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Abstract
DP training pipelines for modern neural networks are iterative

and generate multiple checkpoints. However, all except the final

checkpoint are discarded after training. In this work, we propose

novel methods to utilize intermediate checkpoints to improve pre-

diction accuracy and estimate uncertainty in DP predictions. First,

we design a general framework that uses aggregates of interme-

diate checkpoints during training to increase the accuracy of DP

ML techniques. Specifically, we demonstrate that training over ag-

gregates can provide significant gains in prediction accuracy over

the existing state-of-the-art for StackOverflow, CIFAR10 and CI-

FAR100 datasets. For instance, we improve the state-of-the-art DP

StackOverflow accuracies to 22.74% (+2.06% relative) for 𝜀 = 8.2,

and 23.90% (+2.09%) for 𝜀 = 18.9. Furthermore, these gains magnify

in settings with periodically varying training data distributions. We

also demonstrate that our methods achieve relative improvements

of 0.54% and 62.6% in terms of utility and variance, on a proprietary,

production-grade pCVR task. Lastly, we initiate an exploration into

estimating the uncertainty (variance) that DP noise adds in the

predictions of DP ML models. We prove that, under standard as-

sumptions on the loss function, the sample variance from last few

checkpoints provides a good approximation of the variance of the

final model of a DP run. Empirically, we show that the last few

checkpoints can provide a reasonable lower bound for the variance

of a converged DP model. Crucially, all the methods proposed in

this paper operate on a single training run of the DP ML technique,

thus incurring no additional privacy cost.
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1 Introduction
Machine learning models can unintentionally memorize sensitive

information about the data they were trained on, which has led

to numerous attacks that extract private information about the

training data [7, 20–22, 40, 41, 74]. To address such privacy risks,

literature has introduced various approaches to privacy-preserving

ML [61, 73, 81]. In particular, iterative techniques like differentially

private stochastic gradient descent (DP-SGD) [3, 12, 56, 77] and DP

Follow The Regularized Leader (DP-FTRL) [48] have become the

state-of-the-art for training DP neural networks.

The accuracy-variance trade-off is a central problem in machine

learning. By accuracy, we mean the primary evaluation metric of

a model on train/test data, e.g., accuracy for CIFAR10 and Stack-

Overflow, and AUC-loss (i.e., 1 - AUC) for pCVR. Techniques like

DP-SGD and DP-FTRL involve the operation of per-example gradi-
ent clipping and calibrated Gaussian noise addition in each training

step, which makes this trade-off even trickier to understand in DP

ML [78]. In this work, we propose using checkpoints (i.e., interme-

diate model iterates) to improve on both fronts of the problem.

Our contributions at a glance: First, we design a general frame-

work that (adaptively) uses aggregates of intermediate checkpoints

(i.e., the intermediate iterates of model training; see Definition 2.3)

to increase the accuracy of DP ML techniques. Next, we provide a

method to estimate the uncertainty (variance) that DP noise adds

to DP ML training. Crucially, we attain both these goals with a
single training run of the DP technique, thus incurring no addi-

tional privacy cost (ignoring the cost of hyperparameter tuning;

see Section 3.3).

We emphasize that improved accuracy and uncertainty estima-

tion are complementary goals - a practical model is more useful

if it achieves higher accuracy/lower train loss, but also if we can

use uncertainty estimates to avoid making risky predictions caused

purely by noise. However, while both goals can be achieved in the

same training run, for ease of exposition we will describe our tech-

niques for them separately. In the following, we provide the details

of our contributions, and place them in the context of prior works.

Increasing accuracy using checkpoints aggregates (Sections 3
and 4): While the privacy analyses of state-of-the-art DP ML tech-

niques allow releasing/using all the training checkpoints, prior

works [3, 5, 6, 10, 33, 34, 37, 48, 54, 56, 65, 82, 88, 94] use only the fi-

nal model output by the DP algorithm for establishing benchmarks
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or for deployment in practice [53, 67]. To our knowledge, [26] is the

only prior work that re-uses intermediate checkpoints to increase

the accuracy of DP-SGD and notes non-trivial accuracy gains.

In this work, we propose to use checkpoints aggregates at train-

ing and/or inference time to improve DP-ML performances. Specif-

ically, we propose the first general adaptive training framework,

ATF (Algorithm 2), to adaptively train over intermediate check-

points aggregates to improve DP-ML performances; we give two

concrete instantiations, EMAtr and UTAtr, of the framework. For

the inference time, we propose three methods, UTAinf , OPA and

OMV, to aggregate checkpoints’ parameters or outputs to improve

DP-ML performance. Performances of our methods depend on cer-

tain key hyperparameters, e.g., on EMA coefficient 𝛽 for EMA based

methods, hence we propose hyperparameters tuning algorithms

for proposed aggregations, demonstrate how they improve DP-ML

performances, and also extensively discuss the privacy implica-

tions of such hyperparameters tuning. Empirically, we demonstrate

significant performance gains on for three standard benchmarks

(StackOverflow, CIFAR10, CIFAR100) and a proprietary, production-

grade pCVR dataset. It is worth noting that DP state-of-the-art has

repeatedly improved over the years since the foundational tech-

niques from [3] for CIFAR and [56] for StackOverflow, hence any

consistent improvements are instrumental in advancing the state

of DP ML.

In all our experiments, we note that UTAtr achieves the best per-

formances. Specifically, it achieves the state-of-the-art prediction

accuracy of 22.74% at 𝜀 = 8.2 for StackOverflow (i.e., 2.09% relative

gain over DP-FTRL from [48])
1
, and 57.51% at 𝜀 = 1 for CIFAR10

(i.e., 2.7% relative gain over DP-SGD as per [26]), respectively. For

CIFAR100, we first improve the DP-SGD baseline of [26] by warm-

starting DP training on CIFAR100 from the EMA checkpoint of

the ImageNet pre-training pipeline instead of its last checkpoint as

in [26]. We improve DP-SGD performance by 5% and 3.2% (absolute)

for 𝜀 1 and 8, respectively. UTAtr further improves the accuracy

on CIFAR100 by 0.67% to 76.18% at 𝜀 = 1, i.e., 0.89% relative gain

over our improved CIFAR100 DP-SGD baseline. Note that, all of

our proposed training/inference checkpoints aggregations improve

over the corresponding DP-SGD baselines, however for conciseness

and clarity, we do not provide all the results.

Next, we show that these benefits further magnify in more prac-

tical settings with periodically varying training data distributions.

For instance, we note relative accuracy gains of 2.64% and 2.82%

for 𝜀 of 18.9 and 8.2, respectively, for StackOverflow over DP-FTRL

baseline in such a setting. Finally, we experiment with a proprietary,

production-grade pCVR dataset [25, 27] and show that at 𝜀 = 6,

UTAtr improves AUC-loss (i.e., 1 - AUC) by 0.54% (relative) over

the DP-SGD baseline. Note that such an improvement is considered

very significant in the context of ads ranking.

Theoretically, we show in Theorem 3.2 that for standard training

regimes, the excess empirical risk of the final checkpoint of DP-

SGD is log(𝑛) times more than that of the weighted average of the

past 𝑘 checkpoints, where 𝑛 is the size of dataset. It is interesting

to theoretically analyze the use of checkpoint aggregations during

training, which we leave as future work.

1
These improvements are notable since there are 10𝑘 classes in StackOverflow data.

Uncertainty quantification using intermediate checkpoints
(Section 5):There are various sources of randomness in anML train-

ing pipeline [4], e.g., choice of initial parameters, dataset, batching,

etc. This randomness induces uncertainty in the predictions made

using such ML models. In critical domains, e.g., medical diagnosis,

self-driving cars and financial market analysis, failing to capture

the uncertainty in such predictions can have undesirable reper-

cussions. We refer the reader to [43] for a survey of uncertainty

estimation and its applications. DP learning adds an additional

source of randomness by injecting noise at every training round.

Hence, it is paramount to quantify reliability of the DP models, e.g.,

by quantifying the uncertainty in their predictions [18, 66].

As prior work, [49] develops finite sample confidence inter-

vals but for the simpler Gaussian mean estimation problem. Vari-

ous methods exist for uncertainty quantification in ML-based sys-

tems [14, 39, 45, 52, 59, 60, 69, 79, 86]. However, these methods

either use specialized (or simpler) model architectures to facilitate

uncertainty quantification, or are not directly applicable to quantify

the uncertainty in DP ML due to DP noise. For example, a common

way of uncertainty quantification [11, 16, 35, 62] that we call the

independent runs method, needs 𝑘 independent (bootstrap) runs of

the ML algorithm. However, repeating a DP ML algorithm multiple

times can incur significant privacy and computation costs.

To this end, for the first time we quantify the uncertainty that
DP noise adds to DP training procedure using only a single training
run. We propose to use the last 𝑘 checkpoints of a single run of

a DP ML algorithm as a proxy for the 𝑘 final checkpoints from

independent runs. This does not incur any additional privacy cost
to the DP ML algorithm. Furthermore, it is useful in practice as

it does not incur additional training compute, and can work with

any algorithm having intermediate checkpoints. Finally, it doesn’t

require changing the underlying model or algorithm, unlike some

other methods for uncertainty estimation (e.g., the use of Bayesian

neural networks [90]).

Theoretically, we consider using (a rescaling of) the sample vari-

ance of a statistic 𝑓 (𝜃 ) at checkpoints 𝜃𝑡1
, . . . , 𝜃𝑡𝑘 as an estimator of

the variance of any convex combination of 𝑓 (𝜃𝑡𝑖 ), i.e., any weighted
average of the statistics at the checkpoints, and give a bound on the

bias of this estimator. As expected, our bound on the error decreases

as the “burn-in” time 𝑡1 and the time between checkpoints 𝑡2 both

increase. An upshot of this analysis is that getting 𝑘 nearly i.i.d.

checkpoints requires fewer iterations than running 𝑘 independent

runs of 𝑡1 iterations. In turn, under a fixed privacy constraint, using
the sample variance of the checkpoints can provide more samples and
thus tighter confidence intervals than the independent runs method;
see the remark in Section 5 for details.

Empirically, we show that our method provides reasonable lower

bounds on the uncertainty quantified using the more accurate (but

privacy and computation intensive) method that uses independent

runs. For instance, we show that for DP-FTRL trained StackOver-

flow, the 95% confidence widths for the scores of the predicted labels

computed using independent runs method (no budget split)
2
are

always within a factor of 2 of the widths provided by our method

for various privacy levels and number of bootstrap samples.

2
Thus, a superior baseline by not splitting the privacy budget among the independent

runs.
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While we compute the variance in regards to a fixed prediction

function, we believe our estimator can be used to obtain DP param-

eter confidence intervals for traditional statistical estimators (e.g.,
linear regression). We leave this direction for future exploration.

2 Background and Preliminaries
In this section, we briefly introduce the background on machine

learning, privacy leakages in machine learning models, differential

privacy and deep learning with differential privacy.

2.1 Machine Learning
In this paper, we consider machine learning (ML) models used for

image classification and language next-word-prediction tasks. We

use supervised machine learning for both the types of tasks and

briefly review it below.

Let 𝑓𝜃 : R𝑑 ↦→ R𝑘
be a ML classifier (e.g., neural network) with

𝑑 input features and 𝑘 classes, which is parameterized by 𝜃 . For a

given example z = (x, 𝑦), 𝑓𝜃 (x) is the classifier’s confidence vector
for𝑘 classes and the predicted label is the corresponding class which

has the largest confidence score, i.e., 𝑦 = arg max𝑖 𝑓𝜃 (x). The goal
of supervised machine learning is to learn the relationship between

features and labels in given labeled training data 𝐷𝑙
𝑡𝑟 and generalize

this ability to unseen data. The model learns this relationship using

empirical risk minimization (ERM) on the training set 𝐷𝑙
𝑡𝑟 , where

the risk is measured in terms of a certain loss function, e.g., cross-

entropy loss:

min

𝜃

1

|𝐷𝑙
𝑡𝑟 |

∑︁
z∈𝐷𝑙

𝑡𝑟

𝑙 (𝑓𝜃 , z)
)

Here |𝐷𝑙
𝑡𝑟 | is the size of the labeled training set and 𝑙 (𝑓𝜃 , z) is the

loss function. When clear from the context, we use 𝑓 instead of 𝑓𝜃 ,

to denote the target model.

2.2 Privacy Leakage in ML Models
ML models generally require large amounts of training data to

achieve good performances. This data can be of sensitive nature,

e.g., medical records and personal photographs, and without proper

precautions, ML models may leak sensitive information about their

private training data. Multiple previous works have demonstrated

this via various inference attacks, e.g., membership inference, prop-

erty or attribute inference, model stealing, and model inversion.

Below, we review these attacks.

Consider a target model 𝑓𝜃 trained on 𝐷𝑡𝑟 and a target sample

(x, 𝑦). Membership inference attacks [8, 71, 75] aim to infer whether

the target sample (x, 𝑦) was used to train the target model, i.e.,

whether (x, 𝑦) ∈ 𝐷𝑡𝑟 . Property or attribute inference attacks [57, 76]

aim to infer certain attributes of (x, 𝑦) based on model’s inference

time representation of (x, 𝑦). For instance, even if 𝑓𝜃 is just a gen-

der classifier, 𝑓𝜃 (x) may reveal the race of the person in x. Model

stealing attacks [63, 83] aim to reconstruct the parameters 𝜃 of the

original model 𝑓𝜃 based on black-box access to 𝑓𝜃 , i.e., using 𝑓𝜃 (x).
Model inversion attacks [40] aim to reconstruct the whole training

data 𝐷𝑡𝑟 based on white-box, i.e., using 𝜃 , or black-box, i.e., using

𝑓𝜃 (x), access to model.

2.3 Deep Learning with Differential Privacy
Differential privacy [29–31] is a notion to quantify the privacy

leakage from the outputs of a data analysis procedure and is the

gold standard for data privacy. It is formally defined as below:

Definition 2.1 (Differential Privacy). A randomized algo-
rithmM with domain D and range R preserves (𝜀, 𝛿)-differential
privacy iff for any two neighboring datasets 𝐷,𝐷 ′ ∈ D and for any
subset 𝑆 ⊆ R we have:

Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 Pr[M(𝐷 ′) ∈ 𝑆] + 𝛿 (1)

where 𝜀 is the privacy budget and 𝛿 is the failure probability.

Rényi Differential Privacy (RDP) is a commonly-used relaxed

definition for differential privacy.

Definition 2.2 (Rényi Differential Privacy (RDP) [58]). A
randomized algorithmM with domain D is (𝛼, 𝜀)-RDP with order
𝛼 ∈ (1,∞) if and only if for any two neighboring datasets 𝐷,𝐷 ′ ∈ D:

𝐷𝛼 (M(𝐷) | |M(𝐷 ′))

:=
1

𝛼 − 1

log E
𝛿∼M(𝐷′ )

[( 𝑃𝑟 [M(𝐷) = 𝛿]
𝑃𝑟 [M(𝐷 ′) = 𝛿] )

𝛼 ] ≤ 𝜀 (2)

There are two key properties of DP algorithms that will be useful

in our composition and post-processing. Below we briefly review

these two properties specifically for the widely-used Rényi-DP

definition, but they apply to all the DP algorithms.

