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Abstract
Numerical data with bounded domains is a common data type in

personal devices, such as wearable sensors. While the collection

of such data is essential for third-party platforms, it raises signif-

icant privacy concerns. Local differential privacy (LDP) has been

shown as a framework providing provable individual privacy, even

when the third-party platform is untrusted. For numerical data with

bounded domains, existing state-of-the-art LDP mechanisms are

piecewise-based mechanisms, which are not optimal, leading to

reduced data utility.

This paper investigates the optimal design of piecewise-based

mechanisms to maximize data utility under LDP. We demonstrate

that existing piecewise-based mechanisms are heuristic instances

of the 3-piecewise mechanism, which is far from enough to study

optimality. We generalize the 3-piecewise mechanism to its most

general form, i.e.𝑚-piecewise mechanism with no pre-defined form

of each piece. Under this form, we derive the closed-form optimal

mechanism by combining analytical proofs and off-the-shelf opti-

mization solvers. Next, we extend the generalized piecewise-based

mechanism to the circular domain (along with the classical do-

main), defined on a cyclic range where the distance between the

two endpoints is zero. By incorporating this property, we design the

optimal mechanism for the circular domain, achieving significantly

improved data utility compared with existing mechanisms.

Our proposed mechanisms guarantee optimal data utility un-

der LDP among all generalized piecewise-based mechanisms. We

show that they also achieve optimal data utility in two common

applications of LDP: distribution estimation and mean estimation.

Theoretical analyses and experimental evaluations prove and vali-

date the data utility advantages of our proposed mechanisms.

Keywords
local differential privacy, numerical data privacy, bounded domain,

circular data

1 Introduction
Numerical data with bounded domains is a fundamental data type

in personal devices. These bounded domains can be categorized

into two types: linear ranges, such as sensor readings in [0, 1),
referred to as classical domain; and cyclic ranges, such as angular

measurements in [0, 2𝜋), referred to as circular domain. These types
of data are crucial for third-party platforms to provide personalized
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services. However, collecting such data involves particular privacy

concerns, as third-party collectors are potentially untrusted and

the data often contain sensitive information. Simple anonymization

techniques [29, 40] have been proven insufficient to prevent privacy

leakage [27, 38, 41]. Therefore, a provable privacy guarantee is

necessary when collecting these sensitive data.

Local differential privacy (LDP) serves as a de facto standard,

providing an input-independent formal guarantee regarding the

difficulty of inferring sensitive data. Through the LDP mechanism,

sensitive data are randomly perturbed before being sent to an un-

trusted collector. The randomization ensures a sufficient level of

indistinguishability (indicated by the privacy parameter 𝜀). Conse-

quently, any observation over the randomized data is essentially

powerless to infer the sensitive data. Laplace Mechanism [10] is a

classical LDP mechanism for numerical data privacy. It adds ran-

dom noise, drawn from a Laplace distribution determined by 𝜀, to

the sensitive data. However, the unbounded noise of the Laplace

mechanism makes it unsuitable for bounded domains.

State-of-the-art LDP mechanisms for numerical data with bound-

ed domains are piecewise-based mechanisms [21, 23, 34]. They are

widely used as building blocks to provide provable privacy guaran-

tees in various scenarios, such as in sensors networks and federated

learning. Piecewise-based mechanisms randomize the sensitive data

to a value sampled from a carefully designed piecewise probability

distribution. Existing instantiations use different pieces and proba-

bilities, but all are designed for classical domains. Their applicability

to other types of bounded domains, e.g. circular domain of angular

sensors that commonly appear in personal devices, is unexplored.

Data utility is the most crucial metric for LDP mechanisms, typi-

cally measured by the distance between the randomized data and

the sensitive data. While the privacy level is theoretically guaran-

teed by the privacy parameter 𝜀, a mechanism with better data util-

ity allows for more accurate analysis. The data utility of a piecewise-

based mechanism is determined by the distance metric, pieces, and

their respective probabilities. Unfortunately, none of the existing

instantiations of piecewise-based mechanisms are shown to be op-

timal in terms of data utility, indicating potential for improving

analysis accuracy without compromising privacy. These situations

highlight the need for optimal piecewise-based mechanisms.

The optimality of piecewise-based mechanisms remains a chal-

lenging problem. We will see that the existing instantiations are

heuristic forms of the 3-piecewise mechanism (TPM). As a special

case with 3 pieces and pre-defined forms of pieces, TPM is far from

enough to study the optimality of piecewise-based mechanisms.

From the evidence of the staircase Laplace mechanism [15] for un-

bounded numerical data, the asymptotically optimal mechanism

has a staircase (multiple pieces) form. For categorical data, a stair-

case Randomized Response mechanism (SRR) [33] improves data
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utility in location collection compared to the general RR mecha-

nism. Numerous indicators suggest that increasing the variety of

probabilities in the data domain, i.e. using more pieces, can improve

data utility. In light of these examples, a fundamental question for

piecewise-based mechanisms is: what is the optimal instantiation
of piecewise-based mechanism? In the design of piecewise-based

mechanisms, the number of pieces, their probabilities and sizes can

be arbitrary. Finding the optimal instantiation within such a large

design space is challenging, as it requires optimizing the number

of pieces, their probabilities and sizes simultaneously.

This paper studies the optimality of piecewise-based mechan-

ism in its most general form.
∗
We extend TPM into a generalized

piecewise-based mechanism (GPM) that is𝑚-piece, with each piece

having no pre-defined form. Under GPM, we formulate an optimiza-

tion problem to minimize the distance between the sensitive and

randomized data. By combining the solutions of the optimization

problem with analytical proofs, we derive the closed-form optimal

GPM for classical domains. For circular domains, where distance

metrics have a unique property (e.g. the distance between 0 and

2𝜋 is zero), we incorporate this property into mechanism design

and link the solving of the optimal mechanism to problems in the

classical domain. Table 1 summarizes the key features of this paper

in comparison with existing works. Particularly, our contributions

are as follows:

• (Solving framework) To the best of our knowledge, this is

the first work to study the closed-form optimal piecewise-

based mechanism under its most general form. We propose

a framework that integrates analytical proofs with off-the-

shelf optimization solvers to derive the closed-form optimal

mechanism. This approach establishes a feasible foundation

for achieving optimal data utility under LDP for numerical

data with bounded domains.

• (Closed-form instantiations) We provide closed-form optimal

mechanisms for the classical domain and the circular domain.

As alternatives to existing mechanisms, they can be directly

used as building blocks in sensor networks and federated

learning, etc, while guaranteeing optimal data utility among

all piecewise-based mechanisms under LDP.

• (Theoretical and experimental evaluations) We provide theo-

retical analyses of data utility and experimental evaluations

on two common applications of LDP: distribution and mean

estimation. The results prove and validate our mechanisms’

advantages over existing mechanisms. The codes are avail-

able at https://github.com/ZhengYeah/Optimal-GPM.

Structure. The main part of this paper is organized as follows:

After the preliminaries, we present the optimal piecewise-based

mechanism for the classical domain in Section 3. Section 4 focuses

on the circular domain and derives its optimal mechanism. Follow-

ing this, Section 5 discusses the optimality when applying to two

common tasks: distribution and mean estimation.

2 Preliminaries
This section formulates the problem and the concept of local differ-

ential privacy (LDP). We present existing instantiations of TPM and

∗
This means that we consider all possible forms of piecewise distributions on a

bounded domain, ensuring the most comprehensive generalization.

Table 1: OGPM vs existing instantiations of TPM.

Domain Optimality Closed form Estimation

PM [34]

Classical

No Yes Mean

SW [21] No Yes Distribution

PTT [23] Partly* No Mean

This paper

(OGPM)

Classical

& circular

Yes Yes

Mean &

distribution

* Proved the existence of the optimal under TPM, but did not give closed-form instantiations.

Appendix B.1 provides detailed discussion.

their limitations, which motivate our proposed optimal generalized

piecewise-based mechanism (OGPM).

2.1 Problem Formulation
We consider a typical data collection schema that consists of a

set of users and one collector. Each user has a numerical sensitive

data 𝑥𝑖 ∈ D, where D is a continuous and bounded domain. The

collector needs to collect data from users for statistical estimations,

such as the mean value and distribution of the data.

However, the collector is untrusted and may attempt to infer

users’ sensitive data. To protect privacy, each user locally random-

izes their sensitive data using a privacy mechanismM : D → ˜D,

then sends 𝑦𝑖 =M(𝑥𝑖 ) to the collector.

We seek to design an optimal M that maximizes the data utility

by minimizing the distance between the sensitive data 𝑥𝑖 and the

reported data 𝑦𝑖 , while ensuring 𝜀-LDP (Definition 2.1).

2.2 Local Differential Privacy
Definition 2.1 (𝜀-LDP [9]). A randomization mechanism M :

D → ˜D satisfies 𝜀-LDP, if for two arbitrary inputs 𝑥1 and 𝑥2, the

probability ratio of outputting the same 𝑦 is bounded:

∀𝑥1, 𝑥2 ∈ D,∀𝑦 ∈ ˜D :

Pr[M(𝑥1) = 𝑦]
Pr[M(𝑥2) = 𝑦] ≤ exp(𝜀).

If M(𝑥) is continuous, the probability Pr[·] is replaced by prob-

ability density function (𝑝𝑑 𝑓 ). Intuitively, 𝜀-LDP represents the

difficulty of distinguishing between 𝑥1 and 𝑥2 given 𝑦. A lower

privacy parameter 𝜀 ∈ [0,+∞) means higher privacy. For example,

𝜀 = 0 requires that M maps two arbitrary inputs to any output 𝑦

with the same probability, thus 𝑦 contains no distribution informa-

tion about 𝑥 , making any hypothesis-testing method to infer the

sensitive 𝑥 powerless even with knownM.

2.3 Piecewise-based Mechanisms
When the input domain D is both continuous and bounded, the

state-of-the-art mechanisms to achieve 𝜀-LDP are piecewise-based

mechanisms. We summarize these mechanisms as heuristic in-

stances of the following definition.

Definition 2.2. 3-piecewise mechanism (TPM)M : D → ˜D𝜀 is

a family of probability density functions that, given input 𝑥 ∈ D,

outputs 𝑦 ∈ ˜D according to

𝑝𝑑 𝑓 [M(𝑥) = 𝑦] =
{
𝑝𝜀 if 𝑦 ∈ [𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ],
𝑝𝜀/exp (𝜀) if 𝑦 ∈ ˜D𝜀 \ [𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ],
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where 𝑝𝜀 is a variable determined solely by 𝜀,† while 𝑙𝑥,𝜀 and 𝑟𝑥,𝜀

depend on 𝑥 and 𝜀. The output domain
˜D𝜀 ⊃ D is an enlarged

domain depending on 𝜀.

TPM samples the output 𝑦 for each 𝑥 from a piecewise distribu-

tion. This sampling is with a higher probability 𝑝𝜀 within [𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ]
and a lower probability 𝑝𝜀/exp(𝜀) within the remaining two pieces

˜D \ [𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ], satisfying the 𝜀-LDP constraint.

Instantiations. In TPM, the parameters are the central interval

[𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ], its probability 𝑝𝜀 , and the output domain
˜D𝜀 . Different

instantiations of those parameters yield different existing mecha-

nisms [21, 23, 34]. For example, PM [34] is the first instantiation

of TPM, defined on [−1, 1] → [−𝐶𝜀 ,𝐶𝜀 ], where 𝐶𝜀 is a variable

determined solely by 𝜀 and the central interval has a fixed length

𝑟𝑥,𝜀 − 𝑙𝑥,𝜀 =𝐶𝜀 − 1.

Data utility metric. To quantify the data utility of different

instantiations, we consider the general 𝐿𝑝 -similar error metric (i.e.

|𝑦 − 𝑥 |𝑝 ) as a loss function L : R → R. Thus, the error is:

𝐸𝑟𝑟 (𝑥) =
∫

˜D
L(𝑦, 𝑥)PM(𝑥 )d𝑦, (1)

where PM(𝑥 ) is the pdf defined by M(𝑥). 𝐸𝑟𝑟 (𝑥) illustrates the
expected error when applyingM on 𝑥 under the loss function L.

For example, L(𝑦, 𝑥) ≔ |𝑦 −𝑥 | is the absolute error, and L(𝑦, 𝑥) ≔
(𝑦 − 𝑥)2 is the square error. Then 𝐸𝑟𝑟 (𝑥) corresponds to the mean

absolute error (MAE) and mean square error (MSE) [23, 34], respec-

tively. Lower 𝐸𝑟𝑟 (𝑥) indicates better data utility.
Limitations of TPM. Existing instantiations of TPM have the

following limitations.

• Not optimal in data utility. None of the existing instanti-

ations provided closed forms for the optimal data utility.

Meanwhile, they also assume an invariable length 𝑟𝑥,𝜀 − 𝑙𝑥,𝜀
of the central piece for all 𝑥 , and symmetric probability

𝑝𝜀/exp(𝜀) for the remaining two pieces. However, a general-

form piecewise-based mechanism can have more pieces, un-

fixed piece lengths, and asymmetric probabilities, potentially

improving data utility.

• Limited applicability. Existing instantiations of TPM have

enlarged and unfixed output domains
˜D𝜀 ⊃ D. Enlarged

output domain incurs applicability issues in scenarios where

the collector requires the output domain to align with the

input domain (i.e.
˜D = D),

‡
such as in common sensor-

based services.

3 Generalized Piecewise-based Mechanism
This section generalizes TPM to its most general form (GPM). We

introduce a framework for deriving the closed-form optimal GPM

for the classical domain.

Definition 3.1. Generalized𝑚-piecewise mechanism (𝑚-GPM)

M : D → ˜D is a family of probability density functions that, given

†
Otherwise, if 𝑝𝜀 varies with 𝑥 , it violates the 𝜀-LDP constraint because the

probability ratio outputting the same 𝑦 from 𝑥1 and 𝑥2 is not bounded by exp(𝜀 ) .
‡
While post-processing the output by truncating it to D is possible, this approach

may still result in low data utility. Sections 7.1.2 and 7.1.3 provide comparisons with

mechanisms that include truncation.

input 𝑥 ∈ D, outputs 𝑦 ∈ ˜D according to

𝑝𝑑 𝑓 [M(𝑥) = 𝑦] =


𝑝1,𝜀 if 𝑦 ∈ [𝑙1,𝑥,𝜀 , 𝑟1,𝑥,𝜀 ),
.
.
.

