
Lost in Translation: Exploring the Risks of
Web-to-Cross-platformApplicationMigration

Claudio Paloscia
University of Illinois Chicago

cpalos2@uic.edu

Kostas Solomos
University of Illinois Chicago

ksolom6@uic.edu

Mir Masood Ali
University of Illinois Chicago

mali92@uic.edu

Jason Polakis
University of Illinois Chicago

polakis@uic.edu

Abstract
The cross-platform application-development paradigm alleviates a
major challenge of native application development, namely the need
to re-implement the codebase for each target platform, and stream-
lines the deployment of applications to different platforms. Essen-
tially, cross-platform application development relies on migrating
web application code and repackaging it as a native application.
In other words, code that was designed and developed to execute
within the confines of a browser, with all the security checks and
safeguards that that entails, is now deployed within a completely
different execution environment. In this paper, we explore the in-
herent security and privacy risks that arise from this migration,
due to the fundamental differences between these two execution
environments, which we refer to as security lacunae.1 To that end,
we establish a differential analysis workflow and develop a set of
customized tests designed to uncover divergent behaviors of web
code executed within a browser and as an Electron cross-platform
application. Guided by the findings from our empirical exploration,
we retrofit part of the Web Platform Tests (WPTs) testing suite so
as to apply to the Electron framework, and systematically assess
mechanisms that relate to isolation and access control, and critical
security policies and headers. Our research uncovers semantic gaps
that exist between the two execution environments, which affect
the enforcement of critical security mechanisms, thus exposing
users to severe risks. This can lead to privacy issues such as the
exposure of sensitive data over unencrypted connections or unreg-
ulated third-party access to the local filesystem, and security issues
such as the incorrect enforcement of CSP script execution directives.
We demonstrate that directly migrating web application code to a
cross-platform application, without refactoring the code and im-
plementing additional safeguards to address the conceptual and be-
havioral mismatches between the two execution environments, can
significantly affect the application’s security and privacy posture.

1We borrow the term lacunae from linguistics, where it is used to describe the
“semantic gaps that can lead to misunderstanding, misinterpretation of certain concepts
in an intercultural context” [35]. While we explore both the privacy and security
implications of the lacunae that affect the web-to-cross-platform code migration
process, we refer to them as security lacunae for brevity.
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1 Introduction
Web services have become an inextricable part of our everyday
lives, affecting multiple facets of our personal, professional, and
social activities. In desktop environments, browsers have tradition-
ally provided access to the Internet by mediating the vast majority
of users’ online activities, leading to web applications dominating
the software ecosystem, with a wide range of diverse applications
being available. This includes browser-based alternatives to applica-
tions that had been widely established as native applications, such
as messaging and productivity applications. However, supporting
such a diverse set of applications necessitates an extensive collec-
tion of underlying features, which has resulted in web browsers
being in a constant state of evolution, with new APIs being continu-
ously adopted [9, 32, 41]. This has led to our current state of affairs,
where modern web browsers have massive and complex codebases
(Chromium is comprised of over 33 million lines of code [46]). Nat-
urally, as browsers become more bloated [47], their performance
can be negatively affected [44].

Consequentially, in recent years, major web services have been
motivated to deploy standalone applications for desktop environ-
ments. Previously, creating standalone native applications was a
cumbersome and expensive process as vendors would have to create
custom-tailored native apps using different programming languages
for each target platform (e.g., Swift for macOS, C# for Windows).
The cross-platform application-development paradigm aims to al-
leviate these challenges by allowing vendors to reuse significant
chunks of their codebase across different platforms, with popular
cross-platform frameworks like Electron leveraging the JavaScript
code that also powers those services’ web applications. As such,
high-profile services like Slack, Signal, and WhatsApp are now
offered as cross-platform Electron apps [19].

In more detail, Electron is a framework that enables the de-
velopment of cross-platform applications using HTML, CSS, and
JavaScript, similar to the process of constructing a regular web appli-
cation. Electron achieves this by integrating Node.js for the backend
and Chromium for the frontend. However, due to the inherent dif-
ferences between Electron and standard browsers, the Electron
framework often requires modifications to its dependencies, par-
ticularly Chromium, to align with specific requirements [18]. This
necessitates a certain level of adaptability, which can pose chal-
lenges in keeping pace with the 4-week release cycle of Chromium.
As such, Electron has adopted an even-number release strategy,
releasing every 8 weeks [23].
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In essence, cross-platform apps are powered by JavaScript code
that was developed for a specific execution environment (i.e., sand-
boxed inside a web browser) but is then migrated to an entirely
different environment (i.e., as a native app). Prior work on Electron
apps has explored their susceptibility to remote code execution
attacks [65], and have also found extensive evidence of misconfig-
urations and outdated browser engines that introduce significant
security risks [5]. In this paper, we explore the inherent security
lacunae that affect this code migration, due to the fundamental
differences in the capabilities and constraints present in these two
different execution environments. In other words, we aim to better
understand which Electron app and framework capabilities necessi-
tate an intrinsically different design approach due to the mismatch
between execution environments. Specifically, we aim to explore
the ramifications of web code being executed outside of the con-
fines of a web browser, as native execution on top of the operating
system provides direct access to powerful Native APIs. Moreover,
given the different components that comprise cross-platform apps,
code isolation and sandboxing are particularly important.

To that end, we develop a comprehensive analysis workflow
that employs differential testing techniques for uncovering secu-
rity lacunae that exist when web application code is migrated to
a cross-platform application setting. First, we develop a series of
customized tests for uncovering semantic gaps and nuanced differ-
ences that exist between web and cross-platform apps. Next, we
incorporate Web Platform Tests (WPTs) [7], a cross-browser testing
suite that provides an extensive collection of code snippets that
evaluate specific browser mechanism implementations for assess-
ing whether they adhere to web specifications and are compatible
with other implementations. Guided by our empirical findings, we
focus on WPTs that assess mechanisms that relate to isolation and
access control, and critical security policies and headers. Since WPTs
are not designed for deployment within cross-platform apps, we
design an automated deployment pipeline that retrofitsWPTs to the
Electron framework. Our system uses a carefully crafted Electron
application and a Chrome instance fitted with a custom extension,
to conduct a differential testing comparison of sensitive browser
mechanism implementations between Chrome and the Electron
framework, thereby revealing divergent behaviors.

Our experiments reveal shortcomings in existing web isolation
and access control mechanisms when deployed within a cross-
platform application, where direct access to the local filesystem
and APIs is permitted, and loading local files is commonplace. We
find that the use of local files blurs the origins of remotely fetched
code, thus undermining the same origin policy, arguably the most
fundamental web security mechanism. We also find that Electron
by default delegates access control for powerful Native APIs to the
underlying operating system, which can lead to untrusted remote
third-party code having unrestricted access to sensitive data due to
the user trusting the app itself, thus introducing major privacy risks.
In other words, while browsers require explicit permission through
user approval for first-party origins (i.e., opt-in) and prevent third-
party access, in cross-platform apps, developers need to restrict
certain types of embeddings (e.g., WebViews) and explicitly enforce
regulations between local and remote resources. Our assessment of
30 real-world Electron apps reveals how security lacunae manifest
in the wild, thereby exposing users to significant risks.

Overall, our study highlights the significant security and privacy
risks of migrating web application code to cross-platform appli-
cations, and the need for a refactoring process that incorporates
additional safeguards and checks to account for the inherent mis-
matches between these two execution environments. We hope that
our research will motivate additional research on the risks posed by
the migration of web code to different types of cross-platform appli-
cations, and the development of automated tools that can streamline
the migration process by incorporating the necessary safeguards
to mitigate the threats that we have uncovered.

In summary, our research has the following contributions:
• We provide an empirical analysis of the inherent security and
privacy risks of migrating web application code to cross-platform
applications, which we term security lacunae.
• We introduce an automated testing framework that leverages dif-
ferential testing for uncovering security lacunae in cross-platform
applications.
• We conduct an extensive experimental evaluation of our frame-
work, uncovering significant differences in the enforcement of
fundamental security and privacymechanisms by cross-application
frameworks. Our artifacts, including the source code and the test-
ing templates, are available in [1].
• We conduct an empirical analysis of real-world Electron apps that
demonstrates the manifestation of security lacunae in practice.

2 Background
In this section, we provide the necessary background informa-
tion on concepts pertinent to our study, including web security
standards, the Web Platform Tests testing suite, and the Electron
cross-platform application development framework.

