
OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms
Maximilian Kroschewski

Hasso Plattner Institute,

University of Potsdam

maximilian.kroschewski@hpi.de

Anja Lehmann

Hasso Plattner Institute,

University of Potsdam

anja.lehmann@hpi.de

Cavit Özbay

Hasso Plattner Institute,

University of Potsdam

cavit.oezbay@hpi.de

Abstract
Single Sign-On (SSO) allows users to conveniently authenticate

to many Relying Parties (RPs) through a central Identity Provider

(IdP). SSO supports unlinkable authentication towards the RPs

via pairwise pseudonyms, where the IdP assigns the user an RP-

specific pseudonym. This feature has been rolled out prominently

within Apple’s SSO service. While establishing unlinkable identities

provides privacy towards RPs, it actually emphasizes the main

privacy problem of SSO: with every authentication request, the IdP

learns the RP that the user wants to access. Solutions to overcome

this limitation exist, but either assume users to behave honestly or

require them to manage long-term cryptographic keys.

In this work, we propose the first SSO system that can provide

such pseudonymous authentication in an unobservable yet strongly
secure and convenient manner. That is, the IdP blindly derives the

user’s pairwise pseudonym for the targeted RP without learning

the RP’s identity and without requiring key material handled by the

user. We formally define the desired security and privacy properties

for such unlinkable, unobservable, and strongly secure SSO. In par-

ticular, our model includes the often neglected RP authentication:

the IdP typically wants to limit its services to registered RPs only

and thus must be able to (blindly) verify that it issues the token and

pseudonym to such a registered RP. We propose a simple construc-

tion that combines signatures with efficient proofs-of-knowledge

with a blind, yet verifiable, evaluation of the Hashed-Diffie-Hellman

PRF. We prove the security of our construction and demonstrate its

efficiency through a prototypical implementation, which requires a

running time of 2-12ms per involved party.

1 Introduction
Single Sign-On (SSO) allows users to conveniently authenticate

towards multiple online services with the help of a central party,

the Identity Provider (IdP). When accessing a service – denoted as

a Relying Party (RP) – users are redirected for authentication to the

IdP. The IdP then verifies the user and sends a cryptographically

signed token attesting the user’s identity 𝑢𝑖𝑑 to the RP. The SSO

approach frees users from the burden of remembering dedicated

login credentials for each service they want to use, while also

providing stronger authentication and simpler deployment for the

RPs. Due to these characteristics, SSO has been widely adopted in

recent years, particularly with major platform providers such as

Google, Meta, or Apple serving as IdPs [1, 2, 20].

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(2), 629–649
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0080

IdP

UserRP

(1) Access

(
2
)
A
u
t
h
e
n
t
ic
a
t
io
n

Redirections

(
3
)
A
u
t
h
e
n
t
ic
a
t
io
n

Registered 𝑟𝑖𝑑 Registered𝑢𝑖𝑑

Unlinkability

Does not learn𝑢𝑖𝑑

(
4
)
T
o
k
e
n
w
it
h
a

𝑝
𝑝
𝑖𝑑
f
o
r
(𝑢
𝑖𝑑
, 𝑟
𝑖𝑑
)

Unobservability

Does not learn 𝑟𝑖𝑑

Figure 1: OPPID: Users authenticate to RPs through the IdP.
The IdP cannot observe which RP the user accesses. Users
are unlinkable via RP-specific pseudonyms 𝑝𝑝𝑖𝑑𝑠.

Unlinkability via Pseudonyms. A privacy drawback of SSO sys-

tems is that users become linkable across RPs through their identity

𝑢𝑖𝑑 , included in each token the IdP signs. Therefore, NIST recom-

mends the use of Pairwise Pseudonymous Identifiers [37, §6.2.5] –
short 𝑝𝑝𝑖𝑑 . The IdP then replaces the user’s identity𝑢𝑖𝑑 in the token

with a unique pseudonym 𝑝𝑝𝑖𝑑 , which is derived specifically for

the targeted RP. This protocol feature is supported by the widely-

adopted OpenID Connect (OIDC) standard [43, §8], which uses a

hash function H to set 𝑝𝑝𝑖𝑑 = H(𝑘,𝑢𝑖𝑑, 𝑟𝑖𝑑), where 𝑘 is a high-

entropy key of the IdP and 𝑢𝑖𝑑, 𝑟𝑖𝑑 are the identifiers of the user

and RP, respectively. As the IdP assigns deterministic and unique

pseudonyms for each user-RP combination, the RP is still ensured

that the correct user logs in, and the same user cannot authenticate

under multiple pseudonyms, which is known as Sybil-resistance.

At the same time, the user can engage with different RPs under

unlinkable pseudonyms, which has been prominently advertised by

Apple in their Sign in with Privacy service [4] that uses this feature.

Main Challenge: Unobservability. While unlinkable pseudonyms

improve user privacy with RPs, they highlight another fundamental

SSO privacy problem: the IdP must know the RP’s identity 𝑟𝑖𝑑

at each login to generate the user’s RP-specific pseudonym. The

pseudonym computation is not the only reason 𝑟𝑖𝑑 is revealed to the

IdP in every authentication request. The most important purpose is

to bind the token to the targeted RP for phishing protection, which

is done by simply including 𝑟𝑖𝑑 in the signed token. Further, the

IdP typically limits its service to registered RPs only, which requires

some form of authentication from the RP to the IdP too [43].

The lack of unobservability is a significant risk to users’ privacy.

The IdP is involved in every online authentication and learns exactly

which services and websites users access and when. As SSO is

convenient for RPs when only a few IdPs exist, as is currently the

case with Google, Meta, and Apple dominating the end-user SSO

market, this concentration of information is particularly dangerous.

629

https://orcid.org/0009-0003-5647-4491
https://orcid.org/0000-0002-2872-7899
https://orcid.org/0000-0001-5000-7655
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0080

Proceedings on Privacy Enhancing Technologies 2025(2) Kroschewski et al.

Thus, an important question is how the convenience and security

of SSO can be provided in an unobservable manner. This requires

that the IdP does not learn the targeted 𝑟𝑖𝑑 with every request

but can still bind the signed token to the properly authenticated

RP and support unlinkability through RP-specific pseudonyms. To

maintain convenience for end-users, this should be in the plain SSO

setting, i.e., not relying on any long-term keys or cryptographic

credentials managed by the user.

The requirement for unobservability in federated identity man-

agement systems has already been discussed by Pfitzmann and

Waidner in 2002 [40]. Their analysis underscores not only the need

for unobservability, but also for pseudonymous user authentication

that prevents the disclosure of stable user identifiers to multiple

RPs, providing unlinkability across services. They also emphasize

that while the IdP must authenticate RPs before issuing tokens, the

IdP should not learn the exact access patterns of users. Two decades

later, these principles remain highly relevant, particularly in the

context of today’s SSO landscape where major platform providers

serve as IdP and gain access to detailed user behavior data.

Partial Solutions Towards Unobservable SSO. Realizing the re-

quirements of unobservability, unlinkable pseudonym support, and

RP authentication in SSO has been addressed in surprisingly few

works, and all provide only partial solutions to the problem.

The first work to provide unlinkability and unobservability for

users in OIDC was done by Hammann, Sasse, and Basin [28]. Their

protocol, denoted as Pairwise POIDC (PPOIDC) [28], lets the IdP
blindly bind the token to the targeted RP by signing a cryptographic

commitment to 𝑟𝑖𝑑 . The pseudonym computation (via hash func-

tions) is mostly outsourced to the user and again lets the IdP only

blindly sign the pseudonym through a commitment. While the

protocol ensures the correctness of the 𝑢𝑖𝑑 in the committed pseu-

donym by requiring the user to show it with a zero-knowledge

proof, this is not the case for the 𝑟𝑖𝑑 . The protocol allows corrupt

users to generate arbitrary IdP-attested pseudonyms per RP.

TheUPPRESSO protocol byGuo et al. [27] also aims at pseudony-

mous SSO and generates pseudonyms through blind exponentiation

of an 𝑟𝑖𝑑-specific group element, enabling the RP to verify that it

received a correctly computed pseudonym on its 𝑟𝑖𝑑 . The protocol

focuses solely on the pseudonym, though, and does not detail how

the final token is also strictly bound to the 𝑟𝑖𝑑 .

Further, both protocols do not support RP authentication towards

the IdP. They only realize a weaker form, where the verification of

the RP’s legitimacy is outsourced to the user. Apart from putting

more burden on the user, this also implicitly assumes that usersmust

behave honestly. If a user misbehaves, or the user-side verification

is not handled properly, the IdP can be tricked into providing its

service to malicious and non-registered RPs or sign tokens that

assert pseudonymous identities that are incorrect.

The first work to address privacy-preserving RP authentica-

tion directly to the IdP was recently done by Kroschewski and

Lehmann [32]. Their AIF-ZKP (Authenticated Implicit Flow) pro-

tocol ensures that the IdP-issued token is bound to the intended

and authenticated RP without disclosing 𝑟𝑖𝑑 to the IdP. While this

approach provides unobservability towards the IdP, the protocol

did not provide support for pseudonyms, i.e., it lacks unlinkability.

Thus, there is no protocol – or even security model – for such a

fully private yet strongly secure SSO system.

Concrete Use Case: European Digital Identity Wallet. Apart from
general SSO, there is also a more concrete use case that explicitly

demands user authentication with unlinkability, unobservability,

and RP authentication: the European Digital Identity Wallet. This

IdentityWallet is part of the EU’s eIDAS regulation, which came into

effect in May ’24 [19], and aims to establish government-attested

and verifiable digital identities with the following requirements:

“Enable privacy-preserving techniques which ensure unlinkabil-
ity [. . .] [19, §16b] — possibility of users to access services through
the use of pseudonyms [. . .] [19, §22] — providers should ensure
unobservability by not collecting data and not having insight into
the transactions of the users [. . .] [19, §32] — relying parties should
provide the information necessary to allow for their identification and
authentication [. . .] [19, §17]”

Every EU member state is now tasked with developing such an

Identity Wallet for all its citizens and residents, creating an urgent

demand for suitable technical solutions.

1.1 Our Contributions
In this work, we introduce the first SSO system (OPPID) that com-

bines all properties of unlinkable and unobservable user authenti-

cation via a central IdP towards an authenticated RP. More specifi-

cally, we propose a protocol where the IdP issues its users strictly

RP-bound tokens for a properly authenticated RP and containing

RP-specific pseudonyms, yet learns nothing about the RP’s identity.

Our protocol achieves its security and privacy properties in a very

convenient way, as it still works in the plain SSO setting, i.e., not

relying on additional user-managed key material.

Formal Security Model for OPPID. The first core challenge is to
properly define the security and privacy properties of this 3-party

protocol, where each party has complementing views as depicted

in Fig.1. In fact, neither of the aforementioned works on pseudony-

mous SSO provided a formal security model. We formalize Un-
linkability and Unobservability as the two privacy properties, and

security is expressed through notions of Session Binding and Request
Authentication. The latter three build upon the model of [32]. The

new property of Unlinkability – demanding that two corrupt RPs re-

ceiving pseudonymous user authentication cannot decide whether

they interact with the same user or not – must carefully exclude

trivial wins exploiting the deterministic nature of pseudonyms

and their blind computation. Security expressed through Session

Binding must hold despite unobservability, in particular guarantee-

ing that the user can only authenticate under correct and unique

pseudonyms 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑) towards an authenticated RP – but

where the IdP must not learn anything about 𝑟𝑖𝑑 . Our Session Bind-
ing definition builds upon [32] and discovers and fixes a weakness

in their model: to balance security and unobservability, they guar-

antee Session Binding for honest users only, as this allows knowing
the RP they intend to authenticate. However, this excludes the most

important corruption setting. Thus, beyond extending their Session

Binding notion to pseudonymous and unlinkable authentication,

we strengthen their model by capturing security for malicious users.

630

OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms Proceedings on Privacy Enhancing Technologies 2025(2)

Provably Secure Protocol 𝜋OPPID. We propose a protocol that se-

curely realizes all required properties. Our solution builds upon the

SSO protocol with privacy-preserving RP authentication from [32]

and shows how oblivious – yet strictly binding – pseudonym com-

putation can be added. In a nutshell, [32] uses anonymous creden-

tials for the RP’s authentication towards the IdP and lets the IdP

sign a verified commitment on 𝑟𝑖𝑑 in its token. To extend this to

blindly computed pseudonyms, we rely on a variant of the HashDH

(O)PRF [30] to realize F(𝑢𝑖𝑑, 𝑟𝑖𝑑). While it is currently not known

how such an oblivious PRF can be evaluated on blinded yet verified
inputs – which would allow ensuring that pseudonyms are com-

puted for the correct 𝑟𝑖𝑑 – we circumvent this missing building

block: letting the IdP bind non-verified and verified 𝑟𝑖𝑑-derived

values in the signed (blinded) token and carefully checking for

their consistency in the final token verification, where the 𝑟𝑖𝑑 is

no longer blind. Thus, we can carry the guarantees from the ver-

ified 𝑟𝑖𝑑-bound values over to the ones the IdP had to sign fully

blind and ensure that valid tokens contain properly authenticated

pseudonyms 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑), even with malicious users and RPs.

Implementation and Evaluation. To demonstrate the efficiency of

our solution, we implemented our protocol using PS signatures [41]

and Pedersen commitments [39] for RP authentication, RSA signa-

tures for IdP tokens, and HashDH-style pseudonym computation

in the PS signature source group. Our scheme is significantly faster

than PPOIDC [28], requiring only 2-12ms per party. We report on

the benchmarks of our open-source implementation and compare

it in more detail to the closest related works.

Benefits of OPPID. Our work overcomes the primary privacy lim-

itation of standard SSO systems: the exposure of users’ access pat-

terns to the IdP, while preserving the security and usability benefits

of SSO. In particular, OPPID is the first protocol to achieve unlink-

able and unobservable authentication without requiring users to

manage cryptographic keys or credentials. However, the conve-

nience of OPPID comes with an inherent privacy limitation: collud-
ing IdP and RPs can trace users. In Sec. 1.2 we therefore discuss solu-
tions that additionally provide such untraceability, but at the cost of

requiring users to manage cryptographic keys or credentials. Such

user-centric solutions demand users to take care of secure storage,

synchronization across devices, and backup/recovery mechanisms.

These challenges pose significant barriers to the deployment of

user-held credential systems [33] and therefore limit the adoption

of privacy-preserving solutions that rely on such a setting. Our

OPPID solution presents an alternative path to privacy, enabling

users who prefer a more convenient setup than credential-based

solutions to enjoy the optimal privacy guarantees in such a setting.

Apart from usability, ourOPPID has another benefit: it integrates

explicit and IdP-controlled RP authentication, an aspect that has re-

ceived limited attention in user-centric systems, such as anonymous

credentials, yet. Ensuring proper RP authentication is necessary

to avoid over-identification, which can threaten users’ privacy re-

gardless of the deployed cryptography. Such RP authentication is

notably harder to achieve in user-centric systems, where users bear

the sole responsibility of verifying an RP’s legitimacy.

The fact that OPPID does not require any key material handled

by the user makes it also particularly suited for browser-based, zero-

footprint scenarios, as introduced by Pfitzmann and Waidner [40].

Such scenarios demand that protocols operate across common web

browsers on standard devices, without requiring any additional soft-

ware or pre-configured components. By operating entirely within

the plain SSO model, OPPID ensures compatibility and ease of use

across devices without imposing additional technical requirements

on users.

1.2 Related Work
We have already mentioned the related work that is closest to ours:

PPOIDC [28], UPPRESSO [27], and AIF-ZKP [32], all of which op-

erate within the plain SSO model. We consider the plain SSO model

as one where users do not manage long-term keys or credentials,

crucial for convenience and adoption, but this comes with privacy

limitations: colluding IdP and RPs can trace users. Therefore, we

briefly discuss solutions for pseudonymous user authentication

that provide stronger privacy than our work, but at the cost of re-

duced usability. A summary of pseudonymous user authentication

solutions and a comparison to our work is given in Tab. 1.

Protocols Outside the Plain SSO Model. The protocols [16, 23, 26,
45, 46] provide untraceable pseudonymous authentication but either

introduce additional parties or rely on user-managed secret keys,

thus deviating from the plain SSO setting PseudoID [16] introduces

an additional token service to blindly sign a token that gets bound

to a pseudonym and user secret, allowing users to authenticate

directly to an RP. Besides the extra party, this approach makes

RP authentication towards the IdP impossible due to the token’s

independence from the RP’s identity. EL PASSO [46] lets users

obtain a short-lived anonymous credential from the IdP, again

bound to a user-held key. The user can then locally derive an RP-

specific pseudonym and presentation token from that credential

and key for each login. This provides untraceable authentication

but again detaches the RP authentication from the IdP and requires

users to manage a long-term key. PrivSSO [23] requires users to

create and manage a dedicated signature key pair for each RP

account, which is then bound to a generic IdP token. Using both

enables pseudonymous and unobservable authentication towards

an RP but relies on even more keys that need to be securely stored

and orchestrated by the user. The approaches [26, 45] do not require

user keys but leverage secure enclaves on the user side or on an

extra party to compute the users’ pseudonyms. The enclave acts as

an intermediary between the RPs and the IdP, ensuring pseudonym

correctness through remote attestation and eliminating the need

for the IdP to learn the 𝑟𝑖𝑑 .

Anonymous Credentials. An alternative to SSO-based solutions

are fully user-centric systems, such as anonymous credentials,

e.g., [12, 13, 38, 44]. In these systems, users receive long-term cre-

dentials from a trusted IdP, based on their personal attributes, which

they can use autonomously to authenticate with RPs. Since the IdP

is not involved in individual authentication sessions, unobservabil-
ity is guaranteed by design. Additionally, anonymous credentials

support unlinkable presentations, enabling users to selectively dis-

close their information in a pseudonymous manner.

In terms of privacy, anonymous credentials are superior to any

(plain) SSO-based system, as they additionally provide untraceabil-
ity even when the IdP and RP collude. We discuss that this property

631

Proceedings on Privacy Enhancing Technologies 2025(2) Kroschewski et al.

is impossible to achieve in any plain SSO system that supports

RP-specific pseudonyms in Sec. 3.4. However, the price for better

privacy is the additional responsibility placed on users. This burden

to securely manage cryptographic keys and credentials, limited the

adoption of anonymous credentials.

Relation to Domain-Pseudonyms. The concept of pseudonyms

that are unique and consistent per RP but unlinkable across dif-

ferent RPs also exist in anonymous credential and Direct Anony-

mous Attestation (DAA) systems [8, 10, 13, 35]. These pseudonyms

are referred to as scope-exclusive or domain pseudonyms, and as

basenames in DAA. Our concrete instantiation relies on the same

Diffie-Hellman function PRF(𝑘, 𝑥) = 𝐻 (𝑥)𝑘 that has been used for

pseudonyms in discrete logarithm-based credential constructions,

such as [9, 17, 35]. As the Diffie-Hellman construction is known to

be a secure pseudorandom function, it naturally lends itself to this

purpose. In anonymous credential systems, pseudonyms are com-

puted as 𝑛𝑦𝑚 = 𝐻 (𝑟𝑖𝑑)𝑢𝑠𝑘 by the user, who possesses the secret key
𝑢𝑠𝑘 and a credential on 𝑢𝑠𝑘 from the IdP. For each pseudonymous

authentication, the credential is used to compute a zero-knowledge

proof that the pseudonym is well-formed for the targeted 𝑟𝑖𝑑 , ensur-

ing correctness and Sybil resistance. While our construction uses

the same PRF, the computation process and correctness guarantees

differ entirely: in our approach, the key𝑢𝑠𝑘 is known only to the IdP,

not the user. The IdP must compute the PRF value, but neither learn

𝑟𝑖𝑑 nor the pseudonym 𝑛𝑦𝑚 it derives, yet also guarantee correct-

ness of its computation towards the RP. This is achieved using the

oblivious nature of the Diffie-Hellman PRF and carefully leveraging

the individual knowledge each party holds. For a more detailed

discussion on the challenges of computing these pseudonyms and

our solutions, we refer to Sec. 4.2.

2 SSO with Oblivious PPIDs
Before we present our pseudonymous SSO system OPPID, we in-
troduce its entities and detail the properties of pseudonymous user

authentication. Our system builds upon the standard SSO model,

where this privacy mechanism is commonly realized via a Pair-

wise Pseudonymous Identifier, as outlined by NIST [37, §6.2.5] and

further specified by OIDC [43, §8].

