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Abstract
Recent work on video stream fingerprinting has begun to explore
its effectiveness in large open-world scenarios, in which the vast
majority of test samples are from unmonitored videos that are
unknown to the model at training time, showing that it is more
difficult than earlier small open-world results have suggested. How-
ever, the evaluated approach employed deep learning techniques
with potential shortcomings for the open-world task. We build on
that work to evaluate more advanced techniques drawn from the
literature on open set recognition, out-of-distribution detection,
and robustness to adversarial examples, hypothesizing that they
can improve effectiveness. We find that combinations of techniques
can improve effectiveness, cutting the open-world false positive
rate by up to 92% at a recall of 0.5. However, precision would likely
still be problematic at the full-scale of the largest platforms hosting
hundreds of millions or more videos. Additionally, we find that
introducing two other dimensions of realism – when training and
test sets are streamed from different vantage points, and when
monitoring shorter videos or traffic flows – can greatly increase
open-world false positives, making the full-scale open-world task
even more difficult. Accordingly, we call for more work to focus on
larger and more realistic open-world scenarios to continue to gain
a better understanding of the effective envelope for fingerprinting.
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1 Introduction

End-to-end encryption hides the payloads in network packets
from passive adversaries, but it does not hide the patterns in se-
quences of packet sizes, directions, and timing. Network traffic
fingerprinting exploits that information leakage and has called into
question the security of encrypted web browsing [5, 23, 44], Do-
main Name System (DNS) queries [55], web search queries [47],
voice communications [65], and streaming video [11, 24] even with
the added protection of Tor [62].

Video stream fingerprinting intends to recognize what video a
user has watched or is watching by observing their network traffic
and comparing it to examples of traffic collected when streaming
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known videos. Whereas most of the literature has been limited to
closed-world or small open-world scenarios, which can be insightful
and relevant for some purposes, we take the position that full-scale
open-world scenarios are deserving of more consideration and
analysis. Some recent work has begun to consider full-scale open-
world scenarios [62], showing the difficulty of the task compared to
smaller scenarios, but those evaluations have been limited to testing
deep learning models that employed only the simplest techniques
for the task of classifying samples as being frommonitored (known)
vs. unmonitored (unknown) videos.We continue this line of work by
asking, can open-world video stream fingerprinting become more
effective by leveraging more advanced deep learning techniques
drawn from the literature on open set recognition (OSR), out-of-
distribution detection, and robustness to adversarial examples?

Unanswered questions about the effectiveness of video stream
fingerprinting also go beyond whether more advanced techniques
can improve precision in open-world scenarios of a larger size.
Previous experiments often contain the implicit and unrealistic as-
sumption that training and test sets can be streamed and collected
from the same host on the same network. Those that include a more
realistic evaluation of models trained and tested under different
network conditions still do so from generally the same geographic
vantage point, or by artificially altering either the network condi-
tions or traffic traces. Additionally, the results have been mixed
and none have included a large open-world evaluation. Similarly,
there have been many previous evaluations of effectiveness when
an adversary is constrained to fingerprinting shorter video traffic
flows, but only in closed-world scenarios. These gaps motivate the
need for more rigorous open-world evaluations of these potentially
realistic scenarios too as we aim to better understand the threat.

1.1 Contributions
(1) We adapt a variety of deep learning techniques – drawn

from the literature on OSR, out-of-distribution detection,
and robustness to adversarial examples – to open-world
network traffic fingerprinting for the first time and compare
their effectiveness with the baseline approach.

(2) We find that novel combinations of Bayesian methods, data
augmentation with mixup, and none-of-the-above (NOTA)
defensive padding yielded our greatest improvements over
the baseline approach.

(3) We reason about the significance of the improvements, ar-
guing that they may still fall short of threatening the largest
platforms at full-scale, and that Tor still provides a degree of
protection compared to streaming video without Tor.
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(4) We show the effects of training a model and employing it
to recognize the same videos streamed from different geo-
graphic vantage points. We find that across some pairs of
vantage points, the open-world false positive rate (FPR) at
0.5 recall increased by up to 50x even when closed-world
accuracy remained above 0.99.

(5) We show the effects of different video traffic flow lengths
on open-world FPR, and we describe how the difficulty of
open-world fingerprinting is compounded when monitoring
shorter traffic flows due to the real-world distribution of
video lengths on the web.

1.2 Ethical Principles
This research did not involve any human subjects or real user
data. As such, we did not need to obtain informed consent, apply
any methods to preserve privacy, or submit to a review by an
ethics panel. This research also does not disclose nor exploit any
previously unknown system vulnerabilities. By seeking to better
measure the extent of a known vulnerability, we believe that we
can advance the science of security and privacy for the benefit of
society.

2 Related Work

Numerous works have demonstrated the ability to fingerprint
streaming video traffic with various methods and under various
conditions, but most have been limited to closed-world scenarios
with small datasets of between ten and 100 different videos [1–3, 10,
11, 14, 21, 24, 25, 30, 32, 38, 50, 66]. Reed et al. [51] and Björklund et
al. [9] demonstrated high accuracy in larger but still closed-world
scenarios. Fewer works have shown open-world results and most
test sets have contained fewer than 2,000 different unmonitored
videos [4, 13, 15, 54, 69].

Walsh et al. [62] explored video stream fingerprinting in the
largest open-world scenarios to date, seeking to better understand
effectiveness at the full-scale of platforms that host hundreds of
millions or more videos. The authors collected and made available
a new dataset including test sets with up to 64,000 different un-
monitored videos, streamed over both Tor and Hypertext Transport
Protocol Secure (HTTPS)-only connections. They found that it was
possible to reproduce the high recall and precision of earlier works
when the world size was small but that, even at low rates of recall
for the monitored videos, FPRs converged to non-zero values as
the world size (i.e. number of different unmonitored videos) grew.
They offered a preliminary conclusion that extrapolating such FPRs
would make the approach ineffective at the full-scale of the largest
video hosting platforms due to the base rate problem, which Juarez
et al. [29] similarly argued in the context of open-world Tor web-
site fingerprinting. However, Walsh et al. also suggested that more
recent advancements in deep learning techniques specifically for
the open-world task could improve an adversary’s results, and we
explore that possibility using their same dataset.

Dahanayaka et al. [13] were the first to relate open-world net-
work traffic fingerprinting to the general task of OSR. They com-
pared simple baseline approaches with two more advanced OSR

techniques, OpenMax [8] and a variation of OpenMax called 𝑘-
Logit Neighbor Distance (𝑘-LND), for open-world video stream
fingerprinting. However, their test sets were very small, contain-
ing only six to twelve different unmonitored videos. Additionally,
their results were mixed and more recent techniques in the gen-
eral OSR literature have significantly outperformed OpenMax. We
select several of those more recent techniques and compare their
performance to the baseline on the largest open-world test sets.

To our knowledge, there is no existing literature that frames the
general OSR task as being related to achieving robustness against
adversarial examples [20, 59]. We hypothesize that there is a rela-
tionship and experiment with two simple but effective techniques
drawn from the literature on adversarial robustness: mixup by
Zhang et al. [67] and NOTA defensive padding by Barton [6] and
Jatho [28].

In the area of open-world Tor website and same-domain subpage
fingerprinting, Wang [63] argued that what is needed to properly
assess open-world fingerprinting performance is a version of pre-
cision, 𝜋𝑟 , that incorporates the base rate of monitored samples
in the wild, which we use to further assess the significance of our
empirical results. Wang also tested several “precision optimizers”
to improve the open-world effectiveness of Tor website fingerprint-
ing systems using traditional machine learning methods, which
Mathews et al. [41] later adapted to deep learning methods. We mir-
ror their efforts by testing a different set of techniques to improve
the existing deep learning approach to open-world video stream
fingerprinting.