2.1 Web Security Standards
The web’s security model is built upon fundamental principles that
govern interactions between websites, users, and the network. A
traditional threat model for web applications considers two pri-
mary adversaries: web attackers and network attackers [10]. A web
attacker controls a malicious website and exploits vulnerabilities
to attack other Web applications. Classic web attack techniques
include Cross-Site Scripting (XSS) and Cross-Site Request Forgery
(CSRF), which manipulate the browser’s execution environment
to compromise security policies. A network attacker, on the other
hand, also has control over network traffic, allowing them to in-
tercept and modify unencrypted data. The primary countermea-
sure against network attackers is the use of HTTPS for encrypting
communication between the browser and the server to ensure con-
fidentiality and integrity, and complementary mechanisms like
HSTS [29]. Browsers implement secure contexts, as defined by the
W3C specification [61], to identify web pages that meet minimal se-
curity requirements and can safely transmit sensitive information.

The Same-Origin Policy (SOP) restricts how different Web
pages interact with one another. Under SOP, an origin is defined
as a tuple consisting of a scheme (e.g., HTTP or HTTPS), a host
(e.g., www.example.com), and a port (e.g., 443 for HTTPS). This
mechanism ensures that a Web page at https://malicious.com
cannot access data served by https://secure.com. While this fine-
grained isolation prevents unauthorized data access, it can be overly
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restrictive in certain scenarios. As a result, browsers implement
the notion of site-based security, which extends SOP by grouping
subdomains under a common effective top-level domain (eTLD+1),
based on the Public Suffix List (PSL). For example, example.com
and example.net represent distinct sites, whereas a.example.com
and b.example.com are considered part of the same site. Relaxed
security policies based on the same-site model improve usability
while isolating distinct entities.
Cookies. As a client-side storage mechanism, cookies are struc-
tured as name-value pairs and can be set via JavaScript (docu-
ment.cookie) or by the server using the Set-Cookie header in an
HTTP response. By default, cookies are accessible to JavaScript
and are automatically attached to all subsequent requests sent
to the host that issued them. The scope of a cookie can be ex-
tended to subdomains using the Domain attribute, which allows
for cookie sharing across sibling subdomains (e.g., a cookie set
by a.example.com with Domain=example.com can be accessed by
b.example.com). Cookies often store sensitive data, such as ses-
sion identifiers, and browsers therefore implement various security
attributes to mitigate potential attacks.

The Secure attribute ensures that a cookie is only transmitted
over HTTPS, preventing exposure to network attackers [26, 53].
The HttpOnly attribute restricts JavaScript access to the cookie,
protecting it from XSS-based exfiltration [11, 16]. Additionally, the
SameSite attribute helps prevent CSRF by restricting the automatic
inclusion of cookies in cross-site requests. Setting the same site
attribute as Strict prevents all cross-site requests from attaching
the cookie, whereas SameSite=Lax allows cookies to be attached
to top-level navigations initiated via safe HTTP methods (e.g., GET).
Web developers can also use special prefixes such as __Secure-
which restricts cookies to secure channels, and __Host- which
scopes cookies to a specific host.
Resources. All resources in a webpage, such as scripts, stylesheets,
and iframes, should also be securely loaded. Fetching any resource
over an unencrypted channel (HTTP) introduces a mixed content
vulnerability, allowing a network attacker to modify the response
and inject malicious code. The W3C specification [55] classifies
mixed content into two categories based on its security implications.
Blockable mixed content refers to active content, such as scripts
and iframes, which pose a high security risk if loaded insecurely.
Modern browsers block these resources by default. Upgradeable
mixed content, on the other hand, refers to passive elements such
as images, audio, and video, which are considered lower risk. For
these resources, browsers attempt an automatic protocol upgrade,
rewriting HTTP URLs to HTTPS and loading them securely. If
the upgraded resource is unavailable, browsers do not load them,
thereby maintaining the integrity of the secure context.

2.2 Web Platform Tests
Web Platform Tests (WPT) are an essential suite of automated,
cross-platform tests designed to evaluate conformance to web stan-
dards [63]. These tests are collaboratively developed andmaintained
by browser vendors, standards organizations, and web developers
to ensure interoperability and compliance with specifications. WPT
covers a broad range of web technologies, including HTML, CSS,
JavaScript, network security features, and various APIs.

The test framework operates by running predefined test cases,
checking whether implementations adhere to the expected behav-
iors outlined in web standards. By executingWPT, browser vendors
can detect deviations, uncover security vulnerabilities, and verify
compliance with evolving security requirements. The WPT suite
is used by browser developers, web standards bodies (e.g., W3C,
WHATWG), and researchers who analyze security properties of
web technologies.

Using WPT for web security validation provides several advan-
tages. It enables automated and reproducible testing of security
mechanisms like the Same-Origin Policy, Content Security Pol-
icy (CSP), cookie attributes, and mixed content blocking. Further-
more, WPT helps ensure that security policies are consistently
enforced across platforms, reducing the risk of fragmentation and
unintended security gaps. WPT is a crucial tool for verifying that
security features are correctly implemented on new platforms and
that regressions do not introduce vulnerabilities.

2.3 Electron Framework
Electron is a popular framework that allows developers to create
cross-platform desktop applications using web technologies, includ-
ingHTML, CSS, and JavaScript. Electron applications use amodified
version of Chromium’s Blink rendering engine and V8 JavaScript
engine, and interact with similar web standards as browsers.
ProcessModel. The Electron process model divides the applica-
tion into two separate contexts. The Main Process is the privileged
system-side process that manages the application’s lifecycle, inter-
acts with the operating system, and controls renderer processes. It
has access to Node.js modules and can execute system-level opera-
tions. The Renderer Process uses Chromium’s Blink engine to display
web content. Each Electron window or embedded web view runs
in its own renderer process. Unlike browsers, renderer processes in
Electron lack direct access to Node.js and must communicate with
the main process to execute privileged operations.
Communication. Electron applications facilitate communication
between processes through two primarymechanisms. PreloadScripts
run in the renderer process and expose customized functions to
loaded web contents. IPC Channels enable secure message passing
between the renderer and main processes, allowing the main pro-
cess to verify and handle requests that require additional privileges.
Cookies and Sessions. Electron handles sessions and cookies sim-
ilarly to browsers but with key deviations. Unlike browsers, Elec-
tron’s main process can directly access all cookies stored within the
application, modify session cookies, and override expiration poli-
cies. Additionally, Electron stores cookies in plaintext on the filesys-
tem by default, unlike Chromium, which encrypts them. However,
Electron inherits Chromium’s origin partitioning mechanism. As
a result, third-party iframes loaded within an Electron application
have their own cookie jars, which are isolated from the top-level
frame and other third-party iframes.
Permissions. Electron uses Chromium’s permission mechanisms
by retaining web API calls under the navigator object. However,
the framework also allows developers to handle permissions within
the main process. Importantly, it does not inherit Chromium’s user-
facing permission notification interface. Considering its deviations
in implementation, it is important to understand its compliance
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with expected behaviors. Unlike browsers that prompt users for
permission grants, Electron applications approve all permission re-
quests by default unless explicitly managed by developers. Electron
provides developers with control over media device permissions
but does not allow fine-grained approvals available within browsers
(e.g., specific microphone or camera access must be granted in full).
Electron Security Testing. Electron enables desktop applications
to leverage web technologies but introduces security complexi-
ties due to its integration of system-level access with web-based
rendering. While it inherits browser security models such as the
Same-Origin Policy and cookie attributes, its architecture diverges
from standard browser implementations, creating potential security
and privacy inconsistencies. However, unlike traditional browsers,
Electron lacks a dedicated testing framework, leaving critical secu-
rity mechanisms unexplored at scale. To address this gap, we adapt
WPT (§3.2) to evaluate Electron’s security policies, extending its
coverage to Electron-specific embedding contexts, network configu-
rations, and security headers. This enables a systematic comparison
between Chrome and Electron, detecting deviations that introduce
security risks in Electron-based applications (§4).

3 SystemOverview
This section details our methodology for uncovering fundamental
differences in how Electron-based applications conform to specific
security and privacy standards compared to web applications exe-
cuted within browsers, while focusing on key aspects of our testing
framework’s design and deployment. As illustrated in Figure 1, our
approach is comprised of two phases: (i) a manually curated empir-
ical testing phase that identifies critical header inconsistencies, and
(ii) a large-scale automated testing phase that retrofitsWeb Platform
Tests (WPT) into our framework for systematically evaluating secu-
rity policies under both server-hosted and local execution scenarios.

3.1 Empirical Testing
To detect improperly enforced security headers, we design tar-
geted tests that assess Electron’s internal security mechanisms and
commonly used application headers. Specifically, we analyze CORS-
related headers, HSTS, X-Content-Type Options, and X-Frame Op-
tions, which constitute some of the major components of web ap-
plication security and for ensuring data privacy. We further extend
this scope to include additional headers, ensuring comprehensive
coverage of Electron’s security model. Unlike browsers, which re-
strict embedding to iframes, Electron enables embedding through
WebViews, WebContents, and nested configurations (e.g., iframe-
in-WebView). Our tests assess these mechanisms across multiple
configurations to identify security inconsistencies and potential
semantic gaps across the two execution environments.
Test templates. Each test file encapsulates the core logic for evalu-
ating security headers and is structured as a self-contained HTML
page with embedded scripts that trigger expected security behav-
iors. These tests range from basic API calls verifying header enforce-
ment to complex scenarios involving multi-domain redirections
and cross-origin interactions. Additionally, we deploy an automated
logging mechanism that records real-time results and determines
success or failure. To minimize redundancy, we employ a template-
based approach, dynamically injecting scenario-specific parameters

instead of generating static test cases for every header variation.
This method efficiently evaluates multiple execution contexts with-
out duplicating test logic.

