
Maliciously Secure Circuit Private Set Intersection via
SPDZ-Compatible Oblivious PRF

Yaxi Yang

Singapore University of Technology

and Design, Singapore

yaxi_yang@sutd.edu.sg

Xiaojian Liang

Ant International, China

im.liangxj@gmail.com

Xiangfu Song
∗

National University of Singapore &

Guangzhou University, China

songxf@comp.nus.edu.sg

Ye Dong

Singapore University of Technology

and Design, Singapore

ye_dong@sutd.edu.sg

Linting Huang

Guangzhou University, China

linting_huang@e.gzhu.edu.cn

Hongyu Ren

Guangzhou University, China

lubricantrhy@gmail.com

Changyu Dong
∗

Guangzhou University, China

changyu.dong@gmail.com

Jianying Zhou

Singapore University of Technology

and Design, Singapore

jianying_zhou@sutd.edu.sg

Abstract
Circuit Private Set Intersection (Circuit-PSI) allows two parties to

compute a function 𝑓 on items in the intersection of their input sets

without revealing items in the intersection set. It is a well-known

variant of PSI and has numerous practical applications. However,

existing Circuit-PSI protocols only provide security against semi-
honest adversaries. A straightforward approach to constructing a

maliciously secure Circuit-PSI is to extend a pure garbled-circuit-

based PSI (NDSS’12 [23]) to a maliciously secure circuit-PSI, but

it will not be concretely efficient. Another is converting state-of-

the-art semi-honest Circuit-PSI protocols (EUROCRYPT’21 [54];

PoPETS’22 [10]) to be secure in the malicious setting. However, it

will come across the consistency issue (EUROCRYPT’11 [56]) since
parties can not guarantee the inputs of the function 𝑓 stay un-

changed as obtained from the last step.

This paper tackles the previously mentioned issue by presenting

the first maliciously secure Circuit-PSI protocol. Our key innova-

tion, the Distributed Dual-key Oblivious Pseudorandom Function

(DDOPRF), enables the oblivious evaluation of secret-shared inputs

using dual keys within the SPDZ MPC framework. Notably, this

construction seamlessly ensures fairness within the Circuit-PSI.

Compared to the state-of-the-art semi-honest Circuit-PSI protocol

(PoPETS’22), experimental results demonstrate that our malicious

Circuit-PSI protocol not only reduces around 5x communication

costs but also enhances efficiency, particularly for modest input

sets (≤ 2
14
) in the case of the WAN setting with high latency and

limited bandwidth.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(2), 680–696
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0082

Keywords
privacy set intersection, secure multiparty computation, oblivious

pseudorandom function, malicious, secret sharing

1 Introduction
Private set intersection (PSI) has emerged as a powerful multi-party

computation paradigm that enables two parties to compute the

intersection x ∩ y of their input sets x and y without revealing

raw input data [18, 23, 30]. Serving as a silver bullet for achieving

privacy during data analysis, PSI is poised to revolutionize myriad

data-driven applications, such as contact tracing [19], advertising

conversion [63], and genomic sequence testing [62], etc. In paral-

lel, big data companies, in turn, develop numerous open-source

PSI-related projects, including Private-Join-and-Compute
1
from

Google and SecretFlow
2
from Antgroup, to further facilitate their

investigation.

However, generic PSI is not applicable to accommodate subse-

quent computations of function at the intersection itself, which

is an emerging demand in practice. For instance, in the Private-

Join-and-Compute project, Google aims to compute the sum of

expense values over the intersection of two databases, while not

revealing the intersection. Driven by practical needs, Huang et al.

[23] introduce the notion of Circuit-PSI, which can support arbi-

trary secure computations over the intersection of private sets, i.e.,

𝑓 (x∩y). It captures an extensive imagination that outputs 𝑓 (x∩y),
where the intermediate result, i.e., the intersection x ∩ y, is kept
private and sent to a circuit for a customized function 𝑓 for further

computation.

Existing works for Circuit-PSI [10, 23, 47, 51, 54] are under a
semi-honest model, whose security properties may not hold in the

presence of malicious adversaries. In real-world applications, de-

signing a Circuit-PSI protocol in the malicious model is very mean-

ingful, as it captures many realistic scenarios where the parties may

∗
Corresponding author.

1
https://github.com/google/private-join-and-compute

2
https://github.com/secretflow

680

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0082

Maliciously Secure Circuit Private Set Intersection via SPDZ-Compatible Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(2)

take arbitrary strategies to break the security of a protocol. To ad-

dress this problem, a trivial but less efficient solution is to integrate

Huang’s Circuit-PSI protocol [23] with general constructions for

maliciously secure garbled circuits [35, 60]. Since Huang’s proto-

col is a purely garbled-circuits-based Circuit-PSI, intuitively, two

parties can use it to design a circuit that implements the function

𝑓 (x ∩ y) and convert this circuit into a maliciously secure version

by using cut-and-choose [35] or the authenticated garbling method

[60]. However, the communication complexity is exacerbated by

the intricacy of the function 𝑓 and the size of the initial input sets,

which would lead to quadratic complexity.

Compared to Huang’s protocol, the more efficient and tailored

Circuit-PSI protocols in the semi-honest setting [10, 25, 26, 47, 51]

leverage the align-randomize-compare framework to efficiently com-

pute 𝑓 (x ∩ y). The process is described as follows: 1) Both parties

hash their input sets, x and y, into bins using hashing-to-bin tech-

niques, to align the items for further processing and better effi-

ciency. 2) Each party invokes a specialized protocol called Oblivious

Programmable Pseudorandom Functions (OPPRF) to randomize
the itemswithin the same bins, mapping them to specific PRF values.

3) A secure comparison protocol is then employed to compare the
PRF values bin-by-bin. Instead of directly revealing the intersection

set, the parties receive shares of the intersection set {x ∩ y}. So
both parties can use the shares of {x ∩ y} as input to the following

function 𝑓 to compute 𝑓 (x ∩ y).
To enhance the security of these Circuit-PSI protocols against

malicious adversaries, parties need to i) substitute all underlying pro-
tocols with their corresponding malicious secure counterparts against
malicious behavior, and ii) commit to the shares obtained in Step 3)
before inputting them into the function 𝑓 . However, verifying the

integrity of these commitments presents a challenge, as a malicious

party could alter the shares locally and commit the fake shares be-

fore they are input to 𝑓 . If the malicious party is able to discard or

alter the results, another honest party cannot benefit from the com-

mitment verification, as the input value for the commits is falsified.

This challenge is known as the consistency issue [56]. Therefore, the
following open problem remains:

Can we solve the consistency issue and construct a maliciously
secure Circuit-PSI protocol?

We answer this question affirmatively. To address the consistency
issue, each party needs to commit their items in the input sets and

compute the PRF values with the commitments. Our initial strategy

involves adopting the general malicious MPC framework, the SPDZ

framework [14, 29], known for its efficient secret-shared computa-

tion paired with Message Authentication Code (MAC) capabilities.

This framework facilitates the verification of secret-shared secure

addition and multiplication over a finite field, ensuring that par-

ties can confirm the accuracy of computations while maintaining

the privacy of their input values. Consequently, our objective is

to transform the align-random-compare routine, recognized for its

better efficiency, into a secret-shared format utilizing the SPDZ

framework. By integrating MAC authentication, we can ensure the

correctness of each computation, thereby achieving a maliciously

secure Circuit-PSI protocol.

However, the existing OPRF protocol in randomize phase of

semi-honest Circuit-PSI protocols, based on IKNP-style OT [10]

or Silent OT protocols [54], lacks a linear structure that is suitable

for transformation into a secret-shared form. So we redesign an

OPRF protocol and propose a Distributed Dual-key Oblivious Pseu-

dorandom Function (DDOPRF) protocol based on SPDZ, which can

compute a PRF of a secret-shared value with commitment. Then,

the PRF values are compared to obtain the secret-shared intersec-

tion of {x ∩ y}. This secret-shared value, combined with a MAC,

can be sent to a function 𝑓 , which resolves the commitment issue.

Roughly, our protocol for achieving a maliciously secure Circuit-

PSI avoids the use of complex commitment protocols, as used in

[40] and instead employs secret shares and MAC from SPDZ, which

are as follows: 1) the input sets x and y are secret-shared with

authentication between two parties and use a secret shared shuffle

with malicious security to shuffle those shares. 2) Next, two parties

employ our specially designed SPDZ-compatible OPRF protocol

(DDOPRF) to compute the OPRF values for items in x and y in a se-

cret shared way. 3) Ultimately, two parties compare the OPRF values

and select the corresponding shares as inputs for the subsequent

computation of 𝑓 .

Initially, in the second phase, we intended to design a distributed

OPRF protocol compatible with SPDZ (DOPRF) to compute the PRF

value of the secret shared inputs. And it fulfilled our intention as

expected. However, we then encountered a security flaw as the sim-

ulator can not simulate an adversary’s view within this framework.

To overcome this issue, we implemented a "dual-key" mechanism in

the DOPRF, evolving it into DDOPRF. Remarkably, this adjustment

not only addressed the security flaw, but also augmented our proto-

col with the feature of two-party fairness effortlessly. The two-party
fairness ensures that if one party learns the intersection, the other

must also learn it; otherwise, neither party gains any information

about the intersection set [17]. It is frequently tackled in two-party

PSI contexts using inefficient methods or depending on a trusted

third party [15, 17]. This makes our solution more significant as it

addresses these challenges more effectively.

OurContributions. In this work, we introduce the firstmaliciously

secure circuit-PSI protocol, designated ΠmcPSI, which is based on a

Distributed Dual-key Oblivious Pseudorandom Function (DDOPRF)

protocol that is SPDZ-compilable. In more detail, we summarise

important features of our protocol as follows:

• Malicious Security.Based on theMAC authenticationmethod

of SPDZ, ΠmcPSI is the first Circuit-PSI protocol that pro-

vides malicious security property. In ΠmcPSI, we propose a

malicious OPRF protocol based on secret sharing, named

DDOPRF, which can compute PRF values in a secret-shared

format. We believe that DDOPRF is of independent interest

in its own right.

• Two-party Fairness. Surprisingly, we find that our mali-

cious Circuit-PSI protocol can support the two-party fairness.

Some fair PSI protocols have been proposed [1, 15, 17]. How-

ever, those PSI protocols are subjected to low efficiency or

need a trusted third party. We achieve built-in two-party

fairness with a "dual-key" mechanism and use it as a module

in ΠmcPSI. The augmentation of the Circuit-PSI protocol with

fairness incurs constant computational overhead.

• LinearComplexity.Webuild our Circuit-PSI protocol based

on the DDOPRF protocol, which is succinct and only needs

two-round communication to get PRF results for the input

681

Proceedings on Privacy Enhancing Technologies 2025(2) Yaxi Yang, et al.

values. Inheriting the inherent efficiency of SPDZ, ΠmcPSI

achieves linear online efficiency. Compared to the state-of-

the-art semi-honest Circuit-PSI protocol [10], our malicious

circuit-PSI ΠmcPSI offers around 5x better communication

overhead and provides better efficiency with modest input

datasets (≤ 2
14
) under WAN conditions (10Mbps with an

echo latency of 0.02s).

Applications. The limitation of previous PSI-related works is that

they are specifically designed for intersection set computations. In

contrast, our Circuit-PSI protocol, based on a secret-shared com-

putation framework, offers greater versatility and applicability.

First, Circuit-PSI plays a crucial role in database operations, en-

abling privacy-preserving processes such as database joins [63]

and queries [19]. For example, two companies that own separate

databases may want to perform joint operations on the items within

these databases. Using Circuit-PSI, they can align items based on

indexes, select common items from both databases, and then carry

out operations such as summation or variance computation on the

selected items.

Another application of Circuit-PSI is in Vertical Federated Learn-

ing (VFL) [37], a privacy-preserving machine learning framework

where the training dataset is vertically partitioned. In this setup,

items in the datasets share the same ID but contain different fea-

tures [13]. Our Circuit-PSI protocol facilitates ID alignment within

a VFL system, allowing parties to securely retrieve all items with

the same ID while keeping unrelated items private, enabling the ex-

ecution of subsequent computations. With minimal modifications,

Circuit-PSI can also be adapted for privacy-preserving telegram

computation in some industrial systems [52, 64]. It facilitates the

secure identification and counting of items distributed between

different parties while preserving privacy. This makes it a valuable

tool in various data analysis applications [34, 38].

Organization. We first present the preliminaries in § 2. Then, the

protocol construction is illustrated in § 3. Next, we analyze the

security and fairness of our protocols in § 4. The implementation

and experimental results are shown in § 5. To demonstrate the

capabilities of our protocol, we also evaluate the performance of

PSI-SUM and PSI-Variant in § 5.4. These represent common func-

tion computations applied in various practical applications. We

summarize the related work in § 6 and conclude our work in § 7.

2 Preliminaries
We use G to denote an abelian group, and F denotes a finite field

(e.g., F = F𝑝𝑘 for some prime 𝑝) with items of ℓ bits. [𝑛] denotes
the set {1, ..., 𝑛} and [𝑙, 𝑟] to denote {𝑙, 𝑙 + 1, ..., 𝑟 − 1, 𝑟 }. Given a

set x, we use 𝑥
$←− x to denote 𝑥 is uniformally sampled from x.

We use 𝑎 | |𝑏 to denote strings concatenation of 𝑎 and 𝑏. For an ℓ-

bits string 𝑥 ∈ {0, 1}ℓ , we use 𝑏𝑖 to denote its 𝑖-th bit of 𝑥 , and

𝑥 =
∑ℓ

𝑖=1 𝑏𝑖 · 2ℓ−𝑖 . For a share of 𝑥 over G, the bit decomposition

operation is a protocol for converting a share ⟨𝑥⟩ into ℓ shares

⟨𝑏1⟩, ..., ⟨𝑏ℓ ⟩, where ⟨𝑏1⟩ represents high order bit share of 𝑥 .

2.1 Security Model and Fairness Definition
We consider a two-party model in ΠmcPSI. Any one of the two

parties can be corrupted by a malicious adversary. We prove the

security of our protocols in the ideal/real world paradigm [36].

To begin with, we testify that our protocol is secure in the semi-

honest setting. Then, we compile our protocol to be secure in the

malicious setting. To prove the security of our circuit-PSI protocol,

the standard functionality of each sub-protocol used in our protocol

is presented for access as a trusted party, and to function as a sub-

functionality.

We follow the simulation-based security model [36] with mali-

cious security and static corruption. The security goals are defined

as an ideal functionality F. This ideal functionality works as a

trusted entity that receives inputs from parties, performs the de-

fined computation, and outputs results to parties. In the real world,

an adversary𝐴 who represents a corrupted party𝐶 will run the pro-

tocol with the other honest parties. In the ideal world, a simulator

𝑆 will interact with F.

Definition 1. A protocol Π securely computes functionality F in
the presence of a malicious adversary if for every PPT adversary 𝐴
there exists a PPT simulator 𝑆 , such that

𝑅𝑒𝑎𝑙Π,𝐴(𝑧),𝐶 (1𝜅 , 1𝜆, 𝑥𝑖,𝑖∉𝐶)
𝑐≡ 𝐼𝑑𝑒𝑎𝑙Π,𝑆 (𝑧),𝐶 (1𝜅 , 1𝜆, 𝑥𝑖,𝑖∉𝐶).

The left side of the equation represents the joint output from the

honest parties and adversity 𝐴, and 𝑥𝑖 represents the input from

a party 𝑃𝑖 and 𝑧 is the auxiliary input from 𝐴. Similarly, the right

side denotes the joint output of the honest parties and simulator 𝑆 .

We say that Π can securely compute functionality F with less than

statistical error 2
𝜆
under the malicious model.

