑗
𝑠 , and combines the client and server parts

to obtain a true random value 𝜌𝑖, 𝑗 = 𝜌
𝑖, 𝑗
𝑐 ⊕ 𝜌

𝑖, 𝑗
𝑠 . Subsequently, the

550

Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model Proceedings on Privacy Enhancing Technologies 2025(2)

client uses 𝜌𝑖, 𝑗 to transform 𝑥𝑖, 𝑗 into a differentially private value 𝑥𝑖, 𝑗
using LDP.Apply(). Finally, the client computes the NIZK-PK for

Rbase to attest to a number of statements: (1) the true value 𝑥𝑖, 𝑗 was

signed using pk𝑖 and obtained at a time 𝑡
𝑖, 𝑗
𝑥 , such that 𝑡

𝑖, 𝑗
𝑥 ∈ (𝑡 𝑗−1, 𝑡 𝑗];

(2) 𝜌𝑖, 𝑗 is a true random value, i.e., cm𝑖, 𝑗
𝜌𝑐 = Comm(𝜌𝑖, 𝑗𝑐 ; 𝑟

𝑖, 𝑗
𝜌𝑐) and

𝜌𝑖, 𝑗 = 𝜌
𝑖, 𝑗
𝑐 ⊕ 𝜌

𝑖, 𝑗
𝑠 ; and (3) 𝑥𝑖, 𝑗 is the result of LDP.Apply(𝑥𝑖, 𝑗 ; 𝜌𝑖, 𝑗).

When the server receives an LDP value 𝑥𝑖, 𝑗 , proof 𝜋𝑖, 𝑗
and public

values (pk𝑖 , cm
𝑖, 𝑗
𝜌𝑐 , 𝑘

𝑖, 𝑗
𝑠 , 𝜎

𝑖, 𝑗
𝑠) from the 𝑖-th client, it verifies correct-

ness of 𝜌
𝑖, 𝑗
𝑠 , 𝜎

𝑖, 𝑗
𝑠 and 𝜋𝑖, 𝑗 for 𝑡 𝑗 . If all hold, it knows that 𝑥

𝑖, 𝑗
is a

correct DP version of an authentic input.

6.2 Randomness Expansion (Expand) Scheme
The Base scheme requires one execution of GenRand for each call

to Randomize, i.e., one per client, per time interval. Due to the

interactive nature of GenRand, this becomes impractical when

the number of clients increases. The Expand scheme (Figure 5)

uses Merkle trees as compact commitments to multiple random

values, to reduce the number of GenRand executions to only one

per client. Specifically, we update steps 2–4 ofGenRand by creating
𝑇 commitments to 𝑇 randomly generated values 𝜌

𝑖, 𝑗
𝑐 , for 𝑗 ∈ [𝑇].

Subsequently, we encode all these commitments inside a Merkle

tree with root rt to keep the message size constant and equal to that

of GenRandbase. The main advantage is that we can now generate

𝑇 random values with only one round of communication, with

communication and server-side cost independent of 𝑇 .

This improvement requires some changes and additional compu-

tations for the client in Randomizeexpand. Following Section 3, given
an array of distinct, public values ®𝑠 = (𝑠1, . . . , 𝑠𝑇), we can define

a secure PRG as PRG(𝑘) := PRF(𝑘 | |𝑠1) | | . . . | |PRF(𝑘 | |𝑠𝑇). Thus, if
we consider the 𝑗-th call to Randomizeexpand, we can compute the

server part of the randomness (line 1) as 𝜌
𝑖, 𝑗
𝑠 = PRF(𝑘𝑖𝑠 | |𝑠 𝑗), where

𝑘𝑖𝑠 is the server seed for client 𝑖 . Observe that the vector 𝑠 is identical

for all clients. The remainder of Randomize follows the same struc-

ture as in Base. However, we do have to add an additional statement

to our NIZK-PK for Rexpand, verifying that the client randomness

used in the 𝑗-th call of Randomizeexpand is indeed the 𝑗-th entry of

the Merkle tree with root rt𝑖 . This ensures not only that the 𝑖-th

client uses a random value that was committed to before seeing 𝑘𝑖𝑠 ,

but also ensures that 𝑖 has no choice in which random value in the

Merkle tree it uses. Allowing the client to choose which value it

uses could make it possible to influence the value of 𝑥𝑖, 𝑗 for at least

one 𝑗 , by cleverly constructing ®𝜌𝑐 .

6.3 Shuffle Model Scheme
In both the Base and Expand scheme, we consider the regular LDP

model. In this model, at time step 𝑗 the server receives 𝑛 differen-

tially private values 𝑥𝑖, 𝑗 , each of which is directly linkable to the

client who sent it. However, in the shuffle model at time step 𝑗 ,

the server instead receives a vector x̃j of 𝑛 differentially private

values, which are not linkable to a particular client. The server at

most knows the group of clients that is collectively responsible

for sending this vector of differentially private data. For simplic-

ity, we assume that there is a trusted shuffler who first collects all

the clients’ messages and then sends them in random order to the

VLDPPipeline
expand

1: pp← Setup
expand

(1𝜆)
2: Server computes (ek, vk, pk𝑠 , sk𝑠 , 𝐿) ← KeyGen

expand
(pp)

3: for Each client 𝑖 (in parallel)

4: Client obtains out𝑖𝑐 = GenRand
expand

(pp)
5: for 𝑗 in {1, . . . ,𝑇 }

6: Client 𝑖 obtains fresh (𝑥𝑖,𝑗 , 𝑡𝑖,𝑗𝑥 , 𝜎
𝑖,𝑗
𝑥 = Sig.Signsk𝑖 (𝑥𝑖,𝑗 | |𝑡

𝑖,𝑗
𝑥))

7: Client 𝑖 runs (𝑡 𝑗 , �̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗) = Randomizee. (pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥𝑖,𝑗 , 𝑡
𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥)

8: Server obtains �̃�𝑖,𝑗 = Verify
expand

(pp, vk, 𝑡 𝑗 , �̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗)
9: Server computes result from all �̃�𝑖,𝑗

KeyGen
expand

(pp)

1: (ek, vk) ← NIZK-PK.KeyGen(R
expand

)
2: (sk𝑠 , pk𝑠) ← Sig.KeyGen(pp

sig
)

3: pp = (pk𝑠 , ppnizk, ppsig, ppcomm
, ®𝑠)

4: 𝐿 ← ∅
5: return (ek, vk, pk𝑠 , sk𝑠 , 𝐿)

Setup
expand

(1𝜆)

1: pp
sig
← Sig.Setup(1𝜆)

2: pp
comm

← Comm.Setup(1𝜆)

3: ®𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑇) ←$ {0, 1}𝜆×𝑇

4: ®𝑡 = (𝑡0, . . . , 𝑡𝑇)

5: pp = (R
expand

, pp
sig

, pp
comm

, ®𝑠, ®𝑡)
6: return pp

R
expand

Given (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , rt𝑖 , 𝜌
𝑖,𝑗
𝑠 , �̃�𝑖,𝑗) ,

the prover knows (𝑡𝑖,𝑗𝑥 , 𝑥𝑖,𝑗 , 𝜎
𝑖,𝑗
𝑥 ,

𝜌
𝑖,𝑗
𝑐 , 𝑟

𝑖,𝑗
𝜌𝑐

, cm𝑖,𝑗
𝜌𝑐
) such that:

1: 𝑡
𝑖,𝑗
𝑥 ∈ (𝑡 𝑗−1, 𝑡 𝑗]

2: Sig.Verifypk𝑖 (𝜎
𝑖,𝑗
𝑥 , 𝑥𝑖,𝑗 | |𝑡𝑖,𝑗𝑥) = 1

3: cm𝑖,𝑗
𝜌𝑐

= Comm(𝜌𝑖,𝑗𝑐 ; 𝑟
𝑖,𝑗
𝜌𝑐
)

4: cm𝑖,𝑗
𝜌𝑐

is leaf 𝑗 inMerkleTree with root rt𝑖

5: 𝜌𝑖,𝑗 = 𝜌
𝑖,𝑗
𝑐 ⊕ 𝜌

𝑖,𝑗
𝑠

6: �̃�𝑖,𝑗 = LDP.Apply(𝑥𝑖,𝑗 ; 𝜌𝑖,𝑗)

GenRand
expand

(pp) — Client 𝑖

1: 𝑘𝑖𝑐 ←$ {0, 1}∗

2: ®𝜌𝑖𝑐 = (PRF(𝑘𝑖𝑐 , 1), . . . , PRF(𝑘𝑖𝑐 ,𝑇))

3: ®𝑟𝑖𝜌𝑐 ←$ {0, 1}𝑇 ×∗

4: ®cm𝑖
𝜌𝑐

= (Comm(𝜌1𝑐 ; 𝑟1𝜌𝑐), . . . ,Comm(𝜌𝑇𝑐 ; 𝑟𝑇𝜌𝑐))

5: rt𝑖 =MerkleTree(®cm𝑖
𝜌𝑐
)

6: Send (pk𝑖 , rt𝑖) to server

7: Receive (𝑘𝑖𝑠 , 𝜎𝑖𝑠) from server

8: If Sig.Verifypk𝑠 (𝜎
𝑖
𝑠 , pk𝑖 | |rt𝑖 | |𝑘𝑖𝑠) ≠ 1, abort

9: return out𝑖𝑐 = (®𝜌𝑖𝑐 , ®𝑟𝑖𝜌𝑐 , ®cm
𝑖
𝜌𝑐

, rt𝑖 , 𝑘
𝑖
𝑠 , 𝜎

𝑖
𝑠)

GenRand
expand

(pp) — Server

1: Receive (pk𝑖 , rt𝑖) from client 𝑖

2: If pk𝑖 does not belong to 𝑖 , abort

3: If 𝑖 ∈ 𝐿, abort
4: 𝐿 ← 𝐿 ∪ {𝑖 }

5: 𝑘𝑖𝑠 ←$ {0, 1}∗

6: 𝜎𝑖𝑠 = Sig.Signsk𝑠 (pk𝑖 | |rt𝑖 | |𝑘
𝑖
𝑠)

7: Send (𝑘𝑖𝑠 , 𝜎𝑖𝑠) to client 𝑖

Randomizee. (pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥𝑖,𝑗 , 𝑡
𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥)

1: 𝜌
𝑖,𝑗
𝑠 = PRF(𝑘𝑖𝑠 | |𝑠 𝑗)

2: 𝜌𝑖,𝑗 = 𝜌
𝑖,𝑗
𝑐 ⊕ 𝜌

𝑖,𝑗
𝑠

3: �̃�𝑖,𝑗 = LDP.Apply(𝑥𝑖,𝑗 , 𝜌𝑖,𝑗)

4:
®𝜙𝑖,𝑗 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , rt𝑖 , 𝜌

𝑖,𝑗
𝑠 , �̃�𝑖,𝑗)

5: ®𝑤𝑖,𝑗 = (𝑡𝑖,𝑗𝑥 , 𝑥𝑖,𝑗 , 𝜎
𝑖,𝑗
𝑥 , 𝜌

𝑖,𝑗
𝑐 , 𝑟

𝑖,𝑗
𝜌𝑐

, cm𝑖,𝑗
𝜌𝑐
)

6: 𝜋𝑖,𝑗 = NIZK-PK.Proveek (®𝜙𝑖,𝑗 ; ®𝑤𝑖,𝑗)

7: Send (�̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , (pk𝑖 , rt, 𝑘𝑖𝑠 , 𝜎𝑠)) to server

Verify
expand

(pp, vk, 𝑡 𝑗 , �̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖)

1: Parse 𝜏𝑖 = (pk𝑖 , rt𝑖 , 𝑘𝑖𝑠 , 𝜎𝑖𝑠)
2: If pk𝑖 does not belong to 𝑖 , abort

3: If Sig.Verifysk𝑠 (𝜎
𝑖
𝑠 , pk𝑖 | |rt𝑖 | |𝑘𝑖𝑠) ≠ 1,

abort

4: 𝜌
𝑖,𝑗
𝑠 = PRF(𝑘𝑖𝑠 | |𝑠 𝑗)

5:
®𝜙𝑖,𝑗 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , rt𝑖 , 𝜌

𝑖,𝑗
𝑠 , �̃�𝑖,𝑗)

6: If NIZK-PK.Vfyvk (𝜋𝑖,𝑗 , ®𝜙𝑖,𝑗) ≠ 1, abort

7: return �̃�𝑖,𝑗

Figure 5: Expand scheme: only one call to GenRand per client.

server. In practice, this may be implemented using, e.g., mixnets

(see Appendix B).