Listing 1 illustrates this approach with a Set-Cookie header test,
where the template dynamically assigns a domain, embed type
(top-level or iframe), and expected compliance. The resulting script
verifies whether the cookie is accessible based on Electron’s han-
dling of the Domain attribute and logs the result. However, while
templating simplifies test generation, it relies on server-side pro-
cessing to render customized test instances. Since Electron supports
local file execution, we introduce additional mechanisms to ensure
consistency across execution environments.

Remote tests. For tests requiring resource-fetching over the net-
work, we deploy a controlled server to host test files and configure
the necessary security headers. In addition to dynamically gener-
ating test cases, the server handles header-specific requirements,
ensuring accurate policy enforcement. Our setup spans multiple do-
mains and subdomains, allowing a thorough evaluation of cross-site
and cross-origin behaviors. To simplify endpoint management, we
leverage URL query strings to specify header attributes dynamically,
and each test independently requests the relevant endpoint and
retrieves the necessary header variations. For example, a request
is issued to an endpoint such as /setcookie?samesite=strict
to evaluate the Set-Cookie header with specific attributes. The
server processes the query string, generates a Set-Cookie header
with the specified SameSite attribute, and dynamically serves the
corresponding test file. This approach reduces redundancy while
maintaining flexibility to support a wide range of test scenarios.

Local tests. To evaluate Electron’s handling of local file execu-
tion via the loadFile method, we developed a standalone version
of each test that operates without a server. Since template-based
generation is not applicable in this setup, we rely on pre-generated
HTML files that comprehensively cover all test scenarios. However,
only the top-level frame is loaded locally, containing the test logic,
while all additional resources — including libraries, redirected pages,
and embedded content — are fetched from our server. This hybrid
approach ensures consistency when evaluating external dependen-
cies while preserving a controlled local execution environment.

Testing process. Our automated testing approach systematically
evaluates security mechanisms in both Electron and Chrome, en-
abling direct behavioral comparison across execution environments.
Each test is executed by loading an HTML test file from a remote
server or the local file system. The test interacts with the browser en-
vironment by issuing network requests, navigating between pages,
and invoking browser APIs to trigger security-relevant behaviors.
Upon execution, results are logged and transmitted to a remote
server for structured analysis. Each test runs independently, ac-
cessing predefined server endpoints or local test files to maintain
reproducibility. Expected behaviors are inferred from official spec-
ifications and documentation [42, 48]; however, differential testing
is necessary for local execution. Differential testing involves execut-
ing the same set of security tests in both Chrome and Electron under
identical conditions to systematically identify discrepancies in their
enforcement of security and privacy policies. Since Electron oper-
ates in a hybrid environment that integrates browser functionality
with system-level access, it may enforce security headers differ-
ently from traditional web browsers. Specifically, locally loaded
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Figure 1: Overview of our methodology for Differential Header Testing in Chrome and Electron. Our methodology consists
of two phases: (i) an Empirical Testing Phase, where wemanually identify critical headers, and (ii) an Automated Testing Phase
(WPT Testing), whereWPT tests are adapted for Electron to enable large-scale automated evaluation.

Listing 1: Domain attribute test for the Set-Cookie header.
<script>
const name = '#{name}',

domain = '#{domain_value}', visited = '#{visited
}',embed = '#{embed}', firstParty = '#{firstparty
}', expected = '#{expected_result}' === 'true';

const cookieExists = document.cookie.split(
';').some(c => c.trim().startsWith(name + '='));

const resultCode
= expected === cookieExists ? "1" : "0";

const reportBody = `Set-
Cookie, ${embed}, Check Domain: Domain=${domain},
` +`Cookie ${cookieExists ? "available" : "not
available"} `+`for ${visited} -> ${resultCode}`;

fetch(`https://${firstParty}/report`, {
method: "POST", headers: {

"Content-Type": "text/plain" }, body: reportBody
});

</script>

resources are not part of web applications’ execution, which creates
additional pitfalls in the enforcement of security mechanisms. By
comparing results across both environments, we detect deviations
in Electron’s security model that could introduce vulnerabilities
not present in standard web browsers.
Header inconsistencies.Our empirical analysis of Electron’s secu-
rity headers highlights inconsistencies in enforcement, particularly
in mechanisms governing cross-origin interactions and content
isolation. While some security policies align with expected be-
havior, our preliminary findings indicate inconsistencies in CORS
enforcement and embedding restrictions within local execution
contexts. These findings corroborate that Electron’s security model
differs from standard browser enforcement and requires a struc-
tured, in-depth, and scalable evaluation to identify semantic gaps
and mismatched behaviors. To that end, we extend our method-
ology to systematically assess these discrepancies by integrating

Web Platform Tests (WPT), enabling large-scale analysis and deeper
inspection of security policies. Table 1 presents the headers tested
in our empirical phase and the subset selected for WPT-based eval-
uation. For this phase, we prioritized headers based on (i) their
role in enforcing web security policies, and (ii) the inconsistencies
identified in local execution contexts. By incorporating WPT, we
establish a comprehensive framework for evaluating Electron’s
security policies relative to Chrome’s enforcement standards.

3.2 WPT Testing
Utilizing WPT for local execution presents architectural challenges
due to its reliance on a dedicated server environment. Specifically,
it introduces the following constraints, which have to be addressed
for identifying the security lacunae that exist between web and
cross-platform execution environments.
• Server Dependency: WPT requires an active server to resolve
dependencies, making direct execution from the local file system
infeasible.
• Unresolved Placeholders: WPT tests rely on placeholders
(e.g., domain[www]) which are dynamically replaced by the server
with assigned domains. In a local setup, these remain unresolved,
leading to test failures.
• Resource Handling: WPT tests often compute resources’ URLs
at runtime. In a local setup, the browser APIs can behave differ-
ently and return unexpected values, causing network-fetching
APIs to behave inconsistently or fail.
• Policy Misalignment: Certain tests rely on network policies
such as Same-Origin and Cross-Origin restrictions, which behave
differently in a local execution context, affecting test validity.
To address these limitations, we implement a multi-stage ap-

proach that reconstructs WPT’s execution model while preserving
test integrity.
WPT testing workflow. We execute WPT tests in Chrome and
Electron, running them under default browser conditions, while
capturing test requests via a proxy server.We then replay these tests
in a modified WPT platform that enables structured local execution.

28



Lost in Translation Proceedings on Privacy Enhancing Technologies 2025(4)

Table 1: Headers analyzed in the empirical phase, and the subset selected formore comprehensiveWPT-based evaluation.

Header
Preliminary Tests

WPTRemote Fetch Local Fetch
top-level iframe webview top-level iframe webview

X-Frame-options N/A ✓ ✓ N/A ✓ ✓ ✓

HTTPS Upgrades ✓ N/A N/A N/A N/A ✓ ✓

Access Control Allow Origin ✓ ✓ ✓ ✓ ✓ ✓

Permissions ✓ ✓ ✓ ✓ ✓ ✓ ✓

Permissions-policy ✓ ✓ ✓ ✓ ✓ ✓ ✓

X-Content-Type-Options ✓ ✓ ✓ N/A N/A N/A
Cross-Origin-Embedder-Policy ✓ N/A N/A N/A N/A N/A
Cross-Origin-Opener-Policy ✓ ✓ ✓ N/A N/A N/A
Cross-Origin-Resource-Policy ✓ N/A N/A N/A N/A N/A

Cache-Control ✓ ✓ ✓ N/A N/A N/A
clear-site-data ✓ ✓ ✓ N/A N/A N/A ✓

Expires ✓ ✓ ✓ N/A N/A N/A
Timing-Allow-Origin ✓ ✓ ✓ ✓ ✓ ✓

Accept-Charset ✓ ✓ ✓ N/A ✓ ✓

Access-Control-Allow-Credentials ✓ ✓ ✓ ✓ ✓ ✓

Access-Control-Expose-Headers ✓ ✓ ✓ ✓ ✓ ✓

Access-Control-Request-Headers ✓ ✓ ✓ ✓ ✓ ✓

Access-Control-Request-Method ✓ ✓ ✓ ✓ ✓ ✓

Content-Disposition ✓ ✓ ✓ N/A ✓ ✓

encoding ✓ ✓ ✓ N/A ✓ ✓ ✓

Content-Language ✓ ✓ ✓ ✓ ✓ ✓

Content-Type ✓ ✓ ✓ ✓ ✓ ✓

Cookies ✓ ✓ ✓ N/A ✓ ✓ ✓

Table 2: Taxonomy ofWPT tests incorporated into our analysis pipeline.