.

.

.
.
.
.

𝑝𝑚,𝜀 if 𝑦 ∈ [𝑙𝑚,𝑥,𝜀 , 𝑟𝑚,𝑥,𝜀 ),

∀𝑖, 𝑗 ∈ [𝑚],max

𝑝𝑖,𝜀

𝑝 𝑗,𝜀

≤ exp(𝜀),

where [𝑚] ≔ {1, ...,𝑚}. Each probability 𝑝𝑖,𝜀 depends solely on

privacy parameter 𝜀, while interval boundaries 𝑙𝑖,𝑥,𝜀 and 𝑟𝑖,𝑥,𝜀 depend

on both 𝑥 and 𝜀.

An𝑚-GPM partitions its output domain into𝑚 pieces, assigning

probability 𝑝𝑖,𝜀 to each piece [𝑙𝑖,𝑥,𝜀 , 𝑟𝑖,𝑥,𝜀 ). The probabilities 𝑝𝑖,𝜀 are
independent of the input 𝑥 , and their ratios must be bounded by

exp(𝜀) to satisfy 𝜀-LDP. For notational clarity, we omit subscripts

𝑥 and 𝜀 when their context is clear. Additionally, M must satisfy

standard probability requirements: non-negativity (𝑝𝑖 ≥ 0), conti-

nuity (𝑟𝑖 = 𝑙𝑖+1), and normalization. TPM is a special case of GPM

with𝑚 = 3.

Finding the optimal GPM requires determining both the optimal

number of pieces𝑚 and the corresponding 𝑝𝑖,𝜀 , 𝑙𝑖,𝑥,𝜀 , 𝑟𝑖,𝑥,𝜀 . Due to

the infinite possibilities for𝑚 ∈ N+
and the resulting 3𝑚 variables,

analytical solutions are computationally intractable. We therefore

propose a framework that combines analytical proofs with off-the-

shelf optimization solvers.

3.1 Framework for Deriving the Optimal GPM
To derive the closed-form optimal GPM, we (i) formulate finding

the optimal𝑚-GPM as an optimization problem; (ii) determine the

optimal𝑚 based on the solutions of the optimization problem; (iii)

derive the optimal closed-form expression (among all𝑚-GPM).

Optimal𝒎-GPM. To find the optimal GPM instantiation with𝑚

pieces, we need to determine the variables 𝑝𝑖 , 𝑙𝑖 , and 𝑟𝑖 . Any feasible

assignment of these variables yields a mechanism M whose utility

can be measured by 𝐸𝑟𝑟 (𝑥) from Formula (1). Finding the optimal

𝑚-GPM requires solving a min-max optimization problem that

minimizes the worst-case error over all possible inputs 𝑥 :§

min

𝑝𝑖 ,𝑙𝑖,𝑥 ,𝑟𝑖,𝑥

max

𝑥

∫
˜D
L(𝑦, 𝑥)PM(𝑥 )d𝑦,

s.t.M satisfies Definition 3.1.

(2)

This formulation yields the optimal 𝑥-independent 𝑝𝑖 values and the

corresponding 𝑙𝑖,𝑥 , 𝑟𝑖,𝑥 for the worst-case input 𝑥 . However, since

these 𝑙𝑖,𝑥 , 𝑟𝑖,𝑥 may not be optimal for other inputs, we need a second

optimization step using the obtained optimal 𝑝𝑖 :

min

𝑙𝑖,𝑥 ,𝑟𝑖,𝑥

∫
˜D
L(𝑦, 𝑥)PM(𝑥 )d𝑦,

s.t.M satisfies Definition 3.1 with 𝑝𝑖 .

(3)

Together, these two steps determine the optimal instantiation of

𝑚-GPM for any given domain mapping D → ˜D, distance metric

L, piece number 𝑚, privacy parameter 𝜀, and input 𝑥 . Figure 1

illustrates this solving process.

§
Worst-case error is the most common utility metric in mechanism design [23, 34].

We can also optimize the error at other specific points, see Section 6.
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Figure 1: Solving flow for the optimal𝑚-GPM. Two arrows
indicate problems in (2) and (3).

Challenges. Nonetheless, solving Formulation (2) has practical

difficulties. Even if it can be solved, there is still a gap between the

solved optimal𝑚-GPM and the closed-form optimal GPM (among

all𝑚-GPM). We detail them as follows.

• (Solving difficulty) Formulation (2) is a min-max problem, and

the integrand L(𝑦, 𝑥)PM(𝑥 ) is non-linear. It is a non-convex
problem whose global optimal hard to solve.

• (Optimal𝑚) The solved optimal is only for𝑚-GPM given𝑚.

It is necessary to find the optimal piece number𝑚.

• (Closed form) For practical usage, we need closed-form 𝑝𝑖 ,

𝑙𝑖,𝑥 and 𝑟𝑖,𝑥 (i.e. their relationships with 𝜀 and 𝑥 ), rather than

their specific values for every 𝜀 and 𝑥 .

Solutions. We address the challenges and gaps with the follow-

ing solutions.

• Formulation (2) can be simplified to two bilinear optimiza-
tion problems that can be solved by off-the-shelf solvers.

(Section 3.2.1)

• If the optimal (𝑚 + 1)-GPM is identical to the𝑚-GPM, then

𝑚 is the optimal piece number. (Section 3.2.2)

• Leveraging the above results, the optimal closed-form 𝑝𝑖 , 𝑙𝑖,𝑥
and 𝑟𝑖,𝑥 can be obtained by analytical deduction (for TPM)

or numerical regression (for any𝑚-GPM). (Section 3.2.3)

Following these solutions, we can obtain the closed-form optimal

GPM (among all𝑚) for any 𝜀 given D → ˜D and L. Before pre-

senting the detailed solutions, we first discuss the conditions under

which the obtained GPM is optimal.

Conditions for optimality.When discussing optimality, the

following aspects should be specified: (i) the error metric, (ii) the

data domain and family of mechanisms, (iii) the strength of the

optimality, and (iv) whether post-processing is allowed. In this

paper, the optimality of GPM is defined with respect to: (i) the

worst-case 𝐿𝑝 -similar error metric, (ii) bounded numerical domains

D → ˜D and mechanisms based on piecewise distributions, (iii)

minimization of error value (not asymptotic or order-of-magnitude

optimality), and (iv) without post-processing. These conditions are

widely applicable in practice and literature. However, varying any of

themmay lead to different optimality results. Appendix B.2 provides

a detailed discussion of these conditions and related optimalities.

3.2 Detailed Solutions
3.2.1 Solution 1: Simplified Form. The min-max problem in For-

mulation (2) can be simplified. The key observation is that its inner

maximization term, max𝑥 , has a closed form, i.e. the worst-case

error is from the endpoints ofD. Lemma 3.2 states this observation.

Lemma 3.2. Assume D = [𝑎, 𝑏), the objective of Formulation (2)
can be simplified to

min

𝑝𝑖 ,𝑙𝑖,𝑥 ,𝑟𝑖,𝑥

max

𝑥∈{𝑎,𝑏}

∫
˜D
L(𝑦, 𝑥)PM(𝑥 )d𝑦.

Proof. (Sketch) The key of the proof is that each integral on
˜D

is convex function w.r.t 𝑥 . Thus, their non-negative weighted sum

is also convex. According to the Bauer maximum principle [37],

the maximum is achieved at the endpoints of D, i.e. 𝑥 = 𝑎 or 𝑏.¶

Appendix A.1 provides the full proof. □

Complexity. (i) Lemma 3.2 simplifies Formulation (2) to two bi-
linear optimization problems, i.e. when 𝑥 = 𝑎 and 𝑥 = 𝑏 respectively.

The integrand L(𝑦, 𝑎)PM(𝑎) includes terms such as 𝑝𝑖𝑙𝑖 and 𝑝𝑖𝑟𝑖 ,

which involve multiplications of two variables. This problem can be

solved by off-the-shelf solvers such as Gurobi [2], which employs

stochastic Branch and Bound [17] method to handle the bilinear

terms. (ii) The number of variables is at most 3𝑚, which can be

efficiently solved for small𝑚. For example, we can obtain the exact

optimal for𝑚 ≤ 7 and L = |𝑦 − 𝑥 | within 2 seconds. Furthermore,

solvers generally provide over- and under-approximation for bi-

linear problems [28]. We can obtain solutions with ≤ 1% gap from

the optimal for𝑚 ≤ 19 within 1 minute. (iii) Formulation (3) for

solving 𝑙𝑖 and 𝑟𝑖 has at most 2𝑚 variables and without 𝑝𝑖 terms, it

is a toy-size problem when𝑚 is small.

Encoding details.We need to encode the problem in Lemma 3.2

to simple mathematical expressions that can be handled by the

solver. If we instantiate L = |𝑦 − 𝑥 | and focus on the left endpoint

𝑥 = 𝑎, this problem becomes:

min

𝑝𝑖 ,𝑙𝑖 ,𝑟𝑖

𝑚∑︁
𝑖=1

𝑝𝑖

∫ 𝑟𝑖

𝑙𝑖

(𝑦 − 𝑎)d𝑦

= min

𝑝𝑖 ,𝑙𝑖 ,𝑟𝑖

𝑚∑︁
𝑖=1

𝑝𝑖

2

(
(𝑟𝑖 − 𝑎)2 − (𝑙𝑖 − 𝑎)2

)
.

This problem is a bilinear optimization problem. The highest-degree

term is 𝑝𝑖 ·𝑟𝑖 ·𝑟𝑖 , which can be reformulated as 𝑝𝑖 ·𝑡 with 𝑡 = 𝑟𝑖 ·𝑟𝑖 , i.e.
multiplication of bilinear terms. Such problems can be solved by off-

the-shelf bilinear solvers [2]. The other problem in Formulation (3)

can be encoded similarly but is much easier due to constant 𝑝𝑖 .

3.2.2 Solution 2: Optimal Piece Number. Although we can obtain

the optimal 𝑚-GPM for any 𝑚 given sufficient time, solving for

each𝑚 is unnecessary. The following lemma provides a theoretical

basis for capping the optimal number of pieces.

Lemma 3.3. For all possible 𝜀 and 𝑥 , if the optimal (𝑚 + 1)-GPM is
the same as the𝑚-GPM, then the optimal piece number is𝑚.

Proof. (Sketch) The key insight is that, if the optimal piece

number is not𝑚, i.e. an additional piece can lower the error, then

this additional piece will be captured by the optimal (𝑚 + 1)-GPM.

Therefore, (i) if𝑚 is not the optimal piece number, then the optimal

(𝑚 + 1)-GPM is different from the optimal𝑚-GPM. (ii) if𝑚 is the

optimal piece number, then there is no additional piece can lower

the error, making the optimal (𝑚+1)-GPM is the same as the optimal

¶
We use [𝑎,𝑏 ) to denote the domain for consistency with the form of pieces in

GPM. This is the same as [𝑎,𝑏 ] in implementation.
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Figure 2: Optimal 4-GPM and 5-GPM when 𝜀 = 1 and 𝑥 = 0.3.
They are identical as𝑚 = 3 after merging redundant pieces.

𝑚-GPM. Now, no additional piece can be captured, hence𝑚 is the

optimal piece number. Appendix A.2 provides the full proof. □

Lemma 3.3 requires checking the results for every 𝜀 and 𝑥 , which

is challenging as 𝜀 ∈ [0,∞) and 𝑥 ∈ D are infinite sets. In practice,

we restrict 𝜀 within its generally meaningful domain, e.g. 𝜀 ∈ [0, 10),
and employ Monte Carlo random sampling to generate a set of ran-

dom pairs (E,X) = {(𝜀1, 𝑥1), (𝜀2, 𝑥2), . . . , (𝜀𝑛, 𝑥𝑛)}. If Lemma 3.3

holds for the 𝑛-size set (E,X), the optimality of𝑚-GPM is guaran-

teed with probability 1 as 𝑛 → ∞ [31].

Results for Monte Carlo sampling. Fixing D = ˜D = [0, 1),
for L = |𝑦−𝑥 | and L = (𝑦−𝑥)2, the optimal 4-GPM are identical as

the optimal 3-GPM for random (E,X) with at least 𝑛 = 10
4
. These

optimal results align with TPM, but the optimal 𝑝, 𝑙 and 𝑟 values

are different from existing instantiations.

Given the continuity of the objective functions w.r.t 𝜀 and 𝑥 ,

we posit that it is, in fact, the exact optimal. Therefore, when we

say the optimal piece number is 𝑚 = 3, it implies the statistical
optimality guaranteed by the Monte Carlo asymptotic technique

with a strength of at least 𝑛 = 10
4
random samples.

Example 3.4. For [0, 1) → [0, 1) and L = |𝑦 − 𝑥 |, Figure 2 shows
two examples of the optimal 4-GPM and optimal 5-GPMwhen 𝜀 = 1

and 𝑥 = 0.3. After merging redundant pieces, i.e. connected pieces

with the same probability, they are the same as the 3-GPM and fall

into the TPM category.

3.2.3 Solution 3: Closed-form Instantiation. After determining the

optimal𝑚, we can derive the closed-form instantiation. If the opti-

mal results exhibit𝑚 = 3 and coincide with TPM, it facilitates ana-

lytical deduction for the closed-form optimal 𝑝 , 𝑙 and 𝑟 . Otherwise,

numerical regression can be employed to obtain the closed-form

instantiation. Figure 3 illustrates the workflow.

Analytical deduction. For TPM, the optimization procedure

for solving 𝑝𝑖 , 𝑙𝑖 and 𝑟𝑖 can be conducted analytically. The key obser-

vation is that there are only three variables: 𝑝, 𝑙 , and 𝑟 in TPM. Due

to the normalization constraint of probability, the central interval

length 𝑟 − 𝑙 can be replaced by its probability 𝑝 . This reduces the

solving for the optimal 𝑝 to a univariate optimization problem w.r.t.