In other words, rather than receiving 𝑛 differentially private

values from 𝑛 identified parties, the server now only receives a dif-

ferentially private histogram representing the collective response

551

Proceedings on Privacy Enhancing Technologies 2025(2) Tariq Bontekoe, Hassan Jameel Asghar, and Fatih Turkmen

of a (known) group of 𝑛 clients. Clearly, in this situation, the client

could answer more server queries within the same privacy bud-

get, since the budget decreases less quickly (see Section 4). One

can determine the influence on the privacy budget decrease for a

particular randomizer in the shuffle model following, e.g., [8].

An interesting question to ask is whether either of the previous

schemes can be transformed to work in the shufflemodel. Whilst we

assume that the shuffler properly randomizes all messages and does

not provide the server with any other information, the messages

themselves might still be linkable to the client who sent them. In

fact, we observe that neither the Base nor the Expand scheme can

be applied directly in the shuffle model, since the public values

pk𝑖 , 𝜎
𝑖, 𝑗
𝑥 , cm𝑖, 𝑗

𝜌𝑐 /rt𝑖 , 𝑘
𝑖, 𝑗
𝑠 , and 𝜎

𝑖, 𝑗
𝑠 /𝜎𝑖𝑠 are the same for different runs

of Randomize. This would allow the server to easily link several

messages to the same client by simply comparing these public

values. Even worse, pk𝑖 is directly linkable to the 𝑖-th client.

Fortunately, we can solve this, by moving these values to the

witness part of the NIZK-PK statement and include the verification

statements on line 3 and 4 into Rshuffle.
3
This transformation clearly

guarantees unlinkability of different Randomize messages of the

same client. Also, verifiable correctness is still guaranteed, which

can be seen intuitively as follows. First, observe that, since pk𝑖 is
included in 𝜎𝑖𝑠 , and we verify 𝜎𝑖𝑠 inside the NIZK-PK for Rshuffle,

the client has to use a pair (𝑥𝑖, 𝑗 , 𝑡𝑖, 𝑗𝑥), signed by its own trusted

environment. Second, the inclusion of pk𝑖 inside 𝜎
𝑖
𝑠 also guarantees

that the randomness is bound to a specific client, and thus a set of

colluding clients could not interchange their random values.

In summary, this gives us the following high-level protocol ex-

ecution. At time step 𝑗 each client sends a message containing a

differentially private value 𝑥𝑖, 𝑗 and a proof 𝜋𝑖, 𝑗 to the shuffler. Next,

the shuffler collects all these messages and forwards them in ran-

dom order to the server. I.e., the server receives 𝑛 value-proof pairs.

Finally, the server verifies the proof of each value, and accepts the

values with a correct proof. We note that for proof verification, the

server only requires the corresponding 𝑥 , public parameters pp,
it’s own public key pk𝑠 and the verification key vk. Since 𝑥 is the

requested value and all other values are identical for all messages,

we are certain that we do not compromise the unlinkability that is

required in the shuffle model.

However, we do not only want a secure protocol. The above

construction still requires careful consideration to keep the client-

side performance practical. We note that by moving the verification

of 𝜌
𝑖, 𝑗
𝑠 = PRF(𝑘𝑖𝑠 | |𝑠 𝑗) to the NIZK-PK, we can remove the Merkle

tree. This is done by having both the server and client 𝑖 generate a

random value for the PRF seed, respectively 𝑘𝑖𝑠 and 𝑘
𝑖
𝑐 . The full PRF

seed is defined as 𝑘𝑖 = 𝑘𝑖𝑐 ⊕ 𝑘𝑖𝑠 . Next, we compute a random value

𝜌 = PRF(𝑘𝑖 , 𝑠 𝑗) and verify this inside the NIZK-PK. By doing this,

we only require one verification of a PRF, rather than requiring

both a PRF verification and verifying the presence of a commitment

in a Merkle tree. We observe that we could also have used this

construction in our Expand scheme, however the NIZK-PK for

practically sized Merkle trees is more efficient than that for a secure

PRF evaluation [34]. A precise specification of the Shuffle scheme

is given in Figure 6.

3
The statement on line 2 is implicitly guaranteed by the check in GenRand.

VLDPPipeline
shuffle

1: pp← Setup
shuffle

(1𝜆)
2: Server computes (ek, vk, pk𝑠 , sk𝑠 , 𝐿) ← KeyGen

shuffle
(pp)

3: for Each client 𝑖 (in parallel)

4: Client obtains out𝑖𝑐 = GenRand
shuffle

(pp)
5: for 𝑗 in {1, . . . ,𝑇 }

6: Client 𝑖 obtains fresh (𝑥𝑖,𝑗 , 𝑡𝑖,𝑗𝑥 , 𝜎
𝑖,𝑗
𝑥 = Sig.Signsk𝑖 (𝑥𝑖,𝑗 | |𝑡

𝑖,𝑗
𝑥))

7: Client 𝑖 runs (�̃�𝑖,𝑗 , 𝜋𝑖,𝑗) = Randomize
shuffle

(pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥𝑖,𝑗 , 𝑡
𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥)

8: Shuffler forwards messages in random order

9: Server obtains �̃�
?𝑖 ,𝑗

= Verify
shuffle

(pp, vk, 𝑡 𝑗 , �̃�?𝑖 ,𝑗 , 𝜋?𝑖 ,𝑗)
10: Server computes result from all �̃�

?𝑖 ,𝑗

KeyGen
shuffle

(pp)

1: (ek, vk) ← NIZK-PK.KeyGen(R
shuffle

)
2: (sk𝑠 , pk𝑠) ← Sig.KeyGen(pp

sig
)

3: 𝐿 ← ∅
4: return (ek, vk, pk𝑠 , sk𝑠 , 𝐿)

Setup
shuffle

(1𝜆)

1: pp
sig
← Sig.Setup(1𝜆)

2: pp
comm

← Comm.Setup(1𝜆)

3: ®𝑠 = (𝑠1, . . . , 𝑠𝑇) ←$ {0, 1}𝜆×𝑇

4: ®𝑡 = (𝑡0, . . . , 𝑡𝑇)

5: pp = (R
shuffle

, pp
sig

, pp
comm

, ®𝑠, ®𝑡)
6: return pp

R
shuffle

Given (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑠 , 𝑠 𝑗 , �̃�𝑖,𝑗) ,

the prover knows(𝑡𝑖,𝑗𝑥 , 𝑥𝑖,𝑗 , pk𝑖 , 𝜎
𝑖,𝑗
𝑥 , 𝑘𝑖𝑐 ,

𝑟𝑖
𝑘𝑐

, cm𝑖
𝑘𝑐

, 𝑘𝑖𝑠 , 𝜎
𝑖
𝑠) such that:

1: 𝑡
𝑖,𝑗
𝑥 ∈ (𝑡 𝑗−1, 𝑡 𝑗]

2: Sig.Verifypk𝑖 (𝜎
𝑖,𝑗
𝑥 , 𝑥𝑖,𝑗 | |𝑡𝑖,𝑗𝑥) = 1

3: cm𝑖
𝑘𝑐

= Comm(𝑘𝑖𝑐 ; 𝑟𝑖𝑘𝑐)

4: 𝑘𝑖 = 𝑘𝑖𝑐 ⊕ 𝑘𝑖𝑠
5: Sig.Verifypk𝑠 (𝜎

𝑖
𝑠 , pk𝑖 | |cm𝑖

𝑘𝑐
| |𝑘𝑖𝑠) = 1

6: 𝜌𝑖,𝑗 = PRF(𝑘𝑖 , 𝑠 𝑗)
7: �̃�𝑖,𝑗 = LDP.Apply(𝑥𝑖,𝑗 ; 𝜌𝑖,𝑗)

GenRand
shuffle

(pp) — Client 𝑖

1: 𝑘𝑖𝑐 ←$ {0, 1}∗

2: 𝑟𝑖
𝑘𝑐
←$ {0, 1}∗

3: cm𝑖
𝑘𝑐

= Comm(𝑘𝑖𝑐 ; 𝑟𝑖𝑘𝑐)

4: Send (pk𝑖 , cm𝑖
𝑘𝑐
) to server

5: Receive (𝑘𝑖𝑠 , 𝜎𝑖𝑠) from server

6: If Sig.Verifypk𝑠 (𝜎
𝑖
𝑠 , pk𝑖 | |cm𝑘𝑐

| |𝑘𝑖𝑠) ≠ 1, abort

7: return out𝑖𝑐 = (𝑘𝑖𝑐 , 𝑟𝑖𝑘𝑐 , cm
𝑖
𝑘𝑐

, 𝑘𝑖𝑠 , 𝜎
𝑖
𝑠)

GenRand
shuffle

(pp) — Server

1: Receive (pk𝑖 , cm𝑖
𝑘𝑐
) from client 𝑖

2: If pk𝑖 does not belong to 𝑖 , abort

3: If 𝑖 ∈ 𝐿, abort
4: 𝐿 ← 𝐿 ∪ {𝑖 }

5: 𝑘𝑖𝑠 ←$ {0, 1}∗

6: 𝜎𝑖𝑠 = Sig.Signsk𝑠 (pk𝑖 | |cm
𝑖
𝑘𝑐
| |𝑘𝑖𝑠)

7: Send (𝑘𝑖𝑠 , 𝜎𝑖𝑠) to client 𝑖

Randomize
shuffle

(pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥𝑖,𝑗 , 𝑡
𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥)

1: 𝑘𝑖 = 𝑘𝑖𝑐 ⊕ 𝑘𝑖𝑠
2: 𝜌𝑖,𝑗 = PRF(𝑘𝑖 , 𝑠 𝑗)
3: �̃�𝑖,𝑗 = LDP.Apply(𝑥 ; 𝜌)

4:
®𝜙𝑖,𝑗 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑠 , 𝑠 𝑗 , �̃�𝑖,𝑗)

5: ®𝑤𝑖,𝑗 = (𝑡𝑖,𝑗𝑥 , 𝑥𝑖,𝑗 , pk𝑖 , 𝜎
𝑖,𝑗
𝑥 , 𝑘𝑖𝑐 , 𝑟

𝑖
𝑘𝑐

, cm𝑖
𝑘𝑐

, 𝑘𝑖𝑠 , 𝜎
𝑖
𝑠)

6: 𝜋 = NIZK-PK
shuffle

.Prove(®𝜙𝑖,𝑗 ; ®𝑤𝑖,𝑗)
7: Send (𝜋𝑖,𝑗 , �̃�𝑖,𝑗) to shuffler

Verify
shuffle

(pp, vk, 𝑡 𝑗 , �̃�𝑖,𝑗 , 𝜋𝑖,𝑗)

1:
®𝜙 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑠 , 𝑠 𝑗 , �̃�𝑖,𝑗)

2: If NIZK-PK.Verify(

𝜋𝑖 , �̃�𝑖,𝑗 , pk𝑠 , 𝑠 𝑗) ≠ 1, abort

3: return �̃�𝑖,𝑗

Figure 6: Shuffle scheme: efficient VLDP in the shuffle model.

7 Experimental Evaluation
To assess the practical performance of our constructions and to

compare different versions, we conducted various experiments

on synthetic and real data, and report the communication costs

and computation times. We first describe our implementation of

the schemes, including how the different building blocks were

instantiated. This is followed by a description of our experiments

and their results to support our efficiency and practicality claims.

552

Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model Proceedings on Privacy Enhancing Technologies 2025(2)

7.1 Implementation
Each scheme was implemented in Rust using the Arkworks v0.4

library [6]. It provides efficient implementations for zk-SNARKs

and other cryptographic primitives with gadgets to evaluate these

primitives inside a zk-SNARK circuit. Our cryptographic building

blocks are instantiated as follows, targeting 128-bit security:

• NIZK-PK: The Groth16 zk-SNARK [33] is used to generate the

NIZK-PKs. This specific pairing-based, circuit zk-SNARK scheme

has gained widespread adoption in real-world applications due to

its efficiency and constant proof size. This scheme does rely on a

trusted setup, which, if broken, would allow anyone to create false

proofs. However, this is not an issue in our constructions, since

the server can execute this trusted setup by itself. Furthermore,

the server is assumed to behave semi-honestly and to be non-

colluding. The zk-SNARK elements are chosen to be on the BLS12-
381 elliptic curve (EC) [16], which is a known pairing-friendly

curve with good (estimated 128-bit) security. Moreover, there is a

known embedded curve for BLS12-381, called Jubjub [17], which
allows for efficient and secure evaluation of EC-primitives inside

zk-SNARK circuits.