Category Headers
Secure-contexts, Mimesniff, Referrer-Policy, Mixed-content, Permissions-policy, Document-policy,Security Cookie-deprecation-label, Browsing-topics
Fullscreen, Geolocation-sensor, Navigation-API, Fullscreen, Geolocation-sensor, Navigation-API,

APIs & Permissions Credential-management, Clipboard-APIs, Permissions-request, Permissions-revoke, Notifications,
Idle-detection, Server-timing

Shadow-DOM, Indexed-DB, Service-workers,Beacon, Captured-mouse-events, Payment-method-id,WebComponents Payment-handler, Encoding, JS, Webauthn, URL, XHR

User Interaction &Media Screen-capture, Picture-in-picture, Screen-details, Bluetooth, Remote-playback, Audio-output, PNG,
Device-memory, Contacts, Payment-request, Background-sync

1 Initial test execution. A preliminary execution is necessary
to store the required test files and modify them for local execu-
tion. During this phase, we run WPT under default configurations,
triggering multiple tests for each of the intended security headers.
Table 2 presents the complete set of WPT-tested headers. While
our primary objective is to identify security and privacy risks, we
also evaluate a broader set of functional and application-related
headers. To ensure consistency, all security headers analyzed in our
empirical phase are also assessed using WPT.
2 → 3 Extracting test files. To enable local execution, we in-
troduce a proxy server between the WPT server and the browser.
The proxy intercepts responses from the WPT server, which by
default processes and replaces all placeholders—such as dynami-
cally assigned domains and ports—with fully-resolved values before
serving test files. This behavior ensures that URLs, security policies,
and execution contexts are properly structured without requiring

additional modifications. The proxy then stores only the top-level
frames on the local file system, while all additional resources re-
main server-hosted to preserve their intended behavior and prevent
inconsistencies introduced by local execution.

Storing all resources locally may disrupt execution, as network-
dependent tests rely on server-provided headers. For example, in
X-Frame-Options tests, a top-level frame embeds an iframe that
expects to load a resource with the required header. If stored locally,
the browser does not enforce the expected security policy for the
embedding content, leading to inaccurate results. By maintaining
only top-level frames locally and fetching dependent resources
from the server, we preserve test integrity.
4 WPT runner. WPT assumes predefined domain, subdomain,
and port assignments dynamically configured by the WPT server.
To support local execution, we introduce a new argument, - -local-
files-path, allowing theWPT runner to load test files from a specified
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Listing 2: URL rewriting example.
Original URL:
file://www1./electron_app_path/cors/304.py?id=1

Transformed URL:
http://www1.web-platform.test:8000/cors/304.py?id=1

Algorithm 1: URL Rewriting for Local Execution
1: Input: Original test URL
2: Output: Rewritten URL for local execution
3: 𝑠𝑐ℎ𝑒𝑚𝑒←𝑔𝑒𝑡𝑆𝑐ℎ𝑒𝑚𝑒 (𝑈𝑅𝐿)
4: if 𝑠𝑐ℎ𝑒𝑚𝑒𝐼𝑠𝑁𝑜𝑡𝐹𝑖𝑙𝑒 (𝑈𝑅𝐿) then
5: 𝑠𝑐ℎ𝑒𝑚𝑒←𝑔𝑒𝑡𝑆𝑐ℎ𝑒𝑚𝑒 (𝑈𝑅𝐿)
6: else
7: 𝑠𝑐ℎ𝑒𝑚𝑒←𝑔𝑒𝑡𝐷𝑒 𝑓 𝑎𝑢𝑙𝑡𝑆𝑐ℎ𝑒𝑚𝑒 ()
8: end if
9: 𝑝𝑜𝑟𝑡←𝑔𝑒𝑡𝑃𝑜𝑟𝑡 (𝑈𝑅𝐿)
10: if ¬𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝑃𝑜𝑟𝑡 (𝑈𝑅𝐿) then
11: 𝑝𝑜𝑟𝑡←𝑔𝑒𝑡𝐷𝑒 𝑓 𝑎𝑢𝑙𝑡𝑃𝑜𝑟𝑡 ()
12: end if
13: 𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛←𝑔𝑒𝑡𝑆𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛(𝑈𝑅𝐿)
14: 𝑑𝑜𝑚𝑎𝑖𝑛←𝑔𝑒𝑡𝐷𝑜𝑚𝑎𝑖𝑛(𝑈𝑅𝐿)
15: if 𝑑𝑜𝑚𝑎𝑖𝑛𝐼𝑠𝐿𝑜𝑐𝑎𝑙𝑃𝑎𝑡ℎ(𝑈𝑅𝐿) then
16: 𝑑𝑜𝑚𝑎𝑖𝑛←𝑔𝑒𝑡𝐷𝑒 𝑓 𝑎𝑢𝑙𝑡𝐷𝑜𝑚𝑎𝑖𝑛()
17: end if
18: 𝑝𝑎𝑡ℎ←𝑔𝑒𝑡𝑃𝑎𝑡ℎ(𝑈𝑅𝐿)
19: 𝑓 𝑖𝑛𝑎𝑙_𝑢𝑟𝑙←𝑠𝑐ℎ𝑒𝑚𝑒+𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛+𝑑𝑜𝑚𝑎𝑖𝑛+𝑝𝑜𝑟𝑡+𝑝𝑎𝑡ℎ
20: return 𝑓 𝑖𝑛𝑎𝑙_𝑢𝑟𝑙

directory instead of the server. However, tests may contain hard-
coded relative URLs or placeholders that WPT resolves dynamically.
When executed locally, these URLs would be relative to the local
file system, or contain errors (e.g., subdomain followed by a local
path). To address this, we implement request interception mecha-
nisms in both Electron and Chrome, ensuring a reconstructed test
environment that aligns with WPT’s execution model.

Electron request handling. Executing tests in Electron requires
intercepting outgoing requests to ensure URLs are structured ap-
propriately and directed to the dedicated server. We develop a
lightweight Electron application that processes and rewrites re-
quest URLs utilizing the onBeforeRequest event of thewebRequest
module [17], which adjusts the scheme, subdomain, and port ac-
cording to the test specifications. By default, test files may generate
URLs using the file:// scheme or omit necessary subdomain and
port values. To handle this inconsistency, our application automat-
ically rewrites tests defining the file:// scheme, replacing it with
http://, and assigning default subdomain and port values when
required. Listing 2 illustrates a URL modification example where
the appropriate protocol is specified. Our approach ensures compat-
ibility withWPT’s execution model while maintaining test integrity
by applying these transformations before requests are issued.

Chromerequestmodification.Unlike Electron, which supports net-
work request interception internally, Chrome lacks a native mecha-
nism for modifying outgoing requests. To support this functionality,

Table 3: Evaluated Electron and Chromium versions [22].

Electron Version ChromiumVersion Release Date
12.0.2 89.0.4389.90 March 2021
25.2.0 114.0.5735.134 June 2023
26.2.1 116.0.5845.140 September 2023
27.0.2 118.0.5993.89 October 2023
28.1.4 120.0.6099.216 January 2024
29.1.4 122.0.6261.129 March 2024
30.0.6 124.0.6367.207 May 2024
31.3.0 126.0.6478.183 July 2024

we develop a Chrome extension that acts as a proxy server capable
of intercepting requests. We leverage the declarativeNetRequest
API [27], enabling structured URL rewriting through predefined
rules. SinceWPT relies on dynamic placeholders and predefined test
domains (e.g., web-platform.test) to standardize execution, our
extension reconstructs URLs to match WPT’s expected structure.

Algorithm 1 outlines our approach for reconstructing URLs by
ensuring compliance with WPT’s expected domain, subdomain,
and port structure. Our Chrome extension processes multiple URL
patterns, including:
• URLs that already contain web-platform.test, which remain
unchanged.
• URLs using the file:// scheme, either with a specified port or
without one.
• URLs using a different scheme, either with a specified port or
without one.

Since regular expressions are evaluated sequentially, we prioritize
more specific rules before broader ones to ensure correct transfor-
mations while minimizing redundant checks.
5 Differential analysis. Efficient log analysis is essential for
identifying discrepancies in test execution outcomes. To automate
this process, we develop a structured compliance analysis tool
that processes log files, extracts execution results, and compares
behaviors across Chrome and Electron. Our tool employs regu-
lar expression-based parsing to extract key details, including test
names, subtest descriptions, and failure conditions. To ensure con-
sistency, we uniformly classify failures (e.g., error, fail, timeout),
enabling systematic comparisons across multiple test runs. While
the analysis is automated, we also conduct manual validation in
edge cases that require additional exploration (e.g., multiple fail-
ures of the same test). The final compliance report details execution
results, highlighting security inconsistencies and deviations from
browser enforcement standards.