Lemma 1 (Adaptive Composition of RDP [58]). Consider two
randomized mechanismsM1 andM2 that provide (𝛼, 𝜀1)-RDP and
(𝛼, 𝜀2)-RDP, respectively. ComposingM1 andM2 results in a mech-
anism with (𝛼, 𝜀1 + 𝜀2)-RDP.

Lemma 2 (Post-processing of RDP [58]). Given a randomized
mechanism that is (𝛼, 𝜀)-RDP, applying a randomized mapping func-
tion on it does not increase its privacy budget, i.e., it will result in
another (𝛼, 𝜀)-RDP mechanism.

2.3.1 Differentially Private ML Algorithms We Use. Several works
have used differential privacy in traditional machine learning to

protect the privacy of the training data [13, 23, 38, 51, 92]. We use

two of the commonly-used algorithms for DP deep learning: DP-

SGD [2], and DP-FTRL [48]. At a high level, to update the model in

each training round, DP-SGD first samples a minibatch of examples

uniformly at random, clips the gradient of each example to limit

the sensitivity of a gradient update, and then adds independent

Gaussian noise to gradients that is calibrated to achieve the desired

DP guarantee. In contrast, in each training round, DP-FTRL takes

a minibatch of examples (no requirement of sampling), clips each

example’s gradient to limit sensitivity, and adds correlated Gaussian

noise calibrated to achieve the desired DP guarantee.

Algorithm 1 details the full-batch DP-GD algorithm. We focus

on using checkpoints, defined as follows:

Definition 2.3. A checkpoint is any intermediate model iterate
𝜃𝑖 of a training algorithm, e.g. as defined in DP-GD (Algorithm 1).

We emphasize that all model iterates are defined as checkpoints,

but we will not use all checkpoints in our methods. For training, we
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Algorithm 1 DP Gradient Descent (DP-GD)

𝜃0 ← 0𝑝 .
for 𝑡 ∈ [𝑇 ] do
𝜃𝑡+1 ← ΠC (𝜃𝑡 − 𝜂𝑡 (∇L(𝜃𝑡 ;𝐷) + 𝑏𝑡 )), where 𝑏𝑡 ∼
N

(
0, 𝐿

2𝑇
2𝑛𝜌

I𝑝×𝑝
)
, and ΠC (·) being the ℓ2-projection onto the

set C.
end for

will usually use a suffix of the checkpoints, i.e. 𝜃𝑇−𝑘 , 𝜃𝑇−𝑘+1, . . . , 𝜃𝑇 .

For uncertainty estimation, we will use a subset of 𝑘 checkpoints

with unspecified indices 𝑡1 < 𝑡2 < . . . < 𝑡𝑘 ; here we will denote

checkpoints as 𝜃𝑡𝑖 rather than 𝜃𝑖 .

3 Using Checkpoint Aggregates to Improve
Accuracy of Differentially Private ML

In this section, we first detail our novel and general adaptive aggre-
gation training framework that leverages past checkpoints (recall a

checkpoint is just an intermediate model iterate 𝜃𝑡 ) during training,

and provide two instantiations of it. We also design four check-

point aggregation methods that can be used for inference over a

given sequence of checkpoints. Finally, we provide a theoretical

analysis for improved privacy-utility trade-offs due to some of the

checkpoint aggregations.

Why can we post-process intermediate DP ML checkpoints?:
Before delving into the details of our checkpoints aggregation meth-

ods, it is useful to note that the privacy analyses for the DP algo-

rithms we consider in this paper, i.e., DP-SGD [2] and DP-FTRL [48],

use the adaptive composition (Lemma 1) across training rounds.

This implies that all the intermediate checkpoints are also DP, which

allows us to release of all intermediate checkpoints computed dur-

ing training. Furthermore, as all checkpoints are DP, due to the

post-processing property of DP (Lemma 2), one can process/use

these checkpoints without incurring additional privacy cost.

3.1 Using Checkpoint Aggregations for
Training

Algorithm 2 describes our general adaptive aggregation training

framework. Apart from the parameters needed to run the DP algo-

rithmA, it uses a checkpoint aggregation function 𝑓AGG to compute

an aggregate checkpoint𝜃AGG
𝑡+1

from the checkpoints (𝜃𝑡+1, 𝜃𝑡 , . . . , 𝜃0)
at each step 𝑡 . Consequently,A uses 𝜃AGG

𝑡+1
for its next training step.

Note that Algorithm 2 has two hyperparameters: (1) 𝜏 that decides

when to start training over the past checkpoints aggregate, and

(2) parameter 𝑝 specific to 𝑓AGG which we detail below, along with

𝑓AGGs. Due to the post-processing property of DP, using 𝑓AGG does

not incur any additional privacy cost. Though our framework can

incorporate any custom 𝑓AGG, we present two natural instantiations

for 𝑓AGG and extensively evaluate them.

Exponential Moving Average (EMA): Our first proposal uses an
EMA function to aggregate all the past checkpoints at training step

𝑡 . Starting from the latest checkpoint, EMA assigns exponentially

decaying weights to each of the previous checkpoints. At step 𝑡 ,

EMA maintains a moving average 𝜃EMA
𝑡 that is a weighted average

Algorithm 2 Our adaptive aggregation training framework.

Input: Iterative DP ML algorithm A, private dataset 𝐷 , initial

model 𝜃0, number of training steps 𝑇 , checkpoints aggregation

function 𝑓AGG and its parameter 𝑝 (EMA coefficient 𝛽 for EMAtr

and number of last 𝑘 checkpoints for UTAtr), the step to start

training over past aggregate 𝜏

𝜃AGG
0

= 𝜃0.

for 𝑡 = 0 to 𝑇 do
if 𝑡 ≥ 𝜏 then
𝜃𝑡+1 ← A(𝜃AGG𝑡 ;𝐷).
𝜃AGG
𝑡+1

= 𝑓AGG ({𝜃𝑡+1, 𝜃𝑡 , . . . , 𝜃0}, 𝑝).
else
𝜃𝑡+1 ← A(𝜃𝑡 ;𝐷).

end if
end for
Return 𝜃AGG

𝑡+1

of 𝜃EMA
𝑡−1

and the latest checkpoint, 𝜃𝑡 . This is formalized as follows:

𝜃EMA
𝑡 = (1 − 𝛽𝑡 ) · 𝜃EMA

𝑡−1
+ 𝛽𝑡 · 𝜃𝑡 (3)

Uniform Tail Averaging (UTA): Our second proposal uses a UTA

function to aggregate past 𝑘 checkpoints. Specifically, for step 𝑡 ,

UTA computes the parameter-wise mean of the past min{𝑡 + 1, 𝑘}
checkpoints. We formalize this as:

𝜃UTA𝑡 =
1

min{𝑡 + 1, 𝑘}

𝑡∑︁
𝑖=max{0,𝑡−(𝑘−1) }

𝜃𝑖 (4)

3.2 Using Checkpoint Aggregations for
Inference

In many scenarios, e.g., where a DP ML technique has been applied

to release a sequence of checkpoints, checkpoint aggregation func-

tions can be used as post-processing functions over the released

checkpoints to reduce bias of the technique at inference time. In

this section, we design various aggregation methods towards this

goal.

We note that [17, 80] have used EMA (Equation 3) to improve

the performance of ML techniques at inference time in non-private

settings. De et al. [26] extend EMA to DP-SGD, but use EMA coeffi-

cients 𝛽 suggested from non-private settings; we denote this EMA

baseline by EMAbaseline. However, as we will show in Section 4,

even a coarse-grained tuning of 𝛽 provides significant accuracy

gains in DP settings. To highlight the crucial difference with the

instantiation in Section 3.1, we use EMAtr to denote when we use

aggregation adaptively in training (Algorithm 2), and EMAinf to

denote when we use the aggregation only for inference. Since UTA

(Equation 4) can be applied as an aggregation at inference time, we

similarly define UTAtr and UTAinf .

Outputs aggregation functions: So far, our aggregation functions
have focused on aggregating parameters of intermediate check-

points. Next, we design two aggregation functions that, given a

sequence of checkpoints 𝜃𝑖 , 𝑖 ∈ [𝑡], compute a function of the

outputs of the checkpoints and use it for making predictions.
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Output Predictions Averaging (OPA): For a given test sample x,
OPA first computes prediction vectors 𝑓𝜃𝑖 (x) of the last 𝑘 check-

points, i.e., checkpoints from steps ∈ [𝑡 − (𝑘 − 1), 𝑡], averages the
prediction vectors, and computes argmax of the average vector as

the final output label. We formalize OPA as follows:

𝑦opa (x) = argmax

(
1

𝑘

𝑡∑︁
𝑖=𝑡−(𝑘−1)

𝑓𝜃𝑖 (x)
)

(5)

Output Labels Majority Vote (OMV): For a given test sample x,
OMV computes output prediction labels, i.e., argmax 𝑓𝜃𝑖 (x) for the
last 𝑘 checkpoints. Finally, it outputs the majority label among the

𝑘 labels (breaking ties arbitrarily) for inference. We formalize OMV

as follows:

𝑦omv (x) =Majority

(
argmax(𝑓𝜃𝑖 (x))𝑡𝑖=𝑡−(𝑘−1)

)
(6)

3.2.1 Improved Excess Risk via Tail Averaging. Results from [72]

can be used to demonstrate how a family of checkpoint aggrega-

tions, which includes UTAinf (Section 3.2), provably improves the

privacy/utility trade-offs compared to that of the last checkpoint

of DP-(S)GD. To formalize the problem, we define the following

notation: Consider a data set 𝐷 = {𝑑1, . . . , 𝑑𝑛} and a loss function

L(𝜃 ;𝐷) = 1

𝑛

𝑛∑
𝑖=1

ℓ (𝜃 ;𝑑𝑖 ), where each of the loss function ℓ is convex

and 𝐿-Lipschitz in the first parameter, and 𝜃 ∈ C with C ⊆ R𝑝

being a convex constraint set. We analyze the following variant of

DP-GD (Algorithm 1), which is guaranteed to be 𝜌-zCDP defined

below. Note that using [19], it is easy to convert the privacy guar-

antee to an (𝜀, 𝛿)-DP guarantee. Moreover, while our analytical

result is for DP-GD (due to brevity), it extends to DP-SGD with

mild modifications to the proof.

Definition 3.1 (zCDP [19]). A randomized algorithm𝑀 : D∗ →
Y is 𝜌-zero-concentrated differentially private (zCDP) if, for all neigh-
bouring datasets 𝐷, 𝐷 ′ ∈ D∗ (i.e., datasets differing in one data sam-
ple) and all 𝛼 ∈ (1,∞), we have

D𝛼 (𝑀 (𝐷)∥𝑀 (𝐷 ′)) ≤ 𝜌𝛼

where D𝛼 (𝑀 (𝐷)∥𝑀 (𝐷 ′)) is the 𝛼-Rényi divergence between the dis-
tribution of𝑀 (𝐷) and𝑀 (𝐷 ′).

We will provide the utility guarantee for this algorithm by di-

rectly appealing to the result of [72]. For a given 𝛼 ∈ (0, 1), UTAinf
corresponds to the average of the last 𝛼𝑇 models, i.e.,

𝜃UTA𝑡 =
1

𝛼𝑇

𝑇∑︁
𝑡=(1−𝛼 )𝑇+1

𝜃𝑡 (7)

One can also consider polynomial-decay averaging (PDA) with pa-

rameter 𝛾 ≥ 0, defined as follows:

𝜃PDA𝑡 =

(
1 − 𝛾 + 1

𝑡 + 𝛾

)
𝜃PDA𝑡−1

+ 𝛾 + 1

𝑡 + 𝛾 · 𝜃𝑡 (8)

For 𝛾 = 0, PDA matches UTAinf over all iterates. As 𝛾 increases,

PDA places more weight on later iterates; in particular, if 𝛾 = 𝑐𝑇 ,

the averaging is similar to EMAinf (Section 3.2), since as 𝑡 → 𝑇

the decay parameter
𝛾+1

𝑡+𝛾 approaches a constant
𝑐

𝑐+1
. In that sense,

PDA can be viewed as a method interpolating between UTAinf and

EMAinf . From [72], we can derive the following bounds on the

different methods:

Theorem 3.2. There exists a choice of learning rate 𝜂𝑡 and the
number of time steps𝑇 in DP-GD (Algorithm 1) such that the following
hold for 𝛼 = Θ(1):

E
[
L

(
𝜃UTApriv ;𝐷

)]
−min

𝜃 ∈C
L(𝜃 ;𝐷) = O

(
𝐿 ∥C∥

2

√
𝑝

𝑛𝜌

)
and

E [L(𝜃𝑇 ;𝐷)] −min

𝜃 ∈C
L(𝜃 ;𝐷) = O

(
𝐿 ∥C∥

2

√
𝑝 log(𝑛)

𝑛𝜌

)
.

Furthermore, for 𝛾 = Θ(1), we have,

E
[
L

(
𝜃PDA𝑇 ;𝐷

)]
−min

𝜃 ∈C
L(𝜃 ;𝐷) = O

(
𝐿 ∥C∥

2

√
𝑝

𝑛𝜌

)
.

Proof. These bounds build on Theorems 2 and 4 of [72]. If we

choose 𝑇 = ⌈𝑛𝜌⌉ and set 𝜂𝑡 appropriately, the proof of Theorem 2

[72] implies the following for 𝜃UTA
𝑇

:

E
[
L

(
𝜃UTA𝑇 ;𝐷

)]
−min

𝜃 ∈C
L(𝜃 ;𝐷) =𝑂

(
𝐿 ∥C∥

2

√
𝑝

𝑛𝜌
log

(
1

𝛼

))
.

Setting 𝛼 = Θ(1) gives the theorem’s first part, and 𝛼𝑇 = 1, i.e.,

1/𝛼 =𝑇 = ⌈𝑛𝜌⌉ gives the second. The third follows from modifying

Theorem 4 of [72] for the convex case (see the end of Section 4 of

[72] for details). □

Theorem 3.2 implies that the excess empirical risk for 𝜃𝑇 is
higher by factor of log(𝑛) in comparison to 𝜃UTA

𝑇
and 𝜃PDA

𝑇
. For

step size selections typically used in practice (e.g., fixed or inverse

polynomial step sizes), the last iterate will suffer from the extra

log(𝑛) factor, and we do not know how to avoid it. Furthermore,

Harvey et al. [44] showed that this is unavoidable in the non-private,

high probability regime. Jain et al. [46] show that for carefully cho-

sen step sizes, the logarithmic factor can be removed, and Feldman

et al. [36] extend this analysis to a DP-SGD variant with varying

batch sizes. Unlike those methods, averaging can be done as post-

processing of DP-SGD outputs, rather than a modification of the

algorithm.