In the context of Tor website fingerprinting, Juarez et al. [29]
and Oh et al. [48] considered the question of different geographic
vantage points and network conditions. Juarez et al. collected data
on machines in three different countries, and then trained differ-
ent models on the data from each country while testing them on
the data from the other countries. The results were mixed, so the
authors identified this as a possible limitation of fingerprinting at-
tacks. Oh et al. considered the use of different Tor circuits that they
characterized as being either fast or slow and found that this made
little or no difference to model performance. However, streaming
video is likely more sensitive to network conditions along the path
between the client and server. In addition to the first-order effect
of requests and responses exhibiting different timing patterns, the
use of Dynamic Adaptive Streaming over HTTP (DASH) causes
clients to request entirely different responses (i.e. video segments at
higher or lower quality levels) at the application layer as a second-
order effect in response to different network conditions. Dubin
et al. [15] experimented with adding artificial delays and packet
loss to the test set to see how the performance of their models
degraded, simulating different network conditions for training and
testing. Carlson et al. [11] similarly explored performance in closed-
world scenarios while scaling and varying client bandwidth. Instead
of introducing artificial network condition variability, Schuster et
al. [54] and Zhang et al. [69] experimented on real traffic from a
wired university campus network vs. real traffic from a wireless
residential network. Again, results have been mixed, and none have
been shown yet for large open-world scenarios. While Schuster et
al. and Zhang et al. collected data from different networks, rather
than collecting data from the same network and artificially adding
variability, their clients were also located in the same city that likely
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shared much of the same path to the same servers. In contrast, we
consider vantage points on different continents as an extreme test
of a model’s ability to generalize.

Among the many previous works that have analyzed shorter vs.
longer video traffic flows [4, 9, 11, 14, 21, 24, 30, 50, 51, 69], there is
agreement that longer traffic flows can be classified with greater ac-
curacy, presumably due to containing more fingerprintable features.
With that said, all previous evaluations have been in closed-world
scenarios so it is difficult to reason from those results about the
magnitude of the effect in a large open-world scenario. Further-
more, we hypothesize that the real distribution of video lengths on
the web compounds the difficulty of recognizing shorter lengths
of video in an open-world scenario, and we show that for the first
time.

3 Threat Model

Here we define the threat model of interest to us and justify
why it deserves further exploration, reasoning about a spectrum of
world sizes based partly on an adversary’s prior knowledge.

We consider a passive, local, network-level eavesdropper – such
as an Internet service provider (ISP) that could be malicious itself
or compromised by another malicious entity – engaged in dragnet
surveillance to identify viewers of monitored content. The eaves-
dropper is local in the sense that, when fingerprinting Tor traffic, it
is located between the client and the entry relay so that it can still
see the client’s Internet Protocol (IP) address. Also in the case of
fingerprinting Tor traffic, we assume that the adversary can first
identify visits to video hosting platforms (e.g. YouTube, Vimeo)
through website fingerprinting. We acknowledge that Tor website
fingerprinting remains an active area of research, but some of the
most recent literature has argued that it is realistic to infer whether
a Tor user has visited popular websites under certain conditions
with reasonable precision [12, 44]. There are also techniques for
separating video traffic in general from a mix of other types of
traffic for the purposes of network management [37, 39, 40, 68],
and these can also be used to first filter out non-video traffic.

The world size is the number of different videos that a user could
view from a given hosting platform. It is a function of the number
of videos hosted in the catalog, and any prior knowledge that the
adversary may have to reduce that number. A platform may host
billions of videos, but an adversary could know that surveilled
users will only choose from a small selection of those videos. If
that smaller number is small enough, the adversary’s task can be a
closed-world problem. At the extreme, there is even a trivial case
in which the adversary knows exactly which video a user will view
in advance. Towards the other end of the spectrum, with minimal
prior knowledge to reduce the world size, if the number of videos
is very large or growing faster than an adversary can obtain known
samples and train a model, the task necessarily becomes an open-
world problem. The threat model, then, must include an assumption
about the adversary’s prior knowledge, and we assume none.

3.1 On Assumptions of Prior Knowledge
We assume no prior knowledge to reduce the world size for two
reasons. First, while scenarios in which the adversary has a high

degree of prior knowledge (e.g. reducing YouTube to as few as ten
videos) are relatively well explored in the literature, scenarios on the
other end of the spectrum have receivedmuch less attention. Second
and more importantly, assuming prior knowledge is problematic
because it raises unanswered questions of how much is realistic,
and how an adversary would realistically obtain it, especially for
the task of fingerprinting videos vs. websites, and especially in a
dragnet scenario.

One might begin by considering that some content is much more
popular than other content. Less than 4% of YouTube videos have
accounted for almost 94% of all views [43], so one could focus on
fingerprinting only those most popular videos, accepting false posi-
tives (FPs) on the rest but potentially still achieving high precision.
Indeed, in their study of Tor website fingerprinting, Cherubin et
al. [12] similarly found that visits to websites by real users formed
a power law distribution, and that they could attain reasonably
high recall and precision when monitoring five of the most popular
websites. One problem with this is that the sensitive videos and
websites that an adversary would care to monitor might not be
among the most popular. Another problem for videos is the sheer
number of them, with YouTube hosting ten billion as of 2022 [43]
so that even 4% of its catalog would still number in the hundreds
of millions.

The growth rates of video hosting platforms and the fleeting
nature of video popularity pose more problems for fingerprinting
videos. YouTube receives billions of uploads per year [43], and
Vimeo has reported 350,000 uploads per day [61]. Whereas the daily
popularity of websites appears to be quite stable – e.g. google.com,
youtube.com, and facebook.com have been the three most visited
website domains continuously since 2012 [58] – the most popular
videos change daily if not hourly. The most popular videos over the
next day are likely to be ones with very few views so far, because
they have just been uploaded, or ones that have not even been
uploaded yet and thus cannot be known at the time of training a
model for future deployment.

If surveilling users in a specific region of the world, for example,
one might also consider ruling out all uncommon foreign language
content, reasoning that such content would be on the long tail of
the distribution and safely ignored. While this might be true in
the aggregate, it is not necessarily true for the viewing habits of
any individual user that might be caught up in the dragnet. If an
adversary targets a specific individual, it could be reasonable to
rule out vast swaths of unmonitored content as a possible match
for observed traffic, but for dragnet surveillance we believe that the
most realistic model is one that assumes an equal prior probability
for all videos – i.e. that videos appear in the wild at any given time
with a uniform distribution – and therefore does not reduce the
world size.

3.2 On the Utility of Closed-World Analyses
Despite the above arguments, we acknowledge that closed-world
analyses still have utility. Surveillance targeting an individual user
could be informed by significant prior knowledge to greatly shrink
the world size. For platforms that serve relatively small (i.e. thou-
sands of videos) and slowly growing catalogs of curated film and
television content (e.g. Netflix, SVT Play), as opposed to platforms

132



Open-World Video Stream Fingerprinting Proceedings on Privacy Enhancing Technologies 2025(4)

that host user-uploaded content, Reed et al. [51] and Bjorklund et
al. [9] showed that it was possible to treat them as closed-worlds.
When proposing and evaluating defenses against fingerprinting,
success in a small closed-world scenario can provide good evidence
that a defense is effective, like a cryptographic proof of security
showing that two encrypted messages are computationally indis-
tinguishable. Finally, as a proof-of-concept for novel fingerprinting
techniques, even very small closed-world analyses can show effec-
tiveness relative to existing techniques.

4 Improving Large-Scale Open-World
Fingerprinting

Here we evaluate more advanced deep learning techniques to
see if they can improve the effectiveness of large-scale open-world
fingerprinting. We begin with some background on the task of
open-world fingerprinting, its relationship with the general task
of OSR, and the baseline approach. We then explain selected tech-
niques that we hypothesize can improve upon the baseline, and
our implementation of them. Finally, we discuss our experimental
results. We find that we can improve upon the baseline, but also
that the task remains difficult.

4.1 Connection Between Open-World
Fingerprinting and OSR

In the open-world fingerprinting scenario, users can view pages or
videos that are in the adversary’s monitored set, of which he has
known samples at training time and is trying to recognize, or from
perhaps billions of other pages or videos called the unmonitored set.
In general, the machine learning literature calls this task OSR [19,
52, 53] and it is an active area of research, closely related to anomaly
detection and out-of-distribution detection.

Hendrycks et al. [26] proposed a baseline approach to OSR for
neural networks using maximum softmax probability (MSP). The
intuition is that, given a test sample and a model’s predicted proba-
bilities for each known class, “Correctly classified examples tend
to have greater maximum softmax probabilities than erroneously
classified and out-of-distribution examples, allowing for their de-
tection” [26]. They then showed that this was unreliable across
benchmark datasets for computer vision, speech recognition, and
text classification. Despite these findings, MSP is consistent with
the existing approach to open-world video stream fingerprinting
with deep neural networks [4, 13, 54, 62].

