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Abstract
Tor is a well-known anonymous communication tool, used by peo-
ple with various privacy and security needs. Prior works have
exploited routing attacks to observe Tor traffic and deanonymize
Tor users. Subsequently, location-aware relay selection algorithms
have been proposed to defend against such attacks on Tor. However,
location-aware relay selection algorithms are known to be vulnera-
ble to information leakage on client locations and guard placement
attacks. Can we design a new location-unaware approach to re-
lay selection while achieving the similar goal of defending against
routing attacks?

Towards this end, we leverage the Resource Public Key Infras-
tructure (RPKI) in designing new guard relay selection algorithms.
We develop a lightweight Discount Selection algorithm by only
incorporating Route Origin Authorization (ROA) information, and
a more secure Matching Selection algorithm by incorporating both
ROA and Route Origin Validation (ROV) information. Our evalua-
tion results show an increase in the number of ROA-ROV matched
client-relay pairs using our Matching Selection algorithm, reach-
ing 48.47% with minimal performance overhead through custom
Shadow simulations and benchmarking.
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1 Introduction
The Tor network [24] has been the most widely-used anonymous
communication system to protect user identity in online communi-
cations. Tor is a low-latency system that does not obfuscate packet
sizes and timings by default. However, Tor’s low-latency nature
makes it vulnerable to traffic analysis, where an adversary who can
observe Tor traffic can deanonymize the users based on traffic pat-
terns. The most well known attacks are traffic correlation attacks
[68] where an adversary observes both ends of the communication
path (i.e., between the Tor client and the entry/guard relay, and
between the exit relay and the destination server) and correlates
the traffic, and website fingerprinting attacks [19, 38] where an
adversary observes client-side Tor traffic (i.e., between the client
and the entry/guard relay) and matches it to the traffic patterns of
known websites.
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Network-level adversaries, i.e., Autonomous Systems (ASes), that
lie on the communication paths are at a powerful position to observe
Tor traffic and perform traffic analysis. To defend against network-
level adversaries, many location-aware relay selection algorithms
have been proposed [12, 26, 28, 39, 43, 48, 54, 61], which perform
relay selection based on client locations to avoid or lower the risk
of having an adversary on the path. In particular, Counter-RAPTOR
[61] defends against the strongest network-level adversaries who
can launch active routing attacks to hijack the client-guard con-
nection, by strategically selecting guard relays to minimize the
possibility of a successful hijack.

However, similar to all other location-aware relay selection al-
gorithms, Counter-RAPTOR suffers from information leakage of
client locations due to the differing relay weights that are tied to
client locations. While there exist several works that provide an
upper bound on the amount of information leakage [28, 54], they
unavoidably face the tradeoff between limiting information leakage
and achieving the main location-aware relay selection goal.

Can we avoid this tradeoff by developing a location-agnostic
relay selection algorithm to defend against the active network-
level adversaries, similar to Counter-RAPTOR? We answer this
question by utilizing recent advances in the deployment of Resource
Public Key Infrastructure (RPKI). In a nutshell, an AS publishes a
cryptographically-signed Route Origin Authorization (ROA) object
that attests its authorization to announce an IP prefix. ASes also
perform Route Origin Validation (ROV) on routing announcements,
and drop the invalid routes that violate any existing ROAs (i.e.,
the route is announced by an AS who does not have a valid ROA
record for the IP prefix). Our intuition is that clients should favor
relays with valid ROAs for the prefix that covers the relay IP, which
naturally protects clients against active routing attacks that hijack
the Tor relay IP. This is made possible by the rapid increase in ROA
and ROV deployment by ASes in recent years.

More specifically, we focus on guard relay selection given the
unique position of the guard relay that enables it to observe client
traffic for an extended period of time. We design two versions of
the RPKI-based guard relay selection algorithms: (1) a lightweight
discount algorithm that only considers whether the guard relay’s IP
is protected by a valid ROA, and “discounts" the selection probability
if the relay is not ROA-protected; (2) amatching algorithm that aims
to fully utilize the benefit of RPKI by increasing the probability of
a ROA-protected client choosing a relay in a ROV-enforcing AS
(and vice versa). The intuition is that ROA protection is the most
effective when ASes perform ROV to drop any invalid routes.

To evaluate the feasibility of our approach, we first perform a
measurement study on the ROA coverage of Tor relays from 2021
to 2024. We then integrate performance considerations in relay
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selection by building upon the linear-programming framework
used in CLAPS [54]. We evaluate the security improvement in terms
of protection against route origin hijacks through simulations, as
well as the performance through a large-scale simulation via the
Shadow simulator [33]. Our key results are:
• The ROA coverage of Tor relays has been steadily growing. In
particular, the percentage of ROA-protected guard relays grows
from 47.20% in Jan 2021 to 71.43% in May 2024. Such considerable
ROA coverage is the enabler for our RPKI-based relay selection
approach.

• In the lightweight discount algorithm, the discount value is af-
fected by the available bandwidth of ROA-protected relays, as
well as the current load in the network. For example, when the
network load is 80% of the maximum load (i.e., saturating all
available guard relay bandwidth), using consensuses from May
2024, a discount value of 0.5 provides ROA-protected guard relays
to 90.2% of clients (18.8% improvement compared to Vanilla Tor)
without saturating any single relay.

• The matching algorithm significantly increases the number of
client/guard pairs that can benefit from the full ROA/ROV pro-
tection. Using a combination of 𝑙 = 0.8, 𝑑1 = 0.9,𝑑2 = 0.7 and 𝐵 =
1.5, 48.47% of all client-relay pairs are matched with both ROA
and ROV protection.

• The Shadow simulation shows no visible difference in load time
for discount algorithm; for matching algorithm, the overhead is
minimal for small page loads (e.g., 10MB), while more significant
for large size data transfers (e.g., 100MB).
Unlike priorworks, our relay selection algorithms are not location-

dependent. While there may exist some information leakage in the
matching algorithm where the ROA/ROV status of the client AS
may be learned, it is very challenging to pinpoint the exact AS
only based on the ROA/ROV status. The potential leakage is sig-
nificantly less even compared to the state-of-the-art CLAPS [54].
Furthermore, unlike Counter-RAPTOR that aims to increase prob-
abilistic resilience to attacks, our usage of RPKI provides attack
resilience via deterministic validation of route origin.

Code release.Our have open sourced our code at: https://github.
com/z-lu2017/TOR-RPKI.

2 Background and Motivation
The Tor network aims to provide anonymous communications over
the Internet. To achieve its goal, Tor implements onion routing and
routes all traffic through a sequence of three relays, i.e., the en-
try/guard relay, the middle relay and the exit relay, before reaching
the destination server. This prevents the eavesdropper from linking
the client and the server together.

Currently, the default path selection algorithm to choose relays
is based on relay flags (e.g., relays with the "guard" flag can be
chosen as the guard relay) and its weight in the network consensus
for performance and load balancing purpose.

2.1 AS-level Adversaries and Location-aware
Relay Selection

Tor is known to be vulnerable to traffic analysis that deanonymizes
users. Many works have examined AS-level adversaries who are
on path to observe Tor communications [7, 26, 37, 48, 62], the most

powerful of which is RAPTOR attack [62] where the adversary
manipulates Internet routing to announce the IP prefix of a guard
relay and route Tor client traffic to the adversary. On the other hand,
many client location-aware relay selections have been proposed,
serving various purposes such as minimizing vulnerability to AS-
level adversaries [26, 28, 39, 43, 48, 61] or communication latency
[12, 57, 58, 66]. In essence, the probability of selecting a given relay
differs across clients and is determined based on client location.
Such location-aware relay selection algorithms are known to be
vulnerable to information leakage and guard placement attacks.

Client location leakage. Location-aware path selection algo-
rithms can inadvertently leak client location information. Because
clients prefer relays with high bandwidth that are close in physical
or topological distance, if an adversary can observe which relays a
client connects to, then she/he can obtain information about the
client’s location. For example, [28] shows an adversary can success-
fully guess client AS location under 10 attempts after observing 5
relay selections, and under 5 attempts if 15 selections are observed.
[37] demonstrates a chosen-destination attack by forcing client
go through various destinations to reveal client guard relay, with
guard relays being found 94% of the times after 300 visits. [64]
analyzes information leakage in DeNASA [12] and finds that after
observing three guard selections, median entropy for all ASes drop
to 1 bit, making it easy for adversaries to guess client location using
posterior distribution of guard-selection for all client locations.

Guard placement attack. Guard placement attack happens
when an adversary places malicious guard relays in the Tor network
with the goal of maximizing the probability that a client entering
the network will choose one of the malicious guard relays. Such
attack is particularly effective against location-aware relay selection
algorithms, where the adversary can strategically place relays in
certain locations to maximize the probability of being selected [65].