3.3 Hyperparameters Tuning for Our
Aggregations

Performances of our aggregations depend on certain hyperparame-

ters. Hence, in this section, we first discuss advantages and disad-

vantages of these hyperparameters’ values, followed by the specific

methodology we use to tune the hyperparameters, and finally dis-

cuss privacy implications of such tuning.

3.3.1 Significance of values of key hyperparameters. There are two
key hyperparameters in our aggregations. In EMAinf and EMAtr,

EMA coefficient 𝛽 sets the weights of the checkpoints. Specifically

larger 𝛽 gives higher weight to newer checkpoints which are gen-

erally better than previous checkpoints hence we tune 𝛽 from as

low as 0.5.

The number 𝑘 of past checkpoints aggregated affects the perfor-

mances of the rest of the training and inference aggregations. Very

large 𝑘 includes contribution of checkpoints from early training

while very small 𝑘 may ignore good checkpoints, both of which
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may hurt the performance of the final aggregate. Therefore, we

tune 𝑘 in a fairly wide range starting from 𝑘 = 3 up to 𝑘 = 200.

Algorithm 3 Hyperparameters tuning for training aggregations.

Input: Adaptive training algorithm AAda
(Algorithm 2) with

aggregation function 𝑓AGG and its hyperparameter 𝑝 , range of

hyperparameters {𝑝, 𝜏} for grid search 𝑅𝑝,𝜏 , validation set 𝐷𝑣 , 𝑇

training steps, Initial 𝜃0.

Initialize: Acc𝑚𝑎𝑥 ← 0, 𝜃𝑏𝑒𝑠𝑡 ← 𝜃0, {𝑝𝑏𝑒𝑠𝑡 , 𝜏𝑏𝑒𝑠𝑡 } ← {1, 0}.
for {𝑝, 𝜏} in 𝑅𝑝,𝜏 do

RunAAda
for𝑇 steps with 𝑓AGG, 𝑝 , 𝜏 as detailed in Algorithm 2

𝜃Ada𝑇 ← AAda (𝑓AGG, 𝑝, 𝜏, 𝜃0)
Compute accuracy of the output checkpoint on validation set:

AccAda = Acc(𝜃Ada𝑇 , 𝐷𝑣)
if AccAda > Acc𝑚𝑎𝑥 then

Acc𝑚𝑎𝑥 ← AccAGG, 𝜃𝑏𝑒𝑠𝑡 ← 𝜃Ada
𝑇

, {𝑝𝑏𝑒𝑠𝑡 , 𝜏𝑏𝑒𝑠𝑡 ← {𝑝, 𝜏}
end if

end for
Return 𝜃𝑏𝑒𝑠𝑡 , 𝑝𝑏𝑒𝑠𝑡 , 𝜏𝑏𝑒𝑠𝑡

3.3.2 Training aggregations. We use a simple grid-search strat-

egy to tune hyperparameters as detailed in Algorithm 3. Note that

there are two hyperparameters to tune: aggregation parameters

𝑝 and step to start training over past aggregate 𝜏 . For EMAtr, 𝑝

in Algorithm 3 is the EMA coefficient 𝛽 in (3), and we tune 𝛽 ∈
{0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99, 0.999, 0.9999} for all datasets.
For StackOverflow we fix 𝜏 = 0 while for CIFAR10 we tune 𝜏 ∈
{100, 200, 500, 1000, . . . 𝜏∗}where𝜏∗ is largestmultiple of 500 smaller

than total number of steps 𝑇 ; we tune 𝜏 ∈ {50, 100, . . . , 250} for
CIFAR100. For UTAtr, 𝑝 in Algorithm 3 is the number of 𝑘 past

checkpoints to aggregate. For CIFAR10/CIFAR100 we tune 𝑘 ∈
{3, 5, 10, ..., 100}, for pCVR we tune 𝑘 ∈ {3, 5} and for StackOver-

flow we tune 𝑘 ∈ {3, 5, 10, 20, ..., 200} for UPAtr. Finally note that,

in case of StackOverflow, we use inference aggregation after pro-

ducing all intermediate checkpoints using training aggregations.

So we follow the hyperparameter tuning strategies for training and

inference aggregations in sequence.

3.3.3 Inference aggregations. Our simple grid-search strategy to

tune hyperparameters is detailed in Algorithm 4. For EMAinf , 𝑝 in

Algorithm 4 is the EMA coefficient 𝛽 in (3). De et al. [26] simply

use 𝛽 that works the best in non-private settings. However, tuning

𝛽 ∈ {0.85, 0.9, 0.95, 0.99, 0.999, 0.9999}, we observe that the best 𝛽
for private and non-private settings need not be the same (Table 1).

For instance, for CIFAR10, for 𝜀 of 1 and 8, EMAinf coefficient of 0.95

and 0.99 perform the best and outperform 0.9999 by 0.6% and 0.3%,

respectively. Hence, we advise future works to perform tuning of

EMA coefficient. Full results are given in Table 1. For UTAinf , OPA

and OMV, 𝑝 in Algorithm 4 is the number of last checkpoints 𝑘 to

aggregate. We tune 𝑘 in the same range as in training aggregations.

Table 7 in Appendix B shows results for CIFAR10, where we observe

non-trivial gains due to tuning 𝑘 .

Algorithm 4 Hyperparameters tuning for inference aggregations.

Input: Intermediate checkpoints (𝜃𝑇−1, . . . 𝜃0) from 𝑇 training

steps, checkpoints aggregation function 𝑓AGG and its hyperpa-

rameter 𝑝 , range of 𝑝 for grid search 𝑅𝑝 , validation set 𝐷𝑣 .

Initialize: Acc𝑚𝑎𝑥 ← 0, 𝜃𝑏𝑒𝑠𝑡 ← 𝜃𝑇−1, 𝑝𝑏𝑒𝑠𝑡 ← 1.

for 𝑝 in 𝑅𝑝 do
Compute aggregated checkpoint

𝜃AGG𝑇 = 𝑓AGG ({𝜃𝑇−1, . . . 𝜃0}, 𝑝)
Compute accuracy of aggregated checkpoint on validation set:

AccAGG = Acc(𝜃AGG𝑇 , 𝐷𝑣)
if AccAGG > Acc𝑚𝑎𝑥 then

Acc𝑚𝑎𝑥 ← AccAGG, 𝜃𝑏𝑒𝑠𝑡 ← 𝜃AGG
𝑇

, 𝑝𝑏𝑒𝑠𝑡 ← 𝑝

end if
end for
Return 𝜃𝑏𝑒𝑠𝑡 , 𝑝𝑏𝑒𝑠𝑡

Table 1: Tuning the EMA coefficient can provide significant
gains in accuracy over the default value of 0.9999 from [26]
implying the need to tune EMA coefficients for each different
privacy budget to achieve the best performances. Results
below are for original CIFAR10 dataset.

Privacy level

EMA coefficient

0.9 0.95 0.99 0.999 ([26])

𝜀 = 8 79.41 79.35 79.41 79.16

𝜀 = 1 56.59 56.61 56.06 56.05

3.3.4 Privacy cost of hyperparameter tuning. Consistent with past

works (e.g. [26, 48]) we will ignore the privacy cost of hyperparam-

eter tuning in our experiments. If instead one wants to account for

hyperparameter tuning cost, one can use private hyperparameter

selection algorithms. We show that using these algorithms, the

privacy cost of the added hyperparameters of our methods over

hyperparameter tuning of baseline methods is minimal. To show

this, we consider the hyperparameter selection algorithm of [64]:

We sample a number of trials, for each trial sample a random hy-

perparameter setting and run the training algorithm, and then pick

the best training run based on some metric (e.g. performance on a

public test set). As our baseline, we consider the hyperparameter

sweep used by [26], which sweeps over learning rate, clip norm,

and augmentation multiplicity for a total of 72 grid points. For e.g.

our inference aggregation methods, we would additionally sweep

over 6 values of 𝛽 , resulting in a grid size of 6 · 72 = 432 instead. In

Figure 1 we plot the increase in privacy of a Gaussian mechanism

due to this hyperparameter tuning algorithm for 72 or 432 expected

trials using the algorithm of [64]. We see that at a baseline of 𝜀 = 1

for a single training run, hyperparameter tuning over the grid of

[26] increases 𝜀 to 2.62. Additionally sweeping over 𝛽 causes the

increases in 𝜀 due to hyperparameter tuning to change to 2.98, an

increase of 13.8%. When 𝜀 = 8 for a single training run, the grid of

[26] increases 𝜀 to 16.08, and adding 𝛽 to the grid further increases

it to 18.34, a 14.1% increase. In other words, additionally tuning 𝛽

does not cause the privacy to significantly degrade compared to

vanilla DP-SGD with hyperparameter tuning.
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Figure 1: We plot the value of 𝜀 accounting for hyperparame-
ter tuning of a (1, 10

−5)-DP and (8, 10
−5)-DP Gaussian mecha-

nism, using the algorithm of [64] with the number of trials
sampled from a Poisson distribution. We include two verti-
cal lines at 72 and 432, corresponding to a grid for “vanilla”
DP-SGD, and the product of this grid with a sweep over 𝛽 .

4 Empirical Evaluation
In this section, we first describe experimental setup, followed by

experiments in a user-level and sample-level DP settings.

4.1 Experimental Setup
4.1.1 Datasets and ML Settings. We evaluate our checkpoints ag-

gregation algorithms on three benchmark datasets (StackOverflow,

CIFAR10, CIFAR100) and one proprietary production-grade dataset

(pCVR) in two different settings.

StackOverflow: StackOverflow [47] is a natural-language dataset

containing questions and answers from StackOverflow forum. We

use it to train a model for next word prediction task. StackOverflow

is a user-keyed dataset, i.e., all the samples in the data are owned

by some users. It is a large dataset containing training data of total

of 342,477 users and over 135M samples. The original test data

contains data of 204,088 users; following [68], we sample 10,000

users for validation data. Following [68], we use vocabulary of

top-10,000 words from StackOverflow data.

We use simulated federated learning (FL) [55] to train on Stack-

Overflow data. In each FL round, a central server (model trainer)

broadcasts a global model to all users, users share gradient updates

that they compute using the model and their local dataset. The

central server then aggregates all user updates and updates the

global model to be used for the following FL rounds.

CIFAR Datasets: We experiment with CIFAR10 and CIFAR100

datasets. CIFAR10 (CIFAR100) [50] is a 10-class (100-class) image

classification task and contains 60,000 32 × 32 color (RGB) im-

ages (50,000 images as training set and 10,000 images as test set).

We use centralized ML for CIFAR10 (CIFAR100) training, i.e., when

model trainer collects all data in one place and trains a model on it.

pCVR (Predicted Conversion Rate) Dataset: This is a propri-
etary, production-grade dataset (also used in [25, 27]), where each

example corresponds to an ad click, and the task is to predict

whether a conversion takes place after the click, which is commonly

referred as predicted conversion rate (pCVR). As users’ clicking and

conversion information is highly sensitive, such data needs to be

protected with differential privacy. We use centralized ML for train-

ing, similar to CIFAR datasets. This dataset contains significantly

more examples, by orders of magnitude, than the aforementioned

datasets.
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Figure 2: Probability of sampling users or samples from two
periodically shifting distributions D{1,2} .

4.1.2 Periodic Distribution Shift (PDS) Settings. The distribution of

data sampled from the datasets discussed above is almost uniform

throughout the training; we call such datasets original datasets.
However, in many real-world settings, e.g., in FL, the training data

distribution may vary over time. Zhu et al. [93] demonstrate the

adverse impacts of distribution shifts in training data on the perfor-

mances of resulting FL models. Due to their practical significance,

we consider settings where the training data distribution models di-
urnal variations, i.e., it is a function of two oscillating distributions

(see Figure 2 for an example). Such a scenario commonly occurs

in FL training, e.g., when a model is trained with client devices

participating from two significantly different time zones.

Following [93], we consider a setting where training data is a

combination of clients/samples drawn from two disjoint data distri-

butions which oscillate over time (Figure 2). Here, the probabilities

of sampling at time 𝑡 are: 𝑝 (D1, 𝑡) =
��
2
𝑡 mod 𝑇

𝑇
− 1

�� 𝑝 (D2, 𝑡) =

(1 − 𝑝 (D1, 𝑡)), where 𝑇 is the period of oscillation of D{1,2} .
Simulating periodic distribution shifting settings: To simulate

such periodically shifting distribution for StackOverflow, we use

D1 with only questions and D2 with only answers from users.

Then, we draw clients from D{1,2} . Apart from data distribution,

the rest of experimental setup is the same as before. We use test

and validation data same as for the original StackOverflow setting.

To simulate PDS CIFAR10/CIFAR100, we use D{1,2} such that D1

and D2 respectively contain the data from even and odd classes of

the original data; the rest of the sampling strategy is the same as

described in Section 4.1.2.

4.1.3 Model Architectures and Training Details. Below we detail

the model architectures, DP ML algorithms, and various hyperpa-

rameters we use to obtain our results.

Note that, for each of the tasks we evaluate, we select the state-of-

the-art DP ML algorithm as the baseline algorithm and demonstrate

improvements on top of the performances of such state-of-the-art

DPML algorithms. For instance, we use DP-FTRL for StackOverflow

task as it provides state-of-the-art performance on StackOverflow;
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DP-SGD does not perform well on StackOverflow hence we omit

it from StackOverflow experiments. For the same reason, we use

DP-SGD for the rest of the tasks.

StackOverflow training: For StackOverflow, we follow the state-

of-the-art DP training in [28, 48] and train a one-layer LSTM us-

ing DP-FTRL with momentum in Tensorflow Federated frame-

work [1] for 𝜀 ∈ {8.2, 18.9}, which corresponds to 𝜌-zCDP with

𝜌 ∈ {1.08, 4.31}, respectively. We process 100 users in each FL

round and train for total of 2,000 rounds. For experiments with DP,

we fix the privacy parameter 𝛿 to 10
−6

for StackOverflow ensuring

that 𝛿 < 𝑛−1
, where 𝑛 is the number of users in StackOverflow.

Since StackOverflow data is naturally keyed by users, the privacy

guarantees here are at user-level, in contrast to the example-level

privacy for CIFAR10.

Tables 8 and 9 provide the hyperparameters we use for training

aggregations (UTAtr, EMAtr) using DP-FTRL.

CIFAR10 training: Following the setup of the state-of-the-art DP-

SGD training in [26], we train a WideResNet-16-4 with depth 16

and width 4 using DP-SGD [3] in JAXline [9] for 𝜀 ∈ {1, 8}. We fix

clip norm to 1, batch size to 4096 and augmentation multiplicity to

16 as in [26]. For experiments with DP, we fix the privacy parameter

𝛿 to 10
−5

on CIFAR10 ensuring that 𝛿 < 𝑛−1
, where 𝑛 is the number

of examples in CIFAR10. Here the DP guarantee is at sample-level.