4.2 Baseline Approach with MSP and the
Standard Model

Successful use of MSP depends on well-regularized decision bound-
aries between the 𝑁 known classes so that new samples of known
classes at test time will be farther from the boundaries, and new
samples of unknown classes will be closer to the boundaries. Fig-
ure 1a illustrates the intuition for this technique in a simplified,
conceptual scenario with samples in two-dimensional space. Sam-
ples of the monitored video classes form clusters. However, complex
neural networks can find boundaries that overfit the training data
or are overly complex in regions where training data is sparse, such
as between the clusters of samples representing the known classes.

Figure 1b illustrates a scenario in which the model learns decision
boundaries that still minimize the loss during training but might
fail to generalize well at test time.

In an attempt to improve model behavior in the regions of hyper-
space around and between the monitored video classes, the existing
baseline approach to open-world fingerprinting includes randomly
drawn unmonitored video samples in the training set with an ad-
ditional 𝑁 + 1 class label; coined the “Standard Model” [56] in Tor
website fingerprinting and “known unknowns” [19] in the gen-
eral OSR literature. The idea is to explicitly teach the model the
distribution of unmonitored videos and draw in tighter decision
boundaries around the monitored video classes. However, this still
may not optimally seed the open space to produce decision bound-
aries that generalize well. The random sampling of unmonitored
videos cannot fully represent other unmonitored videos (“unknown
unknowns” [19]), so a new unmonitored sample may still be well
inside the decision boundary for a monitored video class, resulting
in a FP, as illustrated in Figure 1c.

Another issue is the tendency of large and complex neural net-
works to make predictions that are poorly calibrated, where the
predicted probability for a given class tends to be much higher than
the frequency of that being the true class, making it hard to sep-
arate in-distribution from out-of-distribution predictions [22, 26].
Finally, in addition to decision boundaries being irregular, the pre-
dicted probabilities can also change sharply around these bound-
aries, increasing a model’s sensitivity to small input changes and
susceptibility to adversarial examples [20, 59].

The potential improvements that we explore aim to address the
aforementioned theoretical drawbacks in distinct ways.

4.3 More Advanced Techniques
4.3.1 Bayesian Methods. The underlying concept of Bayesian ma-
chine learning methods is that there is a true posterior probability
distribution of model parameters given data, 𝑃 (𝜃 |𝐷), and we can
express it using Bayes’ Rule. This is a function of the likelihood
of the data given the model parameters, 𝑃 (𝐷 |𝜃 ), an assumed prior
probability distribution for the model parameters, 𝑃 (𝜃 ), and the
probability of the data, 𝑃 (𝐷):

𝑃 (𝜃 |𝐷) = 𝑃 (𝐷 |𝜃 )𝑃 (𝜃 )
𝑃 (𝐷)

Bayesian methods involve finding a distribution to approximate
the true 𝑃 (𝜃 |𝐷) instead of finding just a single set of model param-
eters that are a point estimate. A good approximate distribution
enables us to draw a number of models with distinct parameters
that are good for both the data and an assumed prior. As with
any ensemble of models, we can then obtain a number of distinct
predictions. This can be advantageous in several ways.

First, taking the average prediction of an ensemble can improve
accuracy [36]. Drawing𝑚 Monte Carlo samples from a distribution
that approximates 𝑃 (𝜃 |𝐷), followed by Bayesian model averaging
of the predictions, is described mathematically as

𝑝 (𝑦 |𝑥, 𝐷) ≈ 1
𝑚

𝑚∑︁
𝑖=1

𝑝 (𝑦 |𝑥, 𝜃 𝑖 ) where 𝜃 𝑖 ∼ 𝑝 (𝜃 |𝐷)
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(a) MSP intuition (b) MSP failure case (c) Standard model

Figure 1: Intuition for MSP (a), a case in which MSP fails (b), and the Standard Model (c). Samples from known or monitored
classes are black. Samples from unknown or unmonitored classes are gray.

Figure 2: Intuition for using a Bayesian model average. Be-
tween known classes where training data is sparse, the
Bayesian model average expresses more uncertainty.

Second, Bayesian model averaging can yield predictions that are
not just more accurate but also better calibrated [36]. Even if all
of the models agree on the predicted class, they will do so with
varying probability. The average probabilities can better align with
the frequencies of being correct.

Third, different predictions allow us to capture more uncertainty
information. We can measure total uncertainty as the entropy of the
predicted categorical distribution,𝐻 (𝑦 |𝑥, 𝐷), from a single model or
a Bayesian model average. Total uncertainty is the sum of aleatoric
and epistemic uncertainty. Aleatoric uncertainty is due to the in-
herent noisiness of training data. Epistemic uncertainty is due to
different models disagreeing in their predictions for a given sam-
ple. For a single model there is no disagreement and therefore no
epistemic uncertainty component, so a Bayesian model average
provides additional uncertainty information. Epistemic uncertainty
for a given sample can arise from models not having seen enough
representative training data on which to base their predictions. This
might be indicative of a sample belonging to an unmonitored class
in our open-world fingerprinting scenario that was unknown at
training time. Figure 2 illustrates the intuition for a Bayesian model
average being more reliable than any one deterministic model.

A distribution to approximate the true 𝑃 (𝜃 |𝐷) is typically called
a variational distribution, 𝑄𝜙 (𝜃 ), and it can be found through vari-
ational inference. The objective in variational inference is to find
parameters 𝜙 to minimize the Kullback-Leibler divergence (KLD)
between𝑄𝜙 (𝜃 ) and 𝑃 (𝜃 |𝐷). Gal and Ghahramani [16] showed that
training with dropout can approximate variational inference, and

proposed Monte Carlo dropout (MCD) as a method to use an al-
ready trained model in a Bayesian manner. MCD has the advantage
of being easy to implement, but the quality of the uncertainty infor-
mation is limited due to sampling only from a Bernoulli distribution
for each neuron, and due to the dropout rate being a fixed hyperpa-
rameter.

Amore theoretically sound but computationally expensive Bayesian
method called Spike-and-Slab Dropout [42] combines dropout and
Gaussian variational inference. This assumes a variational distri-
bution that is a product of Bernoulli distributions for the neurons
and Gaussian distributions for the parameter weights. To improve
upon the dropout rate being a fixed hyperparameter for each layer
of neurons, another technique called Concrete Dropout [17, 31]
makes the rate learnable through backpropagation.

To efficiently draw different weights for each sample during
training, we used convolutional and linear flipout [35, 64] layers.
We set the prior for the dropout rate to 0.5 to reflect maximum
uncertainty about the optimal value while preventing it from triv-
ially collapsing to 0.0 to optimally fit the data. At test time, for
each sample, we drew from our variational distribution ten times
before computing the Bayesian model average and using the re-
sulting MSP or total uncertainty to rank predictions. Using the
MSP is straightforward. Ranking predictions by uncertainty was
less straightforward, and we describe the problem along with our
solution in Appendix A.

4.3.2 Data Augmentation with mixup. As we already described,
deep neural networks can learn decision boundaries that are irreg-
ular in some regions of input or feature space where training data
is sparse. The predicted class probabilities can also change sharply
around these decision boundaries. This can result in errors due to
a model’s output being sensitive to small changes to inputs. An
adversarial example is a sample of one class that is intentionally
perturbed in ways that are nearly imperceptible (to the human
eye in the traditional setting of computer vision) to take advan-
tage of such sensitivity and induce the model to predict a different,
incorrect class [20, 59].

To better regularize neural networks and gain robustness against
adversarial examples, Zhang et al. [67] proposed a technique called
mixup. The technique aims to make the model’s behavior in the
space between training data more linear. For each batch during
training, it pairs each real sample 𝑥𝑖 with another real sample 𝑥 𝑗
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Figure 3: Intuition for usingmixup to encourage more linear
behavior of the model between classes.

from the batch at random. It then computes a linear interpolation
between both the input features 𝑥𝑖 , 𝑥 𝑗 and the corresponding labels
𝑦𝑖 , 𝑦 𝑗 . The interpolation is weighted by a value of 𝜆, between 0.0 and
1.0, drawn randomly from a beta distribution for each batch. The
beta distribution is defined by a hyperparameter, 𝛼 . The resulting
virtual samples (x̃,ỹ) are what the model trains on. We illustrate
this in Figure 3.