In terms of fairness, we follow and extend the definition of two-

party fairness in [5, 22, 44] as follows.

Definition 2. A two-party secure protocol Π that achieves the
functionality F(𝑥,𝑦) is (𝑐, 𝜖)-fair if: For any working time 𝑡 , an adver-
sary 𝐴 runs the protocol Π for computing F. Whenever 𝐴 aborts the
protocol and attempts to recover F(𝑥,𝑦), let 𝑞0 denote the probability
of success of 𝐴. Then, the other party 𝐶 can run in the working time
𝑐 · 𝑡 for computing F(𝑥,𝑦) after the protocol is aborted by 𝐴, such
that 𝑞1 is the probability of success of 𝐶 . It holds that |𝑞0 − 𝑞1 | ≤ 𝜖 .

In this paper, we consider partial fairness, a relaxation of two-

party complete fairness, which means that the adversary has one-bit
privilege as the upper bound to recover the results of the protocol.

Looking ahead, whenever the protocol aborts, the possibility of one

party infers the results F(𝑥,𝑦) with a one-bit advantage over the

other party during the same working time.

2.2 Dodis-Yampolskiy PRF
The Dodis-Yampolskiy PRF (DY-PRF) [16] requires a cyclic group

G with prime-order 𝑝 , and is defined as

𝐹DY (𝑘, 𝑥) = 𝑔
1

𝑘+𝑥 , (1)

where 𝑔 is a generator of G, and 𝑘
$←− F∗𝑝 . The pseudorandomness is

guaranteed by the Decisional q-Diffie-Hellman Inversion Assump-

tion (q-DDHI) [40, 41]. We define q-DDHI as follows.

The computation q-DHI problem in a group G with generator 𝑔

and order 𝑝 is to compute 𝑔
1

𝑘 , given (𝑔,𝑔𝑘 , · · · , 𝑔𝑘𝑞) for 𝑘 randomly

picked in F∗𝑝 . The hardness of q-DDHI for any fixed constant 𝑞 is

as follows. We assume gGen is an algorithm that inputs a security

parameter 1
𝜆
and outputs a modulus 𝑝 and a generator 𝑔 of a group

682

Maliciously Secure Circuit Private Set Intersection via SPDZ-Compatible Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(2)

G of order 𝑝 . q-DDHI assumption holds on group G and a random

choice 𝑅 if for every efficient algorithm A,���Pr[A(𝑔,𝑔𝑘 , · · · , 𝑔𝑘𝑞 , 𝑔 1

𝑘) = 1| (𝑔, 𝑝) ← gGen(1𝜆);𝑘 $←− F∗𝑝]

−Pr[A(𝑔,𝑔𝑘 , · · · , 𝑔𝑘𝑞 , 𝑅) = 1| (𝑔, 𝑝) ← gGen(1𝜆);𝑘 $←− F∗𝑝 ;𝑅 ← G]
���

≤ negl(𝜆) . (2)

2.3 Authenticated Secret Sharing
Linear secret sharing. We use J𝑥K to denote an additive linear

secret sharing (LSS) for 𝑥 ∈ F shared between 𝑛 parties such that

each P𝑖 has a random share J𝑥K𝑖 ∈ F with

∑
𝑖∈[𝑛]J𝑥K𝑖 = 𝑥 . The

secret 𝑥 can be constructed iff all parties reveal their shares and

then sum them up. Therefore, LSS preserves perfect privacy against

𝑛−1 corrupted parties [3]. If 𝑥 and𝑦 are two values shared between

𝑛 parties, LSS supports the following linear operations:

• J𝑧K← J𝑥K + J𝑦K: P𝑖 computes J𝑧K𝑖 ← J𝑥K𝑖 + J𝑦K𝑖 ;
• J𝑧K← 𝑐+J𝑥K: P0 computes J𝑧K0 ← 𝑐+J𝑥K0 and P𝑖 computes

J𝑧K𝑖 ← J𝑥K𝑖 for all 𝑖 ∈ [𝑛] \ {0};
• J𝑧K← 𝑐 · J𝑥K: P𝑖 computes J𝑧K𝑖 ← 𝑐 · J𝑥K𝑖 ,

where we can verify J𝑥 + 𝑦K = J𝑥K + J𝑦K, J𝑐 + 𝑥K = 𝑐 + J𝑥K, and
J𝑐 · 𝑥K = 𝑐 · J𝑥K. All the operations mentioned above do not need

interaction between parties. In particular, if we want to compute

multiplication operation as J𝑧K← J𝑥K · J𝑦K and verify 𝑧 = 𝑥𝑦, then

the parties require interaction. One commonly used approach to

achieve the multiplication operation is Beaver’s method [50]. In

detail, suppose the parties pre-share a Beaver Triple (J𝑎K, J𝑏K, J𝑐K)
with 𝑎 · 𝑏 = 𝑐 . The parties can perform the following interaction to

compute J𝑥 · 𝑦K from J𝑥K and J𝑦K:
• The parties compute J𝑒K← J𝑥K − J𝑎K and J𝑓 K← J𝑦K − J𝑏K;
• The parties open J𝑒K and J𝑓 K to obtain 𝑒 and 𝑓 ;

• The parties compute J𝑧K← J𝑐K + 𝑓 · J𝑎K + 𝑒 · J𝑏K + 𝑒 · 𝑓 ,
where we can verify that 𝑧 = 𝑥𝑦 is just as required.

Authenticated secret sharing. Authenticated secret sharing (ASS)
ensures the integrity of shared secrets. A typical SPDZ-style ASS

[14] relies on information-theoretic message authentication codes
(IT-MACs) for integrity. To be specific, the parties will additionally

share J𝜉K for a secret MAC key 𝜉
$←− F. For a share J𝑥K, the parties

also share its MAC share J𝛾 (𝑥)K such that 𝛾 (𝑥) = 𝜉 · 𝑥 . We call

⟨𝑥⟩ = (J𝑥K, J𝛾 (𝑥)K) as an authenticated secret sharing for a secret

𝑥 , and ⟨𝑥⟩𝑖 = (J𝑥K𝑖 , J𝛾 (𝑥)K𝑖) ∈ F2 as an authenticated share held
by P𝑖 . Since the soundness error is proportional to the inverse of

the field size, we require F to be sufficiently large (i.e., |F| > 2
𝜅
),

this is crucial to detect errors with overwhelming probability. ASS

supports the following local computation:

• ⟨𝑧⟩ ← ⟨𝑥⟩ + ⟨𝑦⟩: ⟨𝑧⟩ ← (J𝑥K + J𝑦K, J𝛾 (𝑥)K + J𝛾 (𝑦)K);
• ⟨𝑧⟩ ← 𝑐 + ⟨𝑥⟩: ⟨𝑧⟩ ← (𝑐 + J𝑥K, 𝑐 · J𝜉K + J𝛾 (𝑥)K);
• ⟨𝑧⟩ ← 𝑐 · ⟨𝑥⟩: ⟨𝑧⟩ ← (𝑐 · J𝑥K, 𝑐 · J𝛾 (𝑥)K),

where we can verify ⟨𝑥 + 𝑦⟩ = ⟨𝑥⟩ + ⟨𝑦⟩, ⟨𝑐 + 𝑥⟩ = 𝑐 + ⟨𝑥⟩, and
⟨𝑐 · 𝑥⟩ = 𝑐 · ⟨𝑥⟩.

Commonly, the parties may reveal an ASS ⟨𝑥⟩ when using ASS

for computation, and the parties have to make sure that 𝑥 is opened

correctly. To securely open an ASS share ⟨𝑥⟩, the parties can lever-

age the embedded MAC to detect any introduced error. Specifically,

Functionality FABB

Parameters: a prime 𝑝 .

The ABB functionality contains the following commands:

• ⟨𝑟 ⟩ ← Rand() : Output an ASS share ⟨𝑟 ⟩ for 𝑟 ∈ Z𝑝 .

• ⟨𝑥 ⟩ ← Input(𝑥) : Output a randomly ASS share ⟨𝑥 ⟩ for
the input value 𝑥 .

• (⟨𝑎⟩, ⟨𝑏 ⟩, ⟨𝑐 ⟩) ← RandomMul() : Output three ASS

shares (⟨𝑎⟩, ⟨𝑏 ⟩, ⟨𝑐 ⟩) such that 𝑎 · 𝑏 = 𝑐 .

• ⟨𝑧⟩ ← Mul(⟨𝑥 ⟩, ⟨𝑦⟩) : On input ⟨𝑥 ⟩ and ⟨𝑦⟩, output ⟨𝑧⟩
such that 𝑧 = 𝑥 · 𝑦.
• Linear combination: Given ⟨𝑥 ⟩, ⟨𝑦⟩ and 𝑎,𝑏, 𝑐 ∈ Z𝑝 , the

parties can compute ⟨𝑧⟩ = 𝑎 · ⟨𝑥 ⟩ + 𝑏 · ⟨𝑦⟩ + 𝑐 for free

with communication.

• Bit decomposition: Given ⟨𝑥 ⟩ ∈ Z𝑝 , the parties can get

the share of a sequence ⟨𝑏1 · 2ℓ−1 ⟩ · · · ⟨𝑏ℓ · 20 ⟩, where
𝑥 =

∑ℓ−1
𝑡=0 𝑏𝑡 · 2ℓ−𝑡 .

• 𝑥 ← Open(⟨𝑥 ⟩) : On input an ASS share ⟨𝑥 ⟩, open 𝑥 to

all the parties, and check the MAC value of 𝑥 .

Figure 1: The arithmetic black-box functionality.

the parties compute

J𝑑K← J𝛾 (𝑥)K − 𝑥 · J𝜉K. (3)

The parties then each commit to its share of 𝑑 followed by opening

to check if 𝑑 = 0 and abort it is not the case.

Computingmultiplication betweenASS shares ⟨𝑥⟩ and ⟨𝑦⟩ can be
done using an Authenticated Beaver Triple (⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩) satisfying
𝑎 · 𝑏 = 𝑐 . The parties can perform the following interaction to

compute ⟨𝑥 · 𝑦⟩ from ⟨𝑥⟩ and ⟨𝑦⟩:
• The parties compute ⟨𝑒⟩ ← ⟨𝑥⟩ − ⟨𝑎⟩ and ⟨𝑓 ⟩ ← ⟨𝑦⟩ − ⟨𝑏⟩;
• The parties partically open ⟨𝑒⟩ and ⟨𝑓 ⟩ (not their MACs) to

obtain 𝑒 and 𝑓 ;

• The parties compute ⟨𝑧⟩ ← ⟨𝑐⟩ + 𝑓 · ⟨𝑎⟩ + 𝑒 · ⟨𝑏⟩ + 𝑒 · 𝑓 .
In the malicious setting, the corrupted parties may tamper their

values when opening 𝑒 and 𝑓 . Thus, the parties must check the

correct opening of 𝑒 and 𝑓 , using the previous method in Eq. (3).

Note that the above definitions for LSS and ASS generally work

over vectors. We use JxK to denote a vector shares of x, and 𝛾 (x) to
denote its MAC vector shares where 𝛾 (x𝑖) = 𝜉 · x𝑖 .
Arithmetic black-box. We define the functionality of arithmetic

black-box to capture the commands over ASS shares used in ΠmcPSI

as shown in Fig. 1. We refer to well-known instantiations from

existing SPDZ-style protocols [14, 27–29, 43]. For completeness, we

also provide the details in §A.

Secure Two-Party Computation. Based on the secret sharing

input and all the commands over ASS, we can define a secret shared

secure two-party computation functionality F2PC as in Fig. 2.

2.4 Secret-shared Shuffle
A Secret-shared Shuffle (SSS) allows shareholders to jointly permu-

tate one secret-shared vector ⟨x⟩ using a random permutation 𝜋

known by neither party [11], where a permutation 𝜋 is a bijective

function 𝜋 : [𝑛] ↦→ [𝑛]. We use S𝑛 to denote a symmetric group con-

taining all [𝑛] ↦→ [𝑛] permutations. For a vector x = {𝑥1, ..., 𝑥𝑛},
683

Proceedings on Privacy Enhancing Technologies 2025(2) Yaxi Yang, et al.

Functionality F2PC

Parameters: two parties 𝑃0 and 𝑃1, a function 𝑓 parameterized

by a circuit𝐶 .

Functionality:
Upon receiving sharings ⟨𝑥 ⟩ and ⟨𝑦⟩ from 𝑃0 and 𝑃1.

The functionality computes 𝑓 parameterized by the circuit𝐶 and

returns the outputs 𝑓 (𝑥, 𝑦) to 𝑃0 and 𝑃1.

Figure 2: Ideal functionality F2PC of generic two-party com-
putation.

when a permutation function 𝜋 is applied over x, the value 𝑥𝑖
(𝑖 ∈ [𝑛]) is moved to the position 𝜋 (𝑖) as

y = 𝜋 (x) = (x𝜋 (1) , · · · , x𝜋 (𝑛)) . (4)

Then, we use 𝜋−1 to denote the inverse of a permutation 𝜋 . There-

fore, y𝑖 = x𝜋 (𝑖) , or equivalently, x𝑖 = y𝜋−1 (𝑖) . We denote by 𝜋 ◦ 𝜌
the composition of two permutations 𝜋 and 𝜌 such that 𝜋 ◦ 𝜌 (𝑖) =
𝜋 (𝜌 (𝑖)).

This paper will rely on a maliciously secure SSS ideal function-

ality FSSS [57] over ASS. The functionality is formally defined in

Fig. 3. The detail of the SSS protocol [57] used in our circuit-PSI

protocol is described in Appendix B.

Functionality FSSS

Parameters: a prime 𝑝 ; 𝑛 denotes the dimension of the shared

vector to be shuffled.

Functionality: On input ⟨x⟩ with x ∈ Z𝑛𝑝 , sample a random

permutation 𝜋
$←− S𝑛 . Compute x′ ← 𝜋 (x) with x′𝑖 = x𝜋 (𝑖) and

reshare ⟨x′ ⟩ between the parties.

Figure 3: The ideal secret-shared shuffle functionality.

3 Construction
In this section, we first provide an overview and intuition of our

proposedmalicious circuit-PSI protocolΠmcPSI in § 3.1. Next, in § 3.2,

we introduce our proposed sub-protocol, DDOPRF, and explain

how DDOPRF is used as the main building block of ΠmcPSI to fulfill

privacy requirements. Then, we compile DDOPRF with malicious

security § 3.3.

3.1 Workflow Overview
For two parties 𝑃0 and 𝑃1, their input sets are x = {𝑥1, ..., 𝑥𝑛} and
y = {𝑦1, ..., 𝑦𝑛}. Our malicious circuit-PSI protocol, ΠmcPSI, works

in four phases as follows:

Phase 1: Secret Shared Shuffle. In the first phase, 𝑃0 and 𝑃1 will

share each item in the input set using ASS, and then 𝑃0 and 𝑃1 will

obtain ⟨x⟩ and ⟨y⟩. Next, the parties will take their authenticated
shares as input of the functionality FSSS to obtain the shuffled

shares ⟨𝜋 (x)⟩ and ⟨𝜌 (y)⟩. The permutations 𝜋 and 𝜌 are random

and remain unknown to any party.

Restricted

Restricted

P0 : 𝐱𝐱 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} P1 : 𝐲𝐲 = {𝑦𝑦1, … ,𝑦𝑦𝑛𝑛}

Malicious secret-shared
shuffle

Permutation: 𝜋𝜋, 𝜌𝜌𝜋𝜋(𝐱𝐱) 𝜌𝜌(𝐲𝐲)

DDOPRF

Open with fairness

Decompose and open a
key 𝑘𝑘𝑠𝑠 bit-by-bit 𝐱𝐱 ∩ 𝐲𝐲𝐱𝐱 ∩ 𝐲𝐲

Secure two-party
computation function 𝑓𝑓

Open with fairness𝑓𝑓(𝐱𝐱 ∩ 𝐲𝐲) 𝑓𝑓(𝐱𝐱 ∩ 𝐲𝐲)

Figure 4: An overview of ΠmcPSI.