2.1 Entities & Main Phases
OPPID protocol is built in the classic SSO setting with three entities:

Users, Relying Parties (RPs), and a central Identity Provider (IdP):

Users: The user is registered with the IdP under a unique username

𝑢𝑖𝑑 . We assume the IdP handles all user-related registration and

authentication but omit those details from our model. For our

purposes, the crucial part is that the user is known as 𝑢𝑖𝑑 to the

IdP but has individual pseudonyms 𝑝𝑝𝑖𝑑 for each Relying Party.

RPs: The RP is the service the user wishes to access and known as

𝑟𝑖𝑑 to the user and IdP. The RP relies on the IdP for user authenti-

cation and for receiving additional user and session information

𝑐𝑡𝑥 . The RP knows the user only under their pseudonym 𝑝𝑝𝑖𝑑 .

To use the IdP’s service, the RP must be registered with the IdP.

IdP: The IdP is the central authority that RPs and users rely on

for authentication. It issues a token 𝜏 , which asserts to an RP

that it is communicating with the user known as 𝑝𝑝𝑖𝑑 . Apart

from the pseudonym, the token is also bound to a particular

session referenced by 𝑠𝑖𝑑 , additional user/session data 𝑐𝑡𝑥 , and

the targeted RP 𝑟𝑖𝑑 .Whilewe do not detail how users authenticate

to the IdP, our model explicitly covers that only registered and

authenticated RPs can use the IdP’s service.

As one of our primary requirements is proper RP authentication,

we roughly divide our system into two phases:

Phase 1: RP Registration. An RP must register with the IdP before

using the IdP’s authentication service. We assume that each RP has

a unique identifier 𝑟𝑖𝑑 and denote withM the set of registered RPs.

Phase 2: Authentication. When users with a unique username

𝑢𝑖𝑑 want to authenticate with a specific RP 𝑟𝑖𝑑 , they start the au-

thentication session with the targeted 𝑟𝑖𝑑 , but without revealing

their username to the RP. The RP then provides authentication

information 𝑎𝑢𝑡ℎ and a session identifier 𝑠𝑖𝑑 , which are sent to the

IdP via the user. When forwarding 𝑠𝑖𝑑, 𝑎𝑢𝑡ℎ to the IdP, the user now

reveals 𝑢𝑖𝑑 to the IdP, and we assume that the IdP has the means

to check whether the user 𝑢𝑖𝑑 is correctly authenticated.

We do not detail how the user authenticates to the IdP, but we

require that the IdP checks that the request stems from a registered

RP, i.e., 𝑟𝑖𝑑 ∈M. If so, the IdP generates a token 𝜏 that pseudony-

mously authenticates the user𝑢𝑖𝑑 as 𝑝𝑝𝑖𝑑 =F(𝑢𝑖𝑑, 𝑟𝑖𝑑) towards 𝑟𝑖𝑑 ,
where F is a pseudonym function we detail next. The final token

𝜏fin must be strictly bound to 𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑠𝑖𝑑 and a context 𝑐𝑡𝑥 , which

denotes additional session/user information certified by the IdP.

2.2 Pairwise Pseudonymous Identifier
Our system focuses on providing the Pairwise Pseudonymous Iden-

tifier (𝑝𝑝𝑖𝑑) feature of OIDC [43] that hides the user’s 𝑢𝑖𝑑 from an

RP. The core properties of the 𝑝𝑝𝑖𝑑 are:

Uniqueness: For every combination of 𝑟𝑖𝑑 and 𝑢𝑖𝑑 , there exists

a unique mapping to a 𝑝𝑝𝑖𝑑 . We model this by assuming the

𝑝𝑝𝑖𝑑 to be derived through a deterministic function F as 𝑝𝑝𝑖𝑑 =

F(𝑢𝑖𝑑, 𝑟𝑖𝑑).
Collision Freeness: For every 𝑟𝑖𝑑 and for all 𝑢𝑖𝑑 ≠ 𝑢𝑖𝑑 ′, it must

hold that F(𝑢𝑖𝑑, 𝑟𝑖𝑑) ≠ F(𝑢𝑖𝑑 ′, 𝑟𝑖𝑑), i.e., different users are as-

signed different pseudonyms towards the same RP 𝑟𝑖𝑑 .

Unlinkable Pseudonyms: Seeing two pseudonyms for different

𝑟𝑖𝑑0 ≠ 𝑟𝑖𝑑1 with 𝑝𝑝𝑖𝑑0 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑0) and 𝑝𝑝𝑖𝑑1 = F(𝑢𝑖𝑑 ′, 𝑟𝑖𝑑1),
it is infeasible to determine whether 𝑢𝑖𝑑 = 𝑢𝑖𝑑 ′ or not.

As F is deterministic and the set of user names typically small,

the property of unlinkable pseudonyms requires that F must not be

known to the RPs seeing the user’s pseudonyms. This is typically

realized by using a pseudorandom function PRF for F, where the
key 𝑘 is only known to the IdP. (While collision-freeness does not

follow directly from the pseudorandomness of PRF, it is implied if

the function is injective and has a larger range than domain).

Our work addresses the challenge of enabling (partially) blind –

yet authenticated – 𝑝𝑝𝑖𝑑 computation. Specifically, the IdP knows

𝑢𝑖𝑑 but not 𝑟𝑖𝑑 , while ensuring it computes valid tokens for F(𝑢𝑖𝑑,
𝑟𝑖𝑑) for the targeted and properly authenticated RP 𝑟𝑖𝑑 .

2.3 Syntax of OPPID
We present the syntax of OPPID, Oblivious Pairwise Pseudonymous
Identifier, protocol and provide an overview of the authentication

632

OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms Proceedings on Privacy Enhancing Technologies 2025(2)

Approach \ Property
Privacy Security Other

Unobservability Unlinkability Req. Auth. Session Binding Plain SSO Model

OIDCWith Pseudonyms
∗
[43]

PseudoID [16]

PPOIDC∗[28]

UPPRESSO∗[27] / BISON [29]

EL PASSO [46]

AIF-ZKP∗[32]

MISO [45]

PrivSSO [23]

Our Work: OPPID
∗
Detailed security comparison given in Sec. 5

Table 1: Overview of SSO protocols, supporting RP authentication and/or pseudonymous user authentication.

process in Fig. 2. More explanation on how OPPID is used in the

SSO flow and the correctness definition can be found in App. A.

Definition 2.1 (Syntax of OPPID). In more detail, an OPPID sc-

heme is defined as a tuple of algorithms (Setup, KGenIdP, ⟨JoinRP,
RegIdP⟩, AInitU, AReqRP, AResIdP,AFinU, VfRP):
Setup(1𝜆) → pp For a security parameter, returns the public pa-

rameters 𝑝𝑝 , which serve as implicit input for all other algorithms.

KGenIdP (𝑝𝑝) → ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) Returns the membership stateM
and the IdP key pair, 𝑖𝑠𝑘 and 𝑖𝑝𝑘 .

⟨JoinRP (𝑖𝑝𝑘, 𝑟𝑖𝑑),RegIdP (𝑖𝑠𝑘, 𝑟𝑖𝑑,M)⟩ → {(𝑐𝑟𝑒𝑑,M′),⊥} An inte-

ractive protocol between the RP and IdP. Successful execution

results in the RP acquiring a credential 𝑐𝑟𝑒𝑑 , and the IdP yielding

an updated member stateM′. In case of failure, it returns ⊥.
AInitU (𝑖𝑝𝑘, 𝑟𝑖𝑑) → (𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑) Run by the user to initialize a token
request via an IdP with 𝑖𝑝𝑘 for RP 𝑟𝑖𝑑 . It returns a committing

value 𝑐𝑟𝑖𝑑 and an opening 𝑜𝑟𝑖𝑑 .

AReqRP (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑠𝑖𝑑) → 𝑎𝑢𝑡ℎ Run by an RP, taking

𝑟𝑖𝑑 , credential 𝑐𝑟𝑒𝑑 , user commitment 𝑐𝑟𝑖𝑑 and opening 𝑜𝑟𝑖𝑑 , and

a random session 𝑠𝑖𝑑 . It returns the RP authentication 𝑎𝑢𝑡ℎ.

AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) → {𝜏,⊥} Run by the IdP us-

ing it’s secret key 𝑖𝑠𝑘 , RP authentication data 𝑎𝑢𝑡ℎ, user commit-

ment 𝑐𝑟𝑖𝑑 , context 𝑐𝑡𝑥 , and session identifier 𝑠𝑖𝑑 . If the verifica-

tion of the request fails, it outputs ⊥ and a token 𝜏 otherwise.

AFinU (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏)→{(𝜏fin, 𝑝𝑝𝑖𝑑),⊥} Run by the

user taking 𝑟𝑖𝑑 , user commitment 𝑐𝑟𝑖𝑑 and opening 𝑜𝑟𝑖𝑑 , context

𝑐𝑡𝑥 , and 𝑠𝑖𝑑 to finalize the token 𝜏 . Returns⊥ if inputs are invalid,

and otherwise the finalized token 𝜏fin and pseudonym 𝑝𝑝𝑖𝑑 .

VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏fin) → 0/1 Returns 1 if 𝜏fin is valid

under 𝑖𝑝𝑘 for (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) and otherwise 0.

3 Security Model of OPPID
We now formally define the privacy and security properties of an

OPPID system, building upon the model of [32]. While we reuse

some of their properties (Request Authentication and Unobserv-

ability which were called RP Accountability and RP Hiding in [32]),

we also require the additional Unlinkability property and extend

their Session Binding model to cover the pseudonymous authen-

tication we aim for. Interestingly, the original model for Session

Binding was rather weak, which we strengthen with our work too.

We start with a high-level intuition of the desired properties and

then present our formal model as game-based security definitions.

Note that some requirements for the pseudonym function F are

already specified (see Sec. 2.2): each user must have a single pseu-

donym per 𝑟𝑖𝑑 (Uniqueness), and distinct users obtain different

pseudonyms for the same 𝑟𝑖𝑑 (Collision Freeness). These two guar-

antees imply that F is deterministic and injective, so we omit an

explicit formalization for these straightforward properties.

In addition to these basic pseudonym properties, we require their

computation to be done in a blind way by the IdP (Unobservability),
as well as the unlinkability of the pseudonymous authentication

(Unlinkability), which also includes the unlinkability of F.

Unlinkability: The user’s identity 𝑢𝑖𝑑 should remain hidden to-

wards RPs – they should only know users under their RP-specific

pseudonym 𝑝𝑝𝑖𝑑 . This implies that when the same user authenti-

cates to two different RPs as 𝑝𝑝𝑖𝑑0 and 𝑝𝑝𝑖𝑑1, the two RPs cannot

distinguish whether they are communicating with the same user

or two different users.

Unobservability: The RP’s identity 𝑟𝑖𝑑 should remain hidden to-

wards an IdP during the authentication session. This property

assumes that RPs and users are honest and ensures privacy to-

wards a potentially corrupt IdP.

Despite the blind 𝑝𝑝𝑖𝑑 computation and privacy-preserving RP

authentication, IdP-issued tokens must stay unforgeable and bound

to the blindly verified 𝑟𝑖𝑑 and the correctly computed pseudonym.

Session Binding: It is infeasible to create a valid token 𝜏fin for a

session identified through (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) that was not prop-
erly authenticated or approved by the honest IdP. This notion

ensures that the user (and RP) can only generate tokens for the

unique and correct 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑) they have jointly authenti-

cated, where RPs must be properly registered with the IdP.

Kroschewski and Lehmann define the property of Request Au-
thentication [32], which complements their Session Binding notion.

While Session Binding expresses the security of the final token, this

additional property demands that every valid request (including

intermediate protocol values) processed by the IdP must come from

a properly registered RP. As this property is unaffected by the blind

pseudonym computation focused on in this work, we restate this

notion in our setting and refer to the detailed explanation in App. A.

633

Proceedings on Privacy Enhancing Technologies 2025(2) Kroschewski et al.

RP (𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑) User (𝑢𝑖𝑑) IdP (𝑖𝑠𝑘, 𝑖𝑝𝑘)

(𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑) ← AInitU (𝑖𝑝𝑘, 𝑟𝑖𝑑)

𝑎𝑢𝑡ℎ ← AReqRP (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑠𝑖𝑑)

𝜏 ← AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑)

(𝜏fin, 𝑝𝑝𝑖𝑑) ← AFinU (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏)

0/1 ← VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏fin)

(1) Initialize protocol (𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑)

(2) Authentication request (𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑) (2) Authentication request (𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑)

(3) Response, IdP (𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏)

(4) Response, User (𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏fin)

Figure 2: User authentication in OPPID to a registered RP, which has previously obtained a credential 𝑐𝑟𝑒𝑑 from the IdP.

Oracles. Our definitions are given in a game-based notion, where

an adversaryA runs an experiment with a challenger whomanages

all honest entities and their private states. These interactions with

honest entities are captured through oracles (see Fig. 3, right), which

we briefly outline before presenting our security games.

We give the adversary the ability to register RPs with the IdP,

where A runs the part of the corrupt party (either RP or IdP) and

interacts with the honest counterpart through the oracle.

In our games with an honest IdP, RegHRP and RegCRP execute

the registration with honest and corrupt RPs (run by A), respec-

tively. JoinCIdP takes the role of an honest RP that joins towards a

corrupt IdP, which is only used in the Unobservability game.

We allow the adversary to intercept, capture, or inject messages

between honest parties during an authentication session. AInitU
initiates an honest user sessionwhich can later be finalized using the

AResFin oracle. AReqRP returns an honest RP authentication 𝑎𝑢𝑡ℎ

for a session referenced by 𝑠𝑖𝑑 . AResFin lets A obtain a finalized

token 𝜏fin and 𝑝𝑝𝑖𝑑 from an honest user session initiated using the

AInitU oracle. This oracle simulates secure communication between

an honest user and honest IdP. AResIdP allows A to request an IdP

token on fully maliciously generated inputs. VfRP verifies a session

(𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) against a finalized token 𝜏fin and the 𝑖𝑝𝑘 . This

is used to keep track of tokens shown by the adversary and detect

"double-spending" (detailed in our Session Binding game).

3.1 Unlinkability
Unlinkability captures the core privacy feature of pseudonymous
authentication, where authentication is done under a pseudonym

𝑝𝑝𝑖𝑑 that is hiding the user’s identity towards malicious RPs. This

property requires the unlinkability of pseudonyms produced via F
across RPs, which will be a convenient stepping stone in the formal

analysis. Additionally, it ensures that authentication tokens do not

leak any information about 𝑢𝑖𝑑 beyond the requested pseudonym.

We model this property through a classic indistinguishability

experiment, which is defined through the game ExpUNLINKA,OPPID (see

Fig. 3). In this game, the IdP is honest, and the adversary A con-

trols all RPs. It can register RPs through O .RegCRP and let honest

users initiate sessions through O .AInitU, and receive tokens and

RP-specific 𝑝𝑝𝑖𝑑s from the honest IdP via O .AResIdP.
Eventually, A outputs two challenge users 𝑢𝑖𝑑0 and 𝑢𝑖𝑑1 along

with common session information 𝑠𝑖𝑑, 𝑐𝑡𝑥 ,𝑎𝑢𝑡ℎ, and 𝑐𝑟𝑖𝑑 . The game

returns the token and 𝑝𝑝𝑖𝑑𝑏 for the randomly chosen𝑢𝑖𝑑𝑏 , requiring

the adversary to determine the bit 𝑏 better than by guessing.

Excluding Trivial Wins. Since 𝑝𝑝𝑖𝑑s are deterministically (yet

blindly) derived for every 𝑢𝑖𝑑, 𝑟𝑖𝑑 combination, we must prevent

trivial wins exploiting this determinism. Specifically, if the adver-

sary has already learned 𝑝𝑝𝑖𝑑0 or 𝑝𝑝𝑖𝑑1 through interactions with

the oracles, winning this game becomes trivial. Therefore, we en-

sure thatA never learns these values through two abort conditions.

Before looking at these conditions, note that Unlinkability is

meaningful and defined only for honest users. Thus, our challenger
computes the pseudonym for an honestly generated 𝑐𝑟𝑖𝑑 , knowing

the target RP 𝑟𝑖𝑑 for which the challenge pseudonym 𝑝𝑝𝑖𝑑𝑏 :=

F(𝑢𝑖𝑑𝑏 , 𝑟𝑖𝑑) is computed.

The first check in our winning condition ensures that (𝑢𝑖𝑑𝑑 , 𝑟𝑖𝑑)
∉ Qppid for 𝑑 ∈ {0, 1}, meaning the adversary never triggered

either challenge user 𝑢𝑖𝑑𝑑 to initiate an honest session for 𝑟𝑖𝑑 (via

O .AInitU and O .AResIdP), which would reveal 𝑝𝑝𝑖𝑑𝑑 . Here, "honest"
implies 𝑐𝑟𝑖𝑑𝑖 was honestly generated in each request, allowing the

challenger to precisely know 𝑟𝑖𝑑 and the 𝑝𝑝𝑖𝑑𝑏 that A learned.

When the adversary queries O .AResIdP with 𝑐𝑟𝑖𝑑 that was not

honestly generated, the challenger lacks information about which

𝑟𝑖𝑑 the adversary requested the token and pseudonym for, requiring

stricter abort conditions. This is captured by O .AResIdP keeping

records (𝑢𝑖𝑑, adv) in Qppid for such adversarial sessions, and later

enforcing that (𝑢𝑖𝑑𝑑 , adv) ∉ Qppid for 𝑑 ∈ {0, 1}. Here, adv denotes
that the adversary cannot query O .AResIdP for any adversarial

query concerning the challenge users. This is unavoidable as we

cannot determine which 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, ?) A has obtained.

Capturing Unlinkability. Note that A can receive pseudonyms

𝑝𝑝𝑖𝑑 for both challenge users 𝑢𝑖𝑑0 and 𝑢𝑖𝑑1 for all 𝑟𝑖𝑑
′ ≠ 𝑟𝑖𝑑 apart

from the target 𝑟𝑖𝑑 from the challenge query, while using O .AInitU.
This capability is crucial to capture the desired unlinkability of the

users’ pseudonyms across RPs. RequiringA to use O .AInitU merely

mimics how honest users would behave, who we aim to protect

with this property.

Definition 3.1 (Unlinkability). An OPPID scheme is unlinkable if

for all PPT adversariesA, Pr[ExpUNLINKA,OPPID (𝜆) = 1] ≤ 1/2 + negl(𝜆) .