𝑝 , which can be solved by analyzing the first-order derivative. With

the solved 𝑝 , solving 𝑙 and 𝑟 also becomes a univariate optimization

problem. Appendix B.4 provides the formalized process.

Numerical regression. For any 𝑚-GPM, we can obtain the

closed-form 𝑝𝑖 , 𝑙𝑖 , and 𝑟𝑖 through numerical regression on their

solved optimal values.

TPM Deduction

Regressio
n

Closed form
Optimal

Any m-GPM

, ,,,i i x i xp l r

Figure 3: Solving flow for the optimal closed form.

Assume that we want to find the closed-form optimal 𝑝𝑖 . Given

(E,P𝑖 ) = {(𝜀1, 𝑝𝑖,1), . . . , (𝜀𝑛, 𝑝𝑖,𝑛)}, which contains the solved opti-

mal 𝑝𝑖 for random 𝜀, we aim to find the relationship between 𝜀 and

𝑝𝑖 . This relationship can be approximated by 𝑝𝑖 = 𝑓 (𝜀, 𝛽), where 𝑓
is a designed feature with 𝛽 as regression parameters.

Ideally, the designed feature 𝑓 matches the truth form of 𝑝𝑖 . In

this case, the regression result of 𝑓 on (E,P𝑖 ) converges to the

optimal closed-form 𝑝𝑖 . If not, the regression result may not con-

verge to the optimal. In practice, we can use heuristic forms of 𝑓 for

tighter approximation. Due to the structure of the LDP constraint,

we suggest choosing 𝑝𝑖 with a form of exp(𝛽1𝜀), allowing us to

design 𝑓 = exp(𝛽1𝜀) + 𝛽2.

Example 3.5. For L = |𝑦 − 𝑥 |, D = ˜D = [0, 1) and 𝑚 = 3,

assume the probability 𝑝 has the form 𝑝 = exp(𝛽1𝜀) + 𝛽2. We use

the scipy.curve_fit package to regress 𝑝 on 50 random 𝜀; then

its regression result is 𝑝 = exp(𝜀/2) − 0.07 with a maximal error

≤ 10
−2
. Note that this result almost coincides with the ground-truth

𝑝 in Theorem 3.7.

3.3 Closed Form for Classical Domain
The above framework for deriving the closed-form optimal GPM is

applicable to any D → ˜D. Using this framework, this subsection

provides instantiations for a common case: D = ˜D.

Restricting domain. In real-world applications, the output

domain is often required to match the input domain, i.e. D = ˜D.
∥

Furthermore, a concrete domain (e.g. D = [0, 1)) does not limit

the generality, as D can be transformed to other domains through

scaling and shifting operations. The theorem below characterizes

the privacy and utility invariants under such transformations.

Theorem 3.6 (Transformation invariants). Given a GPMM :

D → ˜D satisfying 𝜀-LDP, if domainD′ = 𝑐D+𝑑 and ˜D′ = 𝑐 ˜D+𝑑
with 𝑐 > 0, then transformation

T (M) : 𝑥 ′ = 𝑐𝑥 + 𝑑, 𝑝′𝑖 = 𝑝𝑖/𝑐, [𝑙 ′𝑖 , 𝑟 ′𝑖 ) = 𝑐 [𝑙𝑖 , 𝑟𝑖 ) + 𝑑

results in GPM M′ = T (M) : D′ → ˜D′ having the same privacy
level 𝜀. (privacy invariant)

Meanwhile, if there is another GPM Mbad : D → ˜D with error
𝐸𝑟𝑟 (𝑥,M) ≤ 𝐸𝑟𝑟 (𝑥,Mbad) for a given 𝑥 , then

𝐸𝑟𝑟 (𝑥 ′,M′) ≤ 𝐸𝑟𝑟 (𝑥 ′,M′
bad),

i.e. T maintains the data utility ordering. (utility invariant)

∥ ˜D generally should be larger than or equal to D to ensure the mechanism’s

meaningfulness; otherwise, it means some ranges in D will disappear after applying

the mechanism.
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Figure 4: Optimal GPM (Theorem 3.7) when 𝜀 = 1, 𝑥 = 0 and
𝑥 = 0.5.

Proof. (Sketch) The privacy invariant is the same as applying a

linear post-processing of DP to GPM. The utility invariant is due to

T as a linear function on D. Appendix A.3 provides the full proof

of these two invariants. □

Theorem 3.6 allows us to discuss the optimality on a fixed input

domain. If a mechanism’s input domain differs from D, we can

transform it toD, and this transformation maintains the optimality.

Hypothesis 3.1. For any domain D → D, under absolute error
and square error metrics, the optimal piecewise-based mechanism
falls into 3-GPM.

Support. We validated this hypothesis for D = [0, 1) by per-

forming Monte Carlo sampling on 10
4
random (𝜀, 𝑥) pairs (detailed

in Section 3.2.2). Theorem 3.6 then extends this optimality to any

D. Given the continuity of the objective functions w.r.t. 𝜀 and 𝑥 ,

we posit that𝑚 = 3 is indeed the exact optimal. To further support

this hypothesis, Appendix B.3 outlines two directions for analytical

proof and highlights the associated challenges.

Theorem 3.7. If hypothesis 3.1 holds, then GPM M : [0, 1) →
[0, 1) with the following closed-form instantiation

𝑝𝑑 𝑓 [M(𝑥) = 𝑦] =
{
𝑝𝜀 if 𝑦 ∈ [𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ),
𝑝𝜀/exp (𝜀) 𝑦 ∈ [0, 1) \ [𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ),

where 𝑝𝜀 = exp(𝜀/2),

[𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ) =

[0, 2𝐶) if 𝑥 ∈ [0,𝐶),
𝑥 + [−𝐶,𝐶) if 𝑥 ∈ [𝐶, 1 −𝐶),
[1 − 2𝐶, 1) otherwise,

with𝐶 = (exp(𝜀/2) −1)/(2 exp(𝜀) −2), is optimal for [0, 1) → [0, 1)
under the absolute error and square error metric.

Proof. Provided by analytical deduction with [𝑎, 𝑏) = [𝑎, ˜𝑏) =
[0, 1), L = |𝑦 − 𝑥 | and L = |𝑦 − 𝑥 |2 respectively. Appendix A.4

provides the full proof. □

This optimality on [0, 1) can be transformed to M′
: [𝑎, 𝑏) →

[𝑎, 𝑏) by applying T : 𝑥 ′ = (𝑏 − 𝑎)𝑥 + 𝑎, 𝑝′𝜀 = 𝑝𝜀/(𝑏 − 𝑎), [𝑙 ′, 𝑟 ′) =
(𝑏 − 𝑎) · [𝑙, 𝑟 ) + 𝑎, while maintaining the optimality.

Example 3.8. Figure 4 shows two examples of Theorem 3.7.When

𝑥 = 0 in the left figure, the optimal GPM has 𝑝 ≈ 1.64 and [𝑙, 𝑟 ) ≈
[0, 0.38). When 𝑥 = 0.5 in the right figure, the optimal GPM has

𝑝 ≈ 1.64 and [𝑙, 𝑟 ) ≈ [0.31, 0.69).

MSE analysis. We can calculate the mean squared error (MSE)

of the optimal GPM in Theorem 3.7 as

MSE[M(𝑥)] =
∫

˜D
(𝑦 − 𝑥)2 · 𝑝𝑑 𝑓 [M(𝑥) = 𝑦]d𝑦

=

∫ 𝑙𝑥,𝜀

0

(𝑦 − 𝑥)2 𝑝𝜀

exp(𝜀) d𝑦 +
∫ 𝑟𝑥,𝜀

𝑙𝑥,𝜀

(𝑦 − 𝑥)2𝑝𝜀d𝑦

+
∫

1

𝑟𝑥,𝜀

(𝑦 − 𝑥)2 𝑝𝜀

exp(𝜀) d𝑦 .

which leads to the results in Appendix B.5.

The theoretical MSE allows us to analytically compare the opti-

mal GPM with existing mechanisms. For mechanisms defined on

D = [0, 1), e.g. SW [21], we can compare their MSE with the above

result. For mechanisms defined on other domains, e.g. PM [34] on

D = [−1, 1), we can transform the optimal GPM to [−1, 1) and
compare their MSE. Detailed comparisons with them are presented

in the evaluation section.

4 Optimal GPM for Circular Domain
This section presents the optimal GPM for the circular domain,

another type of bounded domain. Circular domains are widely used

in cyclic data such as time, angle, and compass direction. However,

none of the existing piecewise-based mechanisms consider this

type of domain, limiting their applicability.

Differentmeanings of distance. In the circular domain [0, 2𝜋),
the distance between two elements differs from that in the classical

domain [0, 2𝜋). For example, if we denote the distance between 𝑥

and 𝑦 in the circular domain as Lmod (𝑦, 𝑥) = |𝑦 −𝑥 |, then it implies

Lmod (2𝜋, 0) = 0 andLmod (3𝜋/2, 0) = 𝜋/2, which are different from
L(𝑦, 𝑥) = |𝑦 − 𝑥 | in the classical domain. The biggest difference

is that there are no endpoints in the circular domain. This unique

property makes the mechanisms designed for the classical domain

not directly suitable for the circular domain. Although we can

“flatten” the circular domain to the classical domain, this conversion

changes the distance between elements, leading to data utility loss.

Formally, in the circular domain [0, 2𝜋), the distance metric

Lmod (𝑦, 𝑥) has the following relationship with L(𝑦, 𝑥) in the clas-

sical domain:

Lmod (𝑦, 𝑥) =min

(
L(𝑦, 𝑥),L(𝑦, 2𝜋 − 𝑥)

)
,

i.e. the distance between 𝑦 and 𝑥 is the smaller one between two

arcs from 𝑦 to 𝑥 . Under this distance metric, finding the optimal

𝑚-GPM for the circular domain is to solve M : [0, 2𝜋) → [0, 2𝜋)
such that

min

𝑝𝑖 ,𝑙𝑖,𝑥 ,𝑟𝑖,𝑥

max

𝑥

∫
2𝜋

0

Lmod (𝑦, 𝑥)PM(𝑥 )d𝑦,

s.t.M satisfies Definition 3.1,

(4)

and use the solved optimal 𝑥-independent 𝑝𝑖 to determine 𝑙𝑖,𝑥 , 𝑟𝑖,𝑥
for any given 𝑥 :

min

𝑙𝑖,𝑥 ,𝑟𝑖,𝑥

∫
2𝜋

0

Lmod (𝑦, 𝑥)PM(𝑥 )d𝑦

s.t.M satisfies Definition 3.1 with 𝑝𝑖 .

(5)

We show that these two problems can be reduced to those in the

classical domain, thereby enabling the usage of existing results.
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Figure 5: Reduced forms of solving the optimal 𝑝𝑖 , 𝑙mod
𝑖,𝑥

and
𝑟mod
𝑖,𝑥

. Optimizations under circular distance Lmod can be re-
duced to those under linear distance L.

4.1 Reduced Forms
Similar to the classical domain, the min-max objective of Formula-

tion (4) also has a closed-form solution, which reduces the problem

to the classical domain.

Lemma 4.1. The objective of Formulation (4) can be reduced to

min

𝑝𝑖 ,𝑙𝑖,𝑥 ,𝑟𝑖,𝑥

∫
2𝜋

0

L(𝑦, 𝜋)PM(𝜋 )d𝑦.

Proof. (Sketch) We prove it by showing that, for any fixed 𝑦,

max𝑥 Lmod (𝑦, 𝑥) = Lmod (𝑦, 𝜋) = L(𝑦, 𝜋), i.e. the maximum dis-

tance between 𝑦 and 𝑥 is achieved at a unique 𝑥 = 𝜋 for any 𝑦.

Appendix A.5 provides the full proof. □

Following this reduction, the optimal results in the classical

domain [0, 2𝜋) can be applied to determine the optimal 𝑝𝑖 .

For Formulation (5) to solve 𝑙𝑖,𝑥 and 𝑟𝑖,𝑥 , we shift the domain

[0, 2𝜋) by 𝜋 − 𝑥 . This is a trick operation as Lmod (𝑦, 𝑥) is trans-
formed to the following form:

Lmod (𝑦 + 𝜋 − 𝑥, 𝑥 + 𝜋 − 𝑥) = Lmod (𝑦 + 𝜋 − 𝑥, 𝜋)
=min (L(𝑦 + 𝜋 − 𝑥, 𝜋),L(𝑦 + 𝜋 − 𝑥, 2𝜋 − 𝜋))
=L(𝑦 + 𝜋 − 𝑥, 𝜋),

which transforms Lmod to L at 𝑥 = 𝜋 . Then, the optimization

problem in the shifted domain becomes

min

𝑙𝑖,𝑥 ,𝑟𝑖,𝑥

∫
3𝜋−𝑥

𝜋−𝑥
L(𝑦 + 𝜋 − 𝑥, 𝜋)PM(𝜋 )d𝑦.

It is a problem in the classical domain [𝜋 −𝑥, 3𝜋 −𝑥). We can obtain

the closed-form optimal 𝑙𝑖,𝑥 and 𝑟𝑖,𝑥 by applying the results of the

classical domain. Since the obtained 𝑙𝑖,𝑥 and 𝑟𝑖,𝑥 depends on 𝑥 in the

shifted domain, we shift them back to the circular domain using

𝑙mod

𝑖,𝑥 = 𝑙𝑖,𝑥 − (𝜋 − 𝑥) mod 2𝜋,

𝑟mod

𝑖,𝑥 = 𝑟𝑖,𝑥 − (𝜋 − 𝑥) mod 2𝜋.

Transformation invariants ensure their optimality in the circular

domain. Figure 5 summarizes the above two reductions to solve the

optimal 𝑝𝑖 , 𝑙
mod

𝑖,𝑥 and 𝑟mod

𝑖,𝑥 in the circular domain.

4.2 Closed Form for Circular Domain
By applying the above reductions and following the same steps

as in the classical domain, we can obtain the optimal GPM for the

circular domain.

/ 2p
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Figure 6: Optimal GPM (Theorem 4.2) for the circular domain
with 𝜀 = 1. Here [0, 2𝜋) is wrapped into a circle. Angle values
in the red arc (centered at 𝑥) have a higher sampling pdf.