For training on CIFAR10, we use the state-of-the-art DP-SGD

parameters from [26] as follows: we set learning rate and noise

multiplier, respectively, to 2 and 10 for 𝜀 = 1 and to 4 and 3 for 𝜀 = 8.

We stop the training when the intended privacy budget exhausts.

All the hyperparameters we use to generate the results of Table 3

are in Table 10.

CIFAR100 training: Similarly to [26], for CIFAR100, we use Jax-

line [15] and use DP-SGD to fine-tune the last, classifier layer of
a WideResNet with depth 28 and width 10 that is pre-trained on

entire ImageNet data. We fix clip norm to 1, batch size to 16,384

and augmentation multiplicity to 16. Then, we set learning rate and

noise multiplier, respectively, to 3.5 and 21.1 for 𝜀 = 1 and to 4 and

9.4 for 𝜀 = 8. For periodic distribution shifting (PDS) CIFAR100, we

set learning rate and noise multiplier, respectively, to 4 and 21.1 for

𝜀 = 1 and to 5 and 9.4 for 𝜀 = 8. We stop the training when privacy

budget exhausts. Setup for training aggregations is the same as

for CIFAR10 above; hyperparameters used to generate results in

Table 4 are in Table 11.

pCVR Training:We employ a multi-encoder model architecture,

where each encoder is responsible for encoding a specific class of

features (e.g., ads features). We consider sample level privacy with

𝜀 = 6 and 𝛿 = 1

𝑛
, where 𝑛 is the number of examples, as these are

the parameters that are of production requirement.

The model is trained with logistic loss and is measured by the

test AUC loss (i.e., 1 - AUC), as is commonly done for pCVR tasks

[25, 27]. In real-world advertising scenarios, the pCVR models’

outputs (i.e., the predicted conversion probability) are often passed

directly to downstream models for calculating final ad bids, instead

of being converted to binary predictions. Therefore, we use AUC-

loss instead of other commonly used classification metrics, such

as accuracy. For the same reason, Majority voting (OMVtr) is not

applicable for this task.

We adopt a two-stage hyperparameter-tuning strategy for DP-

SGD. We first tune the batch size, number of steps, clip norm, and

learning rate for baseline DP-SGD, and then, with the above fixed,

tune the hyperparameters in Section 3.3. This is done primarily due

to the significant training cost associated with pCVR.

4.2 Experiments with User-level Privacy on
StackOverflow Dataset

In this section, we evaluate efficacy of our aggregation methods in a

user-level DP setting. Specifically, we first perform experiments with

original StackOverflow data described in Section 4.1.1, then describe

a more real-world setting with periodically shifting distribution

(PDS) of dataset and present results for the PDS setting.

4.2.1 Aggregation Methods We Use With Original StackOverflow.
We evaluate two training and four inference aggregation methods.

For training aggregations, we consider EMAtr and UTAtr meth-

ods (Section 3.1). For inference aggregations, we consider EMAinf ,

UTAinf , OPA, and OMV methods (Section 3.2). For UTAtr, we first

use our adaptive training framework (ATF) with 𝑓UTA as 𝑓AGG, as

described in Section 3.1. Then we use our post-processing based

inference framework on top of the checkpoints generated by ATF to

produce the results in Tables 2 and 3. We similarly produce results

for EMAtr in Tables 2 and 3. Following [26, 80], we use a warm-up

schedule for the EMA coefficient as:

𝛽𝑡 =min (𝛽, (1 + 𝑡)/(10 + 𝑡))

We note that for EMA, one can further optimize this schedule, but

this will require a larger grid so we opt not to. Tuning only 𝛽 or 𝑘

makes our tuning compute friendly (and would keep the additional

privacy cost due to private hyperparameter selection reasonably

small if we were to use it; see Section 3.3). All our results are average

of 5 runs of each setting.

4.2.2 Results for Original StackOverflow. In the rest of the paper,

the tables present results for the final training round 𝑇 , while plots

show results over the last 𝑘 rounds for some 𝑘 ≪ 𝑇 . Due to large

size of StackOverflow test data, we provide plots for accuracy on

validation data and tables with accuracy on test data.

Table 2 presents the accuracy gains in StackOverflow for 𝜀 ∈
{∞, 18.9, 8.2} due to our training and inference aggregations. We

observe that our training aggregation UTAtr always provides
the maximum accuracy gains. Specifically, for 𝜀 of∞, 18.9, and
8.2, UTAtr provides relative (absolute) accuracy improvement over

the baseline (DP-FTRL with momentum) of 2.97% (0.75%), 2.09%

(0.49%), and 2.06% (0.46%) respectively. The corresponding relative

(absolute) accuracy improvement over EMAbaseline (i.e., EMA over

baseline with EMA coefficients as per [26]) are 1.05% (0.27%), 1.48%

(0.45%), and 1.43% (0.32%) respectively. Note that while De et al.

[26] do not have StackOverflow experiments, we provide results for

EMAbaseline using EMA and EMA coefficient 𝛽 suggested in [26].

Finally, in the leftmost two plots in Figure 3, we focus on the

inference aggregations since they just post-process the checkpoints

of the state-of-the-art baseline run. First, note that all of inference
aggregations significantly outperform the baseline (UTAinf
performs the best among all inference aggregations). Sec-
ond, due to DP noise, the accuracy of baseline DP checkpoints
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Table 2: Test accuracy gains due to checkpoints aggregations for original and PDS StackOverflow. We present techniques from
prior works (DP-FTRL baseline [28, 48], and EMAbaseline [26]) in blue.

DP Baseline Training Aggregations Inference Aggregations

(𝜀) (No Agg) EMAtr UTAtr EMAbaseline EMAinf UTAinf OPA OMV

StackOverflow; DP-FTRL; user-level privacy

∞ 25.24 ± 0.16 25.72 ± 0.02 25.98 ± 0.01 25.71 ± 0.02 25.79 ± 0.01 25.81 ± 0.02 25.79 ± 0.01 25.78 ± 0.01

18.9 23.41 ± 0.08 23.56 ± 0.02 23.90 ± 0.02 23.55 ± 0.03 23.63 ± 0.01 23.84 ± 0.01 23.60 ± 0.02 23.57 ± 0.02

8.2 22.28 ± 0.08 22.43 ± 0.04 22.74 ± 0.04 22.42 ± 0.04 22.54 ± 0.02 22.70 ± 0.03 22.57 ± 0.04 22.52 ± 0.04

Periodic Distribution Shifting (PDS) StackOverflow; DP-FTRL; user-level privacy
∞ 23.89 ± 0.14 23.97 ± 0.04 24.26 ± 0.02 23.86 ± 0.09 23.92 ± 0.12 23.98 ± 0.02 23.87 ± 0.01 23.91 ± 0.07

18.9 21.60 ± 0.13 21.90 ± 0.04 22.17 ± 0.03 21.80 ± 0.04 21.82 ± 0.07 22.04 ± 0.11 21.99 ± 0.13 21.95 ± 0.16

8.2 20.24 ± 0.29 20.37 ± 0.06 20.81 ± 0.05 20.36 ± 0.07 20.36 ± 0.06 20.75 ± 0.05 20.67 ± 0.03 20.72 ± 0.16
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Figure 3: Accuracy gains due to inference aggregations (Section 3.2) for DP-FTRL on original and PDS StackOverflow.

has very high variance across training rounds, which is undesir-

able in practice. However, we note that all considered inference

aggregations significantly reduce such variance while consistently

providing gains in accuracy. In other words, our checkpoints ag-
gregations produce good DP models with high confidence,
which is highly desired in practice. The left plot in Figure 4

presents results for the non-private setting with 𝜀 =∞ and we note

similar improvements due to our inference aggregations.

It is worthmentioning that theDP state-of-the-art for the datasets

we consider have repeatedly improved over the years since the

foundational techniques from [3] for CIFAR-10 and [56] for Stack-

Overflow, so we consider the consistent improvements that our

proposed technique provide as significant improvements.
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Figure 4: Performances of inference aggregations (Section 3.2)
in non-private settings (𝜀 =∞). We note significant accuracy
gains for DP-FTRL on original and PDS StackOverflow even
in the non-private settings.

4.2.3 Results for StackOverflow With Periodic Distribution Shifts.
Last four rows of Table 2 and the rightmost two plots of Figure 3

present accuracy gains for PDS StackOverflow (discussed in Sec-

tion 4.1.2). For PDS StackOverflow as well, UTAtr always pro-
vides the maximum accuracy gains; specifically for 𝜀 of∞, 18.9,
and 8.2, the relative (absolute) accuracy gains due to UTAtr over the

DP-FTRL baseline are 1.55% (0.37%), 2.64% (0.57%), and 2.82% (0.57%)

respectively. While the relative (absolute) gains over EMAbaseline
are 1.67% (0.42%), 1.7% (0.27%), and 2.21% (0.44%) respectively. The

rightmost two plots of Figure 3 show results of using our infer-

ence aggregations (Section 3.2) in PDS setting. We note that the

variance of accuracy of the baseline DP-FTRL checkpoints is very

high for the PDS setting, which is undesirable in practice. How-

ever, our inference aggregations almost completely eliminate
the variance in PDS setting, while producing more accurate
predictions.

4.3 Experiments With Sample-level Privacy on
CIFAR10 Dataset

In this section, we evaluate efficacy of our aggregation methods

(Section 4.2.1) in a sample-level DP settingwith the original CIFAR10

and CIFAR10 with periodic distribution shifts (PDS).

4.3.1 Results for Original CIFAR10. Table 3 and the left-most two

plots in Figure 5 present the accuracy gains in CIFAR10 for 𝜀 ∈
{1, 8}. For CIFAR10 as well UTAtr provides highest accuracy
gains. Specifically, for 𝜀 of 1 and 8, the relative (absolute) accuracy

gains due to UTAtr are 8.86% (4.68%) and 3.6% (2.78%) over the DP-

SGD baseline, and they are 2.70% (1.51%) and 1.01% (0.8%) over

EMAbaseline. Among the inference aggregations, for 𝜀 = 1, OPA
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Table 3: Test accuracy gains for original and periodic distribution shifting (PDS) CIFAR10. We present techniques from prior
works (DP-SGD and EMAbaseline [26]) in blue.

DP Baseline Training Aggregations Inference Aggregations

(𝜀) (No Agg) EMAtr UTAtr EMAbaseline EMAinf UTAinf OPA OMV

CIFAR10; DP-SGD; sample-level privacy

8 77.18 ± 1.46 78.98 ± 0.26 79.96 ± 0.24 79.16 ± 0.50 79.41 ± 0.51 79.39 ± 0.52 79.40 ± 0.59 79.34 ± 0.54

1 52.83 ± 2.17 56.24 ± 0.42 57.51 ± 0.31 56.00 ± 0.71 56.61 ± 0.91 56.62 ± 0.89 56.68 ± 0.89 56.40 ± 0.69

Periodic Distribution Shifting (PDS) CIFAR10; DP-SGD; sample-level privacy

8 60.74 ± 1.75 78.18 ± 0.39 79.19 ± 0.44 77.99 ± 0.94 78.24 ± 0.92 77.92 ± 0.89 78.27 ± 0.84 77.99 ± 0.94

1 47.13 ± 1.76 54.11 ± 0.63 55.01 ± 0.48 54.04 ± 0.81 54.04 ± 0.81 54.35 ± 0.90 54.58 ± 0.82 54.03 ± 1.08
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Figure 5: Accuracy gains due to inference aggregation methods (Section 3.2) for DP-SGD on original and PDS CIFAR10.

provides the maximum relative (absolute) accuracy gain of 7.3%

(3.85%), while for 𝜀 = 8, EMAinf provides maximum gain of 2.9%

(2.23%) over the DP-SGD baseline. We note from Figure 5 that

all checkpoints aggregations improve accuracy for all the
training steps of DP-SGD for both 𝜀’s. Also note from Figure 5

that, the accuracy of baseline DP-SGD has a high variance across

training steps and our inference aggregations significantly reduce

this variance.

4.3.2 Results for CIFAR10 With Periodic Distribution Shifts. Sec-
tion 4.1.2 discusses how we emulate periodic distribution shifting

(PDS) CIFAR10 data. Note that to train using DP-SGD on PDS CI-

FAR10, we set learning rate and noise multiplier, respectively, to 2

and 12 for 𝜀 = 1 and to 4 and 4 for 𝜀 = 8.

The last two rows of Table 3 show accuracy gains for PDS CI-

FAR10 due to our aggregation methods. As before, the highest
accuracy gains are due to our UTAtr. Specifically, for 𝜀 of 1 and

8, the relative (absolute) accuracy gains due to UTAtr are 16.72%

(7.88%) and 30.11% (18.45%) over the DP-SGD baseline, and they

are, respectively, 1.79% (0.97%) and 1.53% (1.2%) over EMAbaseline.

Among the inference aggregations, OPA provides the maximum

absolute accuracy gains over the DP-SGD baseline of 7.45% and

17.37%, respectively, for both 𝜀 ∈ {1, 8}. From the rightmost two

plots (Figure 5), we see that DP-SGD baseline models exhibit very

large variance with PDS CIFAR10 across training steps, but all the

inference aggregation methods completely eliminate the variance.

Note that the improvements in PDS settings are significantly

higher than that in the original settings, because the variance in

model accuracy over training steps is large in PDS settings. Hence,

the benefits of checkpoints aggregations magnify in these set-

tings. For the PDS StackOverflow, where improvements are similar

to StackOverflow, we hypothesize that this might be due to the

distributions in PDS CIFAR10 (completely different images from

even/odd classes) being significantly farther apart compared to the

distributions in PDS StacktOverflow (text from questions/answers).

4.4 Experiments with Sample-level Privacy for
CIFAR100 Dataset

In this section, we evaluate our aggregation methods (Section 4.2.1)

in a sample-level DP setting with the original CIFAR100 and CI-

FAR100 with periodic distribution shifts (PDS).

4.4.1 Improving CIFAR100 baseline. First, we present a significant
improvement over the SOTA baseline of [26], i.e., “No Agg" baseline

in Table 4). In particular, unlike in [26], we fine-tune the final EMA
checkpoint, i.e., the one computed using EMA during pre-training

over ImageNet. This results in major accuracy boosts of 5% (70.3%

→ 75.51%) for 𝜀 = 1 and of 3.2% (77.6%→ 80.81%) for 𝜀 = 8 for the

original CIFAR100 task. We obtain similarly high improvements by

fine-tuning the EMA of pre-trained checkpoints (instead of the final

checkpoint) for the PDS-CIFAR100 case. We emphasize that these

gains are even before we use our aggregation methods. We leave the

further investigation of this phenomena to the future work.