Content of 𝑐𝑡𝑥 . We emphasize that in practice, privacy guaran-

teed by Unlinkability strongly depends on the information revealed

in 𝑐𝑡𝑥 . Our model assumes that 𝑐𝑡𝑥 is identical for both 𝑢𝑖𝑑0 and

634

OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms Proceedings on Privacy Enhancing Technologies 2025(2)

Unlinkability : ExpUNLINKA,OPPID (𝜆)
𝑝𝑝 ← Setup(1𝜆) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝) ; 𝑏 ←R {0, 1}
O := {RegCRP,AInitU,AResIdP }
(𝑢𝑖𝑑0,𝑢𝑖𝑑1, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) ← AO (𝑖𝑝𝑘)
Require (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑) ∈ Qrid

For 𝑑 ∈ {0, 1} :
𝜏𝑑 ← AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑𝑑 , 𝑐𝑡𝑥, 𝑠𝑖𝑑)
(𝜏𝑓 𝑖𝑛𝑑 , 𝑝𝑝𝑖𝑑𝑑) ← AFinU (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏𝑑)
Require VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑𝑑 , 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏𝑓 𝑖𝑛𝑑) = 1

𝑏∗ ← AO (𝜏𝑓 𝑖𝑛𝑏 , 𝑝𝑝𝑖𝑑𝑏)
Abort if for 𝑑 ∈ {0, 1}: (𝑢𝑖𝑑𝑑 , 𝑟𝑖𝑑) ∈ Qppid ∨ (𝑢𝑖𝑑𝑑 , adv) ∈ Qppid

Return 1 if 𝑏 = 𝑏∗

Unobservability: ExpUNOBSA,OPPID (𝜆)
𝑝𝑝 ← Setup(1𝜆) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝) ; 𝑏 ←R {0, 1}
O := {JoinCIdP,AReqRP }
(𝑟𝑖𝑑0, 𝑟𝑖𝑑1, 𝑠𝑖𝑑) ← AO ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘)
For 𝑑 ∈ {0, 1} : Require (𝑟𝑖𝑑𝑑 , 𝑐𝑟𝑒𝑑𝑑) ∈ HRP
(𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑) ← AInitU (𝑖𝑝𝑘, 𝑟𝑖𝑑𝑏)
𝑎𝑢𝑡ℎ ← AReqRP (𝑖𝑝𝑘, 𝑟𝑖𝑑𝑏 , 𝑐𝑟𝑒𝑑𝑏 , 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑠𝑖𝑑)
𝑏∗ ← AO (𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑)
Return 1 if 𝑏 = 𝑏∗

Request Authentication: ExpREQ-AUTH
A,OPPID (𝜆)

𝑝𝑝 ← Setup(1𝜆) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝)
O := {RegHRP,AReqRP,AResIdP }
(𝑎𝑢𝑡ℎ∗, 𝑐𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ← AO (𝑖𝑝𝑘)
Return 1 if AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ∗, 𝑐𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ≠ ⊥ ∧
(·, 𝑐𝑟𝑖𝑑∗, 𝑠𝑖𝑑∗) ∉ Qauth

Session Binding: ExpSES-BINA,OPPID (𝜆)
𝑝𝑝 ← Setup(1𝜆) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝)
O := {RegHRP,RegCRP,AInitU,AReqRP,AResIdP,AResFin,VfRP }
(𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗, 𝜏∗fin) ← A

O (𝑖𝑝𝑘)
Return 1 if VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), 𝜏∗fin) = 1 ∧
(1) (·, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∉ Q𝜏∨ // Direct Forgery
(2) (𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏 and at least one of the following holds:

(a) 𝑝𝑝𝑖𝑑∗ ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗) // Nym Correctness
(b) (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏fin ∧ 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗ // RP Binding I
(c) (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Qvf ∧ 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗ // RP Binding II
(d) 𝑟𝑖𝑑∗ ∉ HRP ∪ CRP // RP Authentication I
(e) 𝑟𝑖𝑑∗ ∈ HRP ∧ (𝑟𝑖𝑑∗, ·, 𝑠𝑖𝑑∗) ∉ Qauth // RP Authentication II

Oracle : RegHRP(rid) Oracle : JoinCIdP(ipk, rid)

Require (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP Require (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP
// Both RP and IdP are honest // A being the corrupt IdP
⟨JoinRP (𝑖𝑝𝑘, 𝑟𝑖𝑑),RegIdP (𝑖𝑠𝑘, 𝑟𝑖𝑑,M)⟩ Run JoinRP (𝑖𝑝𝑘, 𝑟𝑖𝑑) withA
Upon output (𝑐𝑟𝑒𝑑,M′) Upon output 𝑐𝑟𝑒𝑑

HRP := HRP ∪ { (𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑) } HRP := HRP ∪ { (𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑) }
Return 1 Return 1

Oracle : RegCRP(rid) Oracle : AInitU (rid)
Require (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP (𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑) ← AInitU (𝑖𝑝𝑘, 𝑟𝑖𝑑)
// A being the corrupt RP // Req. for Unlinkability
RegIdP (𝑖𝑠𝑘, 𝑟𝑖𝑑,M) with A Qrid := Qrid ∪ { (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑) }
Upon outputM′ Return (𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑)
CRP := CRP ∪ { (𝑟𝑖𝑑, ·) }
Return 1

Oracle : AReqRP (rid, crid, orid, sid)
Require (𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑) ∈ HRP
Qauth := Qauth ∪ { (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑) } // Req. for Session Binding
Return 𝑎𝑢𝑡ℎ ← AReqRP (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑠𝑖𝑑)

Oracle : AResIdP (auth, crid, uid, ctx, sid)
Require (·, ·, 𝑠𝑖𝑑) ∉ Q𝜏

𝜏 ← AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑)
If (𝜏 ≠ ⊥) then
Q𝜏 := Q𝜏 ∪ (𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) // Req. for Session Binding
If (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, ·) ∈ Qrid then // Req. for Unlinkability
Qppid := Qppid ∪ { (𝑢𝑖𝑑, 𝑟𝑖𝑑) }

Else Qppid := Qppid ∪ { (𝑢𝑖𝑑, adv) }
Return 𝜏

Oracle : AResFin(auth, crid, uid, ctx, sid)
Require (·, ·, 𝑠𝑖𝑑) ∉ Q𝜏 ∧ (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑) ∈ Qrid

𝜏 ← AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑)
(𝜏fin, 𝑝𝑝𝑖𝑑) ← AFinU (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏)
If (𝜏 ≠ ⊥) : Q𝜏 := Q𝜏 ∪ (𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) // Req. for Session Binding
If (𝜏fin, 𝑝𝑝𝑖𝑑) ≠ ⊥ : Q𝜏fin := Q𝜏fin ∪ { (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) }
Return (𝜏fin, 𝑝𝑝𝑖𝑑)

Oracle : VfRP ((rid, ppid, ctx, sid), 𝜏fin)
𝑏 ← VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏fin)
If (𝑏 = 1) : Qvf := Qvf ∪ (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) // Req. for Session Binding
Return 𝑏

Figure 3: Definition of our security games and oracles used therein.

𝑢𝑖𝑑1, as revealing different 𝑐𝑡𝑥 would render distinguishing the

pseudonym and associated token trivial again. Thus, any imple-

mentation of our protocol must ensure that 𝑐𝑡𝑥 does not disclose

information that could link/identify users behind their pseudonyms.

3.2 Unobservability
This property captures that a malicious IdP does not learn anything

about the RP’s identity 𝑟𝑖𝑑 in an authentication request, meaning it

cannot observe where the user wants to authenticate to. Specifically,

the IdP should not be able to distinguish whether a user repeat-

edly authenticates to the same RP or different ones. This property

was formally introduced in [32], and we simply adapt this to our

notation. The game is represented as ExpUNOBSA,OPPID in Fig. 3. Unob-

servability is defined through an indistinguishability game, where

the adversary, acting as a corrupt IdP, can set up RPs and obtain

their authentication data via the corresponding oracles. Eventually

the adversary chooses two RPs 𝑟𝑖𝑑0 and 𝑟𝑖𝑑1 and receives the au-

thenticated request 𝑎𝑢𝑡ℎ𝑏 , 𝑐𝑟𝑖𝑑𝑏 of either of them. The adversary

wins if it can determine 𝑏 better than by guessing.

Definition 3.2 (Unobservability). An OPPID scheme is unobserv-

able if for all PPT adversaries A, Pr[ExpUNOBSA,OPPID (𝜆) = 1] ≤ 1/2 +
negl(𝜆) .

3.3 Session Binding
The Session Binding property ensures that despite the privacy-

preserving computation of an authentication token and pseudonym,

the content of (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) in the token is strictly unforgeable
and pseudonyms are correctly formed. This comprises the classic

635

Proceedings on Privacy Enhancing Technologies 2025(2) Kroschewski et al.

unforgeability for all inputs directly seen and vouched for by the IdP

–which are (𝑐𝑡𝑥, 𝑠𝑖𝑑) for aDirect Forgery – but also all blindly signed
information. The blindly signed information is (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑), which
the IdP vouches for in a session 𝑠𝑖𝑑 for user 𝑢𝑖𝑑 with context 𝑐𝑡𝑥 .

If the IdP indeed created a token for (𝑐𝑡𝑥, 𝑠𝑖𝑑), the blindly signed

information must be consistent with its view and the intentions of

all honest users and RPs. More precisely, the following must hold:

• If a user 𝑢𝑖𝑑 requested a token in session 𝑠𝑖𝑑 , it is infeasible to

create a valid token for 𝑟𝑖𝑑, 𝑠𝑖𝑑 and 𝑝𝑝𝑖𝑑 ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑) – Nym
Correctness.
• If an honest user 𝑢𝑖𝑑 intended to authenticate to an RP 𝑟𝑖𝑑 in

session 𝑠𝑖𝑑 , it must be infeasible to create a valid token for 𝑠𝑖𝑑

and another 𝑟𝑖𝑑 ′ ≠ 𝑟𝑖𝑑 – RP Binding I.
• If a corrupt user 𝑢𝑖𝑑 authenticated to an RP 𝑟𝑖𝑑 in a session 𝑠𝑖𝑑 ,

it is infeasible to generate valid authentication tokens for 𝑠𝑖𝑑

and more than one RP – RP Binding II.
• If an RP 𝑟𝑖𝑑 is not properly registered, it is infeasible to generate

a valid token for 𝑟𝑖𝑑 – RP Authentication I.
• If an honest RP 𝑟𝑖𝑑 never authenticated for session 𝑠𝑖𝑑 , it is

infeasible to create a valid token for 𝑟𝑖𝑑 – RP Authentication II.

We model the aforementioned properties through the game

ExpSES-BINA,OPPID (see Fig. 3), following the classic unforgeability setting.

In this game, the IdP is honest, and the adversary can register both

corrupt and honest RPs using oracles O .RegHRP and O .RegCRP,
respectively, storing their registrations inHRP and CRP. The adver-
sary initiates sessions for honest users via O .AInitU, obtains authen-
tications from honest RPs via O .AReqRP, and acquires tokens from

the IdP using O .AResIdP (for corrupt users) and O .AResFin (for

honest users). Additionally, we utilize a verification oracle O .VfRP
to detect if the adversary attempts to reuse the same token across

multiple (possibly corrupt) RPs.

The adversary can interact arbitrarily with these oracles and

must output a token 𝜏∗fin for session (𝑟𝑖𝑑
∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) as a for-

gery. The adversary wins the game if 𝜏∗fin is valid under 𝑖𝑝𝑘 and the

forgery is non-trivial, meaning it breaks any of the guarantees listed

above, which are captured through dedicated winning conditions.

Direct and Indirect Forgeries. First, note that whenever the honest
IdP creates a token for a session identified through (𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑),
these values are stored in Q𝜏 . Thus, in the game, we check if the

forgery is for (·, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∉ Q𝜏 . If this occurs, A has produced a

token for a session never attested by the honest IdP and wins under

condition 1 (Direct Forgery).
The second category (Indirect Forgery) implies that the IdP did

sign (𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), but the blindly signed or derived values 𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗
are inconsistent with the behavior of the other (honest) parties. This

is captured under winning condition 2 and branches according to

the properties we discussed earlier. In the following, we focus on

Nym Correctness and refer to App. A for a detailed explanation of

the RP Binding and Authentication properties.

Nym Correctness. Despite the blind pseudonym computation, a

corrupt user 𝑢𝑖𝑑 must not be able to derive a token for any pseu-

donym other than the one uniquely defined through F(𝑢𝑖𝑑, 𝑟𝑖𝑑),
where 𝑟𝑖𝑑 is the RP specified in the token. This is captured in Con-

dition (a), where A wins if 𝑝𝑝𝑖𝑑∗ ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗). This condition
leverages the fact that the IdP receives 𝑢𝑖𝑑 as input, and we store

𝑠𝑖𝑑,𝑢𝑖𝑑 in Q𝜏 whenever a token is generated. Therefore, when the

adversary outputs (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), we can look up𝑢𝑖𝑑 inQ𝜏

for 𝑠𝑖𝑑∗ and verify the correctness of the pseudonym for 𝑢𝑖𝑑, 𝑟𝑖𝑑∗.
Recall that we already required F to produce unique pseudonyms,

so this precisely defines the one pseudonym that is valid here, and

A wins if it can produce a valid token for any other pseudonym

value.

Note that this property, together with the uniqueness require-

ment of F, ensures sybil-resistance. This prevents malicious users

from exploiting pseudonymous authentication to create several

identities towards a single RP, which was not guaranteed in [28].

RP Binding & Authentication. The winning condition (b) for RP

Binding I exploits that we know the intended 𝑟𝑖𝑑 when a session

𝑠𝑖𝑑∗ is started by an honest user through O .AInitU. Thus, if the
adversary outputs a token for any 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 for such a session,

it wins the game. For a session 𝑠𝑖𝑑∗ initiated by a corrupt user

towards a corrupt RP, we never know the exact RP the user wants

to authenticate to: A invokes O .AResIdP with adversarially chosen

inputs 𝑎𝑢𝑡ℎ and 𝑐𝑟𝑖𝑑 , both of which hide 𝑟𝑖𝑑 . Thus, our guarantees

are weaker here and follow the spirit of one-more unforgeability:

the adversary wins if it has previously "presented" a valid token

for some 𝑟𝑖𝑑 to the VfRP oracle, yet later outputs a token for the

same 𝑠𝑖𝑑∗ but with 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 as a forgery. Catching such a "double

spending" attack is the reason why we have the VfRP oracle: it

runs purely on public values, but essentially asks the adversary

to commit to one view and later output a contradicting one as its

forgery (see App. A for further explanation).

The preceding two properties ensure that the IdP-generated

token is bound to the blindly received 𝑟𝑖𝑑 . Additionally, conditions

(d) and (e) further ensure that only legitimate RPs can request such

tokens. In condition (d), the adversary wins if it manages to produce

a valid token for some 𝑟𝑖𝑑∗ that has never been registered, meaning

𝑟𝑖𝑑∗ ∉ HRP ∪ CRP. If the 𝑟𝑖𝑑∗ in the forgery belongs to an honest

RP, we further let A win if (𝑟𝑖𝑑∗, 𝑠𝑖𝑑∗) ∉ Qauth, indicating that the

honest RP had never authenticated for that particular session 𝑠𝑖𝑑∗.

Definition 3.3 (Session Binding). An OPPID scheme is Session

Binding if for all PPT adversaries A, Pr[ExpSES-BINA,OPPID (𝜆) = 1] ≤
negl(𝜆) .

Uniqueness of 𝑠𝑖𝑑 . We remark that our security notion relies

on the fact that an honest IdP issues a single token per session

𝑠𝑖𝑑 . This ensures the desired freshness guarantees and uniquely

identifies the session context that the IdP attests. As is typical in

such protocols, we therefore assume that 𝑠𝑖𝑑 is unique per IdP and

do not rely on the cryptographic protocol to enforce this. Thus, an

implementation of OPPID must implement measures to ensure the

freshness of 𝑠𝑖𝑑 at the application layer.

Weaknesses of [32]. Our notion builds upon the RP Session Bin-

ding model of [32]. Apart from adding Nym Correctness – which

is the core functional extension needed for our work – our model

significantly enhances the overall security guarantees provided by

their notion. We address the following two weaknesses:

Firstly, the original model [32] only ensures security for ses-

sions involving honest users. This restriction excludes scenarios

involving "corrupt" user sessions, which are critical in real-world

636

OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms Proceedings on Privacy Enhancing Technologies 2025(2)

applications. The justification for this limitation lies in the blind-

ness of 𝑟𝑖𝑑 towards the IdP: it is argued that the game requires the

view of honest users to determine their targeted RP. However, this

dependency is necessary only for security properties that depend

on 𝑟𝑖𝑑 . Our security model carefully separates these dependencies

into several sub-cases, where only RP Binding I necessitates the

restriction to honest users. We demonstrate that even for corrupt

users, a weaker form of 𝑟𝑖𝑑-binding should be realized, as expressed

in our RP Binding II condition.

Secondly, the original model captures security only against cor-
rupt RPs, arguing that honest RPs do not give the adversary any

advantage. However, higher security guarantees should ideally

apply to sessions involving honest RPs as well. Specifically, the

adversary should not be able to create any valid 𝑟𝑖𝑑-bound token

for sessions that the RP never authenticated, which we formalize

in our RP Authentication II property. We stress that both are over-

sights in their security model only, as the protocol from [32] also

satisfies our stronger security notion. However, related works such

as PPOIDC [28] and UPPRESSO [27] do become insecure when

users are corrupt, highlighting the need of a security model that

properly captures malicious behavior. A more detailed comparison

with the security model of [32] is provided in App. A.

3.4 Privacy Limitation: No Untraceability
While OPPID significantly enhances privacy in SSO, its guarantees

are notably weaker compared to "full-fledged" privacy-preserving

authentication systems. The primary limitation lies in the lack of

untraceability, meaningOPPID does not provide privacy protection

when the IdP and RP collude. We discuss these limitations here and

argue that they are inherent in any SSO-like system.

When the IdP and (some) RPs collude, they can trace users

through severalmeans. First, through the deterministic pseudonyms,

which is inherent in any pseudonymous SSO system where the only

secret input to the pseudonym computation, 𝑝𝑝𝑖𝑑 = F𝑘 (𝑢𝑖𝑑, 𝑟𝑖𝑑),
is controlled by the IdP. As 𝑢𝑖𝑑 and 𝑟𝑖𝑑 are public information and

typically stem from small "brute-forceable" sets, a colluding RP 𝑟𝑖𝑑

and IdP can determine the user behind an RP-specific pseudonyms

through re-computation of the pseudonyms of all users and com-

parison against the 𝑝𝑝𝑖𝑑 they want to identify. This is independent

of how these pseudonyms are computed, and merely exploits their

determinism. Possible means to mitigate that would be to distribute

the IdP’s key 𝑘 among several IdPs or requiring some cryptographic

input from the user. Both would deviate from core principles of

SSO though, which relies on a single entity and does not assume

the users to manage keys or credentials.

Second, a user’s token request and the finalized token can be

linked to each other, not only through the pseudonym, but also

through the 𝑠𝑖𝑑 values known to both the IdP and RP, and through

the timing between sessions that are handled simultaneously by

both the IdP and RP. One can design a protocol where 𝑠𝑖𝑑 values are

not revealed to the IdP in the clear, but the impact would be limited

as the sessions can still be linked through the timing information.

To avoid that linkage, one would have to break the immediate

connection between the IdP and RP, e.g., by letting the IdP issue

(somewhat) long-term credentials to users, and rely on techniques

such as anonymous credentials for untraceable authentication from

the user to the RP. In fact, this approach has already been proposed

by EL PASSO [46], but gives up on the convenience advantage of

plain SSO as it requires users to manage a long-term key.

4 Our OPPID Construction
This section introduces our OPPID protocol 𝜋OPPID, which com-

bines oblivious 𝑝𝑝𝑖𝑑 generation with a recent privacy-preserving

RP authentication approach for the OIDC Implicit Flow [32]. We

first outline the adapted authentication process from [32], present

the construction of our pseudonym function and its semi-blind eval-

uation in the context of joint SSO authentication, and then proceed

with the security analysis of our protocol. The detailed protocol,

including oblivious 𝑝𝑝𝑖𝑑 generation, is given in Fig. 4.

Our protocol uses signature schemes S1 and S2 with algorithms

(KGen, Sign,Vf), where S2 must support efficient NIZK proofs 𝜋 of

knowledge of a signature on committed values, using a commitment

schemeCOM = (Com,Open). For pseudonyms, we need a groupG
of prime order𝑞, a pseudorandom function𝑦 ← PRF(𝑘, 𝑥) mapping

to Z𝑞 , and a hash function H mapping to G. Detailed definitions of

these standard building blocks are provided in App. B.

4.1 Privacy-Preserving RP Authentication
Our protocol𝜋OPPID builds upon [32], which enables privacy-preserving

RP authentication in SSO. The core idea therein is that an RP ob-

tains a privacy-preserving credential from the IdP that includes the

RP’s identifier 𝑟𝑖𝑑 . This credential uses a signature scheme with

efficient proofs, enabling the RP to authenticate to the IdP in a blind

yet verifiable manner by sending a commitment to 𝑟𝑖𝑑 and proving

ownership of a valid signature on 𝑟𝑖𝑑 . The IdP then verifies the

proof and signs the commitment as part of the authentication token.

Both the user and RP know the opening to the commitment and

can verify that the token is indeed issued for the intended RP. The

authentication token in [32] always contains the username 𝑢𝑖𝑑 that

is vouched for by the IdP. In our protocol, the key modification is

replacing 𝑢𝑖𝑑 with the pseudonym 𝑝𝑝𝑖𝑑 , computed in a blind yet

controlled way, detailed in Sec. 4.2.

The protocol in [32] also captures revocation by making the RP’s

credentials short-lived and encoding an epoch that must be revealed

in every authentication. On the protocol level, adding epochs to

credentials is very simple, but it makes the security model and

analysis significantly more complex. Thus, we only use the core

idea in our protocol and use it as a basis for integrating our privacy-

preserving 𝑝𝑝𝑖𝑑 generation. The main steps we use from [32] are

related to setup, registration, and basic authentication.

Setup & Registration. The IdP generates key pairs for two sig-

nature schemes: (𝑠𝑘1, 𝑝𝑘1) ←R
S1 .KGen(1𝜆) for signing authen-

tication tokens, and (𝑠𝑘2, 𝑝𝑘2) ←R
S2 .KGen(1𝜆) for efficient RP

authentication proofs. During RP registration with identifier 𝑟𝑖𝑑 ,

the IdP issues a credential 𝑐𝑟𝑒𝑑 := 𝜎𝑟𝑖𝑑 for 𝑟𝑖𝑑 .