𝜆 ∼ Beta(𝛼, 𝛼)
x̃ = 𝜆x𝑖 + (1 − 𝜆)x𝑗
ỹ = 𝜆y𝑖 + (1 − 𝜆)y𝑗

While there are no adversarial examples in our open-world video
stream fingerprinting dataset, we are similarly concerned with the
model’s sensitivity and behavior in the regions of space near the
decision boundaries wherewe lack training data. There is effectively
no difference between an adversarial example and a new sample
of an unknown class that happen to have identical and difficult to
classify features. In both cases, we want the model to indicate its
uncertainty rather than outputting a high probability for a known
class. Thulasidasan et al. [60] found thatmixup improved calibration
and out-of-distribution detection even more than MCD. Therefore,
we hypothesize that open-world video stream fingerprinting could
similarly benefit from the regularizing effect of mixup.

We appliedmixup exactly as shown by Zhang et al., interpolating
between random pairs of samples in each batch, from all classes,
in input space. We tuned 𝛼 over the validation sets, grid searching
between 0.01 and 0.5 to find what yielded the best cross-entropy
loss and area under the curve (AUC) for the binary open-world
precision vs. recall.

4.3.3 NOTA Defensive Padding. The desire for robustness to adver-
sarial examples also motivated the development of NOTA defensive
padding [6, 28]. As with mixup, the intuition is that adversarial ex-
amples exist near decision boundaries in regions that are sparse
with training data, and therefore where model behavior could be
poorly defined. In the case of defensive padding, the idea is to learn
better decision boundaries by seeding the open space between
classes with virtual training samples. The virtual training samples
separate the 𝑁 known classes (hence the term “padding”) and have
an 𝑁 + 1 class label. This encourages the model to learn that new
samples in these regions do not belong to any known class instead
of being fooled into predicting the most probable (but incorrect)
known class.

Figure 4: Intuition for augmenting the training set with
NOTA defensive padding. Orange points are the adversarial
examples created through PGD, and blue points are themean
and uniform padding samples. The dashed line represents
the pre-trained baseline model’s decision boundaries, and
the solid line represents the resulting NOTA-trained model.

Barton [6] first proposed creating virtual training samples by
linearly interpolating between random pairs of samples, 𝑥𝑖 and 𝑥 𝑗 ,
of different classes in each batch. Mean padding samples are the
mean of 𝑥𝑖 and 𝑥 𝑗 plus Gaussian noise. Uniform padding weights
the interpolation by a value drawn randomly from a uniform distri-
bution. Finally, the virtual training samples for the NOTA class are
added back into the batch of original training samples. Jatho [28]
later modified the technique by first using Projected Gradient De-
scent (PGD) to generate an adversarial example 𝑥 ′𝑖 for each 𝑥𝑖 , and
then creating the mean and uniform NOTA padding between 𝑥𝑖
and 𝑥 ′𝑖 . The idea is to place the NOTA samples more closely around
each class and force the model to learn even tighter boundaries.
Jatho also attained the best results when training a Bayesian model
with this technique.

We are similarly interested in forcing the model to learn tight de-
cision boundaries around each monitored video class, not to defend
against adversarial examples but against real unmonitored samples
that are difficult to distinguish from monitored samples. While real
unmonitored training set samples could enable the model to learn
the broad distribution of unmonitored videos, we expect that most
of those samples would be quite distant and easily distinguishable
from the monitored video classes. NOTA samples are instead specif-
ically crafted to be close to the monitored samples and difficult to
distinguish, occupying the regions of hyperspace where we believe
FPs are most likely to occur. We hypothesize, therefore, that NOTA
defensive padding and real unmonitored training samples with
the same 𝑁 + 1 label can complement each other as illustrated in
Figure 4.

We ultimately trained our model on a 1:1:1 ratio of monitored
samples, real unmonitored samples, and NOTA samples. To create
the NOTA samples, we first generated adversarial examples from
monitored samples in each batch, and then linearly interpolated be-
tween the monitored samples and the adversarial examples. For the
white box model in PGD, we used the baseline model pre-trained to
output the softmax probabilities for the 𝑁 +1 classes. We conducted
preliminary experiments with both targeted (i.e. driving the white
box model’s predictions towards the 𝑁 +1 label) and untargeted (i.e.
driving them away from the true monitored class label) PGD and
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found that our targeted version performed slightly better. Whereas
image datasets have well-defined ranges for pixel values and well-
understood choices for number of PGD steps, step sizes, and epsilon
bounds, our dataset did not and required additional preliminary
experimentation. Also, whereas the goal of adversarial examples in
computer vision is to fool both the model and the human eye with
imperceptible perturbations, our goal is to augment the model’s
training data with samples that are challenging for the model to
classify but do not need to go undetected as adversarial examples.
However, it was our intuition that the adversarial examples should
still be quite close to the monitored samples and contain only plau-
sible values, otherwise the NOTA samples may not contribute as
desired to the model learning tighter decision boundaries. We began
by finding the range and standard deviation of the values in each
real training sample so that we could define our hyperparameters in
those terms. We set our epsilon bound to be a fraction of one stan-
dard deviation and set the step size to be the epsilon bound divided
by the number of steps, another hyperparameter. Per the usual
PGD procedure, we projected the adversarial examples back into
the epsilon ball and the range for the real training data after each
iteration. For the NOTA mean and uniform padding, we similarly
defined the Gaussian noise as a fraction of the standard deviation
in the monitored training data. We tuned these hyperparameters
with grid searches between 5 and 80 steps, and between 0.00001
and 1.0 standard deviation.

4.3.4 GAN-trained Discriminator. In the context of OSR, noting
that randomly drawn training samples of open classes (i.e. the Stan-
dard Model) “are unlikely to exhaustively span the open-world,”
Kong and Ramanan explored the idea to “augment the available
set of real open training examples with adversarially synthesized
fake data” [33]. The intuition is similar to the intuition for NOTA:
seeding the open space close to the known classes with virtual train-
ing data could result in tighter decision boundaries. The proposed
approach, OpenGAN, improved on earlier approaches to using a
generative adversarial network (GAN) for OSR [18, 46] with several
new ideas. First, the lower layers of a pre-trained model extract
features before the discriminator makes its predictions, and the
generator likewise produces fake features instead of raw inputs.
Second, the objective function includes a hyperparameter, 𝜆𝐺 , to
tune the weight given to generated fakes and real open set samples
when updating the discriminator.

max
𝐷

min
𝐺

(
E𝑥∼𝑝data,mon [log𝐷 (𝑥)]

+ (1 − 𝜆𝐺 ) · E𝑥∼𝑝data,unmon [log(1 − 𝐷 (𝑥))]

+ 𝜆𝐺 · E𝑧∼N(0,1) [log(1 − 𝐷 (𝐺 (𝑧)))]
)

Third, training stops based on the discriminator’s performance
on anOSR validation set, rather than training until the discriminator
and generator converge to an equilibrium. Finally, at test time, the
trained discriminator’s prediction is used directly as the score for
each sample.

In addition to gaining robustness against adversarial examples,
Zhang et al. also argued that mixup could “stabilize GAN training
because it acts as a regularizer on the gradients of the discriminator,”

and that “the smoothness of the discriminator guarantees a stable
source of gradient information to the generator” [67]. Therefore,
it is natural to run OpenGAN with mixup applied to pairs of fake
and real samples during each discriminator update.

We conducted preliminary experiments using the code provided
by Kong and Ramanan [34] with only minor adaptations to em-
ploy the lower layers of our own pre-trained baseline model as
the feature extractor. From this first attempt, we observed that the
discriminator underperformed the baseline model on the validation
set even when we set 𝜆𝐺 to 0.0, where the approaches are theo-
retically equivalent. To strengthen the discriminator, we adopted
an architecture that was identical to the top layers of our baseline
model architecture. With this design, when we set 𝜆𝐺 = 0.0, the
trained discriminator matched the performance of our baseline
model. However, its performance on the validation set degraded
slightly when we introduced fakes into its training. We also saw
that the discriminator was rarely fooled by fakes after each update,
and the generator’s loss failed to improve after the first few epochs.
While Kong and Ramanan described the problem of a discriminator
becoming useless when GAN training converges, due to high qual-
ity fakes being indistinguishable from real samples and confusing
the discriminator, it appeared that we had the opposite problem:
poor quality fakes in the training set could reduce the discrimina-
tor’s ability to generalize to real samples. We further experimented
with training in input space, using a generator architecture that
was previously successful for producing fake 1D network traffic
traces [48, 49], and adding feature matching loss. We tuned hy-
perparameters for 𝜆𝐺 and the weight of adversarial loss vs. the
generator’s feature matching loss. We ultimately chose to test the
feature space implementation with our improved discriminator and
𝜆𝐺 = 0.5.