In summary, while location-aware relay selection can provide
many benefits, it unavoidably creates new vulnerabilities as de-
scribed above.

2.2 Resource Public Key Infrastructure (RPKI)
Resource Public Key Infrastructure (RPKI) is a public key infrastruc-
ture framework designed as a security improvement to the current
routing protocol BGP. RPKI provides a database of cryptographically-
signed IP address ownership that can be used to identify and drop
route announcements from unauthorized ASes [2].

Route Origin Authorization (ROA) is a cryptographically
signed record stored in RPKI that includes (AS, prefix) pairs, in-
dicating that the AS is authorized to announce the prefix. The
signature can be cryptographically verified.

Route Origin Validation (ROV) is the action performed by
ASes to validate the route announcement based on existing ROA
records. If a prefix has ROA records but the announcing AS is
not in any of the ROAs, then such announcement is RPKI-invalid,
and a ROV-enforcing AS should drop such invalid announcement.
However, many ASes do not strictly enforce ROV. Some ASes may
not perform any ROV at all, and some other ASes perform ROV
but do not strictly enforce it (e.g., only lowering the priority of the
invalid path instead of dropping it completely) [52]. Unlike ROA
records which can be directly retrieved from the public database,
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the ROV status of an AS is not trivial to measure from an outsider’s
perspective, and there exist several works in measuring the ROV
status of all ASes [25, 32, 42, 52].

Importance of RPKI. While we focus on origin validation
(ROV) in this paper, RPKI is an essential part and building block for
path validation as well. For example, BGPSec [41] and Path-End
validation [22, 23] rely on the use of RPKI. If an AS does not yet have
any ROA record in RPKI, then it cannot proceed with deploying
any further path validation mechanisms.

2.3 Motivation and Goal
Motivated by the increasing deployment of RPKI, we aim to design
an RPKI-based relay selection approach for Tor to (1) provide a
stronger protection to route hijacks compared to Counter-RAPTOR
[61], and (2) decouple the traditional client location dependency
from guard relay selection to avoid inadvertent leaking of client
location information. Since our selection algorithm relies more
on ROA coverage information of guard nodes rather than client
locations, an adversary cannot learn sufficient information about
client location even if she can observe the guard selection process.

Threat model. Our threat model is an AS-level adversary who
is capable of manipulating announcements of targeted prefixes to
perform BGP origin hijacks [62], i.e., the adversary’s AS number
appears as the last hop in the AS path of the announced prefix.
Potential adversaries include malicious network operators or nation
states who announce the prefix of target Tor relays and intercept
traffic to the Tor relays. Since Tor guard relays can observe Tor
clients IP information, this makes them high value targets for BGP
hijacking attacks. We focus on BGP origin hijacking because it’s
found to be the most commonly observed type of route hijacking
attack [20, 51], and they are easy to perform compared to other
more sophisticated attacks [15, 60].

3 RPKI Coverage of Tor Relays
While we observe a rapid increase in RPKI deployment on the
Internet in recent years [47], the RPKI coverage on the Tor network
is unknown. Therefore, we first perform ameasurement study using
historical RPKI and Tor consensus data from Jan 2021 to May 2024,
to quantify the trend of RPKI coverage of Tor relays overtime. The
measurement result is critical in guiding the relay selection strategy.

3.1 Datasets
We describe the datasets used in our measurement study.
• Tor consensus: We obtained hourly consensuses from Jan 1, 2021,
00:00:00 to May 31, 2024, 23:00:00 from Tor Metrics [5] and ex-
tracted relevant relay information, such as relay flags, IP ad-
dresses, and consensus weight.

• Routing data: RouteViews [6] provides historical BGP routing
updates. We obtained hourly snapshots from Jan 1, 2021, 00:00:00
to May 31, 2024, 23:00:00. We extracted routing information per-
taining to Tor relay IPs, i.e., the origin AS announcing a prefix
that covers a Tor relay IP.

• Route Origin Authorisations (ROAs): We obtained ROA coverage
information from RIPE RPKI archive [2] from Jan 2021 to May
2024 and extracted the data in the format of AS number, prefix,
and max length.

• Route Origin Validation (ROV): Given the complexity ofmeasuring
ROV deployment, there does not exist one standardmeasurement.
Instead, we obtained ROV data from several major sources, as
described below:
(1) ROV monitor : Reuter et al. [52] first measured ROV deploy-

ment in a controlled environment. By monitoring BGP an-
nouncement of carefully crafted ROAs, the authors were able
to identify ASes that actively drop invalid announcement and
categorized them as ROV deployed. However, the experiment
is heavily reliant on the assumption that ASes must be con-
nected to the PEERING testbed or using a route server. This
assumption severely limits the number of ASes the authors
can investigate and thus produced a fairly small list of ASes.

(2) MANRS: Du et al. [25] analyzed public routing behavior of
MANRS (Mutually Agreed Norms for Routing Security) and
non-MANRS network ASes and inferred ROV deployment,
on the network scale, based on whether network ASes drop or
propagate invalid routing information. We applied the same
methodology to our network on the AS level. Using the data
from the paper, we inferred AS-level ROV deployment based
on whether an AS drops or propagates a BGP announcement
that perfectly matches a valid ROA payload.
However, an ambiguous scenario arises when a BGP an-
nouncement contains prefixes that is not found in ROA pay-
load. This does not necessarily mean the AS propagating
those announcements is not ROV covered. To clarify such
ambiguousness, we decided to investigate both cases sepa-
rately. Case 1 will include the list of all ASes that propagate
only BGP announcements that perfectly matches a valid ROA
payload. Case 2 will include the list of all ASes that propagate
BGP announcements that perfectly matches a valid ROA pay-
load plus those unknown prefix announcements. Intuitively,
case 2 will include more ASes than case 1 and we view case 1
as the lowerbound and case 2 as the upperbound.

(3) RoVista [42] is an ongoing measurement platform developed
by researchers fromVirginia Tech, IIJ, RIPENCC, andMANRS
to measure the current deployment rate status of ROV. It iden-
tifies ASes which are reachable under RPKI-invalid prefixes
using IP-ID side-channel. RoVista assigns a percentage score
to each AS indicating the progress of ROV deployment based
on how much RPKI-invalid prefixes are being filtered out. Us-
ing its API, we checked all ASes in our dataset and based on
its RoVista score, and produced a list of ROV-covered ASes.

(4) Another measurement of RPKI filtering done by Hlavacek
et al. [32] attempted to send bogus, RPKI-invalid prefix an-
nouncements and observed how they are handled by differ-
ent ASes. They measure ROV deployment on ASes based
on whether those handcrafted invalid announcement are
dropped. We obtained their dataset and constructed a list of
ROV-coverage ASes.

3.2 ROA and ROV Coverage for Tor
We measure ROA and ROV coverage both on a relay level (i.e.,
percentage of relays) and on a bandwidth level (i.e., percentage of
total relay bandwidth). We perform the measurement separately
for all Tor relays and for guard relays only. For ROA coverage, we
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Source ROV-covered
relays

ROV-covered band-
width

ROV Monitor 2.696 2.530
MANRS case 1 5.981 5.453
RoVista 36.675 33.517
Hlavacek dataset 52.008 49.093
MANRS case 2 71.076 67.934

Table 1: Guard relay ROV coverage statistics (in %)

extracted all relays from the consensus data and separated them into
two groups based on their IP: IPV4 and IPV6. Then, for each group,
we compared their IP against the ROA dataset at the corresponding
date to check if they have ROA coverage at that time. For ROV
coverage, we compiled lists of ASes that have ROV deployment
from the above-mentioned sources and cross-compared them with
the list of ASes where Tor relays are located.

Figure 1: ROA Coverage and Validity for All Guard Relays

3.2.1 Coverage for All Tor Relays. Figure 1 shows the percentage
of guard relays with ROA coverage from January 2021 to May 2024,
using the consensus from the first hour of the first day of every
month. The left figure shows percentage of ROA coverage for all
IPv4 guard relays and the right figure displays the same information
for IPv6 guard relays. In addition to showing ROA coverage, we
also measure a stricter form of protection where max length equals
the prefix length in the ROA record (green triangle). We also cross
check with RouteViews data to validate whether the AS originating
the prefix is valid based on the ROA record (pink square).

High IPv4 ROA coverage and low IPv6 ROA coverage. Ob-
serve that close to half of guard relay IPv4 addresses were covered
by ROAs in January 2021 (blue pentagons), and the percentage
grows steadily throughout the years and reached 74.46% in May
2024. On the other hand, the ROA coverage for guard relay IPv6
addresses is much lower. In January 2021, there were only 19.41%
of guard relay IPv6s that had a valid ROA. By the end of May 2024,
the percentage has more than doubled, reaching 43.89%, but still
much lower compared to relay IPv4s. We observe a similar trend in
the bandwidth coverage for both IPv4 and IPv6 guard relays, and
the percentage of guard relay bandwidth covered by ROA for IPv6
guard relays grew more than that for IPv4 guard relays.