Phase 2: DDOPRF. In the second phase, 𝑃0 and 𝑃1 execute our

proposed Distributed Dual-key OPRF protocol ΠDDOPRF, which

takes the secret-shared shuffled sets generated in Phase 1 as inputs

and generates the pseudorandom values for each item in the input

sets without revealing the secret keys and shared values. Therefore,

𝑃0 and 𝑃1 will learn and open the pseudorandom values of the

permuted input set 𝐹 (𝑘, 𝜋 (x)) and 𝐹 (𝑘, 𝑘𝑠 , 𝜌 (y)), respectively.
Phase 3: Fair Comparison. In this phase, 𝑃0 and 𝑃1 will trans-

form the share ⟨𝑘𝑠⟩ over the finite F𝑝 to the bit share sequence.

So parties can recover 𝑘𝑠 bit by bit to compute pseudorandom

values 𝐹 (𝑘, 𝑘𝑠 , 𝜋 (x)) and then compare the sets 𝐹 (𝑘, 𝑘𝑠 , 𝜋 (x)) and
𝐹 (𝑘, 𝑘𝑠 , 𝜌 (y)).
Phase 4: Function Computation. In this phase, 𝑃0 and 𝑃1 record

the equal items in 𝐹 (𝑘, 𝑘𝑠 , 𝜋 (x)) and 𝐹 (𝑘, 𝑘𝑠 , 𝜌 (y)), and then take

the corresponding shares in ⟨𝜋 (x)⟩ and ⟨𝜌 (y)⟩ with MACs, i.e.,

⟨x ∩ y⟩ as the input of predefined function 𝑓 . After that, 𝑃0 and 𝑃1
will obtain ⟨𝑓 (x ∩ y)⟩. Then 𝑃0 and 𝑃1 will use a similar trick in

Phase 3 to recover 𝑓 (x∩y)while ensuring two-party fairness. 𝑃0 and
𝑃1 will generate and share a result key ⟨𝑘𝑟 ⟩

$←− F𝑝 . This key is used

to encrypt and randomize ⟨𝑓 (x ∩ y)⟩, enabling the computation of

𝐹 (𝑘𝑟 , ⟨𝑓 (x ∩ y)⟩). Next, they use a bit decomposition protocol to

change the secret shared key ⟨𝑘𝑟 ⟩ bit-wise and open it bit-by-bit.

Finally, 𝑃0 and 𝑃1 can decrypt and obtain the final results 𝑓 (x ∩ y).
Intuition: (1) Malicious. In Phase 4, when parties select the corre-

sponding shares ⟨x ∩ y⟩ and send them to 𝑓 , any party that attempts

to revise or discard the shares can be detected by checking the cor-

rectness and integrity of the MAC value of 𝑓 (x∩y). In this way, we

solve the consistency issue. (2) Fairness. In Phase 2, if two parties

use a plain OPRF protocol (without "dual-key") to compute the PRF

results of their input sets and open those results, one dishonest

party may abort at any time during the process of opening the PRF

values. Although the dishonest party cannot learn the input items

of another party, the adversary can learn how many items in the

intersection set have been opened, i.e. ≤ |x∩y|. Then the simulator

cannot simulate this adversary behavior, as it cannot learn when

684

Maliciously Secure Circuit Private Set Intersection via SPDZ-Compatible Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(2)

the adversary will abort. Therefore, we need to ensure that the ad-

versary will learn all or nothing, as will the other party. To achieve

this, we design a secret shared OPRF protocol with a dual key to

bring fully malicious security. It is worth noting that the "dual-key"

mechanism with bit decomposition, inherently ensures two-party

fairness.

3.2 DDOPRF Protocol from DY-PRF
We propose a Distributed Dual-key OPRF (DDOPRF) protocol based

on DY-PRF. In particular, the protocol starts with parties sharing

a PRF key J𝑘K, a secondary key 𝑘𝑠 and an input J𝑥K. At the end of

the protocol, the parties output 𝐹 (𝑘, 𝑥) or 𝐹 (𝑘, 𝑘𝑠 , 𝑥).
Before giving the details of DDOPRF, we first introduce a multi-

plication secret-sharing (MSS) over G, which resembles LSS over F𝑝 .
Then we design authenticated multiplication secret sharing (AMSS)
over G, borrowing authentication mechanisms from SPDZ-like

ASS over F𝑝 . By carefully combining AMSS with ASS, we design

maliciously secure DDOPRF with low overhead.

Multiplicative secret sharing over G. Let G be a prime-order

cyclic group of order 𝑝 , where 𝑔 is the group generator. We use

([𝑥]) to denote a multiplicative secret sharing (MSS) over G, where
P𝑖 holds a share ([𝑥])𝑖 such that

∏
𝑖∈[𝑛] ([𝑥])𝑖 = 𝑔𝑥 . Namely, the

parties share a secret in the exponent. The above multiplicative

secret sharing over G supports the following computation:

• ([𝑧]) ← ([𝑥]) · ([𝑦]): P𝑖 computes ([𝑧])𝑖 ← ([𝑥])𝑖 · ([𝑦])𝑖 ;
• ([𝑧]) ← ([𝑥])𝑐 : Given a public 𝑐 ∈ Z𝑝 , P𝑖 computes ([𝑧])𝑖 ←
([𝑥])𝑐𝑖 ,

where we can verify that ([𝑥 +𝑦]) = ([𝑥]) · ([𝑦]) and ([𝑐 · 𝑥]) = ([𝑥])𝑐 .
Namely, multiplication between ([𝑥]) and ([𝑦]) corresponds to addi-

tion in the exponent, and ([𝑥])𝑐 corresponds to scalar multiplication

in the exponent.

Authenticated multiplicative secret sharing over G. Similarly,

we define authenticatedmultiplicative secret sharing (AMSS) ⟨[𝑥]⟩ =
(([𝑥]), ([𝛾 (𝑥)])) over G, where 𝛾 (𝑥) = 𝜉 · 𝑥 (mod 𝑝). We assume

the parties share the MAC key 𝜉 using an LSS share J𝜉K. AMSS

supports the following local computation:

• ⟨[𝑧]⟩ ← ⟨[𝑥]⟩ · ⟨[𝑦]⟩: ⟨[𝑧]⟩ ← (([𝑥]) · ([𝑦]), ([𝛾 (𝑥)]) · ([𝛾 (𝑦)])),
• ⟨[𝑧]⟩ ← ⟨[𝑥]⟩𝑐 : ⟨[𝑧]⟩ ← (([𝑥])𝑐 , ([𝑐 · 𝛾 (𝑥)])); here 𝑐 ∈ Z𝑝 .

We can verify that ⟨[𝑥 + 𝑦]⟩ = ⟨[𝑥]⟩ · ⟨[𝑦]⟩ and ⟨[𝑐 · 𝑥]⟩ = ⟨[𝑥]⟩𝑐 .

Functionality FABB+

Parameters: a prime 𝑝 ; a cyclic group G of order 𝑝 , where 𝑔 is

the generator of G.

The ABB functionality contains the following commands:

• Rand,RandMul,Mul,Open defined as in FABB.
• ⟨[𝑥]⟩ ← Convert(⟨𝑥 ⟩) : On input a ASS share ⟨𝑥 ⟩, output
an AMSS sharing ⟨[𝑥]⟩.
• 𝑔𝑥 ← Open(⟨[𝑥]⟩) : On input a group ASS share ⟨[𝑥]⟩,
output 𝑔𝑥 to all the parties, and check the MAC value of

𝑔𝑥 .

Figure 5: The extended arithmetic black-box functionality.

Share conversion from ⟨𝑥⟩ to ⟨[𝑥]⟩. We note that an MSS share

([𝑥]) over Z𝑝 can be non-interactively converted from an LSS share

J𝑥K over G of order 𝑝 . In particular, each party locally computes

([𝑥])𝑖 ← 𝑔J𝑥K𝑖
. Similarly, the parties can obtain an AMSS share ⟨[𝑥]⟩

overG from an ASS share ⟨𝑥⟩ over Z𝑝 , by simply running the above

conversion for J𝑥K and J𝛾 (𝑥)K, respectively. In this paper, we use

⟨[𝑥]⟩ ← Convert(⟨𝑥⟩) to denote the conversion.

Secretly open 𝑔𝑥 from ⟨[𝑥]⟩. To open 𝑔𝑥 from ⟨[𝑥]⟩ correctly, simi-

lar to the trick used in ASS, the parties can leverage the MAC share

([𝛾 (𝑥)]) to detect any possible error. In particular, the parties run

the following open protocol Open(⟨[𝑥]⟩) to detect possible errors

during opening:

1. Each party P𝑖 reveals its share ([𝑥])𝑖 . By combining all parties’

shares, the parties obtain 𝑔𝑥
′
, and 𝑔𝑥

′
may not equate to 𝑔𝑥

due to additive errors.

2. Each parties P𝑖 computes 𝑑𝑖 ← (𝑔𝑥
′)J𝛾K𝑖 /([𝛾 (𝑥)])𝑖 .

3. After each party committing to 𝑑𝑖 , all the parties decommit

𝑑𝑖 and check whether

∏
𝑖 𝑑𝑖 = 1 over G. Abort if the check

fails.

The above check resembles the MAC check for SPDZ ASS in

Equation 3, despite the check being evaluated in the exponent.

Correctness is easy to check:∏
𝑖

𝑑𝑖 =
∏
𝑖

(𝑔𝑥 ′)J𝜉K𝑖 /
∏
𝑖

([𝛾 (𝑥)])𝑖

= 𝑔
∑
𝑖 (𝑥 ′J𝜉K𝑖)/𝑔𝛾 (𝑥)

= 𝑔𝑥
′𝜉/𝑔𝑥 ·𝜉 ,

which equals to 1 over G iff 𝑥 = 𝑥 ′.
The enhanced ABB+ functionality FABB+. We formalize an en-

hanced ABB functionality called ABB+ in Figure 5, which captures

not only commands for SPDZ ASS over F𝑝 but also the commands

for AMSS over G; here |G| = 𝑝 . In the following, whenever we

require operation over ASS and AMSS authenticated shares, we

will directly resort to this ABB+ functionality. This modular for-

malization enables a clear and easy-understanding design.

Given the ABB+ functionality, we can construct the DDOPRF

protocol.

A semi-honest DDOPRF protocol. We design a semi-honest

DDOPRF protocol with one PRF key as follows:

• The parties generate a share J𝑟K for a random secret 𝑟 ∈ Z𝑝

and a beaver triple (J𝑎K, J𝑏K, J𝑐K).
• The parties compute J𝑑K← J𝑟K·(J𝑘K+J𝑥K) using (J𝑎K, J𝑏K, J𝑐K).
The parties open J𝑑K to obtain 𝑑 .

• The parties compute J𝑒K← J𝑟K · 𝑑−1.
• The parteis locally run ([𝑒]) ← Convert(J𝑒K). The parties

open ([𝑒]).
The correctness of the above protocol is easy to check:

J𝑒K = J𝑟K · 𝑑−1 = J𝑟K · (𝑟 · (𝑘 + 𝑥))−1

= J𝑟 · (𝑟 · (𝑘 + 𝑥))−1K
= J(𝑘 + 𝑥)−1K

From the definition of Convert, for two parties, P0 can compute

𝑔J𝑒K0
and P1 can compute 𝑔J𝑒K1

. Clearly,

𝑔J𝑒K0 · 𝑔J𝑒K1 = 𝑔𝑒 = 𝑔
1

𝑘+𝑥 .

685

Proceedings on Privacy Enhancing Technologies 2025(2) Yaxi Yang, et al.

Efficiency properties. The above semi-honest DDOPRF protocol

only has a low communication round and supports secret shared

data. Specifically, parties only perform one secret-shared multipli-

cation for computation J𝑑K followed by two openings: one is for

opening 𝑑 and another for opening 𝑔𝑒 . It only requires two rounds

to compute the OPRF output. As we discussed in related work,

previous constructions of OT-based OPRF protocols suffer from

diverse shortcomings, including high communication complexity,

or not supporting secret-shared data structure.

Protocol ΠDDOPRF

Parameters: The DY-PRF 𝐹 (𝑘, 𝑥) = 𝑔
1

𝑘+𝑥 ; an ASS share ⟨𝑘 ⟩ for
the PRF secret key 𝑘 ; an optional input ASS share ⟨𝑘𝑠 ⟩ for the
secondary PRF secret key 𝑘𝑠 ;

Protocol: On input ⟨𝑥 ⟩ and ⟨𝑘 ⟩, ⟨𝑘𝑠 ⟩, do the following:

1. ⟨𝑟 ⟩ ← FABB .Rand()
2. ⟨𝑑 ⟩ ← ⟨𝑟 ⟩ · (⟨𝑘 ⟩ + ⟨𝑥 ⟩)
3. open 𝑑 ← FABB+ .Open(⟨𝑑 ⟩)
4. ⟨𝑒 ⟩ ← 𝑑−1 · ⟨𝑟 ⟩
5. If ⟨𝑘𝑠 ⟩ is provided as an input, ⟨𝑒 ⟩ ← ⟨𝑒 ⟩ · ⟨𝑘𝑠 ⟩
6. ⟨[𝑒]⟩ ← FABB+ .Convert(⟨𝑒 ⟩)
7. open 𝑔𝑒 ← FABB+ .Open(⟨[𝑒]⟩) , 𝑒 can be 𝑔

1

𝑘+𝑥 or 𝑔
𝑘𝑠
𝑘+𝑥 .

Figure 6: The malicious DDOPRF protocol.

3.3 Compile DDOPRF with Malicious Security
This semi-honest DDOPRF enjoys low communication costs. Un-

fortunately, compiling it to be maliciously secure using generic

techniques (e.g., zero-knowledge proof, GMW compiler) [8, 21] will

introduce highly expensive costs. In this section, we show how to

achieve the compilation with very low overhead.

Using FABB+, we design a maliciously secure DDOPRF proto-

col ΠDDOPRF in a modular fashion, as illustrated in Figure 6. The

idea is to authenticate the secure computation using prior authen-

ticated mechanisms from ASS and AMSS. In detail, the first key is

to randomize the input value 𝑥 and get a PRF value of 𝑥 , and the

secondary key is to re-randomize the PRF value. The ASS share ⟨𝑘⟩
of the PRF secret key 𝑘 is generated to compute the pseudorandom

value of the input 𝑥 . In steps 1-4, 𝑃0 and 𝑃1 can compute an ASS

share ⟨𝑒⟩ = ⟨(𝑘 + 𝑥)−1⟩. Instead of directly converting it to AMSS

share, 𝑃0 and 𝑃1 add a secondary PRF secret key 𝑘𝑠 on the PRF value

𝑒 as in step 5, we can get a PRF value associated with two keys

and convert it to AMSS share ⟨[𝑒]⟩ = ⟨[𝑔
𝑘𝑠
𝑘+𝑥]⟩ in step 6. If not, 𝑃0

and 𝑃1 will directly convert 𝑒 into AMSS share. Finally, 𝑃0 and 𝑃1
open the final OPRF value in Step 7. Specifically, the "dual-key"

mechanism in DDOPRF brings the built-in fairness of the following
computation. We will present how our proposed DDOPRF with

correlated keys can guarantee fairness of ΠmcPSI in Section. 3.4.