4.4 Experimental Setup
We used the same basic experimental setup described by Walsh et
al. [62] for their open-world experiments. This includes the same
datasets (one for videos streamed with Tor, and one with HTTPS-
only) of four-minute long traffic flows collected when streaming
videos from Vimeo, using the same training, validation, and test
splits. There are 60 monitored videos with 90 samples of each, and
more than 76,000 different unmonitored videos with one sample
of each. The test sets contain ten samples of each monitored video
and 64,000 unmonitored samples. The remaining samples are for
training and validation. We also used the same data representation
for the traffic flows (bytes sent and received per 1

8 -second time step
for the Tor traffic, and 1

16 -second for HTTPS-only), and the same
convolutional neural network (CNN) architecture for the baseline
model. We refer the reader to the description by Walsh et al. [62]
for more details and access to the datasets and code.

We found it useful to categorize techniques as either types of
scores produced by distinct types of models:

(1) Deterministic MSP
(2) Bayesian model average MSP
(3) Bayesian model uncertainty
(4) Binary prediction of a GAN discriminator (i.e. OpenGAN)
or ways to compose or augment the training data:
(A) Samples of the monitored videos
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Table 1: Mean performance on the HTTPS-only test set. The
first row is the baseline and the best results are in bold.
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AUC

FPR @
0.5

Recall

FPR @
0.9

Recall
✓ ✓ ✓ 0.988 0.0000102 0.0001563
✓ ✓ ✓ ✓ 0.994 0.0000031 0.0000547
✓ ✓ ✓ ✓ 0.996 0.0000070 0.0000633
✓ ✓ ✓ ✓ ✓ 0.997 0.0000008 0.0000359

✓ ✓ ✓ 0.994 0.0000063 0.0000906
✓ ✓ ✓ 0.995 0.0000078 0.0000797

✓ ✓ ✓ ✓ 0.996 0.0000055 0.0000617
✓ ✓ ✓ ✓ 0.996 0.0000031 0.0000461

✓ ✓ ✓ ✓ 0.993 0.0000063 0.0001102
✓ ✓ ✓ ✓ 0.994 0.0000070 0.0000844

✓ ✓ ✓ ✓ ✓ 0.996 0.0000023 0.0000500
✓ ✓ ✓ ✓ ✓ 0.996 0.0000016 0.0000406

✓ ✓ ✓ ✓ 0.994 0.0000039 0.0000469
✓ ✓ ✓ ✓ ✓ 0.995 0.0000109 0.0000453

(B) Samples of random unmonitored videos (i.e. Standard Model)
(C) Virtual samples produced with mixup
(D) NOTA defensive padding samples
(E) Fakes from a GAN (i.e. OpenGAN)
It is possible to pair each of the former techniques with any num-

ber of the latter techniques, but we experimented only with selected
combinations that were most promising based on our analysis of
the literature and understanding of them.

We conducted 20 trials for each approach so that we could better
assess expected performance. Each trial involved independently
training a freshmodel using that approach and testing it. The perfor-
mance across trials varied due to the stochastic or non-deterministic
nature of techniques like random weight initialization, batch gradi-
ent descent, dropout, variational inference, and data augmentation.

4.5 Results and Discussion
We show the results in Tables 1 and 2 for the HTTPS-only and
Tor test sets, respectively. In each table, the top row is the baseline
approach using deterministic MSP and the Standard Model. For
comparison, we show the AUC for the precision vs. recall curve.
We also show the FPRs at 0.5 and 0.9 recall to give a sense of the
range of performance; in Section 4.5.1 we further analyze these and
other points of recall within this range. At rates of recall below 0.5,
it was common to attain zero FPs even across all 20 trials, but this is
not indicative of a true FPR that would scale to any world size; the
test set is simply not large enough to measure smaller but non-zero
FPRs.

We attained our best results with combinations of Bayesian
methods, mixup, and (in the HTTPS-only case) NOTA defensive
padding. Compared to the baseline on the HTTPS-only test set,
these techniques cut the FPR by up to 92% at 0.5 recall, and up to
77% at 0.9 recall. On the Tor test set, the improvements were by 75%
and 34%, respectively. The common thread among these methods
is that they have all previously been shown to improve adversarial

Table 2: Mean performance on the Tor test set. The first row
is the baseline and the best results are in bold.

Score Types Training Data Performance Metrics
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FPR @
0.5

Recall

FPR @
0.9

Recall
✓ ✓ ✓ 0.848 0.0000250 0.0141789
✓ ✓ ✓ ✓ 0.871 0.0000117 0.0107617
✓ ✓ ✓ ✓ 0.852 0.0000383 0.0191188
✓ ✓ ✓ ✓ ✓ 0.865 0.0000406 0.0115585

✓ ✓ ✓ 0.849 0.0000227 0.0140359
✓ ✓ ✓ 0.857 0.0000125 0.0125617

✓ ✓ ✓ ✓ 0.872 0.0000063 0.0109791
✓ ✓ ✓ ✓ 0.876 0.0000070 0.0094039

✓ ✓ ✓ ✓ 0.807 0.0000828 0.0300266
✓ ✓ ✓ ✓ 0.816 0.0000727 0.0250281

✓ ✓ ✓ ✓ ✓ 0.810 0.0000594 0.0352163
✓ ✓ ✓ ✓ ✓ 0.821 0.0000516 0.0282852

✓ ✓ ✓ ✓ 0.854 0.0000211 0.0144125
✓ ✓ ✓ ✓ ✓ 0.861 0.0000195 0.0125257

robustness, supporting our hypothesis of a linkage between that
task and open-world fingerprinting which could extend to OSR in
general.

Our NOTA defensive padding and OpenGAN implementations
were less effective on the Tor test set. We find this interesting be-
cause they similarly aim to generate new training samples that are
very close to the monitored training data but with the unmonitored
label. We speculate that generating such samples in a helpful way
based on the Tor training data is more difficult due to its inherent
noisiness, compared to the HTTPS-only training data, which was
evident whenever we visualized the data with t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) plots. Further development of the
OpenGAN generator for our task may be necessary to fully realize
its potential. There is a large body of work on engineering GANs to
produce varied and high quality fake 2D images, but relatively little
work has gone into refining GANs for other tasks. GANs are noto-
riously difficult to train, and the main weakness in our OpenGAN
implementation appeared to be getting the generator to produce
fakes that were sufficiently similar to the real monitored samples.

4.5.1 Assessing the Significance of the Results.
Both precision and FPR can be misleading in their own ways.

The base rate fallacy captures the way in which FPR can mislead: in
the wild, a seemingly low FPR can yield a number of FPs that domi-
nates the number of true positives if the base rate for positives is
sufficiently low. Precision avoids the base rate fallacy by directly ex-
pressing the probability that a positive prediction is a true positive.
Precision can mislead or fail to generalize to real-world scenarios,
however, if the base rates or balance of classes in the test set are
unrealistic. What we really want to know is the expected precision
of the model in a real-world scenario.

By manipulating Wang’s formula for 𝜋𝑟 and applying our empir-
ical FPRs, we can estimate the world size (i.e. number of videos in
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a hosting platform catalog) at which an adversary can expect a cer-
tain recall and precision in a scenario where users select videos to
watch in a uniformly random manner (i.e. all videos appear with an
equal base rate). The simplifying assumption of uniformly random
video selection and equal base rates gives us a reasonable starting
point for the sake of analysis, as we discussed in Section 3, but we
discuss this more in Section 6.

We start with the formula for base rate adjusted precision, 𝜋𝑟 ,
proposed by Wang [63]:

𝜋𝑟 =
𝑅𝑇𝑃

𝑅𝑇𝑃 + 𝑅𝑊𝑃 + 𝑟 ∗ 𝑅𝐹𝑃
where 𝑅𝑇𝑃 is the recall (true positive rate), 𝑅𝑊𝑃 is the “wrong

positive” rate, 𝑟 is the ratio of negative (unmonitored) to positive
(monitored) samples in the wild, and 𝑅𝐹𝑃 is the FPR. Wrong posi-
tives are correct positive predictions for the binary classification
task of monitored vs. unmonitored, but incorrect for the 𝑁 -way
classification task within the monitored set. We count wrong posi-
tives as true positives for simplicity because we are focused on the
binary classification task and our 𝑁 -way classification accuracy is
very high, so their contribution to the result is negligible.