4 Experimental Evaluation
In this section, we leverage our automated testing framework to un-
cover security lacunae and behavioral divergences that exist when
comparing features executed within browser and cross-platform
environments. We focus our analysis on security headers, network
policies, and origin enforcement to highlight the pitfalls that devel-
opers face when migrating their web application code to Electron
due to fundamental semantic mismatches.
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Table 4: Securitymechanism inconsistencies and corresponding attacks across tested Electron and Chrome versions. ✓ indicates
a previously reported vulnerability that has been patched, ✗ denotes a known vulnerability that remains unaddressed, and
★ marks vulnerabilities newly identified by our framework.

SecurityMechanismVulnerability Attack Impact Affected Versions State
SOP: Local File Privileges Access to sensitive user data and credentials. All ★

CORS: Local File Bypass Data exfiltration via arbitrary cross-origin requests. All ★

CSP: Local File Enforcement No restrictions on local file execution or verification. All ★

HTTPS:WebView Enforcement MitM via embedded insecure content. All ★

X-Frame-Options: WebView Enforcement Clickjacking enabling unauthorized interactions and data exfiltration. All ✗

Permissions-Policy: WebView Inheritance Embeddings inheriting sensitive API permissions. All ✗

Cookies: Injection of Invalid Characters Session fixation and cookie jar desynchronization. All ✗

Cookies: SameSite Attribute CSRF and session manipulation. 12.0.2 ✓

Experimental setup. Preliminary tests were performed on Elec-
tron 30.0.6, while Web Platform Tests were executed across eight
Electron versions and their corresponding Chromium builds, cover-
ing a three-year period (2021–2024). The selected Electron versions
cover major version updates in the platform, allowing a detailed
analysis of both persistent and newly introduced vulnerabilities. A
detailed breakdown of the tested Electron and Chromium versions,
along with their release dates, is given in Table 3. Regarding our
automated testing, we leverage Selenium [6] for automation during
the empirical phase, and utilize mitmproxy [14] to proxy requests
during WPT testing. The Electron-based WPT deployment was
built using commit d92dadb2 of the WPT repository (pushed on
August 16, 2024). Our experiments were conducted on a MacBook
Air M1 running macOS Sonoma 14.6.
ThreatModel. For our analysis, we consider an attacker embed-
ded within the renderer process of an Electron application. The
attack vector is a third-party script that can be introduced through
various common scenarios, such as: (i) a compromised NPM pack-
age included at build time [67], (ii) a dynamically loaded remote
script, or (iii) a user-driven import of a malicious file through social
engineering. This model captures realistic deployment practices
in Electron, where external dependencies and remote content are
integrated into the app. The attacker can then exploit the security
lacunae that we have identified in Electron’s design to access local
resources, bypass origin-based restrictions, or escalate privileges
within the application.
Results. Table 4 details the specific versions tested across both
platforms, the vulnerabilities detected by our framework, and their
current mitigation status. Our analysis reveals that Electron di-
verges from standard browser security models, particularly in the
enforcement of security mechanisms within Electron-specific com-
ponents (e.g., local files and WebViews) that do not directly map
to features available during browser-based execution of web code.
These deviations introduce security and privacy vulnerabilities,
exposing sensitive user data to unauthorized access. Notably, even
when vulnerabilities are addressed in newer versions, their impact
may often persist due to the incomplete or inconsistent adoption of
updated Electron dependencies across applications [5]. Below, we
detail the nature of these divergences, how attackers can exploit
these flaws, and their security implications for affected applications.
Same Origin Policy. To prevent unauthorized cross-origin re-
source access, Chrome enforces the Same-Origin Policy (SOP) by

assigning a null origin to local files. As a result, web pages cannot
programmatically load or execute local files. Any access requires ex-
plicit user permission, such as selecting a file through the browser’s
interface. This restriction aligns with the web security model, which
prevents web pages from arbitrarily interacting with local files.
However, Electron deviates from this model by treating all local files
as originating from the same origin. As a result, any script executed
from a local file—including an attacker-controlled HTML file—can
access other local files and system resources without restriction.

We demonstrate the security and privacy implications of this
flaw through a practical attack scenario. Specifically, an Electron
application that loads a malicious local HTML file (e.g., through
a third-party script) will treat the malicious file as part of the ap-
plication’s origin. This attack requires no user interaction once
the Electron application is launched. If an attacker—whether an
invasive or compromised third party running within the applica-
tion— can store a malicious file in the local file system through
automated download, the application will execute it as a trusted
resource. Consequently, the injected file inherits the application’s
privileges, allowing it to access and manipulate local resources,
sensitive user files, and stored credentials. Electron also permits
automatic FTP connections [8], a feature that attackers can exploit
to retrieve and execute additional malicious files — an attack vector
explicitly blocked in modern browsers.

Listing 3 presents an iframe-based injection attack that initiates
an FTP connection, retrieves a malicious HTML file, and embeds
it within an iframe inside the Electron application. Once loaded,
the iframe executes arbitrary JavaScript, gaining full access to local
resources within the Electron context. While our attack leverages
iframes, prior work [5] has shown that Electron applications com-
monly permit WebViews to enhance functionality. If an application
allows WebViews, an attacker could achieve the same attack by
injecting a WebView instead of an iframe, thereby extending their
ability to execute arbitrary local files and escalate privileges.

Attack demonstration. To evaluate the feasibility of this attack
across operating systems, we conducted experiments on both ma-
cOS and Windows. On Windows, the attack is stealthy as Electron
permits FTP access without triggering system-level notifications,
thus allowing an attacker to establish a connection and retrieve
additional payloads without user awareness. On macOS, the effec-
tiveness of the attack is constrained by its reduced stealthiness,
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Listing 3: Fetching and loading amalicious HTML file
<script>

function fetchMaliciousFile(){
window

.location.href = "ftp://user:psw@ftp.server";
setTimeout(() => {

const iframe = document.createElement("iframe");
iframe.src

= "file:///Volumes/ftp.server/malicious.html";
document.body.appendChild(iframe);

},
5000);

}
fetchMaliciousFile();

</script>

as initiating an FTP connection through Electron prompts a sys-
tem notification requiring explicit user approval. This mechanism
limits the attacker’s capabilities, as users must manually authorize
the FTP request before the connection is established. While this
restriction introduces a limitation on macOS, the attack remains
highly effective due to Windows’ broad adoption and the absence
of similar security prompts, ensuring a large attack surface across
Electron applications deployed on Windows systems.

This security flaw has severe implications for applications that
embed user-generated content or rely on third-party dependencies
(which is typical of any modern application). If a local file is loaded
within the application, it can escalate privileges by reading other
local files, and more critically, it can use JavaScript (e.g., fetch())
to access sensitive system files. Specifically, an attacker can deter-
mine the logged-in username by leveraging system log files and
application data that store absolute file paths and access additional
users-specific credentials and resources (e.g., browser cookies, SSH
keys). In essence, there is a fundamental difference between how
local files are expected to be used by a native application and a web
application code running on the user’s device. Accordingly, Elec-
tron’s approach to treating local files as the same origin bypasses
critical security policies enforced in modern browsers, exposing
applications to unauthorized file access.
Cross-Origin Resource Sharing. CORS prevents unauthorized
cross-origin requests in web browsers by restricting access to spe-
cific HTTP methods, headers, and credential transmissions un-
less the server explicitly permits them. While Electron effectively
enforces CORS for network-fetched resources, it deviates from
standard browser security policies when handling local HTML
files. Our framework found that cross-origin requests from local
files failed in Chrome, which is expected, due to the absence of
an Access-Control-Allow-Origin header. In contrast, Electron
permits these requests, demonstrating that local execution contexts
are exempt from CORS restrictions. Specifically, Electron allows
local files to issue unrestricted cross-origin requests, further high-
lighting inherent mismatches that exist between web and native
execution environments, and the risks of direct code migration.

This deviation significantly expands the attack surface of Elec-
tron applications, as attackers may load a local HTML file and
issue unauthorized requests to any origin. Applications utilizing

WebViews under insecure configurations (e.g., nodeIntegration:
true, which is common [5]) are susceptible to such exploitation. Un-
der these conditions, attackers bypass security restrictions without
relying on additional application-specific vulnerabilities, enabling
unauthorized data access or cross-origin interactions that would
otherwise be restricted in traditional browser environments.
Content Security Policy. Our empirical evaluation of Content
Security Policy (CSP) enforcement in Electron reveals that CSP
does not regulate local files and does not apply restrictions to them.
While CSP is a critical web security mechanism designed to mitigate
script injection attacks and restrict unauthorized resource loading
in web contexts (https://), it lacks directives for controlling local
file execution. Browsers do not provide a CSP directive for file://
URLs, and Electron’s CSP enforcement does not extend to local
files. Even if developers define a strict CSP policy for an Electron
application, it applies only to content served from remote origins,
leaving local files unrestricted.