Compared to the semi-honest DDOPRF, the malicious version

also features a low-round property and low communication. Specif-

ically, ΠDDOPRF requires three rounds of communication: The first

round is from computing ⟨𝑒⟩ using a beaver triple, the second round
opens ⟨[𝑒]⟩, and the third round checks the opened result 𝑔𝑒 .

Besides the efficiency, we capture the correctness and security

of ΠDDOPRF in Theorem 1.

Theorem 1. In the {FABB, FABB+ }-hybrid model, the protocol
ΠDDOPRF implements FDDOPRF correctly and securely against ma-
licious adversary.

The ideal functionality and full proof of Theorem 1 are in Ap-

pendix .C.

Functionality FmcPSI

Parameters: The party 𝑃0 inputs x = {𝑥1, · · · , 𝑥𝑛 }, and another

party 𝑃1 has an input set y = {𝑦1, · · · , 𝑦𝑛 };
FmcPSI:

1. On receiving (FmcPSI, x) from 𝑃0 and (FmcPSI, y) from 𝑃1,

the functionality stores x and y and waits. If any party

aborts, outputs ⊥ to 𝑃0 and 𝑃1. Otherwise, continue.

2. On receiving (compute) from 𝑃0 and 𝑃1, the functionality

outputs the computation results 𝑓 (x ∩ y) and size of the

intersection set |x ∩ y | to both 𝑃0 and 𝑃1 if it does not

abort. Otherwise, ⊥ is output to 𝑃0 and 𝑃1.

Figure 7: Ideal functionality of FmcPSI.

3.4 Our Circuit-PSI from DDOPRF
In this section, we show the construction of ΠmcPSI, which uses

ΠDDOPRF as a core building block. In addition, we illustrate some

other common PSI computations based on ΠmcPSI, including PSI

with payload computation (each item in the input set has a cor-

responding payload, with a compute function 𝑓 applied to the

payloads of the items in the intersection set).

We define the ideal functionality of FmcPSI as in Fig 7. And ΠmcPSI

is shown as Fig 8. In the two-party setting, 𝑃0 and 𝑃1 have two input

sets x and y, respectively. We will introduce ΠmcPSI in more detail

in the following.

Phase 1: Secret Shared Shuffle.As shown in Step 1 in Fig 8, on the
input sets x and y, 𝑃0 and 𝑃1 invoke the functionality FABB .Input
to get the ASS shares ⟨x⟩ and ⟨y⟩ of their input sets. Next, in Step 2,

𝑃0 and 𝑃1 will use ΠSSS to secretly shuffle their input shares ⟨x⟩ and
⟨y⟩, i.e., ⟨x′⟩ = 𝜋 (⟨x⟩) ← FSSS (⟨x⟩), ⟨y′⟩ = 𝜌 (⟨y⟩) ← FSSS (⟨y⟩).
Neither 𝑃0 or 𝑃1 know the permutation methods 𝜋 and 𝜌 .

Phase 2: DDOPRF. After 𝑃0 and 𝑃1 shuffle their input shares, they

can not learn anything from the shuffled shares ⟨x′⟩ and ⟨y′⟩. Then,
in Steps 3-5, 𝑃0 and 𝑃1 will invoke protocol ΠDDOPRF as defined

in Fig. 6 to generate the pseudorandom values for the permuted

shares. Specifically, let ⟨𝑘⟩, ⟨𝑘𝑠⟩ ← FABB+ .Rand() be the PRF keys
shares for DDOPRF protocol. 𝑃0 and 𝑃1 run DDOPRF protocol over

⟨x′⟩ and ⟨y′⟩ using key shares ⟨𝑘⟩ and ⟨𝑘𝑠⟩. In Step 4, 𝑃0 and 𝑃1
output the OPRF values of x′ under the PRF key share ⟨𝑘⟩, denoted
as {𝐹 (𝑘, x′𝑖)}𝑖∈[1,𝑛] . In Step 5, 𝑃0 and 𝑃1 output the OPRF values

of y′ under the PRF key share ⟨𝑘⟩ and secondary key share ⟨𝑘𝑠⟩,
denoted as {𝐹 (𝑘, 𝑘𝑠 , y′𝑖)}𝑖∈[1,𝑛] .
Phase 3: Fair Comparison. To make sure that 𝑃0 and 𝑃1 can com-

pare the OPRF values at the same time, and they can get all the

686

Maliciously Secure Circuit Private Set Intersection via SPDZ-Compatible Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(2)

Protocol ΠmcPSI

Parameters: Party 𝑃𝑏 (𝑏 ∈ {0, 1}) ; x = {𝑥1, · · · , 𝑥𝑛 } and y = {𝑦1, · · · , 𝑦𝑛 } denote two sets with 𝑛 values; an authenticated vector x where

x ∈ Z𝑛𝑝 ; the length of each item in x and y is ℓ ; an ASS share ⟨𝑘 ⟩ for the PRF secret key.
Protocol:

1. For 𝑖 ∈ [1, 𝑛]: 𝑃0 and 𝑃1 generate ASS shares of their inputs ⟨𝑥𝑖 ⟩ ← FABB .Input(𝑥𝑖) , ⟨𝑦𝑖 ⟩ ← FABB .Input(𝑦𝑖) ;
2. 𝑃0 and 𝑃1 use ΠSSS to shuffle their shares ⟨x′ ⟩ ← FSSS (⟨x⟩) , ⟨y′ ⟩ ← FSSS (⟨y⟩) ;
3. Let ⟨𝑘 ⟩, ⟨𝑘𝑠 ⟩ ← FABB+ .Rand() be the PRF key share for ΠDDOPRF;

4. Run DDOPRF protocol over ⟨x′ ⟩ using key share ⟨𝑘 ⟩. Denote the output as 𝐹 (𝑘, x′) , where each 𝐹 (𝑘, 𝑥 ′𝑖) = 𝑔

1

𝑘+𝑥 ′
𝑖 ;

5. Run DDOPRF protocol over ⟨y′ ⟩ using key share ⟨𝑘 ⟩, ⟨𝑘𝑠 ⟩. Denote the output as 𝐹 (𝑘, 𝑘𝑠 , y′) ,where each 𝐹 (𝑘, 𝑘𝑠 , 𝑦′𝑖) = 𝑔

𝑘𝑠
𝑘+𝑦′

𝑖 ;

6. Use the bit decomposition operation over ⟨𝑘𝑠 ⟩, and get the share of sequence ⟨𝑏1 · 2ℓ−1 ⟩ · · · ⟨𝑏ℓ · 20 ⟩, where 𝑏𝑡 (𝑡 ∈ [1, ℓ]) is the 𝑡 -th bit of

𝑘𝑠 (left most first);

7. 𝑃0 and 𝑃1 open ⟨𝑏1 · 2ℓ−1 ⟩ · · · ⟨𝑏ℓ · 20 ⟩ one by one, and reconstruct 𝑘𝑠 locally;

8. 𝑃0 and 𝑃1 locally compute (𝐹 (𝑘, 𝑥 ′𝑖))𝑘𝑠 to get 𝐹 (𝑘, 𝑘𝑠 , 𝑥 ′𝑖) ;
9. 𝑃𝑏,𝑏∈{0,1} prepares two empty sets R𝑋𝑏

and R𝑌𝑏
;

10. For 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑛]:
(a) 𝑃0 and 𝑃1 compare 𝐹 (𝑘, 𝑘𝑠 , x′𝑖) and 𝐹 (𝑘, 𝑘𝑠 , y′ 𝑗) ;
(b) If 𝐹 (𝑘, 𝑘𝑠 , x′𝑖) = 𝐹 (𝑘, 𝑘𝑠 , y′ 𝑗) , 𝑃𝑏,𝑏∈{0,1} picks out the matched record R𝑋𝑏

= ⟨x′𝑖 ⟩ ∪ R𝑋𝑏
and R𝑌𝑏

= ⟨y′ 𝑗 ⟩ ∪ R𝑌𝑏
;

11. For 𝑓 (x ∩ y) : 𝑃0 and 𝑃1 call F2PC with the input shares R𝑋
0
and R𝑌

0
, R𝑋

1
and R𝑌

1
, and this F2PC achieves the function 𝑓 ;

12. When 𝑃0 and 𝑃1 open the computation results by invoking FABB .Open, they will check the corresponding MAC values. If an error happens,

the protocol will abort.

Figure 8: Protocol ΠmcPSI using DDOPRF.

comparison results or nothing, 𝑃0 and 𝑃1 will run a bit decomposi-

tion protocol on the secondary key share ⟨𝑘𝑠⟩ in Step 6. Then, they

can open the bit composition of 𝑘𝑠 one by one to reconstruct 𝑘𝑠 .

After that, 𝑃0 and 𝑃1 can compute (𝐹 (𝑘, 𝑥 ′𝑖))𝑘𝑠 = 𝑔

𝑘𝑠
𝑘+𝑥 ′

𝑖 with 𝑔

𝑘𝑠
𝑘+𝑦′

𝑖

to learn which items are in the intersection set.

Phase 4: Function Computation. In the following, 𝑃0 and 𝑃1
intend to find the corresponding shares in the intersection set. In

Step 9, 𝑃0 and 𝑃1 will prepare two empty sets to store the shares. In

Step 10, the parties can find matches over {𝐹 (𝑘, 𝑘𝑠 , x′𝑖)}𝑖∈[1,𝑛] and
{𝐹 (𝑘, 𝑘𝑠 , y′ 𝑗)} 𝑗∈[1,𝑛] and store the corresponding matched shares in

R𝑋𝑏
and R𝑌𝑏 . Therefore, in Step 11, 𝑃0 and 𝑃1 use the stored shares

as inputs to the following function 𝑓 to compute 𝑓 (x ∩ y). This
function can then be securely evaluated by F2PC. Since the input
values have been shuffled before the ΠDDOPRF, 𝑃0 and 𝑃1 cannot

correlate their original input values x and y with the pseudorandom

results. As we can see, the consistency issue we mentioned before

will be solved since the shares sent into the circuit are with MAC

shares. 𝑃0 and 𝑃1 can access the final results to verify whether

any modifications were made to the shares prior to the circuit

computation.

Specifically, as mentioned in [47, 48], some circuit-based PSI

protocols require the function 𝑓 to be symmetric. Namely, the

function’s output must not depend on the order of its inputs. For

non-symmetric functions, the circuit computing the intersection

must shuffle its output to ensure each item of the intersection is

placed in a location independent of the other values. In ΠMcPSI,

the two input sets are secret-shared and shuffled in the first phase,

enabling support for non-symmetric functions as well. (However,

it is challenging to identify practical examples of interesting non-

symmetric functions related to the intersection, aside from the

intersection itself [48]).

Malicious PSI with payload computation (labeled circuit-PSI).
We present how to use ΠmcPSI to achieve PSI with payload com-

putation as follows. Let us assume that two secret-shared tables

⟨𝑋 ⟩ and ⟨𝑌 ⟩, and 𝑋 and 𝑌 are both two-column tables of 𝑃0 and

𝑃1, where the first column is the ID column and the second is the

payload column. 𝑃0 and 𝑃1 want to perform an intersection over

two ID columns for 𝑋 and 𝑌 and then select out all the payload

values associated with the IDs in the intersection.

Similarly, 𝑃0 and 𝑃1 will compute the ASS for their input matri-

ces, shown as ⟨𝑋 ⟩, ⟨𝑌 ⟩. Next, 𝑃0 and 𝑃1 perform row-wise secret-

shared shuffle over ⟨𝑋 ⟩ and ⟨𝑌 ⟩. Let us denote the shuffled ta-

ble as ⟨𝑋 ′⟩ = ⟨𝜋 (𝑋)⟩ and ⟨𝑌 ′⟩ = ⟨𝜌 (𝑌)⟩ for some random per-

mutation methods 𝜋 and 𝜌 . Neither of the parties learns about

the permutation methods. Then, 𝑃0 and 𝑃1 invoke ΠDDOPRF. For

ΠDDOPRF, they first sample a random share ⟨𝑘⟩ as the ASS key

share of the DY-PRF. Parse ⟨𝑋 ′⟩ as (⟨𝑋 ′ (0) ⟩, ⟨𝑋 ′ (1) ⟩) and ⟨𝑌 ′⟩ as
(⟨𝑌 ′ (0) ⟩, ⟨𝑌 ′ (1) ⟩), where 𝑋 ′ (0) and 𝑌 ′ (0) are the ID columns. The

parties run ΠDDOPRF over the ID column of ⟨𝑋 ′⟩ using PRF key

share ⟨𝑘⟩, and run ΠDDOPRF over ⟨𝑌 ′⟩ with PRF key share ⟨𝑘⟩ and
secondary key share ⟨𝑘𝑠⟩. Then, they invoke the bit decomposi-

tion protocol on ⟨𝑘𝑠⟩ to open this key bit by bit. So parties can

compute {𝐹 (𝑘, 𝑘𝑠 , 𝑋 ′ (0)𝑖
)}𝑖∈[1,𝑛] to do the following comparison. At

the end of this protocol, the parties can learn the pseudo-random

values of those ID columns, denoted as {𝐹 (𝑘, 𝑘𝑠 , 𝑋 ′ (0)𝑖
)}𝑖∈[1,𝑛] and

{𝐹 (𝑘, 𝑘𝑠 , 𝑌 ′ (0)𝑖
)}𝑖∈[1,𝑛] .

For 𝑖, 𝑗 ∈ [𝑛], if 𝐹 (𝑘, 𝑘𝑠 , 𝑋 ′ (0)𝑖
) = 𝐹 (𝑘, 𝑘𝑠 , 𝑌 ′ (0)𝑗

), P0 (P1) picks out
the matched records 𝑅𝑋0

= ⟨𝑋 ′𝑖⟩ ∪ 𝑅𝑋0
(𝑅𝑋1

= ⟨𝑋 ′𝑖⟩ ∪ 𝑅𝑋1
) and

𝑅𝑌0 = ⟨𝑌 ′ 𝑗 ⟩ ∪𝑅𝑌0 (𝑅𝑌1 = ⟨𝑌 ′𝑖⟩ ∪𝑅𝑌1). For payload computation, the

parties take their shares 𝑅
(1)
𝑋0

and 𝑅
(1)
𝑌0

, 𝑅
(1)
𝑋1

and 𝑅
(1)
𝑌1

as inputs to the

following payload computation. Note that, due to the secret-shared

687

Proceedings on Privacy Enhancing Technologies 2025(2) Yaxi Yang, et al.

shuffle, the parties do not know which records are matched, and

they only learn the number of matched records at the end of the

protocol.

4 Security Proof and Fairness Analysis
In this section, we will give a security proof of ΠmcPSI and also

analysis the two-party fairness in ΠmcPSI.

Theorem 2. In the {FABB,FABB+ ,FSSS,FDDOPRF}-hybrid model,
the protocol ΠmcPSI implements FmcPSI correctly and securely against
malicious adversary and achieves (2, 0)-fair.

Proof Sketch. In this part, we give an essential proof sketch of

FmcPSI to establish that it is maliciously secure and fair. First, we

solve the consistent issue by designing an SPDZ-compatible OPRF

protocol (i.e., DDOPRF). That is, we augment OPRF by adding

the authentication mechanisms provided by SPDZ in the secret-

sharing format. Instead of using heavy asymmetric-based commit-

ment schemes, SPDZ provides the symmetric-key counterpart MAC

for authentication. A MAC is a way of authenticating a value, en-

suring that any revisions to the value can be detected by checking

its MAC. DDOPRF perfectly integrates all the features in SPDZ,

including MAC. Therefore, the computation results sent to a func-

tion 𝑓 will be checked by MAC, and any changes to those results

will be detected. At the end of this protocol, the correctness of

FmcPSI can be ensured. Nevertheless, the correctness and security

of FmcPSI are guaranteed by the primitives used in it. The detailed

simulation-based proofs are shown in Appendix C.