Very high ROA valid announcement percentage. The vast
majority of route origins observed in RouteViews data for prefixes

with ROAs are valid (pink squares). On average, more than 90 %
of prefixes covering IPv4 guard relays are valid. In May 2024, this
percentage reaches approximately 92.91%. This is also the case for
IPv6. We then take a closer look at the reasons for invalid cases.
Among all IPv4 announcements from all guard relays, 9.57% of them
have a mismatched ASN, 1.24% have a prefix mismatch and 0.21%
have both a mismatched ASN and prefix. The distribution is similar
for IPv6 guard relays. These mismatches may not necessarily be
attacks, which could also be due to configuration errors.

Few perfectly matched ROA payload. The curve of green
triangles shows the percentage of guard relays with a valid ROA
with a tighter restriction: max length in ROA must equal the prefix
length of the relay. This will force the relay announcement to be
exactly the same as in the ROA database, which can provide an
additional level of security against sub prefix BGP hijacking[55].
This percentage is much lower compared to without the strict
restriction, which is as expected. Both IPv4 and IPv6 curves had a
huge jump in Oct 2021. This is due to a lack of ROA coverage data
for a significant portion of relay prefixes prior to October 2021.

3.2.2 Coverage for All Relays. Figure 7 in Appendix A displays the
same information as Figure 1, but for all Tor relays. We observe the
same trend for all relays for the period from Jan 2021 to May 2024.

3.2.3 ROV Coverage. Table 1 summarizes the ROV coverage statis-
tics for all guard relays using different sources of ROV information.
Due to the difference in sources, we can see the deployment rate
varies, ranging from less than 3% to over 70%. Nevertheless, across
all datasets, we can see that ROV bandwidth coverage is roughly at
the same level with ROV relay coverage.

Takeaway. Our measurement study showcases a growing trend
of ROA coverage for Tor relays, reaching 83.51% of all relays in
May 2024. This observation opens the possibility for clients to
take advantage of the existing RPKI infrastructure by leveraging
the ROA-protected guard relays to defend against route hijacking
attacks. Additionally, while the current ROV deployment is much
lower than ROA, it provides an opportunity to better leverage the
existing ROV deployment to achieve a stronger protection against
the route hijacks. With these insights, we explore the benefit of
considering ROA coverage of relays in the guard relay selection
process in Section 4, and we take a step further to examine the
potential of fully utilizing both ROA and ROV deployment statuses
in the guard relay selection in Section 5.

4 Discount Selection Algorithm
A natural way to defend against route hijacking attacks in Tor
is to make use of the RPKI. It has the advantage of providing
cryptographically-validated information on the validity of pre-
fix/AS pairs (compared to the probabilistic inference in Counter-
RAPTOR), and more importantly, moves away from client location-
aware relay selection which leads to information leakage.

Towards this goal, we propose a simple yet effective Discount
Selection Algorithm to increase the likelihood of choosing a ROA-
covered guard relay. In a nutshell, the consensus weight of non-
ROA-covered guard relays will be discounted. Choosing a ROA-
covered guard relay provides the protection in the case of an attack,
where the attack route will be dropped by ROV-enforcing ASes and
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consequently client traffic is still routed to the correct origin AS.
Furthermore, such scheme may motivate large relay operators to
host relays in ROA-covered prefixes.

4.1 Discount Factor
In vanilla Tor, relays are selected with probability proportional to
the consensus weight, which is determined by the relay bandwidth.
The Discount Selection algorithm applies a discount factor 𝑑 (0 ≤
𝑑 ≤ 1) to the consensus weights for all guard relays. For relays with
ROA coverage, the discount factor will be 1, i.e. the weight remains
the same; for relays without ROA coverage, their consensus weight
is multiplied by a factor of 𝑑 , effectively reducing the probability
that those relays will be chosen. When𝑑 = 1, the Discount Selection
algorithm is exactly vanilla Tor, while when 𝑑 = 0, all clients are
forced to choose ROV-covered relays.

Network load and available relay bandwidth. The Discount
Selection algorithm works well when the Tor network is not fully
saturated. If all relay bandwidth is fully utilized, then there is no
room for shifting traffic to ROA-covered relays without causing
excessive performance degradation. In other words, the appropriate
value for discount factor is affected by the network load in regards
to total relay bandwidth. In the fully saturated scenario, a discount
factor of 1 should be applied.

Distribution of discount factor to clients. Tor directory au-
thorities receive reports of available bandwidth and current capacity
from relays, which are at a natural position to determine the dis-
count factor based on such information, combined with the ROA
status of the relays. Therefore, it is a natural choice for the directory
authorities to update and distribute the discount factor in the hourly
consensus file, e.g., as an additional parameter in the consensus
which will be used by the Tor client code when computing final
weights for guard relay selection.

4.2 Security Evaluation
To measure the effectiveness of the Discount Selection algorithm,
we implement a local python simulation of 1 million randomly-
generated clients performing guard relay selection using the Dis-
count Selection algorithm. Since the discount selection algorithm
is client-agnostic, i.e. it does not depend on inherent client char-
acteristic such as IP address or geographic location, we randomly
sampled 1 million clients with random IP addresses.

4.2.1 Relay Selection. In each simulation run, the client first loads
in the consensus and checks against the ROA database to iden-
tify ROA-covered guard relays. Then, the non-ROA-covered relay
weight is adjusted based on the discount factor. Finally, the proba-
bilistic relay selection is performed similar to vanilla Tor.

4.2.2 Load Balancing. Tor performs load balancing by actively
measuring available relay bandwidth, which is then combined with
relay’s self-reported bandwidth to compute the consensus weight.
In a situation where the relay’s bandwidth is fully saturated by
user traffic, the measured bandwidth will be negatively affected,
which will then result in a lower consensus weight until its traffic
load decreases. Faithfully mimicking such practice will involve
simulation of actual user traffic, which is a task achieved by the
Shadow simulator(we will use it in Section 5.4).

To take into consideration of such load balancing in our light-
weight simulation for security evaluation, we implement a dynamic
load balancing that aims to ensure that the clients can utilize suffi-
cient bandwidth in their selected relays. This is especially important
when the network load is high and relays are nearly saturated, any
shift in relay selection due to the discounted algorithm may result
in a client not getting enough bandwidth.

More specifically, we use the the average bandwidth per relay
per client as the proxy to learn whether a relay may be saturated
and not have sufficient available bandwidth for additional clients.
During client relay selection, the simulation counts the number of
clients in the network and computes the average bandwidth per
relay per client. This number is updated as more clients join the
network and select their relay. If a given client’s share of bandwidth
from its selected relay (i.e., relay bandwidth divided number of
clients who have selected this relay) falls below the overall average,
the client will need to perform relay selection again and select
another relay. The selected, overloaded relay will then reduce its
weights by a factor of the chosen relay’s per client bandwidth
over the network average client bandwidth. This factor takes into
consideration of the current load per relay and is used to balance
each relay’s selection probability based on the number of current
client connections, assuming an even share of bandwidth. As more
and more relays report network overload, eventually all of them
will reduce their weights and but from a network’s perspective, the
weight distribution will stay largely the same as the original. All
weights are scaled down but stay proportionally the same. This
enables the simulation to handle 1 million clients performing relay
selection without worrying about "running out of bandwidth".

Load Factor. As mentioned above, the network load is an im-
portant factor in determining the appropriate discount factor and
in simulating the load balancing across relays. Thus, we introduce
a parameter named load factor 𝑙 (0 ≤ 𝑙 ≤ 1) into the simulation.
This parameter indicates how much total guard relay bandwidth
is utilized. For example, 𝑙 = 0.8 means the guard relay bandwidth
is currently 80% utilized and have up to 20% of its total bandwidth
available. This parameter is between 0 and 1, with 1 indicating
the network is currently fully saturated. In such case, any shift
from the bandwidth-based vanilla Tor relay selection may result
in performance degradation. Based on Tor metrics [4], the actual
load in Tor guard relays (i.e., fraction of consumed bandwidth over
advertised total bandwidth) is around 0.45. In our simulations, we
show results using load factors ranging from 0.3 to 1.

4.3 Results and Analysis
4.3.1 Experiments and Metrics. We run simulations of 1 million
clients performing relay selection using Tor network data from Jan-
uary 01, 2021 to May 31, 2024. To address the inherent randomness,
each simulation is run 100 times and final results are aggregated
over the average. Because the consensus is updated on an hourly
basis, for each month, we used the consensus of the first hour of the
first day for simplicity. To evaluate the effectiveness of the discount
selection algorithm, we use the percentage of clients that choose a
relay with ROA coverage as the evaluation metric.