4.4.2 Results for CIFAR100 and PDS CIFAR100. We first discuss

the gains for original CIFAR100 due to our aggregation methods;

Table 4 shows the results. We note significant performance gains for

CIFAR100 due to almost all of our aggregation methods. For both
𝜀 ∈ {1, 8}, UTAtr provides the highest accuracy gains: For 𝜀 of 1
and 8, the relative (absolute) accuracy gains due to UTAtr are 0.89%

(0.67%) and 0.91% (0.73%) over our improved DP-SGD baseline, and

they are 1.4% (1.05%) and 0.82% (0.66%) over EMAbaseline. Among the

inference aggregations, for 𝜀 = 1, UTAinf provides the maximum
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Table 4: Test accuracy gains for original and periodic distribution shifting (PDS) CIFAR100. We present techniques from prior
works (DP-SGD and EMAbaseline [26]) in blue.

DP Baseline Training Aggregations Inference Aggregations

(𝜀) (No Agg) EMAtr UTAtr EMAbaseline EMAinf UTAinf OPA OMV

CIFAR100; DP-SGD; sample-level privacy

8 80.81 ± 0.11 81.23 ± 0.07 81.54 ± 0.08 80.88 ± 0.10 80.88 ± 0.10 80.83 ± 0.09 80.92 ± 0.10 80.82 ± 0.10

1 75.51 ± 0.19 75.58 ± 0.09 76.18 ± 0.11 75.13 ± 0.20 75.42 ± 0.13 75.62 ± 0.12 75.51 ± 0.16 75.57 ± 0.18

Periodic Distribution Shifting (PDS) CIFAR100; DP-SGD; sample-level privacy

8 77.16 ± 0.11 79.83 ± 0.05 81.27 ± 0.06 80.53 ± 0.07 80.53 ± 0.07 80.53 ± 0.08 80.49 ± 0.08 80.41 ± 0.09

1 70.84 ± 0.16 74.88 ± 0.09 75.81 ± 0.13 74.61 ± 0.13 75.08 ± 0.12 75.81 ± 0.16 75.01 ± 0.17 74.97 ± 0.18

Table 5: Relative improvement in test AUC-loss compared to DPSGD (No Agg) baseline for proprietary pCVR Dataset. The two
numbers presented for each algorithm are the improvements in the mean and standard deviation of the AUC-loss.

DP Training Aggregations Inference Aggregations

(𝜀) EMAtr UTAtr EMAbaseline EMAinf UTAinf OPA OMV

pCVR; DP-SGD; sample-level privacy; (mean, std)

6 +0.32%, +18.9% +0.53%, +26.2% +0.19%, + 0.3% +0.22%, +7% +0.19%, +27.7% +0.54%, +62.6% N/A

relative (absolute) accuracy gain of 0.15% (0.11%), while for 𝜀 = 8,

OPA provides the gain of 0.14% (0.11%) over our improved DP-SGD

baseline. The gains for CIFAR100 are seemingly smaller than those

for CIFAR10, but as mentioned in Section 1, CIFAR100 with 100

classes is a much more difficult task, and hence, the accuracy gains

in DP regime are notable.

For PDS CIFAR100 task as well, UTAtr provides the highest
accuracy gains: For 𝜀 of 1 and 8, the relative (absolute) accuracy

gains due to UTAtr are 7.0% (4.97%) and 5.33% (4.11%) over our

improved DP-SGD baseline, and they are 1.87% (1.4%) and 0.92%

(0.74%) over EMAbaseline.

4.5 Experiments with Sample-level Privacy for
pCVR

As this is a proprietary dataset, similar as prior works [25, 27], we

report only the relative improvements in the AUC-loss; note that

lower AUC-loss corresponds to better utility and improvement in

AUC-loss means reduction in AUC-loss. The baseline we compare

against is the model trained with DP-SGD (“No Agg"). The DP-SGD

baseline has < 5% higher AUC-loss over the non-private model,

which is similar to or slightly better than the DP-SGD models in

prior work [25, 27]. Furthermore, as model stability is important for

pCVR tasks, and DP training is well-known to increase variance,

we also report the relative improvement in the standard deviation

of the AUC-loss.

Table 5 presents the results. Similar to the other datasets, all
checkpoint aggregations improve AUC-loss, i.e., reduce AUC-
loss compared to the baseline. EMAtr, UTAtr, UTAinf , OPAinf also

reduce the variance significantly. Among all aggregation methods,

OPAinf provides the largest (relative) improvements in AUC-loss

and its standard deviation of 0.54% and 62.6%, respectively, over

the DP-SGD baseline. Notice that in the context of ads ranking,

even 0.1% relative improvement can have significant impact on

revenue [87].

5 Quantifying uncertainty due to differential
privacy noise

The prior literature on improving differentially private (DP) ML

has focused on improving performances of DP models. However,

a major issue with DP ML algorithms is high variance in their

outputs due to high amounts of noise DP adds during training. High

variance in outputs, i.e., DP ML models, reduces the confidence of

these models in their predictions which is undesired in practical

applications. Hence, quantifying uncertainty in outputs of DP ML

algorithms is instrumental towards success of DP ML in practice.

Unfortunately, no prior work systematically investigates ap-

proaches for uncertainty quantification of DP deep learning. In

this section, we propose the first method to quantify the uncertainty
that the DP noise adds to the outputs of DP ML algorithms, with-
out additional privacy cost or computation. In particular, we show

that one can use the models along the path of DP-SGD to obtain

an estimator for the variance introduced in the prediction due to

the noise injected in the training process. We emphasize that the

techniques in this section can be applied concurrently with the

previous techniques in the paper. That is, in conjunction with the

previous results, the results in this section imply a method to si-

multaneously improve utility and derive uncertainty estimates for

a single training run at no additional cost.

For a bounded prediction function 𝑓 (𝜃DP−SGD) (with 𝜃DP−SGD

being the final model output by DP-SGD), a natural estimator of its

variance is the “independent runs estimator:” running the algorithm

independently 𝑘 times to obtain

{
𝑓

(
𝜃DP−SGD

1

)
, . . . , 𝑓

(
𝜃DP−SGD
𝑘

)}
,

and then obtaining the sample variance of this set of predictions [16].

However, the variance estimate is a post-processing of 𝑘 runs of

DP-SGD, which means roughly speaking both its privacy and com-

putational cost are 𝑘 times worse than DP-SGD. In particular, if

we are restricted to one training of run of DP-SGD (e.g. due to

computational costs), this method can only get one sample, i.e. the

sample variance is undefined.

In this section, we demonstrate a variance estimator that can
give an estimate using only a single run of DP-SGD, and also can
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outperform the independent runs estimator in some settings even when
more than a single run is allowed.

5.1 Two Birds, One Stone: Our Uncertainty
Estimator

To address the two hurdles discussed above, we propose a simple

yet efficient method that leverages intermediate checkpoints com-

puted during a single run of DP-SGD. Specifically, we substitute

the 𝑘 output models from the independent runs method with 𝑘

checkpoints from a single run. The rest of the confidence interval

computation remains the same for both the methods.

We first give a theoretical upper bound on the error between the

sample variance of a statistic calculated at 𝑘 intermediate check-

points, and the true variance of this statistic at the final checkpoint.

Our bias bound is decaying in two quantities: (i) the number of

iterations 𝑡1 before the first checkpoint, and (ii) 𝛾 , the minimum

time between any two checkpoints. At a high level, our bound says

that while checkpoints in DP-SGD are correlated, the addition of

noise decreases their correlation over time, which justifies using

them for uncertainty estimation in practice.

Our bound, proved in Section A.1, is as follows:

Theorem 5.1 (Simplified version of Theorem A.1). Suppose
L(𝜃 ;𝐷) is 1-strongly convex and𝑀-smooth, and 𝜎 = 1 in DP-SGD.
Let 0 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑘 be such that 𝑡𝑖+1 ≥ 𝑡𝑖 + 𝛾 for ∀𝑖 > 0

and some minimum separation 𝛾 . Let {𝜃𝑡𝑖 : 𝑖 ∈ [𝑘]} be the check-
points, and 𝑓 : Θ → [−1, 1] be a statistic whose variance we wish
to estimate. Let 𝑉 = Var

[
𝑓 (𝜃𝑡𝑘 )

]
, i.e. the variance of statistic at the

final checkpoint (i.e., the final model), 𝜇 = 1

𝑘

𝑘∑
𝑖=1

𝑓 (𝜃𝑡𝑖 ) be the sample

mean, and 𝑆 =

(
1

𝑘−1

𝑘∑
𝑖=1

(𝑓 (𝜃𝑡𝑖 ) − 𝜇)2
)
be the sample variance of the

checkpoints. Then, for some “burn-in” times 𝜅1, 𝜅2 that are a function
of 𝜃0, 𝑀, 𝑝 , we have:

|E[𝑆] −𝑉 | = exp(−Ω(min{𝑡1 − 𝜅1, 𝛾 − 𝜅2})).
Here, the expectation E[·] and the variance Var[·] are over the ran-
domness of DP-SGD.

5.1.1 Proof Intuition. To simplify the proof in Section A.1 we actu-

ally prove a bound on the DP-LD algorithm, which is a continuous-

time analog of DP-SGD. We defer a detailed discussion on the

relationship between DP-LD and DP-SGD to Section A.1. For the

following discussion, one should think of DP-LD and DP-SGD (with

a small step size) as interchangeable.

Theorem 5.1 and its proof say the following: (i) As we increase

𝑡1, the time before the first checkpoint, each of the checkpoints’

marginal distributions approaches the distribution of 𝜃𝑡𝑘 , and (ii)

As we increase 𝛾 , the time between checkpoints, the checkpoints’

distributions approach pairwise independence. So increasing both 𝑡1
and 𝛾 causes our checkpoints to approach 𝑘 pairwise independent

samples from the same distribution, i.e., our variance estimator

approaches the true variance in expectation. To show both (i) and

(ii), we build upon past results from the sampling literature to show

a mixing bound of the following form: running DP-SGD from any

point initialization 𝜃0, the Rényi divergence between 𝜃𝑡 and the

limit as 𝑡 → ∞ of DP-LD, 𝜃∞, decays exponentially in 𝑡 . This

mixing bound shows (i) since if 𝑡1 is sufficiently large, then the
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Figure 6: Uncertainty due to DP noise measured using confi-
dence interval widths, computed via N bootstrap (indepen-
dent) runs, and the last N checkpoints of a single run.

distributions of all of 𝜃𝑡1
, 𝜃𝑡2

, . . . , 𝜃𝑡𝑘 are close to 𝜃∞, and thus close

to each other. This also shows (ii) since DP-LD is a Markov chain,

i.e. the distribution of 𝜃𝑡 𝑗 conditioned on 𝜃𝑡𝑖 is equivalent to the

distribution of 𝜃𝑡 𝑗 −𝑡𝑖 if we run DP-LD starting from 𝜃𝑡𝑖 instead of

𝜃0. So our mixing bound shows that even after conditioning on 𝜃𝑡𝑖 ,

𝜃𝑡 𝑗 has distribution close to 𝜃∞. Since 𝜃𝑡 𝑗 is close to 𝜃∞ conditioned

on any value of 𝜃𝑡𝑖 , then 𝜃𝑡 𝑗 is almost independent of 𝜃𝑡𝑖 .

Remark: In Theorem 5.1, 𝜅1 is a function of 𝜃0 (the initialization

model in DP-SGD) while 𝜅2 is independent of 𝜃0. In particular, 𝜅1

can be arbitrarily large compared to 𝜅2 if 𝜃0 is a poor choice for

initialization, but we always have 𝜅2 = 𝑂 (𝜅1). This implies the

following:

• When the initialization is poor, using the sample variance

of the checkpoints as an estimator gives a computational
improvement over the sample variance of 𝑘 independent

runs of a training algorithm.

• Regardless of the initialization, using the sample variance of

𝑘 checkpoints is never worse in terms of computation cost

than using 𝑘 independent runs.

• Checkpoints can provide tighter confidence intervals than

independent runs under a fixed privacy constraint: Suppose

we have a fixed noise multiplier 𝜎/(𝐿/𝑛) we would like to

use in training, as well as a fixed privacy budget. This implies

we have a fixed number of iterations 𝑇 we can run. Fix 𝑡1
and 𝛾 such that the sample variance of the checkpoints has

low bias; since 𝜅1 can be much larger than 𝜅2, we should

also set 𝑡1 to be much larger than 𝑡2. Suppose we want to

construct a confidence interval for a model trained for at

least 𝑡1 iterations. Using independent runs, we can get 𝑇 /𝑡1
samples. Using checkpoints from one 𝑇 -iteration run, we

can get 1 + 𝑇−𝑡1

𝛾
samples. So we can get ≈ 𝑡1/𝛾 times as

many samples by using checkpoints, and thus get a narrower

confidence interval under the same privacy budget.

5.1.2 Empirical Analysis on Quadratic Losses. We perform an em-

pirical study of using the checkpoint variance estimator. We con-

sider running DP-SGD on a 1-dimensional quadratic loss; we ignore

clipping for simplicity, and assume the training rounds/privacy bud-

get are fixed such that we can do exactly 128 rounds of DP-SGD. We

set the learning rate 𝜂 = .07, set the Gaussian variance such that the

distribution of the final iterate has variance exactly 1, and set the ini-

tialization to be a random point drawn fromN(0, 𝜎2 = 100
2). Since

(1−𝜂)64 ≈ 1/100, under these parameters it takes roughly 64 rounds
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Figure 7: RMSE of the average sample variance given by the
checkpoint estimator on quadratic losses.

for DP-SGD to converge to within distance 1 of the minimizer. This

reflects the setting where the burn-in time is a significant fraction

of the training time, i.e. where Lemma 5.1 offers improvements over

independent runs. We vary the burn-in time (i.e. round number

of the first checkpoint) and the number of rounds between each

checkpoint (i.e., the total number of checkpoints used) used in the

variance estimator, and compute the error of the variance estimator

across 1000 runs.

In Figure 7 we plot the RMSE of the variance estimator, which

accounts for both the bias and variance of the estimator (note that

Lemma 5.1 only looks at the bias; in Section A.2 we discuss the

problem of optimizing the checkpoints to minimize the RMSE). As

predicted by Lemma 5.1, we see that using too small a burn-in time

causes a large bias, as the DP-SGD process has not had time to

converge before the first checkpoint. We also see that using too

large a burn-in time is suboptimal, since it reduces the number of

checkpoints available to use in the estimator, increasing its variance.

For rounds between checkpoints, at the best burn-in time of 64, we

see it is best to choose 2 rounds between checkpoints. Again this

matches the intuition of Lemma 5.1: if we choose 1 round between

checkpoints, checkpoints become too correlated which introduces

bias into the variance estimate. At the same time, if we choose a

larger separation like 16, we reduce the number of checkpoints the

estimator uses, which increases the estimator’s variance.