Fairness of Protocol ΠmcPSI. Next, we discuss the fairness of our
protocol. FmcPSI achieves (2, 0)-fair. According to the partial fair-

ness definition in Definition 2, whenever the adversary aborts the

protocol, the upper bound of its advantage in recovering the results

is known one more bit than the other party. Therefore, the recov-

ering time of the adversary will be half of the other party, and it

can achieve the same probability of success. Besides, the fairness

of FmcPSI is guaranteed by the bit-decomposition protocol, which

is also built on SPDZ and secure under the malicious model.

In ΠmcPSI, one party obtains PRF values of the input set 𝑔
1

𝑘+𝑥 ′
𝑖

(𝑖 ∈ [1, 𝑛]), and another party gets re-randomized input set with two

PRF keys ⟨𝑔
𝑘𝑠

𝑘+𝑦′
𝑖 ⟩. We propose that the secondary key 𝑘𝑠 is used to

re-randomize the PRF value and ensure fairness. If two parties only

compute standard PRF values with only one PRF key, i.e., 𝑔
1

𝑘+𝑥 ′
𝑖 and

𝑔
1

𝑘+𝑦′
𝑖 , then they open those PRF values to each other one by one to

compare each value. However, if one of the parties is corrupted, the

corrupted party can quit at any time during the opening process.We

can observe that, the corrupted party can learn some information,

such as the intersection set having at least 𝑡 items if the corrupted

party finds 𝑡 items in the intersection before quitting. Moreover, the

corrupted party might obtain more information than another party.

If the corrupted party aborts after another party shares one item (if

this item belongs to the intersection set), the corrupted party can

learn the intersection set at least has one item but another party

learns nothing. So it would be hard to measure the leakage based

on the ideal/real-world simulation method. The simulator can not

simulate when the adversary would abort and define the amount

of leakage.

Therefore, we construct ΠDDOPRF, and we find that if we con-

struct two correlated keys for the PRF value, the problems men-

tioned above can be solved. Specifically, two parties will open 𝑔
1

𝑘+𝑥 ′
𝑖

and ⟨𝑔
𝑘𝑠

𝑘+𝑦′
𝑖 ⟩. Because the randomization of the PRF value ⟨𝑔

𝑘𝑠
𝑘+𝑦′

𝑖 ⟩ is
guaranteed by the secondary key 𝑘𝑠 , two parties can not distinguish

it with a random value. Afterward, they invoke a bit decomposition

protocol to recover 𝑘𝑠 bit by bit. Subsequently, the two parties can

locally compute the PRF values for input sets with the same keys

to get the intersection result. We can observe that, the adversary

will learn the final intersection set or nothing.

If two parties intend to compute fair 𝑓 (PSI), for the final result of

𝑓 (PSI), two parties also can use the same trick as used in DDOPRF

to guarantee fairness. To be specific, before the parties reveal the
final shares, they will select a secret key to encrypt their shares.

After they open the encrypted shares, they will open the encrypted

keys bit-by-bit to decrypt the shares and get the final results.

5 Implementation and Performance
In this section, we will experimentally evaluate our circuit-PSI

protocol ΠmcPSI. In § 5.1, we give the benchmarking environment.

Then in § 5.2, we show the offline and online performance of ΠmcPSI

and give the breakdown of computation and communication costs,

and we show the details in terms of multiple-threads. In § 5.3, we

compare ΠmcPSI with the state-of-the-art semi-honest circuit-PSI

protocol [10] in single-threaded runtime on different networks,

and also other representative PSI protocols [23, 40]. Additionally,

to demonstrate the parallelizability and scalability of ΠmcPSI, we

present its performance across various applications, including PSI-

Sum and PSI-Variance, using different numbers of threads. These

results are detailed in § 5.4. The code of our paper is available at

https://github.com/mcPSI.

5.1 Benchmarking Environment
We implement ΠmcPSI in C++ and based on YACL

3
[39], which

provides several cryptographic interfaces (e.g., pseudo-random gen-

erator, oblivious transfer, network). We run most experiments on a

desktop PC equipped with 12th Gen Intel(R) Core(TM) i9-12900K

at Ubuntu 20.04 LTS and 125 GB of memory and in three different

network settings with the Linux tc command. One is a local host

setting. Another is the local-area network (LAN) with 1 Gbps. The

third setting simulates two wide-area networks (WAN): one with

100 Mbps and another with 10 Mbps, both with a 0.02s round-trip

time (RTT). Except for the experiments compared with MPRS20

[40], which are not open-source and were run on the Google Cloud

Platform
4
using a virtual machine equipped with an E5 processor

and 3.75 GB of memory. To ensure a fair comparison, we also tested

ΠmcPSI on the same platform. In our paper, the computational se-

curity parameter is 𝜅 = 128, the statistical security parameter is

𝜆 = 64, and the size of each element is ℓ = 128.

5.2 Performance of ΠmcPSI

In this section, we show the thorough performance of ΠmcPSI. We

give the specific numbers of ΠmcPSI in the different network settings

3
https://github.com/secretflow/yacl

4
See https://console.cloud.google.com/ for different cloud services.

688

https://github.com/liang-xiaojian/McPSI

Maliciously Secure Circuit Private Set Intersection via SPDZ-Compatible Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(2)

Table 1: The break down and total running time (in 𝑠) and communication cost (in MB) of the online phase of ΠmcPSI for different
set sizes (𝑛 ∈ {28, 210, 212, 214, 216, 218, 220}) in LAN andWAN settings. T= {1, 2, 4, 8} represents the number of threads. The total time
includes the functionality of secret shared shuffle and DDOPRF in Phases 1, 2, and 3 of ΠmcPSI, and the system initialization.

Set size Time LAN Time WAN 100Mbps Time WAN 10Mbps Comm.
T=1 T=2 T=4 T=8 T=1 T=2 T=4 T=8 T=1 T=2 T=4 T=8

2
8

FSSS 0.002 0.002 0.002 0.002 0.005 0.005 0.005 0.005 0.051 0.051 0.051 0.051 0.024

FDDOPRF 0.136 0.085 0.079 0.078 0.153 0.122 0.109 0.096 0.228 0.176 0.173 0.173 0.057

Total 0.146 0.099 0.089 0.088 0.169 0.138 0.124 0.111 0.299 0.247 0.244 0.244 0.081

2
10

FSSS 0.004 0.004 0.004 0.004 0.022 0.022 0.022 0.022 0.206 0.206 0.206 0.206 0.098

FDDOPRF 0.466 0.259 0.198 0.163 0.496 0.316 0.242 0.189 0.727 0.548 0.531 0.487 0.214

Total 0.479 0.272 0.211 0.176 0.529 0.349 0.308 0.223 0.956 0.778 0.759 0.716 0.312

2
12

FSSS 0.010 0.008 0.007 0.007 0.083 0.081 0.081 0.079 0.747 0.746 0.746 0.746 0.393

FDDOPRF 1.782 1.052 0.682 0.511 1.915 1.139 0.688 0.606 2.773 1.877 1.549 1.425 0.754

Total 1.861 1.129 0.758 0.587 2.015 1.283 0.808 0.755 3.627 2.920 2.416 2.236 1.147

2
14

FSSS 0.039 0.037 0.034 0.034 0.318 0.316 0.315 0.315 3.015 2.964 2.962 2.962 1.573

FDDOPRF 7.323 4.497 2.553 1.786 7.474 4.862 2.734 2.161 10.663 8.084 5.876 5.323 2.946

Total 7.431 4.603 2.657 1.872 7.881 5.267 3.138 2.565 13.814 11.183 8.977 8.422 4.519

2
16

FSSS 0.134 0.131 0.129 0.129 1.226 1.208 1.203 1.203 11.904 11.864 11.863 11.863 6.291

FDDOPRF 28.433 18.789 9.571 6.193 30.594 19.814 10.944 8.046 41.699 30.305 22.582 19.866 11.557

Total 28.661 19.012 9.791 6.413 31.942 21.146 12.269 9.372 54.856 43.422 35.697 32.981 17.983

2
18

FSSS 0.583 0.572 0.564 0.555 4.808 4.808 4.806 4.798 47.241 47.206 47.169 47.166 25.166

FDDOPRF 112.53 72.825 43.312 27.744 118.595 67.362 42.581 29.178 167.971 125.233 91.082 79.919 46.682

Total 113.688 73.492 44.251 28.674 123.981 72.748 47.965 34.556 217.773 175.160 140.818 129.647 71.848

2
20

FSSS 2.354 2.317 1.289 1.277 19.950 19.936 19.916 19.916 195.471 195.437 195.402 195.398 101.664

FDDOPRF 473.682 241.866 160.942 105.223 468.108 306.401 158.614 109.413 670.684 514.244 392.388 315.238 185.680

Total 477.694 245.841 163.877 108.147 490.865 329.156 181.456 132.258 869.091 712.617 591.726 513.372 287.344

Table 2: Running time (in seconds) and communication cost
(in MB) of online and offline in ΠmcPSI for different set sizes
(𝑛 ∈ {28, 210, 212, 214, 216, 218, 220}) in localhost setting.

Set size Time Comm.

offline online offline online

2
8

3.126 0.139 7.250 0.081

2
10

5.799 0.461 29.711 0.312

2
12

10.745 1.793 117.890 1.147

2
14

93.290 7.126 471.781 4.519

2
16

1462.487 28.303 1892.081 17.983

2
18

25536.403 113.454 7592.139 71.848

2
20

398582.448 477.216 30459.672 287.334

Table 3: Running time (in seconds) and communication cost
(in MB) of the online phase in ΠmcPSI and the semi-honest
circuit-PSI protocol CGS22 [10] for different set sizes (𝑛 ∈
{28, 210, 212, 214, 216, 218, 220}) in different network settings.

set size Time LAN Time WAN 100Mbps Time WAN 10Mbps Comm.

CGS22 [10] Ours CGS22 [10] Ours CGS22 [10] Ours CGS22 [10] Ours

2
8

0.22 0.15 1.78 0.17 3.67 0.31 0.38 0.08

2
10

0.33 0.48 2.53 0.53 5.59 0.96 1.53 0.31

2
12

0.55 1.86 4.09 2.02 8.01 3.63 6.10 1.15

2
14

0.70 7.13 7.43 7.88 15.97 13.81 24.33 4.52

2
16

1.65 28.66 16.49 31.94 35.66 54.86 99.48 17.98

2
18

6.07 113.69 42.85 123.98 87.13 217.77 397.65 71.85

2
20

24.78 477.69 162.61 490.87 342.17 869.09 1700 287.34

semi-honest
 malicious

Running time (ms)

C
om

m
un

ic
at

io
n

(K
B

)

27 28 29

29

211

213

27 this work

CGS22

HEK12

MPRS20

RS21(IKNP)

RS21(SilentOT)

Figure 9: Time and communication for circuit-PSI protocols
on 𝑛 = 256 and LAN network setting.

in Table 1. We also break down the online running time and com-

munication cost for the subprotocols in ΠmcPSI, which include the

secret shared shuffling protocol FSSS in Phase 1, as well as the DDO-

PRF protocol FDDOPRF with fair comparison described in Phases 2

and 3. The total time reported encompasses the entire online time,

including system initialization and offline cache loading time.

In this table, we evaluate the online costs for input set sizes

of {28, 210, 212, 214, 216, 218, 220} and different numbers of threads

(Thread = 1, 2, 4, 8). We can conclude that the running time of FSSS
is not significantly affected by the number of threads. Because our

implementation employs multiple threads for various operations in

689

Proceedings on Privacy Enhancing Technologies 2025(2) Yaxi Yang, et al.

Table 4: Running time (in seconds) and communication cost
(in MB) of the online phase in ΠmcPSI compared to the online
phase of the malicious PSI-SUM protocol MPRS20 [40], for
varying set sizes (𝑛 ∈ 212, 214, 216, 218, 220) in a localhost setting
on Google Cloud Platform.

Set size Time (Online) Comm. (Online)

MPRS20 [40] Ours MPRS20 [40] Ours

2
12

141 8.51 1.89 1.15

2
14

553 37.50 7.56 4.52

2
16

2215 154.19 28.29 17.98

2
18

8860 629.58 111.22 71.85

2
20

35583 2020.43 436.72 287.34

Table 5: Running time (in seconds) and communication cost
(in MB) of ΠmcPSI compared to the semi-honest PSI protocol
HEK12 [23] for varying set sizes (𝑛 ∈ 212, 214, 216, 218) in a lo-
calhost setting on Google Cloud Platform.

Set size Time (Total) Comm. (Total)

HEK12 [23] Ours HEK12 [23] Ours

2
12

0.61 51.67 209.92 119.04

2
14

3.16 357.68 1002.62 476.30

2
16

12.65 4019.52 4941.82 1910.06

2
18

58.83 62344.25 24139.47 8043.99

FABB and FABB+. The online computation of FSSS involves only one
addition and permutation operation, which is not computationally

intensive for the CPU. Details of the specific operations in FSSS can
be found in Appendix B and [57]. Besides, to guarantee fairness in
ΠDDOPRF, we need to change the arithmetic sharings of a key to

boolean sharings via bit decomposition protocol. In our implemen-

tation, we use the 0/1 arithmetic sharings to substitute the boolean

sharings to avoid a complex implementation.

For different thread numbers, we can conclude that when the

input set is relatively small (≤ 2
8
), varying the number of threads

does not significantly enhance efficiency. However, for larger input

sets, increasing the number of threads considerably reduces time

consumption. For ΠDDOPRF in ΠmcPSI, the malicious OTs protocol

from [55] is used as a primitive in ΠDDOPRF. We note that all OTs

execution and the MAC check can be done in a batch in one round.

Additionally, we adopt the method for generating MACs in SPDZ

as described in [61].

We evaluate the runtime and communication costs for both

offline and online phases across different set sizes, as shown in

Table 2. The offline process involves generating large quantities of

Beaver triples and correlated random values, which are essential

for enabling secret sharing, shuffling, and the DDOPRF protocol.

Computation in the offline phase is independent of the input sets.

However, the main cost during the offline phase arises from the

shuffle process. The results indicate that the offline communication

cost is 𝑂 (𝑛) and the computation cost is 𝑂 (𝑛2), while the online
communication and computation costs scale linearly with the size

of the input sets.

Table 6: The online running time (in seconds) and commu-
nication cost (in MB) of malicious sorting protocol in EMP-
ag2pc for different set sizes (𝑛 ∈ {28, 210, 212, 214, 216}) in local-
host setting.

Set size 2
8

2
10

2
12

2
14

2
16

Time (Online) 0.060 0.457 3.79 17.47 98.71

Comm. (Total) 48.47 294.22 1662.75 9745.52 57113

5.3 Performance Comparisons
In this section, we compare ΠmcPSI with the presentative two-party

PSI-related protocols [10, 23, 40].

Comparison with CGS22 [10]. Compared to the state-of-the-art

semi-honest circuit-PSI protocol [10] (IKNP-style OT based), Ta-

ble 3 shows that ΠmcPSI achieves better online efficiency for smaller

input set sizes in the WAN setting with higher latency. The high-

lighted cells represent the best efficiency under different settings.

Although ΠmcPSI introduces some additional costs at certain levels

compared to [10], it remains competitive in terms of communica-

tion costs and runtime efficiency on WAN networks. Specifically,

the communication cost of ΠmcPSI is around 5x less than [10], and

achieves better computation cost for the small input set size (2
8
) in

the LAN setting.

Comparison with MPRS20 [40]. To fairly compare with MPRS20

[40], we also conduct the experiments on a virtual machine on the

Google Cloud Platform equipped with the same condition. Specifi-

cally, MPRS20 [40] focuses on PSI-SUM computation, and the results

in Table 4 show the online computation performance of MPRS20.