The public parameters 𝑝𝑝 ← OPPID.Setup(1𝜆) include the de-
scriptions of the underlying groups and the public parameters of

COM, S1, S2, and NIZK. It is an implicit input for all algorithms.

Basic Authentication – From [32] Without Pseudonyms. For au-
thentication of a user𝑢𝑖𝑑 to an RP 𝑟𝑖𝑑 in a session identified through

𝑠𝑖𝑑 , the user, RP, and IdP proceed as follows:

637

Proceedings on Privacy Enhancing Technologies 2025(2) Kroschewski et al.

(1) Initialization: The user creates a commitment 𝑐𝑜𝑚 on the in-

tended RP’s 𝑟𝑖𝑑 , sends 𝑐𝑜𝑚 and the opening 𝑜 to the RP, and

retains all values in its implicit state for later finalization.

(2) RP Authentication: When the RP receives a well-formed 𝑐𝑜𝑚

and 𝑜 for its 𝑟𝑖𝑑 , it generates its authentication 𝑎𝑢𝑡ℎ by proving

possession of the IdP’s S2 signature 𝜎𝑟𝑖𝑑 on 𝑟𝑖𝑑 and that 𝑟𝑖𝑑

is included in 𝑐𝑜𝑚. The RP sends the proof 𝜋 to the user, who

forwards it along with the commitment 𝑐𝑜𝑚 to the IdP.

(3) Token Generation: When the IdP receives the commitment 𝑐𝑜𝑚

and the proof 𝜋 from the user 𝑢𝑖𝑑 , it verifies the proof to ensure

the authentication request is from a registered RP. If successful,

the IdP generates a standard S1 signature 𝜎𝜏 on the commitment

𝑐𝑜𝑚, the session 𝑠𝑖𝑑 , and the context 𝑐𝑡𝑥 .

(4) Finalization & Verification: To finalize the token 𝜏 , the user

opens the commitment 𝑐𝑜𝑚 with 𝑜 and the intended 𝑟𝑖𝑑 , then

verifies the IdP’s signature. If successful, the opening 𝑜 is added

to 𝜏 , creating a verifiable binding between the IdP’s signature

and the specific RP.

Our construction lets the user create the commitment 𝑐𝑜𝑚 and

the opening 𝑜 , but both could also be created by the RP and verified

by the user. The two approaches do not differ in security they

achieve, but we chose the former approach as it slightly simplified

the security model. Furthermore, the commitment 𝑐𝑜𝑚 and the

blinded value 𝑥 are verified twice to avoid stateful algorithm syntax

and security model. If the user and RP can securely store verified

information along with the 𝑠𝑖𝑑 , the repeated verification can be

skipped.

4.2 Oblivious PPID Generation
The protocol outlined above would not be very useful yet, as it does

not include a user identifier, which was simply 𝑢𝑖𝑑 in [32]. We now

want to include a pseudonym 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑) in every token,

where 𝑢𝑖𝑑 is the known user that the IdP has authenticated (outside

of our protocol), and 𝑟𝑖𝑑 is the RP the user wants to authenticate

to, but which must not be revealed to the IdP. We first describe the

core function F and then explain how to compute it in a semi-blind

and controlled manner, as required by our model.

Pseudonym Function F. Our pseudonym function F is a keyed

deterministic function, which combines the standard DL-based

pseudorandom function FDL (𝑘, 𝑥) := H(𝑥)𝑘 [36], operating in a

groupG of prime order𝑞, and a hash functionH : R ↦→ G\{1}, with
a standard PRF : {0, 1}𝜆×U ↦→ Z𝑞 . The setsU and R represent the

user and RP space, respectively. For compactness, wewill sometimes

write Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) to refer to this keyed function:

FDL+PRF = Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) := H(𝑟𝑖𝑑)PRF(𝑘,𝑢𝑖𝑑) .

The desired pseudonym unlinkability is directly ensured as FDL+PRF
is a secure PRF. In fact, FDL is often used to derive so-called scope-

exclusive pseudonyms in the context of anonymous credentials,

group signatures and DAA [9, 17, 35]. In these works, the expo-

nent is a user-managed secret key, while we rely on the IdP to

maintain them. Note that UPPRESSO [27] employs a similar keyed

pseudonym function, and we refer for the comparison to Sec. 5.

Partially-Blind Evaluation of F. The construction FDL+PRF has

also been used as a partially-blind OPRF in prior works [15, 31, 34],

KGenIdP (pp) → ((isk,M), ipk)
(𝑠𝑘1, 𝑝𝑘1) ←R S1 .KGen(1𝜆) ; (𝑠𝑘2, 𝑝𝑘2) ←R S2 .KGen(1𝜆) ; 𝑘 ←R {0, 1}𝜆
Return (((𝑠𝑘1, 𝑠𝑘2, 𝑘), ∅), (𝑝𝑘1, 𝑝𝑘2))

⟨JoinRP (ipk, rid),RegIdP (isk, rid,M)⟩ → { (cred,M′),⊥}
RP : Initiate registration for 𝑟𝑖𝑑

IdP : Parse 𝑖𝑠𝑘 as (·, 𝑠𝑘2, ·) ; Require 𝑟𝑖𝑑 ∉ M
𝜎𝑟𝑖𝑑 ← S2 .Sign(𝑠𝑘2, 𝑟𝑖𝑑) ; M′ ← M ∪ {𝑟𝑖𝑑 }

RP : Return 𝜎𝑟𝑖𝑑 ; IdP : ReturnM′

AInitU (ipk, rid) → (orid, crid)
(𝑐𝑜𝑚,𝑜) ←R Com(𝑟𝑖𝑑) ; 𝑟 ←R Z∗𝑞 ; 𝑥 ← H(𝑟𝑖𝑑)𝑟
Return ((𝑟, 𝑜), (𝑥, 𝑐𝑜𝑚))

AReqRP (ipk, rid, cred, crid, orid, sid) → auth

Parse 𝑐𝑟𝑒𝑑 as 𝜎𝑟𝑖𝑑 , 𝑖𝑝𝑘 as (·, 𝑝𝑘2), 𝑐𝑟𝑖𝑑 as (𝑥, 𝑐𝑜𝑚), 𝑜𝑟𝑖𝑑 as (𝑟, 𝑜)
Require H(𝑟𝑖𝑑)𝑟 = 𝑥 ∧Open(𝑟𝑖𝑑, 𝑐𝑜𝑚,𝑜) = 1

Return 𝜋 ← NIZK{ (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑) : S2 .Vf (𝑝𝑘2, 𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑) = 1

∧ Open(𝑟𝑖𝑑, 𝑐𝑜𝑚,𝑜) = 1} (𝑐𝑜𝑚, 𝑥, 𝑠𝑖𝑑)

AResIdP (isk, auth, crid, uid, ctx, sid) → {𝜏,⊥}
Parse 𝑖𝑝𝑘 as (·,𝑝𝑘2) , 𝑖𝑠𝑘 as (𝑠𝑘1,·, 𝑘), 𝑐𝑟𝑖𝑑 as (𝑥, 𝑐𝑜𝑚), 𝑎𝑢𝑡ℎ as 𝜋

Require that 𝜋 verifies w.r.t. (𝑝𝑘2, 𝑐𝑜𝑚, 𝑥, 𝑠𝑖𝑑) and 𝑥 ∈ G
𝑢𝑘 ← PRF(𝑘,𝑢𝑖𝑑) ; 𝑦 ← 𝑥 𝑢𝑘

𝜎𝜏 ← S1 .Sign(𝑠𝑘1, (𝑐𝑜𝑚 | |𝑥 | |𝑦 | |𝑐𝑡𝑥 | |𝑠𝑖𝑑)) ; Return (𝜎𝜏 , 𝑦)

AFinU (ipk, rid, crid, orid, ctx, sid, 𝜏) → { (𝜏fin, ppid),⊥}
Parse 𝑖𝑝𝑘 as (𝑝𝑘1, ·), 𝑐𝑟𝑖𝑑 as (·, 𝑐𝑜𝑚), 𝑜𝑟𝑖𝑑 as (𝑟, 𝑜), 𝜏 as (𝜎𝜏 , 𝑦)
𝑥 ← H(𝑟𝑖𝑑)𝑟 ; 𝑦 ← 𝑦 −𝑟

Require Open(𝑟𝑖𝑑, 𝑐𝑜𝑚,𝑜) = S1 .Vf (𝑝𝑘1, (𝑐𝑜𝑚 | |𝑥 | |𝑦 | |𝑐𝑡𝑥 | |𝑠𝑖𝑑), 𝜎𝜏) = 1

Return ((𝑐𝑜𝑚,𝑜, 𝑟, 𝑦, 𝜎𝜏), 𝑦)

VfRP (ipk, (rid, ppid, ctx, sid), 𝜏fin) → 0/1
Parse 𝑖𝑝𝑘 as (𝑝𝑘1, ·), 𝜏fin as (𝑐𝑜𝑚,𝑜, 𝑟, 𝑦, 𝜎𝜏)
𝑥 ← H(𝑟𝑖𝑑)𝑟 ; 𝑦 ← 𝑦 −𝑟

Return 1 if

Open(𝑟𝑖𝑑, 𝑐𝑜𝑚,𝑜) = S1 .Vf (𝑝𝑘1, (𝑐𝑜𝑚 | |𝑥 | |𝑦 | |𝑐𝑡𝑥 | |𝑠𝑖𝑑), 𝜎𝜏) = 1 ∧ 𝑝𝑝𝑖𝑑 = 𝑦

Figure 4: 𝜋OPPID protocol construction of our OPPID system.

providing the capability for blind evaluation of the function on a

hidden 𝑟𝑖𝑑 and a revealed 𝑢𝑖𝑑 . The user blinds the inner hash as

𝑥 ← H(𝑟𝑖𝑑)𝑟 for a random 𝑟 and sends this blinded value along

with 𝑢𝑖𝑑 to the IdP. The IdP responds with 𝑦 ← 𝑥PRF(𝑘,𝑢𝑖𝑑) , where
the exponent depends on the revealed 𝑢𝑖𝑑 . The user then unblinds

the response to 𝑝𝑝𝑖𝑑 ← 𝑦−𝑟 to obtain the expected pseudonym:

𝑝𝑝𝑖𝑑 = 𝑦−𝑟 =
(
(H(𝑟𝑖𝑑)𝑟)PRF(𝑘,𝑢𝑖𝑑)

)−𝑟
= H(𝑟𝑖𝑑)PRF(𝑘,𝑢𝑖𝑑) .

The Need for Verifiability. Finally, another essential feature re-
quired for our function is verifiability: the RP must be assured that

a received 𝑝𝑝𝑖𝑑 was computed for the correct 𝑟𝑖𝑑 . While the IdP

is trusted here, one approach could be to delegate this verification

task to the IdP by employing a partially-blind OPRF with commit-
ted and verifiable inputs. This approach would enable the IdP to

verify that it evaluates the blind function on the same 𝑟𝑖𝑑 that is

authenticated through 𝑎𝑢𝑡ℎ (and contained in 𝑐𝑜𝑚). Such a func-

tion would serve as a suitable building block, but it is not known

whether such an OPRF is feasible [14]. Existing constructions like

the Dodis-Yampolskiy (O)PRF [18], which operate on homomor-

phically encrypted inputs, allow for proofs of well-formedness but

do not extend to the partially-blind setting needed here. Similarly,

constructions like (2)HashDH, which enable partial blindness, lack

638

OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms Proceedings on Privacy Enhancing Technologies 2025(2)

efficient and composable proofs of correct inputs as their input is a

perfectly blinded hash value that destroys all algebraic structure.

Adding Partial Verifiability. Interestingly, we can work around

this non-existent building block by incorporating several straight-

forward steps, building uponUPPRESSO [27] and the base protocol

from [32]. The resulting protocol is detailed in Fig. 4.

First, in addition to the commitment and opening 𝑐𝑜𝑚, 𝑜 for 𝑟𝑖𝑑 ,

we let the user compute 𝑥 = H(𝑟𝑖𝑑)𝑟 and send all values, including

𝑟 and 𝑜 , to the RP. The RP verifies that both 𝑥 and 𝑐𝑜𝑚 open to

its 𝑟𝑖𝑑 . Only upon successful verification does the RP provide its

authentication 𝑎𝑢𝑡ℎ, proving ownership of a valid credential for

the committed 𝑟𝑖𝑑 in 𝑐𝑜𝑚. The RP also binds its NIZK proof 𝜋 to 𝑥 .

This ensures 𝑥 correctness when either the RP or user is honest.

Second, upon receiving a verified authentication request, the IdP

includes both the blinded input 𝑥 and the blinded output 𝑦 in its

token, as done in [27], signing 𝜎𝜏 ← S1 .Sign(𝑠𝑘1, (𝑐𝑜𝑚 | |𝑥 | |𝑦 | |𝑐𝑡𝑥 | |
𝑠𝑖𝑑)). Crucially, the signature binds the blinded and non-verified

values 𝑥 and 𝑦 used for 𝑝𝑝𝑖𝑑 to the commitment 𝑐𝑜𝑚 on 𝑟𝑖𝑑 , for

which the RP provided a valid NIZK proof.

Third, the user incorporates the blinding value 𝑟 used to hide

𝑟𝑖𝑑 in 𝑥 as part of the final token 𝜏fin. Thus, 𝜏fin = (𝑐𝑜𝑚, 𝑜, 𝑟,𝑦, 𝜎𝜏),
and the verification function VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏fin) per-
forms the following crucial checks:

• Verify that the IdP’s signature 𝜎𝜏 is valid for the recomputed

𝑥 = H(𝑟𝑖𝑑)𝑟 , where 𝑟𝑖𝑑 is the one provided in the verification.

• Ensure 𝑝𝑝𝑖𝑑 satisfies 𝑝𝑝𝑖𝑑 = 𝑦 −𝑟 , where 𝑦 is signed by the IdP

and 𝑟 is the blinding value leading to the correct 𝑥 .

• Confirm that the 𝑟𝑖𝑑 contained in 𝑥 matches the one in 𝑐𝑜𝑚.

These checks extend the guarantees from 𝑐𝑜𝑚 to 𝑝𝑝𝑖𝑑 by lever-

aging our three-party setting, where both the user and RP know

𝑟𝑖𝑑 and verify that 𝑥 and 𝑐𝑜𝑚 are valid for 𝑟𝑖𝑑 . Thus, as long as

either the RP or the user remains honest, the derived pseudonym

𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑) is guaranteed to be correct. These checks also

explain why the RP did not have to prove the well-formedness of 𝑥

explicitly, but instead, including it in the ZKP hash was sufficient.

Invalid Pseudonyms – If Both RP and User Are Corrupt. If both
the RP and user are corrupt, they have some leeway, but none that

is harmful. A malicious RP 𝑟𝑖𝑑 and a malicious user 𝑢𝑖𝑑 can request

and obtain pseudonyms 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑 ′) for arbitrary 𝑟𝑖𝑑 ′ ≠ 𝑟𝑖𝑑

by sending a blinded 𝑥 to the IdP that does not contain the correct

𝑟𝑖𝑑 . The IdP will compute the pseudonym based on the incorrect

𝑟𝑖𝑑 ′ but will bind it to the verified commitment 𝑐𝑜𝑚, which can only

be opened to 𝑟𝑖𝑑 ′. In the final token, the 𝑟𝑖𝑑 is no longer blinded,

and verification includes a check whether the commitment contains

the same 𝑟𝑖𝑑 as the blinded 𝑥 used in the 𝑝𝑝𝑖𝑑 computation. This

check will fail, rendering the entire token and pseudonym invalid.

Furthermore, note that this "attack" is only feasible for mali-

cious users 𝑢𝑖𝑑 , as 𝑢𝑖𝑑 is revealed to the IdP and used to compute

𝑝𝑝𝑖𝑑 . Thus, a malicious RP and user 𝑢𝑖𝑑 cannot trick the IdP into

computing pseudonyms for any other user 𝑢𝑖𝑑 ′ ≠ 𝑢𝑖𝑑 .

4.3 Security Analysis
We have already informally sketched how the different security

properties are guaranteed in our protocol. Now, we formally prove

that our protocol 𝜋OPPID satisfies all security and privacy properties

defined in Sec. 3. Note that the proof of Request Authentication es-

sentially follows the one in [32] and can thus be found in App. C.4.

Furthermore, the properties of our pseudonym function FDL+PRF –
uniqueness, collision-freeness, and unlinkability – follow from the

security of the underlying PRF and HashDH. We elaborate further

on these properties in App. C.

Analysis of 𝜋OPPID. We now turn to the proofs of our three core

properties, ensuring the correct yet privacy-preserving computa-

tion of pseudonymous authentication tokens with respect to our

pseudonym function FDL+PRF.

Theorem 4.1 (Unlinkability). 𝜋OPPID satisfies Unlinkability if
H is a random oracle, PRF is a secure pseudorandom function and the
DDH assumption holds in G.

This proof relies on the pseudorandomness of FDL+PRF, as shown
in App. C.2, under the assumptions that H is a random oracle, PRF
is a secure pseudorandom function, and the DDH assumption holds

in G. We now provide a proof sketch and refer to App. C.1 for the

full proof, where we also discuss why a one-more-type assumption,

often required for OPRFs, is not required.

Proof sketch. In the Unlinkability game, the adversary aims

to determine the user 𝑢𝑖𝑑𝑏 behind a pseudonym 𝑝𝑝𝑖𝑑𝑏 and token

𝜏fin𝑏 , generated for 𝑟𝑖𝑑 and either 𝑢𝑖𝑑0 or 𝑢𝑖𝑑1. It has oracle access

to the honest IdP and can learn the pseudonyms of 𝑢𝑖𝑑0 and 𝑢𝑖𝑑1
for all RPs except 𝑟𝑖𝑑 (as otherwise winning is trivial).

We already know that FDL+PRF is a secure PRF, meaning the 𝑝𝑝𝑖𝑑s

themselves do not leak any information about the contained 𝑢𝑖𝑑 ,

except what is deterministically derived. The only part in the IdP’s

response 𝜏fin that depends on 𝑢𝑖𝑑 is the PRF output 𝑦 = 𝑥PRF(𝑘,𝑢𝑖𝑑) ,
where 𝑥 is the value Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) = H(𝑟𝑖𝑑)PRF(𝑘,𝑢𝑖𝑑) blinded with a

random 𝑟 . Note that Unlinkability holds for honest users only, en-

suring that 𝑥 = H(𝑟𝑖𝑑)𝑟 in the challenge query is a valid input. Thus,
the token does not provide the adversary with any information

beyond 𝑝𝑝𝑖𝑑 .

What remains to be shown is that a malicious RP, possibly col-

luding with a malicious user 𝑢𝑖𝑑∗, cannot exploit the partially blind
evaluation of FDL+PRF to obtain dedicated 𝑝𝑝𝑖𝑑s of either of the

honest challenge users 𝑢𝑖𝑑0 or 𝑢𝑖𝑑1 illegitimately. Specifically, they

cannot obtain their pseudonyms through oracle queries not in-
tended for either𝑢𝑖𝑑0 or𝑢𝑖𝑑1 (as for the challenge users, the oracles

enforce honest user behavior and honestly generated inputs 𝑥).

It is easy to see that this scenario is infeasible because the 𝑝𝑝𝑖𝑑

depends on the𝑢𝑖𝑑 , which the IdP learns in clear and uses in its com-

putation. Therefore, there is no opportunity to manipulate the 𝑢𝑖𝑑

and its impact on the 𝑝𝑝𝑖𝑑 computation. While a malicious RP and

user could potentially trick the IdP into computing a pseudonym for

an arbitrary 𝑟𝑖𝑑 that does not match the one authenticated via 𝑎𝑢𝑡ℎ,

they can only do so for a malicious 𝑢𝑖𝑑∗ ≠ 𝑢𝑖𝑑0, 𝑢𝑖𝑑1, which does

not provide any advantage in winning the Unlinkability game. □

Theorem 4.2 (Unobservability). 𝜋OPPID satisfies Unobservabil-
ity if COM is hiding, and the NIZK is zero-knowledge.

This proof is essentially the same as in [32]. It follows from the

fact that the IdP receives the 𝑟𝑖𝑑 in a commitment and within a zero-

knowledge proof. The only difference here is that A also receives

𝑥 = H(𝑟𝑖𝑑)𝑟 , which is the blinded hash of 𝑟𝑖𝑑 . As the blinding is

639

Proceedings on Privacy Enhancing Technologies 2025(2) Kroschewski et al.

information-theoretic, no additional assumptions are needed. We

provide a simple proof in App. C.2 for completeness.