4.3.2 Client ROA Coverage Rate. Figure 2 shows the percentage
of clients with ROA-covered guard with different discount factors
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when applying the Discount Selection algorithm. We used a dis-
count factor of 0.3 (blue pentagon), 0.5 (orange circle) and 0.8 (green
triangle) to represent high, medium and low discounts, respectively.
We also included vanilla guard selection as a baseline (pink square).
Intuitively, the higher the discount (i.e., lower discount factor), the
better the ROA coverage rate will be, as most clients will be forced
to pick relays with ROA coverage. We can see that with a discount
factor of 0.3 (blue pentagon line), the simulation is able to achieve
more than 80% ROA coverage at all times (reaching above 90% after
November 2022) compared to less than 75% in vanilla Tor.

We also notice a steep increase in the coverage around August
2022. Upon further inspection, an increase of around 80,000 IP
prefixeswith ROA coverage is found. This result is also corroborated
by our relay ROA coverage measurement in Section 3.2, where ROA
coverage increases from 66% in May 2022 to 74.5% in October 2022.

Figure 2: Percentage of clients with ROA covered guard at
different discount value over time

4.3.3 Network Load and Discount Factor. It is important to point
out there does not exist a "best" value for discount factor. It depends
on the subjective goal of load balancing and achieving a balanced
overall network load. In reality, the Tor directory authorities will
learn the network load reported by relays and measurements, and
need to determine the discount factor based on the current load.
Next, we show the effect of various discount factors on the band-
width utilization. Figure 9 in Appendix D shows the expected band-
width utilization under various combinations of initial load factor
and discount factor using the consensus from 05/01/2024 00:00:00.

When initial load is low, it becomes the limiting factor. A
flat line indicates the current network has not achieved its full load
capacity yet. We can see when initial load is lower than 0.8, the
actual load utilization is equal to the initial load factor no matter the
discount applied. This is intuitive since if there is little traffic then
it matters little which discount we applied to relays without ROA
as the relays with ROA are capable of handling all incoming traffic.
This is further validated by Figure 1, where we can see almost 80%
of IPv4 relay bandwidth is covered by ROA on 05/01/2024.

When initial load is high, both discount and load factor
together dictate the network maximum expected utilized
bandwidth. When initial load is much larger, both discount factor
and load factor play a role in the expected bandwidth utilization.
For lines with high initial load (𝑙 > 0.8), we can see there exists a
"kink" in the line in Figure 9. This kink is the effective maximum
throughput and is at the level of the discount factor. This is the best-
case scenario where applying discount has no impact on the total
throughput as vanilla Tor and beyond this point, further discount
will start to reduce network throughput. We can see for when initial
load is at 0.9, the line has a slope when discount is low and turns
flat when discount is at or above 0.4. This suggests the network
is capable of handling all incoming traffic when discount applied
is at or above 0.4. This is consistent with our expectation that the
stronger the discount (lower discount factor), the lower the network
throughput.

Based on the above observations, to fully utilize bandwidth under
a discounted network, it is important to find a discount factor by
considering the network load and discount factor together. For
our next simulation, we choose the smallest discount factor (i.e.,
largest discount) that can still fully utilized bandwidth (i.e., the
"kink" in the line in Figure 9). For simplicity, we will refer to it as
the "optimal discount". We show how such discount factor changes
with different load factors and different Tor consensuses overtime.

Figure 3: Discount factors with various load factors over time

Variation of discount factors. Figure 3 shows the "optimal"
discount factor under various load factors through the three-year
period. We can see that when load factor is low enough (less than
0.5, which is the case in real Tor network), we can adopt a very
small discount factor since we have enough bandwidth for all traf-
fic to select relays with ROA coverage. This can be verified from
Figure 7 in Appendix A, which shows the percentage of bandwidth
covered by ROA for both IPv4 and IPv6. When load factor is low,
the percentage of bandwidth covered by ROA alone is enough to
cover all incoming traffic. On the other hand, when bandwidth is
100% utilized, no discount is possible without overloading the relays.
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Furthermore, the discount factor for the same load factor drops
around August 2022, due to the increase in relay ROA coverage.

The Shadow simulation of the Discount Selection algorithm
results are included in Section 5.4.

Takeaway. The Discount Selection algorithm is a simple yet
effective approach that can be performed by directory authorities to
enable more clients to use ROA-covered relays with very minimal
changes to Tor. Nevertheless, it is important to keep in mind that
there does not exist a "best" discount factor. It is affected by the
number of ROA-covered relays and the current network load. We
show simulation results as a guidance on understanding the effects
on discount factor, but discretion is needed to achieve the ideal
outcome when used in a real-world scenario.

5 Matching Selection Algorithm
The Discount Selection algorithm in Section 4 provides a light-
weight approach by only considering the ROA coverage of guard
relays. However, it’s worth pointing out that to effectively prevent
BGP-hijacking attacks, it is also important that ASes perform ROV
to drop invalid route announcements.

Therefore, to fully utilize the security benefits provided by ROA
and ROV, we propose aMatching Selection Algorithm that considers
both ROA coverage and ROV deployment status. In a nutshell,
the algorithm aims to match pairs of ROA-covered ASes (client or
guard) with ROV-covered ASes (client or guard). Such pairs can
fully utilize ROA through proper ROV and thus achieve a stronger
level of security against BGP-hijacking attacks.

5.1 Methodology
5.1.1 Goal and Overview. Our primary goal is to match ROA-
covered clients with guard relays in ROV-enforcing ASes, and vice
versa. However, the number of ASes that have ROV deployed is
much lower compared to the number of ASes with ROA coverage.
Therefore, it is unrealistic to achieve ROA-ROV matching on all
client-relay pairs, especially when network load is high. Addition-
ally, forcing all traffic through ROV-enforcing relays may introduce
additional vulnerabilities such as guard placement attacks because
the ROV-enforcing relays will have significantly higher probability
of being chosen, which will enable a malicious relay to obtain more
than its fair share of information.

Limitation of Discount Selection algorithm. An intuitive
idea is to improve upon our discount selection algorithm and intro-
duce a second discount factor for non-ROV-enforcing relay. Using
the same methodology, we can discount different categories of ASes
each with a unique combined discount factor, e.g. an AS with ROA
deployed only will be discounted by 𝑑1, an AS enforcing ROV only
will be discounted by 𝑑2, and an AS with neither ROA nor ROV will
be discounted by 𝑑1 · 𝑑2. Recall from Section 4 that the discount
factor is affected by factors such as the network load and relay ROA
coverage, it is significantly more complex here when considering
two discount factors and considering ROA/ROV for both clients
and relays. Therefore, we need to devise a more robust way to de-
termine weights in relay selection to achieve the goal of ROA-ROV
matching of clients and relays while considering network load.

CLAPS framework.CLAPS [54] is the state of the art on location-
aware Tor path selection. In CLAPS, an optimization process acts

as the directory authorities, recalculates relay weights to satisfy
their objective and then distributes the new weights to clients from
specific groups. We adopted the same principle in developing our
matching algorithm with two key differences: (1) Our algorithm
does not require client location and thus is not location-aware; (2)
Our algorithm focuses on guard relay selection and does not alter
the selection algorithm for middle relays and exit relays.

Overview of Matching algorithm. The Matching algorithm
works as follows: the algorithm first categorizes all clients into
four subcategories, with each subcategory denoting a combination
of the client’s ROA and ROV deployment status: ROA-deployed
only, ROV-deployed only, both ROA and ROV deployed and neither
deployed. For each category, the algorithm recomputes a set of
weights for all relays in the network. When clients connect to
the network, the algorithm performs ROA and ROV checking to
identify which subcategory the client belongs to, and then sends
the set of optimized weights for the corresponding subcategory.
Then the client proceeds to the relay selection process as usual.

5.1.2 Weight Computation. Based on our objective, we will frame
the matching problem into a linear optimization problem. First, we
will define a set of reward functions for matching a pair of client and
relay ASes based on their ROA/ROV status. Then our goal is to max-
imize the total reward by performing all clients relay selection and
adding up the individual pair-wise reward. A ROA-ROV matched
pair increases the objective value while a non-matched pair reduces
the objective value by a penalty, which is further differentiated
based on whether ROA or ROV coverage is missing.

To express our objectives more accurately, we define the param-
eters and additional variables used here:
(1) Let 0 ≤ 𝑙 ≤ 1 be the load factor of the current network, repre-

senting the percentage of total bandwidth of the network that is
currently utilized. This value is equivalent to the load factor in
Section 4, which indicates the current network load. We capped
𝑙 at 1 because the assumption of the optimization is that there
is still "unused" bandwidth and there is room for improvement
for currently under-utilized network. If this parameter goes
above 1, it will force the optimization to reduce all bandwidth
for all relays, which will end up producing a worse performance
than what we begin with. This is undesirable and thus the cases
where 𝑙 goes above 1, such algorithm should not be used. Note
that the current guard relay load is around 0.45.