Thus, we consider the online computation of the same function

𝑓 =
∑

x ∩ y, which aims to compute the sum of the items in the

intersection set. Both our work and MPRS20 focus on the malicious

setting and online computation time. Compared to MPRS20, the

running time of ΠmcPSI is approximately 16 times faster, as shown

in Table 4, and our communication cost is about 1.5 times lower

than that of MPRS20.

Comparison with HEK12 [23]. HEK12 [23] provides a semi-

honest PSI based on pure garbled circuit methods without using

hashing-based optimizations. In detail, a circuit will first sort two

input sets and then reduce the duplicated items, and shuffle all

items to output the items in the intersection set. The comparison

experiments with HEK12 were also conducted on the Google Cloud

Platform. Additionally, we integrated the offline and online com-

putation times. As shown in Table 5, compared to the semi-honest

circuit-PSI protocol [23], ΠmcPSI (including both offline and online

times) has a running time that is, on average, 2
8
times slower. Then,

we compare the communication costs ofΠmcPSI with [23] andΠmcPSI

Table 7: Additional running time (in seconds) and communi-
cation cost (in MB) of PSI-Sum and PSI-Variance in LAN and
WAN network settings, with an intersection set size of 100.

intersection
set size

Time LAN Time WAN 100Mbps Comm. (MB)

Sum Variance Sum Variance Sum Variance

100 ≈ 0 +0.003 ≈ 0 +0.004 0 +0.035

690

Maliciously Secure Circuit Private Set Intersection via SPDZ-Compatible Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(2)

Table 8: Theoretical comparison of different PSI-related protocols, using the computational security 𝜅 = 128, the length of each
item ℓ , and the statistical security 𝜆 = 40. 𝑛 is the size of the input set, and we consider the sizes of two input sets to be equal. 𝜒
represents the upper bound on the number of cycles in a cuckoo graph of PaXoS.

Protocol Aims Fairness Comm. asymptotic Assumption Malicious

HEK12 [23] PSI ✗ (2ℓ𝑛𝑙𝑜𝑔(2𝑛) + ((3𝑛 − 1)ℓ − 𝑛) + 2ℓ𝑛𝑙𝑜𝑔2 (2�̂�))𝜙
CDH

✗

CGS22 [10] PSI, circuit-PSI ✗ 0.25ℓ𝑛𝜆 + 0.5ℓ𝜆 + 8ℓ𝑛 ✗

RS21 [54] PSI, circuit-PSI ✗ (𝜆 + 2𝑙𝑜𝑔(𝑛))𝑛 + 217𝜅𝑛0.05 + 𝜅𝑛 + |baseOT| LPN+CDH ✗

RS21 [54] PSI ✗ 3𝜅𝑛 + 217𝜅𝑛0.05 + |baseOT|
LPN+CDH

✓

RR22 [51] PSI ✗ 2.3𝜅𝑛 + 214.5𝜅 + |baseOT| ✓

PaXoS [46] PSI ✗ 2𝜅𝑛 + ℓ (2.4𝑛 + 2𝜆 + 𝜒) + 𝜆(2.4𝑛 + 2ℓ) + |baseOT|
CDH

✓

MPRS20 [40] PSI-Sum ✗ 𝑂 (𝑛) ✓

Ours PSI, circuit-PSI ✓ (2𝜆 + 2)ℓ𝑛 q-DDHI ✓

features a good communication performance, which are around 3

times smaller than [23].

Intuitively, to enhance semi-honest GC components to their ma-

licious versions and obtain a maliciously secure circuit-PSI protocol,

it is crucial for 𝑃0 and 𝑃1 to input and sort their sets in the mali-

cious setting. Therefore, we evaluate the malicious sorting using the

state-of-the-art maliciously secure GC library in the EMP-toolkit

[59]. It will transform a sorting program into a circuit file, which

can then be executed by an authenticated garbling method [60]

to achieve malicious security. Table 6 shows the online running

time and the communication cost of the maliciously secure sorting

protocol. The complexity of both running time and communication

cost is O(𝑛𝑙𝑜𝑔𝑛). This results in a higher computation and commu-

nication overhead, making it more impractical compared to ΠmcPSI.

However, the detailed construction of a purely GC-based malicious

circuit-PSI protocol is beyond the scope of this paper. We leave this

exploration for future work.

5.4 Scalability and Practicality
In this section, we will extend our circuit-PSI protocol to achieve

some specific computations: PSI-Sum and PSI-Variance, which are

important metrics in database operations. We evaluate the con-

sumption for computing a function on the intersection set, and the

functions 𝑓 are sum and variance computations. As shown in Ta-

ble 7, we separately evaluate the running time and communication

cost of secure sum and variance computation in a secret-shared

way based on SPDZ. It means after parties obtain shares ⟨x ∩ y⟩,
the consumption of they send the shares to a function. When the

intersection set size is 100, the additional running time of the sum

computation is nearly zero, and no extra communication cost since

the sum computation is all local. The variance computation involves

sum, multiply, and square root operations. Adding the running time

and communication cost of sum and variance to those of ΠPSI re-

sults in the total running time and communication cost for PSI-Sum

and PSI-Variance. The cost of function computation is linear with

the intersection set size.

5.5 Theoretical Analysis
In Table 8, we provide a thorough theoretical comparison of our pro-

tocols with other semi-honest and malicious PSI-related protocols

in different security settings. HEK12 [23] is a pure circuit-based PSI

protocol in a semi-honest setting. Its communication cost is linear

with the number of used gates. Therefore, we use 𝜙 to represent

the communication cost for one non-free gate. Next, we show the

main communication cost of CGS22 [10], a private membership

test protocol.

As for malicious protocols, although MPRS20 [40] achieves lin-

ear communication complexity, it relies on too many asymmetric

operations, including the Pedersen commitments and ElGamal en-

cryptions, resulting in low efficiency (shown in Tables 4), making

it challenging to measure with uniform parameters. In ΠmcPSI, we

consider ℓ = 2𝜅 since the field size of the DDOPRF is 2𝜅. More

specifically, in the shuffle protocol, the offline communication cost

is 𝑂 (𝜅𝑛 log𝑛 + 𝜅𝑛).l The online communication cost of the shuffle

process is 2ℓ𝑛 as it needs to shuffle the input items and their MAC

values. Then, in the DDOPRF protocol, the communication cost

is 2𝜆ℓ𝑛. In Table 8, we focus solely on the online linear commu-

nication cost of ΠmcPSI. In conclusion, ΠmcPSI is not only the first

malicious circuit-PSI protocol but also achieves fairness and better

efficiency.

6 Related Work
In this section, we will present relevant PSI works and discuss

challenges in extending the existing PSI solutions to the malicious

Circuit-PSI problem.

Malicious PSI. The most common method to achieve malicious

PSI protocols [7, 18, 46, 51, 53, 54, 66] is utilizing the Oblivious

Key-Value Store (OKVS) structures. Dong et al. [18] propose a semi-

honest two-party PSI protocol based onGarbled Bloom Filters (GBF),

one of OKVS structures. Based on Dong et al.’s [18] work, Rindal

et al. [53] convert it to a malicious setting via a cut-and-choose

technique. Next, Pinkas et al. [46] propose the first two-party PSI

protocol with linear communication and security in the malicious

setting. In their work, an OKVS structure based on cuckoo hashing

is proposed and achieves a constant rate. Then, Rindal et al. [54]

optimize the OKVS structure by combining VOLE, and achieve

the performance improvement compared to Pinkas et al. [46]. Fur-

thermore, Bienstock et al. [7] present an RB-OKVS scheme, which

achieves the best encoding rate (0.97) and the best efficiency com-

pared to priors OKVS structures. Plugging the RB-OKVS scheme

691

Proceedings on Privacy Enhancing Technologies 2025(2) Yaxi Yang, et al.

into the PSI implementation [51], it obtains the most efficient ma-

licious PSI to date. However, if we trivially extend malicious PSI

to Circuit-PSI, that is to say, the parties send the PSI results to

the following functionality, it will reveal {x ∩ y} to parties. To

extend two-party PSI in malicious settings to the multiparty case,

a zero-sharing technique is proposed [24, 31]. If one item is in the

intersection set, then all parties will get secret-shared values that

sum up to zero. Ben et al. [4] propose the first concretely efficient

maliciously secure multiparty PSI protocol, where combining re-

sults from semi-honest multiparty PSI [24] and malicious two-party

PSI [53]. Afterward, Nevo et al. [42] also based on the zero-sharing

idea and propose a more efficient multiparty PSI in a malicious

setting. The concrete complexity of their protocol is larger only by

a small factor (2-3) than the size of the input set (𝑛), while [4] is

around 200×. However, Nevo et al. [42] introduce an aided party

(pivot) in their model to assist the maliciously secure computation.

Semi-honest Circuit-PSI. The functionality of Circuit-PSI is to se-
curely compute arbitrary functions over the intersection set. Huang

et al. [23] present the notion of Circuit-PSI, and use a generic

garbled-circuit approach [65] to achieve it. It achieves 𝑂 (𝑛𝑙𝑜𝑔𝑛)
complexity with small constant factors, where 𝑛 is the size of the

input set. Afterward, Pinkas et al. [47] propose a Circuit-PSI proto-

col based on OPRF and reduce the communication complexity to

𝑂 (𝑛). However, the computational complexity of their protocol is

super-linear 𝑂 (𝑛(𝑙𝑜𝑔𝑛)2). While this bottleneck is solved in [10],

Chandran et al. propose a concretely efficient Circuit-PSI protocol

with linear complexity. Both protocols [10, 47] are based on the

IKNP-style OT extension protocol [2], and the communication cost

of those can be improved by utilizing the Vector Oblivious Linear

Evaluation (VOLE) style OT extensions as discussed in [51, 54].

However, it will involve more computation cost, and the concrete

performance depends on the network parameters [10]. Specifically,

those Circuit-PSI protocols [10, 47, 51, 54] are secure in the semi-

honest setting.

The core idea of the OPRF-based Circuit-PSI protocols [10, 47]

is similar to PSI protocols [30, 49] except that the intersection

results are secret-shared between the parties, which can be used

as inputs of the following circuit computation. In more detail, for

a value 𝑣0 (resp. 𝑣1) in the input set of 𝑃0 (resp. 𝑃1), 𝑃0 (resp. 𝑃1)

will gets an output random value 𝑎0 (resp. 𝑎1). If 𝑣0 = 𝑣1, and 𝑣0
is in the intersection set, then we can get 1 = 𝑎0 ⊕ 𝑎1. Otherwise,
0 = 𝑎0 ⊕ 𝑎1. As we can see, if we adopt those Circuit-PSI protocols

to the malicious setting, the main challenge is how to guarantee

the consistency of secret-shared results and inputs of the following

circuits. Since the intersection set results are secret-shared between

two parties, a malicious party might tamper with the secret-shared

results and send the tampered results to the following circuits. Then,

the correctness of those Circuit-PSI results cannot be guaranteed.

Next, the protocols in [33] also achieve malicious Circuit-PSI with

the help of an untrusted third party, and it also reveals the size of

the intersection set to the untrusted party.

Oblivious Pseudorandom Function. OPRF is an essential primi-

tive for building PSI-related protocols. The frequently used method

for building OPRF is based on OT extension protocol [2]. As wemen-

tioned above, a line of Circuit-PSI works [12, 30, 31, 45, 47] based

on OT extension are subject to the consistency issue when triv-

ially converting those protocols into malicious Circuit-PSI. Dodis-

Yampolskiy PRF (DY-PRF) [16] is another method to construct OPRF

[9]. The DY-PRF-based OPRF can be combined with cryptographic

commitment protocols and serve as "glue" for other parts of a

Circuit-PSI protocol to solve the consistency issue in the malicious

setting. Miao et al. [40] combine a DY-PRF-based OPRF protocol

with a Pedersen commitment protocol and achieve a PSI-sum pro-

tocol in the malicious setting. Their DY-PRF is built by an addi-

tively homomorphic encryption scheme. Therefore, their protocol

is subject to the efficiency limitation of HE. In our paper, we take

advantage of the secret sharing and authentication methods [29]

to avoid the costliest part of their [40] protocol.

7 Conclusion
In this work, we focus on designing the first maliciously secure

circuit-PSI protocol. Specifically, we develop a distributed dual-

key oblivious PRF, which is integral to our circuit-PSI protocol

design. Additionally, we introduce several gadgets to enhance our

protocol’s efficiency, including a batched consistency check. Our

approach also incorporates two-party fairness into the circuit-PSI

protocol.

In terms of efficiency, our protocol is competitive with existing

semi-honest circuit-PSI protocols, effectively filling a gap in the PSI

field. Furthermore, our protocol employs the primitives of the SPDZ

framework in a black-box manner, allowing for the substitution of

these primitives with more efficient alternatives.

Future work. A drawback of our protocol is that the size of the

intersection is disclosed, a vulnerability that can be mitigated using

differential privacy methods. Besides, we believe that enhancing the

semi-honest GC-based PSI to a pure GC-based malicious circuit-PSI

protocol is not that apparent. We can also leave this as a future

work.

Besides, many recent works have focused on how to extend the

two-party PSI-related protocols to the multi-party setting. If we

trivially extend our malicious circuit-PSI protocol into a multi-party

setting, it needs a multi-party secret-shared shuffle protocol, and

the DDOPRF protocol will be executed between 𝑛 parties. It may

result in low efficiency and non-linear communication complexity.

Therefore, it remains to design a maliciously secure circuit-PSI

protocol with better complexity.

Acknowledgments
This research is supported in part by the National Research Foun-

dation, Singapore, under its National Satellite of Excellence Pro-

gramme “Design Science and Technology for Secure Critical In-

frastructure: Phase II” (Award No: NRF-NCR25-NSOE05-0001) and

the National Natural Science Foundation of China under Grant

62302118, Grant 62261160651. Any opinions, findings and conclu-

sions or recommendations expressed in this material are those of

the author(s) and do not reflect the views of National Research

Foundation, Singapore.

References
[1] Aydin Abadi and Steven J Murdoch. 2023. Earn While You Reveal: Private Set

Intersection that Rewards Participants. arXiv preprint arXiv:2301.03889 (2023).

692

Maliciously Secure Circuit Private Set Intersection via SPDZ-Compatible Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(2)

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More efficient oblivious transfer and extensions for faster secure computation. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 535–548.

[3] Amos Beimel. 2011. Secret-sharing schemes: A survey. In International conference
on coding and cryptology. Springer, 11–46.

[4] Aner Ben-Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky.

2022. Psimple: Practical multiparty maliciously-secure private set intersection. In

Proceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security. 1098–1112.

[5] Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L Rivest. 1990. A fair

protocol for signing contracts. IEEE Transactions on Information Theory 36, 1

(1990), 40–46.

[6] Václad E Beneš. 1964. Optimal rearrangeable multistage connecting networks.

Bell system technical journal 43, 4 (1964), 1641–1656.
[7] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. 2023. Near-

Optimal Oblivious Key-Value Stores for Efficient PSI, PSU and Volume-Hiding

Multi-Maps. Cryptology ePrint Archive, Paper 2023/903. https://eprint.iacr.org/

2023/903 https://eprint.iacr.org/2023/903.

[8] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. 2021. Sublinear GMW-style

compiler for MPC with preprocessing. In Advances in Cryptology–CRYPTO 2021:
41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16–20, 2021, Proceedings, Part II 41. Springer, 457–485.

[9] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. 2022. SoK: Oblivious pseudo-

random functions. In 2022 IEEE 7th European Symposium on Security and Privacy
(EuroS&P). IEEE, 625–646.