Recall that using independent runs of 128 iterations the indepen-

dent runs’ variance estimate is undefined, so all results in Figure 7

are improvements over that method. Even with e.g. 2 independent

runs of 64 iterations, we only get 2 samples. Ignoring the bias due to

using fewer iterations, the variance of this estimator is the variance

of a degree-1 chi-squared distribution which is 2, i.e. it achieves

RMSE at least 2.

5.1.3 Empirical Analysis on Deep Learning. We compare the uncer-

tainty quantified using the independent runs method and using our

method; experimental setup is the same as in Section 4. First, for a

given dataset, we do 101 independent training runs (no budget split).

For accurately measuring the uncertainty of the training run at the

specified privacy budget, we do not split the privacy budget across

the independent runs here. Note that this is a superior baseline, as

the overall privacy budget is significantly increased. To compute

uncertainty using the independent runs method for a fixed 𝑁 , we

first take the final model from 𝑁 of these runs (chosen randomly).

Given an input sample, we compute prediction scores for each

model, and compute the 95% confidence interval width for the high-

est mean score. We compute the average of the confidence interval

widths in this manner for every sample from the validation set
3
.

We conduct five independent repeats of this method, and report the

mean confidence interval width as our final uncertainty estimate.

For computing uncertainty using our checkpoints based method,

we do not optimize for the separation between checkpoints, giving

a weaker hyperparameter-free method. we instead select the last

𝑁 checkpoints (i.e., last 𝑁 iterations) from a random training run,

and obtain average confidence interval widths as above. T

Figure 6 shows the results for StackOverflow and CIFAR10. We

see that the widths computed using intermediate checkpoints con-

sistently gives a reasonable lower bound on the widths computed

using independent runs, despite the strong baseline optimizing for

the separation between checkpoints. For instance, for DP-FTRL

training on StackOverflow, the confidence widths due to indepen-

dent runs are always within a factor of 2 of the widths provided by

our method across various privacy levels; for DP-SGD on CIFAR10,

the bound is a factor is 4.

6 Conclusions
In this work, we design a general adaptive checkpoint aggregation

framework to increase the performances of state-of-the-art DP ML

techniques. We show that uniform tail averaging of improves the

excess empirical risk bound compared to the last checkpoint of DP-

SGD. We demonstrate that uniform tail averaging during training
can provide significant improvements in prediction performances

over the state-of-the-art for CIFAR10 and StackOverflow datasets,

and the gains get magnified in more real-world settings with peri-

odically varying training data distributions. Lastly, we prove that

for some standard loss functions, the sample variance from last

few checkpoints provides a good approximation of the variance of

the final model of a DP run. Empirically, we show that the last few

checkpoints can provide a reasonable lower bound for the variance

of a converged DP model.
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A Details and Extensions for Theorem 5.1
A.1 Proof of Theorem 5.1
For completeness, we review the formal setup for the theorem we

wish to prove. We focus on DP-LD, defined as follows:

𝑑𝜃𝑡 = −∇L(𝜃𝑡 ;𝐷)𝑑𝑡 + 𝜎
√

2𝑑𝑊𝑡 . (9)

One can view DP-LD and DP-SGD as approximations of each other

as follows. We first reformulate (unconstrained) DP-SGD with step

size 𝜂 as:

𝜃 (𝑡+1)𝜂 ← 𝜃𝑡𝜂 − 𝜂∇L(𝜃𝑡𝜂 ;𝐷) + 𝑏𝑡 , 𝑏𝑡 ∼ N(0, 2𝜂𝜎2I𝑝×𝑝 ).
This reparameterization is commonly known as (DP-)SGLD [24,

70, 89, 91]. Notice that we have reparameterized 𝜃 so that its sub-

script refers to the sum of all step-sizes so far, i.e. after 𝑡 iterations

we have 𝜃𝑡𝜂 and not 𝜃𝑡 . Also notice that the variance of the noise

we added is proportional to the step size 𝜂. In turn, for any 𝜂 that

divides 𝑡 , after 𝑡/𝜂 iterations with step size 𝜂, the sum of variances

of noises added is 2𝑡𝜎2
. This can be used to show a Renyi-DP guar-

antee for DP-SGLD with fixed 𝑡 that is independent of 𝜂, including

in the limit as 𝜂 → 0.

Now, taking the limit as 𝜂 goes to 0 of the sequence of random

variables {𝜃𝑡𝜂 }𝑡 ∈Z≥0
defined by DP-SGLD, we get a continuous

sequence {𝜃𝑡 }𝑡 ∈R≥0
. In particular, if we fix some 𝑡 , then 𝜃𝑡 is the

limit as 𝜂 goes to 0 of 𝜃𝑡 defined by DP-SGLD with step size 𝜂. This

sequence is exactly the sequence defined by DP-LD.

Note that the solutions 𝜃𝑡 to this equation are random variables.

A key property of DP-LD is that the stationary distribution (equiv-

alently, the limiting distribution as 𝑡 →∞) has pdf proportional to
exp(−L(𝜃 ;𝐷)/𝜎) under mild assumptions on L(𝜃 ;𝐷) (which are

satisfied by strongly convex and smooth functions).

While we focus on DP-LD for simplicity of presentation, a similar

result can be proven for DP-SGLD. We discuss this in Section A.4.

To simplify proofs and presentation in the section, we will as-

sume that (a) 𝜃0 is a point distribution, (b) we are looking at uncon-

strained optimization over R𝑝
, i.e., there is no need for a projection

operator in DP-SGD and DP-LD, (c) the loss L is 1-strongly convex

and 𝑀-smooth, and (d) 𝜎 = 1. We note that (a) can be replaced

with 𝜃0 being sampled from a random initialization without too

much work, and (c) can be enforced for Lipschitz, smooth functions

by adding a quadratic regularizer. We let 𝜃 ∗ refer to the (unique)

minimizer of L throughout the section.

Now, we consider the following setup: We obtain a single sample

of the trajectory {𝜃𝑡 : 𝑡 ∈ [0,𝑇 ]}. We have some statistic 𝑓 : Θ→
[−1, 1], and we wish to estimate the variance of some weighted

average of the statistic across the checkpoints at times 0 < 𝑡1 <

𝑡2 < 𝑡3 < . . . < 𝑡𝑘 = 𝑇 , i.e. the variance 𝑉 := Var
(∑

𝑖 𝑝𝑖 𝑓 (𝜃𝑡𝑖 )
)
,

where

∑
𝑖 𝑝𝑖 = 1, 𝑝𝑖 ≥ 0. To do so, we use a rescaling of the sample

variance of the checkpoints. That is, our estimator is defined as

𝑆 =

∑𝑘
𝑖=1

𝑝2

𝑖

𝑘−1

∑𝑘
𝑖=1
(𝑓 (𝜃𝑡𝑖 ) − �̂�)2 where �̂� = 1

𝑘

∑𝑘
𝑖=1

𝑓 (𝜃𝑡𝑖 ).

Theorem A.1. Under the preceding assumptions/setup, for some
sufficiently large constant 𝑐 , let

𝜅1 =
1

2𝑀
+ ln(𝑐𝑀 (∥𝜃0 − 𝜃 ∗∥22 + 𝑝 ln(𝑀))) + 𝑐 ln(1/Δ),

𝜅2 =
1

2𝑀
+ ln(𝑐𝑀 (ln(1/Δ) + 𝑝 ln(𝑀))) + 𝑐 ln(1/Δ),

(recall that 𝑝 is the dimensionality of the space). Then, if 𝑡1 > 𝜅1 and
𝑡𝑖+1 > 𝑡𝑖 + 𝜅2 for all 𝑖 > 0, for 𝑆,𝑉 as defined above:

|E[𝑆] −𝑉 | =𝑂 (Δ
𝑘∑︁
𝑖=1

𝑝2

𝑖 ).

TheoremA.7 is the special case of setting 𝑝𝑘 = 1 and 𝑝𝑖 = 0, 𝑖 ≠ 𝑘 .

Note that 𝜅1 can be arbitrarily large compared to 𝜅2 due to its

dependence on 𝜃0, whereas 𝜅2 =𝑂 (𝜅1). In particular, 𝜅1 + (𝑘 − 1)𝜅2

(the time to do one long run and use 𝑘 intermediate checkpoints

for uncertainty estimation) can be significantly smaller than 𝑘𝜅1

(the time to do 𝑘 independent runs and use the final checkpoints

for uncertainty estimation). Before proving this theorem, we need

a few helper lemmas about Rényi divergences:

Definition A.2. The Rényi divergence of order 𝛼 > 1 between
two distributions P and Q (with support R𝑑 ), 𝐷𝛼 (P||Q), is defined
as follows:

𝐷𝛼 (P||Q) :=

∫
𝜃 ∈R𝑑

𝑃 (𝜃 )𝛼
𝑄 (𝜃 )𝛼−1

𝑑𝜃

We refer the reader to e.g. [58, 84] for properties of the Rényi

divergence. The following property shows that for any two random

variables close in Rényi divergence, functions of them are close in

expectation:

Lemma A.3. [Adapted from Lemma C.2 of [19]] Let P and Q be
two distributions on Ω and 𝑔 : Ω → [−1, 1]. Then,

|E𝑥∼P [𝑔(𝑥)] − E𝑥∼Q [𝑔(𝑥)] | ≤
√︁
𝑒𝐷2 (P | | Q) − 1.

Here, 𝐷2 (P||Q) corresponds to Rényi divergence of order two between
the distributions P and Q.

The next lemma shows that the solution to DP-LD approaches

𝜃∞ exponentially quickly in Rényi divergence.

Lemma A.4. Fix some point 𝜃0. Assume L is 1-strongly convex,
and 𝑀-smooth. Let P be the distribution of 𝜃𝑡 according to DP-LD
for 𝜎 = 1 and:

𝑡 := 1/2𝑀 + ln(𝑐 (𝑀 ∥𝜃0 − 𝜃 ∗∥22 + 𝑝 ln(𝑀))) + 𝑐 ln(1/Δ).
Where 𝑐 is a sufficiently large constant. Let 𝑄 be the stationary

distribution of DP-LD. Then:

𝐷2 (P||Q) =𝑂 (Δ2) .

The proof of this lemma builds upon techniques in [42], and we

defer it to the appendix. Our final helper lemma shows that 𝜃∞ is

close to 𝜃 ∗ with high probability:

Lemma A.5. Let 𝜃∞ be the random variable given by the stationary
distribution of DP-LD for 𝜎 = 1. If L is 1-strongly convex, then:

Pr[∥𝜃∞ − 𝜃 ∗∥2 >
√
𝑝 + 𝑥] ≤ exp(−𝑥2/2).

Proof. We know the stationary distribution has pdf propor-

tional to exp(−L(𝜃𝑡 ;𝐷)). In particular, since L is 1-strongly con-

vex, this means 𝜃∞ is a sub-Gaussian random vector (i.e., its dot

product with any unit vector is a sub-Gaussian random variable),

and thus the above tail bound applies to it. □
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We now will show that under the assumptions in Theorem A.1,

every checkpoint is close to the stationary distribution, and that

every pair of checkpoints is nearly pairwise independent.

Lemma A.6. Under the assumptions/setup of Theorem A.1, we
have:
(E1) ∀𝑖 : |E[(𝑓 (𝜃𝑡𝑖 ))] − E[(𝑓 (𝜃𝑡𝑘 ))] | =𝑂 (Δ),
(E2) ∀𝑖 : |E[(𝑓 (𝜃𝑡𝑖 )2)] − E[𝑓 (𝜃𝑡𝑘 )2] | =𝑂 (Δ),
(E3) ∀𝑖 < 𝑗 : |Cov

(
𝑓 (𝜃𝑡𝑖 ), 𝑓 (𝜃𝑡 𝑗 )

)
| =𝑂 (Δ).

Proof. We assume without loss of generality Δ is at most a

sufficiently small constant; otherwise, since 𝑓 has range [−1, 1], all
of the above quantities can easily be bounded by 2, so a bound of

𝑂 (Δ) holds for any distributions on {𝜃𝑡𝑖 }.
For (E1), by triangle inequality, it suffices to prove a bound of

𝑂 (Δ) on |E[𝑓 (𝜃𝑡𝑖 )] − E[𝑓 (𝜃∞)] |. We abuse notation by letting 𝜃𝑡
denote both the random variable and its distribution. Then:

|E[𝑓 (𝜃𝑡𝑖 )] − E[𝑓 (𝜃∞)] |
Lemma A.3

≤
√︁
𝑒𝐷2 (𝑓 (𝜃𝑡𝑖 ),𝑓 (𝜃∞ ) ) − 1

(∗1 )
≤

√︁
𝑒𝐷2 (𝜃𝑡𝑖 ,𝜃∞ ) − 1

Lemma A.4,𝑡𝑖 ≥𝜅1

=

√︁
𝑒𝑂 (Δ2 ) − 1

(∗2 )
= 𝑂 (Δ).

In (∗1) we use the data-processing inequality (Theorem 9 of

[84]), and in (∗2) we use the fact 𝑒𝑥 − 1 ≤ 2𝑥, 𝑥 ∈ [0, 1] and our

assumption on Δ.
(E2) follows from (E1) by just using 𝑓 2

(which is still bounded in

[−1, 1]) instead of 𝑓 .

For (E3), note that since DP-LD is a (continuous) Markov chain,

the distribution of 𝜃𝑡 𝑗 conditioned on 𝜃𝑡𝑖 is the same as the distribu-

tion of 𝜃𝑡 𝑗 −𝑡𝑖 according to DP-LD if we start from 𝜃𝑡𝑖 instead of 𝜃0.

Let P be the joint distribution of 𝜃𝑡𝑖 , 𝜃𝑡 𝑗 . Let Q be the joint distri-

bution of 𝜃𝑡𝑖 , 𝜃∞ (since DP-LD has the same stationary distribution

regardless of its initialization, this is a pair of independent variables).

Let P′,Q′ be defined identically to P||Q, except when sampling

𝜃𝑡𝑖 , if
𝜃𝑡𝑖 − 𝜃 ∗2

>
√
𝑝 +

√︁
2 ln(1/Δ) we instead set 𝜃𝑡𝑖 = 𝜃 ∗ (and in

the case of P′, we instead sample 𝜃𝑡 𝑗 from 𝜃𝑡 𝑗 |𝜃𝑡𝑖 = 𝜃 ∗ when this

happens). Let R denote this distribution over 𝜃𝑡𝑖 . Then similarly to

the proof of (E1) we have:

|EP′ [𝑓 (𝜃𝑡𝑖 ) 𝑓 (𝜃𝑡 𝑗 )] − EQ′ [𝑓 (𝜃𝑡𝑖 )]E[𝑓 (𝜃∞)] |
Lemma A.3

≤
√︁
𝑒𝐷2 (P′,Q′ ) − 1

(∗3 )
≤

√︃
𝑒

max𝜃𝑡𝑖
∈supp(R) {𝐷2 (𝜃𝑡 𝑗 |𝜃𝑡𝑖 ,𝜃∞ ) } − 1.