Theorem 4.2. If Hypothesis 3.1 holds, then GPMM : [0, 2𝜋) →
[0, 2𝜋) with the following closed-form instantiation

𝑝𝑑 𝑓 [M(𝑥) = 𝑦] =
{
𝑝𝜀 if 𝑦 ∈ [𝑙mod

𝑥,𝜀 , 𝑟mod

𝑥,𝜀 ),
𝑝𝜀/exp (𝜀) 𝑦 ∈ [0, 2𝜋) \ [𝑙mod

𝑥,𝜀 , 𝑟mod

𝑥,𝜀 ),

where 𝑝𝜀 = 1

2𝜋
exp(𝜀/2),

𝑙mod

𝑥,𝜀 =

(
𝑥 − 𝜋

exp(𝜀/2) − 1

exp(𝜀) − 1

)
mod 2𝜋,

𝑟mod

𝑥,𝜀 =

(
𝑥 + 𝜋

exp(𝜀/2) − 1

exp(𝜀) − 1

)
mod 2𝜋,

is optimal for the circular domain under the absolute error and square
error metric.

Proof. Combination of the reduced forms, the results of the

classical domain, Lemma 4.1, and transformation invariants leads

to the conclusion. □

Compared to the optimal GPM for the classical domain in The-

orem 3.7, the key difference is that the mechanism in the circular

domain allows [𝑙mod

𝑥,𝜀 , 𝑟mod

𝑥,𝜀 ) to span the 0 or 2𝜋 boundary, signifi-

cantly reducing the error. We also observe that their instantiations

of 𝑝𝜀 , 𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 are connected through transformation invariants. For

instance, moving from the classical domain [0, 1) to the circular

domain [0, 2𝜋), 𝑝𝜀 = exp(𝜀/2) transforms to 𝑝𝜀 = 1

2𝜋
exp(𝜀/2),

reflecting the ratio of [0, 1) to [0, 2𝜋).

Example 4.3. Figure 6 shows two examples of Theorem 4.2 when

𝜀 = 1. For 𝑥 = 0 in the left figure, it samples the output 𝑦 from

[1.62𝜋, 2𝜋) ∪ [0, 0.38𝜋) with probability density 0.26 and from

[0.38𝜋, 1.62𝜋) with probability density 0.09.

MSE analysis. The MSE of the optimal GPM in Theorem 4.2

needs a separate analysis due to the circular domain. The biggest

difference from the classical domain is that there exist no endpoints,

i.e. fixed farthest points, in the circular domain. Without loss of

generality, assume L ≔ |𝑦 − 𝑥 |2 and 𝑥 > 𝜋 , the farthest distance

from 𝑥 is always 𝜋 , i.e. from 𝑥 to 𝑥 − 𝜋 . If we shift the data domain

by 𝜋 − 𝑥 , then point 𝑥 − 𝜋 is mapped to 0. This domain shift does

not change the value of L, but 𝑥 now locates at 𝜋 . Therefore, the

MSE of the optimal GPM in Theorem 4.2 has an identical value for
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all 𝑥 in the circular domain, which is

MSE[M(𝑥)] =MSE[M(𝜋)]

=2

(∫ 𝑙mod

𝜋,𝜀

0

(𝑦 − 𝜋)2 𝑝𝜀

exp(𝜀) d𝑦 +
∫ 𝜋

𝑙mod

𝜋,𝜀

(𝑦 − 𝜋)2𝑝𝜀d𝑦
)
.

Calculating the above integral, we can obtain theMSE of the optimal

GPM in the circular domain.

Theorem 4.4. The optimal GPM in Theorem 4.2 has an identical
MSE for all 𝑥 in the circular domain, which is

MSE[M(𝑥)] = 2

3

(
(𝜋3 −𝐶3) 𝑝𝜀

exp(𝜀) +𝐶3𝑝𝜀

)
,

where 𝐶 = 𝜋 (exp(𝜀/2) − 1)/(exp(𝜀) − 1).

Proof. We have shown that the MSE at 𝑥 is the same as that at

𝜋 . Then the calculation is straightforward by plugging in the values

of 𝑝𝜀 and 𝑙
mod

𝜋,𝜀 in Theorem 4.2. □

If we do not consider Lmod and directly apply the optimal GPM

in the classical domain (or SW and PM mechanisms) to the circular

domain, i.e. flatten the circular domain to the classical domain

[0, 2𝜋) and consider L, the MSE will varies for different 𝑥 . In the

flattened domain, the worst-case MSE is at 𝑥 = 0 or 𝑥 = 2𝜋 and

the best-case MSE is at 𝑥 = 𝜋 . Therefore, the optimal GPM in

Theorem 4.2 always has a lower MSE than “flattened” mechanisms.

The evaluation section will further demonstrate this.

5 Distribution and Mean Estimation
This section applies our mechanisms to support the commonly

used distribution and mean estimation. We will show that our

mechanisms also provide optimality for these estimation tasks.

Assume a set of users with sensitive data X = {𝑥1, 𝑥2, . . . , 𝑥𝑛}.
They applyM to produce randomized outputsY = {𝑦1, 𝑦2, . . . , 𝑦𝑛}.
The data collector then estimates the distribution and mean of X
using Y. Specifically, the collector uses the values in Y as it is, i.e.

without knowing and applying any post-processing based on prior

knowledge of X.

5.1 Distribution Estimation
To estimate the distribution of X from Y, the collector must dis-

cretize the continuous domain D into 𝑘 bins 𝐵1, 𝐵2, . . . , 𝐵𝑘 . Each

bin 𝐵 𝑗 ’s probability is then estimated by the proportion of 𝑦𝑖 that

falls within 𝐵 𝑗 . Probabilities of all bins together form the estimated

distribution
ˆF𝐵 using Y. This estimation’s accuracy is measured

by the distance between the estimated distribution
ˆF𝐵 and the true

distribution F𝐵 from X [21].

Note that the bin size can impact the estimation accuracy due to

the rounding of the bins. However, it is actually a hyperparameter

that does not inherently affect the estimation accuracy if we have a

sufficiently large number of bins, as the support of
ˆF𝐵 (i.e. non-zero

bins) converges to Y and the support of F𝐵 converges to X, i.e.

lim

𝑘→∞
supp( ˆF𝐵) =Y, lim

𝑘→∞
supp(F𝐵) = X.

Our mechanisms guarantee the optimal error between X andY for

each 𝑥𝑖 . This ensures their optimality among GPM when applied to

distribution estimation.

Some other statistical estimations are special applications of

distribution estimation, such as range and quantiles [21] to estimate

a specific part of the distribution. Our mechanisms have optimality

for these estimations as well.

5.2 Mean Estimation
To estimate the mean of X from Y, the collector uses the estimator

𝜇 =
∑𝑛

𝑖=1 𝑦𝑖/𝑛. The accuracy of this estimator is measured by |𝜇−𝜇 |,
where 𝜇 is the true mean of X. Our mechanisms guarantee the

optimal error between each 𝑥𝑖 and 𝑦𝑖 , which in turn leads to the

smallest |𝜇 − 𝜇 | among all GPMs under this metric.

Typically, a mean estimator may also need to be unbiased, i.e.

E[𝜇] = 𝜇. This constraint translates to E[𝑦𝑖 ] = E[M(𝑥𝑖 )] = 𝑥𝑖 .
∗∗

This is unachievable for same-domain mapping M : D → D on

classical domains, as the endpoints of D cannot be the mean value

(or center) of any distribution over D. For example, for any LDP

mechanism M : [0, 1) → [0, 1), distribution of M(0) can not be

unbiased. So the mechanism in Theorem 3.7 is biased.

Unbiased mean estimation. Note that an unbiased mean esti-

mator can be achieved by enlarging the output domain D → ˜D𝜀 .

Mathematically, this involves incorporating the unbiasedness con-

straint E[M(𝑥)] = 𝑥 into optimization problems for solving M.

Following the same optimization process as in the classical domain,

we hypothesize that the 3-GPM remains optimal for domain
˜D𝜀 .

Hypothesis 5.1. For any domain D → ˜D𝜀 , where ˜D𝜀 is a vari-
able w.r.t 𝜀, and under absolute error and square error metrics, the
optimal piecewise-based mechanism falls into 3-GPM.

Hypothesis 5.1 is a natural extension of Hypothesis 3.7, as the

output domain
˜D𝜀 becomes explicit once 𝜀 is specified. Under the 3-

GPM, an unbiased mechanismM with a variable output domain
˜D𝜀

can be analytically derived by incorporating the unbiasedness con-

straint. As a complement to Theorem 3.7, we provide Theorem 5.1

for mean estimation in the classical domain.

Theorem 5.1. Denote ˜D𝜀 = [−𝐶,𝐶 + 1) with 𝐶 = (exp(𝜀/2) +
1)/(exp(𝜀/2) − 1). If Hypothesis 5.1 holds, then among the unbiased
GPM M : D → ˜D𝜀 (i.e. E[M(𝑥)] = 𝑥), closed form

𝑝𝑑 𝑓 [M(𝑥) = 𝑦] =
{
𝑝𝜀 if 𝑦 ∈ [𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ),
𝑝𝜀/exp (𝜀) 𝑦 ∈ ˜D𝜀 \ [𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ),

where 𝑝 = exp(𝜀/2)/(2𝐶 + 1),

𝑙𝑥,𝜀 =
𝐶 + 1

2

· 𝑥 − (3𝐶 + 1) (𝐶 − 1)
4𝐶

,

𝑟𝑥,𝜀 =
𝐶 + 1

2

· 𝑥 + (𝐶 + 1) (𝐶 − 1)
4𝐶

.

is optimal for [0, 1) → ˜D𝜀 and the square error metric.

Proof. Instantiations of𝐶 , 𝑝 , 𝑙𝑥,𝜀 , and 𝑟𝑥,𝜀 are derived by analyt-

ical deduction. Appendix A.6 proves the unbiasedness. □

In the context of the circular domain, theM in Theorem 4.2 is

unbiased, as the distribution of M is always centered at 𝑥 . This

property is also illustrated in Figure 6.

∗∗
Actually, unbiasedness for numerical data is not as important as for categorical

data, as it is for a single data point 𝑥𝑖 . When the dataset X is not concentrated around a

single point, an unbiased mechanism may not necessarily provide better performance.
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Table 2: Optimal distribution and mean estimation in three
domain types under GPM.

Distribution Mean

Classical (D → D) Theorem 3.7 Theorem 3.7 (biased)

Circular domain Theorem 4.2 Theorem 4.2 (unbiased)

Classical (D → ˜D𝜀 ) – Theorem 5.1 (unbiased)

Table 2 summarizes the optimal GPM for both distribution and

mean estimation in three domain types. Theorems use a concrete

domainD for the sake of clarity.We do not give closed-form optimal

GPM for distribution estimation on D → ˜D𝜀 because
˜D𝜀 can not

be easily concretized by constraints as in mean estimation.

6 Discussion and Extension
Minimize Error at a Specific 𝑥 . Our proposed optimal GPMs are

designed to minimize the worst-case error over the whole domain.

However, the framework can be used to minimize the error at any

specific 𝑥 . This is useful when the data distribution is concentrated

around a specific data point.

Formally, assume the data distribution is concentrated around 𝑥0,

and we want to minimize the error at 𝑥0. The optimization problem

in Lemma 3.2 for solving 𝑝𝑖 can be modified to

min

𝑝𝑖 ,𝑙𝑖,𝑥 ,𝑟𝑖,𝑥

∫
˜D
L(𝑦, 𝑥0)PM(𝑥0 )d𝑦.

This optimization problem generally leads to a different 𝑝𝑖 from the

optimal GPM for the worst-case error.

Example 6.1. Assume D → ˜D = [0, 1) → [0, 1), L ≔ |𝑦 − 𝑥 |,
and the data distribution is concentrated around 𝑥0 = 0.2. Solving

the above optimization problem with 𝜀 = 1 gives probability (of

the second piece) 𝑝2 = 1.54 and 𝐸𝑟𝑟 (𝑥0) = 0.241. In contrast, the

optimal GPM for the worst-case error uses 𝑝2 = 1.64, as shown in

Figure 4, which gives 𝐸𝑟𝑟 (𝑥0) = 0.243.

Importantly, optimizing for a specific 𝑥0 does not leak informa-

tion about 𝑥0, as the mechanism (i.e. 𝑝𝑖 , 𝑙𝑖,𝑥 , and 𝑟𝑖,𝑥 ) still contains no

information about 𝑥0. Moreover, observing 𝐸𝑟𝑟 (𝑥) at all 𝑥 does not

reveal 𝑥0, as the error at 𝑥0 is not necessarily the smallest. Therefore,

the adversary cannot infer 𝑥0 from observing the mechanism.

An Extension: 2D Polar Coordinates. Polar coordinates are widely
used in relative location representation, e.g. navigation systems

that have the locations of surrounding objects relative to it. Our

proposed optimal GPM for the classical and circular domain can

be combined and extended to polar coordinates for collecting such

data under LDP.

Privacy. A polar coordinate data is represented by a 2D tuple

(𝑥1, 𝑥2) ∈ [0, 𝑑) × [0, 2𝜋), where 𝑥1 is the distance from the pole

and 𝑥2 is the angle from the polar axis. The first dimension is linear,

while the second is naturally circular, thus we can combine the

optimal GPM for both domains to provide LDP for such data.

Utility. Our mechanisms guarantee the optimal error for each

dimension. Therefore, if we use L2D ≔ L(𝑦1, 𝑥1) + Lmod (𝑦2, 𝑥2)
as the error metric for the polar coordinate data and optimally

0.3330.6767

/ 2p

p 0

(a) (𝑥1, 𝑥2 ) = (0.5, 2𝜋 ) .

/ 2p

p 0
0.6666

(b) (𝑥1, 𝑥2 ) = (1, 𝜋/2) .

Figure 7: Optimal GPM for 2D polar coordinates when 𝜀 =

1 + 2𝜋 and L = |𝑦 − 𝑥 |2 under L2D ≔ L(𝑦1, 𝑥1) + Lmod (𝑦2, 𝑥2).

assign the privacy parameter 𝜀 to each dimension, the optimal GPM

preserves the optimal error.