Theorem 4.3 (Session Binding). 𝜋OPPID satisfies Session Binding
if the S1 and S2 scheme are EUF-CMA secure, COM is binding, and
the NIZK is zero-knowledge and simulation extractable.

We now sketch the proof and give a full proof in App. C.3.

Proof sketch. The proof branches along the winning condi-

tions in the Session Binding game, where the cases forDirect Forgery,
RP Binding and RP Authentication are handled analogously to [32],

as these properties mostly follow from their protocol we have used

as basis for our extension. Thus, we focus onNymCorrectness (Case

2a) here: it must be infeasible to output (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗, 𝜏∗fin)
where 𝜏∗fin is a valid token for a pseudonym 𝑝𝑝𝑖𝑑∗ ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗).
That is, the pseudonym in the forgery does not match F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗)
which is supposed to be unique. Recall that the final token 𝜏∗fin con-

tains (𝑜∗, 𝑟 ∗, 𝑦∗, 𝜎∗𝜏), and as 𝜏∗fin is valid, 𝑝𝑝𝑖𝑑∗ = 𝑦∗−𝑟
∗
and 𝜎∗𝜏 is a

valid signature on (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗). These values uniquely determine

the correct pseudonym value for which verification succeeds as

verification checks that 𝑥∗ = 𝐻 (𝑟𝑖𝑑∗)𝑟∗ and 𝑝𝑝𝑖𝑑∗ = 𝑦∗−𝑟
∗
.

Thus, the only way to pass the verification check and output

a pseudonym 𝑝𝑝𝑖𝑑∗ ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗) is changing the signed 𝑥∗, 𝑦∗

values in the token. This is infeasible if S1 is unforgeable. □

5 Evaluation & Discussion
This section presents our prototypical implementation of 𝜋OPPID
and compares its efficiency and security to the most related work.

5.1 Security Comparison with Related Protocols
The works most closely related to ours are standard OIDC with

pseudonyms [43],AIF-ZKP [32],PPOIDC [28], andUPPRESSO [27].

These protocols have been selected for a detailed comparison as

they also operate within the plain-SSO model, meaning they do not

require the user to manage any long-term keys or credentials, nor

do they rely on additional parties or dedicated hardware modules.

For space reasons, the straightforward comparison to OIDC and

AIF-ZKP, both of which entirely lack either Unlinkability or Unob-

servability, is delegated to App. C.5.

PPOIDC [28]. The PPOIDC protocol aims to turn OIDC into an

unobservable protocol. To blindly bind the IdP’s token to a partic-

ular 𝑟𝑖𝑑 and compute the 𝑝𝑝𝑖𝑑 it mostly relies on hash functions,

serving as commitments. More precisely, when the user wants to au-

thenticate to 𝑟𝑖𝑑 , it first computes 𝑐𝑜𝑚𝑟𝑖𝑑 := H(𝑟𝑖𝑑 | |𝑟) for a random
𝑟 ←

R
{0, 1}𝜆 . The pseudonym computation uses a hash function

again and also makes the non-standard assumption that 𝑢𝑖𝑑 is a

high-entropy value that the user retrieves from the IdP at every

login. The user computes 𝑝𝑝𝑖𝑑 := H(𝑢𝑖𝑑 | |𝑟𝑖𝑑) and the commitment

𝑐𝑜𝑚𝑝𝑝𝑖𝑑 := H(𝑝𝑝𝑖𝑑 | |𝑟 ′) with 𝑟 ′ ←
R
{0, 1}𝜆 . The user also generates

a zero-knowledge proof 𝜋 that 𝑐𝑜𝑚𝑝𝑝𝑖𝑑 is derived for her 𝑢𝑖𝑑 and

sends 𝑐𝑜𝑚𝑟𝑖𝑑 , 𝑐𝑜𝑚𝑝𝑝𝑖𝑑 and 𝜋 to the IdP.

The IdP verifies that the proof is valid for the authenticated 𝑢𝑖𝑑 ,

and then signs 𝑐𝑜𝑚𝑟𝑖𝑑 and 𝑐𝑜𝑚𝑝𝑝𝑖𝑑 in its token. The user forwards

the IdP’s signature, randomness 𝑟, 𝑟 ′ and her 𝑝𝑝𝑖𝑑 to the RP, which

checks that the IdP-signed commitment 𝑐𝑜𝑚𝑟𝑖𝑑 correctly opens to

its own 𝑟𝑖𝑑 and 𝑐𝑜𝑚𝑝𝑝𝑖𝑑 opens to 𝑝𝑝𝑖𝑑 .

The protocol does not consider RP authentication towards the

IdP and thus cannot satisfy these parts of the Session Binding prop-

erty or Request Authentication. RP authentication is not entirely

missing either though, as their protocol issues certificates to the

RP upon registration and relies on the user to verify them when

they start a session. This only provides security if all users are

honest though, and we discuss the difference to our IdP-centric

authentication at the end of this section. The PPOIDC still partially

satisfies Session Binding, as the IdP blindly signs the commitment

𝑐𝑜𝑚𝑟𝑖𝑑 of an user-verified 𝑟𝑖𝑑 , which ensures RP Binding I and II.

However, PPOIDC lacks Nym Correctness: The proof 𝜋 ensures

that 𝑝𝑝𝑖𝑑 is computed on the correct𝑢𝑖𝑑 but does not guarantee that

the committed 𝑟𝑖𝑑 in 𝑐𝑜𝑚𝑟𝑖𝑑 matches the one used to compute 𝑝𝑝𝑖𝑑 ,

allowing corrupt users to obtain arbitrary IdP-certified pseudonyms.

UPPRESSO [27]. The protocol focuses solely on the blindly com-

puted pseudonyms in SSO, which are computed as 𝑝𝑝𝑖𝑑 := 𝑟𝑖𝑑𝑘𝑢𝑖𝑑

where 𝑘𝑢𝑖𝑑 is a user-specific secret key in Z𝑞 maintained by the

IdP. Instead of hashing 𝑟𝑖𝑑 to the group as in 𝜋OPPID, their protocol

relies on 𝑟𝑖𝑑 already being a proper and random group element.

This is done by letting the IdP issue a certificate on a randomly

chosen group element 𝑟𝑖𝑑 ∈ G (where G is a cyclic group of order

𝑞) to the RP when it registers.

When a user wants to authenticate to an RP, it receives and

verifies the certified 𝑟𝑖𝑑 from the RP and uses a random 𝑟 to blind it,

𝑟𝑖𝑑 :=𝑟𝑖𝑑𝑟 . The IdP then receives 𝑟𝑖𝑑 from the user 𝑢𝑖𝑑 , computes

𝑝𝑝𝑖𝑑 :=𝑟𝑖𝑑
𝑘𝑢𝑖𝑑

, and signs both 𝑟𝑖𝑑 and 𝑝𝑝𝑖𝑑 in its token. The RP then

receives all signed values and 𝑟 and unblinds them to 𝑝𝑝𝑖𝑑 :=𝑟𝑖𝑑𝑘𝑢𝑖𝑑 .

In terms of security, UPPRESSO achieves both privacy-related

properties due to perfect blinding of 𝑟𝑖𝑑 and pseudonyms computed

via a classic DL-based PRF. The protocol partially achieves RP-

Binding, as the signed 𝑟𝑖𝑑 could serve as a commitment to 𝑟𝑖𝑑 which

can be verified using 𝑟 (this is not made publicly verifiable in their

protocol though). In contrast to our scheme, this would additionally

require to also verify that 𝑟𝑖𝑑 is the correct group element – which

was simply computingH(𝑟𝑖𝑑) in our scheme. However,UPPRESSO
does not achieve RP authentication as part of Session Binding or

Request Authentication, as the RP does not authenticate to the IdP.

Comparing UPPRESSO to our protocol, we made three key

changes to the pseudonym computation: First, we set𝑘𝑢𝑖𝑑 := PRF(𝑘,𝑢𝑖𝑑),
where 𝑘 is a secret key held by the IdP, avoiding the need for the IdP

to manage a secret key table that grows linearly with the number

of users. Second, we compute pseudonyms on H(𝑟𝑖𝑑) instead of

a certified 𝑟𝑖𝑑 ∈ G directly, removing the need for users to verify

a certificate on 𝑟𝑖𝑑 to check its validity. Using a malformed 𝑟𝑖𝑑

will allow malicious RPs to link users, which is prevented through

our hash computation. Third, our protocol ensures that valid, pub-

licly verifiable IdP tokens include the correct, RP-authenticated

pseudonym by enforcing consistency checks between the verified

commitment and blinded input. In UPPRESSO, the final token can

include malformed pseudonyms when corrupt users and RPs col-

lude, allowing the RP to falsely claim an inflated user base asserted

by the IdP. Other changes primarily focus on providing IdP-side RP

authentication and ensuring the final token’s public verifiability

for the targeted 𝑟𝑖𝑑 .

We note that the recently proposed BISON protocol [29] for

blindly computed SSO pseudonyms essentially follows the same

640

OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms Proceedings on Privacy Enhancing Technologies 2025(2)

approach as UPPRESSO. In particular, it does not aim at RP authen-

tication towards the IdP, and thus our analysis and comparison for

UPPRESSO also carry over to BISON.

User-Side RP Authentication. In PPOIDC and UPPRESSO, RP au-

thentication is shifted from an IdP-verified setting to a user-verified

one. In this approach, the user receives an RP’s certificate to verify

that it is properly registered with the IdP and provides the correctly

certified values for the cryptographic protocol.UPPRESSO requires

two RP and IdP scripts that the user receives from each party, which

handle certificate transfer and verification within the session.

Interestingly, both protocols suggest sending the plain RP certifi-

cate to the user without binding the certificate to a key and session

nonce. This approach could enable phishing attacks if no additional

cross-verification of consistent certificates from the authenticated

TLS session and the verified SSO-protocol values is performed.

Furthermore, relying on proper RP authentication by the user

compromises full IdP control over the token it issues. As discussed

above, the IdP can be tricked into signing tokens for malformed

pseudonyms or invalid 𝑟𝑖𝑑s, violating the correctness and non-

repudiation guarantees typically expected from such an IdP. Over-

all, handling RP authentication on the user side is rather fragile

and requires trust in the honest execution on the user’s device.

Therefore, our OPPID system aims for IdP-side RP authentication.

RP Revocation. Achieving Unobservability, which hides 𝑟𝑖𝑑 from

the IdP during RP authentication, rules out classic revocation strate-

gies based on blacklisting revoked 𝑟𝑖𝑑s. This well-understood chal-

lenge is addressed by [32] through an epoch-based strategy, where

RP credentials used in anonymous authentication requests are short-

lived (e.g., a week or amonth). Thus, the RPmust regularly re-obtain

its membership credential from the IdP, which will refuse to do

so if the RP has been revoked. The short-lived credentials can be

realized by having the IdP also sign the current epoch along with

the RP’s 𝑟𝑖𝑑 in the membership credential. During authentication,

the 𝑟𝑖𝑑 remains hidden, but the epoch must be revealed and valid.

Since 𝜋OPPID is built upon [32], integrating this revocation mech-

anism only requires adding an epoch to the issued RP credential.

This is straightforward and has no impact on how the 𝑝𝑝𝑖𝑑 is gen-

erated or verified. We omitted revocation to simplify the security

model and focus on oblivious 𝑝𝑝𝑖𝑑 computation.

5.2 Implementation and Evaluation
We now report on the implementation of our protocol and compare

its efficiency to related works.

Instantiation of Building Blocks. We instantiated 𝜋OPPID scheme

as follows: for the IdP’s standard signature S1, we used RSA-SHA256
2048-bit to comply with current industry standards. Building upon

[32], we used PS signatures [41] on curve BLS12-381 [5] for S2,
which includes the bilinear group description (𝑞,G1,G2,G𝑇 , 𝑔1, 𝑔2,

𝑒) in the public parameters 𝑝𝑝 . The commitment is instantiated with

Pedersen commitments [39] in G1, and the pseudonym function

is executed in G1 as well, with hashing to the curve [21] and the

“exponent” PRF realized with HMAC-SHA256 mapping elements

to Z𝑞 [21, §5.3]. The NIZK instantiation, used in both 𝜋OPPID and

AIF-ZKP for RP authentication, uses generalized Schnorr-proofs [11],
made non-interactive through the Fiat-Shamir heuristic [22].

Entity RP User IdP
Protocol \ Ops. Vf Req Fin Init Res

OIDC [43] 0.05 n/a n/a n/a 1.52

AIF-ZKP [32] 1.12 7.83 1.11 1.19 12.09

PPOIDC [28] 0.06 n/a n/a 4710 5.88

UPPRESSO [27] 0.57 0.44 n/a 0.52 1.98

Our Work: 𝜋OPPID 2.32 8.47 2.28 1.81 12.79

Table 2: Execution times (in ms), including proof generation
and verification when applicable. For an overview of the
achieved security and privacy properties, see Tab. 1.

For comparison with OIDC, PPOIDC, and UPPRESSO, we used

the same RSA signature for the IdP-signed token. For OIDC, we
followed the specification [43, §8.1] and used SHA256 for the 𝑝𝑝𝑖𝑑

computation. Since no implementation was available for PPOIDC,
we implemented their scheme from scratch, using SHA256 for H
to instantiate F(𝑢𝑖𝑑, 𝑟𝑖𝑑) and the commitment scheme as proposed

in [28]. For the ZKP 𝜋 of a pre-image of H, we used gnark [7] to

create the circuit-based zkSNARK, which is verified by the IdP.

For UPPRESSO, we implemented its core cryptographic operations:

IdP-issued RP certificates are realized via an RSA-SHA256 signature

on 𝑟𝑖𝑑 only and pseudonyms are computed in G1.

Evaluation Results. The benchmark results of all schemes are

summarized in Tab. 2, with all operations performed on anAppleM1

CPU (8-core, 2020, 3.2 GHz). Our implementation and benchmarks

are available at [3] for reproducibility.

Our protocol 𝜋OPPID, achieving all desired security and privacy

properties, is highly efficient. User operations and token verification

each take only 2ms, proof verification at the IdP requires only 12ms

after a 8ms generation time at the RP. We now discuss these results

in relation to the closest variants, PPOIDC and UPPRESSO.
Our scheme is significantly faster than PPOIDC, which requires

an expensive proof generation of 4.7s by the user, which came for

a fast IdP verification of only 5ms. One might speed up the proof

generation of a hash preimage by using alternative zkSNARK setups,

but that would increase verification or communication costs [42].

UPPRESSO has almost an identical pseudonym computation as in

𝜋OPPID and does not involve the RP authentication costs, so it is

slightly faster than ours, but provides less security.

Regarding communication costs, an element in (Z𝑞,G1,G2,G𝑇)
requires (32, 48, 92, 576) bytes respectively. Therefore, 𝜋OPPID re-

quires only 864 bytes (3Z𝑞 + 4G1 + 1G𝑇) for the authentication
proof and the blinded and committed 𝑟𝑖𝑑 sent to the IdP. The user-

generated ZKP in PPOIDC is relatively small at 997 bytes, but the as-

sociated costs are substantial due to the pre-compiled circuit (309407

constraints, 56 MB) and a 121 MB proving key. Fetching these files

from the IdP for each login is clearly impractical. The overhead

introduced by user-side RP certificates in PPOIDC/UPPRESSO is

relatively minor at 32 bytes for the signature in addition to a signed

4-byte 𝑟𝑖𝑑 . Thus, in scenarios where RP authentication would not
be needed, our protocol remains more efficient than PPOIDC.

641

Proceedings on Privacy Enhancing Technologies 2025(2) Kroschewski et al.

Acknowledgments
We thank the anonymous reviewers for their valuable feedback

throughout the review process, as well as Christian Mouchet for

his artifact review. This research was partially funded by the HPI

Research School on Data Science and Engineering. It was also sup-

ported by the German Federal Ministry of Education and Research

(BMBF) through funding of the ATLAS project under reference

number 16KISA037.

References
[1] Google 2023. OpenID Connect. Google. https://developers.google.com/identity/

protocols/oauth2/openid-connect

[2] Apple Inc. 2023. Sign in with Apple. Apple Inc. https://developer.apple.com/

documentation/sign_in_with_apple

[3] 2024. OPPID. https://github.com/jmakr0/OPPID

[4] Apple. 2023. Sign in with Apple & Privacy. https://www.apple.com/legal/privacy/

data/en/sign-in-with-apple/

[5] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. 2003. Constructing Elliptic

Curves with Prescribed Embedding Degrees. In SCN 02 (LNCS, Vol. 2576), Stelvio
Cimato, Clemente Galdi, and Giuseppe Persiano (Eds.). Springer, Heidelberg,

Germany, Amalfi, Italy, 257–267. https://doi.org/10.1007/3-540-36413-7_19

[6] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive Zero-

Knowledge and Its Applications (Extended Abstract). In 20th ACM STOC. ACM
Press, Chicago, IL, USA, 103–112. https://doi.org/10.1145/62212.62222

[7] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie.

2023. ConsenSys/gnark: v0.10.0. https://doi.org/10.5281/zenodo.5819104

[8] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. 2004. Direct Anonymous

Attestation. InACMCCS 2004, Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick

McDaniel (Eds.). ACM Press, Washington, DC, USA, 132–145. https://doi.org/10.

1145/1030083.1030103

[9] Jan Camenisch, Manu Drijvers, and Anja Lehmann. 2016. Anonymous Attestation

Using the Strong Diffie Hellman Assumption Revisited. In Trust and Trustworthy
Computing, Michael Franz and Panos Papadimitratos (Eds.). Springer Interna-

tional Publishing, Cham, 1–20.

[10] Jan Camenisch, Maria Dubovitskaya, Robert R. Enderlein, Anja Lehmann, Gre-

gory Neven, Christian Paquin, and Franz-Stefan Preiss. 2014. Concepts and

languages for privacy-preserving attribute-based authentication. J. Inf. Secur.
Appl. 19, 1 (Feb. 2014), 25–44. https://doi.org/10.1016/j.jisa.2014.03.004

[11] Jan Camenisch, Aggelos Kiayias, and Moti Yung. 2009. On the Portability of

Generalized Schnorr Proofs. In EUROCRYPT 2009 (LNCS, Vol. 5479), Antoine
Joux (Ed.). Springer, Heidelberg, Germany, Cologne, Germany, 425–442. https:

//doi.org/10.1007/978-3-642-01001-9_25

[12] Jan Camenisch and Anna Lysyanskaya. 2001. An Efficient System for Non-

transferable Anonymous Credentials with Optional Anonymity Revocation. In

EUROCRYPT 2001 (LNCS, Vol. 2045), Birgit Pfitzmann (Ed.). Springer, Heidelberg,

Germany, Innsbruck, Austria, 93–118. https://doi.org/10.1007/3-540-44987-6_7

[13] Jan Camenisch and Els Van Herreweghen. 2002. Design and Implementation of

The Idemix Anonymous Credential System. In ACM CCS 2002, Vijayalakshmi

Atluri (Ed.). ACM Press, Washington, DC, USA, 21–30. https://doi.org/10.1145/

586110.586114

[14] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. 2022. SoK: Oblivious Pseu-

dorandom Functions. Cryptology ePrint Archive, Report 2022/302. https:

//eprint.iacr.org/2022/302.

[15] Poulami Das, Julia Hesse, and Anja Lehmann. 2022. DPaSE: Distributed Password-

Authenticated Symmetric-Key Encryption, or How to Get Many Keys from One

Password. In ASIACCS 22, Yuji Suga, Kouichi Sakurai, Xuhua Ding, and Kazue

Sako (Eds.). ACM Press, Nagasaki, Japan, 682–696. https://doi.org/10.1145/

3488932.3517389

[16] Arkajit Dey and Stephen Weis. 2010. PseudoID: Enhancing Privacy in Federated

Login. In Hot Topics in Privacy Enhancing Technologies. Sciendo, Berlin, Germany,

95–107.

[17] Jesus Diaz and Anja Lehmann. 2021. Group Signatures with User-Controlled and

Sequential Linkability. In PKC 2021, Part I (LNCS, Vol. 12710), Juan Garay (Ed.).

Springer, Heidelberg, Germany, Virtual Event, 360–388. https://doi.org/10.1007/

978-3-030-75245-3_14

[18] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function

with Short Proofs and Keys. In PKC 2005 (LNCS, Vol. 3386), Serge Vaudenay (Ed.).

Springer, Heidelberg, Germany, Les Diablerets, Switzerland, 416–431. https:

//doi.org/10.1007/978-3-540-30580-4_28

[19] EU. 2024. Regulation 2024/1183 of the european parliament and of the council of 11
april 2024 amending regulation no 910/2014 as regards establishing the european
digital identity framework. https://eur-lex.europa.eu/eli/reg/2024/1183/oj

[20] Facebook. 2021. OpenID Connect. https://developers.facebook.com/docs/

facebook-login

[21] A. Faz-Hernandez, S. Scott, N. Sullivan, R. S. Wahby, and C. A. Wood. 2023.