• Sig: The signature schemes used by client and server are both im-

plemented using Schnorr signatures [49]. Specifically, we use EC-

Schnorr signatures over the Jubjub curve, due to its efficient veri-

fication inside a zk-SNARK circuit [52]. Moreover, this scheme is

often used in practice, and other popular schemes, such as EdDSA

(∼1,000 more constraints) and ECDSA (∼10,000 more) would only

have a small to negligible performance impact [52]. Additionally,

we use the Blake2s-256 collision resistant hash (CRH) [47] to

hash the input message to a fixed length digest. This CRH was

chosen for its good security (128 bits against collision attacks),

and efficiency inside a zk-SNARK.

• Comm: Our commitment scheme is instantiated using Pedersen

vector commitments [46] (with 4-bit windows) over the Jubjub

curve. This instantiation is very efficient inside a zk-SNARK cir-

cuit, is information-theoretically hiding, and targets the required

bit security for the binding property.

• PRF: We construct a PRF using keyed Blake2s-256 [47], which

gives a PRF output of 256 bits, or 32 bytes. Also here, Blake2s

was chosen to fit the targeted security level, whilst still being

practical inside a zk-SNARK circuit.

• MerkleTree: This primitive is only used inside the Expand scheme.

By using Pedersen commitments to instantiate Comm, we can

use these commitments directly as the leaves of the Merkle tree

due to their fixed size (which is no more than 256 bits in our

case). To compute the higher level nodes and root, we use the

Pedersen hash function [34] to hash the concatenation of both its

children. We use a Pedersen hash rather than Blake2s here, since

it is significantly more efficient inside a zk-SNARK circuit, and

has security guarantees similar to that of Groth16, thereby not

decreasing the security of our scheme. Finally, we note that the

tree depth 𝑑 has to be the smallest power of 2 such that 2
𝑑−1 ≥ 𝑇 ,

where 𝑇 is the total number of time steps we wish to run.

Our open-source code
4
was written in such a way that it is simple

to replace a specific building block by another. In Appendix D.2,

4
The source code of our implementation is available at https://github.com/xQiratNL/

VLDP.

we discuss alternative building block choices and their impact on

security, efficiency, and practicality.

7.2 Experimental Setup
We perform two sets of experiments to evaluate and compare the

practical performance of our constructions. The first set uses two

real datasets to evaluate and validate the performance of each

scheme in a real-world setting. The second set of experiments uses

synthetic data to evaluate the scalability of our schemes.

We use two datasets in our experiments, and consider𝑇 = 5 days

of readings from each. The first dataset (Geolife GPS Trajectory) is a
location dataset of 182 users, which after pre-processing, gave us

8 potential postcode locations per day for the subject group. With

respect to the algorithm for histograms (see Figure 1), we thus have

𝑘 = 8, where {1, . . . , 𝑘} represent the respective postcodes.
The second dataset (Smart meter) contains smart meter energy

readings (floating points) of 5,567 households. We use a precision

level of 𝑘 = 10 (see the algorithm for reals in Figure 1) for our exper-

iments. Both datasets are described in more detail in Appendix D.1.

Experiments. For our experiments, we determine the median run-

time of 100 runs (after discarding three warm-up runs), of each of

the algorithms at the client and server side. Specifically, we look at

the computation time for individual clients and the server in the

different phases. Next to this, we also measure the byte size of all

(compressed) messages. The experiments were run on a desktop

computer with Windows 10 desktop PC with a Ryzen 3600 CPU

with 6 cores and 12 threads @4.0GHz and 16GB dual-channel DDR4

RAM at 3600MHz. The experiments were run using Rust 1.77.2.

7.3 Concrete Applications
For both datasets, the timestamp is encoded using one byte. Next

to this, we use 8 bytes (64 bits) for each random value we sample.

This guarantees statistical closeness to the true distributions, since

𝑘 ≪ 2
64
. Thus, for the Geolife GPS dataset, i.e., histogram, we

require 16 bytes of randomness (|𝜌 | = 16). For the smart meter

dataset, i.e., real valued data, we require 24 bytes of randomness

(|𝜌 | = 24), 2 · 8 bytes for both Bernoulli samples and another 8

bytes for one uniformly random sample. Both are below the 32

bytes that we get as output from one PRF evaluation. In Section 7.4,

we evaluate the computation times and message sizes for larger

values of |𝜌 |. The performance of our schemes is not impacted by

any particular value of 𝜖 and 𝛿 used in the DP mechanism. For

completeness, we shall use 5 runs of the LDP mechanism, with the

privacy budget per run, i.e., 𝜖0, determined as in Section 4. Finally,

for the Expand scheme we set the Merkle tree depth to 𝑑MT = 4, i.e.,

it has 2
4−1 = 8 leaves, since we run both datasets for 𝑇 = 5 steps.

Results. The median computation times and message sizes for a

single run of each algorithm are shown in Table 1. This table also

includes the size of the NIZK-PK evaluation/verification key, and

the number of constraints. The evaluation key is relatively large,

and needs to be communicated with each client. Fortunately, its

generation is part of the setup and can be communicated as part

of the public parameters beforehand. The number of constraints

gives an implementation-independent view on the proof generation

and verification costs and is the most fair way to compare different

553

https://github.com/xQiratNL/VLDP
https://github.com/xQiratNL/VLDP

Proceedings on Privacy Enhancing Technologies 2025(2) Tariq Bontekoe, Hassan Jameel Asghar, and Fatih Turkmen

Dataset Scheme

Client Server Communication NIZK-PK

GenRand-1 GenRand-2 Randomize GenRand Verify GenRand-1 GenRand-2 Randomize |ek | |vk | # constraints

Geolife

GPS

Base 0.218 ms 0.302 ms 0.610 s 2.494 ms 3.454 ms 65 B 96 B 360 B 16.1 MB 776 B 55 884

Expand 3.033 ms 0.267 ms 1.213 s 2.005 ms 4.425 ms 64 B 96 B 360 B 23.4 MB 824 B 74 322

Shuffle 0.230 ms 0.305 ms 1.798 s 2.413 ms 2.680 ms 64 B 96 B 200 B 53.2 MB 728 B 173 460

Smart

meter

Base 0.223 ms 0.213 ms 0.619 s 2.146 ms 3.484 ms 65 B 96 B 360 B 16.3 MB 776 B 56 903

Expand 2.475 ms 0.211 ms 1.106 s 1.271 ms 3.540 ms 64 B 96 B 360 B 23.7 MB 824 B 75 341

Shuffle 0.225 ms 0.293 ms 1.821 s 2.119 ms 2.659 ms 64 B 96 B 200 B 53.3 MB 728 B 174 095

Table 1: Performance of all schemes for two real-world applications: client and server computation and communication costs
of a single evaluation of an algorithm/protocol, byte size of ek and vk, and number of constraints in the NIZK-PK.

Dataset Scheme

Client Server

GenRand-1 GenRand-2 Rand. GenRand Verify

Geolife

GPS

Base 1.092 ms 1.508 ms 3.032 s 2.392 s 3.316 s

Expand 3.033 ms 0.267 ms 6.045 s 0.385 s 4.425 s

Shuffle 0.230 ms 0.305 ms 8.973 s 0.463 s 2.572 s

Smart

meter

Base 1.113 ms 1.064 ms 3.078 s 59.734 s 96.977 s

Expand 2.475 ms 0.211 ms 5.510 s 7.076 s 98.536 s

Shuffle 0.225 ms 0.293 ms 9.090 s 11.796 s 74.999 s

Table 2: Total computation time for both use cases, over all
time steps (𝑇 = 5) (for the server also over all clients).

schemes. Especially, since proof generation and verification are the

dominating factors in Randomize and Verify. To better understand

the cost in both use cases, we report the overall computation time

for the server and of a single client in Table 2.

Regarding the communication costs of Base, we see that each
client sends (65+360)𝑇 = 2,125 bytes (B) to the server, and receives

96𝑇 = 480B. In the Expand scheme, this reduces to 64+360𝑇 = 1,864

sent and 96 received bytes. For the Shuffle scheme, the amount of

bytes sent by each client reduces further to only 64+200𝑇 = 1,064B.

Moreover, we observe that the Base scheme puts a much higher

load on the server, in both computation and communication
5
costs,

in the GenRand phase. This is due to the fact that this phase needs

to be run again for each time step. Expand requires slightly more

computational effort from each client, however, this is negligible

when compared to the reduction in server computation time, and

overall communication costs. The Shuffle scheme requires the least

effort in this phase, but puts clearly higher cost on the client in

Verify. It should be noted, however, that the computational cost for

the client is very practical and lies in the 0.5–2 seconds range for

all schemes. Moreover, the computation and communication costs

of Verify are significantly lower for Shuffle, which makes it more

attractive even in the ‘regular’ local model. We remark that we

did not implement server-side parallelization. Hence, the server’s

runtime (Table 2) could be further reduced by, e.g., distributing the

client messages over different processes.

Additionally, we note that the shuffle model does introduce some

additional latency, when compared to the ‘regular’ local model. The

amount of latency depends on how the shuffler is implemented (see

Appendix B). But, given that the message size is small, we expect

this to be of little influence in most applications. The introduced

5
Since GenRand has to be run once per time step, instead of once overall, Base has
𝑇× more communication than other schemes for GenRand.

latency will be in the same order as in the shuffle model without

verifiability, i.e., our introduction of verifiability does not in itself

restrict the usage of a shuffler.

7.4 General Performance & Comparison
Above, we evaluated our schemes on common LDP algorithms and

datasets, thereby reflecting the expected application settings for

our protocols. As discussed, the amount of randomness required

(|𝜌 |) for LDP.Apply() determines the majority of the computation

cost, due to the cost of evaluating PRF. Here, |𝜌 | depends on two

factors:

• The randomizer: The amount of random variables used, and the

number of bits to (accurately) sample them, predominantly de-

termines the size of |𝜌 |. In other words, more random values or

sampling with higher accuracy leads to an increase in |𝜌 |.
• Entropy of released data: The data that is released by the client

also has an effect on |𝜌 |, albeit indirectly. Namely, when releas-

ing data with higher entropy (more records, larger domain size)

more randomness is needed to ensure differential privacy. For

example, privately releasing a bit requires less randomness than

releasing an 8-bit integer. Similarly, releasing 10 values requires

more randomness than only 1. Thus, when considering higher-

dimensional datasets one often also releases data with higher

entropy and thus indirectly requires more randomness. Finally,

we note that using higher-dimensional input data could lead to

reduced performance due to increasing the signature input size.

Fortunately, this can be counteracted by using SNARK-friendly

signatures (see Appendix D.2).

To better investigate the performance impact of the amount of

randomness used, we vary |𝜌 | in steps of 32, which is the output

size of our choice of PRF, i.e., smaller step sizes will show negligible

differences in performance. This gives insight into the performance

of other LDP mechanisms as discussed in Section 4.1. Next to this,

we investigate the performance of the Expand scheme for different

Merkle tree depths. We vary 𝑑MT between 2 and 11, i.e., from 2

to 1,024 leaves, which should be more than sufficient in realistic

settings. In all experiments, we use randomly generated data, and

encode the timestamps and input values as 64-bit values.

Results. First, we observe that the communication size is indepen-

dent of both |𝜌 | and 𝑑MT, and thus only look at their influence on

the runtime (see Figure 7). An increase of |𝜌 | leads to a significant

increase in the constraint count and duration of Randomize for

the Shuffle scheme. However, even for as much as 1,024 bytes of

554

Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model Proceedings on Privacy Enhancing Technologies 2025(2)

0 200 400 600 800 1000

|ρ| (bytes)

100000

200000

300000

400000

500000

600000

700000

800000

900000

#
co
ns
tr
ai
nt
s

Number of constraints

base-histogram

expand-histogram

shuffle-histogram

base-real

expand-real

shuffle-real

0 200 400 600 800 1000

|ρ| (bytes)

0

2

4

6

8

10

R
un

ti
m
e
(m

s)

GenRand-1 (client)

base-histogram

expand-histogram

shuffle-histogram

base-real

expand-real

shuffle-real

2 4 6 8 10

dMT

0

50

100

150

200

250

300

R
un

ti
m
e
(m

s)

GenRand-1 (client)

expand-histogram

expand-real

0 200 400 600 800 1000

|ρ| (bytes)

1000

2000

3000

4000

5000

6000

7000

8000

R
un

ti
m
e
(m

s)

Randomize (client)

base-histogram

expand-histogram

shuffle-histogram

base-real

expand-real

shuffle-real

0 200 400 600 800 1000

|ρ| (bytes)

3

4

5

6

7

8

9

10
R
un

ti
m
e
(m

s)

Verify (server)

base-histogram

expand-histogram

shuffle-histogram

base-real

expand-real

shuffle-real

2 4 6 8 10

dMT

800

1000

1200

1400

1600

1800

2000

R
un

ti
m
e
(m

s)

Randomize (client)

expand-histogram

expand-real

Figure 7: Impact of |𝜌 | on # constraints (topleft), client runtime in GenerateRandomness (topcenter) & Randomize (bottomcenter),
and server runtime in Verify (bottomleft); Impact of 𝑑MT on client runtime in GenRand (topright) and Randomize (bottomright).

randomness, the computation time remains below 8 seconds, which

is still very practical. As shown in Section 4.1, 1,024 is more than

sufficient for 64-bit precision in many representative and state-of-

the-art LDP algorithms. Additionally, we observe a significant, but

approximately linear, increase in computation time for the client

in GenRand. Since the duration is in the millisecond range, this

will not cause any practical issues. Finally, we see a linear increase

in the verification time for the server. However, this verification

time is so small that we do not consider it to be an issue. For the

Expand scheme, we observe a linear increase of the number of con-

straints (from ∼60, 000 to ∼120, 000) and an exponential increase

of the duration of GenRand in 𝑑MT (Figure 7). This agrees with

the fact that the amount of random values grows exponentially in

𝑑MT. The increase in runtime for Randomize is also approximately

linear, and only takes around 2 seconds for a Merkle tree with 1,024

random values.