(2) Let 𝜃 ≥ 1 be the maximum factor by which any guard relay’s
selection probability can increase over vanilla Tor. This fac-
tor limits the susceptibility to a relay placement attack and is
commonly set to 5 [65].

(3) Let S = {𝑟𝑜𝑎, 𝑟𝑜𝑣, 𝑏𝑜𝑡ℎ, 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 } be the set of all subcategories
an AS belongs to. Each AS can only belong to one subcategory
at any given time.

(4) Let R be the set of all guard relays and let R𝑠 be the set of guard
relays in subcategory 𝑠 , e.g. R𝑟𝑜𝑎 represents all the guard relays
that have ROA coverage only.

(5) Let 𝑃 (𝑟𝑠𝑟 , 𝑐𝑠𝑐 ) be the penalty/reward function mapping the com-
bination of a relay 𝑟 with status 𝑠𝑟 and a client 𝑐 with status 𝑠𝑐 .
This penalty/reward is directly applied after a client 𝑐 has cho-
sen relay 𝑟 and the client-relay pair has been formed. To better
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illustrate the distribution, we list all possible 16 combinations
below:
(a) The pair is perfectly matched both ways. Both client and

relay are both ROA-covered and ROV-covered.
(b) The pair is matched but not both ways. This includes the

following cases:
(i) Client has both ROA and ROV coverage but relay is

only ROA-covered and vice versa.
(ii) Client has both ROA and ROV coverage but relay is

only ROV-covered and vice versa.
(iii) Client has ROA coverage only and relay has ROV

coverage only and vice versa.
(c) The pair is not matched. This includes the following cases:

(i) Client has ROA coverage only and relay has ROA
coverage only. Vice versa.

(ii) Client has ROA coverage only and relay has neither
ROA nor ROV coverage. Vice versa.

(iii) Client has ROV coverage only and relay has ROV
coverage only. Vice versa.

(iv) Client has ROV coverage only and relay has neither
ROA nor ROV coverage. Vice versa.

(v) Client has neither ROA nor ROV coverage and relay
has neither ROA nor relay coverage either.

Reward/Penalty structure. To quantify the reward/penalty,
we use two discount factors for missing ROA coverage and miss-
ing ROV coverage, respectively. For an AS missing both ROA
and ROV coverage, we simply multiply the two discount fac-
tors to obtain a smaller discount value, i.e. more penalty. Then
to find the reward/penalty for a client-relay pair, we simply
multiple each AS’s reward/penalty together to find the final re-
ward/penalty. Note here, the discount value for missing ROA is
smaller than that of missing ROV, i.e. missing ROA is penalized
more than missing ROV, since we value missing ROA coverage
is more serious than missing ROV coverage.
Since our objective is to find as many ROA-ROV matched
client relay pairs as possible, this dictates that the reward for
a matched pair should always be higher than that of a non
matched pair, no matter which case they each belong to. How-
ever, using only two discount factors may produce edge cases.
Consider the two following pairs: (a) a ROA and ROV cov-
ered client with a non-ROA, non-ROV relay; (b) a ROA-only
client with a ROV-only relay. Pair (b) is clearly more desirable
than pair (a) since we successfully matched pair (b) but reward-
wise, both pairs share the same penalty. Therefore, to maintain
consistency across pairs while achieving the original goal, we
introduce a third variable calledmatching bonus. The bonus
is applied to a pair whenever the pair is matched, no matter if it
is a perfect match. This will make the reward structure strictly
decreasing in the order of a perfect match, a match with missing
ROV, a match with missing ROA, a non match missing ROV, a
non match missing ROA and finally, a non match missing both.
It is worth pointing out that either a positive (reward) or nega-
tive (penalty) function works here. If the function is all negative,
the objective becomes finding the minimal penalty instead of
maximal reward. In the rest of this section, we refer to the
function as the reward function.

(6) Let 𝑤𝑟,𝑠 denote the weight for relay 𝑟 when paired with a
client with status 𝑠 . It is important to point out here that 𝑠 in
the notation refers to the client status, NOT the relay status
and𝑤𝑟,𝑠 will be the variable the linear program optimizes.

(7) Let 𝑏𝑟 denote the bandwidth for relay 𝑟 . The bandwidth is
the original value recorded in the consensus file and is fixed
throughout the optimization.

(8) Let𝑇𝑠 be the percentage of clients in the Tor network that have
status 𝑠 , e.g. 𝑇𝑟𝑜𝑎 represents the percentage of clients in the Tor
network that have ROA coverage only. The value of 𝑇 ’s is also
fixed throughout the optimization.
All weights are normalized. To better formalize our goals,

we express all original weights and optimized weights in normal-
ized form. A byproduct of such normalization is that we can use
the normalized weight directly as the probability of a relay being
chosen. Another way to interpret our objective is to maximize the
weighted average of reward function over all possible relay and
client ROA/ROV statuses. This means the weight not only depends
on the normalized probability but also the client distribution.

5.1.3 Objective Function. Now we can express all our goals in a
linear program. Our primary objective is to maximize the cumula-
tive reward from client relay selection. Our secondary goals can
be expressed as constraints in the linear program: (a) We want
to maintain a load-balanced network. This constraint is two-fold.
Individually, no single relay should take on more traffic than its
maximum bandwidth allowed; globally, the entire network should
not take on more traffic than its bandwidth. (b) The network should
remain 𝜃 -GP secure. No single relay should have more than 𝜃 times
advantage of being selected compared to that in vanilla Tor.

max
∑︁
𝑠∈S

∑︁
𝑟 ∈R

𝑤𝑟,𝑠𝑃 (𝑠𝑟 , 𝑠𝑐 ) (1)

subject to ∀𝑠 ∈ S
∑︁
𝑟 ∈R

𝑤𝑟,𝑠 = 1 (2a)

∀𝑟 ∈ R
∑︁
𝑠∈S

𝑇𝑠𝑤𝑟,𝑠 ≤
𝑏𝑟

𝑙
(2b)

∀𝑟 ∈ R
𝑤
𝑟,𝑠∑

𝑟 ∈R
𝑤𝑟

≤ 𝜃𝑤
′
𝑟∑

𝑟 ∈R
𝑤

′
𝑟

(2c)

Our linear program (1) expresses our main objective. We sum
over all the rewards for all relays for all combinations of subcat-
egories and its matched client subcategories. Equation (2a) is the
global load constraint. We make sure the sum of all weights for all
relays within each subcategory should not exceed network load.
We want to fully utilize all relays under every subcategory without
overloading the global network. Since we are using normalized
weights, the network load is simply 1. Equation (2b) bounds the
individual relay weight by mandating that its weights, summed
over all four subcategories, should not exceed its maximum allow-
able weight, which is calculated by its bandwidth divided by the
load factor. Here we need to use the client distribution as the prob-
ability instead of relay distribution. This means that the overall
weighted average is a weighted average of relay weights averaged
on client coverage distribution. Finally, equation (2c) enforces the
guard placement constraint that no single relay should have more
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than 𝜃 times the probability of being chosen compared to vanilla Tor.
This is equivalent to limiting the optimization (weighted) weight
to not exceed 𝜃 times the normalized weight, for all relays.

One optimization for all four subcategories. One crucial
question is to whether run one optimization using all relays for all
clients or run four optimizations, each using all relays for only a
subcategory of clients. Since the same relay is valued differently
by different clients based on their own ROA and ROV status, the
weights distribution will be different from subgroup to subgroup.
Intuitively, four optimizations is reasonable. Nevertheless, given the
constraint (2a) and (2b), each relay’s weight under one subcategory
of clients is dependent on its weight under the other subcategories
of clients as they share a global cap. Therefore, it will be inappro-
priate to run separate optimizations despite the potential runtime
speedup. Instead, the optimization takes four times number of re-
lays as input variables, with each quarter representing the set of
relays’ weights under a subcategory of clients and the optimization
optimizes all relays weights simultaneously for all subcategories.

5.2 Client Generation and Parameters
5.2.1 Difference in Client Distribution between Discount Selection
Algorithm and Matching Selection Algorithm. A crucial difference
between the Discount Selection algorithm and the Matching Selec-
tion algorithm is whether clients are status-agnostic. In Discount
algorithm, no matter which ROA and ROV status a client has, it
performs the same relay selection process. Therefore, it suffices
to randomly assign IP addresses to clients for the client genera-
tion step. Nevertheless, the same process cannot be applied when
simulating Matching algorithm simply because randomly assign-
ing client IP addresses may produce a sample ROA/ROV status
distribution that is not representative of the global ROA and ROV
distribution of the real Tor clients and can skew our results.