Optimal assignment of 𝜀. Formally, we want to assign 𝜀 =

𝜀1 + 𝜀2 to 𝑥1 and 𝑥2 respectively to minimize the worst-case error

in 2D polar coordinates. This error is the sum of the worst-case

error for 𝑥1 and 𝑥2 under L and Lmod respectively. Therefore, the

optimal assignment of 𝜀 can be derived by solving

min

𝜀1,𝜀2
𝐸𝑟𝑟1,wor (𝜀1) + 𝐸𝑟𝑟2,wor (𝜀2),

where 𝐸𝑟𝑟1,wor (𝜀1) and 𝐸𝑟𝑟2,wor (𝜀2) are the worst-case error for the
classical domain [0, 𝑑) and the circular domain [0, 2𝜋) respectively.
Closed-form 𝐸𝑟𝑟1,wor (𝜀1) and 𝐸𝑟𝑟2,wor (𝜀2) can be derived from in-

stantiations of the mechanism and the error metric. Then the above

optimization problem gives the optimal 𝜀1 and 𝜀2. Appendix B.6

provides details for solving this optimization problem.

Example 6.2. Figure 7 shows two examples of the optimal GPM

for 2D polar coordinates in [0, 1) × [0, 2𝜋) with 𝜀 = 1 + 2𝜋 . The

green point represents the sensitive data, the optimal GPM samples

the output from the pink area with a higher probability.

7 Evaluations
This section evaluates the theoretical and experimental data utility

of our methods by comparing them with existing instantiations

and their variants:

• OGPM: closed-form optimal GPM (Theorem 3.7 and 4.2 for

the classical and circular domain, respectively).

• OGPM-U: unbiased closed-form optimal GPM (Theorem 5.1)

for mean estimation in the classical domain.

• PM [34], SW [21], and their post-processed versions: PM is

the first TPM designed for mean estimation, while SW is de-

signed for distribution estimation. Both mechanisms output

enlarged domains but can be post-processed by truncating

outputs to the input domain. These post-processed versions

are referred to as T-PM and T-SW for convenience.

• PM-C and SW-C: the compressed versions of PM and SW for

D → D. For the best potential of PM and SW, we adapt them

toD → D as PM-C and SW-C by linearly compressing their

output domain
˜D𝜀 to D, i.e. by transformation invariants,

which maintains the privacy level.

We also compare OGPM’s expected error with non-piecewise-based

mechanisms that can be applied to bounded numerical domains:
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Figure 8: Whole-domain error comparison in the classical
domain with error metric L = |𝑦 − 𝑥 |.
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Figure 9: Worst-case error comparison in the classical do-
main.
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Figure 10: Whole-domain error comparison in the circular
domain with error metric L = |𝑦 − 𝑥 |2.
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Figure 11: Worst-case error comparison in the circular do-
main.

• Variants of the Laplace mechanism: including the staircase

mechanism [15], Laplace mechanism with post-processing

by truncation (T-Laplace), and the bounded Laplace mecha-

nism (B-Laplace) [19], which redesigns a bounded Laplace-

shape distribution.

• Purkayastha mechanism [36]: a mechanism for directional

data on spheres S𝑛−1. When 𝑛 = 2, it is a counterpart of

OGPM in the circular domain.

We omit comparison with PTT [23] because it does not provide

a concrete method to find a closed-form mechanism. We use D =

[0, 1) as the classical domain; this does not change their data utility

ordering by the transformation invariant. PM and SW can only

be applied to the classical domain, so when evaluating them in the

circular domain, we “flatten” the circular domain to the classical

domain [0, 2𝜋) and apply them to the flattened domain.

The first subsection presents the comparison of expected errors,

followed by the distribution and mean estimations on real-world

datasets in the second subsection.

7.1 Expected Errors
GPM’s data utility under distance metric L is measured by the

expected error 𝐸𝑟𝑟 (𝑥) in Formula (1):

𝐸𝑟𝑟 (𝑥) =
∫

˜D
L(𝑦, 𝑥)PM(𝑥 )d𝑦,

where 𝑥 is the sensitive input and 𝑦 is the output ofM. Based on

𝐸𝑟𝑟 (𝑥), two types of error need to be considered:

• whole-domain error: 𝐸𝑟𝑟 (𝑥) values for the whole domain,

i.e. for all 𝑥 ∈ D.

• worst-case error: the largest 𝐸𝑟𝑟 (𝑥) value among the whole

domain. PM [34] and PTT [23] also use this error to evaluate

data utility.

We have proved that the worst-case error of the classical domain

is from the endpoints, so this error is actually the error at 𝑥 = 0

and 𝑥 = 1 for the classical domain. For the circular domain, the

worst-case error is at 𝑥 = 𝜋 .

7.1.1 Comparison with PM-C and SW-C. PM-C and SW-C exhibit

the best potential of PM and SW, so we compare OGPM with them

in the first place. The comparisons are conducted under the classical

domain and the circular domain, respectively.

Classical Domain. Figure 8 shows the comparison of the whole-

domain error in the classical domain. We use distance metric L =

|𝑦 − 𝑥 | and set 𝜀 = 2 and 𝜀 = 4 for the comparison. It can be seen

that OGPM consistently has the lowest error across all 𝑥 values.

For all mechanisms, the expected error achieves the maximal value

at the endpoints and the minimal value at the midpoint. At small 𝜀

values, their errors are similar due to the strong randomness (pri-

vacy constraint). At larger 𝜀 values, OGPM’s error has a significant

advantage over PM-C and SW-C, especially between the endpoints

and the midpoint. Statistically, under L = |𝑦 − 𝑥 | with 𝜀 = 2,
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OGPM’s average error is 94.2% of PM-C and 92.3% of SW-C across

the whole domain. When 𝜀 = 4, OGPM’s average error is 90.5%

of PM-C and 74.7% of SW-C. More comparisons under smaller 𝜀

values are provided in Appendix B.7.

Figure 9 shows the comparison of the worst-case error w.r.t 𝜀

in the classical domain. The error is measured by two distance

metrics: L = |𝑦 − 𝑥 | and L = |𝑦 − 𝑥 |2. It can be seen that the error

of all mechanisms decreases with 𝜀, but OGPM and PM-C decreases

faster than SW-C. For L = |𝑦 − 𝑥 |, OGPM has almost the same

worst-case error as PM-C; for L = |𝑦−𝑥 |2, OGPM’s error is slightly

smaller than PM-C. For both metrics, OGPM’s worst-case error is

the lowest across all 𝜀 values. Statistically, under L = |𝑦 − 𝑥 |2,
OGPM’s average error is 89.9% of PM-C and 61.7% of SW-C.

Circular Domain. Figure 10 shows the comparison of the whole-

domain error in the circular domain. We use distance metric L =

|𝑦 − 𝑥 |2 and set 𝜀 = 2 and 𝜀 = 4 for the comparison. It can be seen

that OGPM consistently has the lowest error across all 𝑥 values, and

the error is stable across 𝑥 , which is consistent with the theoretical

analysis in Theorem 4.4. For PM-C and SW-C, which treat the

circular domain as the classical domain, their errors vary with 𝑥

and are higher than OGPM’s error, especially near the endpoints.

Statistically, under L = |𝑦−𝑥 |2 with 𝜀 = 2, OGPM’s average error is

47.5% of PM-C and 43.0% of SW-C across the whole domain. When

𝜀 = 4, OGPM’s average error is 41.3% of PM-C and 24.6% of SW-C.

Figure 11 shows the comparison of the worst-case error w.r.t

𝜀 in the circular domain. The error is measured by two distance

metrics: L = |𝑦 − 𝑥 | and L = |𝑦 − 𝑥 |2. Similar to the classical

domain, OGPM has the lowest worst-case error across all 𝜀 values,

and the advantage is more significant, especially for small 𝜀 values.

Statistically, under L = |𝑦 − 𝑥 |, OGPM’s average error is 50.0% of

PM-C and 41.6% of SW-C across the range of 𝜀. Under L = |𝑦 − 𝑥 |2,
OGPM’s average error is 22.4% of PM-C and 15.4% of SW-C.

The above comparisons show that OGPMhas the lowest expected

error in both the classical and circular domains. The advantage of

OGPM is more significant in the circular domain, where the error

is stable across 𝑥 .

7.1.2 Comparison with PM and SW. Figure 12 presents the compar-

ison of the whole-domain error in the classical domain for the orig-

inal PM and SW mechanisms, along with their post-processed ver-

sions, T-PM and T-SW. For a fair comparison, OGPM is adapted to

the domainD = [−1, 1) to match PM’s design, while SW andOGPM

remain consistent with D = [0, 1). The post-processing of PM and

SW involves truncating their outputs in the enlarged domain to the

input domain, i.e. applying I ◦M(𝑥), where I :
˜D → D is the

truncation operator. We use the distance metric L = |𝑦−𝑥 |2 and set
𝜀 = 2 for the comparison among these five mechanisms. It can be

observed that OGPM consistently achieves the lowest error across

all 𝑥 values, with a more significant advantage compared to the

comparison with PM-C and SW-C. This is because the original PM

and SW output larger domains, resulting in higher errors. Mean-

while, T-PM reduces the error of PM more effectively than T-SW

reduces the error of SW, as the original PM has a more enlarged

output domain than SW, making truncation more impactful. This

comparison highlights OGPM’s error advantage over the original

PM, SW, and their post-processed versions when applied to their

respective data domains.
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Figure 12: Whole-domain error comparison with PM and
SW on their data domains (i.e. D = [−1, 1) and D = [0, 1),
respectively) when 𝜀 = 2.
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Figure 13:Whole-domain error comparisonwith the staircase
mechanism [15], T-Laplace and B-Laplace mechanisms [19]
in the classical domain with error metric L = |𝑦 − 𝑥 |.

7.1.3 Comparison with the Staircase Mechanism, T-Laplace, and
B-Laplace. In addition to piecewise-based mechanisms, the Laplace

mechanism and its variants can also be applied to the classical do-

main to achieve LDP. Among these, the staircase mechanism [15]

claims to be optimal under certain assumptions. For the input do-

mainD = [0, 1) (i.e. sensitivity Δ = 1) and error metric L = |𝑦 −𝑥 |,
its expected error is given by Theorem 3 in [15]: exp(𝜀/2)/(exp(𝜀)−
1). Another approach involves using the Laplace mechanism with

truncation [19], referred to here as T-Laplace for convenience. T-

Laplace preserves the privacy guarantees of the Laplace mecha-

nism while reducing the expected error, particularly for data points

near the endpoints or for small 𝜀 values. Additionally, the bounded

Laplacemechanism (B-Laplace) [19] introduces a redesigned bounded

Laplace-shaped distribution tailored for bounded domains.
††

Figure 13 compares the whole-domain error in the classical do-

main D = [0, 1) for the staircase mechanism, T-Laplace, and B-

Laplace. These mechanisms exhibit distinct error patterns across

the domain. For the staircase mechanism, the error remains con-

stant, as it is determined by a fixed staircase distribution and is

independent of 𝑥 . For T-Laplace, the error reaches its maximum

at the midpoint and its minimum at the endpoints, as truncation

favors the endpoints. For instance, when 𝑥 = 0, it is error-free with

a probability of 1/2, due to the symmetry of the Laplace distribution

††
Appendix B.8 provides details on the expected error of B-Laplace.

156



Optimal Piecewise-based Mechanism under LDP Proceedings on Privacy Enhancing Technologies 2025(4)

1 2 3 4 5 6 7 8
Privacy parameter ε

0

0.2

0.4

0.6

0.8
Staircase

T-Laplace

B-Laplace

OGPM

Worst-case

Figure 14: Worst-case error
comparison (continued fr-
om Figure 13).

1 2 3 4 5 6 7 8
Privacy parameter ε

0.0

0.5

1.0

1.5

OGPM
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sm [36] for sphere S𝑛−1.

around 0. For B-Laplace, the error trend varies with 𝜀. When 𝜀 = 2,

the error decreases with 𝑥 and reaches its minimum at the mid-

point, whereas for 𝜀 = 4, the error increases with 𝑥 and peaks at the

midpoint. Despite these differing error patterns, OGPM generally

achieves lower errors than the staircase mechanism, T-Laplace, and

B-Laplace across the whole domain.

Figure 14 compares the worst-case error w.r.t. 𝜀 in the classical

domain. OGPM consistently achieves the lowest worst-case error

across all 𝜀 values. For small 𝜀, T-Laplace and B-Laplace exhibit a

significant advantage over the staircase mechanism; however, this

advantage diminishes as 𝜀 increases. At larger 𝜀 values, the error of

the staircase mechanism approaches that of OGPM.

7.1.4 Comparison with the Purkayastha Mechanism. The paper

“Differential Privacy for Directional Data” [36] introduces twomech-

anisms for data on spheres S𝑛−1: the VMF mechanism (ensuring

indistinguishability of any two points with distance through the

sphere) and the Purkayastha mechanism (ensuring indistinguisha-

bility of any two points with distance along the sphere).When𝑛 = 2,

the sphere S1 corresponds to a circle, making the Purkayasthamech-

anism a counterpart of OGPM in the circular domain. Therefore,

we compare them in the circular domain.
‡‡

Figure 15 presents the comparison of the expected error in the

circular domain between OGPM and the Purkayastha mechanism.

The expected error of the Purkayastha mechanism is derived using

the closed-form expressions in Theorem 19 and 22 of [36], with

𝜅 = 𝜀/Δ∡ . Since the errors of both mechanisms are 𝑥-independent

in the circular domain, it suffices to compare their worst-case errors.

The results demonstrate that OGPM consistently outperforms the

Purkayastha mechanism, achieving significantly lower errors.

7.2 Distribution and Mean Estimations
This section compares the experimental data utility of the mecha-

nisms in distribution and mean estimations.