Comparison. In conclusion, we see that the total runtime of each

scheme scales approximately linearly in the amount of randomness

required, for both client and server, and that the runtime of each

schemes is very practical for realistically sized parameters. Clearly,

the Shuffle scheme has the lowest communication cost and server

load, in addition to being secure in the shuffle model. Conversely,

Expand puts a smaller load on the client, and slightly higher on

the server, but is not secure in the shuffle model. Finally, the Base
scheme puts a comparatively high communication and computation

load on the server, making it less practical than the other schemes.

For comparison with related work, we consider [43] which is

the work closest to our construction. As mentioned, the number of

constraints provides a fair comparison for different schemes. Their

scheme requires twoNIZK-PK proofs for one transfer of LDP values.

For one input their proofs have 9,769 and 12,882 constraints, i.e., the

combined number of constraints is around 2.5—7.5 times smaller

than our scheme, which means the computational effort for both

client and server will also be smaller by a similar factor. However,

the underlying blockchain structure used in [43] will also come

with its own latency and scalability issues, which our scheme does

not suffer from. On top of that, it is only evaluated for binary RR,

which is much simpler than our construction. Finally, [43] does not

discuss the performance of their approach to GenRand. However,
as it is similar in nature toGenRandbase, it will suffer from the same

drawbacks when compared to Expand and Shuffle.

8 Conclusion
We showed how to construct verifiable LDP schemes for both the

local and, most interestingly, the shuffle model, which guarantee

security against datamanipulation attacks. Experimental evaluation

of our schemes on realistic use cases underscores their practicality.

Especially the Expand and Shuffle schemes put a very low load

(5–7 ms) on the server, whilst keeping client computation times

down to < 2 seconds. Moreover, we showed the scalability of our

schemes using generic benchmarks. Finally, we discuss how our

schemes can be efficiently adopt a wide variety of LDP algorithms,

due to their generic design.

Acknowledgments
We thank the anonymous reviewers for their insightful feedback,

which helped improve our work. This research received no specific

555

Proceedings on Privacy Enhancing Technologies 2025(2) Tariq Bontekoe, Hassan Jameel Asghar, and Fatih Turkmen

grant from any funding agency in the public, commercial, or not-

for-profit sectors.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). Association for Computing Machinery, New York, NY, USA,

308–318. https://doi.org/10.1145/2976749.2978318

[2] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with

Minimal Multiplicative Complexity. In Advances in Cryptology – ASIACRYPT
2016, Jung Hee Cheon and Tsuyoshi Takagi (Eds.). Springer, Berlin, Heidelberg,

191–219. https://doi.org/10.1007/978-3-662-53887-6_7

[3] Andris Ambainis, Markus Jakobsson, and Helger Lipmaa. 2004. Cryptographic

Randomized Response Techniques. In Public Key Cryptography – PKC 2004 (Lec-
ture Notes in Computer Science), Feng Bao, Robert Deng, and Jianying Zhou (Eds.).

Springer, Berlin, Heidelberg, 425–438. https://doi.org/10.1007/978-3-540-24632-

9_31

[4] Apple. 2013. Kernel Architecture Overview. https://developer.apple.com/

library/archive/documentation/Darwin/Conceptual/KernelProgramming/

Architecture/Architecture.html

[5] Apple. 2024. Secure Enclave. https://support.apple.com/en-au/guide/security/

sec59b0b31ff/web

[6] arkworks contributors. 2022. arkworks zkSNARK ecosystem. arkworks. https:

//arkworks.rs

[7] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. 2014.

ADSNARK: Nearly Practical and Privacy-Preserving Proofs on Authenticated

Data. https://eprint.iacr.org/2014/617

[8] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. 2019. The Privacy

Blanket of the Shuffle Model. In Advances in Cryptology – CRYPTO 2019, Alexan-
dra Boldyreva and Daniele Micciancio (Eds.). Springer International Publishing,

Cham, 638–667. https://doi.org/10.1007/978-3-030-26951-7_22

[9] Zoë Ruha Bell, Shafi Goldwasser, Michael P. Kim, and Jean-Luc Watson. 2024.

Certifying Private Probabilistic Mechanisms. InAdvances in Cryptology – CRYPTO
2024, Leonid Reyzin and Douglas Stebila (Eds.). Springer Nature Switzerland,

Cham, 348–386. https://doi.org/10.1007/978-3-031-68391-6_11

[10] Ari Biswas and Graham Cormode. 2023. Verifiable Differential Privacy. https:

//doi.org/10.48550/arXiv.2208.09011 arXiv:2208.09011 [cs]

[11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From

Extractable Collision Resistance to Succinct Non-Interactive Arguments of Knowl-

edge, and Back Again. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference (ITCS ’12). Association for Computing Machinery, New York,

NY, USA, 326–349. https://doi.org/10.1145/2090236.2090263

[12] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard

Seefeld. 2017. Prochlo: Strong Privacy for Analytics in the Crowd. In Proceedings
of the 26th Symposium on Operating Systems Principles. Association for Comput-

ing Machinery, New York, NY, USA, 441–459. https://doi.org/10.1145/3132747.

3132769

[13] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive Zero-

Knowledge and Its Applications. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing (STOC ’88). Association for Computing

Machinery, New York, NY, USA, 103–112. https://doi.org/10.1145/62212.62222

[14] Dan Boneh and Victor Shoup. 2023. A Graduate Course in Applied Cryptography

v0.6. (Jan. 2023). http://toc.cryptobook.us/ Book.

[15] Tariq Bontekoe, Dimka Karastoyanova, and Fatih Turkmen. 2024. Verifiable

Privacy-Preserving Computing. https://doi.org/10.48550/arXiv.2309.08248

arXiv:2309.08248 [cs]

[16] Sean Bowe. 2017. BLS12-381: New Zk-SNARK Elliptic Curve Construction.

https://electriccoin.co/blog/new-snark-curve/

[17] Sean Bowe. 2024. Zkcrypto/Jubjub. Zero-knowledge Cryptography in Rust.

https://github.com/zkcrypto/jubjub

[18] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2020. Transparent SNARKs from

DARK Compilers. In Advances in Cryptology – EUROCRYPT 2020 (Lecture Notes in
Computer Science), Anne Canteaut and Yuval Ishai (Eds.). Springer International

Publishing, Cham, 677–706. https://doi.org/10.1007/978-3-030-45721-1_24

[19] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. Data Poisoning Attacks

to Local Differential Privacy Protocols. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Virtual, 947–964. https://www.

usenix.org/conference/usenixsecurity21/presentation/cao-xiaoyu

[20] David L. Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Commun. ACM 24, 2 (Feb. 1981), 84–90. https://doi.org/10.1145/

358549.358563

[21] Albert Cheu, Adam Smith, and Jonathan Ullman. 2021. Manipulation Attacks in

Local Differential Privacy. In 2021 IEEE Symposium on Security and Privacy (SP).

IEEE, San Francisco, CA, USA, 883–900. https://doi.org/10.1109/SP40001.2021.

00001

[22] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev.

2019. Distributed Differential Privacy via Shuffling. In Advances in Cryptology –
EUROCRYPT 2019, Yuval Ishai and Vincent Rijmen (Eds.). Springer International

Publishing, Cham, 375–403. https://doi.org/10.1007/978-3-030-17653-2_13

[23] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,

and Nicholas Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and

Updatable SRS. In Advances in Cryptology – EUROCRYPT 2020 (Lecture Notes in
Computer Science), Anne Canteaut and Yuval Ishai (Eds.). Springer International

Publishing, Cham, 738–768. https://doi.org/10.1007/978-3-030-45721-1_26

[24] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2020. Fractal: Post-quantum

and Transparent Recursive Proofs from Holography. In Advances in Cryptology
– EUROCRYPT 2020 (Lecture Notes in Computer Science), Anne Canteaut and

Yuval Ishai (Eds.). Springer International Publishing, Cham, 769–793. https:

//doi.org/10.1007/978-3-030-45721-1_27

[25] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,

and Amit Sahai. 2001. Robust Non-interactive Zero Knowledge. In Advances in
Cryptology — CRYPTO 2001, Joe Kilian (Ed.). Springer, Berlin, Heidelberg, 566–598.
https://doi.org/10.1007/3-540-44647-8_33

[26] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our Data, Ourselves: Privacy via Distributed Noise Generation.

In Proceedings of the 24th Annual International Conference on The Theory and Ap-
plications of Cryptographic Techniques (EUROCRYPT’06). Springer-Verlag, Berlin,
Heidelberg, 486–503. https://doi.org/10.1007/11761679_29

[27] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptogra-
phy, Shai Halevi and Tal Rabin (Eds.). Springer, Berlin, Heidelberg, 265–284.

https://doi.org/10.1007/11681878_14

[28] Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. 2010. Boosting and Differ-

ential Privacy. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science. IEEE, Las Vegas, NV, USA, 51–60. https://doi.org/10.1109/FOCS.2010.12

[29] Maria Eichlseder, Lorenzo Grassi, Reinhard Lüftenegger, Morten Øygarden,

Christian Rechberger, Markus Schofnegger, and Qingju Wang. 2020. An Al-

gebraic Attack on Ciphers with Low-Degree Round Functions: Application

to Full MiMC. In Advances in Cryptology – ASIACRYPT 2020, Shiho Moriai

and Huaxiong Wang (Eds.). Springer International Publishing, Cham, 477–506.

https://doi.org/10.1007/978-3-030-64837-4_16

[30] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and Abhradeep Thakurta. 2019. Amplification by Shuffling: From Local

to Central Differential Privacy via Anonymity. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’19). Society for

Industrial and Applied Mathematics, USA, 2468–2479.

[31] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized Aggregatable Privacy-Preserving Ordinal Response. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’14). Association for Computing Machinery, New York, NY, USA, 1054–1067.

https://doi.org/10.1145/2660267.2660348

[32] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge

Proof Systems. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Virtual, 519–535.

[33] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

Advances in Cryptology – EUROCRYPT 2016 (Lecture Notes in Computer Science),
Marc Fischlin and Jean-Sébastien Coron (Eds.). Springer, Berlin, Heidelberg,

305–326. https://doi.org/10.1007/978-3-662-49896-5_11

[34] Daira Emma Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2023.

Zcash Protocol Specification, Version 2023.4.0 [NU5]. (2023). https://zips.z.cash/

protocol/protocol.pdf Protocol specification.

[35] Peter Kairouz, Keith Bonawitz, and Daniel Ramage. 2016. Discrete Distribution

Estimation under Local Privacy. In Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume 48 (ICML’16). JMLR.org,

New York, NY, USA, 2436–2444.

[36] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova,

and Adam Smith. 2011. What can we learn privately? SIAM J. Comput. 40, 3
(2011), 793–826.

[37] Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. 2021. Preventing Ma-

nipulation Attack in Local Differential Privacy Using Verifiable Randomization

Mechanism. In Data and Applications Security and Privacy XXXV (Lecture Notes
in Computer Science), Ken Barker and Kambiz Ghazinour (Eds.). Springer Interna-

tional Publishing, Cham, 43–60. https://doi.org/10.1007/978-3-030-81242-3_3

[38] Hiroaki Kikuchi, Jin Akiyama, Gisaku Nakamura, and Howard Gobioff. 1999.

Stochastic Voting Protocol To Protect Voters Privacy. In Proceedings of the 1999
IEEEWorkshop on Internet Applications (WIAPP ’99). IEEE Computer Society, USA,

103.

[39] Xiaoguang Li, Ninghui Li, Wenhai Sun, Neil Zhenqiang Gong, and Hui Li. 2023.