5.2.2 Client Generation. To generate a list of clients that mimic the
distribution of real Tor clients, both in geography and ROA/ROV sta-
tus, we obtain Tor user distribution by country from Tor Metrics [3]
and for each country, identify all ASes that are geographically lo-
cated in it by extracting the Inferred AS to Organization Mapping
Dataset from CAIDA [1]. Then, for each AS, we obtain all prefixes
it controls using the RouteViews data. Finally, we check each prefix
against the ROA and ROV database and tally up the number of
IP addresses under each prefix for all ASes in a country to obtain
that country’s ROA and ROV status distribution. Combined with
the geographic distribution, we now have a global ROA and ROV
distribution by country.

To generate a client, we first randomly assign its country using
the Tor user distribution by country data. Then within that country,
we randomly assign its ROA and ROV status using that country’s
ROA and ROV distribution. Since the Matching Selection algorithm
only requires a client’s ROA and ROV status, this enables us to
completely bypass the client AS and IP generation and provides a
significant speedup to the overall simulation.

5.2.3 Parameters. In this subsection, we discuss our choice of pa-
rameters used in the simulations.

(1) 𝜃 , the maximum factor by which any guard relay’s selection
probability can increase over vanilla Tor, is set to 5, follow-
ing common practice [65] to reduce the susceptibility to relay
placement attacks.

(2) 𝑙 , the initial load factor, is set to 0.8. This parameter is cho-
sen statistically. As discussed in Section 4, the discount factor
only comes into effect when there is high enough initial traffic
volume. The same principle applies to the reward structure.
Setting this parameter to 0.8 provides us: (a) initial high traffic
volume so our reward structure can influence the relay selection
process; (b) a more dynamic simulation as our dynamic load
balancing will be active more frequently and client churn will
be more impactful. It can be changed to other values to adopt
to custom network loads.

(3) The penalty/reward structure, denoted as 𝑑1, 𝑑2 and 𝐵, repre-
senting the discount factor for missing ROV, discount factor for
missing ROA and the matching bonus respectively. From the
discussion in section 5.1.2, we know that (a) the penalty for miss-
ing ROA is more severe than missing ROV, i.e. 0 ≤ 𝑑2 < 𝑑1 ≤ 1;
(b) the matching bonus must be positive, i.e. 𝐵 > 1. Addi-
tionally, the strictly decreasing reward structure dictates that
𝑑1 ·𝑑1 < 𝐵 ·𝑑2 < 𝐵 ·𝑑1 < 𝐵. Solving for 𝑑2 gives 𝑑1 ·𝑑1

𝐵
< 𝑑2 < 𝑑1.

This inequality puts a further lowerbound on 𝑑2 in terms of 𝑑1.
We experimented on various combinations of 𝑑1, 𝑑2 and 𝐵 with
varying load factors and examined the matched rate under each
specific parameters combo, and the matched rate improvement
compared to vanilla Tor. All simulations were on the same set
of 1 million clients generated using the method described in
section 5.2.2. The detailed results are in Appendix B.
From the results, we can observe that with a given load factor,
the impact of different reward structure on matched rate is
limited, percentage-wise. However, given the 1 million client
base, a 0.0001 difference still translates to 1000 more matched
client-relay pairs. Overall, we find a combination of 0.9-0.7-
1.5 reward structure provides the best matched rate as well as
improvement in matched rate, under various load factors.
For the rest of the paper, unless otherwise specified, we used
the following set of parameters: 𝑙 = 0.8, 𝜃 = 5, 𝑑1 = 0.9, 𝑑2 = 0.7
and 𝐵 = 1.5.

5.3 Security Evaluation
To measure the effectiveness of the Matching Selection algorithm,
we perform simulation of 1 million randomly-generated clients
performing guard relay selection, using the method described in
section 5.2.2. For each case, 100 runs of 1 million clients selecting
guard relays is performed using our Matching algorithm and vanilla
Tor guard relay selection. The same set of clients and the same
consensus from 2024-05-01 00:00:00 is used for all simulation runs.

Multiple sources of ROV deployment status. As we have
shown in Table 1 in Section 3.2, the numbers of ROV deployment
varies significantly from different sources. The ROV deployment
monitor shows the lowest ROV deployment rate (<3%), which was
last updated several years ago. On the other hand, MANRS case 2
shows the highest ROV deployment rate (close to 70%) due to the
inclusion of all unknown cases, which is meant to serve as an upper
bound of ROV-enforcing ASes.
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In our simulation, we consider all these five sources of ROV
deployment status and show how the percentage of ROA-ROV
matched pairs varies based on the ROV deployment status.

5.3.1 Results. Figure 4 shows the comparison in ROA-ROV match
rates between vanilla Tor (blue bar on the left, before optimization)
andmatching algorithm (orange bar on the right, post optimization).

Overall, the optimization is highly efficient, significantly boost-
ing matched rates in all cases. Nevertheless, the degree of the im-
provement varies from case to case. The cases where there are lower
pre-optimization rates leave more room for improvement and tend
to benefit more compared to cases where there is already a high
initial match rate. Furthermore, the match rate is heavily affected by
the number of ROV-deployed ASes, especially when the ratio is low.
This is evident from the rapid increase from base (ROV monitor)
to RoVISTA. However, while Hlavacek and MANRS-case-2 include
more ASes as ROV-deployed ASes, the increase in match rate is
not significant. This is potentially due to the limited Tor bandwidth
in those additional ASes, which does not provide a significantly
higher amount of additional ROV-deployed bandwidth to match.

Figure 4: Percent of relay-client pairs with matched ROA &
ROV

Takeaway. The matching algorithm results in multifold increase
in the percentage of ROA-ROV matching between clients and re-
lays, which provides a stronger protection against route hijacks
compared to the discount algorithm (ROA only).

5.4 Performance Evaluation
To further measure the scalability and efficiency of our Matching
algorithm, we implement the algorithm into Tor code and run a
large scale simulation using the Shadow network simulator [33].
Shadow is widely used in the network research community and is
highly regarded as a scientific way for Tor network traffic analysis
due to its faithful simulation of various network conditions. All our
Shadow simulations are performed on a 16-core virtual machine
with 450 GB of ram and 500 GB of disk, running Ubuntu 22.04 on
the FABRIC testbed [11]. All simulations are run with the baseline
parameter described in section 5.2.3. Each configuration is run
10 times to account for randomness in the simulation [34]. All
simulations is running Tor 0.4.8.9. For simulation purposes, the

modified Tor client will load in the new weights computed by the
optimization based on its ROA and ROV status. In a real world
scenario, there will be no changes required from clients as all the
entire process is computed internally at the directory authorities.
See detail discussion in section 6.3.

ROV deployment status. For Shadow simulation, we choose
to use the RoVista ROV database given its completeness of the mea-
surement, which shows 37% of relays and 33.5% of relay bandwidth
is ROV-covered according to Table 1 . Furthermore, the incremental
benefit of match rate is limited even when using the other two
larger ROV lists compared to RoVISTA.

5.4.1 Simulation Setup. Following the model from [35], we staged
all relay information using consensuses, server descriptors from
May 2024. We also used Tor user-country data in the staging pro-
cess. For simulation, we generated 10% scale of the Tor network,
involving 719 relays and 75234 Tor clients. Clients are generated
using Tgen processes as detailed in [35]. Simulation is performed as
data transfer between Tgen instances such as simulation of a client
transferring data from/to a relay. We have expanded the Tgen in-
stances to run various data transfer sizes which include: 1MB, 5MB,
10MB, 50MB and 100MB, with the larger file sizes transfer having
less probability, consistent with the probability observations from
[36]. Note that this scale is magnitudes larger than the scale used in
CLAPS [54], which uses 2,400 Tor clients and 250 relays. There are
significantly more Tor clients in our simulation, as recommended
in the latest Shadow study [35].

5.4.2 Simulation Results. The most important consideration in
performance evaluation is whether running our algorithm will
cause any significant performance degradation in latency compared
to vanilla Tor. Therefore, we focus on the metric time-to-last-byte,
i.e., the time it takes between a client initiates a connection and it
receives the last byte from the connection.

Figure 5 shows the time to last byte received for ten simulations
of a 10% scale of Tor network running the vanilla guard selection,
our discount selection algorithm and our matching selection algo-
rithm for selected sizes of data transfer(1MB, 10MB and 100MB).
Additional results including 5MB and 50MB transfers are in Appen-
dix F. This result is roughly comparable to the performance reported
in CLAPS [54], which uses a much smaller simulation scale and
shows a data size of 2MB (Figure 5a shows 1MB). In particular, our
client-relay ratio (100:1) is significantly larger than CLAPS’ (10:1).
For larger data size of 100MB (Figure 5c), there is a noticeable gap
between vanilla Tor and the matching algorithm, where the load
time is 6.5 seconds slower on average for the matching algorithm
compared to vanilla Tor, which takes an average of 31 seconds.
However, the median load time for the matching algorithm is 15
seconds slower than vanilla Tor. The differences in both average
and median load times indicate that for large data loads, the perfor-
mance is much more volatile for the matching algorithm and the
performance degradation may be worse for certain clients.