7.2.1 Setup. We choose the MotionSense dataset [1, 24] for the

evaluation. It contains smartphone sensor data recorded during

various human activities. Specifically, we use the data from the first

‡‡
We omit the comparison with the VMF mechanism also because (i) it has been

shown that the Purkayastha mechanism outperforms the VMF mechanism (with the

same sensitivity Δ∡ = 𝜋 for sphere S1 , e.g. Figure 5 and 10 in [36]), and (ii) the expected
error of the VMF mechanism lacks a closed-form expression (Theorem 17 in [36]),

making it complex to compute.

three files, encompassing a total of 6 159 data entries. We focus on

two types of sensors:

• Accelerometer (linear data): We normalize the dataset to

[0, 1) for the classical domain.

• Attitude sensor (angular data): We use this dataset for the

circular domain.

Upon applying each LDP mechanism to these datasets, we evaluate

the accuracy of distribution and mean estimations on them. For

distribution estimation, we divide the domain into 𝑘 = 50 bins and

compute the distance between the estimated distribution (
ˆF𝐵 ) and

the true distribution (F𝐵) by summing the absolute difference of

each bin’s value. Formally,

| ˆF𝐵 − F𝐵 |≔
50∑︁
𝑖=1

| ˆF𝐵𝑖 − F𝐵𝑖 |,

where
ˆF𝐵𝑖 and F𝐵𝑖 are the 𝑖-th bin’s value of the estimated and true

distributions, respectively. Although this approach cannot capture

the property of the circular data, it remains the most viable metric

for comparing circular distributions [13, 25]. Under a more relevant

approach, the performance of OGPM for the circular domain could

be even better.

For mean estimation, we compute the absolute difference be-

tween the estimated and true mean, i.e. |𝜇 − 𝜇 |, where 𝜇 is the

estimated mean and 𝜇 is the true mean in the classical domain

or the circular domain. In the classical domain, the true mean is

𝜇 = 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 . In the circular domain, the mean is computed by the

circular mean formula [13, 25]:

𝜇 = atan2

(
1

𝑛

𝑛∑︁
𝑖=1

sin𝑥𝑖 ,
1

𝑛

𝑛∑︁
𝑖=1

cos𝑥𝑖

)
.

We repeat the experiments 500 times for stable results and report

the average error.

7.2.2 Distribution Estimation. Figure 16 shows the comparison of

the errors of distribution estimation in the classical and circular

domains. We can see that OGPM outperforms SW and PM with

smaller errors in both types of domains. In the classical domain,

OGPM’s error decreases faster when 𝜀 increases above 3, and SW-C

decreases slower than PM-C, consistent with the expected error

comparison. In the circular domain, OGPM’s error is significantly

lower than SW-C and PM-C, despite the limitation of the distance

metric used for circular distributions. We also observe that SW-C

performs better than PM-C in this domain. This is because SW has

higher sampling probabilities for both the central piece and other

pieces, making it sample the true value more frequently when 𝜀 is

large in practice in a large-size domain, despite the large expected

error theoretically. Statistically, OGPM’s distribution error is 93.5%

of PM-C and 86.7% of SW-C in the classical domain, and 72.2% of

PM-C and 84.0% of SW-C in the circular domain.

7.2.3 Mean Estimation. Figure 17 shows the comparison of the

errors of mean estimation in the classical and circular domains.

OGPM consistently outperforms other mechanisms in both types

of domains, with significantly lower errors. In the classical domain,

we also compare with OGPM-U, which is specifically designed for

unbiased mean estimation. Since the Accelerometer dataset is con-

centrated around zero, it particularly favors unbiased mechanisms,
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Figure 16: Comparison of distribution estimation error.
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Figure 17: Comparison of mean estimation error.

as their outputs tend to average closely to the true mean. We can

see that OGPM-U achieves significantly lower errors than OGPM

when 𝜀 is small. In the circular domain, OGPM is unbiased, having

a negligible mean estimation error. We also observe that SW-C out-

performs PM-C in this large-scale domain. Statistically, OGPM’s

mean estimation error is 66.2% of PM-C and 55.4% of SW-C in the

classical domain. In the circular domain, OGPM’s mean estimation

error is merely 2.3% of PM-C and 3.6% of SW-C.

8 Related Work
This paper focuses on the optimal mechanism for collecting numer-

ical data with bounded domains under LDP, related to numerical

data collection and the optimality of DP mechanisms.

Numerical Data Collection under LDP. Classical noise-adding mech-

anisms such as the Laplace and Gauss mechanisms [10, 11] add

randomly sampled noise from a distribution to the data to achieve

LDP. However, they generate outputs in an unbounded domain due

to the unbounded noise distributions, rendering them unsuitable

for applications requiring bounded domains [34].

For bounded data domains, the basic idea is to sample the out-

put from a carefully designed distribution on the bounded domain.

Duchi et al. randomize any data in [−1, 1] to two discrete values

𝑦 ∈ {−𝐶𝜀 ,𝐶𝜀 } [9], where 𝐶𝜀 is a constant depending on the privacy

level 𝜀. This binary-output mechanism exhibits a large random-

ization error as the output space is too coarse. PM [34] extends

the binary output to a continuous output in [−𝐶𝜀 ,𝐶𝜀 ]. It designs
a piecewise-based mechanism to sample the output, which uses

different sampling intervals for different 𝑥 , achieving a lower ran-

domization error. Both PM and later SW [21] have shown the data

utility advantage of TPM in numerical data collection with bounded

domains under LDP. PTT [23] discusses the optimality of TPM. It

shows that there exist TPM instantiations that yield optimal data

utility, but it does not provide the closed-form mechanism. TPM

is a special case of GPM using 3-piece distributions and a specific

form for each piece. Meanwhile, existing TPM instantiations are

designed for specific error metrics and only classical domains.

Applications of TPM. A natural application of TPM is in high-

dimensional numerical data. This includes scenarios where the

sensitive data may be a high-dimensional vector [34, 42], an infinite

data stream [30], or matrixes [35]. Another application area is

federated learning. TPM ensures LDP in the [0, 1] domain, which is

commonly used as the normalized domain in model training. TPM

avoids the data clipping required by noise-adding mechanisms [3,

14, 22]. Another typical application is in sensors, where the data is

bounded by the sensor’s physical nature. This paper can replace

the existing TPM to achieve better utility.

A recent work aims to design other types of bounded distribu-

tions besides TPM to achieve (L)DP [43]. They tailor sin functions

and quartic functions on the bounded domain to satisfy the DP

constraint. From their experimental results, the piecewise-based

design is the best choice among their six instantiations for bounded

domains under DP. This also indicates the advantages of piecewise-

based mechanisms in the bounded domain.

Optimality of DP Mechanisms. Achieving optimal data utility is a

common concern across all DP mechanisms. The staircase mecha-

nism showed that the Laplace mechanism does not generate optimal

noise [15, 32]. It samples noise from a staircase distribution, which

has been shown to achieve lower error compared to the Laplace

mechanism. Besides optimality in concrete error values (which is

the focus of this paper), another widely focused concept is asymp-

totic optimality [6, 23], which studies optimal asymptotic bounds

of a mechanism or a statistical estimation. Appendix B.2 discusses

more detailed optimalities.

Beyond the optimality of a single DP procedure, the optimality of

multifold compositions such as iterative training under DP, is stud-

ied by advanced compositions [7, 8, 20, 26]. In high-dimensional

settings, the sensitivity set across dimensions also influences the

optimality [39], because it affects the choice of the privacy param-

eter. These works either focus on different privacy constraints or

discuss optimality beyond a single DP procedure, making them

orthogonal to ours.

9 Conclusions
This paper presents the optimal piecewise-based mechanism for col-

lecting numerical data with bounded domains under LDP. To find

the optimal mechanism among all possible piecewise mechanisms,

we generalize the existing 3-piece mechanism to an𝑚-piece mech-

anism with the most general form. We proposed a framework that

combines analytical proofs and off-the-shelf optimization solvers

to find the optimal mechanism. Our results include the closed-form

optimal piecewise mechanisms for both the classical and circu-

lar domain. Theoretical and experimental evaluations confirm the

advantages of our mechanisms over existing mechanisms.
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A Proofs
Notations. Table 3 provides the notations used throughout this

paper.

A.1 Proof of Lemma 3.2
Proof. We prove the inner max𝑥 problem has a closed form.

According to the definition of PM(𝑥 ) , it is

max

𝑥

∫
˜D
L(𝑦, 𝑥)PM(𝑥 )d𝑦 =max

𝑥

𝑚∑︁
𝑖=1

𝑝𝑖

∫ 𝑟𝑖

𝑙𝑖

L(𝑦, 𝑥)d𝑦.

Denote 𝑓𝑖 (𝑥) ≔
∫ 𝑟𝑖

𝑙𝑖
L(𝑦, 𝑥)d𝑦, where L(𝑦, 𝑥) = |𝑦 − 𝑥 |𝑝 . First, we

prove that 𝑓𝑖 (𝑥) is a convex function w.r.t. 𝑥 . Specifically, based on

the relationship between 𝑥 and [𝑙𝑖 , 𝑟𝑖 ), the value of 𝑥 is split into

three cases: (i) 𝑥 ∈ [𝑎, 𝑙𝑖 ), (ii) 𝑥 ∈ [𝑙𝑖 , 𝑟𝑖 ), and (iii) 𝑥 ∈ [𝑟𝑖 , 𝑏). We

prove the second derivative of 𝑓𝑖 (𝑥) w.r.t. 𝑥 is non-negative in each

case, thus 𝑓𝑖 (𝑥) is convex.
Case (i): 𝑥 ∈ [𝑎, 𝑙𝑖 ). The integral is:

𝑓𝑖 (𝑥) =
∫ 𝑟𝑖

𝑙𝑖

|𝑦 − 𝑥 |𝑝d𝑦 =

∫ 𝑟𝑖

𝑙𝑖

(𝑦 − 𝑥)𝑝d𝑦

=
(𝑟𝑖 − 𝑥)𝑝+1 − (𝑙𝑖 − 𝑥)𝑝+1

𝑝 + 1

.

The second derivative w.r.t. 𝑥 is

𝜕2

𝜕𝑥2
𝑓𝑖 (𝑥) = 𝑝 (𝑟𝑖 − 𝑥)𝑝−1 − 𝑝 (𝑙𝑖 − 𝑥)𝑝−1 ≥ 0.

The inequality holds because (𝑟𝑖 −𝑥)𝑝−1 ≥ (𝑙𝑖 −𝑥)𝑝−1 for 𝑥 ∈ [𝑎, 𝑙𝑖 ).
Case (ii): 𝑥 ∈ [𝑙𝑖 , 𝑟𝑖 ). The integral is

𝑓𝑖 (𝑥) =
∫ 𝑟𝑖

𝑙𝑖

|𝑦 − 𝑥 |𝑝d𝑦

=

∫ 𝑥

𝑙𝑖

(𝑥 − 𝑦)𝑝d𝑦 +
∫ 𝑟𝑖

𝑥

(𝑦 − 𝑥)𝑝d𝑦

=
(𝑥 − 𝑙𝑖 )𝑝+1

𝑝 + 1

+ (𝑟𝑖 − 𝑥)𝑝+1
𝑝 + 1

.

The second derivative w.r.t. 𝑥 is

𝜕2

𝜕𝑥2
𝑓𝑖 (𝑥) = 𝑝 (𝑥 − 𝑙𝑖 )𝑝−1 + 𝑝 (𝑟𝑖 − 𝑥)𝑝−1 ≥ 0.

The inequality holds because both (𝑥 − 𝑙𝑖 )𝑝−1 and (𝑟𝑖 − 𝑥)𝑝−1 are
non-negative for 𝑥 ∈ [𝑙𝑖 , 𝑟𝑖 ).

Table 3: Notations

Symbol Description

𝑥 Sensitive input (from raw data)

𝑦 Randomized output

D Input domain

˜D Output domain

𝑝𝑑 𝑓 [·] Probability density function

PM(𝑥 ) Probability density function ofM(𝑥)
𝑝𝜀 Sampling probability w.r.t. 𝜀

[𝑙𝑥,𝜀 , 𝑟𝑥,𝜀 ) Sampling interval w.r.t. 𝑥 and 𝜀

Case (iii): 𝑥 ∈ [𝑟𝑖 , 𝑏). The integral is

𝑓𝑖 (𝑥) =
∫ 𝑟𝑖

𝑙𝑖

|𝑦 − 𝑥 |𝑝d𝑦 =

∫ 𝑟𝑖

𝑙𝑖

(𝑥 − 𝑦)𝑝d𝑦

=
(𝑥 − 𝑙𝑖 )𝑝+1 − (𝑥 − 𝑟𝑖 )𝑝+1

𝑝 + 1

.

The second derivative w.r.t. 𝑥 is

𝜕2

𝜕𝑥2
𝑓𝑖 (𝑥) = 𝑝 (𝑥 − 𝑙𝑖 )𝑝−1 − 𝑝 (𝑥 − 𝑟𝑖 )𝑝−1 ≥ 0.

The inequality holds because (𝑥 −𝑙𝑖 )𝑝−1 ≥ (𝑥−𝑟𝑖 )𝑝−1 for 𝑥 ∈ [𝑟𝑖 , 𝑏).
The above three cases show that the second derivative of 𝑓𝑖 (𝑥)

w.r.t. 𝑥 ∈ [𝑎, 𝑏) is non-negative. Thus, the non-negative weighted
sum

∑𝑚
𝑖=1 𝑝𝑖 𝑓𝑖 (𝑥) is also convex w.r.t. 𝑥 [4]. According to the Bauer

maximum principle [37]: any function that is convex attains its

maximum at some extreme points of set. This means that the op-

timal 𝑥 is achieved at the endpoints of 𝑥 ∈ D, i.e. 𝑥 = 𝑎 or 𝑥 = 𝑏.

Therefore, we have

max

𝑥

∫
˜D
L(𝑦, 𝑥)PM(𝑥 )d𝑦 =max

{𝑎,𝑏}

∫
˜D
L(𝑦, 𝑥)PM(𝑥 )d𝑦,

which completes the proof. □

Remark: This lemma can be empirically validated by the whole-

domain error plots in Figure 8 and Figure 10, where the maximum

of the whole-domain error is achieved at the endpoints.