Additionally, Electron does not inherit browsers’ security re-
strictions on file URLs, which typically block such behavior. As
a result, no policy-based mechanism prevents local files from ex-
ecuting scripts or loading resources. This design flaw allows an
attacker-controlled local file to execute arbitrary JavaScript and
load untrusted local resources without CSP-based restrictions. This
design limitation weakens Electron’s security posture, exposing
applications to script execution risks and resource injection when
handling untrusted local content.
HTTPSenforcement.Modern browsers enforce secure-by-default
policies to prevent insecure connections by automatically upgrad-
ing HTTP requests to HTTPS [33]. In contrast, Electron does not
implement automatic HTTPS upgrades and strictly follows the
protocol specified in the developer’s loadURL() call. As a result,
an application that loads http://example.com is vulnerable to
man-in-the-middle (MitM) attacks and session hijacking [54, 56].
While Electron supports preload scripts for exposing additional
functions in the renderer process, it does not natively enforce HSTS,
requiring developers to implement HTTPS enforcement explicitly
through a preload script [21].

Furthermore, our analysis revealed that Electron WebViews do
not enforce Mixed Content Blocking and allow unprotected HTTP
content within secure environments. This behavior introduces a
practical attack vector in Electron applications, particularly for
Electron applications that embed user-generated content (e.g., con-
tent management systems such as WordPress). For instance, an
attacker may exploit an Electron application with relaxed WebView
configurations by dynamically injecting an <iframe> targeting an
HTTP page. Since Electron lacks both Mixed Content Blocking and
automatic HTTPS upgrades, the WebView will successfully render
the insecure resource without triggering security warnings or user
notifications. Applications that rely on Chromium’s secure defaults
may unintentionally introduce persistent downgrade vulnerabil-
ities, exposing users to attacks that are mitigated in traditional
browser-based environments.
Permissions Policy. Electron lacks native permission prompts, ne-
cessitating that developers explicitly enforce permissions through
the dedicated APIs (i.e., setPermissionRequestHandler). In the
absence of these handlers, Electron defaults to indiscriminately
granting all permission requests, thereby rendering applications
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susceptible to security risks by permitting unrestricted access to
sensitive APIs. While the Permissions-Policy header is enforced,
its applicability is restricted to cases where the top-level document
is served only from a remote origin, leaving local files unregulated.
This poses a major pitfall for migrated web application code that
does not explicitly account for the enforcement deviation.

Additionally, Electron applications rely on operating system-
level permissions, which apply globally to the entire application
rather than being scoped to individual web origins. Consequently,
once a user grants access to resources such as the camera or filesys-
tem, all embedded content and WebViews within the application
automatically inherit these privileges. This absence of origin-based
isolation introduces a significant attack surface, allowing a mali-
cious embedded page to leverage the granted permissions and gain
unauthorized access to user data and system resources. Filesys-
tem access can have severe implications (e.g., the ability to access
encryption keys stored in plaintext, as was the case with Signal [2]).
X-Frame-Options. Chrome enforces the X-Frame-Options header
to restrict remote content-embedding in iframes, effectively miti-
gating clickjacking attacks. In contrast, Electron does not apply the
header to WebViews and WebContentViews, which embed external
web content within applications. Unlike iframes, WebViews operate
in separate processes, inherit Chromium’s rendering capabilities,
and bypass security policies designed for embedded content. If
a webserver specifies X-Frame-Options: DENY, standard iframes
automatically block external content loading. However, the same
restriction is not enforced within WebViews, allowing attackers
to inject a WebView into an Electron application to execute click-
jacking attacks. This exploitation leverages techniques similar to
traditional web-based attacks but omits existing browser-imposed
protections. Moreover, Electron applications typically embed third-
party content from remote resources, increasing the likelihood of
untrusted sources being loaded within WebViews. This divergence
in webview protection is not an unintended security flaw, since
prior work and disclosures [5] confirm that Electron explicitly by-
passes X-Frame-Options enforcement to provide developers with
greater flexibility when embedding content. However, this trade-off
weakens security guarantees, as developers migrating their web
application code to Electron may assume browser-like protections,
thus exposing their users to additional risks.
Cookies. Both Chrome and Electron permit the setting of cookies
with non-printable characters exceeding ASCII code 127, despite of-
ficial specifications restricting cookie names to US-ASCII characters
and excluding control and separator characters. While these mal-
formed cookies are successfully stored, document.cookie returns
an empty string. This discrepancy results in cookie jar desynchro-
nization, a flaw previously demonstrated against Firefox [54] and
also reported in Chrome [57]. An attacker controlling a subdomain
(e.g., attacker.example.com) can exploit this behavior by inject-
ing a malformed cookie for example.com, resulting in Electron ap-
plications rejecting legitimate session cookies while accepting the
attacker’s crafted value. Consequently, the attacker may perform
a session fixation attack by pre-setting a known session identi-
fier, forcing the victim into authenticating within the attacker’s
controlled session.

Additionally, our analysis detected that Electron version 12
fails to enforce the SameSite attribute, thereby allowing cross-site

Table 5: Deployment characteristics of 30 Electron applica-
tions, including origin-to-inclusion relationships,WebView
usage, and Content Security Policy configuration. Local de-
notes file:// origins whileRemote denotes https:// origins.

Deployment Property Applications

Application Origin→ Inclusions
– Local→ Local 17
– Local→ Remote 8
– Remote→ Remote 5
WebViewUsage 5
– WebView embedding local file 3
Content Security Policy 12

cookie leakage. This deviation from expected behavior exacerbates
the risk of cross-site request forgery (CSRF) attacks, as cookies in-
tended to be restricted to same-site requestsmay instead be included
in cross-origin requests, leading to unintended state modifications
within an Electron application (e.g., session termination) [34].
Evaluating Real-World Applications. We conduct an empiri-
cal analysis of 30 Electron applications to evaluate the real-world
manifestation of the security lacunae presented in our work.We ran-
domly select a diverse set of applications from the official Electron
showcase [19], varying in popularity and functionality. Following
the methodology proposed by Ali et al. [5], we launch each ap-
plication in debugging mode and use Puppeteer [13] to extract
their runtime resources. Our analysis focuses on: (i) local file in-
clusions (e.g., iframes and scripts), (ii) local file deployment within
WebViews, and (iii) the deployment of Content Security Policy
(CSP). This approach focuses on extracting resources and config-
uration patterns to identify architectural and deployment risks.
However, the security assessment of dynamic behaviors—such as
runtime permission requests, API-level access, and WebView ex-
ecution flows—requires additional techniques based on dynamic
instrumentation and execution monitoring. Prior systems (e.g., In-
spectron [5]) demonstrate the challenges of conducting dynamic
analysis within Electron’s hybrid architecture.While this dimension
is outside the scope of our work, our findings provide a foundation
for a more granular security assessment of Electron applications.
A detailed breakdown of applications’ configurations is provided
in Appendix A.

Table 5 presents aggregated deployment characteristics across
the analyzed Electron applications. In total, 25 applications assign a
local origin to their main renderer by loading it from a file://URL,
a typical deployment pattern in which core logic is served through
a bundled HTML file. Notably, 8 of these applications fetch remote
resources or inclusions, thereby effectively blending native and web
application behaviors. Among these, 3 applications incorporate
third-party resources that provide analytics, consent management,
advertising, and federated authentication (i.e., Google SSO). Fur-
thermore, 2 applications embed remote content via iframes; one
is sourced from a third-party consent management provider (i.e.,
Cookiebot [15]), while the other originates from a first-party service.
These inclusions introduce external resources into the local execu-
tion context, increasing the application’s exposure to external in-
jection origins. Even though this hybrid deployment is widespread,
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it is inherently insecure as it violates origin isolation. For instance,
Figma, a popular collaborative design platform, loads its main inter-
face from a local file while retrieving updates and resources from
first- and third-party remote servers. In the absence of strict enforce-
ment mechanisms, this configuration bypasses browser security
controls such as the Same-Origin Policy, allowing unauthorized
access to local resources.

Furthermore, 5 applications deployed at least one WebView to
support additional functionality or navigation capabilities. In 3 of
these cases, our analysis detected WebViews that load content di-
rectly from the file system, a configuration that bypasses multiple
browser-enforced security mechanisms, as we have shown. For
instance, the browser application Biscuit permits loading local
files from its main interface. An attacker may exploit this behav-
ior by delivering a crafted file:// link to the user via an in-app
message, email, or external messaging platform (e.g., Slack). Once
the file is loaded within the application, it is rendered in a Web-
View, where it is treated as trusted and inherits the application’s
privileges. This case is a textbook example of the attack vectors
identified through our evaluation and highlights the real-world
risks of insecure WebViews.