Fine-Grained Poisoning Attack to Local Differential Privacy Protocols for Mean

556

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-540-24632-9_31
https://doi.org/10.1007/978-3-540-24632-9_31
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/Architecture/Architecture.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/Architecture/Architecture.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/Architecture/Architecture.html
https://support.apple.com/en-au/guide/security/sec59b0b31ff/web
https://support.apple.com/en-au/guide/security/sec59b0b31ff/web
https://arkworks.rs
https://arkworks.rs
https://eprint.iacr.org/2014/617
https://doi.org/10.1007/978-3-030-26951-7_22
https://doi.org/10.1007/978-3-031-68391-6_11
https://doi.org/10.48550/arXiv.2208.09011
https://doi.org/10.48550/arXiv.2208.09011
https://arxiv.org/abs/2208.09011
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/62212.62222
http://toc.cryptobook.us/
https://doi.org/10.48550/arXiv.2309.08248
https://arxiv.org/abs/2309.08248
https://electriccoin.co/blog/new-snark-curve/
https://github.com/zkcrypto/jubjub
https://doi.org/10.1007/978-3-030-45721-1_24
https://www.usenix.org/conference/usenixsecurity21/presentation/cao-xiaoyu
https://www.usenix.org/conference/usenixsecurity21/presentation/cao-xiaoyu
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1109/SP40001.2021.00001
https://doi.org/10.1109/SP40001.2021.00001
https://doi.org/10.1007/978-3-030-17653-2_13
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1007/978-3-030-64837-4_16
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1007/978-3-662-49896-5_11
https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://doi.org/10.1007/978-3-030-81242-3_3

Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model Proceedings on Privacy Enhancing Technologies 2025(2)

and Variance Estimation. In Proceedings of the 32nd USENIX Conference on Security
Symposium. USENIX Association, Anaheim, CA, USA, 1739–1756.

[40] Mbed. 2018. NAMote72 | Mbed. https://os.mbed.com/platforms/NAMote-72/

[41] Frank McSherry and Kunal Talwar. 2007. Mechanism Design via Differential

Privacy. In 48th Annual IEEE Symposium on Foundations of Computer Science.
IEEE Computer Society, Providence, RI, USA, 94–103. https://doi.org/10.1109/

FOCS.2007.41

[42] Andrés Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel Cecchet, and

David Irwin. 2010. Private Memoirs of a Smart Meter. In Proceedings of the 2nd
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building
(BuildSys ’10). Association for Computing Machinery, New York, NY, USA, 61–66.

https://doi.org/10.1145/1878431.1878446

[43] Danielle Movsowitz Davidow, Yacov Manevich, and Eran Toch. 2023. Privacy-

Preserving Transactions with Verifiable Local Differential Privacy. In 5th Con-
ference on Advances in Financial Technologies (AFT 2023), Vol. 282. Schloss-
Dagstuhl - Leibniz Zentrum für Informatik, Dagstuhl, Germany, 1–23. https:

//doi.org/10.4230/LIPIcs.AFT.2023.1

[44] Gonzalo Munilla Garrido, Johannes Sedlmeir, and Matthias Babel. 2022. Towards

Verifiable Differentially-Private Polling. In Proceedings of the 17th International
Conference on Availability, Reliability and Security (ARES ’22). Association for

Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/

3538969.3538992

[45] Arjun Narayan, Ariel Feldman, Antonis Papadimitriou, and Andreas Haeberlen.

2015. Verifiable Differential Privacy. In Proceedings of the Tenth European Confer-
ence on Computer Systems (EuroSys ’15). Association for Computing Machinery,

New York, NY, USA, 1–14. https://doi.org/10.1145/2741948.2741978

[46] Torben Pryds Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In Advances in Cryptology — CRYPTO ’91, Joan Feigen-

baum (Ed.). Springer, Berlin, Heidelberg, 129–140. https://doi.org/10.1007/3-540-

46766-1_9

[47] Markku-Juhani O. Saarinen and Jean-Philippe Aumasson. 2015. The BLAKE2 Cryp-
tographic Hash and Message Authentication Code (MAC). Request for Comments

RFC 7693. Internet Engineering Task Force. https://doi.org/10.17487/RFC7693

[48] Krishna Sampigethaya and Radha Poovendran. 2006. A Survey on Mix Networks

and Their Secure Applications. Proc. IEEE 94, 12 (Dec. 2006), 2142–2181. https:

//doi.org/10.1109/JPROC.2006.889687

[49] C. P. Schnorr. 1990. Efficient Identification and Signatures for Smart Cards. In

Advances in Cryptology — CRYPTO’ 89 Proceedings, Gilles Brassard (Ed.). Springer,
New York, NY, 239–252. https://doi.org/10.1007/0-387-34805-0_22

[50] Ali Shahin Shamsabadi, Gefei Tan, Tudor Ioan Cebere, Aurélien Bellet, Hamed

Haddadi, Nicolas Papernot, Xiao Wang, and Adrian Weller. 2024. Confidential-

DPproof: Confidential Proof of Differentially Private Training. In ICLR 2024 -
12th International Conference on Learning Representations. HAL, Vienna, Austria,
1–16. https://hal.science/hal-04610635

[51] Shaorui Song, Lei Xu, and Liehuang Zhu. 2023. Efficient Defenses Against Output

Poisoning Attacks on Local Differential Privacy. IEEE Transactions on Information
Forensics and Security 18 (2023), 5506–5521. https://doi.org/10.1109/TIFS.2023.

3305873

[52] Colin Steidtmann and Sanjay Gollapudi. 2023. Benchmarking ZK-Circuits in

Circom. https://eprint.iacr.org/2023/681

[53] Georgia Tsaloli and Aikaterini Mitrokotsa. 2023. Differential Privacy Meets

Verifiable Computation: Achieving Strong Privacy and Integrity Guarantees. In

16th International Conference on Security and Cryptography. SciTePress, Prague,
Czech Republic, 425–430.

[54] Han Wang, Hanbin Hong, Li Xiong, Zhan Qin, and Yuan Hong. 2022. L-SRR:

Local Differential Privacy for Location-Based Services with Staircase Randomized

Response. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’22). Association for Computing Machinery, New

York, NY, USA, 2809–2823. https://doi.org/10.1145/3548606.3560636

[55] Shaowei Wang, Liusheng Huang, Pengzhan Wang, Yiwen Nie, Hongli Xu, Wei

Yang, Xiang-Yang Li, and Chunming Qiao. 2016. Mutual Information Optimally

Local Private Discrete Distribution Estimation. https://doi.org/10.48550/arXiv.

1607.08025 arXiv:1607.08025 [cs, math]

[56] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally

Differentially Private Protocols for Frequency Estimation. In Proceedings of the
26th USENIX Conference on Security Symposium (SEC’17). USENIX Association,

USA, 729–745.

[57] Stanley L. Warner. 1965. Randomized Response: A Survey Technique for Elim-

inating Evasive Answer Bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–69.

https://doi.org/10.2307/2283137 jstor:2283137

[58] Yongji Wu, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2022. Poisoning

Attacks to Local Differential Privacy Protocols for Key-Value Data. In 31st USENIX
Security Symposium (USENIX Security 22). USENIX Association, Boston, MA, 519–

536.

[59] Min Ye and Alexander Barg. 2018. Optimal Schemes for Discrete Distribution

Estimation Under Locally Differential Privacy. IEEE Trans. Inf. Theor. 64, 8 (Aug.
2018), 5662–5676. https://doi.org/10.1109/TIT.2018.2809790

A Appendix to Section 4
A.1 De-Biased Output
Let 𝑋𝑖 denote the random variable representing user 𝑖’s output

after running the LDP algorithm for reals. Let 𝑋 =
∑𝑛

𝑖 𝑋𝑖 . We are

interested in finding:

E(𝑋) =
𝑛∑︁
𝑖=1

E(𝑋𝑖)

Let 𝑝 𝑗 be the probability that user 𝑖 outputs 𝑗 ∈ {0, 1, . . . , 𝑘}. Let 𝑞 𝑗

be the true probability of any user having input 𝑗 . Then,

𝑝 𝑗 =

(
1 − 𝛾 + 𝛾

𝑘 + 1

)
𝑞 𝑗 +

𝛾

𝑘 + 1 (1 − 𝑞 𝑗)

= (1 − 𝛾)𝑞 𝑗 +
𝛾

𝑘 + 1
Then

E(𝑋𝑖) =
𝑘∑︁
𝑗=0

𝑗𝑝 𝑗

=

𝑘∑︁
𝑗=0

𝑗

(
(1 − 𝛾)𝑞 𝑗 +

𝛾

𝑘 + 1

)
= (1 − 𝛾)

(
𝑘∑︁
𝑗=0

𝑗𝑞 𝑗

)
+ 𝛾𝑘

2

= (1 − 𝛾)𝜇 + 𝛾𝑘

2

where 𝜇 =
∑𝑘

𝑗=0 𝑗𝑞 𝑗 is the true expected input of any user. Thus,

E(𝑋) = 𝑛

(
(1 − 𝛾)𝜇 + 𝛾𝑘

2

)
⇒ 𝑛𝜇

𝑘
=

1

1 − 𝛾

(
E(𝑋)
𝑘
− 𝛾𝑛

2

)
.

Therefore, the expected value of the sum to precision 𝑘 output by

the LDP algorithm, i.e., E(𝑋)/𝑘 , gives us the expectation of the sum

of true inputs to precision 𝑘 , i.e., 𝑛𝜇/𝑘 . Thus, given the sum of these

values for a sample, we can estimate the true sum as above.

A.2 Additional, Simple Example
To better explain the requirements above, consider the example

where we sample a random element from {0, 1, 2} using uniform

random bits. In practice, an often used method to achieve this is

to sample two random bits, and map this as follows 00→ 0; 01→
1; 10→ 2. If the random bits are 11we sample two new random bits

and repeat the process, until we terminate.
6
This process terminates

(with probability 1), after a finite number steps. However, due the

variable requirement of random bits, we cannot use this sampling

method inside aNIZK proof. When considering this more closely, it

becomes evident that there is no way to sample a random element

from {0, 1, 2} using a fixed number of random bits. This problem

occurs in many random sampling problems, but can fortunately

easily be solved, by sampling from an approximate distribution that

is statistically close to the true distribution.

6
While the actual method might vary in practice, this simple version that we present

here, is sufficient to describe the problem in the context of NIZK proofs.

557

https://os.mbed.com/platforms/NAMote-72/
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1145/1878431.1878446
https://doi.org/10.4230/LIPIcs.AFT.2023.1
https://doi.org/10.4230/LIPIcs.AFT.2023.1
https://doi.org/10.1145/3538969.3538992
https://doi.org/10.1145/3538969.3538992
https://doi.org/10.1145/2741948.2741978
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.17487/RFC7693
https://doi.org/10.1109/JPROC.2006.889687
https://doi.org/10.1109/JPROC.2006.889687
https://doi.org/10.1007/0-387-34805-0_22
https://hal.science/hal-04610635
https://doi.org/10.1109/TIFS.2023.3305873
https://doi.org/10.1109/TIFS.2023.3305873
https://eprint.iacr.org/2023/681
https://doi.org/10.1145/3548606.3560636
https://doi.org/10.48550/arXiv.1607.08025
https://doi.org/10.48550/arXiv.1607.08025
https://arxiv.org/abs/1607.08025
https://doi.org/10.2307/2283137
https://doi.org/10.1109/TIT.2018.2809790

Proceedings on Privacy Enhancing Technologies 2025(2) Tariq Bontekoe, Hassan Jameel Asghar, and Fatih Turkmen

For this example, we can sample an ℓ-bit number 𝜌 , such that

2
ℓ
is sufficiently large. Then, we determine 3 intervals: [0, ⌊2ℓ/3⌋),
[2ℓ/3, 2 · ⌊2ℓ/3⌋), and [2 · ⌊2ℓ/3⌋, 2ℓ − 1]. If 𝜌 is part of the 𝑗-th

interval, we return 𝑗 as our random sample. Observe, that all but

the last interval have the exact same size of ⌊2ℓ/3⌋, and only the

final interval contains 2
ℓ − 3 · ⌊2ℓ/3⌋ ≤ 2 more elements. Thus,

for sufficiently large ℓ , the distribution generated by this sampling

method is statistically close to the true distribution we wish to

sample from.

A.3 Approximate LDP Randomizers
In Figure 8, we give the precise specification of our approximate

LDP randomizers for histograms and reals, based on the algorithms

from Section 4.