Lemma A.4,𝑡 𝑗 −𝑡𝑖 ≥𝜅2

=

√︁
𝑒𝑂 (Δ2 ) − 1 =𝑂 (Δ) .

Here (∗3) follows from the convexity of Rényi divergence, and

in our application of A.4, we are using the fact that for all 𝜃𝑡𝑖 ∈
supp(R),

𝜃𝑡𝑖 − 𝜃 ∗2
≤ √𝑝+

√︁
2 ln(1/Δ). Furthermore, by LemmaA.5,

we know P and P′ (resp. Q and Q′) differ by at most Δ in total

variation distance. So, since 𝑓 is bounded in [−1, 1], we have:

|EP [𝑓 (𝜃𝑡𝑖 ) 𝑓 (𝜃𝑡 𝑗 )] − EP′ [𝑓 (𝜃𝑡𝑖 ) 𝑓 (𝜃𝑡 𝑗 )] | ≤ Δ,

|EQ [𝑓 (𝜃𝑡𝑖 )]E[𝑓 (𝜃∞)] − EQ′ [𝑓 (𝜃𝑡𝑖 )]E[𝑓 (𝜃∞)] | ≤ Δ.

Then by applying triangle inequality twice:

|EP [𝑓 (𝜃𝑡𝑖 ) 𝑓 (𝜃𝑡 𝑗 )] − EQ [𝑓 (𝜃𝑡𝑖 )]E[𝑓 (𝜃∞)] | =𝑂 (Δ)

Now we can prove (E3) as follows:

|Cov
(
𝑓 (𝜃𝑡𝑖 ), 𝑓 (𝜃𝑡 𝑗 )

)
|

= |E[(𝑓 (𝜃𝑡𝑖 ) − E[𝑓 (𝜃𝑡𝑖 )]) (𝑓 (𝜃𝑡 𝑗 ) − E[𝑓 (𝜃𝑡 𝑗 )])] |
= |E[𝑓 (𝜃𝑡𝑖 ) 𝑓 (𝜃𝑡 𝑗 )] − E[𝑓 (𝜃𝑡𝑖 )]E[𝑓 (𝜃𝑡 𝑗 )] |
≤ |E[𝑓 (𝜃𝑡𝑖 ) 𝑓 (𝜃𝑡 𝑗 )] − E[𝑓 (𝜃𝑡𝑖 )]E[𝑓 (𝜃∞)] |+

|E[𝑓 (𝜃𝑡𝑖 )]E[𝑓 (𝜃∞)] − E[𝑓 (𝜃𝑡𝑖 )]E[𝑓 (𝜃𝑡 𝑗 )] |
≤ 𝑂 (Δ) + |E[𝑓 (𝜃∞)] − E[𝑓 (𝜃𝑡 𝑗 )] | =𝑂 (Δ) .

□

Proof of Theorem A.1. We again assume without loss of gen-

erality Δ is at most a sufficiently small constant. The proof strategy

will be to express E[𝑆] in terms of individual variances Var
(
𝑓 (𝜃𝑡𝑖 )

)
,

which can be bounded using Lemma A.6.

We have the following:

E[𝑆] =
∑𝑘

𝑖=1
𝑝2

𝑖

𝑘 − 1

𝑘∑︁
𝑖=1

E
[
(𝑓 (𝜃𝑡𝑖 ) − �̂�)2

]

=

∑𝑘
𝑖=1

𝑝2

𝑖

𝑘 − 1

𝑘∑︁
𝑖=1

E


(
𝑘 − 1

𝑘

)
2

©«
𝑓 (𝜃𝑡𝑖 )︸︷︷︸

𝑥𝑖

− 1

𝑘 − 1

∑︁
𝑗∈[𝑘 ], 𝑗≠𝑖

𝑓 (𝜃𝑡 𝑗 )︸                    ︷︷                    ︸
𝑦𝑖

ª®®®®®®®¬

2
.

(10)

From (10), we have the following:

E
[
(𝑥𝑖 − 𝑦𝑖 )2

]
= E[𝑥2

𝑖 ] − 2E[𝑥𝑖𝑦𝑖 ] + E[𝑦2

𝑖 ]
=

(
E[𝑥2

𝑖 ] − (E[𝑥𝑖 ])2
)
+

(
E[𝑦2

𝑖 ] − (E[𝑦𝑖 ])2
)
+(

(E[𝑥𝑖 ])2 + (E[𝑦𝑖 ])2 − 2E [𝑥𝑖𝑦𝑖 ]
)

= Var (𝑥𝑖 )︸   ︷︷   ︸
𝐴

+Var (𝑦𝑖 )︸   ︷︷   ︸
𝐵

+
(
(E[𝑥𝑖 ])2 + (E[𝑦𝑖 ])2 − 2E [𝑥𝑖𝑦𝑖 ]

)︸                                      ︷︷                                      ︸
𝐶

. (11)

In the following, we bound each of the terms𝐴,𝐵, and𝐶 individually.

First, let us consider the term 𝐵. We have the following:

𝐵 = Var (𝑦𝑖 ) =
1

(𝑘 − 1)2©«
∑︁

𝑗∈[𝑘 ], 𝑗≠𝑖
Var

(
𝑓 (𝜃𝑡 𝑗 )

)
+ 2

∑︁
1≤ 𝑗<ℓ≤𝑘
𝑗≠𝑖,ℓ≠𝑖

Cov
(
𝑓 (𝜃𝑡 𝑗 ), 𝑓 (𝜃𝑡ℓ )

)ª®®®¬ . (12)

Plugging Lemma A.6, (E3) into (12) we bound the variance of 𝑦𝑖
as follows:

𝐵 = Var (𝑦𝑖 ) =
1

(𝑘 − 1)2
©«

∑︁
𝑗∈[𝑘 ], 𝑗≠𝑖

Var
(
𝑓 (𝜃𝑡 𝑗 )

)ª®¬ ±𝑂 (Δ) . (13)
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We now focus on bounding the term𝐶 in (11). Lemma A.6, (E1) and

(E3) implies the following:

(E[𝑥𝑖 ])2 = (E[𝑓 (𝜃𝑡𝑘 )])
2 ±𝑂 (Δ), (14)

(E[𝑦𝑖 ])2 = (E[𝑓 (𝜃𝑡𝑘 )])
2 ±𝑂 (Δ), (15)

E[𝑥𝑖𝑦𝑖 ] = (E[𝑓 (𝜃𝑡𝑘 )])
2 +𝑂 (Δ). (16)

Plugging (14),(15), and (16) into (11), we have

E
[
(𝑥𝑖 − 𝑦𝑖 )2

]
= Var

(
𝑓 (𝜃𝑡𝑖 )

)
+ 1

(𝑘 − 1)2
©«

∑︁
𝑗∈[𝑘 ], 𝑗≠𝑖

Var
(
𝑓 (𝜃𝑡 𝑗 )

)ª®¬ ±𝑂 (Δ). (17)

Now, Lemma A.6, (E1) and (E2) implies

∀𝑖, :
�����Var (

𝑓 (𝜃𝑡𝑖 )
)
− 𝑉∑𝑘

𝑖=1
𝑝2

𝑖

����� =𝑂 (Δ)

. So from (17) we have the following:

E
[
(𝑥𝑖 − 𝑦𝑖 )2

]
=𝑉 · 𝑘

(𝑘 − 1)∑𝑘
𝑖=1

𝑝2

𝑖

±𝑂 (Δ) . (18)

Plugging this bound back in (10), we have the following:

E[𝑆] =
∑𝑘

𝑖=1
𝑝2

𝑖

𝑘 − 1

·
(
𝑘 − 1

𝑘

)
2

· 𝑘 ·
(
𝑉 · 𝑘

(𝑘 − 1)∑𝑘
𝑖=1

𝑝2

𝑖

±𝑂 (Δ)
)

=𝑉 ±𝑂 (Δ
𝑘∑︁
𝑖=1

𝑝2

𝑖 ) . (19)

Which completes the proof. □

A.2 Optimizing the Number of Checkpoints
In TheoremA.1, we fixed the number of checkpoints and gave lower

bounds on the burn-in time and separation between checkpoints

needed for the sample variance bound to have bias at most Δ. We

could instead consider the problem where 𝑇 , the time of the final

checkpoint, is fixed, and we want to choose 𝑘 which minimizes the

(upper bound on) mean squared error of the sample variance of

{𝑓 (𝜃𝑖𝑇 /𝑘 )}𝑖∈[𝑘 ] . Here, we sketch a solution to this problem using

the bound from this section.

The mean squared error of the sample variance is the sum of

the bias and variance of this estimator. We will use the following

simplified reparameterization of Theorem A.1:

Theorem A.7 (Simpler version of Theorem A.1). Let 𝑐1 :=
1

2𝑀
+ln(𝑐2𝑀 (𝑝+∥𝜃0 − 𝜃 ∗∥22)), where 𝑐2 is a sufficiently large constant.

Then if 𝑆 is the sample variance of {𝑓 (𝜃𝑖𝑇 /𝑘 )}𝑖∈[𝑘 ] , 𝑉 is the true
variance of 𝑓 (𝜃𝑇 ), and 𝑇 /𝑘 > 𝑐1:

|E[𝑆] −𝑉 |2 ≤ exp

(
−𝑇 /𝑘 − 𝑐1

𝑐2

)
.

One can also bound the variance of 𝑆 :

Lemma A.8. If 𝑆 is the sample variance of 𝑘 > 1 i.i.d. samples
of 𝜃𝑇 , then if 𝑐2 is a sufficiently large constant, for 𝑐1 as defined in
Lemma A.7:

Var
(
𝑆
)
≤ 1

𝑘
, |Var (𝑆) − Var

(
𝑆
)
| ≤ 2 exp

(
−𝑇 /𝑘 − 𝑐1

𝑐2

)
.

Proof. Let 𝑥1, . . . , 𝑥𝑘 be 𝑘 i.i.d. samples of 𝑓 (𝜃𝑇 ), then since each
𝑥𝑖 is in the interval [−1, 1]:

Var
(
𝑆
)
=

E[𝑥4

1
]

𝑘
− Var (𝑥1) (𝑘 − 3)

𝑘 (𝑘 − 1) ≤ 1

𝑘
.

Giving the first part of the lemma. For the second part, let 𝑥𝑖 be

the sampled value of 𝑓 (𝜃𝑖𝑇 /𝑘 ). Then:

E[𝑆2] = E


©« 1

𝑘 − 1

∑︁
𝑖∈[𝑘 ]

©«𝑥𝑖 − 1

𝑘

∑︁
𝑗∈[𝑘 ]

𝑥 𝑗
ª®¬

2ª®¬
2 .

For some coefficients 𝑐𝑖, 𝑗,ℓ,𝑚 , this can be written as∑︁
𝑖≤ 𝑗≤ℓ≤𝑚

𝑐𝑖, 𝑗,ℓ,𝑚E[𝑥𝑖𝑥 𝑗𝑥ℓ𝑥𝑚]

where

∑
𝑖≤ 𝑗≤ℓ≤𝑚 |𝑐𝑖, 𝑗,ℓ,𝑚 | ≤ 2. By a similar argument to Theo-

rem A.1, the change in this expectation if we instead use 𝑥𝑖 that

are i.i.d. is then at most exp

(
−𝑇 /𝑘−𝑐1

𝑐2

)
as long as 𝑐2 is a sufficiently

large constant. In other words, |E[𝑆2] − E[𝑆2] | ≤ exp

(
−𝑇 /𝑘−𝑐1

𝑐2

)
.

A similar argument applies to 𝐸 [𝑆]2, giving the second part of the

lemma. □

Putting it all together, we have an upper bound on the mean

squared error of the sample variance of:

1

𝑘
+ 3 exp

(
−𝑇 /𝑘 − 𝑐1

𝑐2

)
,

Assuming 𝑘 > 1,𝑇 /𝑘 > 𝑐1. Minimizing this expression with

respect to 𝑘 gives

𝑘 =
𝑇

𝑐1 + 𝑐2 ln(3𝑇 /𝑐2)
,

which we can then round to the nearest integer larger than 1 to

determine the number of checkpoints to use that minimizes our

upper bound on the mean squared error. Of course, if 𝑇 < 2𝑐1 then

Theorem A.1 cannot be applied to give a meaningful bias bound for

any number of checkpoints, so this choice of 𝑘 is not meaningful

in that case.

A.3 Proof of Lemma A.4
We will bound the divergences 𝐷𝛼 (𝑃1 | |𝑃2), 𝐷𝛼 (𝑃2 | |𝑃3), 𝐷𝛼 (𝑃3 | |𝑃4)
where 𝑃1 is the distribution 𝜃𝜂 that is the solution to (9), 𝑃2 is a

Gaussian centered at the point 𝜃0 − 𝜂∇L(𝜃0;𝐷), 𝑃3 is a Gaussian

centered at 𝜃 ∗, and 𝑃4 is the stationary distribution of (9). Then, we

can use the approximate triangle inequality for Rényi divergences

to convert these pairwise bounds into the desired bound.

Lemma A.9. Fix some 𝜃0. Let 𝑃1 be the distribution of 𝜃𝜂 that is the
solution to (9), and let 𝑃2 be the distribution 𝑁 (𝜃0 −𝜂∇L(𝜃0;𝐷), 2𝜂).
Then:

𝐷𝛼 (𝑃1 | |𝑃2) =𝑂

(
𝑀2

ln(𝛼) ·max{𝑝𝜂2, ∥𝜃0 − 𝜃 ∗∥22 𝜂3}
)

Proof. Let 𝜃𝑡 be the solution trajectory of (9) starting from

𝜃0, and let 𝜃 ′𝑡 be the solution trajectory if we replace ∇L(𝜃𝑡 ;𝐷)
with ∇L(𝜃0;𝐷). Then 𝜃𝜂 is distributed according to 𝑃1 and 𝜃 ′𝜂 is

distributed according to 𝑃2.
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By a tail bound on Brownian motion (see e.g. Fact 32 in [42]), we

have that max𝑡 ∈[0,𝜂 ]

∫ 𝑡

0
𝑑𝑊𝑠𝑑𝑠


2

≤
√︁
𝜂 (𝑝 + 2 ln(2/𝛿)) w.p. 1 − 𝛿 .

Then following the proof of Lemma 13 in [42], w.p. 1 − 𝛿 ,

max

𝑡 ∈[0,𝜂 ]
∥𝜃𝑡 − 𝜃0∥2 ≤ 𝑐𝑀 (

√
𝑝 +

√︁
ln(1/𝛿))√𝜂 +𝑀 ∥𝜃0 − 𝜃 ∗∥2 𝜂,

for some sufficiently large constant 𝑐 , and the same is true w.p. 1−𝛿
over 𝜃 ′𝑡 . Now, following the proof of Theorem 15 in [42], for some

constant 𝑐′, we have the divergence bound 𝐷𝛼 (𝑃1 | |𝑃2) ≤ 𝜀 as long

as:

𝑀4
ln

2 𝛼

𝜀2
(𝑝𝜂2 + ∥𝜃0 − 𝜃 ∗∥22 𝜂3) < 𝑐′ .