Hashing to Elliptic Curves. RFC 9380. RFC Editor.

[22] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), Andrew M.

Odlyzko (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 186–194.

https://doi.org/10.1007/3-540-47721-7_12

[23] Ge Gao, Yuan Zhang, Yaqing Song, and Shiyu Li. 2024. PrivSSO: Practical Single-

Sign-On Authentication Against Subscription/Access Pattern Leakage. IEEE
Transactions on Information Forensics and Security 19 (2024), 5075–5089. https:

//doi.org/10.1109/TIFS.2024.3392533

[24] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1988. A Digital Signature

Scheme Secure Against Adaptive Chosen-message Attacks. SIAM J. Comput. 17,
2 (April 1988), 281–308.

[25] Jens Groth. 2006. Simulation-Sound NIZK Proofs for a Practical Language and

Constant Size Group Signatures. In ASIACRYPT 2006 (LNCS, Vol. 4284), Xuejia Lai
and Kefei Chen (Eds.). Springer, Heidelberg, Germany, Shanghai, China, 444–459.

https://doi.org/10.1007/11935230_29

[26] Chengqian Guo, Fan Lang, Qiongxiao Wang, and Jingqiang Lin. 2022. UP-SSO:

Enhancing the User Privacy of SSO by Integrating PPID and SGX. In 2021 In-
ternational Conference on Advanced Computing and Endogenous Security. 01–05.
https://doi.org/10.1109/IEEECONF52377.2022.10013340

[27] Chengqian Guo, Jingqiang Lin, Quanwei Cai, Wei Wang, Fengjun Li, Qiongxiao

Wang, Jiwu Jing, and Bin Zhao. 2022. UPPRESSO: Untraceable and Unlinkable

Privacy-PREserving Single Sign-On Services. arXiv:2110.10396 [cs.CR] https:

//arxiv.org/abs/2110.10396

[28] Sven Hammann, Ralf Sasse, and David A. Basin. 2020. Privacy-Preserving OpenID

Connect. In ASIACCS 20, Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu, and

Giuseppe Ateniese (Eds.). ACM Press, Taipei, Taiwan, 277–289. https://doi.org/

10.1145/3320269.3384724

[29] JakobHeher, StefanMore, and LenaHeimberger. 2024. BISON: Blind Identification

with Stateless scOped pseudoNyms. arXiv:2406.01518 [cs.CR] https://arxiv.org/

abs/2406.01518

[30] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. 2014. Round-Optimal

Password-Protected Secret Sharing and T-PAKE in the Password-Only Model. In

ASIACRYPT 2014, Part II (LNCS, Vol. 8874), Palash Sarkar and Tetsu Iwata (Eds.).

Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C., 233–253. https:

//doi.org/10.1007/978-3-662-45608-8_13

[31] Stanislaw Jarecki, Hugo Krawczyk, and Jason Resch. 2018. Threshold Partially-

Oblivious PRFs with Applications to Key Management. Cryptology ePrint

Archive, Report 2018/733. https://eprint.iacr.org/2018/733.

[32] Maximilian Kroschewski and Anja Lehmann. 2023. Save The Implicit Flow?

Enabling Privacy-Preserving RP Authentication in OpenID Connect. Proceedings
on Privacy Enhancing Technologies 4 (2023), 96–116.

[33] Leona Lassak, Elleen Pan, Blase Ur, and Maximilian Golla. 2024. Why Aren’t We

Using Passkeys? Obstacles Companies Face Deploying {FIDO2} Passwordless Au-

thentication. 7231–7248. https://www.usenix.org/conference/usenixsecurity24/

presentation/lassak

[34] Anja Lehmann. 2019. ScrambleDB: Oblivious (Chameleon) Pseudonymization-

as-a-Service. PoPETs 2019, 3 (July 2019), 289–309. https://doi.org/10.2478/popets-

2019-0048

[35] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. 1999. Pseudo-

nym Systems. In SAC 1999 (LNCS, Vol. 1758), Howard M. Heys and Carlisle M.

Adams (Eds.). Springer, Heidelberg, Germany, Kingston, Ontario, Canada, 184–

199. https://doi.org/10.1007/3-540-46513-8_14

[36] Moni Naor, Benny Pinkas, and Omer Reingold. 1999. Distributed Pseudo-random

Functions and KDCs. In EUROCRYPT’99 (LNCS, Vol. 1592), Jacques Stern (Ed.).

Springer, Heidelberg, Germany, Prague, Czech Republic, 327–346. https://doi.

org/10.1007/3-540-48910-X_23

[37] NIST. 2023. SP 800-63 Digital Identity Guidelines. https://pages.nist.gov/800-63-

4/sp800-63c.html

[38] Christian Paquin and Greg Zaverucha. 2013. U-prove cryptographic specification

v1. 1. Technical Report, Microsoft Corporation (2013).

[39] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In CRYPTO’91 (LNCS, Vol. 576), Joan Feigenbaum (Ed.).

Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 129–140. https://doi.

org/10.1007/3-540-46766-1_9

[40] Birgit Pfitzmann and Michael Waidner. 2002. Privacy in browser-based attribute

exchange. In Proceedings of the 2002 ACM Workshop on Privacy in the Electronic
Society (Washington, DC) (WPES ’02). Association for Computing Machinery,

New York, NY, USA, 52–62. https://doi.org/10.1145/644527.644533

[41] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures. In

CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, Germany,

San Francisco, CA, USA, 111–126. https://doi.org/10.1007/978-3-319-29485-8_7

[42] Ethereum Research. 2023. Benchmarking ZKP Development Frameworks: the
Pantheon of ZKP. https://ethresear.ch/t/benchmarking-zkp-development-

frameworks-the-pantheon-of-zkp/14943

[43] N. Sakimura, J. Bradley, M. Jones, B. de Medeirosk, and C. Mortimore. 2014.

OpenID Connect Core 1.0. https://openid.net/specs/openid-connect-core-1_0.

642

https://developers.google.com/identity/protocols/oauth2/openid-connect
https://developers.google.com/identity/protocols/oauth2/openid-connect
https://developer.apple.com/documentation/sign_in_with_apple
https://developer.apple.com/documentation/sign_in_with_apple
https://github.com/jmakr0/OPPID
https://www.apple.com/legal/privacy/data/en/sign-in-with-apple/
https://www.apple.com/legal/privacy/data/en/sign-in-with-apple/
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1145/62212.62222
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1016/j.jisa.2014.03.004
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://eprint.iacr.org/2022/302
https://eprint.iacr.org/2022/302
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1007/978-3-030-75245-3_14
https://doi.org/10.1007/978-3-030-75245-3_14
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://eur-lex.europa.eu/eli/reg/2024/1183/oj
https://developers.facebook.com/docs/facebook-login
https://developers.facebook.com/docs/facebook-login
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1109/TIFS.2024.3392533
https://doi.org/10.1109/TIFS.2024.3392533
https://doi.org/10.1007/11935230_29
https://doi.org/10.1109/IEEECONF52377.2022.10013340
https://arxiv.org/abs/2110.10396
https://arxiv.org/abs/2110.10396
https://arxiv.org/abs/2110.10396
https://doi.org/10.1145/3320269.3384724
https://doi.org/10.1145/3320269.3384724
https://arxiv.org/abs/2406.01518
https://arxiv.org/abs/2406.01518
https://arxiv.org/abs/2406.01518
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://eprint.iacr.org/2018/733
https://www.usenix.org/conference/usenixsecurity24/presentation/lassak
https://www.usenix.org/conference/usenixsecurity24/presentation/lassak
https://doi.org/10.2478/popets-2019-0048
https://doi.org/10.2478/popets-2019-0048
https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-48910-X_23
https://pages.nist.gov/800-63-4/sp800-63c.html
https://pages.nist.gov/800-63-4/sp800-63c.html
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/644527.644533
https://doi.org/10.1007/978-3-319-29485-8_7
https://ethresear.ch/t/benchmarking-zkp-development-frameworks-the-pantheon-of-zkp/14943
https://ethresear.ch/t/benchmarking-zkp-development-frameworks-the-pantheon-of-zkp/14943
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms Proceedings on Privacy Enhancing Technologies 2025(2)

html

[44] Patrick P. Tsang, ManHoAu, Apu Kapadia, and SeanW. Smith. 2007. Blacklistable

anonymous credentials: blocking misbehaving users without ttps. In Proceedings
of the 14th ACM Conference on Computer and Communications Security (Alexan-

dria, Virginia, USA) (CCS ’07). Association for Computing Machinery, New York,

NY, USA, 72–81. https://doi.org/10.1145/1315245.1315256

[45] Rongwu Xu, Sen Yang, Fan Zhang, and Zhixuan Fang. 2023. MISO: Legacy-

compatible Privacy-preserving Single Sign-on using Trusted Execution Environ-

ments. In 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P).
IEEE, 352–372.

[46] Zhiyi Zhang, Michal Król, Alberto Sonnino, Lixia Zhang, and Etienne Rivière.

2021. EL PASSO: Efficient and Lightweight Privacy-preserving Single Sign On.

PoPETs 2021, 2 (April 2021), 70–87. https://doi.org/10.2478/popets-2021-0018

A Omitted Model Parts

Here, we describe our protocol flow in detail, provide the omitted

parts, further explanations of our security model, and compare it

to the Session Binding model from [32].

A.1 Correctness
Recall that we denote with R, S, andU the RP, session, and user

spaces. An OPPID scheme – as defined in Sec. 2.3 – is correct if for

all 𝜆 ∈ N, setup and RP registrations with 𝑟𝑖𝑑 ∈ R
𝑝𝑝 ← Setup(1𝜆), ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝),

(𝑐𝑟𝑒𝑑,M′) ← ⟨JoinRP (𝑖𝑝𝑘, 𝑟𝑖𝑑),RegIdP (𝑖𝑠𝑘, 𝑟𝑖𝑑,M)⟩,
all authentication sessions with 𝑠𝑖𝑑 ∈ S of user 𝑢𝑖𝑑 ∈ U to RP 𝑟𝑖𝑑

(𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑) ← AInitU (𝑖𝑝𝑘, 𝑟𝑖𝑑)
𝑎𝑢𝑡ℎ ← AReqRP (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑠𝑖𝑑)

𝜏 ← AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑)
(𝜏fin, 𝑝𝑝𝑖𝑑) ← AFinU (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏),

result in

VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏fin) = 1.

A.2 Protocol Flow
We present the protocol flow and explain how parties interact with

each other in detail.

Setup and Registration. Before offering its authentication service,

the IdP generates its key pair (𝑖𝑠𝑘, 𝑖𝑝𝑘) based on the public param-

eters 𝑝𝑝 and initializes its member stateM. The public key 𝑖𝑝𝑘 is

shared with all entities, and tokens issued by the IdP are validated

against this key. RPs can then engage in the registration ⟨JoinRP,
RegIdP⟩ with the IdP to obtain their credential 𝑐𝑟𝑒𝑑 .

Authentication Flow. The user authentication to an RP 𝑟𝑖𝑑 via

the IdP with 𝑖𝑝𝑘 involves the following four steps:

(1) The user executes AInitU with 𝑟𝑖𝑑 to initiate the authentication

process, obtaining (𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑). The user then stores 𝑜𝑟𝑖𝑑 and

transmits both values to the RP.

(2) The RP runs AReqRP to generate 𝑎𝑢𝑡ℎ using 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑 , and 𝑐𝑟𝑒𝑑

to authenticate as a legitimate RP. To ensure freshness, the RP

provides a fresh session identifier 𝑠𝑖𝑑 . The user then forwards

𝑎𝑢𝑡ℎ (via the user) to the IdP.

(3) When the IdP receives a token request from a user𝑢𝑖𝑑 for session

𝑠𝑖𝑑 and implicit authentication 𝑎𝑢𝑡ℎ for an RP, it executes the

algorithm AResIdP. This results in either a token 𝜏 or ⊥ if the RP

authentication fails. The token is now bound to the implicit 𝑟𝑖𝑑

and explicit 𝑢𝑖𝑑, 𝑠𝑖𝑑 , along with additional session information

such as timestamps, simplified through context 𝑐𝑡𝑥 . We assume

that the IdP has properly authenticated 𝑢𝑖𝑑 , but do not make

that explicit here.

(4) The user runs AFinU to transform the IdP’s token 𝜏 with the

committed 𝑟𝑖𝑑 to verify that the final token corresponds to

the initial 𝑟𝑖𝑑 and to derive an RP-specific pseudonym 𝑝𝑝𝑖𝑑 .

This algorithm takes the user opening 𝑜𝑟𝑖𝑑 and all received

information as input to produce the final token 𝜏fin and 𝑝𝑝𝑖𝑑 .

The resulting token 𝜏fin is then verified against 𝑖𝑝𝑘 to confirm its

validity for the tuple (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑). This explicit verification
binds the session information, 𝑝𝑝𝑖𝑑 , and the RP’s 𝑟𝑖𝑑 together.

A.3 Session Binding: RP Binding & RP Auth.
Here, we provide more intuition on how the properties of RP Bin-

ding and RP Authentication are captured in our Session Binding

game ExpSES-BINA,OPPID in Fig. 3. Note that RP Binding II and RP Au-

thentication II define security aspects that were not covered by the

original model in [32]. We give a more detailed comparison in the

following section.

RP Binding. If an honest user 𝑢𝑖𝑑 wants to authenticate to a

certain RP 𝑟𝑖𝑑 in a session 𝑠𝑖𝑑 , the adversary wins if it can produce

a token for the same session, but which is valid for a different

𝑟𝑖𝑑∗. This models phishing attacks from malicious RPs. To capture

this property, we need to know what the intent of the honest user

was, which is done through O .AInitU and O .AResFin. Using the

bookkeeping in these oracles, we can define an honest user’s intent

as (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) in Q𝜏fin when the finalized token is computed.

The adversary wins if it can come up with a token for that session

but with 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 , as defined in condition (b) for RP Binding I.
For a session initiated by a corrupt user towards a corrupt RP,

we never know the exact RP the user wants to authenticate to:

A invokes O .AResIdP on adversarial chosen inputs 𝑎𝑢𝑡ℎ and 𝑐𝑟𝑖𝑑 ,

which both hide the 𝑟𝑖𝑑 . So our guarantees are naturally weaker

here than for honest users. What we do guarantee, is that the

adversary cannot re-use the same token it receives from the IdP, and

claim it to be valid towards multiple corrupt RPs. This is the reason

we have O .VfRP. It might be surprising that we provide an oracle

that runs purely on public values, and would mimic something that

is typically run internally be the adversary. What we want to model

here is that if the adversary presents a token for (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑)
somehow publicly, e.g., towards a judge or some external honest
entity, and later presents a token for the same context 𝑐𝑡𝑥, 𝑠𝑖𝑑 but

for a different 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 (which is its forgery). Thus, despite the

honest IdP never learning the exact RP the corrupt user wanted

to authenticate, we guarantee that this user can authenticate to at

most one RP. This RP Binding II is captured in winning condition (c),

and can be seen as a notion similar to the one-more unforgeability

property in blind signatures.

RP Authentication. The previous two properties ensured that

the IdP-generated token is bound to the blindly received 𝑟𝑖𝑑 . We

further want to guarantee that only legitimate RPs can request such

tokens, which is captured in conditions (d) and (e). In condition (d),

the adversary wins if it manages to produce a valid token for some

𝑟𝑖𝑑∗, yet this RP has never registered, i.e., 𝑟𝑖𝑑∗ ∉ HRP∪CRP where

643

https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1145/1315245.1315256
https://doi.org/10.2478/popets-2021-0018

Proceedings on Privacy Enhancing Technologies 2025(2) Kroschewski et al.

HRP and CRP are the sets of all honest and corrupt RPs, the IdP

has registered through O .RegHRP and O .RegCRP.
If the 𝑟𝑖𝑑∗ in the forgery belongs to an honest RP, we want even

stronger guarantees and ensure that it must be infeasible to win if

the honest RP had never authenticated for that particular session

𝑠𝑖𝑑∗. As all authentication requests for honest RPs are handled

through O .AReqRP, where we store each query (𝑟𝑖𝑑, 𝑠𝑖𝑑) in Qauth,

this translates to simply checking that (𝑟𝑖𝑑∗, 𝑠𝑖𝑑∗) ∉ Qauth.

A.4 Comparison to Session Binding from [32]
Before we compare the security guarantees of our Session Binding

model to the one from [32], we outline two fundamental functional
differences between both models.

Functional Differences. The focus of our work is pseudonymous
user authentication towards RPs, where the pseudonyms are blindly

computed by the IdP. This was the main challenge and manifests

as Nym Correctness in our model. In the work of Kroschewski

and Lehmann [32], all authentication tokens contained the globally

unique user identifier 𝑢𝑖𝑑 that was directly vouched for by the IdP.

The focus of [32] was on RP authentication, and their work

explicitly models epoch-based credentials to allow adaptive RP cor-

ruption and enable their revocation. Our model omits this approach

for simplicity. We stress that epoch-based credentials are straight-

forward to add at the construction level but significantly complicate

the security model. In fact, epoch-based renewal is an orthogonal

aspect to our focus on pseudonymous identifiers, and we can con-

sider our setting as a single-epoch – and pseudonym-extended –

version of [32].

Original Model Only Considers Honest Users + Corrupt RPs. For
better comparison, we state the original Session Binding property

translated to our single-epoch view and syntax on the left in Fig. 5.

This makes it easy to see that, ignoring the obvious differences due

to the different functional properties, our Session Binding model is

significantly stronger than [32], as shown on the right in Fig. 5.

The original definition has the weakness that it only considers

the security of sessions between honest users and corrupt RPs. This

was justified by the argument that (i) honest users are necessary

in order to know the 𝑟𝑖𝑑 a user wanted to authenticate to in a

particular session and compare it to the adversary’s forgery, and (ii)

honest RPs do not give the adversary an advantage. We will now

explain why this restriction to honest users and corrupt RPs led to

a security model that does not capture all desirable properties, and

how we incorporated them into our definition.

Adding Security for Sessions of Corrupt User. Regarding (i): While

we indeed do not know the intended 𝑟𝑖𝑑 when an IdP issues a

token towards a corrupt user and corrupt RP, the model should not

abandon security in such scenarios. What we still care about -—

and in fact, this could be seen as the most crucial security property

of SSO -— is that the IdP’s signature cannot be used out of context.

Simply removing the restriction of honest users in the winning

condition already enhances security. This is what our game achieves

compared to [32] for Direct Forgeries (1) and Indirect Forgeries (2a,

d). However, this alone is not sufficient: the guarantee does not

extend to the blindly signed 𝑟𝑖𝑑 , as condition (2b) is the only sub-

case that strictly needs to be limited to the honest user setting.

This is where our game introduces the winning condition (2c)

in a one-more unforgeability style. This condition requires that it

must be infeasible to produce multiple valid tokens for different

corrupt 𝑟𝑖𝑑s. Generating multiple tokens for corrupt users and RPs

would not be a direct attack on the authentication session, but it

would still be undesirable behavior: it could allow corrupt RPs to

present apparently IdP-attested tokens for non-existent sessions,

falsely inflating their active user base. Our stronger model prevents

this.

Adding Stronger Guarantees for Honest RPs. The second enhance-
ment is related to (ii). The original model allows the adversary to

win by producing a token for an 𝑟𝑖𝑑 that was never registered at all.

Again, this was only defined for honest users, whereas our model

extends this to corrupt users as well. The more significant change is

that our model provides stronger guarantees when an honest RP is

involved—which was not addressed in [32]. Our winning condition

(2e) additionally requires that it must be infeasible to produce a

token for some 𝑟𝑖𝑑, 𝑠𝑖𝑑 when 𝑟𝑖𝑑 belongs to an honest RP that never

authenticated for session 𝑠𝑖𝑑 .

At first glance, this might appear to be covered by the RP Ac-

countability game in [32]. However, the RP Accountability defi-

nition only applies to fully blind authentication requests – and

therefore is weaker. In our Session Binding game, we have knowl-

edge of the finalized token including 𝑟𝑖𝑑 , and can verify whether a

corresponding authentication request from this 𝑟𝑖𝑑 and session 𝑠𝑖𝑑

exists.

A.5 Request Authentication
This property captures the authenticity of the request that an IdP

receives and uses to produce its token. It ensures that if an IdP

receives an authenticated request (𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑) via a user 𝑢𝑖𝑑

for which AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) produces an output

≠ ⊥, it must originate from a previously registered RP.