A.2 Proof of Lemma 3.3
Proof. The optimal (𝑚 + 1)-piecewise mechanism and the op-

timal𝑚-piecewise mechanism may superficially differ due to the

extra piece. Thus, we define a piece-merging operation to merge the

redundant pieces.Wewill show that if the optimal (𝑚+1)-piecewise
mechanism is the same as the optimal𝑚-piecewise mechanism after

merging redundant pieces, then increasing𝑚 does not decrease the

optimal error, i.e. the optimal piece number is𝑚.

Assume the optimal𝑚-piecewise mechanism is determined by

the tuple set

𝑆𝑚 = {(𝑝𝑖 , 𝑙𝑖 , 𝑟𝑖 ) : 𝑖 ∈ [𝑚]}.
To merge redundant pieces, we define a piece-merging operation:

(𝑝𝑖 , 𝑙𝑖 , 𝑟𝑖 ) ⊎ (𝑝 𝑗 , 𝑙 𝑗 , 𝑟 𝑗 ) ≔
{(𝑝𝑖 , 𝑙𝑖 , 𝑟 𝑗 ) if 𝑝𝑖 = 𝑝 𝑗 and 𝑖 + 1 = 𝑗,

{(𝑝𝑖 , 𝑙𝑖 , 𝑟𝑖 ), (𝑝 𝑗 , 𝑙 𝑗 , 𝑟 𝑗 )} otherwise.
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Because the optimal (𝑚 + 1)-piecewise mechanism is the same as

the𝑚-piecewise mechanism, it follows that

⊎𝑚+1
𝑖, 𝑗=1𝑆𝑚+1 = ⊎𝑚

𝑖,𝑗=1𝑆𝑚,

where ⊎𝑚
𝑖,𝑗=1𝑆𝑚 merges all consecutive pieces with the same 𝑝 . De-

note the merged optimal𝑚-piecewise mechanism as ⊎𝑚
𝑖,𝑗=1𝑆𝑚 ≔ 𝑆⊎𝑚

and the piece number as |𝑆⊎𝑚 | =𝑚∗
. Because both sides of the above

equation are optimal, this means that if (𝑝𝑘 , 𝑙𝑘 , 𝑟𝑘 ) is an arbitrary

piece in the optimal (𝑚 + 1)-piecewise mechanism, then merging it

with 𝑆⊎𝑚 remains 𝑆⊎𝑚 , i.e.

(𝑝𝑘 , 𝑙𝑘 , 𝑟𝑘 ) ⊎𝑚∗
𝑖=1 𝑆

⊎
𝑚 = 𝑆⊎𝑚 .

This premise indicates that there does not exist a piece (𝑝𝑘 , 𝑙𝑘 , 𝑟𝑘 )
besides 𝑆⊎𝑚 lowers the error.

Without loss of generality, we can consider the optimal (𝑚 + 2)-
piecewise mechanism, which allows an extra piece besides the

optimal (𝑚 + 1)-piecewise mechanism. We claim that the extra

piece is still captured by 𝑆⊎𝑚 . The key insight is: adding an extra

optimal piece to the optimal (𝑚 + 1)-piecewise mechanism is the

same as adding it to the optimal𝑚-piecewise mechanism, because

the optimal (𝑚+1)-piecewise mechanism is the same as the optimal

𝑚-piecewise mechanism.

Since adding an extra optimal piece to the optimal𝑚-piecewise

mechanism remains 𝑆⊎𝑚 , then for any 𝑘 ∈ [𝑚 + 2], merging piece

(𝑝𝑘 , 𝑙𝑘 , 𝑟𝑘 ) in the optimal (𝑚 + 2)-piecewise mechanism remains an

𝑚-piecewise mechanism 𝑆⊎𝑚 .
For 𝑚 + 3 or more, it follows the same logic. Adding an ar-

bitrary piece is equivalent to adding it to the optimal (𝑚 + 2)-
piecewise mechanism, which is the same as adding it to the optimal

𝑚-piecewise mechanism. Thus, the optimal 𝑚-piecewise mecha-

nism is the same as the optimal (𝑚 + 3)-piecewise mechanism after

merging redundant pieces, and so on. □

Remark: Intuitively, the extra pieces (of the optimal (𝑚 + 1)-
piecewise mechanism and beyond) is similar to the redundant vari-

ables in optimization theory: adding more non-negative variables

to a minimization objective does not decrease the optimal value.
Here the error from each piece is a variable, and it is non-negative,

which leads to the same conclusion: adding more pieces (one or

more) to the optimal𝑚-piecewise mechanism does not decrease

the optimal error.

This lemmameans thatwe can determine the optimal𝑚-piecewise

mechanism for𝑚 = 1, 2, . . ., until the optimal (𝑚 + 1)-piecewise
mechanism is identical to the optimal𝑚-piecewise mechanism for

all 𝑥 and 𝜀. This statement can be empirically validated by attempt-

ing to find counterexamples using larger 𝑚 than the optimal 𝑚.

The source code of our framework provides scripts and results to

empirically validate this lemma.

A.3 Proof of Theorem 3.6
Proof. Privacy invariant: For any input 𝑣, 𝑣 ′ ∈ D′

and any

output 𝑦 ∈ ˜D′
:

𝑝𝑑 𝑓 [M′ (𝑣) = 𝑦]
𝑝𝑑 𝑓 [M′ (𝑣 ′) = 𝑦] ≤ 𝑝

𝑐
÷ 𝑝

exp(𝜀)𝑐 = exp(𝜀).

Utility invariant: For any 𝑥 ′ = 𝑐𝑥 + 𝑑 ∈ D′
, we can calculate

the error difference betweenM′ (𝑥 ′) andM′
bad

(𝑥 ′) as follows:
𝐸𝑟𝑟 (𝑥 ′,M′) − 𝐸𝑟𝑟 (𝑥 ′,M′

bad
)

=𝐸𝑟𝑟 (𝑐𝑥 + 𝑑,M′) − 𝐸𝑟𝑟 (𝑐𝑥 + 𝑑,M′
bad

)

=

∫
˜D′
L(𝑦, 𝑐𝑥 + 𝑑)

(
PM′ (𝑐𝑥+𝑑 ) − PM′

bad
(𝑐𝑥+𝑑 )

)
d𝑦.

Let 𝑦𝑡 = (𝑦 − 𝑑)/𝑐 , then d𝑦 = 𝑐d𝑦𝑡 and 𝑦 = 𝑐𝑦𝑡 + 𝑑 , where 𝑦𝑡 ∈ ˜D.

The above equation is equivalent to

𝐸𝑟𝑟 (𝑥 ′,M′) − 𝐸𝑟𝑟 (𝑥 ′,M′
bad

)

=

∫
˜D
L(𝑐𝑦𝑡 + 𝑑, 𝑐𝑥 + 𝑑)

(
PM′ (𝑐𝑥+𝑑 ) − PM′

bad
(𝑐𝑥+𝑑 )

)
𝑐d𝑦𝑡

=

∫
˜D
L(𝑐𝑦𝑡 + 𝑑, 𝑐𝑥 + 𝑑) 1

𝑐

(
PM(𝑥 ) − PM

bad
(𝑥 )

)
𝑐d𝑦𝑡 .

The last equality holds due to the definition of T : M → M′
. For

𝐿𝑝 -similar error metric L (i.e. L(𝑦, 𝑥) ≔ |𝑦 − 𝑥 |𝑝 ), it follows that
L(𝑐𝑦𝑡 + 𝑑, 𝑐𝑥 + 𝑑) = L(𝑐𝑦𝑡 , 𝑐𝑥) = 𝑐𝑝L(𝑦𝑡 , 𝑥) .

Thus, the above difference of 𝐸𝑟𝑟 is equivalent to

𝐸𝑟𝑟 (𝑥 ′,M′) − 𝐸𝑟𝑟 (𝑥 ′,M′
bad

)

=𝑐𝑝
∫

˜D
L(𝑦𝑡 , 𝑥) (M(𝑥) −Mbad (𝑥)) d𝑦𝑡

=𝑐𝑝 (𝐸𝑟𝑟 (𝑥,M) − 𝐸𝑟𝑟 (𝑥,Mbad)) ≤ 0,

due to the known fact 𝑐 > 0 and 𝐸𝑟𝑟 (𝑥,M)−𝐸𝑟𝑟 (𝑥,Mbad) ≤ 0. □

Remark: Intuitively, this theorem is to prove: if M is a better

mechanism than Mbad on D, then it is still a better mechanism

thanMbad after linearly mapping their outputs to D′
.

A.4 Proof of Theorem 3.7
Proof. Appendix B.4 provides the formalized procedure. Fol-

lowing this procedure, we show the optimal GPM underD → ˜D =

[0, 1) → [0, 1) and L(𝑦, 𝑥) = |𝑦 − 𝑥 |.
The variables in TPM are 𝑝 , 𝑙 , and 𝑟 . Since it is a family of proba-

bility distributions, the normalization constraint is

(𝑟 − 𝑙) · 𝑝 + (1 − (𝑟 − 𝑙)) · 𝑝/exp(𝜀) = 1,

which means the length of the central piece is

𝑠 ≔ 𝑟 − 𝑙 =
exp(𝜀) − 𝑝

𝑝 (exp(𝜀) − 1) .

Without loss of generality, assume 𝑥 = 0 is the optimal point (𝑥 = 1

is symmetric). The optimization problem for solving the optimal 𝑝

is

argmin

𝑝

(∫ 𝑠

0

𝑦 · 𝑝 d𝑦 +
∫

1

𝑠

𝑦 · 𝑝

exp(𝜀) d𝑦
)

=argmin

𝑝

(
𝑠2

2

(
𝑝 − 𝑝

exp(𝜀)

)
+ 1

2

𝑝

exp(𝜀)

)
=argmin

𝑝

1

2

(
(exp(𝜀) − 𝑝)2

𝑝 (exp(𝜀) − 1) exp(𝜀) +
𝑝

exp(𝜀)

)
.

To solve the optimal 𝑝 , we take the first-order derivative w.r.t. 𝑝

and set it to 0, i.e.

𝜕

𝜕𝑝

(
(exp(𝜀) − 𝑝)2

𝑝 (exp(𝜀) − 1) exp(𝜀) +
𝑝

exp(𝜀)

)
= 0,
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Figure 18: Examples of Lmod (𝑦, 𝑥) w.r.t. 𝑥 . Given a specific
𝑦, the shorter between the blue and green arcs is Lmod (𝑦, 𝑥).
max𝑥 Lmod (𝑦, 𝑥) is achieved at 𝑥 = 𝜋 .

This leads to 𝑝 = exp(𝜀/2). Then

𝑠 =
exp(𝜀/2) − 1

exp(𝜀) − 1

.

Having solved 𝑝 and 𝑠 , the optimal 𝑟 is 𝑟 = 𝑙 + 𝑠 . Then the optimal 𝑙

is determined by

argmin

𝑙

∫ 𝑙

0

(𝑥 − 𝑦) · 𝑝

exp(𝜀) d𝑦 +
∫ 𝑥

𝑙

(𝑥 − 𝑦) · 𝑝 d𝑦+∫ 𝑙+𝑠

𝑥

(𝑦 − 𝑥) · 𝑝 d𝑦 +
∫

1

𝑙+𝑠
(𝑦 − 𝑥) · 𝑝

exp(𝜀) d𝑦

This is a univariate optimization problem w.r.t. 𝑙 . Moreover, it is a

two-order polynomial w.r.t. 𝑙 and can be solved by analyzing the

first-order and second-order derivatives. The solution is

𝑙 =
2𝑥 (𝑝 − 𝑝𝑒−𝜀 ) − 𝑠 (𝑝 − 𝑝𝑒−𝜀 )

2(𝑝 − 𝑝𝑒−𝜀 ) = 𝑥 − 𝑠

2

.

Note that when 𝑥 − 𝑠/2 < 0, the above 𝑙 is outside the domain [0, 1).
In this case, the optimal 𝑙 is 𝑙 = 0.

Relating the above deduction to Theorem 3.7, the term 𝑠/2 corre-
sponds to𝐶 . Then the optimal 𝑝 is exp(𝜀/2), 𝑙 = 𝑥−𝐶 , and 𝑟 = 𝑥+𝐶
when 𝑥 ∈ [𝐶, 1−𝐶), which completes the proof forL(𝑦, 𝑥) = |𝑦−𝑥 |.
The proof for L(𝑦, 𝑥) = |𝑦 − 𝑥 |2 is similar. □

Remark: This proof is the same as finding the optimal 3-piecewise

distribution in domain [0, 1). The source code of our framework

provides the validation.

A.5 Proof of Lemma 4.1
Proof. Note thatLmod (𝑦, 𝑥) =min (L(𝑦, 𝑥),L(𝑦, 2𝜋 − 𝑥)). The

key observation is that for any 𝑦 and 𝐿𝑝 -similar distance metric L,

we have

max

𝑥
Lmod (𝑦, 𝑥) = Lmod (𝑦, 𝜋) = L(𝑦, 𝜋) .

Figure 18 illustrates the intuition. For any fixed 𝑦, it compares

the length of |𝑦 − 𝑥 | and |𝑦 − (2𝜋 − 𝑥) | w.r.t 𝑥 ∈ [0, 2𝜋). Lmod (𝑦, 𝑥)
is determined by the minimum of the two, and max𝑥 Lmod (𝑦, 𝑥)
will achieved at 𝑥 = 𝜋 .

The remained proof is more intuitive than the proof of Lemma 3.2,

as the inner integrand Lmod (𝑦, 𝑥) has a unique maximum at 𝑥 = 𝜋

for any 𝑦 ∈ [𝑙𝑖 , 𝑟𝑖 ), making the swap of max𝑥 and integration valid.