Wang further defined 𝑟 = 𝑁 ′
𝑁

𝑁 ′
𝑃

where the numerator is the num-
ber of negative (unmonitored) samples appearing in the wild and
the denominator is the number of positive (monitored) samples.
Our earlier assumption of uniform random video selection makes
the base rate for any monitored video equal to any other video,
so we can express the world size as 𝑤 ≈ 𝑁 ′

𝑁
+ 𝑁 ′

𝑃
where 𝑁 ′

𝑁
is

simply the number of unmonitored videos and 𝑁 ′
𝑃
is the number of

monitored set videos. Substituting this definition of 𝑟 into Wang’s
equation and solving for 𝑁 ′

𝑁
, we get:

𝑁 ′
𝑁 =

𝑅𝑇𝑃 ∗ 𝑁 ′
𝑃

𝜋𝑟 ∗ 𝑅𝐹𝑃
−
𝑅𝑇𝑃 ∗ 𝑁 ′

𝑃

𝑅𝐹𝑃

Adding the 60 monitored videos would theoretically give us the
world size,𝑤 , but that is a rounding error for a back-of-the-envelope
estimate. We show an array of these calculations across a range of
precision and recall points in Tables 3 and 4.

For example, to compute the estimated world size of 42.9M
(shown in the bottom left cell of Table 4), from which we could
expect to draw a test set and attain 0.5 recall with 0.1 precision
using our best empirical FPR of 0.0000063 (taken from Table 2), we
plug in the values as follows:

42.9𝑀 ≈ 0.5 ∗ 60
0.1 ∗ 0.0000063 − 0.5 ∗ 60

0.0000063
This assumes a similar set of 60 monitored videos, similar condi-

tions and methods for capturing and parsing traffic samples, and
the same training strategy for the same model architecture. It also
assumes that the test set is a representative sample of the real
distribution of videos hosted by Vimeo.

Considering a range of desired precision and recall points is
interesting because, in the same way that Wang [63] argued that
multiple observations by an adversary can mitigate the problem of
low recall, we argue that multiple observations can also mitigate
low precision. With every positive prediction for a given user, the
probability that all positives are false decreases, so the adversary
can gain some confidence that the user has viewed at least one

Table 3: Estimated maximum world sizes (in millions) in
which the adversary could sustain a desired precision (P)
and recall (R), derived from our best empirical FPRs on the
HTTPS-only test set.

R
P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9 13.5 6.0 3.5 2.3 1.5 1.0 0.6 0.4 0.2
0.8 32.5 14.4 8.4 5.4 3.6 2.4 1.5 0.9 0.4
0.7 54.0 24.0 14.0 9.0 6.0 4.0 2.6 1.5 0.7
0.6 140.9 62.6 36.5 23.5 15.7 10.4 6.7 3.9 1.7
0.5 337.5 150.0 87.5 56.3 37.5 25.0 16.1 9.4 4.2

Table 4: Estimated maximum world sizes (in millions) in
which the adversary could sustain a desired precision (P) and
recall (R), derived from our best empirical FPRs on the Tor
test set.

R
P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
0.8 0.3 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
0.7 1.7 0.8 0.5 0.3 0.2 0.1 <0.1 <0.1 <0.1
0.6 8.0 3.5 2.1 1.3 0.9 0.6 0.4 0.2 0.1
0.5 42.9 19.1 11.1 7.1 4.8 3.2 2.0 1.2 0.5

monitored video. With lower expected recall and precision, the
adversary would need to make more observations of a given user
over a longer period of time, and vice versa.

Even with our substantial improvements over the baseline, we
can still see the difficulty of fingerprinting at the full-scale of the
largest hosting platforms. The adversary could reach a world size
in the hundreds of millions (against HTTPS-only traffic) using our
best approach only by accepting a recall of 0.5-0.6 and precision of
0.1-0.2 (cells highlighted in pink) and making many observations
over time. Because model predictions on different test samples are
only conditionally independent given the model parameters, not
truly independent, the adversary would still face the non-trivial
task of determining how many positive predictions he would need
over time to gain a certain degree of confidence that a given user
has viewed monitored content.

We also see that using Tor still provides a substantial degree of
protection against video stream fingerprinting (compared to using
an HTTPS-only connection) even under the strong assumption that
an adversary can first recognize visits to a certain video hosting
platform through website fingerprinting.

5 Evaluating Across Other Dimensions of
Realism

In the previous section we found that more advanced techniques
could improve open-world effectiveness, but that the full-scale
scenario remains difficult. Here we evaluate the effects of two other
dimensions of realism, beyond size, in a large open-world scenario
for the first time and find that they can greatly increase open-world
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false positives, potentially making the full-scale open-world task
even more difficult and necessitating more targeted attacks.

5.1 Different Geographic Vantage Points

In the previous section and in most of the network traffic fin-
gerprinting literature, experimental setups implicitly assume that
adversaries can train a model on traffic captured from the same
geographic vantage point, if not the same local area network (LAN),
as the users under surveillance. However, this could be infeasible or
undesirable for an adversary. An adversary who controls a network
can deploy hosts to generate and collect a training set either at the
network edge nearer to some users, or upstream at the gateway
through which all user traffic passes. In either case, the training set
traffic would originate from a vantage point that is not near most
users. Figure 5 provides a conceptual illustration of this motivating
scenario.

It would be ideal for an adversary to be able to collect just one
training set for a model that could generalize to traffic streamed
from anywhere in the network, rather than collecting a different
training set per user location. Taken to an extreme, if a trained
model effectively generalized even across geographic regions and
continents, models could be globally portable. Pre-trained models
and their training data could also be shared and leveraged among
cooperating adversaries to createmore effectivemodels. Conversely,
if a trained model cannot generalize well to video traffic streamed
from elsewhere, this could substantially increase the work factor for
an adversary, requiring an attack that is more narrowly targeted.We
explore this for the first time with video streamed from ten different
vantage points around the world, both with and without Tor, and
in the context of a large open-world scenario, as a severe test of the
null hypothesis that a model can generalize across vantage points.

5.1.1 Experimental Setup. Our experiments included the Vimeo
videos streamed from all ten vantage points in the dataset from
Walsh et al.[62] The dataset includes 90 samples of each of the 60
monitored videos streamed from each of the ten vantage points.
We further split this into 70 samples of each monitored video for
training, ten for validation, and ten for testing. Appendix B provides
more details about the vantage points.

We first tested closed-world accuracy across all pairs of van-
tage points. This means that we separately trained a model from
each vantage point and then evaluated it on the test sets from that
vantage point and each of the nine other vantage points, for a to-
tal of 100 train-test pairings. We repeated this for ten trials using
the best model architecture and hyperparameters found by Walsh
et al. [62] during their earlier investigation of closed-world video
stream fingerprinting.

We then tested models in the large open-world scenario de-
scribed in the previous section. Because the open-world test set
only contains unmonitored video samples collected from the us-
west-2 vantage point, we ran the models from the nine other van-
tage points on the test set and compared their performance to the
model trained at us-west-2. Since the training sets for the nine other
vantage points do not contain any unmonitored video samples, we
could not test the baseline nor best improved approaches using
the Standard Model in this scenario. We instead used the simpler

Table 5: Open-world results for models trained at each van-
tage point and evaluated on the test set streamed from us-
west-2. Relative to the baseline (where the model was trained
at us-west-2), we show the factor of increase to the FPR at
0.5 recall.

Training
Vantage
Point

HTTPS
traffic

Tor
traffic

us-east-1 0.0x 1.2x
sa-east-1 7.4x 1.6x
eu-west-2 2.8x 1.0x
eu-central-1 19.2x 0.7x
af-south-1 50.3x 1.8x
eu-north-1 5.8x 0.8x
me-central-1 19.8x 1.1x
ap-northeast-2 7.4x 17.7x
ap-southeast-1 1.0x 25.2x

MSP from a deterministic model trained without any unmonitored
video samples, which allowed us to re-use the same models that we
trained for the closed-world experiment. This is sufficient to see the
relative difference in performance between models from different
vantage points, even if it does not allow direct comparisons with
the best results from the previous section.

5.1.2 Results and Discussion. We show open-world results in Ta-
ble 5. The HTTPS-only experiments yielded our most interesting
results. Even though 60-way closed-world accuracy across all pairs
of vantage points was better than 0.99, we saw surprisingly poor
open-world performance on the us-west-2 open-world test set by
models trained at other vantage points. For the models trained at
seven of the nine other vantage points, the FPR at 0.5 recall more
than doubled (highlighted in yellow). For three of those, the FPR
at 0.5 recall increased by more than an order of magnitude (high-
lighted in pink). This comparison highlights again the importance
of larger-scale open-world testing instead of only closed-world test-
ing. A decline of less than 1% in closed-world accuracy may seem
to be an insignificant impact on an adversary’s effectiveness, but a
50x higher FPR in a full-scale open-world scenario would have a
serious impact due to the base rate problem.