On the other hand, there is no noticeable difference between
discount and vanilla Tor, even for large transfer sizes of 100MB.

One keynote worth pointing out here is that the results above are
purely evaluating time to last byte received for large transfers and
is not indicative of the overall network slowdown. As explained in
[36], the probability of large file transfers decreases significantly as
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(a) Time to last byte received - 1MB (b) Time to last byte received - 10MB (c) Time to last byte received - 100MB

Figure 5: Simulation running vanilla vs discount vs matching for selected byte size transfers

transfer size increases. After considering the probability of different
file size transfers occurring, an average client is only 1.8 seconds
slower running our matching selection algorithm compared to
vanilla Tor, out of an average of 12 seconds for all file transfers.

Additionally, we evaluate using other metrics such as circuit
round trip time, client transfer goodput and relays goodput (see
Appendix E). In particular, the results suggest that there is no no-
ticeable difference in client and relay goodput between vanilla Tor
and our discount and matching algorithms. For circuit build time
and round trip time, there is negligible difference between vanilla
Tor and discount selection algorithm and minor difference between
vanilla Tor and matching selection algorithm. We find this gap
reasonable as matching selection algorithm prefer matched relays,
not necessarily the fastest relays. Quantitatively, this gap is 0.057
seconds (5.3%) slower for circuit build and only 0.0091 seconds
(2.4%) slower for circuit round trip time.

Takeaway. Our large scale Shadow simulation shows no differ-
ence in data transfer time between vanilla Tor and the discount
algorithm. There is minimal difference between vanilla Tor and
the matching algorithm for smaller data transfer sizes (e.g., 10MB),
comparable to algorithms evaluated in the state-of-the-art CLAPS.
On the other hand, the difference becomes more significant for
larger sizes (e.g., 100MB), which usually occur less frequently and
have not been evaluated in any prior work.

6 Deployment Considerations
To deploy either the discount relay selection algorithm or thematch-
ing relay selection algorithm, changes need to be made to the Tor
network. Note that there is no change required for Tor clients in
either algorithm, making it easier to deploy. All changes will be
made to the Tor Directory Authorities.

For the discount algorithm where relays without ROA will be
assigned a discounted weight, the only change that Directory Au-
thorities need to make is to monitor relay ROA status and apply
discount to the weight distributed in the consensus accordingly.
This is a relatively lightweight and straightforward process.

Thematching algorithm, on the other hand, is more sophisticated
and requires additional changes for the Directory Authorities. The
Directory Authorities need to monitor relays’ ROA/ROV status, run
the weight optimization process, and check the client ROA/ROV
status and distribute the corresponding set of optimized weights.

From a client’s perspective, it will perform relay selection the same
way as vanilla Tor, only using a different set of weights, while the
entire optimization process is completely hidden from clients.

6.1 Client Churn
A realistic consideration is the Tor client churn. Every day, tens
of thousands of Tor clients [44] connect to or drop from the Tor
network. Such churn may impact the effectiveness of relay selection
algorithms that rely on client information (e.g., ROA/ROV status).
Simulations of static clients performing relay selections may fail
to capture this dynamic process. To address this concern, we first
quantify the churn on client ROA/ROV distribution—the essential
property to the matching algorithm—resulting from client churn on
a daily basis. We then modify our simulations to incorporate such
daily changes. Note that the discount algorithm is client-agnostic,
therefore client churn will not impact the relay selection process.
Our evaluation below will focus on the matching algorithm, where
client churn directly changes the client ROA and ROV distribution
and therefore affecting the selection process.

Quantifying client ROA/ROV churn. Since we do not have
data on hourly influx and outflux of Tor clients, we use daily ge-
ographic distribution of Tor clients obtained from Tor metrics to
model the daily client churn, from January 2024 to April 2024. We
choose a four-month period because of the frequency of guard relay
selection performed by clients (i.e., every 3-4 months). For each
day, we compute client ROA and ROV distribution based on the
geographic distribution using the same methodology outlined in
Section 5.2. The results show that client ROV distribution stays
steadily at the same level while client ROA distribution exhibits
minor fluctuations within the four-month window. We show the
detailed graph in Appendix C.

Incorporating client churn into simulation. We simulate
1 million clients performing relay selection using the Matching
Selection algorithm from January 1, 2024 to April 30, 2024, with
the impact of client churn. We assume once a client finishes the
relay selection process, it will keep using the same guard relay
for four months before it performs guard relay selection again, as
specified in the current Tor design [9]. All clients—generated based
on client distribution on Jan 1—will perform guard relay selection
using the matching algorithm. Then for each following day X, we
compute the delta between client ROA/ROV distribution on day X
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and client ROA/ROV distribution on day 𝑋 − 1. Based on the delta,
we generate new clients to categories that increase while removing
clients from categories that decrease. After adjusting the clients,
only new clients will perform relay selection as existing clients will
keep using the guard relays they previously selected. New clients
will choose relays based on optimized weights newly computed
from the latest consensuses. The dynamic load balancing is in place
that records relay selections for clients from the prior days and only
load balance new clients to prevent overloading. Figure 6 displays
the matched rate with and without considering churn.

Figure 6: Matched rate with and without churn

Matched rate with churn is slightly lower than without
churn. From the graph, we can observe that the matched rate with
churn is usually lower than without churn. Depending on the client
distribution, difference between the two matched rates averages
around 3.15%, with maximum difference being 10.29% on January
11 and minimum difference being 0.9% on March 23.

Discussion on ROA/ROV status change for the same client.
Clients may change locations and/or network configurations that
results in the change of their AS, which in turn changes their ROA
and ROV status. A potential outcome is that the client continues us-
ing a guard relay that no longer forms a ROA-ROV client-relay pair.
Since our matching selection algorithm requires no modification
to the Tor client and all procedures are performed on the directory
authorities, we cannot force clients to re-perform the guard selec-
tion process and even if we do, this could lead to other security
implications. Due to the limited measurement data on Tor clients
switching ASes, our simulation could not capture this dynamic. We
instead focus on measuring global client ROA/ROV distribution
changes to gain a high-level understanding of the effect of hav-
ing clients entering and leaving Tor. In deployment, the client will
continue using its previously chosen guard relay until it is time to
select another guard, even if the client changes location and loses
the protection by using the same guard. This behavior is consistent
with the current Tor client. This limitation due to client mobility
affects our matching algorithm as well as other relay selection al-
gorithms that rely on client information [12, 54, 61]. However, the
limitation does not affect our discount relay selection algorithm
that is independent of any client information.

A potential leakage introduced by client churn is when an ad-
versary observes an unmatched client relay pair, she/he may be
able to infer (with certain probability) the ROA/ROV status of the
previous AS location of the client based on the ROA/ROV status of
the currently selected guard relay. Such information is very coarse
and does not reveal the specific AS or relay directly. Even though
the possibility of an attack using such leakage information may be
remote, we address this potential leakage as it is possible that some
future changes in the ROA/ROV distributions may result in a very
small set of ASes in a given ROA/ROV category, in which case the
information leakage increases as the set size decreases.

6.2 Scalability and Feasibility
To understand the scalability and feasibility of the relay selection
algorithm, we measure the runtime of a single iteration of opti-
mization process on 1 million clients to make sure it is realistic
for Directory Authorities to finish the process within a reasonable
time. The runtime is measured by running Python 3.10 on a Ubuntu
22.04 machine with 8 cores and 16GB of memory. We breakdown
all subprocesses by the frequency they should be run with.

Daily routines include updating the ROA and ROV databases, IP
to ASN dataset, and client distribution based on Tormonitoring data.
The loading time for these datasets in our Python simulation takes
about 400 seconds in total. In addition, ROA and ROV checking
for the daily client distribution need to be performed, which takes
an estimate of 4500 seconds for 1 million clients. Additionally, the
ROV database can be updated less frequently given its slow change.
It is worth pointing out that the current implementation checks
every client’s ROA and ROV, which can be further optimized by
recording old client ROA/ROV status with churn information to
skip partial checking and speedup the process for the next day.

Hourly processes to generate the new consensus weights include
calculating relay ROA and ROV distribution based on latest relay
information (3.58 seconds) and solving the linear optimization (2.10
seconds). The daily steps take less than 6 seconds in total and
may vary slightly based on the ROA/ROV distributions. The linear
optimization step is deterministic. As long as the same overall client
and relay ROA/ROV distribution is used, it will always produce the
same set of updated weights and there will be no conflicts among
directory authorities.

7 Related Work and Discussion
We discuss prior works and the advantages and limitations of our
approach. We also discuss potential expansion of our algorithms.