LDP.Apply(𝑥 ; 𝜌) for Reals

input: 𝑘 ∈ N, 𝛾 ∈ [0, 1],

𝑥 ∈ [0, 1], 𝜌 ∈ {0, 1}∗

Split 𝜌 into (𝜌1, 𝜌2, 𝜌3)

𝑥 ← ⌊𝑥𝑘 ⌋ + B̃er(𝑥𝑘 − ⌊𝑥𝑘 ⌋; 𝜌1)

𝑏 ← B̃er(𝛾 ; 𝜌2)
if 𝑏 = 0 do

�̃� ← 𝑥

else

�̃� ← Ũnif([0, 𝑘]; 𝜌3)
return �̃�

LDP.Apply(𝑥 ; 𝜌) for Histograms

input: 𝑘 ∈ N, 𝛾 ∈ [0, 1],

𝑥 ∈ [𝑘], 𝜌 ∈ {0, 1}∗

Split 𝜌 into (𝜌1, 𝜌2)

𝑏 ← B̃er(𝛾 ; 𝜌1)
if 𝑏 = 0 do

�̃� ← 𝑥

else

�̃� ← Ũnif([1, 𝑘]; 𝜌2)
return �̃�

Figure 8: Approximate randomizers for reals and histograms.

B Implementing the Shuffler
In practice a trusted shuffler can be implemented in a number of

ways. One way to do this is by using a mixnet, or mix network. A

mixnet is a network involving several parties, that takes as input

a list of messages and returns the same messages in a randomly

permuted order. Mixnets were first introduced in [20] to realize

untraceable e-mail and can be implemented in a variety of ways. An

overview can be found in, e.g., [48]. In its most basic form, mixnets

are implemented using a publicly known sequence of servers, whose

public encryption keys are also available. Any client wishing to

send a message, encrypts their message in a layered way, i.e., like

an onion, using the public keys of the servers in reverse order. This

encrypted ‘onion’ is then sent to the first server, who batches a cer-

tain buffer and messages and then forwards this buffer in a random

order, stripping one layer of encryption. The following servers in

the sequence repeat this process, until the final server sends the

inside of the onion, the real message, to the recipient. Implemen-

tations of mixnets that produces verifiably random permutations

also exist. See for example [12] for an implementation of verifiable,

oblivious shuffling using trusted hardware.

In conclusion, following also the discussion in [12], there are

three main options for implementing a true, honest-but-curious,

non-colluding shuffler. The shuffler could be (1) a single trusted

third-party; (2) a group of parties, in which trust is distributed;

(3) one or more parties using trusted hardware. The schemes as

presented in this work are implementation-agnostic, i.e., they work

with any choice of implementation.

C Security Proofs and Experiments
In this section, we provide security proofs for the three protocols,

according to our definitions in Section 5. Before we detail the proofs,

we provide the explicit experiments in each of the definitions and

give some intuition in their construction.

C.1 Experiments
Figures 9 to 12 describe the experiments used in the security def-

initions of Section 5.3. In all experiments, we explicitly describe

the generation of the secret and public keys of each client’s trusted

environment on the second line of each experiment. In reality, this

is a step separate from our system, however, for completeness of

the experiment definitions, we explicitly define it here. Below, we

give the formal definitions of these experiments, and provide some

further intuition regarding their construction.

In the completeness experiment (Figure 9), we verify that the

output 𝑥𝑖, 𝑗 , with accompanying NIZK-PK proof 𝜋𝑖, 𝑗 , and public

values 𝜏
𝑖, 𝑗
𝑥 , generated by an honest client 𝑖 for time interval 𝑗 , is

accepted by an honest server, even when an adversary A chooses

the client’s inputs (𝑥𝑖, 𝑗 , 𝑡𝑖, 𝑗𝑥).7

ExpComp

A (1𝜆 , 𝑛,𝑇)

1: pp← Setup(1𝜆)
2: {sk𝑖 , pk𝑖 }𝑖 ← Sig.KeyGen(pp)
3: (ek, vk, pk𝑠 , sk𝑠 , 𝐿) ← KeyGen(pp)

4: out𝑖𝑐 ← GenRand(pp, aux)

5: {𝑥𝑖,𝑗 , 𝑡𝑖,𝑗𝑥 }𝑖,𝑗 ← A(pp, ek, vk, pk𝑠 , sk𝑠 , 𝐿, {pk𝑖 }𝑖)

6: if ∃𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇] : 𝑡𝑖,𝑗𝑥 ≤ 𝑡 𝑗−1 ∨ 𝑡𝑖,𝑗𝑥 > 𝑡 𝑗

7: return {⊤}𝑖,𝑗

8: 𝜎
𝑖,𝑗
𝑥 ← Sig.Signsk𝑖 (𝑥𝑖,𝑗 | |𝑡

𝑖,𝑗
𝑥)

9: �̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏
𝑖,𝑗
𝑥 ← Randomize(pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥𝑖,𝑗 , 𝑡

𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥)

10: return {Verify(pp, vk, 𝑡 𝑗 , �̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗𝑥) }𝑖,𝑗

Figure 9: Experiment for completeness definition.

The soundness experiment (Figure 10) guarantees that no ma-

licious, possibly colluding, clients are able to return a value 𝑥𝑖, 𝑗
that is not an honest evaluation of LDP.Apply(𝑥𝑖, 𝑗 ; 𝜌𝑖, 𝑗), for a truly
random, independently sampled 𝜌𝑖, 𝑗 , for some 𝑖 and 𝑗 . In this ex-

periment, the adversary is allowed to choose 𝑡
𝑖, 𝑗
𝑥 and controls all

clients, who may deviate from the protocol arbitrarily. The goal

of the adversary is to let the server accept a tuple (𝑥𝑖, 𝑗 , 𝜋𝑖, 𝑗 , 𝜏𝑖, 𝑗𝑥),
where 𝑥𝑖, 𝑗 is not honestly computed.

7
Completeness does not guarantee correctness of �̃�𝑖,𝑗 . Correctness is implicitly guar-

anteed by soundness, which is defined below.

558

Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model Proceedings on Privacy Enhancing Technologies 2025(2)

ExpSnd-RealA,𝑆∗ (1𝜆 , 𝑛,𝑇 , {𝑥𝑖,𝑗 }𝑖,𝑗)

1: pp← Setup(1𝜆)
2: {sk𝑖 , pk𝑖 }𝑖 ← Sig.KeyGen(pp)
3: (ek, vk, pk𝑠 , sk𝑠 , 𝐿, {pk𝑖 }𝑖) ← KeyGen(pp)

4: {𝑡𝑖,𝑗𝑥 }𝑖,𝑗 ← A(pp, ek, vk, pk𝑠 , {𝑥𝑖,𝑗 }𝑖,𝑗)

5: if ∃𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇] : 𝑡𝑖,𝑗𝑥 ≤ 𝑡 𝑗−1 ∨ 𝑡𝑖,𝑗𝑥 > 𝑡 𝑗

6: return {⊥}𝑖,𝑗

7: 𝜎
𝑖,𝑗
𝑥 ← Sig.Signsk𝑖 (𝑥𝑖,𝑗 | |𝑡

𝑖,𝑗
𝑥)

8: { (�̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗𝑥) }𝑖,𝑗 ← A𝑆∗ (pp, ek, vk, pk𝑠 , {𝑥𝑖,𝑗 , 𝑡
𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥 , pk𝑖 }𝑖,𝑗)

9: return {Verify(pp, vk, 𝑡 𝑗 , �̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗𝑥) }𝑖,𝑗

Figure 10: Experiment for soundness definition.

The experiments for zero-knowledge (Figure 11), define two

different worlds. Zk-real denotes the real world, in which the ad-

versary A acts as the server, and interacts with honest clients

(emulated by the environment). In Zk-sim, A acts as a server also,

but instead interacts with a simulator S. S simulates an honest

client, and should be able to generate messages with the same dis-

tribution as an actual client would, but without access to the input

values (𝑥𝑖, 𝑗 , 𝑡𝑖, 𝑗𝑥). The adversary wins this game, if it can distinguish

between both worlds.

ExpZk-RealA (1𝜆 , 𝑛,𝑇 , {𝑥𝑖,𝑗 }𝑖,𝑗)

1: pp← Setup(1𝜆)
2: {sk𝑖 , pk𝑖 }𝑖 ← Sig.KeyGen(pp)
3: (ek, vk, pk𝑠 , sk𝑠 , 𝐿, trap) ← A(pp)

4: out𝑖𝑐 ← GenRandA (pp, aux)

5: {𝑡𝑖,𝑗𝑥 }𝑖,𝑗 ← A(pp, ek, vk, pk𝑠 , sk𝑠 , 𝐿)

6: 𝜎
𝑖,𝑗
𝑥 ← Sig.Signsk𝑖 (𝑥𝑖,𝑗 | |𝑡

𝑖,𝑗
𝑥)

7: { (�̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗𝑥) }𝑖,𝑗 ← Randomize(pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥𝑖,𝑗 , 𝜎
𝑖,𝑗
𝑥)

8: if trap is not valid trapdoor for (R, ek, vk)

9: ∨ ∃𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇] : 𝑡𝑖,𝑗𝑥 ≤ 𝑡 𝑗−1 ∨ 𝑡𝑖,𝑗𝑥 > 𝑡 𝑗

10: return ⊥
11: A ← {�̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗 }𝑖,𝑗
12: return (viewA , {�̃�𝑖,𝑗 }𝑖,𝑗)

ExpZk-SimA,S (1𝜆 , 𝑛,𝑇 , {𝑦𝑖,𝑗 }𝑖,𝑗))

1: pp← Setup(1𝜆)
2: {sk𝑖 , pk𝑖 }𝑖 ← Sig.KeyGen(pp, {pk𝑖 }𝑖)
3: (ek, vk, pk𝑠 , sk𝑠 , 𝐿, trap) ← A(pp, {pk𝑖 }𝑖)

4: out𝑖𝑐 ← SA1 (pp, pk𝑠)

5: {𝑡𝑖,𝑗𝑥 }𝑖,𝑗 ← A(pp, ek, vk, pk𝑠 , sk𝑠 , 𝐿)

6: { (𝜋𝑖,𝑗 , 𝜏𝑖,𝑗𝑥) }𝑖,𝑗 ← S2 (pp, ek, trap, 𝑡 𝑗 , out𝑖𝑐 , 𝑦𝑖,𝑗)
7: if trap is not valid trapdoor for (R, ek, vk)

8: ∨ ∃𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇] : 𝑡𝑖,𝑗𝑥 ≤ 𝑡 𝑗−1 ∨ 𝑡𝑖,𝑗𝑥 > 𝑡 𝑗

9: return ⊥
10: A ← {�̃�𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗 }𝑖,𝑗
11: return (viewA , {𝑦𝑖,𝑗 }𝑖,𝑗)

Figure 11: Experiments for the zero-knowledge definition.

Finally, in the shuffle indistinguishability experiment (Figure 12),

the adversary A portrays the server and attempts to distinguish

between two honest clients. These honest clients, get the same

input (𝑥, 𝑡𝑥), chosen byA, after both having executed theGenRand
protocol with A. Subsequently, the environment only sends the

outputs of Randomize for one of the clients toA.A wins the game

if it is able to successfully determine to which client those outputs

belong.

ExpSh-IndA (𝜆)

1: pp← Setup(1𝜆)
2: {sk𝑖 , pk𝑖 }𝑖 ← Sig.KeyGen(pp)
3: (ek, vk, pk𝑠 , sk𝑠 , 𝐿, trap) ← A(pp, {pk𝑖 }𝑖)
4: A(pp) → 𝑡 𝑗

5: for 𝑖 ∈ {0, 1}

6: GenRandA (pp, 𝑡 𝑗) → out𝑖𝑐
7: A(pp) → (𝑥, 𝑡𝑥)
8: 𝑏 ←$ {0, 1}

9: Sig.Signsk𝑏 (𝑥, 𝑡𝑥) → 𝜎𝑏𝑥

10: Randomize(pp, ek, 𝑡 𝑗 , out𝑏𝑐 , 𝑥, 𝑡𝑥 , 𝜎𝑏𝑥) → (�̃�𝑏 , 𝜋𝑏 , 𝜏𝑏𝑥)

11: A(�̃�𝑏 , 𝜋𝑏 , 𝜏𝑏𝑥) → 𝑏′

12: if trap is not valid trapdoor for (R, ek, vk)

13: ∨ ∃𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇] : 𝑡𝑖,𝑗𝑥 ≤ 𝑡 𝑗−1 ∨ 𝑡𝑖,𝑗𝑥 > 𝑡 𝑗

14: return ⊥

15: return 𝑏′ = 𝑏

Figure 12: Experiment for shuffle indistinguishability.

C.2 Proofs
We only provide a full proof for the Shuffle scheme, as this is our

main result. Due to space constraints and similarity to the proof

for the Shuffle scheme, we only provide sketches of the security

proofs for the other schemes (Theorems 2 and 3).