In other words, for any fixed 𝜂, we get a divergence bound of:

𝐷𝛼 (𝑃1 | |𝑃2) =𝑂

(
𝑀2

ln(𝛼) ·max{𝑝𝜂2, ∥𝜃0 − 𝜃 ∗∥22 𝜂3}
)
,

as desired. □

Lemma A.10. Let 𝑃2 be the distribution 𝑁 (𝜃0 − 𝜂∇L(𝜃0;𝐷), 2𝜂)
and 𝑃3 be the distribution 𝑁 (𝜃 ∗, 2𝜂). Then for 𝜂 ≤ 2/𝑀 :

𝐷𝛼 (𝑃2 | |𝑃3) ≤
𝛼 ∥𝜃0 − 𝜃 ∗∥22

4𝜂
.

Proof. By contractivity of gradient descent we have:

∥𝜃0 − 𝜂∇L(𝜃0;𝐷) − 𝜃 ∗∥
2
≤ ∥𝜃 − 𝜃 ∗∥

2
.

Now the lemma follows from Rényi divergence bounds between

Gaussians (see e.g., Example 3 of [84]). □

Lemma A.11. Let 𝑃3 be the distribution 𝑁 (𝜃 ∗, 2𝜂) and let 𝑃4 be
the stationary distribution of (9). Then for 𝜂 ≤ 1/2𝑀 we have:

𝐷𝛼 (𝑃3 | |𝑃4) ≤
𝛼

𝛼 − 1

(𝑝
2

ln(1/𝜂) − ln(2𝜋)
)
+ 𝑝

2

ln(𝛼/4𝜋𝜂).

Proof. Wehave 𝑃3 (𝜃 ) = 𝑃3 (𝜃 ∗) exp(− 1

4𝜂
∥𝜃 − 𝜃 ∗∥2

2
)where 𝑃3 (𝜃 ∗) =(

1

4𝜋𝜂

)𝑑
. By𝑀-smoothness of the negative log density of 𝑃4, we also

have 𝑃4 (𝜃 ) ≥ 𝑃4 (𝜃 ∗) exp(−𝑀
2
∥𝜃 − 𝜃 ∗∥2

2
). In addition, since 𝑃4 is

1-strongly log concave, 𝑃4 (𝜃 ∗) ≥
(

1

2𝜋

)𝑝/2
(as the 1-strongly log con-

cave density with mode 𝜃 ∗ that minimizes 𝑃4 (𝜃 ∗) is the multivariate

normal with mean 𝜃 ∗ and identity covariance). Finally, for 𝛼 ≥ 1

and 𝜂 ≤ 1/2𝑀 , we have 𝛼/4𝜂 > (𝛼 − 1)𝑀/2. Putting it all together:

exp((𝛼 − 1)𝐷𝛼 (𝑃3 | |𝑃4)) (20)

=

∫
𝑃3 (𝜃 )𝛼
𝑃4 (𝜃 )𝛼−1

𝑑𝜃 (21)

=
𝑃3 (𝜃 ∗)𝛼
𝑃4 (𝜃 ∗)𝛼−1

× (22)∫
exp

(
−( 𝛼

4𝜂
− (𝛼 − 1)𝑀

2

) ∥𝜃 − 𝜃 ∗∥2
2

)
𝑑𝜃

≤
(

1

4𝜋𝜂

)𝛼𝑝/2
(2𝜋)𝛼 (𝑝−1)/2 × (23)∫

exp

(
−( 𝛼

4𝜂
− (𝛼 − 1)𝑀

2

) ∥𝜃 − 𝜃 ∗∥2
2

)
𝑑𝜃

=

(
1

2𝜋

)𝛼/2 (
1

2𝜂

)𝛼𝑝/2
× (24)∫

exp

(
−( 𝛼

4𝜂
− (𝛼 − 1)𝑀

2

) ∥𝜃 − 𝜃 ∗∥2
2

)
𝑑𝜃

(∗)
=

(
1

2𝜋

)𝛼/2 (
1

2𝜂

)𝛼𝑝/2 (
𝛼
4𝜂
− (𝛼 − 1)𝑀

2

𝜋

)𝑝/2
(25)

≤
(

1

2𝜋

)𝛼/2 (
1

2𝜂

)𝛼𝑝/2 (
𝛼

4𝜋𝜂

)𝑝/2
(26)

=⇒ 𝐷𝛼 (𝑃3 | |𝑃4) ≤
𝛼

𝛼 − 1

(𝑝
2

ln(1/𝜂) − ln(2𝜋)
)
+ 𝑝

2

ln(𝛼/4𝜋𝜂).
(27)

In (∗), we use the fact that 𝛼/4𝜂 > (𝛼 − 1)𝑀/2 to ensure the

integral converges.

□

Lemma A.12. Fix some point 𝜃0. Let 𝑃 be the distribution 𝜃𝜂 that is
the solution to (9) from 𝜃0 for time 𝜂 ≤ 1/2𝑀 . Let𝑄 be the stationary
distribution of (9). Then:

𝐷𝛼 (P||Q) =𝑂

(
𝑀2

ln(𝛼) ·max{𝑝𝜂2, ∥𝜃0 − 𝜃 ∗∥22 𝜂3}

+𝛼
∥𝜃0 − 𝜃 ∗∥22

𝜂
+ 𝑝 ln(𝛼/𝜂).

)
Proof. By monotonicity of Rényi divergences (see e.g., Propo-

sition 9 of [58]), we can assume 𝛼 ≥ 2. Then by applying twice

the approximate triangle inequality for Rényi divergences (see e.g.

Proposition 11 of [58]), we get:

𝐷𝛼 (𝑃1 | |𝑃4) ≤
5

3

𝐷3𝛼 (𝑃1 | |𝑃2) +
4

3

𝐷3𝛼−1 (𝑃2 | |𝑃3) + 𝐷3𝛼−2 (𝑃3 | |𝑃4).

The lemma now follows by Lemmas A.9, A.10, A.11. □

Lemma A.4 now follows by plugging 𝛼 = 2, 𝜂 = 1/2𝑀 into

Lemma A.12 and then using Theorem 2 of [85].

A.4 Extending to DP-SGLD
While we presented our results in terms of DP-LD to simplify the

results, a similar result can be proven for DP-SGLD, which is a

discrete algorithm and just a reparameterization of DP-SGD, the

algorithm we use in our experiments. So, our results can still be
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Table 6: StackOverflow LSTM architecture details.

Layer Output shape Parameters

Input 20 0

Embedding (20, 96) 960384

LSTM (20, 670) 2055560

Dense (20, 96) 64416

Dense (20, 10004) 970388

Softmax - -

applied to some practical settings. We discuss how to modify the

proof of Theorem A.1 here.

The only part of the proof of Theorem A.1 which does not im-

mediately hold (or hold in an analogous form) for DP-SGLD is

Lemma A.4. That is, if we can show that starting from a point dis-

tribution, we converge to the stationary distribution of DP-LD in

a given number of iterations of DP-SGLD, then we can prove an

analog of Lemma A.4 and the rest of the proof of Theorem A.1 can

be used as-is.

To prove an analog of Lemma A.4, we need (i) an analog of

Lemma A.12, which shows that from a point distribution we reach

a finite Renyi divergence from the stationary distribution and (ii)

an analog of Theorem 2 of [85], which shows that from a finite

Renyi divergence bound we can reach a small Renyi divergence

bound in a given amount of time.

(i) Can be proven similarly to Lemma A.12; in particular, we only

need Lemmas A.10 and A.11, which by triangle inequality give a

Renyi divergence bound between the distribution given after one

iteration of DP-SGLD from a point distribution and the stationary

distribution. (ii) can be proven using e.g. Lemma 7 of [32], which

shows how the Renyi divergence decreases in every iteration under

the assumptions in this section. Getting an exact lower bound on

the number of iterations of DP-SGLD needed analogous to our

lower bounds on 𝜅1, 𝜅2 requires a bit of technical work and results

in a much more complicated bound than Theorem A.1, so we omit

the details here. However, we note that an analogous version of

one of our high-level takeaways from Theorem A.1, that 𝜅1 can be

much larger than 𝜅2 in the worst case, would hold for the bounds

we could prove for DP-SGLD. In particular, it is still the case that

the initial divergence we get from (i) depends on the distance to the

minimizer of L, which can be arbitrarily bad for the initialization

but which we can bound with high probability for the intermediate

checkpoints via Lemma A.4.

B Missing details from Section 4
Below we provide some preliminaries, details about the experimen-

tal setup, and results that were omitted from Section 4 due to space

constraints.
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Table 7: Tuning 𝑘 , the number of past checkpoints used for aggregation in UTAinf , OPA, OMV. Results below are for original
CIFAR10 dataset.

Aggregation Privacy level

Number of past checkpoints aggregated, 𝑘

3 5 10 20 30 40 50 60 70 80 90 100

UTAinf
𝜀 = 8 78.07 78.24 78.37 78.81 79.39 79.16 79.31 79.13 79.01 78.88 78.79 78.71

𝜀 = 1 55.29 55.72 55.96 56.12 56.43 56.62 56.59 56.48 56.33 56.38 56.4 56.26

OPA

𝜀 = 8 78.05 78.22 78.45 78.89 79.18 79.33 79.40 79.40 79.36 79.37 79.26 79.11

𝜀 = 1 55.75 56.11 56.23 56.49 56.68 56.11 56.43 56.11 55.91 55.94 55.80 55.81

OMV

𝜀 = 8 76.77 77.2 77.7 78.32 78.65 78.81 78.70 78.92 79.21 79.20 79.34 79.31

𝜀 = 1 53.75 54.51 54.90 55.10 55.07 55.78 56.14 56.33 56.40 56.19 56.23 56.00

Table 8: Training hyperparameters that we use for StackOverflow experiments with DP-FTRL [28] and various training
(Section 3.1) and inference (Section 3.2) aggregations. We use the hyperparameters in "Baseline" section for all the inference
aggregations; we discuss how we tune individual parameters of the aggregations in Section 3.3

Aggregation Privacy Parameter clip norm noise multiplier server lr client lr server momentum

Baseline

𝜀 =∞ – 1.0 0.0 3.0 0.5 0.9

𝜀 = 18.9 – 1.0 0.341 0.5 1.0 0.95

𝜀 = 8.2 – 1.0 0.682 0.25 1.0 0.95

UPAtr

𝜀 =∞ 𝑘 = 3 1.0 0.0 2.0 0.5 0.95

𝜀 = 18.9 𝑘 = 3 0.3 0.341 2.0 1.0 0.95

𝜀 = 8.2 𝑘 = 3 0.3 0.682 1.0 1.0 0.95

EMAtr

𝜀 =∞ 𝛽 = 0.95 1.0 0.0 2.0 1.0 0.95

𝜀 = 18.9 𝛽 = 0.95 1.0 0.341 0.5 1.0 0.95

𝜀 = 8.2 𝛽 = 0.95 1.0 0.682 0.25 1.0 0.95

Table 9: Training hyperparameters that we use for periodic distribution shifting StackOverflow experiments with DP-FTRL [28]
and various training (Section 3.1) and inference (Section 3.2) aggregations. We use the hyperparameters in "Baseline" section
for all the inference aggregations; we discuss how we tune individual parameters of the aggregations in Section 3.3

Aggregation Privacy 𝜀 Parameter clip norm noise multiplier server lr client lr server momentum

Baseline

∞ – 1.0 0.0 3.0 0.5 0.9

18.9 – 1.0 0.341 0.5 1.0 0.95

8.2 – 1.0 0.682 0.25 1.0 0.95

UPAtr

∞ 𝑘 = 5 1.0 0.0 2.0 0.5 0.95

18.9 𝑘 = 5 1.0 0.341 0.5 1.0 0.95

8.2 𝑘 = 5 0.3 0.682 1.0 0.5 0.95

EMAtr

∞ 𝛽 = 0.95 1.0 0.0 2.0 0.5 0.95

18.9 𝛽 = 0.95 1.0 0.341 0.5 1.0 0.95

8.2 𝛽 = 0.95 1.0 0.682 1.0 0.5 0.95

627



Proceedings on Privacy Enhancing Technologies 2025(2) Shejwalkar et al.

Table 10: Training hyperparameters that we use for CIFAR10 and periodic distribution shifting (PDS) CIFAR10 experiments with
DP-SGD [28] and various training aggregations (Section 3.1); we discuss how we tune individual parameters of the aggregations
in Section 3.3

Aggregation Privacy Parameter noise multiplier learning rate 𝜏 (𝑇 )

CIFAR10; DP-SGD; sample-level privacy

UTAtr
𝜀 = 8 𝑘 = 2 3.0 4.0 2000 (3068)

𝜀 = 1 𝑘 = 2 8.0 2.0 400 (568)

EMAtr
𝜀 = 8 𝛽 = 0.6 4.0 2.0 2000 (4559)

𝜀 = 1 𝛽 = 0.5 10.0 2.0 400 (875)

PDS CIFAR10; DP-SGD; sample-level privacy

UTAtr
𝜀 = 8 𝑘 = 5 3.0 2.0 2000 (2480)

𝜀 = 1 𝑘 = 3 8.0 2.0 400 (460)

EMAtr
𝜀 = 8 𝛽 = 0.6 3.0 2.0 1500 (2480)

𝜀 = 1 𝛽 = 0.6 8.0 2.0 200 (460)

Table 11: Training hyperparameters that we use for CIFAR100 and periodic distribution shifting (PDS) CIFAR100 experiments
with DP-SGD [28] and various training aggregations (Section 3.1); we discuss how we tune individual parameters of the
aggregations in Section 3.3

Aggregation Privacy Parameter noise multiplier learning rate 𝜏 (𝑇 )

CIFAR100; DP-SGD; sample-level privacy

UTAtr
𝜀 = 8 𝑘 = 50 9.4 4.0 400 (2000)

𝜀 = 1 𝑘 = 50 21.1 4.0 100 (250)

EMAtr
𝜀 = 8 𝛽 = 0.85 9.4 4.0 1500 (2000)

𝜀 = 1 𝛽 = 0.99 21.1 4.0 200 (250)

PDS CIFAR100; DP-SGD; sample-level privacy

UTAtr
𝜀 = 8 𝑘 = 10 9.4 4.0 50 (2000)

𝜀 = 1 𝑘 = 5 21.1 4.0 200 (250)

EMAtr
𝜀 = 8 𝛽 = 0.85 9.4 4.0 200 (2000)

𝜀 = 1 𝛽 = 0.85 21.1 4.0 200 (250)
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