Finally, 12 applications deployed a CSP, offering a baseline level
of protection. Despite including the ‘self’ value in their direc-
tives, or defining separate CSPs for local and remote components,
these deployments remain insufficient to control all origins within
the application. This limitation reflects the fundamental inability
of CSP to regulate local content when files are assigned default
origins. One application (Cacher) defined all directives using the
unsupported file: scheme, an invalid expression which is ignored
during CSP enforcement. This misconfiguration illustrates the chal-
lenges developers face when applying web-based control in native
contexts. In contrast, the VS Code application, a widely popular
developer platform, mitigates local file vulnerabilities by assigning
a custom scheme (vscode://) to its internal resources and deploy-
ing its CSP accordingly. While practical and effective, this approach
further highlights the additional complexity and effort required to
enforce security constraints in hybrid environments.

Overall, our findings provide empirical evidence that Electron’s
architecture introduces persistent security risks, thereby corrobo-
rating our motivation to evaluate the framework design. Our anal-
ysis demonstrates that the platform’s default behavior is insecure
by design, and that mitigating these risks requires architectural
changes and introducing additional application-specific safeguards
and secure practices.

5 Discussion
Disclosures.We submitted a report to the developers of the Cacher
application, detailing their misconfigured Content Security Policy
and the ineffectiveness of the file: scheme. We also highlighted
the limitations of Electron’s security model and included deploy-
ment recommendations based on our analysis to support secure
CSP configuration. Furthermore, to enhance Electron’s security, we
reported our findings to the Electron deployment team, providing a
detailed technical report and proof-of-concept demonstrations. The
team acknowledged our submission and clarified that the identified
behaviors align with Electron’s intended security model. Similar

to the issues reported by prior studies [5], our findings were not
treated as vulnerabilities but as behavior consistent with design
decisions. Specifically, the team noted that the handling of the
file:// protocol is intentional and documented, and that devel-
opers are expected to avoid such deployments or explicitly define
their own security models. Nonetheless, we want to emphasize that
we believe that Electron’s decision to deviate from the norms and
behaviors established by browsers creates significant pitfalls for
developers. We hope our disclosure will incentivize internal discus-
sions to align Electron’s architecture with web security standards
and adopt stricter default protections.
Pitfalls ofmigration. Our study sheds light on the inherent pit-
falls that afflict web application code migrated to a cross-application
Electron environment. Apart from divergent behaviors for specific
security mechanisms (e.g., not upgrading to encrypted connections,
not blocking mixed content, etc.), more importantly, we have uncov-
ered how cross-platform applications present a fundamentally dif-
ferent execution environment. Capabilities that are available to the
code powering native applications (e.g., loading local scripts, having
direct access to the filesystem or native APIs), are either prohibited,
heavily constrained, or occur under specific user actions (e.g., a user
explicitly opening a local HTML file in a browser). Consequently,
those capabilities can either result in corner cases not handled by ex-
isting security mechanisms or require specific additional safeguards
for protecting migrated web application code (e.g., additional code
for preventing third-party code from accessing the camera).
Countermeasures and guidelines. Our findings reveal that Elec-
tron’s security model diverges significantly from modern browser
security standards, thus rendering migrated web application code
inherently vulnerable by default.

Enforcing Secure Permission Handling. Electron’s permissive han-
dling of local file execution supports offline functionality but also in-
troduces additional risks, allowing attackers to bypass standard web
security restrictions. Given Electron’s incomplete security model,
developers should proactively enforce security controls to mitigate
these classes of vulnerabilities. For instance, permission handlers
should be defined to restrict access to sensitive APIs, ensuring that
features like the camera and microphone are inaccessible without
explicit user consent.

Restricting Local File Execution. WebViews should not execute lo-
cal files unless explicitly required for their functionality. If local file
execution is necessary, additional security layers should be enforced
beyond process isolation. By default, local files should be treated as
untrusted, and their execution should be eliminated. Applications
may use specific APIs (e.g.,protocol.registerFileProtocol) en-
suring that only authorized files are accessible while preventing
unrestricted filesystem access [20]. Additionally, local file execution
should be constrained within a controlled environment where a
preload script enforces strict content validation and origin restric-
tions. As we detail in §4, VS Code application adopts an effective
mitigation strategy by disabling file:// usage and registering
a custom scheme for local files. This approach offers a practical
solution that Electron applications should adopt to enhance their
deployment security.

Adopting Electron-dedicated CSP. Deploying CSP in Electron ap-
plications enhances security by restricting resource access and miti-
gating common attack vectors. However, as CSP is adopted from the
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Listing 4: Electron-based CSP example deployment.
script-src google.com;
frame-src analytics.com;
file-src 'self' path-/application/updates/resources/;
connect-src server.com

browser’s security model without modifications, it does not support
file:// URLs. This design prevents developers from utilizing CSP
to regulate local file execution. To address this limitation, we pro-
pose the file-src directive, a CSP directive specifically designed
for hybrid applications. Since CSP controls resource execution poli-
cies, extending it to regulate local files ensures a uniform enforce-
ment model rather than relying on separate security mechanisms.

Similar to the script-src directive, file-src provides fine-
grained restrictions for local resource execution while adapting to
the unique characteristics of native execution. The directive defines
a set of values that determine how local files may be loaded and
executed within an Electron application. Specifically, it supports
the following keywords:
• none: Blocks execution of all local files.
• self: Restricts execution to files located within the application’s
system-protected installation directory (e.g., on Windows the
C:\Program Files\directory).
• sha256-: Restricts execution to fileswhose SHA-256 hashmatches
a predefined encoded value.
• nonce-: Allows execution of dynamically loaded files only when
they include a valid base64-encoded nonce.
• path-: Limits execution to specific absolute paths designated by
the developer.
Listing 4 illustrates the application of file-src within a restric-

tive CSP policy. In this example, file-src permits execution of files
from the application’s directory (self) and a specified developer-
defined external path. Notably, the directive enforces restrictions
on local file execution without modifying or conflicting with exist-
ing CSP directives, ensuring that policies for web-based and local
execution remain independent.

The file-src directive provides granular control over local
file execution, mitigating the arbitrary execution risks and SOP by-
passes introduced in §4. Specifically, the self value limits execution
to application-controlled directories, ensuring that only system-
protected installation paths are permitted. Cryptographic enforce-
ment mechanisms, such as hash- and nonce-based restrictions, pre-
serve file integrity by preventing unauthorized modifications. Ad-
ditionally, the path- restriction further mitigates risks by blocking
execution from user-writable locations (e.g., the Downloads folder).

As with web-based CSP directives, combiningmultiple file-src
keywords enhances protection by enforcing strict execution control
and integrity verification. This explicit access control mechanism
reduces the attack surface for origin violations and filesystem-based
exploits in Electron applications. Building on our design, we plan
to propose the adoption of the file-src directive as an Electron-
specific security mechanism. By evaluating the new directive in
practice, we aim to assess its effectiveness in real-world applica-
tions and gather insights for its potential standardization within
cross-platform CSP.

Security Enforcement Challenges. Given Electron’s design and
architecture, developers may assume that the platform enforces pro-
tections consistent with browser environments. However, this as-
sumption does not hold in practice due to fundamental architectural
divergences and the absence of internal mechanisms for detecting
security inconsistencies or alerting developers to misconfigurations.
For example, protections inherently enforced by browsers, such as
Same-Origin Policy, CORS, and permission prompts, must be man-
ually configured in Electron. Moreover, the hybrid environment
redefines the concept of an origin, allowing local and remote re-
sources to coexist within the same application context, complicating
security enforcement. Prior studies have also shown that developers
widely adopt default configurations without assessing their security
implications [3, 28, 39, 45, 50, 58]. Ultimately, shifting the responsi-
bility of managing conceptual mismatches, enforcement gaps, and
deployment safeguards onto developers exposes users to significant
risks. To address these limitations, our work can assist developers
in aligning their deployments with modern web security models.
Until stronger defaults are adopted, we view the development of
automated code retrofitting frameworks that streamline the migra-
tion of web application code to Electron and address the inherent
security lacunae we uncovered, as a promising future direction.