Theorem 1. VLDPshuffle satisfies completeness, soundness, zero-
knowledgeness and shuffle indistinguishability, given that NIZK-PK
is secure for RBase, Comm a secure commitment scheme, PRF a se-
cure pseudo-random function, and Sig an EUF-CMA secure digital
signature scheme.

Proof. We prove the properties one by one:

(1) Completeness. We see that the scheme satisfies completeness

as long as the Randomizeshuffle procedure outputs a valid NIZK-PK
proof 𝜋 for Rshuffle. It therefore suffices to show that the proof for

Rshuffle is correctly computed when all parties are honest.

To prove this, fix an arbitrary 𝑖 ∈ [𝑛] and an arbitrary 𝑗 ∈ [𝑇].
First we observe that statement 1 of Rshuffle has to hold by the

condition on 𝑡
𝑖, 𝑗
𝑥 . Statement 2 of Rshuffle holds by construction of

𝜎
𝑖, 𝑗
𝑥 . Also, statements 3 and 5 hold, because these correspond exactly

to the computations done in GenRandshuffle by the honest parties.

Finally, statements 4, 6, and 7 hold by the fact that an honest party

will evaluate these correctly in Randomizeshuffle.

Therefore, we can conclude that the proof 𝜋 will be verified

successfully, because our NIZK-PK scheme is complete itself, i.e.,

559

Proceedings on Privacy Enhancing Technologies 2025(2) Tariq Bontekoe, Hassan Jameel Asghar, and Fatih Turkmen

Verify
shuffle

≠ ⊥, except for some probability that is negl(𝜆). Since,
𝑖 and 𝑗 were picked arbitrarily, and both 𝑇 and 𝑛 are poly(𝜆), we
can conclude that the total probability is also negl(𝜆).

(2) Soundness. To prove soundness, we define a series Exp
0
–Exp

3

of hybrid experiments, where Exp
0
is ExpSnd-Real

A,𝑆∗ (1𝜆, 𝑛,𝑇 , {𝑥𝑖, 𝑗 }𝑖, 𝑗)
(from Definition 6 as defined in Figure 10) and Exp

3
is close to

the ideal. Recall, that by definition of soundness, the adversary

A, who controls all, potentially malicious, clients, can send mes-

sages to and receive corresponding replies from an honest server

S∗. We will show that all these experiments are (computationally)

indistinguishable, and thereforeVLDPshuffle is sound.

• Exp
0
: Equal to ExpSnd-Real

A,𝑆∗ (1𝜆, 𝑛,𝑇 , {𝑥𝑖, 𝑗 }𝑖, 𝑗).
• Exp

1
: This is the same experiment as Exp

0
, except that now we

run a p.p.t. knowledge extractor EA to obtain the witness ®𝑤 that

A used to generate the proof. We know that such an extractor

exists, due to knowledge soundness of NIZK-PK. Now, instead of
checking a proof 𝜋𝑖, 𝑗 , the verifier uses ®𝑤𝑖, 𝑗 and

®𝜙𝑖, 𝑗 to check the

statements of Rshuffle directly. Clearly, both games are identical

up to the probability thatA wins the knowledge soundness game

for one of the proofs. By knowledge soundness of NIZK-PK we

know that this probability is negligible:

| Pr[Exp
0
] − Pr[Exp

1
] | ≤ negl(𝜆).

• Exp
2
: This is the same experiment as Exp

1
, except that now the

verifier asserts that the values 𝑥 and 𝑡𝑥 in ®𝑤𝑖, 𝑗 are equal to 𝑥𝑖, 𝑗

and 𝑡
𝑖, 𝑗
𝑥 . If this is not the case, we set fail2 = true. Clearly both

games are identical up to Fail2:

| Pr[Exp
1
] − Pr[Exp

2
] | ≤ Pr[Fail2] .

Since Sig is an EUF-CMA secure signature scheme that has been

used to generate 𝜎𝑥 and A does not know sk𝑖 , it follows that
Pr[Fail2] ≤ negl(𝜆).
• Exp

3
: This is the same experiment as Exp

2
, except that the server

𝑆∗ now additionally maintains a list 𝑅 containing entries of the

form (𝑖, (pk𝑖 , cm𝑖
𝑘𝑐
, 𝑘𝑖𝑠)). These entries correspond to messages

(pk𝑖 , cm𝑘𝑐
) received during occurrences of the GenRandshuffle

protocol with user 𝑖 . 𝑘𝑖𝑠 corresponds to the server seed 𝑘𝑠 that

was generated by the server during this particular occurrence.

Note, that each user 𝑖 can only have one entry in𝑅, due to step 4 in

GenRandshuffle. Now, if fail2 has not been set, the server asserts, in
Verify

shuffle
, that 𝑅 indeed has an entry (★, (pk𝑖 , cm𝑖

𝑘𝑐
, 𝑘𝑖𝑠)), where

(pk𝑖 , cm𝑖
𝑘𝑐
, 𝑘𝑖𝑠) are the corresponding elements of ®𝑤𝑖, 𝑗 . If this is

not the case, we set fail3 = true. Clearly both games are identical

up to Fail3:

| Pr[Exp
2
] − Pr[Exp

3
| ≤ Pr[Fail3] .

The only way, by which the event Fail3 can occur, is if the client

can produce a tuple (pk𝑖 , cm𝑖
𝑘𝑐
, 𝑘𝑖𝑠) with signature 𝜎𝑖𝑠 , such that

Sig.Verifypk𝑠 (𝜎
𝑖
𝑠 , pk𝑖 | |cm𝑖

𝑘𝑐
| |𝑘𝑖𝑠) = 1. S∗ will only have generated

one signature for each pk𝑖 , due to step 4 in GenRandshuffle, and

this tuple is on 𝑅. Therefore, for Fail3 to occur, the client must

have forged a signature on a tuple (pk′𝑖 , cm𝑖′
𝑘𝑐
, 𝑘𝑖′𝑠), where at least

one element differs from (pk𝑖 , cm𝑖
𝑘𝑐
, 𝑘𝑖𝑠). Since Sig is an EUF-CMA

secure signature scheme that has been used to generate 𝜎𝑖𝑠 and

A does not know sk𝑠 , it follows that Pr[Fail3] ≤ negl(𝜆).

Finally, we observe that if Fail3 does not occur, we are essen-
tially at a point where 𝑥𝑖, 𝑗 = LDP.Apply(𝑥𝑖, 𝑗 ; 𝜌𝑖, 𝑗), where 𝜌𝑖, 𝑗 =

PRF(𝑘𝑖𝑐 ⊕ 𝑘𝑖𝑠 , 𝑠 𝑗). We observe that 𝑘𝑠 is chosen uniformly at random

and independently of 𝑥𝑖, 𝑗 . Moreover, 𝑘𝑖𝑠 is bound to all 𝑥𝑖, 𝑗 , since

the same public key pk𝑖 is used inside 𝜎𝑠 and for the verification

of 𝜎𝑥 . Also, 𝑠 𝑗 is public and independent of all 𝑥𝑖, 𝑗 and all 𝑥𝑖, 𝑗 are

given. Next to this, 𝑘𝑐 is uniquely determined by cm𝑘𝑐
, except with

negligible probability, according to the binding property of Comm.

And, since cm𝑖
𝑘𝑐

is fixed before 𝑘𝑖𝑠 is chosen uniformly at random,

𝑘𝑖𝑐 ⊕ 𝑘𝑖𝑠 is also be a uniform random bitstring, and by the definition

of a secure PRF, 𝜌𝑖, 𝑗 will also be distributed at random, except with

negligible probability. Therefore, it follows that:��
Pr[Exp

3
] − Pr

[
LDP.Apply(𝑥𝑖, 𝑗 ; 𝜌𝑖, 𝑗) = {𝑦𝑖, 𝑗 }𝑖, 𝑗

��
𝜌𝑖, 𝑗 ←$ {0, 1}∗

] �� ≤ negl(𝜆) .

(3) Zero-Knowledge. To show thatVLDPshuffle satisfies the zero-

knowledge property, we will show that the joint distribution of the

output and all messages received by A in the real scheme is indis-

tinguishable from those generated by the simulator S = (S1,S2)
(see Figure 13). Note, that in our model we assume that the verifier

behaves like an honest-but-curious adversary, and thus follows the

protocol. The first simulator algorithm S1, simulates a client in

GenRandshuffle, thereby also interacting with A, representing the

server. The second S2, simulates the Randomizeshuffle algorithm.

S1 (pp, pk𝑠)

1: 𝑘𝑐 ←$ {0, 1}∗

2: 𝑟𝑘𝑐 ←$ {0, 1}∗

3: cm𝑘𝑐
= Comm(𝑘𝑐 ; 𝑟𝑘𝑐)

4: Send (pk𝑖 , cm𝑖
𝑘𝑐
)to A as client 𝑖 .

5: Receive (𝑘𝑠 , 𝜎𝑠) from A.

6: return (𝑘𝑐 , 𝑟𝑘𝑐 , cm𝑘𝑐
, 𝑘𝑠 , 𝜎𝑠)

S2 (pp, ek, trap, 𝑡 𝑗 , out𝑖𝑐 , 𝑦𝑖,𝑗)

1:
®𝜙 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑠 , 𝑠 𝑗 , 𝑦𝑖,𝑗)

2: 𝜋 ← Simnizk (R, trap, ®𝜙)
3: return (𝜋, 𝑦𝑖,𝑗)

Figure 13: Simulator S = (S1,S2) for the zero-knowledge
proof of Theorem 1.

First, we observe that the message produced by S1 is distributed
as in the real experiment, since our server is honest-but-curious

and S1, follows the exact same steps as GenRandshuffle. Second, we

observe that 𝑦𝑖, 𝑗 is fixed. Third, we observe that the values in ®𝜙 are

either public or fixed, and therefore are indistinguishable between

the real world and the simulator. Since NIZK-PK is a secure scheme

for Rshuffle with the zero-knowledge property, and trap is a valid

trapdoor,S2 can use theNIZK-PK simulator Sim to generate a proof

𝜋 with the correct distribution, i.e., such that 𝜋 passes verification

for
®𝜙 . From these observations it follows that the joint distribution

of the real scheme and its output, is indistinguishable from that

generated by S, and therefore the scheme is zero-knowledge.

(4) Shuffle Indistinguishability. To prove shuffle indistinguishability,

we describe a series of hybrid experiments Exp
0
– Exp

3
, where

Exp
0
is equal to ExpSh-Ind

A , and Exp
3
leaves A essentially random

guessing. We will show that all these experiments are indistinguish-

able, and thereforeVLDPshuffle satisfies shuffle indistinguishabil-

ity.

560

Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model Proceedings on Privacy Enhancing Technologies 2025(2)

• Exp
0
: Equal to ExpSh-Ind

A in Definition 8.

• Exp
1
: This is the same experiment as Exp

0
, except that now

we also give trap as input to Randomizeshuffle and replace

the computation of 𝜋𝑏 (step 6 in Randomizeshuffle), by a sim-

ulated proof using the NIZK-PK simulator Sim using trap.
By the zero-knowledge property of NIZK-PK we conclude

that both experiments are indistinguishable:

| Pr[Exp
0
] − Pr[Exp

1
] | ≤ negl(𝜆).

• Exp
2
: This is the same experiment as Exp

1
, except that in

step 1 of Randomizeshuffle we replace 𝑘𝑐 by a random bit-

string of the same length. We will still pass verification,

since 𝜋 has been replaced by a simulated proof. Finally, by

the hiding property ofComm,A cannot distinguish between

the usage of 𝑘𝑐 or some other random bitstring of the length,

except with negligible probability. Therefore, we conclude

that both experiments are indistinguishable:

| Pr[Exp
1
] − Pr[Exp

2
] | ≤ negl(𝜆).

• Exp
3
: This is the same experiment as Exp

2
, except that we

replace 𝜌 in step 2 of Randomizeshuffle by a random bit-string

of the same length. We will still pass verification, since 𝜋

has been replaced by a simulated proof. Finally, since 𝑘𝑐 was

already replaced by a uniform random bitstring, we know

that 𝑘 is a uniform random bitstring, and by the fact that

PRF is secure, PRF(𝑘, 𝑠 𝑗) is indistinguishable from a random

bit-string of the same length. Therefore, we conclude that

both experiments are indistinguishable:

| Pr[Exp
2
] − Pr[Exp

3
] | ≤ negl(𝜆).