[10] Nishanth Chandran, Divya Gupta, and Akash Shah. 2022. Circuit-PSI with

linear complexity via relaxed batch OPPRF. Proceedings on Privacy Enhancing
Technologies (2022).

[11] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. 2020. Secret-shared shuffle.

In Advances in Cryptology–ASIACRYPT 2020: 26th International Conference on the
Theory and Application of Cryptology and Information Security, Daejeon, South
Korea, December 7–11, 2020, Proceedings, Part III 26. Springer, 342–372.

[12] Melissa Chase and Peihan Miao. 2020. Private set intersection in the internet

setting from lightweight oblivious PRF. In Advances in Cryptology–CRYPTO 2020:
40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17–21, 2020, Proceedings, Part III 40. Springer, 34–63.

[13] Qian Chen, Zilong Wang, Hongbo Wang, and Xiaodong Lin. 2023. FedDual:

Pair-Wise Gossip Helps Federated Learning in Large Decentralized Networks.

IEEE Transactions on Information Forensics and Security 18 (2023), 335–350. https:

//doi.org/10.1109/TIFS.2022.3222935

[14] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty

computation from somewhat homomorphic encryption. In Annual Cryptology
Conference. Springer, 643–662.

[15] Sumit Kumar Debnath and Ratna Dutta. 2016. New realizations of efficient and

secure private set intersection protocols preserving fairness. In International
Conference on Information Security and Cryptology. Springer, 254–284.

[16] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A verifiable random function

with short proofs and keys. In International Workshop on Public Key Cryptography.
Springer, 416–431.

[17] Changyu Dong, Liqun Chen, Jan Camenisch, and Giovanni Russello. 2013. Fair

private set intersection with a semi-trusted arbiter. In Data and Applications
Security and Privacy XXVII: 27th Annual IFIP WG 11.3 Conference, DBSec 2013,
Newark, NJ, USA, July 15-17, 2013. Proceedings 27. Springer, 128–144.

[18] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection

meets big data: an efficient and scalable protocol. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. 789–800.

[19] Thai Duong, Duong Hieu Phan, and Ni Trieu. 2020. Catalic: Delegated PSI cardi-

nality with applications to contact tracing. InAdvances in Cryptology–ASIACRYPT
2020: 26th International Conference on the Theory and Application of Cryptology
and Information Security, Daejeon, South Korea, December 7–11, 2020, Proceedings,
Part III 26. Springer, 870–899.

[20] Saba Eskandarian and Dan Boneh. 2021. Clarion: Anonymous communication

from multiparty shuffling protocols. Cryptology ePrint Archive (2021).
[21] Oded Goldreich and Yair Oren. 1994. Definitions and properties of zero-

knowledge proof systems. Journal of Cryptology 7, 1 (1994), 1–32.

[22] S Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. 2011. Complete

fairness in secure two-party computation. Journal of the ACM (JACM) 58, 6
(2011), 1–37.

[23] Yan Huang, David Evans, and Jonathan Katz. 2012. Private set intersection: Are

garbled circuits better than custom protocols?. In NDSS.
[24] Roi Inbar, Eran Omri, and Benny Pinkas. 2018. Efficient scalable multiparty

private set-intersection via garbled bloom filters. In International Conference on
Security and Cryptography for Networks. Springer, 235–252.

[25] Ferhat Karakoç and Alptekin Küpçü. 2020. Linear complexity private set inter-

section for secure two-party protocols. In International Conference on Cryptology
and Network Security. Springer, 409–429.

[26] Ferhat Karakoç and Alptekin Küpçü. 2023. Enabling Two-Party Secure Computa-

tion on Set Intersection. Cryptology ePrint Archive (2023).
[27] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party com-

putation. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security. 1575–1590.

[28] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: faster mali-

cious arithmetic secure computation with oblivious transfer. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
830–842.

[29] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: making SPDZ

great again. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 158–189.

[30] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-

ficient batched oblivious PRF with applications to private set intersection. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 818–829.

[31] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.

2017. Practical multi-party private set intersection from symmetric-key tech-

niques. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 1257–1272.

[32] Peeter Laud. 2021. Linear-time oblivious permutations for SPDZ. In Cryptology
and Network Security: 20th International Conference, CANS 2021, Vienna, Austria,
December 13-15, 2021, Proceedings 20. Springer, 245–252.

[33] Phi Hung Le, Samuel Ranellucci, and S Dov Gordon. 2019. Two-party private

set intersection with an untrusted third party. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 2403–2420.

[34] Yuxian Li, Jian Weng, Junzuo Lai, Yingjiu Li, Jianfei Sun, Jiahe Wu, Ming Li,

Pengfei Wu, and Robert H. Deng. 2024. AuditPCH: Auditable Payment Channel

Hub with Privacy Protection. IEEE Transactions on Information Forensics and
Security (2024), 1–1. https://doi.org/10.1109/TIFS.2024.3515820

[35] Yehuda Lindell. 2016. Fast cut-and-choose-based protocols for malicious and

covert adversaries. Journal of Cryptology 29, 2 (2016), 456–490.

[36] Yehuda Lindell. 2017. How to simulate it–a tutorial on the simulation proof

technique. Tutorials on the Foundations of Cryptography: Dedicated to Oded
Goldreich (2017), 277–346.

[37] Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye

Ouyang, Ya-Qin Zhang, and Qiang Yang. 2022. Vertical federated learning. arXiv
preprint arXiv:2211.12814 (2022).

[38] Qiyao Luo, Yilei Wang, and Ke Yi. 2022. Frequency Estimation in the Shuffle

Model with Almost a Single Message. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 2219–2232.

[39] Junming Ma, Yancheng Zheng, Jun Feng, Derun Zhao, Haoqi Wu, Wenjing Fang,

Jin Tan, Chaofan Yu, Benyu Zhang, and Lei Wang. 2023. {SecretFlow-SPU}: A
Performant and {User-Friendly} Framework for {Privacy-Preserving} Machine

Learning. In 2023 USENIX Annual Technical Conference (USENIX ATC 23). 17–33.
[40] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. 2020.

Two-sided malicious security for private intersection-sum with cardinality. In

Annual International Cryptology Conference. Springer, 3–33.
[41] ShigeoMitsunari, Ryuichi Sakai, andMasao Kasahara. 2002. A new traitor tracing.

IEICE transactions on fundamentals of electronics, communications and computer
sciences 85, 2 (2002), 481–484.

[42] Ofri Nevo, Ni Trieu, and Avishay Yanai. 2021. Simple, fast malicious multiparty

private set intersection. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 1151–1165.

[43] Emmanuela Orsini. 2021. Efficient, actively secureMPCwith a dishonest majority:

a survey. In Arithmetic of Finite Fields: 8th International Workshop, WAIFI 2020,
Rennes, France, July 6–8, 2020, Revised Selected and Invited Papers 8. Springer,
42–71.

[44] Benny Pinkas. 2003. Fair secure two-party computation. In International Con-
ference on the Theory and Applications of Cryptographic Techniques. Springer,
87–105.

[45] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2019. SpOT-light:

lightweight private set intersection from sparse OT extension. In Advances in
Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18–22, 2019, Proceedings, Part III 39. Springer, 401–431.

[46] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS:

fast, malicious private set intersection. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 739–767.

[47] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai.

2019. Efficient circuit-based PSI with linear communication. In Advances in
Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19–23,
2019, Proceedings, Part III 38. Springer, 122–153.

[48] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. 2018.

Efficient circuit-based PSI via cuckoo hashing. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 125–157.

[49] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2018. Scalable private set

intersection based on OT extension. ACM Transactions on Privacy and Security

693

https://eprint.iacr.org/2023/903
https://eprint.iacr.org/2023/903
https://eprint.iacr.org/2023/903
https://doi.org/10.1109/TIFS.2022.3222935
https://doi.org/10.1109/TIFS.2022.3222935
https://doi.org/10.1109/TIFS.2024.3515820

Proceedings on Privacy Enhancing Technologies 2025(2) Yaxi Yang, et al.

(TOPS) 21, 2 (2018), 1–35.
[50] Pille Pullonen et al. 2013. Actively secure two-party computation: Efficient beaver

triple generation. Instructor (2013).
[51] Srinivasan Raghuraman and Peter Rindal. 2022. Blazing fast PSI from improved

OKVS and subfield VOLE. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. 2505–2517.

[52] Priyanga Rajaram, Mark Goh, and Jianying Zhou. 2022. Guidelines for cyber risk

management in shipboard operational technology systems. In Journal of Physics:
Conference Series, Vol. 2311. IOP Publishing, 012002.

[53] Peter Rindal and Mike Rosulek. 2017. Improved private set intersection against

malicious adversaries. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 235–259.

[54] Peter Rindal and Phillipp Schoppmann. 2021. VOLE-PSI: fast OPRF and circuit-

PSI from vector-OLE. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 901–930.

[55] Lawrence Roy. 2022. SoftSpokenOT: Communication–Computation Tradeoffs in

OT Extension. Cryptology ePrint Archive (2022).
[56] Abhi Shelat and Chih-Hao Shen. 2011. Two-output secure computation with

malicious adversaries. In Advances in Cryptology–EUROCRYPT 2011: 30th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings 30. Springer, 386–405.

[57] Xiangfu Song, Dong Yin, Jianli Bai, Changyu Dong, and Ee-Chien Chang. 2023.

Secret-shared shuffle with malicious security. Cryptology ePrint Archive (2023).
[58] Abraham Waksman. 1968. A permutation network. Journal of the ACM (JACM)

15, 1 (1968), 159–163.

[59] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient

MultiParty computation toolkit. https://github.com/emp-toolkit.

[60] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated garbling

and efficient maliciously secure two-party computation. In Proceedings of the
2017 ACM SIGSAC conference on computer and communications security. 21–37.

[61] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine: fast,

scalable, and communication-efficient zero-knowledge proofs for boolean and

arithmetic circuits. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
1074–1091.

[62] Yaxi Yang, Yao Tong, Jian Weng, Yufeng Yi, Yandong Zheng, Leo Yu Zhang,

and Rongxing Lu. 2022. PriRanGe: Privacy-Preserving Range-Constrained In-

tersection Query Over Genomic Data. IEEE Transactions on Cloud Computing
(2022).

[63] Yaxi Yang, Jian Weng, Yufeng Yi, Changyu Dong, Leo Yu Zhang, and Jianying

Zhou. 2023. Predicate Private Set Intersection with Linear Complexity. In In-
ternational Conference on Applied Cryptography and Network Security. Springer,
143–166.

[64] Zeyu Yang, Liang He, Hua Yu, Chengcheng Zhao, Peng Cheng, and Jiming Chen.

2022. Reverse Engineering Physical Semantics of PLC Program Variables Using

Control Invariants. In Proceedings of the 20th ACM Conference on Embedded
Networked Sensor Systems. 548–562.

[65] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets extended

abstract. In 27th FOCS. 162–167.
[66] Yongjun Zhao and Sherman SM Chow. 2017. Are you the one to share? Secret

transfer with access structure. Proceedings on Privacy Enhancing Technologies
(2017).

A Arithmetic Black-box Functionality
The detailed implementation of the functionality FABB is as follows.

SPDZ-style preprocessing. In the preprocessing phase, the SPDZ-

style protocol will use oblivious transfer as an underlying technique

for generating triples RandomMul() [28].
RandomMul: The pre-processing of random multiplication

RandomMul() is to generate multiplication triples. The triple gen-

eration protocol is as follows. For two parties 𝑃0 and 𝑃1, each party

samples a(0/1) , 𝑏 (0/1) , which are randomly sampled from a finite

field F. Both parties call the Random OT protocol F 𝑘𝜏,𝑘

ROT , where

each party inputs a(0/1) in bit form, that is, (𝑎 (0/1)
1

, ..., 𝑎
(0/1)
𝜏𝑘
) =

g−1 (𝑎 (0/1)), where g = (1, 2, 22, ..., 2𝑘−1), integer parameter 𝜏 ≥ 3,

𝑘 is the length of the generated triple value. Then they do the

following:

1. 𝑃1 receives 𝑞
(1,0)
0,ℎ

, 𝑞
(1,0)
1,ℎ

, and 𝑃0 receives 𝑠
(0,1)
ℎ

= 𝑞
(1)
𝑎
(0)
ℎ

,ℎ
, for ℎ =

1, ..., 𝜏𝑘 ;

2. 𝑃1 sends 𝑑
(1,0)
ℎ

= 𝑞
(1,0)
0,ℎ
− 𝑞 (1,0)

1,ℎ
+ 𝑏 (1) ;

3. 𝑃0 sets 𝑡
(0,1)
ℎ

= 𝑠
(0,1)
ℎ
+𝑎 (0) ·𝑑 (1,0)

ℎ
= 𝑞
(1,0)
0,ℎ
+𝑎 (0)

ℎ
·𝑏 (𝑗) , forℎ ∈ [1, 𝜏𝑘].

Then sets 𝑞
(1,0)
ℎ

= 𝑞
(1,0)
0,ℎ

.

4. Two parties split (𝑡 (0,1)
1

, ..., 𝑡
(0,1)
𝜏𝑘
) and (𝑞 (1,0)

1
, ..., 𝑞

(1,0)
𝜏𝑘
) into 𝜏 vec-

tors of 𝑘 components, denoted as (t1, ..., t𝜏) and (q1, ..., q𝜏).
5. 𝑃0 sets c(0)

0,1
= (g · t1, ..., g · t𝜏);

6. 𝑃1 sets c(1)
0,1

= (g · q1, ..., g · q𝜏).

Next, each party can locally compute c(0/1) = a(0/1) · 𝑏 (0/1) +∑(c(0/1)(0,1) + c(0/1)(1,0)). After each party sample a random vector r over a
finite field, each party will sets 𝑎 (0,1) = a(0/1) · r and 𝑐 (0,1) = c(0/1) · r.
Then parties can get a valid triple (𝑎, 𝑏, 𝑐).
SPDZ-style online evaluation. In the online phase, the SPDZ-

style protocol includes the following commands.

Input: the input command takes an input 𝑥 and outputs an ASS

value to each party ⟨𝑥⟩ ← Input(𝑥): The parties generate an ASS

sharing ⟨𝑟 ⟩ ← FABB .Rand(), and open the value 𝑟 to the party who

owns the input value 𝑥 . So the party will compute 𝜖 = 𝑥 − 𝑟 and
broadcast 𝜖 . Then, all parties compute ⟨𝑥⟩ = ⟨𝑟 ⟩ + 𝜖 .
Mul: On input (J𝑥K, J𝑦K) from parties, the parties will take one

multiplication triple (J𝑎K, J𝑏K, J𝑐K) and compute J𝑒K = J𝑥K−J𝑎K and
J𝑓 K = J𝑦K−J𝑏K. Then, the parties compute J𝑐K+ 𝑓 ·J𝑎K+𝑒 ·J𝑏K+𝑒 · 𝑓 ,
which equals to J𝑥 · 𝑦K.
Open: on input (Open, ⟨𝑥⟩) from each party, each party broadcasts

⟨𝑥⟩ and recovers 𝑥 =
∑

𝑖∈[𝑛]J𝑥K𝑖 . Moreover, all parties need to run

a MAC check for the opened values 𝑥 in case the corrupted party

opens incorrect values. The parties perform J𝑑K = J𝛾 (𝑥)K−𝑥 ·J𝜉K and
check whether 𝑑 equals to 0 and aborts if not. The above example

is for a single evaluation. However, in implementation, the parties

will perform a batch of MAC checks for better efficiency. For batch

MAC check, all parties input a set of shared items {⟨𝑥1⟩, . . . , ⟨𝑥𝑡 ⟩}.
Then, they use FABB .Rand() to sample a vector of secret-shared

random values {J𝑟1K, . . . , J𝑟𝑡 K}, and compute 𝑥 =
∑𝑡

𝑗=1J𝑟 𝑗 K · J𝑥 𝑗 K.
Next, each party computes J𝜎K =

∑𝑡
𝑗=1J𝑟 𝑗 K·J𝛾 (𝑥 𝑗)K−𝑥 ·𝜉 . Therefore,

parties can perform a batched MAC check by measuring whether

𝜎 equals 0.