7.1 Prior Works
Many prior works have proposed path selection algorithms for Tor
to improve security or performance [7, 8, 10, 12, 13, 26–28, 39, 43,
48, 50, 53, 54, 57, 58, 61, 61, 63, 66].

Tor relay selection algorithms against BGP attacks.Counter-
RAPTOR [61] is the first work that defends against active BGP
attacks by choosing guard relays located in ASes that are more
resilient (i.e., less likely to be affected) by BGP attacks. DPSe-
lect [28] improves Counter-RAPTOR by employing differential
privacy to limit the privacy loss on client location information
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leakage. CLAPS [54] improves location-aware relay selection algo-
rithms broadly, including Counter-RAPTOR, by grouping clients
by location masks to limit information leakage on client locations.
Clients obtain relay weights from the group they belong to and
perform relay selection as vanilla Tor. One drawback of CLAPS is
that relays need to be grouped prior to the linear optimization and
this approach adds an extra layer of computation overhead and
intransparency to the already complicated relay selection process.

Other Tor relay selection algorithms. Path selection algo-
rithms may be location-aware [12, 26, 28, 37, 39, 43, 48, 61] and
not location-aware [10, 53, 58]. Not location-aware algorithms run
without depending on a client’s location and therefore are immune
to client location information leakage. However, location-aware
path selection algorithms, on the other hand, rely on client location
and thus leak client information that may lead to deanonymization
attacks. Theymay also be subject to relay placement attacks. Finally,
selection algorithms that deviate from bandwidth-only algorithms
may be subject to performance downgrade.

Defenses against BGP hijacks.Many works have been done
to address BGP hijacks in various directions, such as BGP moni-
toring [17, 18, 49, 56], RPKI [21, 29–31, 40, 45], and new Internet
architecture [16, 46, 67]. These additional secure routing solutions
may also be integrated with Tor to provide protections against other
forms of routing attacks.

7.2 Advantages of Location-unaware Relay
Selection

Our discount algorithm is completely independent of any location
or other information of the Tor clients. Therefore, it is free of any
information leakage resulting from the biases in relay selection. Yet,
it still provides a certain level of protection against route origin
hijacks. On the other hand, although the matching algorithm could
potentially leak information on the ROA/ROV status of the Tor
client AS, the leakage is minimal compared to location-aware relay
selection algorithms even with the clustering approach in CLAPS
[54] and the differential privacy approach in DPSelect [28]. Further-
more, despite using a similar optimization framework, the matching
algorithm improves upon CLAPS [54] by completely eliminating
the clustering step, and takes advantage of the nature of ROA and
ROV statuses to spread out the grouping cost into client ROA and
ROV checking. By performing simple client ROA and ROV check-
ing, it avoids imposing significant burden on server. Additionally,
the Matching algorithm does not require clients to connect to fixed
directory authorities like CLAPS do, as each directory authority is
capable of perform ROA and ROV checking, which can significantly
improve network fault tolerance.

7.3 Limitations and Future Integration
While integrating ROA/ROV is a simple yet effective way to de-
fend against route origin hijacks in Tor, it only provides protection
against origin hijacks, where an AS falsely claims itself as the origin
of a prefix. It does not prevent routing attacks where the adversary
prepend (a path to) the legitimate prefix owner’s ASN to the an-
nouncement, which will bypass the origin check given that the last
hop is the legitimate ASN. However, such circumvention methods
make the AS path longer and less likely to be selected.

How the system can be adapted with additional secure
routing solutions.. While we choose ROA/ROV—given their read-
ily deployed status—to demonstrate the effectiveness of integrating
secure routing solutions, additional secure routing solutions may
be integrated in the future to prevent routing attacks beyond origin
hijacks. We discuss some of the existing defenses and discuss how
they can be integrated with our approach to provide additional
protections against other routing attacks. We categorize them into
three types: (1) BGP monitoring on paths to relays: Prior works
have demonstrated the feasibility of monitoring prefixes covering
Tor relays [61]. We can extend such monitoring to include the last
three hops of paths involving Tor prefixes, and adopt the route
age heuristics [14] to compute how long the path (last three hops)
had been seen to the prefix. If the path had never been observed
previously, then it is an indicator of potential attack that warrants
further investigation. Such live monitoring is helpful in flagging
attacks as they occur instead of prevention; (2) BGP path valida-
tion: Multiple approaches have been proposed to validate the path
instead of only the origin, such as BGPSec [41] and Path-End Val-
idation [23], despite not being deployed yet. Our relay selection
algorithm can be adapted to incorporate information from such
path-validation mechanisms. For example, the weight computation
can factor in whether there exist Path-end records (Path-end valida-
tion [23]) from the AS of a relay, or whether the ASes on the path
between client and relay perform BGPSec; (3) New Internet archi-
tecture: Contrary to the inherent routing insecurity in BGP, new
Internet architectures such as SCION [46] provide routing security
by design. SCION has been deployed with ISPs such as the Swiss
Secure Finance Network [59]. As SCION expands its deployment
to enable access to more ISPs and coverage of more Tor relays, one
factor in assigning weight could be whether the relay and client
have access to the SCION network. Meanwhile, techniques such as
SBAS [16] can be utilized to gain access to SCION through tunnel-
ing for end hosts that are not part of the SCION network. Note that
SCION operates on publicly available federated networks, which
alleviates the concern that users may be exposed to a central entity
by routing traffic through SCION.

8 Conclusion
In this paper, we develop new Tor guard relay selection algorithms
to defend against route origin hijacks by leveraging advances in
RPKI. By incorporating ROA and ROV information into the relay
selection process, our Discount Selection algorithm and Matching
Selection algorithm both lead to higher overall ROA and ROV cov-
erage rate for guard relays selected by Tor clients. Our approach
sheds light on developing location-unaware relay selection algo-
rithms to achieve similar goals as location-aware relay selection
algorithms, with the added benefit of avoiding information leakage
on client locations.
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Appendix A ROA Coverage for All Tor Relays
This appendix shows the ROA coverage information for all Tor
relays for the period between January 2021 and May 2024.

Figure 7: ROA Coverage and Validity for All Tor Relays

Appendix B Matching performance under
different parameter combinations

This table displays the matched rate and improvement (compared
to vanilla Tor) under various parameter combinations.

𝑙 𝑑1 𝑑2 𝐵 Matched Rate Δ Matched Rate

0.8 0.9 0.8 1.5 0.5619 0.4022
0.8 0.9 0.7 1.5 0.5621 0.4022
0.8 0.9 0.6 1.5 0.5422 0.3826
0.8 0.8 0.7 1.5 0.5613 0.4013
0.8 0.8 0.6 1.5 0.5618 0.4019
0.8 0.7 0.6 1.5 0.5618 0.4025
0.6 0.9 0.7 1.5 0.6845 0.5248
0.6 0.8 0.6 1.5 0.6841 0.5247
0.8 0.9 0.8 2.0 0.5616 0.4016
0.8 0.9 0.7 2.0 0.5615 0.4018
0.8 0.8 0.7 2.0 0.5618 0.4023
0.8 0.8 0.6 2.0 0.5619 0.4021

Appendix C Client ROA/ROV Churn
This appendix displays the client churn in terms of ROA and ROV
distribution for the period from January 1, 2024 to April 30, 2024.

Figure 8: Clients ROA & ROV distribution

Appendix D Bandwidth utilization under
different discount and load

This appendix displays the expected actual bandwidth utilization
under various combinations of discount and load factors. The ex-
pected bandwidth utilization is calculated as the percentage of the
sum of all updated consensus weights (after discount) for selected
relays out of the sum of original weights for all relays. Therefore,
the baseline (when 𝑑 = 1) is not a straight 45 degree line, instead it
is a skewed line starting at the point where initial load and actual
load are both 1 with the slope being the percentage of sum of band-
widths of those relays with ROA. It is important to point out that
the x-label is discount factor, while each line represents an inherent
initial load factor.
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Figure 9: Expected bandwidth utilization given specific load
and discount factors, using consensus from May 01, 2024

Appendix E Additional Shadow simulation
results

This appendix displays various metrics for evaluating Shadow sim-
ulations using various guard relay selection methods. The metrics
included here are circuit round trip time, circuit build time, relay
goodput and client goodput.

Figure 10: Circuit round trip time (s)

Figure 11: Circuit build time (s)

Figure 12: Relay goodput (Gbit/s)

Figure 13: Client goodput (Mbit/s)

Appendix F Time to last byte received for all
file transfers

This appendix displays the last byte received for all byte size trans-
fers, including 1MB, 5MB, 10MB, 50MB, 100MB.
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(a) Time to last byte received - 1MB (b) Time to last byte received - 5MB (c) Time to last byte received - 10MB

(d) Time to last byte received - 50MB (e) Time to last byte received - 100MB

Figure 14: Simulation running vanilla vs discount vs matching for different byte size transfers
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