We observe that 𝜋𝑏 is replaced by a simulated proof in Exp
3
, i.e., 𝜋0

has the same distribution as 𝜋1
. Moreover, 𝑥𝑏 = LDP.Apply(𝑥 ; 𝑟),

where 𝑥 is the same for both values of 𝑏 and 𝑟 is chosen uniformly

at random, i.e., 𝑥0 has the same distribution as 𝑥1. Finally, 𝜏𝑏𝑥 is

empty. Therefore, (𝑥𝑏 , 𝜋𝑏 , 𝜏𝑏𝑥) has the same distribution for either

value of 𝑏, meaning the advantage of A in Exp
3
is essentially the

same as if A were random guessing. Thus, we conclude that

| Pr[Exp
3
] − 1

2

| ≤ negl(𝜆). □

Theorem 2. VLDPbase satisfies completeness, soundness, and
zero-knowledgeness, given that NIZK-PK is secure for RBase, Comm
a secure commitment scheme, PRF a secure pseudo-random function,
and Sig an EUF-CMA secure digital signature scheme.

Proof (Sketch). We prove the properties one by one:

(1) Completeness. By inspection of the protocol and completeness

of NIZK-PK.

(2) Soundness. Also here, we define a series of hybrid experiments,

where Exp
0
is equal to ExpSnd-Real

A,𝑆∗ and Exp
3
is close to the ideal. In

Exp
1
, we again use the knowledge extractor EA to obtain the wit-

ness ®𝑤 and verify the statements inRbase directly. Exp2
is analogous

to that in the proof for Theorem 1.

Exp
3
is similar to that in the proof for Theorem 1, however, 𝑅

will now contain entries ((𝑖, 𝑡 𝑗), (pk𝑖 , cm
𝑖, 𝑗
𝜌𝑐 , 𝑘

𝑖, 𝑗
𝑠)). I.e., each user 𝑖

now has one entry for each 𝑡 𝑗 , rather than using the same entry for

all 𝑡 𝑗 . Analogously to before, the server now verifies, in Verify
base

that ((★, 𝑡 𝑗), (pk𝑖 , cm
𝑖, 𝑗

𝑘𝑐
, 𝑘

𝑖, 𝑗
𝑠) is on 𝑅.

Finally, analogous to the proof for Theorem 1, by the binding

property of Comm, we know that 𝜌 is sampled independently and

uniformly at random and, irrespective of A. Therefore, we can

conclude soundness.

(3) Zero-Knowledge. Just like in the proof for Theorem 1, S1 is iden-
tical to GenRandbase, i.e., for all 𝑡 𝑗 it computes cm𝜌𝑐

, and receives

(𝑘𝑠 , 𝜎𝑠) from A.

Just like in S2, we also create a simulated proof from the state-

ment vector
®𝜙 alone.

®𝜙 consist of S2’s inputs, values from S1 and
𝜌𝑠 . S2 simply computes 𝜌𝑠 as in the real case. Note, that also here

we use 𝑦𝑖, 𝑗 for 𝑥 , rather than computing it from some signed input

𝑥 and the randomness 𝜌 .

Additionally, unlike the proof for Theorem 1, S2 outputs the
values (pk𝑖 , cm𝜌𝑐

, 𝑘𝑠 , 𝜎𝑠), where pk𝑖 is known and fixed, and the

other values come from S1.
Following arguments analogous to the proof for Theorem 1 and

due to zero-knowledgeness of NIZK-PK we conclude that Base is
zero-knowledge. □

Theorem 3. VLDPexpand satisfies completeness, soundness, and
zero-knowledgeness, given that NIZK-PK is secure for RBase, Comm
a secure commitment scheme, PRF a secure pseudo-random function,
Sig an EUF-CMA secure digital signature scheme, and CRH (use to
constructMerkleTree) a collision-resistant hash function.

Proof (Sketch). We prove the properties one by one:

(1) Completeness. By inspection of the protocol and completeness

of NIZK-PK.

(2) Soundness. Also here, we define a series of hybrid experiments,

where Exp
0
is equal to ExpSnd-Real

A,𝑆∗ and Exp
3
is close to the ideal.

In Exp
1
, we again use the knowledge extractor EA to obtain the

witness ®𝑤 and verify the statements in Rexpand directly. Exp
2
is

analogous to the proof for Theorem 1.

Exp
3
is analogous to that in the proof for Theorem 1, however,

cm𝜌𝑐
is replaced by rt.

Finally, analogous to the proof for Theorem 1, by the binding

property of Comm, and by collision resistance of the hash function

CRH used to construct theMerkleTree, we know that 𝜌 is uniformly

at random, irrespective of A. Thus, we conclude that Expand is

sound.

(3) Zero-Knowledge. Just like in the proof for Theorem 1, S1 acts
identical to GenRandbase, i.e., for all 𝑡 𝑗 it computes rt, and receives

(𝑘𝑠 , 𝜎𝑠) from A.

Just like in S2, we also create a simulated proof from the state-

ment vector
®𝜙 alone.

®𝜙 consist of S2’s inputs, values from S1 and 𝜌𝑠 .
S2 simply computes 𝜌𝑠 as in the real case. Note, that also here we

use 𝑦𝑖, 𝑗 for 𝑥 , rather than computing it from some signed input 𝑥

and the randomness 𝜌 . Additionally, unlike the proof for Theorem 1,

S2 outputs the values (pk𝑖 , rt, 𝑘𝑠 , 𝜎𝑠), where pk𝑖 is known and fixed,

and the other values come from S1.
Following arguments analogous to the proof for Theorem 1

and due to zero-knowledgeness of NIZK-PK we obtain the zero-

knowledge property for Base. □
561

Proceedings on Privacy Enhancing Technologies 2025(2) Tariq Bontekoe, Hassan Jameel Asghar, and Fatih Turkmen

D Appendix to Section 7
D.1 Dataset Description
Dataset 1: Geolife GPS Trajectory. This is a location dataset of 182

users, collected as part of Microsoft Research Asia’s GeoLife project

over the period of 2007 to 2012.
8
Each data point contains latitude,

longitude (GPS coordinates) and altitude information of a user on a

given day. Upon inspecting the data, we found that it was highly

sparse. In particular, only a small subset of users had GPS coordi-

nates recorded for any given day. We therefore decided to extract

five readings from each user from five different days, assuming

that the corresponding readings were taken from the same day. For

each day, we only took the first GPS coordinates. We then used

the Nominatim API
9
to obtain the address corresponding to each

GPS coordinate using reverse geocoding. From the address thus

returned, we retained only the postcode of each location. Most of

the postcodes were only visited by a very small amount of users.

We therefore took the 7 top postcodes and included the rest into

a single postcode named all_others. Thus, in total we have 8

postcodes per day. This dataset is used for the LDP algorithm for

histograms where the goal is to estimate the true histogram of users

in each postcode per day. Note that we have 𝑘 = 8, where {1, . . . , 𝑘}
represent the respective postcodes in the algorithm for histograms

(see Figure 1).

Dataset 2: Smart Meter. This dataset is extracted from the smart

meters in London dataset.
10
Which was originally extracted from

energy readings dataset of 5,567 London households, which were

obtained during the Low Carbon London project led by UK Power

Networks between 2011 and 2014. More specifically, we took the

daily_dataset.csv file and take the mean energy reading from

each household for the last five days of this dataset with the last date

25/02/2014. Households that did not have a mean energy reading

for a particular day are assigned mean energy of 0 for that day.

Finally, we normalized the readings by dividing each mean energy

value by the maximummean energy in daily_dataset.csvwhich
was 6.928 kWh. This dataset is used for the LDP algorithms for

reals where the goal is to estimate the average energy reading

of a household per day, by estimating the sum of mean energy

consumption across all households and then dividing it by the

number of households, i.e., 5,567. We use a precision level of 𝑘 = 10

(see the algorithm for reals in Figure 1) for our experiments.

D.2 Possible Optimizations and Alternatives
While the experiments in Section 7 show the practicality of our

schemes, certain optimizations and/or different choices could be

made with respect to our implementation. Specifically, we discuss

how different choices would influence the trade-off between secu-

rity, efficiency, and practicality.

Our current choices were based on primitives that provide a

strong level of security (targeting 128 bits) within practical times.

Given that our results show that performance is very practical,

8
The original dataset can be found at https://www.microsoft.com/en-us/research/

publication/geolife-gps-trajectory-dataset-user-guide/

9
See https://nominatim.org/

10
See https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london

efficiency improvements are not a requirement for practical adop-

tion, however may still be considered depending on the specific

requirements of the use case.

SNARK-friendly CRH. In our current implementation, we rely on the

Blake2s CRH inside our PRF, Sig scheme, and MerkleTree. Blake2s
is a standardized scheme and its security level has been well vetted

and confirmed. Moreover, it is more efficient to encode inside a zk-

SNARK circuit than alternatives with a similar security level, e.g.,

SHA256. However, in some recent works we observe an increased

interest in so-called SNARK-friendly hash functions, often alge-

braic hash functions that can be more efficiently computed inside

a circuit. Examples of such schemes are Poseidon [32], MiMC [2],

and Pedersen [34] hashes. These schemes can reduce prover times

by as much as a factor of 10 [52]. However, this often comes at the

cost of reduced security. Poseidon and MiMC are novel constructs

and have not yet been properly vetted by the community. This

novelty, in combination with their algebraic construction, might

give rise to unforeseen attacks, such as the algebraic attacks shown

against MiMC [29]. The Pedersen hash on the other hand is known

to be secure, but has the downside that it relies on the discrete log

assumption, whereas Blake2s requires no such assumption. We can

safely use the Pedersen hash inside our Merkle tree, since break-

ing the discrete log assumption would require efforts similar to

breaking the zk-SNARK scheme we use.

However, we have chosen to not use Pedersen hashes for our

PRF and Sig schemes. The PRF is evaluated out-of-circuit in the

Base and Expand schemes anyhow, and we chose to use the same

primitive in the Shuffle scheme for comparability.

For the Sig schemes, we chose to use commonly available primi-

tives, as in many use cases the trusted environment will not provide

more novel or custom primitives, such as Pedersen or Poseidon hash

functions. However, in cases where such primitives are available,

they could be used to improve efficiency at the cost of (slightly)

decreased security and general applicability.

SNARK-friendly signatures. Next to using a different hash function

to transform the input message to a fixed digest, we could have

also used a different signature scheme than Schnorr’s. However,

it should be noted that Schnorr is commonly available and very

efficient. E.g., it is around 2-2.5x times faster than EdDSA inside

a zk-SNARK circuit [52]. Although, due to the small number of

constraints, the impact on the total performance of our scheme will

be small.

zk-SNARK. The predominant component for our computation times

is determined by the zk-SNARK scheme and the way our constraints

are encoded inside the zk-SNARK circuit.

First, we note that we implemented our constraint circuit using

readily available ‘gadgets’ from the Arkworks library. While these

gadgets are of good quality and are implemented efficiently, we

do get some more constraints than are strictly required in hand-

optimized constraint systems. These constraints might possibly be

reduced by manual inspection, however due to the large number of

constraints we expect this to be a tedious task, for which we only get

an (almost) negligible increase in performance. Moreover, manual

optimization of these constraints would reduce modularity of our

562

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://nominatim.org/
https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london

Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model Proceedings on Privacy Enhancing Technologies 2025(2)

software implementation, which may be a significant practical

drawback.

Next to this, one could also consider using an alternative scheme

to Groth16. For example, schemes with a universal setup (e.g., Mar-

lin [23]), post-quantum security (e.g., Fractal [24]) or a transparent
setup (e.g., Fractal [24] or SuperSonic [18]) could be employed. Gen-

erally speaking, these alternatives are less efficient than Groth16,

with respect to proof generation and verification time. However, in

some use cases, universal setups can be used to prevent the server

from having to run one setup per LDP algorithm. In practice, how-

ever we do not expect this trade-off to be beneficial. Moreover, the

removal of a trusted setup is not necessary in our case, since we

assume the server to behave semi-honestly and not collude with

any of the clients, i.e., it will not give the trapdoor to any of the

clients.

563

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Building Blocks
	3.1 Zero-Knowledge Proofs
	3.2 Differential Privacy

	4 DP Algorithms
	4.1 LDP inside NIZK

	5 Verifiable DP in the Local and Shuffle Model
	5.1 Threat Model
	5.2 System Model
	5.3 Security definitions

	6 Our Constructions for VLDP
	6.1 Base Scheme
	6.2 Randomness Expansion (Expand) Scheme
	6.3 Shuffle Model Scheme

	7 Experimental Evaluation
	7.1 Implementation
	7.2 Experimental Setup
	7.3 Concrete Applications
	7.4 General Performance & Comparison

	8 Conclusion
	Acknowledgments
	References
	A Appendix to Section 4
	A.1 De-Biased Output
	A.2 Additional, Simple Example
	A.3 Approximate LDP Randomizers

	B Implementing the Shuffler
	C Security Proofs and Experiments
	C.1 Experiments
	C.2 Proofs

	D Appendix to Section 7
	D.1 Dataset Description
	D.2 Possible Optimizations and Alternatives