In our Tor experiments, even the closed-world accuracy dropped
by as much as 30% when models were trained and tested across
some pairs of vantage points, and by as much as 10% on the us-west-
2 test set, so the poor generalization across vantage points was more
obvious. On the open-world us-west-2 test set, FPRs at 0.5 recall
again increased by more than an order of magnitude for models
trained at two other vantage points. The FPR increases relative
to the baseline were more muted than we saw for HTTPS-only
traffic, but the simpler approach (MSP of a deterministic model
trained without unmonitored video samples) established a much
less effective baseline on the Tor dataset in absolute terms1, so this
does not contradict the worse closed-world results on Tor traffic.

1Evidently, open-world Tor fingerprinting benefits much more from the inclusion of
unmonitored video training samples.
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Figure 5: Difference between where a network-level adversary generates the training set and eavesdrops on user traffic, and
where users are located on the network. A congested link along some users’ path, but downstream from the adversary’s vantage
point, can cause DASH clients to behave differently at the two different vantage points.

While the results show that employing models across different
vantage points can degrade effectiveness, especially in more sen-
sitive large-scale open-world scenarios, we did not find a good
explanation for which vantage points produced models that un-
derperformed the baseline and which ones did not. The most we
can conclude is that an adversary cannot assume that any training
data or trained model will generalize well to video traffic streamed
from other geographic vantage points. The fact that our vantage
points span regions and continents might mean that our results
overstate the potential effect of this factor on adversaries that do
not have global reach. On the other hand, the fact that our van-
tage points were all in Amazon Web Services (AWS) datacenters,
presumably nearer to the Internet backbone and content delivery
network (CDN) servers than most users, might mean that our re-
sults understate the potential effect across vantage points with
more diverse network conditions.

5.2 Shorter Videos and Traffic Flows

So far, we have limited our analysis to traffic flows of about four
minutes in length, corresponding to videos that are four minutes
or longer in duration. However, streaming videos on the web may
range from a few seconds to a few hours in duration. The literature
is broadly in agreement that longer video traffic flows are easier to
classify, which is intuitive because – to the extent that all of the
features of a longer traffic flow can be represented in amodel’s input
– a model can extract more features to distinguish different videos.
While the effects of this on closed-world accuracy have already
been shown numerous times, we explore the effect on open-world
performance for the first time in this section.

We also hypothesize that the real distribution of video lengths
on the web compounds the difficulty of recognizing shorter lengths
of video in an open-world scenario. Walsh et al. [62] argued that
an adversary who monitors only longer videos by analyzing longer

traffic flows also functionally reduces the world size. They noted
that Vimeo hosted 650 million videos in 2023, but only about 150
million were four minutes or longer. Therefore, observing a four-
minute traffic flow could rule out the 500 million shorter videos
as possible matches; the adversary could assume that the flow
corresponded to one of the 150 million longer videos. This would
mean fewer expected FPs and higher expected precision for any
given FPR.

However, if the lengths of videos on the web have a distribution
that skews to the short end of the range, it is more likely that videos
of interest to an adversary would be shorter. Even if the adversary
is primarily interested in longer videos, given the amount of traffic
potentially under surveillance and costs of analysis, an adversary
might be constrained to analyzing relatively short traffic flows (i.e.
only the first few seconds or minutes of longer flows). In those
cases, the adversary must contend with the less fingerprintable
nature of shorter traffic flows and the resulting larger world size,
which would compound the difficulty of the task.

5.2.1 Experimental Setup. We first investigated open-world per-
formance as a function of traffic flow length by experimenting
with the same training, validation, and testing splits used in our
Section 4 experiments. Because the data representation for each
traffic flow is the number of bytes sent and received per time step
over four minutes, truncating each input to an arbitrarily smaller
number of time steps was straightforward. We did this for every
multiple of 20 seconds up to the original length of 240 seconds. We
added another evaluation at 30 seconds to better define the trend
at the short end of the range. We then tuned, trained, and tested
fresh models at each length using the baseline approach and one
improved approach with Bayesian methods and mixup data aug-
mentation that performed well on both the HTTPS-only and Tor
test sets in Section 4. We ran 20 trials at each length and calculated
the mean for each metric.
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Figure 6: World size as a fraction of all videos, as a function
of 𝑠, based on the lengths of 10,016 randomly drawn YouTube
videos.

We then investigated the distribution of video lengths on the
web. Walsh et al. [62] used the total number of Vimeo search re-
sults for a set of keywords, when filtered by video duration, to
roughly estimate the fraction of videos that were shorter or longer
than four minutes. Unfortunately, that method does not allow us
to obtain a more granular estimate of the distribution of video
lengths. We attempted instead to randomly draw from Vimeo’s
catalog by scraping search results, but this was difficult due to tech-
nical controls that Vimeo recently adopted to combat automated
scraping2. Fortunately, McGrady et al. [43] were able to randomly
draw from YouTube’s catalog in 2022 and provide detailed insight
into the lengths of uploaded videos. This distribution will of course
vary from one hosting platform to another but we believe that
YouTube serves as a good proxy for videos on the web in general;
it is one of the web’s largest video hosting platforms and videos on
other hosting platforms are routinely cross-posted to YouTube as
well [43].

We transformed the data from McGrady et al. into Figure 6
showing the fraction of all videos that could be a match for a traffic
flow of length 𝑠 (i.e. the world size as a function of the adversary’s
chosen 𝑠). Key to our reasoning is that one cannot assume that
users watch the full length of any video, so a traffic flow of length
𝑠 could match any video of length 𝑠 or the first 𝑠 seconds of any
longer video, and so the world size grows monotonically as 𝑠 gets
smaller. Reading Figure 6 from right to left, we see that the fraction
more than doubled from approximately 35% to 80% as 𝑠 decreased
from 240 to 20 seconds.

5.2.2 Results and Discussion. Figure 7 shows the resulting per-
formance on HTTPS-only traffic flows at each length. We show
the mean FPRs at 0.5 recall for the binary open-world task. As we
found in the cross-vantage point experiments on the HTTPS-only
dataset, open-world testing could reveal significantly worse per-
formance even when closed-world accuracy appeared to remain
high. Focusing first on the baseline results: At 𝑠 = 40 with a closed-
world accuracy of 0.99, the FPR was approximately 3x higher than
it was at 𝑠 = 240. At 𝑠 = 30, FPR was approximately 10x higher

2Vimeo announced new controls in May of 2024 [45] in response to the practices of
companies training their large language models. In addition to making future research
on fingerprintingmore difficult, we believe that the increasing prevalence of techniques
to combat scraping also raises the work factor for real-world adversaries.

Figure 7: HTTPS-only open-world FPR, at 0.5 recall, as a func-
tion of 𝑠. The dashed line represents the baseline model per-
formance and the solid line represents the Bayesian model
with mixup.

even though the closed-world accuracy was still 0.98. Our Bayesian
model trained with mixup yielded better metrics at every length,
but the trend was the same. On the Tor traffic, the metrics were
worse at every length, but, again, the trend was the same. There
was a strong correlation (𝑟 = 0.992) between the closed-world error
rate (1.0 - accuracy) and open-world FPR, but the open-world FPR
allows us to reason about effectiveness at the full-scale of large
hosting platforms.

Putting together our understanding of world size as a function
of 𝑠 , and the empirical FPRs as a function of 𝑠 , we can see the
compounding difficulty for an adversary who seeks to monitor
shorter videos or limit 𝑠 due to the costs of analyzing longer flows.
The expected number of FPs grows by the product of two factors
that increase non-linearly as 𝑠 approaches the minimum length
for a given hosting platform. Using Vimeo’s estimated size of 650
million videos and our Bayesian model with mixup HTTPS-only
results at 𝑠 = 240 and 𝑠 = 20 as an example, this number grows from
650, 000, 000∗0.35∗0.000003 ≈ 700 to 650, 000, 000∗0.80∗0.000112 ≈
58, 000; an increase of more than 80x.