The game is defined by ExpREQ-AUTH
A,OPPID (see Fig. 3) and follows

a classic unforgeability definition. Instead of demanding security

for the final authentication token (as in Session Binding), it cap-

tures unforgeability for the RP authenticated information: 𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑 .

The IdP is honest here, and the adversary can register honest RPs

through O .RegHRP, obtain their authenticated requests through

O .AReqRP, and query tokens from the IdP through O .AResIdP. The
adversary wins if it outputs (𝑎𝑢𝑡ℎ∗, 𝑐𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), where
the IdP accepts the authentication (i.e., does not return ⊥) and no

honest RP authenticated 𝑐𝑟𝑖𝑑∗ in session 𝑠𝑖𝑑∗.
Note that this property defines the security of the fully blind

authentication request towards the IdP, which implies that all RPs

must be honest -— otherwise, "forging" is trivial. The original def-

inition in [32] allowed corrupt RPs, which was possible as their

work considered epoch-based renewal of membership credentials.

The security model then only requires that all registered RPs of the

current epoch must be honest, but RPs from previous epochs can be

corrupt. In this sense, just as in our Session Binding definition, our

Request Authentication definition can be seen as a single-epoch

version of the Request Authentication definition of [32]. We do not

allow any corrupt RPs in the definition as any corrupt RP in the

single-epoch would allow the adversary to win trivially.

644

OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms Proceedings on Privacy Enhancing Technologies 2025(2)

ExpRP Session Binding
A,OPPID (𝜆)

𝑝𝑝 ← Setup(1𝜆) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝)
O := {RegCRP,AInitU,AReqRP,AResIdP,AResFin}
(𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗, 𝜏∗fin) ← A

O (𝑖𝑝𝑘)
Return 1 if VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), 𝜏∗fin) = 1 ∧ "𝑢𝑖𝑑∗ is honest"

and at least one of the following holds:

(a) (𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∉ Q𝜏fin
(b) (𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏fin ∧ 𝑟𝑖𝑑

∗ ∉ CRP

This Work Model [32]

(1) Direct Forgery (a), but for honest users only

(2) Indirect Forgery:

(a) Nym Correctness (a), via 𝑢𝑖𝑑 correctness, but for honest users only

(b) RP Binding I (a)

(c) RP Binding II —, missing

(d) RP Authentication I (b), but for honest users only

(e) RP Authentication II —, missing, partially covered via RP Accountability

Figure 5: Left: RP Session Binding from [32] translated to our syntax, where we abuse notation and consider F(𝑢𝑖𝑑, 𝑟𝑖𝑑) = 𝑢𝑖𝑑 .
The honest user requirement was enforced in [32] by checking that the 𝑢𝑖𝑑∗ of the forgery was never used in a "malicious"
query via O .AResIdP but always via O .AResFin – which allows the challenger to know the intended 𝑟𝑖𝑑 for every session. Right:
Comparison between the Session Binding guarantees in this work and [32], mapping the winning conditions to each other.

Definition A.1 (Request Authentication). An OPPID scheme sat-

isfies Request Authentication if for all PPT adversaries A, it holds

Pr[ExpREQ-AUTH
A,OPPID (𝜆) = 1] ≤ negl(𝜆).

B Building Blocks
This section introduces the necessary building blocks. The security

parameter is denoted as 𝜆 ∈ N, and the symbol ⊥ represents failure.

Note that all algorithms may use global parameters 𝑝𝑝 , such as

shared groups, instead of 1
𝜏
, and may also provide additional public

parameters. For simplicity, we omit explicit mention of these public

parameters or the algorithms used to generate them.

Commitment Scheme. A commitment scheme COM = (Com,

Open) produces a commitment 𝑐𝑜𝑚 and its corresponding opening

𝑜 using the algorithm Com(𝑚). The algorithm Open(𝑚,𝑐𝑜𝑚, 𝑜)
outputs 1 if 𝑐𝑜𝑚 is a valid commitment for𝑚, and 0 otherwise. The

commitment scheme must satisfy hiding and binding properties.

Non-interactive Zero-Knowledge Proofs. In a non-interactive zero-
knowledge proof system [6, 22], the prover and verifier possess

the statement 𝑠 and some public context 𝑥 . The prover generates a

proof 𝜋 ← NIZK{(𝑤) : 𝑠 (𝑤)}(𝑥) that convinces the verifier that
𝑠 (𝑤) = 1, without revealing𝑤 to the verifier and ensuring that 𝜋 is

bound to 𝑥 . We require the proof system to be zero-knowledge and

simulation-sound [25].

Signature Scheme. A signature scheme is a tuple of algorithms

S1 = (KGen, Sign,Vf), with key generation (𝑝𝑘, 𝑠𝑘) ← KGen(1𝜆),
signing 𝜎 ← Sign(𝑠𝑘,𝑚), and verification as 0/1 ← Vf (𝑝𝑘,𝑚, 𝜎).
We need S1 to be Existentially Unforgeable under a Chosen Mes-

sage Attack (EUF-CMA) [24]. In our implementation, we use RSA

signatures for compatibility with existing standards.

We also require a signature scheme S2 = (KGen, Sign,Vf) that
supports the creation of efficient NIZKs. The NIZK should prove

knowledge of a valid signature 𝜎 on a message𝑚 under 𝑝𝑘 with-

out revealing the message or signature. In our construction, we

combine S2 signatures with commitments using a NIZK proof that

demonstrates knowledge of a signature on a committed message as

NIZK{(𝑚,𝜎, 𝑜) : Vf (𝑝𝑘,𝑚, 𝜎) = 1

∧ Open(𝑚,𝑐𝑜𝑚, 𝑜) = 1}(𝑐𝑜𝑚)

This proof discloses only the commitment 𝑐𝑜𝑚 while verifying the

possession of a valid signature 𝜎 under 𝑝𝑘 on𝑚 and an opening 𝑜

to the commitment 𝑐𝑜𝑚 for the signed message. We instantiate this

scheme with PS signatures [41], which provide all these features.

Pseudorandom Functions. We require a pseudorandom function

𝑦 ← PRF(𝑘, 𝑥) that produces output indistinguishable from ran-

dom, towards an adversary not knowing the key 𝑘 . We need two

different pseudorandom functions, one that produces pseudoran-

dom values in Z𝑞 and can simply be HMAC with a proper output

mapping; and a second function that allows for the partially-blind

evaluation needed in our protocol. For the latter, we use the DL-

based PRF(𝑘, 𝑥) := H(𝑥)𝑘 [36] in a group G of prime order 𝑞.

C Full Proofs of 𝜋OPPID
Here, we provide the proofs showing that our protocol described in

Sec. 4 achieves all properties defined in Sec. 3. We start by analyzing

the properties of the pseudonym function FDL+PRF.
Note that the simple proofs for Unobservability and Request

Authentication are omitted, as well as the full reductions, they are

all available in the full version though.

Properties of FDL+PRF. We analyze the properties of our pseudo-

nym function

FDL+PRF = Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) := H(𝑟𝑖𝑑)PRF(𝑘,𝑢𝑖𝑑) .

Recall that our OPPID model requires this function to provide

unique, collision-free, and unlinkable pseudonyms (see Sec. 2.2).

Uniqueness requires that for every 𝑟𝑖𝑑,𝑢𝑖𝑑 combination, there is

a unique pseudonym 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑). FDL+PRF naturally ensures

uniqueness as it is a deterministic function.

Regarding collision-freeness, note thatH(𝑟𝑖𝑑)𝑢𝑘 is a permutation

for 𝑢𝑘 ∈ Z𝑞 . If 𝑢𝑘 ← PRF(𝑘,𝑢𝑖𝑑) is an injective function, then F
provides different pseudonyms for each user. That is, for all 𝑟𝑖𝑑 and

𝑢𝑖𝑑 ≠ 𝑢𝑖𝑑 ′ it holds that Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) ≠ Fk (𝑢𝑖𝑑 ′, 𝑟𝑖𝑑). This property
requires that U ≤ Z𝑞 , which holds for any normal deployment,

where the number of users is significantly smaller than Z𝑞 .

LemmaC.1. Our pseudonym function FDL+PRF provides unique and
collision-free pseudonyms, if H is deterministic, PRF is deterministic,
injective, andU ≤ Z𝑞 .

645

Proceedings on Privacy Enhancing Technologies 2025(2) Kroschewski et al.

In the following, we prove that FDL+PRF is a secure pseudorandom
function. This immediately grants the unlinkability of the pseu-

donyms, which will be helpful in proving the Unlinkability property

of 𝜋OPPID. Note that a similar function (essentially FDL+PRF with

double hashing) was shown to be a secure (partially oblivious)

pseudorandom function already [31], whereas we need the classic

PRF property here and do not apply the outer hash.

Lemma C.2. Our pseudonym function FDL+PRF is a secure PRF if
H is a random oracle, PRF is a secure pseudorandom function, and
DDH holds in G.

Proof. Our proof has two main steps. The first step switches

from PRF(𝑘,𝑢𝑖𝑑) to the random values from𝑢𝑘 ←
R
Z𝑞 while evalu-

ating the PRF output in the oracle. This change is indistinguishable

by pseudorandomness of PRF. The second step relies on the sim-

ple observation that H(𝑟𝑖𝑑)𝑢𝑘 is HashDH PRF [36] and shows the

pseudorandomness of these values by relying on the multi-key

pseudorandomness of the HashDH PRF.

Game 0. This game is identical to the pseudorandomness game

with FDL+PRF.

Game 1. In this game, for each PRF query (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑) with a new

𝑢𝑖𝑑𝑖 , we sample 𝑢𝑘𝑖 ←R
Z𝑞 for the 𝑢𝑖𝑑𝑖 and answer FDL+PRF (𝑢𝑖𝑑𝑖 ,

𝑟𝑖𝑑) queries as FDL+PRF (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑) = H(𝑟𝑖𝑑)𝑢𝑘𝑖 . By pseudorandom-

ness of PRF, this change is indistinguishable to the adversary.

Game 2. This game finalizes the proof by changing the PRF

evaluations for FDL+PRF (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑) from H(𝑟𝑖𝑑)𝑢𝑘𝑖 to 𝑦 ←
R
G.

We show that this change is indistinguishable to the adversary by

presenting sequences of indistinguishable hybrids between Games

1 and 2 where the first and last hybrids are identical to Games 1

and 2, respectively. Each hybrid changes the PRF evaluations for

𝑢𝑖𝑑𝑖 from H(𝑟𝑖𝑑)𝑢𝑘𝑖 to a random value. Let 𝑢𝑖𝑑1, ..., 𝑢𝑖𝑑𝑛 represent

the 𝑢𝑖𝑑 values that the adversary queries FDL+PRF oracle.

Hybrid 0. This hybrid is identical to Game 1.

Hybrid 𝑖∈{1,...,𝑛} . Hybrid𝑖 runs Hybrid𝑖−1 identically except for

the following change. For FDL+PRF (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑) queries, Hybrid𝑖 out-
puts FDL+PRF (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑) ←R

G random values. Note that Hybrid 𝑛

is identical to Game 2.

Transition Hybrid 𝑖 → Hybrid 𝑖+1. The transition between hy-

brids simply relies on the pseudorandomness of HashDH. In partic-

ular, Hybrid𝑖 evaluates HashDH PRF H(𝑟𝑖𝑑)𝑢𝑘𝑖+1 with the PRF key

𝑢𝑘𝑖+1 whereas Hybrid𝑖+1 changes these evaluations to the random

values from G. By pseudorandomness of HashDH, Hybrids 𝑖 and

𝑖 + 1 are indistinguishable and HashDH is pseudorandom if DDH

assumption holds in ROM [36]. □

C.1 Proof of Theorem 4.1 (Unlinkability)
Here, we prove that 𝜋OPPID satisfies Unlinkability (see Def. 3.1) if

H is a random oracle, PRF is a secure pseudorandom function, and

the DDH assumption holds in G.

Proof. Recall that A is given the IdP’s public key and oracles

O := {RegCRP,AInitU,AResIdP} to register corrupt RPs, initialize

honest user sessions, and obtain pseudonyms and tokens from

the IdP. Eventually, it outputs 𝑢𝑖𝑑0, 𝑢𝑖𝑑1, and 𝑟𝑖𝑑 , together with

𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑 , and receives a challenge token and pseudonym

(𝜏𝑓 𝑖𝑛𝑏 , 𝑝𝑝𝑖𝑑𝑑) for 𝑢𝑖𝑑𝑏 .
We further know that if A wins, it must not make any query

that trivially reveals Fk (𝑢𝑖𝑑0, 𝑟𝑖𝑑) or Fk (𝑢𝑖𝑑1, 𝑟𝑖𝑑). That is,A is not

allowed to make O.AResIdP queries (𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑𝑑 , 𝑐𝑡𝑥, 𝑠𝑖𝑑) for
𝑑 ∈ {0, 1} where either: 𝑐𝑟𝑖𝑑 belongs to 𝑟𝑖𝑑 from the challenge

query (via previous query to O.AInitU), or 𝑐𝑟𝑖𝑑 is malicious, i.e., not
an output from O.AInitU.

These conditions ensure that all queries A makes towards the

oracle O.AResIdP must involve 𝑐𝑟𝑖𝑑 values that are honestly gen-

erated and for which we know the underlying 𝑟𝑖𝑑 (and blinding

value 𝑟).

This makes the proof straightforward. As we already know the

blinding value of 𝑦, we can compute the response value by relying

on PRF computation instead of an oblivious PRF evaluation. We

prove Unlinkability through a small sequence of games, replacing

all user-dependent values for 𝑢𝑖𝑑0 and 𝑢𝑖𝑑1 with random values,

ensuring that A has no better chance than guessing to determine

the bit 𝑏. Let Game 0 be the original game.

Game 1. We now change the way we compute the 𝑦𝑑 values in

O .AResIdP to compute the challenge token values 𝜏𝑑 . We simulate

A’s view by using FDL+PRF as a black-box algorithm to reason about

its pseudorandomness, showing the Unlinkability property of our sc-

heme instead of its one-more pseudorandomness. Since O .AResIdP
queries must contain 𝑐𝑟𝑖𝑑 values generated through AInitU, we can
look up (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑) in Qrid and parse 𝑜𝑟𝑖𝑑 = (𝑜, 𝑟). Instead of

blindly computing 𝑦, we compute 𝑦 = FDL+PRF (𝑘, (𝑟𝑖𝑑,𝑢𝑖𝑑)) from
the known input and blind the response later: 𝑦𝑑 = 𝑦𝑟

𝑑
. This change

produces outputs identical to those in the previous game, so this

game hop cannot be distinguished by A.

Game 2. In this game, we change the way we compute 𝑦𝑑 =

FDL+PRF (𝑘, (𝑢𝑖𝑑𝑑 , 𝑟𝑖𝑑)) while computing 𝜏𝑑 values and set 𝑦𝑑 ←R
G

as a random value. By the winning condition of the Unlinkabil-

ity game, we know that there are no previous O.AResIdP queries for
(𝑢𝑖𝑑𝑑 , 𝑟𝑖𝑑). Also, by the previously proven Lemma C.2, we know

that FDL+PRF is a secure PRF, so the change in this game is indistin-

guishable.

In the last game, all the bit𝑑-related values are uniformly random,

independent of 𝑢𝑖𝑑0 and 𝑢𝑖𝑑1. Thus,A’s chance of determining the

bit 𝑏 is 1/2. □

No One-More-Type Assumption. What might be surprising at first

glance is that we do not need a one-more-type assumption typically

required in blind evaluation protocols, such as the (2)HashDH-

OPRF, which seems equivalent to our construction. This is not

surprising after closer examination. First, recall that our security

property guarantees that the 𝑢𝑖𝑑 in the IdP’s response remains

hidden, and the 𝑢𝑖𝑑 is not blind towards the IdP but revealed in

every query. Second, the guarantee can only hold for honest users,
which is enforced throughout the game for both challenge users,

𝑢𝑖𝑑0 and 𝑢𝑖𝑑1. The adversary can only obtain "blind" PRF evalu-

ations (as part of O .AResIdP queries), where the blinded input 𝑥

was honestly generated. Thus, in the security proof, the challenger

is always aware of the blinded 𝑟𝑖𝑑 behind 𝑥 , i.e., knows exactly

on which values the PRF FDL+PRF is evaluated. This allows us to
prove Unlinkability under the standard assumption that FDL+PRF

646

OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms Proceedings on Privacy Enhancing Technologies 2025(2)

is a secure pseudorandom function, which holds if H is a random

oracle, and the DDH assumption holds in G [31].

C.2 Proof of Theorem 4.2 (Unobservability)
We now provide a simple proof that 𝜋OPPID satisfies Unobservabil-

ity (see Def. 3.2) if COM is hiding, and the NIZK is zero-knowledge.

Proof. A receives 𝑎𝑢𝑡ℎ = 𝜋 and 𝑐𝑟𝑖𝑑 = (𝑥, 𝑐𝑜𝑚), where 𝑐𝑜𝑚 is

a commitment to 𝑟𝑖𝑑 and 𝑥 is the blinded hash. 𝜋 proves knowledge

of an IdP-issued credential on 𝑟𝑖𝑑 and that the commitment 𝑐𝑜𝑚

opens to the same 𝑟𝑖𝑑 . Unobservability follows directly from the

zero-knowledge property of 𝜋 , the perfect hiding of 𝑟𝑖𝑑 via 𝑥 with

𝑟 , and the hiding property of COM with the undisclosed opening

𝑜 . □

C.3 Proof of Theorem 4.3 (Session Binding)
Here we prove that 𝜋OPPID is Session Binding (see Def. 3.3) if the S1
and S2 schemes are both EUF-CMA secure, COM is binding, and

the NIZK is zero-knowledge and simulation-extractable.

Proof. We split the proof along the winning condition that the

adversary must satisfy. Recall that A outputs (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗,
𝑠𝑖𝑑∗, 𝜏∗fin) and wins if this is a valid yet non-trivial forgery.

The final token 𝜏∗fin contains (𝑐𝑜𝑚
∗, 𝑜∗, 𝑟 ∗, 𝑦∗, 𝜎∗𝜏). A valid token

implies that 𝜎∗𝜏 is a valid signature, meaning

S1 .Vf (𝑝𝑘1, (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗), 𝜎∗𝜏) = 1

with 𝑥∗ := H(𝑟𝑖𝑑∗)𝑟∗ , 𝑐𝑜𝑚∗ := Com(𝑟𝑖𝑑∗, 𝑜∗), and 𝑝𝑝𝑖𝑑∗ := 𝑦∗−𝑟
∗
.

We first distinguish whether we have a direct or indirect forgery,
i.e., whether the information that was publicly signed by the IdP is

already a forgery or not.

Case 1: Direct Forgery with (·, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∉ Q𝜏 . If the adversary
outputs a valid forgery where the combination (·, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) was
never vouched for by the honest IdP, it must have forged the IdP’s

signature on these values. This is infeasible if the signature scheme

S1 is EUF-CMA secure.

We can build a S1 forger easily using an adversary that can

perform a direct forgery as follows. We get the challenge S1 public
key 𝑝𝑘∗

1
and use it as 𝑝𝑘1 while setting the issuer public key 𝑖𝑝𝑘 .

As we do not know the corresponding secret key to 𝑝𝑘∗
1
, we need a

way to simulate the S1 signatures 𝜎𝜏 which are part of IdP’s output

to 𝜏 queries, 𝜏 . We simulate 𝜎𝜏 values using the signing oracle of

S1. In particular, the oracles work as follows:

RegHRP,RegCRP,AInitU,AReqRP,AResFin,VfRP: As they are.

AResIdP: It computes𝑦 as before. To form the token on𝑚 = (𝑐𝑜𝑚 | |𝑥
| |𝑦 | |𝑐𝑡𝑥 | |𝑠𝑖𝑑), it queries the signing oracle of S1 and gets the sig-

nature 𝜎𝜏 on𝑚 and outputs (𝜎𝜏 , 𝑦).
Finally, the adversary outputs (𝜎∗,𝑚∗) := (𝜎∗𝜏 , (𝑐𝑜𝑚∗, 𝑥∗, 𝑦∗, 𝑐𝑡𝑥∗,

𝑠𝑖𝑑∗)) to the S1 unforgeability challenger as the S1 forgery for the

forged token 𝜏∗fin := ((𝑐𝑜𝑚∗, 𝑜∗, 𝑟 ∗, 𝑦∗, 𝜎∗𝜏), 𝑦∗) and 𝑥∗ := H(𝑟𝑖𝑑∗)𝑟∗ .
As the forged token is valid, we know that S1 .Vf (𝑝𝑘∗1 , 𝜎∗,𝑚∗) = 1.