6 RelatedWork
Web Standards Adoption. The security of users on the web is
highly dependent on the adoption and correct implementation of
constantly evolving standards. In 2010, Zhou and Evans [66] found
that even though HTTP-only cookies (introduced in 2002) could
be easily deployed to protect sites against cookie stealing attacks,
most major websites did not use them.Weichselbaum et al. [59] con-
ducted a large-scale study of CSP adoption and identified significant
flaws that can lead to bypasses in 94.72% of all adopted policies. In
2023, Weissbacher et al. [60] found limited CSP adoption, with only
1% of the Alexa Top 100 websites enforcing their CSPs. Kranch et
al. [37] evaluated the adoption of HSTS and reported that Chrome’s
preload list in 2015 contained only 19 of the Top 1K non-Google
domains, and numerous websites in the list returned 404 errors or
redirected to a plain-HTTP URL. Luo et al. [40] performed a longitu-
dinal analysis of mobile browsers and reported multi-year windows
between popularwebsites requesting a security standard andmobile
browsers supporting the mechanism. In 2016, Felt et al. [24] showed
positive trends in HTTPS adoption, highlighting that HTTPS traffic
doubled as a percentage of all web traffic from 2014 to 2017. They
showed that the increased adoption is a direct consequence of sup-
port from client platforms (i.e., browsers) and server frameworks.
Cross-platform SecurityMechanism Implementations. While
adopting new security mechanisms is a crucial step, it is equally
important to ensure their consistent implementation across differ-
ent platforms (e.g., browsers). Schwenk et al. [51] analyzed 544 test
cases of Same-Origin Policy (SOP) implementations across 10 major
browsers and found varying behaviors in 23% of these cases, call-
ing for clarity via formal specification. Singh et al. [52] performed
a principle-driven analysis of incoherencies across browsers and
reported numerous inconsistencies in the implementation of ac-
cess control policies around shared resources (e.g., cookies, local
storage) and non-shared resources (e.g., postMessage, clipboard).
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Thomas et al. [30] developed an automated testing framework,
BrowserAudit, which assessed the implementations of CSP, CORS,
and HSTS, and reported bugs in Firefox’s CSP implementation.
Wi et al. [62] performed a differential analysis of 4 CSP directives
across Chrome, Firefox, and Safari and uncovered 37 browser bugs
resulting from varying interpretations of the CSP specification.
Franken et al. [25] evaluated the third-party cookie policies of 7 ma-
jor browsers and 46 browser extensions and reported that virtually
every browser-enforced and extension-enforced policy could be by-
passed. Squarcina et al. [54] performed a cross-browser evaluation
of cookie integrity attacks and reported vulnerabilities resulting
not only from inconsistent implementations but also from oversight
in the formal specification. Kondracki et al. [36] assessed the risks
posed by the implementation of the data-saving feature of different
mobile browsers. Rautenstrauch et al. [49] analyzed side-channel-
based state inference attacks (XS-Leaks), and reported multiple
leaks including the potential for an attacker to determine a user’s
login state on 77/100 top-ranked Tranco websites. Ali et al. [4] evalu-
ated the implementation of storage, cache, access control, and policy
mechanisms on 7 browsers and reported 20 vulnerabilities resulting
from inconsistencies that could be used as privacy-invasive track-
ing vectors. Mendoza et al. [43] demonstrated inconsistencies in
security headers included in HTTP responses for requests sent from
desktop and mobile browsers, and demonstrated that developers of-
ten reduce or omit security practices when providing cross-platform
support. Bernardo et al. [7] leveraged the WPT suite to evaluate
browser implementations of security mechanisms based on their ex-
ecution traces, which highlighted variable interpretations of the for-
mal specification of the same security mechanisms across browser
vendors. Finally, Xiao et al. [64] deployed a hybrid analysis tool
that detects Hidden Property Abusing attacks, where attackers
exploit non-enumerable and symbol-based properties in JavaScript
objects to compromise server-side applications built in Node.js.
Electron Security. While prior work has focused on the imple-
mentation of standard security mechanisms on browsers, there
has been limited analysis of the Electron framework. However,
researchers have analyzed vulnerabilities in apps built using the
Electron framework. Carettoni [12] built a static analysis tool, Elec-
tronegativity, that gathers the HTML and JS files of an Electron app
and checks for the presence of insecure coding practices based on
known implementation flaws. Krishna et al. [38] reported practical
exploits of popular apps that use insecure web preferences. Xiao
et al. [65] instrumented V8 to perform a taint-analysis of poten-
tial cross-context control flow exploits based on communication
between the renderer and main processes. Jin et al. [31] proposed a
framework to protect Electron apps from unintended modifications
to the DOM tree. Ali et al. [5] instrumented the Electron framework
to perform dynamic analysis of 109 apps for 16 classes of security
feature misconfigurations and reported that almost all apps had at
least one misconfiguration.

Despite the popularity of Electron apps, the framework itself
has received limited attention for its implementation of standard
security mechanisms. The framework uses security mechanisms
in its interaction with various web services but adheres to different
threat models than traditional web browsers. Vulnerabilities result-
ing from inconsistent implementations of security mechanisms in
Electron apps can have significant consequences, since these apps

often have access to sensitive user data and system resources. Our
work highlights the need to consider non-browser web platforms
(e.g., Electron) in evaluating the implementation of web standards.

7 Conclusions
Recently, there has been an increase in popular web services of-
fering a standalone application as an alternative to their browser-
based web application. One contributing factor is the cross-platform
application-development paradigm, which allows web services to
reuse significant portions of their web application codebase, thereby
avoiding the expensive and error-prone development process tra-
ditionally required for developing native applications for different
operating systems. While a few prior studies have found various se-
curity flaws in cross-platform applications, in this paper we aimed
to explore whether inherent semantic gaps (i.e., lacunae) exist be-
tween web-based and native code execution, thereby demonstrating
the inherent security risks of directly migrating web application
code to a cross-platform Electron application. For instance, our
findings highlight how even a concept as essential as that of an
origin, can fundamentally differ between these two contexts. While
loading and executing code from the local filesystem is typical for
a cross-platform application’s execution, such a notion is incon-
ceivable for a web application. Therefore, directly migrated web
application code will lack the necessary safeguards to properly
enforce access control and context isolation when executed as part
of a cross-platform application. The implications of this seman-
tic mismatch become more pronounced when considering the use
of bundled third-party libraries and SDKs which will be loaded
from the local filesystem, and can then fetch remote third-party
code. Crucially, the responses to our disclosure argued that these
are intentional design choices by the Electron framework, thereby
shifting the onus of incorporating appropriate safeguards to the
developers. Given the well-documented struggles of developers
with the deployment and configuration of existing web security
mechanisms, relying on them to proactively introduce additional
safeguards during the migration process so as to prevent threats
that are not applicable in the browser environment, or anticipate
problematic behaviors that deviate in nuanced ways, will ultimately
result in users being exposed to significant threats.
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A Appendix: Real-World Electron App Dataset
Here we provide additional details about our real-world Electron
application analysis.

Table 6 presents the deployment characteristics of the 30 Elec-
tron applications analyzed in our study. The selection includes a
diverse range of productivity, developer, and utility tools from the
official Electron showcase [19]. For each application, we extract
multiple configuration and deployment characteristics:

(1) We detect whether the main renderer is loaded from a lo-
cal origin (file://) and assess the source of embedded re-
sources, specifically whether scripts and iframes are loaded
from local and remote origins.

(2) We analyzeWebView usage, distinguishing between instances
that load content from local files and those that fetch remote
resources.

(3) We evaluate Content Security Policy (CSP) deployment by
inspecting both <meta> tags and HTTP response headers.

This analysis provides a detailed view of real-world deployment
practices and highlights configurations that impact origin isolation
or introduce elevated privilege risks, as we detail in §3.
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Table 6: Deployment characteristics of the 30 Electron applications we evaluated.

Application Origin→Inclusions WebView Embedding CSPFile→File File→Remote Remote→Remote Remote Source Local Source

Advanced REST Client ✓ – – – – –
Airtame ✓ – – – – –
Altair GraphQL Client ✓ – – – – –
Asana – ✓ – – – ✓

Bibico ✓ – – – – –
Biscuit – ✓ – – ✓ –
Boxhero ✓ – – – – ✓

Buckets ✓ – – – – –
Cacher – ✓ – ✓ – ✓

Discord ✓ – – – – –
Dynobase – ✓ – – – –
Etcher ✓ – – – – –
Figma – ✓ – ✓ – ✓

Flat – – ✓ – – –
Fontbase – ✓ – – – –
GitHub – – ✓ – – ✓

GitKraken ✓ – – – – ✓

Heroic ✓ – – – – ✓

Hive ✓ – – – – –
Loom ✓ – – – – –
Obsidian ✓ – – – – –
Postman – ✓ – ✓ ✓ –
Signal ✓ – – – – ✓

Slack – – ✓ – – ✓

Splice – – ✓ – ✓ –
Tidal – ✓ – ✓ – ✓

Tropy ✓ – – – – –
VSCode ✓ – – – – ✓

WordPress – – ✓ – – –
Zettlr ✓ – – – – ✓

39


	Abstract
	1 Introduction
	2 Background
	2.1 Web Security Standards
	2.2 Web Platform Tests
	2.3 Electron Framework

	3 System Overview
	3.1 Empirical Testing
	3.2 WPT Testing

	4 Experimental Evaluation
	5 Discussion
	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	A Appendix: Real-World Electron App Dataset