6 Limitations and Future Work
The dataset that we used has limitations in terms of both size and
realism. While it contains by far the largest number of unique
unmonitored videos for open-world analysis, we can already see
that our models are pushing the limit of what it can tell us about
lower rates of recall. Many individual trials in our experiments
resulted in zero FPs at 0.5 and even higher rates of recall, which is
partly what necessitated 10-20 trials to obtain useful measurements.
Walsh et al.[62] described some of the limitations that are common
to synthetic traffic fingerprinting datasets, but we see one more
pertaining specifically to our work. It excludes videos hosted by
Vimeo that are less than four minutes in duration, while short-form
videos might be the fastest growing category of videos on the web.
We examined results when truncating the captures down to 20
seconds, but true short-form videos might have characteristics that
we could not simulate.

In line with our assumption of the adversary having no prior
knowledge, we estimated vulnerable world sizes in Section 4 by
assuming that “users select videos to watch in a uniformly random

141



Proceedings on Privacy Enhancing Technologies 2025(4) Walsh et al.

manner.” As we discussed in Section 3, we know that some videos
have been exponentially more popular in the wild than others, but
view counters by themselves fail to express the fleeting nature of
popularity. Estimating more realistic base rates for videos to reason
about expected precision remains a major challenge for future work.

There are unanswered questions about what an adversary could
accomplish, in terms of increasing effectiveness, through sheer size
and computational power. We limited the scope of our work to test-
ing technical enhancements to the baseline approach, building on
the same model architecture and collecting no additional training
data. There is no obvious limit, however, to the size and complexity
of models, nor the quantity of training data, that a nation-state
adversary could employ. Future work could experiment with pro-
gressively larger models and more training data to reveal a trend,
even if academic research cannot feasibly scale beyond some point
due to resource constraints.

Given the size and growth rate of most video hosting platforms
on the web, we believe it is likely that real-world adversaries must
take an open-world approach, and that confronting the base rate
problem is their primary challenge. We also found repeatedly that
closed-world results can fail to reveal the true difficulty of the task.
Accordingly, we call for more work to focus on larger open-world
scenarios to continue to gain a better understanding of the effective
envelope for fingerprinting.

7 Conclusion

The aim of this study was to better understand the threat of
traffic fingerprinting against streaming video on the web. Build-
ing on a previously collected dataset and baseline approach, we
tested a number of hypothesized improvements for open-world ef-
fectiveness. We found that some promising techniques did improve
effectiveness, but that attacking users of the largest video hosting
platforms would likely still require some prior knowledge to shrink
the world size, or would require many observations of a given user
over time. Further increasing the adversary’s work factor, we found
that the effectiveness of our models decreased significantly in two
other potentially realistic scenarios: when the training set was not
streamed from the same vantage point as the test set, and when
analyzing shorter videos or traffic flows. In all cases, we found
that Tor still provided a substantial degree of protection against
video stream fingerprinting (compared to using an HTTPS-only
connection) even under the strong assumption that an adversary
can first recognize visits to a certain video hosting platform through
website fingerprinting. We do not mean to argue that additional
defenses against this threat are unnecessary – that decision must
be a function of many more inputs than our findings alone – but we
believe that our findings can inform discussion and orient future
research on both attacks and defenses in larger and more realistic
open-world scenarios.
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A Additional Explanation of Bayesian Methods
With dropout [57], for each forward pass during training, for each
neuron in a dropout layer, a random variable 𝑏𝑘 is drawn from a
Bernoulli distribution defined by the dropout rate hyperparameter
for that layer, 𝑝drop. The activation of a neuron is then set to 0 if 𝑏𝑘
is 0.

Spike-and-Slab Dropout [42] combines Gaussian variational in-
ference and dropout. It assumes a variational distribution that is
a product of Bernoulli distributions, 𝑄𝑝drop (b), and Gaussian dis-
tributions for each weight, 𝑄𝜙 (w). The objective during training
is:

argmin
𝜙

𝐾𝐿[𝑞𝜙 (b,w) |𝑝 (b,w|𝐷)]

This reduces to minimizing the negative log likelihood of the
data given b and w, which can be approximated by drawing 𝑚
Monte Carlo samples of 𝜃 from 𝑄 and averaging, plus the prior
regularization term:

1
𝑛
𝐾𝐿[𝑞𝑝drop (b)𝑞𝜙 (w) |𝑝 (b)𝑝 (w)]

The prior regularization term can be rewritten as the sum of
the KLD between Bernoulli distributions and the KLD between
Gaussian distributions, and there is a closed-form solution for both
of these.

In practice, this is mostly a matter of replacing PyTorch Conv1d
and Linear layers with BayesianTorch Conv1dFlipout and Lin-
earFlipout layers. The standard forward call transparently per-
forms the Monte Carlo sampling, and we can compute the cross-
entropy loss as usual between the outputs and the true labels. A
get_kl_loss() function returns the sum of the KLD between the
Gaussian distributions for every parameter in the model. We only
had to write our own function to return the sum of the KLD be-
tween the Bernoulli distributions for the dropout layers. We then
simply call the standard backpropagation function on the sum of
the three losses.

At test time in the context of the Standard Model, a high probabil-
ity prediction for the𝑁 +1 unmonitored class and a high probability
prediction for a monitored class will both have low entropy (thus
low uncertainty). A similar problem arises when using MSP, but the
solution when using MSP is to simply exclude the 𝑁 + 1 class when
taking the maximum. Applying the same solution when calculating
entropy, however, does not work because the calculation of entropy
assumes a valid probability distribution that sums to 1.0. Our so-
lution was to instead redistribute the predicted probability mass
for the 𝑁 + 1 class uniformly across the 𝑁 monitored classes. This
procedure has three desirable properties. First, it ensures that the
distribution sums to 1.0. Second, it yields maximum entropy when

Table 6: List of geographic vantage points in the dataset.

Location AWS Region Name
Oregon, United States us-west-2
Virginia, United States us-east-1
São Paulo, Brazil sa-east-1
London, United Kingdom eu-west-2
Frankfurt, Germany eu-central-1
Cape Town, South Africa af-south-1
Stockholm, Sweden eu-north-1
United Arab Emirates me-central-1
Seoul, Republic of Korea ap-northeast-2
Sydney, Australia ap-southeast-1

the predicted probability for the 𝑁 + 1 class is 1.0. Third, it still
yields the minimum entropy of 0.0 when the predicted probability
for any monitored class is 1.0. Finally, we made all of the entropy
values negative so that the most certain (i.e. lowest entropy) moni-
tored class predictions would have the greatest values, as expected
by the scikit-learn precision_recall_curve() function.

B Details of Geographic Vantage Points
Table 6 lists the locations of the AWS regions from which clients
streamed videos and collected the traffic in the dataset.

To highlight the differences between geographic vantage points,
we analyzed the distances between each vantage point and the
Vimeo servers or Tor entry relays to which clients connected to
stream video. First, we identified the remote IP address for the
heaviest traffic flow in each capture in the dataset. We defined
the heaviest flow as having the greatest product of its duration
(in seconds between the first and last packet in either direction)
and bytes transferred. We then used the MaxMind GeoLite2 City
database to resolve IP addresses to countries, cities, and coordinates
where possible.

For the Vimeo servers, we were able to resolve 1,687 of 1,908
IP addresses to the city level. In total there were 57 cities. This
set of cities intersects with nine of the vantage points from which
the clients ran. The median distances to servers ranged from near
zero at most vantage points, to 281 kilometers (km) for us-west-
2, to 1,150 km for ap-northeast-2. The maximum distances had a
much wider range from near zero, at eu-central-1 and eu-north-1,
to 12,452 km at ap-southeast-1. We show statistics by vantage point
in Figure 8.

We similarly analyzed the distances from the vantage points to
the entry relays to which Tor clients connected. Tor clients use
weighted random selection, along with some screening criteria, to
choose relays in proportion to how much bandwidth the relays pro-
vide. This means that the distribution of distances between selected
relays should be consistent regardless of client location. However,
the distances from clients to entry relays can vary greatly. Because
a majority of relays are hosted in Europe, Tor clients elsewhere tend
to build significantly longer circuits. We show this in Figure 9. For
example, the median distance from eu-central-1 to its selected entry
relays was just 892 km compared to 15,867 km for ap-southeast-1.
The literature on Tor path selection and performance [7, 27] shows
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Figure 8: Box plots of geographic distance from vantage
points to Vimeo servers in the HTTPS-only dataset. A black
line is the median distance from each vantage point.

Figure 9: Box plots of geographic distance from vantage
points to connected Tor entry relays. A black line is the me-
dian distance from each vantage point.

how circuit length can significantly affect the latency and through-
put that users experience, so we would expect this to affect the
streaming video traffic.
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