Furthermore, direct token forgeries ensure that we do not make a

signing oracle query for (·| | · | | · | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗), so our forgery is on a

fresh message.

Case 2: Indirect Forgery with (𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏 . If the honest
IdP has previously signed the combination (𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) for a
session for user 𝑢𝑖𝑑 , the adversary can only win if the associated

information (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗) that the IdP has blindly signed and de-

rived is inconsistent with the expected pseudonym or behavior of

honest and corrupt RPs. This inconsistency is expressed through

the five sub-cases in the winning condition of the Session Binding

game, and our proof branches accordingly.

What is important here is that the IdP signs additional informa-

tion in 𝜎∗𝜏 , namely (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗). If the adversary outputs a forgery
where this tuple differs from what the honest IdP has signed along

with (𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗), then we can immediately turn this into a forgery

of the S1 scheme. We simulate 𝑝𝑘1 as the S1 EUF-CMA challenge

public key 𝑝𝑘∗
1
and simulate the Session Binding game just as in

Case 1.

Note that while the adversary does not explicitly output 𝑐𝑜𝑚∗

and 𝑥∗, these values are uniquely defined through its outputs as

𝑐𝑜𝑚∗ = Com(𝑟𝑖𝑑∗, 𝑜∗) and𝑥∗ = H(𝑟𝑖𝑑∗)𝑟∗ , with𝑜∗ and 𝑟 ∗ being part
of 𝜏∗fin and 𝑟𝑖𝑑

∗
. At the end of the Session Binding game, we check

the AResIdP query with (𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏 . If the corresponding

query differs from (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗), then we can output

(𝜎∗𝜏 , (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗)) as a valid S1 forgery.
Thus, the rest of the proof of Case 2 is now conditioned on the

fact that the full tuple (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗) has indeed been

signed by the honest IdP in a session with user 𝑢𝑖𝑑 .

(a) Nym Correctness: 𝑝𝑝𝑖𝑑∗ ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗). If the adversary wins

by satisfying the first sub-condition, it must have produced a

valid token with an incorrect pseudonym, i.e., output a 𝑝𝑝𝑖𝑑∗ ≠
H(𝑟𝑖𝑑∗)PRF(𝑘,𝑢𝑖𝑑) .
In our construction, winning under this condition is impossible

(other than through manipulating the IdP’s signed information,

which we excluded above). Recall that the adversary’s forgery

must contain 𝑥∗ | |𝑦∗ along with the public session information.

We have already excluded the case whereA manages to manip-

ulate these values. Thus, we know that 𝑥∗, 𝑦∗ are the values the
IdP has signed in a session 𝑠𝑖𝑑∗, where it learned the username

𝑢𝑖𝑑 and computed

𝑦∗ = 𝑥∗PRF(𝑘,𝑢𝑖𝑑) .

As the forgery must pass the verification, we know that

𝑝𝑝𝑖𝑑∗ = 𝑦∗−𝑟
∗

and 𝑥∗ = H(𝑟𝑖𝑑∗)𝑟∗

Putting it all together implies that

𝑝𝑝𝑖𝑑∗ = ((H(𝑟𝑖𝑑∗)𝑟∗)PRF(𝑘,𝑢𝑖𝑑))−𝑟
∗
= H(𝑟𝑖𝑑∗)PRF(𝑘,𝑢𝑖𝑑) .

Thus, for every valid token, it holds that 𝑝𝑝𝑖𝑑∗ = F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗).

(b) RP Binding I : (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏fin ∧ 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗. If an
adversary wins under condition (2b), it must have "high-jacked"

an honest user session. For sessions intended by honest users,

we know the exact RP 𝑟𝑖𝑑 they intended to authenticate to, and

the adversary wins if it can create a token for this session that

is valid for a different RP 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 . We can again leverage the

fact that we know that (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗) is the original
information signed by the honest IdP in the session with the

honest user 𝑢𝑖𝑑 . We further know that the commitment 𝑐𝑜𝑚∗ is
an honestly generated commitment (through O .AInitU) for 𝑟𝑖𝑑 .

647

Proceedings on Privacy Enhancing Technologies 2025(2) Kroschewski et al.

As the final token contains an opening 𝑜∗ and checks that

𝑐𝑜𝑚∗ = Com(𝑟𝑖𝑑∗, 𝑜∗), this implies thatA managed to open the

commitment 𝑐𝑜𝑚∗ to a different value 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 , which is infea-

sible under the binding property of COM. In particular, by the

behavior of O .AResFin, we know that Q𝜏fin is updated with an

𝑟𝑖𝑑 only when there is a valid opening 𝑜 for the commitment 𝑜∗

provided in the token 𝜏fin. Thus, the tuple (𝑐𝑜𝑚∗, 𝑟𝑖𝑑, 𝑟𝑖𝑑∗, 𝑜, 𝑜∗)
breaks the binding property of the commitment.

(c) RP Binding II : (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Qvf ∧ 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗. If the IdP
did sign (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗) in a session with a corrupt
user 𝑢𝑖𝑑 (which was ensured by the main S1 unforgeability

reduction of condition (2)), we do not know the intended 𝑟𝑖𝑑

contained in 𝑐𝑜𝑚∗ (or 𝑥∗). Thus, the adversary can "open" the

token to any valid 𝑟𝑖𝑑∗ it wants. In order to create a valid forgery,
A must have produced (at least) two valid tokens for (𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗)
yet different (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑) and (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗) with 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗. Note
that we do not make any requirements on the pseudonyms here,

as the adversary already wins under condition (2a) if it can

produce an invalid pseudonym.

The only remaining way for the adversary to provide a condi-

tion (2c) forgery is then providing different openings of 𝑐𝑜𝑚∗

to distinct 𝑟𝑖𝑑 and 𝑟𝑖𝑑∗ values. If this occurs, the query of the

adversary to O .VfRP with 𝑠𝑖𝑑∗ and 𝑐𝑡𝑥∗ contains a valid opening
of 𝑐𝑜𝑚∗ to 𝑟𝑖𝑑 and 𝑜 for 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 . Obviously, it contradicts

the binding property of COM as the tuple (𝑐𝑜𝑚∗, 𝑟𝑖𝑑, 𝑟𝑖𝑑∗, 𝑜, 𝑜∗)
breaks the binding property.

(d) RP Authentication I : 𝑟𝑖𝑑∗ ∉ HRP ∪ CRP. If the adversary wins

under this condition, it means that the adversary produced a

valid token for an 𝑟𝑖𝑑∗ that was never registered with the honest
IdP. As the IdP only provides an authentication token when

it receives a valid registration proof 𝜋 , A must have forged

this proof in its query for 𝑠𝑖𝑑∗. A can perform such an attack

either by forging a proof on an invalid statement directly, or by

forging the underlying witness, which is a tuple in the form of

(𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑). Here, by forging a witness, we mean either forging

the membership credential 𝜎𝑟𝑖𝑑 on a non-registered 𝑟𝑖𝑑 , or forg-

ing the opening (𝑟𝑖𝑑∗, 𝑜∗) of 𝑐𝑜𝑚∗ where (𝑟𝑖𝑑, 𝑜) is also a valid

opening to 𝑐𝑜𝑚∗ for a registered but corrupted 𝑟𝑖𝑑 . Neither of

these cases is feasible by relying on the special soundness of

NIZK, EUF-CMA of S2 under 𝑝𝑘2, and the binding property of

the commitment scheme. To be able to reduce to a forgery under

S2, we require NIZK to be special sound and use the knowledge

extractor to obtain a valid witness (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑). By relying on

the binding property of the commitment scheme, we can argue

that 𝜎𝑟𝑖𝑑 satisfies the winning condition of the EUF-CMA game.

In more detail, our reduction in condition (2d) works as follows.

We obtain a challenge public key 𝑝𝑘∗
2
from a S2 unforgeability

challenger and simulate the 𝑝𝑘2 in the identity provider public

key 𝑖𝑝𝑘 as 𝑝𝑘∗
2
. We simulate the S2 signatures for O .RegCRP/

O .RegHRP queries by relying on the signing oracle of the S2
unforgeability challenger, so the behavior of the oracles changes

as follows:

AInitU,AReqRP,AResIdP,AResFin,VfRP: As they are.

RegHRP: It checks that (𝑟𝑖𝑑, ·) ∉ HRP∪CRP. If it does not hold,
it outputs 0. Otherwise, for the registration query for 𝑟𝑖𝑑 , it

queries the S2 signing oracle, gets the signature 𝜎𝑟𝑖𝑑 , updates

HRP := HRP ∪ {(𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑)} on 𝑟𝑖𝑑 , and outputs 1.

RegCRP: It checks that (𝑟𝑖𝑑, ·) ∉ HRP∪CRP. If it does not hold,
it outputs 0. Otherwise, for the registration query for 𝑟𝑖𝑑 , it

queries the S2 signing oracle, gets the signature 𝜎𝑟𝑖𝑑 , updates

CRP := CRP ∪ {(𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑)} on 𝑟𝑖𝑑 , and outputs 𝜎𝑟𝑖𝑑 .

Finally, we run the knowledge extractor for the NIZK on the

proof 𝜋 which corresponds to the O .AResIdP query for (𝑢𝑖𝑑, 𝑐𝑡𝑥 ,
𝑠𝑖𝑑) ∈ Q𝜏 and extract a valid witness (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑). By the special
soundness property of the underlying NIZK, we know that

the extractor will output a valid witness with overwhelming

probability, so S2 .Vf (𝑝𝑘 ,
2
𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑) and Open(𝑟𝑖𝑑, 𝑐𝑜𝑚,𝑜).

If 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗, then we break the binding property of the commit-

ment scheme as (𝑟𝑖𝑑, 𝑜) and (𝑟𝑖𝑑∗, 𝑜∗) are distinct valid openings
to the commitment 𝑐𝑜𝑚∗. Otherwise, 𝜎𝑟𝑖𝑑 is a valid signature on

𝑟𝑖𝑑∗ = 𝑟𝑖𝑑 . There is no signing oracle query to the S2 challenger
for 𝑟𝑖𝑑∗ by condition (2d), so (𝜎𝑟𝑖𝑑 , 𝑟𝑖𝑑∗) is a valid and fresh S2
forgery, breaking the EUF-CMA property of S2.
We conclude that if there is a type (2d) forger adversary, the

underlying NIZK is not special sound, the underlying commit-

ment scheme is not binding, or S2 is not EUF-CMA.

(e) RP Authentication II : 𝑟𝑖𝑑∗ ∈ HRP ∧ (𝑟𝑖𝑑∗, 𝑠𝑖𝑑∗) ∉ Qauth. When

the adversary wins by satisfying the final condition, it has cre-

ated a valid token for session 𝑠𝑖𝑑∗ and honest RP 𝑟𝑖𝑑∗, yet this
RP never provided authentication for that session. As in the

previous case,A can do this by forging 𝜋 directly, finding a com-

mitment collision for 𝑟𝑖𝑑∗ and a corrupted 𝑟𝑖𝑑 , or forging the

membership credential 𝜎𝑟𝑖𝑑 of the honest RP. To formally prove

it, we use both the zero-knowledge and simulation extractability

properties here.

We aim to show that the adversary must forge a NIZK proof 𝜋

or a witness (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑) as explained in condition (2d). Thus,

similar to condition (2d), we must simulate S2 signatures by
relying on an EUF-CMA challenger. However, unlike condition

(2d), 𝑟𝑖𝑑∗ belongs to an honest RP here, so if we make a signing

query for 𝑟𝑖𝑑∗ to the EUF-CMA challenger, a signature on 𝑟𝑖𝑑∗

is not a valid forgery anymore. Thus, we do not simulate honest

RP credentials with S2 signatures, but we simulate the NIZK
proofs 𝜋 ’s in AReqRP oracle queries for the honest RP’s without
knowing/creating a valid 𝜎𝑟𝑖𝑑 . As a result, we cannot simply rely

on special soundness as in condition (2d), but we will needNIZK
to be simulation extractable. Moreover, changing only RegHRP
and RegCRP is not enough, but we also need to change AReqRP
so that the honest RP authentication requests can be created

using the NIZK simulator. We change the oracles’ behavior as

follows:

AInitU,AResIdP,AResFin,VfRP: As they are.

RegHRP: It checks that (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP. If it holds, it
updates HRP := HRP ∪ {(𝑟𝑖𝑑,⊥)} and outputs 1. If not, it

outputs 0. It does not make a S2 signing query in any case.

RegCRP: It checks that (𝑟𝑖𝑑, ·) ∉ HRP∪CRP. If it does not hold,
it outputs 0. Otherwise, for the registration query for 𝑟𝑖𝑑 , it

648

OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms Proceedings on Privacy Enhancing Technologies 2025(2)

queries the S2 signing oracle, gets the signature 𝜎𝑟𝑖𝑑 , updates

CRP := CRP ∪ {(𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑)} on 𝑟𝑖𝑑 , and outputs 𝜎𝑟𝑖𝑑 .

AReqRP: Checks if (𝑟𝑖𝑑, ·) ∈ HRP and returns ⊥ if not. Runs

the original O .AReqRP except for computing NIZK. As we do
not know a valid credential for honest 𝑟𝑖𝑑’s, the NIZK proof

is simulated using the zero-knowledge simulator.

After simulating the adversary’s view as above, we run the

knowledge extractor for the NIZK on the proof 𝜋 which corre-

sponds to the O .AResIdP query for (𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏 and ex-

tract a valid witness (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑). By the simulation extractabil-

ity property of the underlying NIZK, we know that the extrac-

tor will output a valid witness with overwhelming probability,

which satisfies S2 .Vf (𝑝𝑘∗2 , 𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑) and Open(𝑟𝑖𝑑, 𝑐𝑜𝑚∗, 𝑜).
Just as in condition (2d), if 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗, then we break the binding

property of the commitment scheme using the distinct openings

(𝑟𝑖𝑑, 𝑜) and (𝑟𝑖𝑑∗, 𝑜∗) to the commitment 𝑐𝑜𝑚∗. Otherwise, 𝜎𝑟𝑖𝑑
is a valid signature on 𝑟𝑖𝑑∗ = 𝑟𝑖𝑑 . There is no signing oracle

query to the S2 challenger for 𝑟𝑖𝑑∗ as 𝑟𝑖𝑑∗ ∈ HRP, so we output
a valid forgery. We conclude that if there is a type (2e) forger

adversary, the underlying NIZK is not simulation extractable,

the underlying commitment scheme is not binding, or S2 is not
EUF-CMA.

□

C.4 Proof of Theorem C.1 (Req. Authentication)
Theorem C.1 (Reqest Authentication). 𝜋OPPID satisfies Re-

quest Authentication if the S2 scheme is EUF-CMA secure, and the
NIZK is zero-knowledge and simulation extractable.

Here we prove that 𝜋OPPID satisfies Request Authentication (see

Def. A.1) if the S2 scheme is EUF-CMA secure, and the NIZK is

zero-knowledge and simulation extractable. The proof essentially

follows the RP Accountability proof from [32].

Proof. The proof of Request Authentication follows from the

zero-knowledge and simulation extractability of NIZK, and the

unforgeability of S2. The main proof strategy is similar to condition

(2e) of the Session Binding proof. We aim to build a S2 forger using
an 𝑎𝑢𝑡ℎ-forger, Request Authentication adversary. For that, we

simulate the S2 public key in 𝑖𝑝𝑘 as an EUF-CMA challenge public

key 𝑝𝑘∗
2
. Note that we will not actually need the full power of

EUF-CMA, as we will not make any signing queries. Thus, the

unforgeability of S2 against a key-only attack, where no signing

queries are allowed, would also be sufficient.

Just as in condition (2e) of the Session Binding, we do not create

credentials for honest RPs, but we simulate the correspondingNIZK
proofs to generate 𝑎𝑢𝑡ℎ values for these RPs. The difference from

condition (2e) of the Session Binding game is that corrupted RPs

are not allowed, so we do not have to simulate their credentials.

Thus, we do not need to make signing queries for 𝑝𝑘∗
2
at all. In the

end, we extract a valid signature on some 𝑟𝑖𝑑 value from the forged

𝑎𝑢𝑡ℎ, which is a valid S2 forgery. In more detail, we simulate the

adversary’s view as follows:

AResIdP: As it is.
RegHRP: It checks that (𝑟𝑖𝑑, ·) ∉ HRP∪CRP. If it holds, it updates
HRP := HRP ∪ {(𝑟𝑖𝑑,⊥)} and outputs 1. If not, it outputs 0. It

does not make a S2 signing query in any case.

AReqRP: Checks if (𝑟𝑖𝑑, ·) ∈ HRP and returns ⊥ if not. Runs the

original AReqRP algorithm except for computing NIZK. As we
do not know a valid credential for honest 𝑟𝑖𝑑’s, the NIZK proof

is simulated using the zero-knowledge simulator.

Finally, when the adversary outputs an authentication request

forgery (𝑎𝑢𝑡ℎ∗, 𝑐𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), we run the knowledge ex-

tractor for the NIZK on the proof 𝑎𝑢𝑡ℎ∗ := 𝜋∗, and extract a

valid witness (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑). By the winning condition, we know

that there is no O .AReqRP query for (𝑠𝑖𝑑∗, 𝑐𝑟𝑖𝑑∗). As honest RPs
bind (𝑠𝑖𝑑∗, 𝑐𝑟𝑖𝑑∗) to the created proofs, we know that 𝜋∗ is not out-
put by O .AReqRP, so it is not a previously simulated proof by the

zero-knowledge simulator. Thus, by the simulation extractability

property of the underlying NIZK, (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑) is a valid witness

with overwhelming probability, and thus S2 .Vf (𝑝𝑘∗2 , 𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑) = 1.

As we do not make any signing queries to the unforgeability chal-

lenger, (𝜎𝑟𝑖𝑑 , 𝑟𝑖𝑑) is a valid forgery against the EUF-CMA property

of S2.
□

C.5 Comparison to AIF-ZKP and OIDC

Here we provide the security comparison to OIDC and AIF-ZKP.

OIDC [43]. OIDC is the most widely deployed SSO protocol for

user authentication and supports both RP authentication and RP-

specific pseudonyms. According to its specification [43, §8.1], the

IdP creates a pseudonym 𝑝𝑝𝑖𝑑 as H(𝑢𝑖𝑑 | |𝑟𝑖𝑑 | |𝑘), where H is a cryp-

tographic hash function and 𝑘 is a secret, high-entropy random

string held by the IdP. The IdP, upon receiving an authenticated re-

quest from the RP 𝑟𝑖𝑑 via the user𝑢𝑖𝑑 , computes 𝑝𝑝𝑖𝑑 and signs both

𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, and the session data. While this provides Request Auth-

entication, Session Binding, and Unlinkability, OIDC clearly does

not achieve Unobservability.

AIF-ZKP [32]. This work was sketched in Sec. 4.1 and provides

the foundation of our protocol to achieve Session Binding, incl.

strong RP authentication, and Unobservability at the same time.

Our Session Binding model is stronger than in [32], and our analysis

shows that the original protocol already satiesfied this stronger

notion too. The original protocol reveals 𝑢𝑖𝑑 in the clear to RPs

and does not support pseudonyms, i.e., it does not provide any

Unlinkability.

649

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 SSO with Oblivious PPIDs
	2.1 Entities & Main Phases
	2.2 Pairwise Pseudonymous Identifier
	2.3 Syntax of OPPID

	3 Security Model of OPPID
	3.1 Unlinkability
	3.2 Unobservability
	3.3 Session Binding
	3.4 Privacy Limitation: No Untraceability

	4 Our OPPID Construction
	4.1 Privacy-Preserving RP Authentication
	4.2 Oblivious PPID Generation
	4.3 Security Analysis

	5 Evaluation & Discussion
	5.1 Security Comparison with Related Protocols
	5.2 Implementation and Evaluation

	Acknowledgments
	References
	A Omitted Model Parts
	A.1 Correctness
	A.2 Protocol Flow
	A.3 Session Binding: RP Binding & RP Auth.
	A.4 Comparison to Session Binding from Existing Definitions
	A.5 Request Authentication

	B Building Blocks
	C Full Proofs of P4ID
	C.1 Proof of Theorem 4.1 (Unlinkability)
	C.2 Proof of Theorem 4.2 (Unobservability)
	C.3 Proof of Theorem 4.3 (Session Binding)
	C.4 Proof of Theorem C.1 (Req. Authentication)
	C.5 Comparison to AIF-ZKP and OIDC