B Secrect Shared Shuffle
The semi-honest CGP SSS protocol [11]. The CGP shuffle proto-

col relies on a specified correlation called oblivious punctured matrix
(OPM). In an 𝑛-dimention OPM, a sender holds a matrix𝑀 of 𝑛 ×𝑛,
while the receiver holds a permutation 𝜋 ∈ S𝑛 and a punctured

matrix 𝑀 of 𝑀 , where the receiver doesn’t know 𝑀 [𝑖, 𝜋 (𝑖)] for
all 𝑖 ∈ [𝑛]. From the OPM correlation, the parties can produce a

correlation called shuffle tuple. In particular, the sender compute

two 𝑛-dimension vectors (a, b) such that a𝑖 =
∑

𝑗 𝑀 𝑗,𝑖 , b𝑖 =
∑

𝑗 𝑀𝑖, 𝑗

for all 𝑖 ∈ [𝑛], and the receiver computes a 𝑛-dimension vector ∆
such that ∆𝑖 =

∑
𝑗≠𝑖 𝑀 𝑗,𝜋 (𝑖) −

∑
𝑗≠𝜋 (𝑖) 𝑀𝑖, 𝑗 .

Those shuffle tuples can be generated in the offline phase, and

the online process of the CGP shuffling protocol is as follows. Sup-

pose P1 is the sender and P0 is the receiver. Using a shuffle tu-

ple corresponding to a permutation 𝜋 , the parties can shuffle a

secret-shared vector ⟨𝑥⟩ as follows: P1 sends 𝛿 ← JxK1 − a to P0.
P0 sets JyK0 ← 𝜋 (JxK0 + 𝛿) + ∆ and P1 sets JyK1 ← b. Clearly,
JyK0 + JyK1 = 𝜋 (JxK0 + JxK1 − a) + 𝜋 (a) − b + b = 𝜋 (x). The prior
shuffling hides the underlying permutation 𝜋 from P1.

694

https://github.com/emp-toolkit

Maliciously Secure Circuit Private Set Intersection via SPDZ-Compatible Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(2)
Restricted

Restricted

𝑥%
𝑥&
𝑥'
𝑥(

𝑥-.'
𝑥-.&
𝑥-.%
𝑥-

2
𝑛

Waksman

2
𝑛

Waksman

𝑥′%
𝑥′&
𝑥′'
𝑥′(

𝑥′-.'
𝑥′-.&
𝑥′-.%
𝑥′-

I!

I!

I"
$!

I"
#

O!

O"
#$#

O"
#$!

.

.

.

.

.

.

Figure 10: Waksman Network with 𝑛 inputs and outputs.

During this process, instead of directly applying the permuta-

tion 𝜋 to achieve SSS, the authors split the permutation 𝜋 into

smaller disjoint permutations via Benes permutation network [6]

to improve the performance. For 𝑛 elements 𝑥1, ..., 𝑥𝑛 , the Benes

network will be split into two permutations, and each permutation

acts on 𝑛/2 elements. Every wire represents whether the element

is swapped or not. Then, for each 2/𝑛 Benes network, it will re-

cursively call a Benes network with half the inputs and half the

outputs. The Benes network for 𝑛 elements contains 2 log𝑛 − 1

layers, and each layer contains 𝑛/2 2−element swappers.

Therefore, the parties run another shuffling using another shuf-

fle tuple (corresponding to another permutation 𝜌 known to P1)
with roles reversed. In this manner, no party learns the underlying

composed permutation.

Themalicious-secure SSS protocol [57]. Besides the semi-honest

secure shuffle protocol, some malicious secure shuffle protocols

[20, 32] are proposed. Those protocols design malicious CGP-style

SSS protocol over ASS. Similarly, for an authenticated vector shar-

ings ⟨x⟩, the parties will perform the CGP-style shuffle protocol

to get a shuffle tuple ((𝜋, 𝛿), (a, b)), where (𝜋, 𝛿) is for a receiver
P0, and (a, b) is for a sender P1. Then, parties will use their ASS
sharings ⟨x⟩ to do the CGP-style shuffling process as we mentioned

before. P1 sends 𝛿 ← ⟨x⟩ − a to P0, The difference is that the parties
can perform a MAC check to detect errors at the end of the protocol.

So the checks can ensure data integrity and correct shuffling. How-

ever, those protocols are subjected to the selective failure attack as

depicted in [57]. More concretely, a malicious sender P1 may add

errors to 𝛿 when P1 is expected to send 𝛿 = ⟨x⟩ − a to P0. Instead
of sending the correct message 𝛿 to P0, P1 will change one element

in 𝛿 . Then, P1 guesses where the changed element has been per-

muted to. According to the post-execution check result, P1 can learn
whether the guess is correct or not. More details about selective
failure attack are presented in Appendix. Therefore, the authors

[57] propose a malicious secure SSS protocol that is also resistant

to the selective failure attack. They not only propose a correlation

check to defeat an incorrect correlation attack but also design a

leakage-reduction mechanism to remove possible leakage to defend

against the selective failure attack. Then, all the techniques used in

their protocol are combined with authenticated secret sharing to

formalize a malicious secure secret-shared shuffle protocol.

Concrete Optimizations. In Πm-PSI, we need to use a malicious-

secure SSS protocol [57] as a building block. This work also inherits

the technical components of CGP protocol, and it also utilizes the

Benes network [6] as a permutation structure. Based on their work,

we substitute the Benes network with the Waksman network [58].

As shown in Fig. 10, the Waksman network [58] is a realization of a

permutation network using exactly 𝑛 log𝑛 − 𝑛 + 1 2-element swap-

pers when 𝑛 is a power of 2. TheWaksman network is recursive and

is built by two 𝑛/2−input Waksman networks. Compared to the

Benes network, the Waksman network achieves better trade-offs

between communication and computation costs.

C Security Proof
In this section, we give the ideal world definition of our proposed

protocols and depict simulation-based proofs.

C.1 DDOPRF

Functionality FDDOPRF

Public Parameters: a prime 𝑝 , a group G and a generator of the

group 𝑔.

Private Parameter: A PRF key 𝑘
$←− Z𝑝 and its related ASS

sharing ⟨𝑘 ⟩; A secondary PRF key 𝑘𝑠
$←− Z𝑝 and its ASS sharing

⟨𝑘𝑠 ⟩.
DDOPRF:

1. on receiving (DDOPRF, ⟨𝑥 ⟩) from both parties, the func-

tionality outputs 𝐹 (𝑘, 𝑥) = 𝑔
1

𝑘+𝑥 to both parties if it does

not abort. Otherwise, ⊥ is output to both parties;

2. on receiving (DDOPRF,Dual-key, ⟨𝑥 ⟩) from both parties,

the functionality outputs 𝐹 (𝑘, 𝑘𝑠 , 𝑥) = 𝑔
𝑘𝑠
𝑘+𝑥 to both par-

ties if it does not abort. Otherwise, ⊥ is output to both

parties.

Figure 11: Ideal functionality of DDOPRF.

Theorem 3. In theFABB,FABB+ -hybridmodel, the protocolΠDDOPRF

implements FDDOPRF correctly and securely against malicious adver-
sary.

Proof. We can construct an ideal world simulator 𝑆DDOPRF as

the following:

1. 𝑆DDOPRF is given the public parameters 𝑝,G, 𝑔. 𝑆DDOPRF has ac-

cess to FABB and FABB+ , chooses 𝑘 ′, 𝑘 ′𝑠 , 𝑥 ′
$←− Z𝑝 and records ⟨𝑘 ′⟩,

⟨𝑘 ′𝑠⟩ and ⟨𝑥 ′⟩;
2. 𝑆DDOPRF invokes the adversary 𝐴 with 𝑝,G, 𝑔, and ⟨𝑥 ′⟩;
3. 𝑆DDOPRF receives a FABB .Rand() call from the adversary, gener-

ates a random number 𝑟 ∈ Z𝑝 , and returns a share of 𝑟 to the

adversary, and 𝑆DOPRF records ⟨𝑟 ⟩;
4. 𝑆DDOPRF receives the invocations to FABB .Mul() for computing

⟨𝑑 ′⟩ = ⟨𝑟 ⟩ · (⟨𝑘 ′⟩ + ⟨𝑥 ′⟩), return a share of 𝑑 ′ to the adversary;

5. 𝑆DDOPRF receives an invocation to FABB .Open. 𝑆DDOPRF does the
MAC check of the inputs received in this step and the previ-

ous step, against stored shares ⟨𝑑 ′⟩, ⟨𝑘 ′⟩, ⟨𝑥 ′⟩, ⟨𝑟 ⟩. If all shares
695

Proceedings on Privacy Enhancing Technologies 2025(2) Yaxi Yang, et al.

received from the adversary are correct, send 𝑑 ′ to the adver-

sary; otherwise, send abort to FDDOPRF, and abort the protocol

execution with the adversary;

6. 𝑆DDOPRF receives an invocation to FABB .Mul() for computing

⟨𝑒′⟩ ← 𝑑 ′−1 · ⟨𝑟 ⟩, and 𝑆DDOPRF records ⟨𝑒′⟩ and returns a share

of 𝑒′ to the adversary; If 𝑆DDOPRF receives an invocation to

FABB .Mul(), it will compute ⟨𝑒′⟩ ← ⟨𝑒′⟩ · ⟨𝑘 ′𝑠⟩. And 𝑆DDOPRF
records ⟨𝑒′⟩ and returns a share to the adversary;

7. 𝑆DDOPRF receives an invocation to FABB+ .Convert() for convert-
ing ⟨𝑒′⟩ to ⟨[𝑒′]⟩. 𝑆DDOPRF records ⟨[𝑒′]⟩ and returns a share to

the adversary;

8. 𝑆DDOPRF receives an invocation to FABB+ .Open() for openning
⟨[𝑒′]⟩. 𝑆DDOPRF does the MAC check on all inputs received from

the adversary since step 6. If the check fails, 𝑆DDOPRF sends abort

to FDDOPRF and abort the protocol execution with the adversary.

Otherwise, 𝑆DDOPRF sends its input ⟨𝑥 ′⟩ to FDDOPRF, receives the
output 𝑔𝑒

′
from FDDOPRF then passes it to the adversary.

As we can see, in this simulation: the distribution of the view of

the adversary in a real execution is the same as that in the simula-

tion because the shares are information-theoretically secure; the

simulation aborts whenever an error is detected in a real execution;

and the distribution of the joint output in the simulation is the

same as that in a real execution. Therefore the simulation is indis-

tinguishable from a real execution, thus FDDOPRF can be security

implemented by ΠDDOPRF.

C.2 FmcPSI

Theorem 4. In the FABB,FABB+ ,FSSS,FDDOPRF-hybrid model, the
protocol ΠmcPSI implements FmcPSI correctly and securely against
malicious adversary.

Proof. We construct an ideal world simulator 𝑆PSI as the follow-

ing: 𝑆PSI is given public parameters 𝑝 , G, 𝑔. 𝑆PSI has access to FABB,
FABB+ , FSSS, FDDOPRF.

1. 𝑆PSI invokes the real-world adversary 𝐴 with a simulated

input xi
′
.

2. For 𝑖 ∈ [1, 𝑛]: 𝑆PSI receives a FABB .Input(𝑥 ′𝑖) call from the ad-

versary𝐴, then generate ASS sharing ⟨𝑥 ′𝑖 ⟩ ← FABB .Input(𝑥 ′𝑖)
and sends 𝑃0’s shares to 𝐴;

3. 𝑆PSI sends (mc-PSI, x′) to the ideal functionality Fmc−PSI.
4. 𝑆PSI selects a random y′ = {𝑦′

1
, · · · , 𝑦′𝑛}, generates ASS shar-

ings ⟨y′⟩.
5. 𝑆PSI receives invocations toFSSS to shuffles the shares ⟨x′′⟩ ←
FSSS (⟨x′⟩), ⟨y′′⟩ ← FSSS (⟨y′⟩), then sends 𝑃0’s shares to 𝐴;

6. 𝑆PSI receives a FABB+ .Rand() call from 𝐴, generate 𝑘 , 𝑘𝑠 and

returns sharings of PRF keys ⟨𝑘⟩ and ⟨𝑘𝑠⟩ to 𝐴.
7. 𝑆PSI receives an invocation to FDDOPRF to computes 𝑍𝑥 =

{𝐹 (𝑘, x′′𝑖)}𝑖∈[1,𝑛] and 𝑍𝑦 = {𝐹 (𝑘, 𝑘𝑠 , y′′𝑖)}𝑖∈[1,𝑛] . 𝑆PSI com-

putes the multiplicative sharing of the results and returns

𝑃0’s shares to 𝐴.

8. 𝑆PSI receives an invocation to FbDEC to get the shares of

sequence ⟨𝑏0 · 2𝜆−1⟩ · · · ⟨𝑏𝜆−1 · 20⟩, where 𝑏𝑖 is the 𝑖-th bit of

𝑘𝑠 (left most first) and returns 𝑃0’s shares to 𝐴.

9. 𝑆PSI receives the shares ⟨𝑏0 · 2𝜆−1⟩ · · · ⟨𝑏𝜆−1 · 20⟩ one by one

from 𝐴 and send 𝑃1’s shares to 𝐴, and they can reconstruct

𝑘𝑠 locally;

10. If 𝐴 aborts at any time in the previous steps, send abort to
FmcPSI, otherwise sends cardinality to FmcPSI and receives

back |x′ ∩ y′ |.
11. 𝑆PSI opens 𝑍𝑥 and 𝑍𝑦 so that 𝐴 can find matching elements

in these two sets. 𝑆PSI and 𝐴 also have the sharing of R𝑋𝑏
,

R𝑌𝑏 which corresponds to the set intersection.

12. If 𝐴 aborts at any time in the previous step, send abort to
FmcPSI, otherwise if 𝐴 invokes FmcPSI, 𝑆PSI sends compute to
FmcPSI and receives back 𝑓 (x′ ∩ y), which is then forward

to 𝐴.

Also, in this simulation, the adversary can only see the shares of

the vectors generated during the simulation, which are information-

theoretically secure. Thus, the distribution of the joint output in

the simulation is the same as that in a real execution, and ΠmcPSI

is secure under this situation. This situation when constructing

the simulator for ΠmcPSI with corrupted 𝑃1 is quite similar to the

corrupted 𝑃0 except that 𝑃0 is acted by the simulator and 𝑃1 is acted

by the adversary.

696

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Security Model and Fairness Definition
	2.2 Dodis-Yampolskiy PRF
	2.3 Authenticated Secret Sharing
	2.4 Secret-shared Shuffle

	3 Construction
	3.1 Workflow Overview
	3.2 DDOPRF Protocol from DY-PRF
	3.3 Compile DDOPRF with Malicious Security
	3.4 Our Circuit-PSI from DDOPRF

	4 Security Proof and Fairness Analysis
	5 Implementation and Performance
	5.1 Benchmarking Environment
	5.2 Performance of mcPSI
	5.3 Performance Comparisons
	5.4 Scalability and Practicality
	5.5 Theoretical Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Arithmetic Black-box Functionality
	B Secrect Shared Shuffle
	C Security Proof
	C.1 DDOPRF
	C.2 FmcPSI