Specifically, we have

max

𝑥

𝑚∑︁
𝑖

𝑝𝑖

∫ 𝑟𝑖

𝑙𝑖

Lmod (𝑦, 𝑥)d𝑦 =

𝑚∑︁
𝑖

𝑝𝑖

∫ 𝑟𝑖

𝑙𝑖

max

𝑥
Lmod (𝑦, 𝑥)d𝑦

=

𝑚∑︁
𝑖

𝑝𝑖

∫ 𝑟𝑖

𝑙𝑖

L(𝑦, 𝜋)d𝑦

holds trivially, because all other 𝑥 values always result in smaller

Lmod (𝑦, 𝑥). Therefore, for any values of 𝑝𝑖 ≥ 0, 𝑙𝑖 ≤ 𝑟𝑖 , the integra-

tion of Lmod (𝑦, 𝑥) is bounded by the integration of L(𝑦, 𝜋). □

A.6 Proof of Theorem 5.1
Proof. We prove the unbiasedness of M. The expectation of

the givenM is

E[M(𝑥)] =
∫ 𝐶+1

−𝐶
𝑦 · PM(𝑥 )d𝑦

=

∫ 𝑙

−𝐶
𝑦

𝑝

exp(𝜀) d𝑦 +
∫ 𝑟

𝑙

𝑦𝑝d𝑦 +
∫ 𝐶+1

𝑟

𝑦
𝑝

exp(𝜀) d𝑦

=
𝑟 2 − 𝑙2

2

(
𝑝 − 𝑝

exp(𝜀)

)
+

(
𝐶 + 1

2

)
𝑝

exp(𝜀) .

Denote 𝑠 ≔ (2𝐶 + 1) (𝐶 − 1)/(2𝐶), which rewrites 𝑙 and 𝑟 as

𝑙 =
𝐶 + 1

2

𝑥 − 𝐶 − 1

4

− 𝑠

2

, 𝑟 =
𝐶 + 1

2

𝑥 − 𝐶 − 1

4

+ 𝑠

2

.

Then the above E[M(𝑥)] is equivalent to

(𝐶 + 1)𝑠𝑥 − (𝐶 − 1)𝑠/2
2

· 4𝐶

(𝐶2 − 1) (2𝐶 + 1) +
exp(−𝜀/2)

2

=𝑥 − 𝐶 − 1

2(𝐶 + 1) +
exp(−𝜀/2)

2

= 𝑥,

leading to E[M] = 𝑥 , i.e.M is unbiased. □

B Complementary Materials
B.1 Detailed Comparison with PTT (Section 2.3)
Piecewise transformation technique (PTT) [23] is a framework for 3-

piecewise mechanisms. It shows that (i) many PTT mechanisms are

asymptotically optimal when used to obtain an unbiased estimator

for mean of numerical data, and (ii) there is a PTT that reaches the

theoretical lower bound on variance.

Under the viewpoint of this paper, type-I PTT focuses on TPM

that constrains the probabilities of the central interval (𝑝) and the

two side intervals (𝑞) as

𝑝 =
1

2𝑎𝑘

exp(𝜀)
exp(𝜀) − 1

, 𝑞 =
exp(𝜀)

𝑘 (exp(𝜀) − 1) ,

where 𝑎 and𝑘 are parameters to be determined. Type-II PTT focuses

on TPM that constrains 𝑝 and 𝑞 as

𝑝 =
1

𝑎𝑘

exp(𝜀)
exp(𝜀) − 1

, 𝑞 =
exp(𝜀)

𝑘 (exp(𝜀) − 1) .

Therefore, PTT is still a specific case of the TPM framework. Addi-

tionally, when discussing optimality of PTT, it gives a value of 𝑎

for type-I PTT but do not provide the optimal 𝑘 .
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B.2 Related Optimality (Section 3.1)
In this paper, the optimality of GPM is definedwith respect to: (i) the

worst-case 𝐿𝑝 -similar error metric, (ii) bounded numerical domains

D → ˜D andmechanisms based on piecewise distributions, (iii) min-

imization of error value (not asymptotic or order-of-magnitude op-

timality), and (iv) without post-processing. 𝐿𝑝 -similar error metrics

are natural choices for evaluating data utility [15, 18, 34]. Bounded

numerical domains are common in real-world applications. Focus-

ing on error values allows for more precise comparisons between

different mechanisms. By excluding post-processing, we can an-

alyze the optimality of the mechanism itself, which provides a

more fundamental understanding than considering the mechanism

combined with a specific post-processing.

Other types of optimality have been explored in the literature,

particularly for variants of Laplacemechanisms. The staircasemech-

anism [15] adopts the same utility model without prior knowledge

or post-processing as this paper. It claims optimality under spe-

cific assumptions, one of which is that a staircase (piecewise) dis-

tribution can achieve the optimal error. The mechanism demon-

strates better 𝐿1-error performance than the Laplace mechanism

on
˜D = (−∞,∞), and its asymptotic optimality has been formally

proven. Universal optimality is another type of optimality, de-

fined from the perspective of a user’s prior knowledge and post-

processing ability [16]. In this utility model, the user observes the

output of the mechanism and selects another value based on the

output and their prior knowledge, i.e. under a Bayesian utility

framework. Formally, if the user’s prior is denoted as 𝑝𝑖 on the data

domain 𝑖 ∈ 𝑁 (i.e. a discrete domain) and the user’s post-processing

is represented as a remap 𝑧𝑖, 𝑗 that reinterprets the output of the

mechanism (on the sensitive value 𝑖) to 𝑗 , then the utility model is

defined as

𝐸𝑟𝑟 (𝑖) =
∑︁
𝑖∈𝑁

𝑝𝑖

∑︁
𝑗∈𝑁

𝑧𝑖, 𝑗 · L(𝑖, 𝑗) .

This utility model incorporates the user’s prior knowledge and

post-processing ability. A mechanism is called universally optimal

if, for any prior 𝑝𝑖 , there exists an optimal remap 𝑧𝑖, 𝑗 . Under this

utility model, it was proven that the truncated geometric mecha-

nism (a discretized version of the Laplace mechanism) can achieve

universal optimality for count queries
§§

and a legal error metric

L(𝑖, 𝑗). Such universal optimality was shown to be unachievable

for more complex queries [5]. Under the same utility model, the

universal optimality was extended to the truncated Laplace mecha-

nism for a bounded numerical domainD = [0, 1] by approximating

the geometric mechanism with the Laplace mechanism and post-

processing [12].

These results do not hold in our utility model, i.e. utility model

without prior and post-processing. Figure 13 has shown that OGPM

generally has a smaller error than the truncated Laplace mechanism,

especially when the privacy parameter 𝜀 is not small, indicating the

sub-optimality of the truncated Laplace mechanism in the absence

of using prior and post-processing.

§§
This is in the centralized DP setting, where the data curator holds the dataset

and uses one mechanism.
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(a) Non-staircase distribution.

0 0.5

[ ]pdf y

1
y

(b) Staircase distribution.

Figure 19: A non-staircase distribution (left) can always be
shifted into a staircase distribution (right) by moving some
pieces closer to 𝑥 , which reduces the error.

B.3 Directions for Analytically Proving Optimal
𝑚 = 3 (Section 3.2.3)

This appendix outlines two potential directions for analytically

proving that the optimal𝑚 is 3, along with the challenges associated

with each approach.

Mathematically, finding the optimal𝑚-piecewise mechanism is

equivalent to identifying the optimal𝑚-piecewise distribution un-

der an 𝐿𝑝 -similar error metric. It is seemingly true that the optimal

𝑚 is 3: if the optimal𝑚-piecewise distribution is not 3 but 4 or more,

we can always shift the probability mass from the two side intervals

(i.e. other pieces) to the central interval, thereby reducing the error.

At the very least, the following fact holds:

Fact B.1. The optimal𝑚-piecewise distribution has a strict stair-
case shape, i.e. the probability density of the central interval is greater
than that of the two side intervals.

Figure 19 illustrates this fact. Moving pieces while keeping their

probabilities unchanged clearly maintains both the 𝜀-LDP con-

straint and the probability normalization constraint. This observa-

tion reduces the problem to proving that a 3-staircase distribution

can achieve the same optimal error as a 4-staircase distribution

under the 𝜀-LDP and probability normalization constraints.

Direction 1: If we can further move the green piece in Figure 19b

“into” the red central piece while keeping the probabilities of the red

and blue pieces unchanged, i.e. transform it into a 3-staircase dis-

tribution while ensuring a decrease in the error, then we can prove

that the optimal𝑚 is 3. However, this is challenging, as it breaks the

probability normalization constraint (i.e. the sum of probabilities

is no longer 1), requiring adjustments to the probabilities of each

piece to satisfy the 𝜀-LDP constraint. The difficulty lies in ensuring

that these adjustments will indeed decrease the error.

Direction 2: Another approach is to formulate the problems for

3-staircase and 4-staircase distributions as two constrained opti-

mization problems. The goal would be to prove that the optimal

error of the 3-staircase distribution is equivalent to that of the 4-

staircase distribution. Ideally, these two multi-variable optimization

problems could be solved analytically, resulting in two closed-form

error expressions w.r.t. 𝑥 and 𝜀, thereby completing the proof for any

𝑥 and 𝜀 by showing that the two expressions are equal. This direc-

tion aligns with our framework. However, the challenge lies in the

complexity of solving such multi-variable optimization problems
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analytically. This is why we rely on an off-the-shelf optimization

solver, which, while effective, only provides numerical solutions

for specific 𝑥 and 𝜀 values.

B.4 Analytical Deduction for the Optimal GPM
(Section 3.2.3)

If the optimal GPM under L is proved to be TPM, then the closed-

form optimal can be derived by deduction.

DenoteD = [𝑎, 𝑏) and ˜D = [𝑎, ˜𝑏). Notice that the normalization

constraint of probability is

(𝑟 − 𝑙) · 𝑝 + [(𝑏 − 𝑎) − (𝑟 − 𝑙)] · 𝑝/exp(𝜀) = 1.

This means the central interval length is

𝑠 ≔ 𝑟 − 𝑙 =
1

𝑝 (1 − exp(−𝜀)) −
˜𝑏 − 𝑎

exp(𝜀) − 1

.

If the minimal worst-case error is achieved at 𝑥 = 𝑎 in Lemma 3.2,

then solving for the optimal 𝑝 is reduced to

argmin

𝑝

(∫ 𝑠

�̃�

L(𝑦, 𝑎)𝑝 d𝑦 +
∫ ˜𝑏

𝑠

L(𝑦, 𝑎) 𝑝

exp(𝜀) d𝑦
)
,

which is a univariate optimization problemw.r.t. 𝑝 and can be solved

analytically. With the solved 𝑝 , Formulation (3) is also reduced to a

univariate optimization problem w.r.t. 𝑙 :

argmin

𝑙

(∫ 𝑙

�̃�

𝑃1 d𝑦 +
∫ 𝑙+𝑠

𝑙

𝑃2 d𝑦 +
∫ ˜𝑏

𝑙+𝑠
𝑃1 d𝑦

)
,

where 𝑃1 = L(𝑦, 𝑥)𝑝 and 𝑃2 = L(𝑦, 𝑥)𝑝/exp(𝜀). This univariate
optimization problem solves the optimal 𝑙 , and the optimal 𝑟 is

𝑟 = 𝑙 + 𝑠 . Note that 𝑙 and 𝑟 should be restricted in [𝑎, ˜𝑏) when
analyzing the first-order derivative.

B.5 MSE of the Optimal GPM (Section 3.3)
Denote 𝑝𝜀 and 𝐶 as the same as the instantiations of M in Theo-

rem 3.7. The MSE ofM is

(1) If 𝑥 ∈ [0,𝐶):
𝑝𝜀

3

(
(2𝐶 − 𝑥)3 + 𝑥3

)
+ 𝑝𝜀

3 exp(𝜀)
(
(1 − 𝑥)3 − (2𝐶 − 𝑥)3

)
.

(2) If 𝑥 ∈ [𝐶, 1 −𝐶):
𝑝𝜀

3 exp(𝜀)
(
−2𝐶3 + 3𝑥2 − 3𝑥 + 1

)
+ 𝑝𝜀

3

(
2𝐶3

)
.

(3) If 𝑥 ∈ [1 −𝐶, 1):
𝑝𝜀

3 exp(𝜀)
(
(1 − 2𝐶 − 𝑥)3 + 𝑥3

)
+ 𝑝𝜀

3

(
(1 − 𝑥)3 − (1 − 2𝐶 − 𝑥)3

)
.

For example, when 𝑥 = 0, the MSE of M is

MSE[M(0)] = 𝑝𝜀

3

(
8𝐶3

)
+ 𝑝𝜀

3 exp(𝜀)
(
1 − 8𝐶3

)
.

Setting 𝜀 = 1 results in MSE[M(0)] = 0.22 of OGPM. As a compar-

ison, SW [21], which also designed for D = [0, 1), has an MSE of

0.29 at 𝑥 = 0.
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(a) Privacy parameter 𝜀 = 0.4.
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(b) Privacy parameter 𝜀 = 0.8.

Figure 20: Whole-domain error comparison in the classical
domain with error metric L = |𝑦 − 𝑥 |.

B.6 Optimal Assignment of Privacy Parameter
and an Example (Section 6)

The objective function to minimize the given total error in 2D polar

coordinates is

min

𝜀1,𝜀2
𝐸𝑟𝑟1,wor (𝜀1) + 𝐸𝑟𝑟2,wor (𝜀2),

where 𝐸𝑟𝑟1,wor (𝜀1) and 𝐸𝑟𝑟2,wor (𝜀2) are the worst-case errors of the
classical domain and the circular domain, respectively.

Without loss of generality, we can assume the polar coordinate

data is in [0, 1) × [0, 2𝜋) and L = |𝑦1 − 𝑥1 |2, then 𝐸𝑟𝑟1,wor (𝜀1) and
𝐸𝑟𝑟2,wor (𝜀2) are already given by our MSE analysis. However, the

above optimization problem as a function of 𝜀1 and 𝜀2 is generally

non-linear, thus hard to be analytically solved. Therefore, a simple

and practical way to find the optimal 𝜀1 and 𝜀2 is numerical testing.

Under distance metric L(𝑦, 𝑥) = |𝑦 −𝑥 |2, the worst-case error of

0 2 4 6
0

1

2

3

the classical domain [0, 1) is achieved
at 𝑥 = 0. Therefore, 𝐸𝑟𝑟1,wor equals

to MSE[M(0)] calculated before.

For the circular domain [0, 2𝜋), the
worst-case error 𝐸𝑟𝑟2,wor is stated

in Theorem 4.4. If 𝜀 = 1 + 2𝜋 and

we assign 𝜀1 to the classical domain

and 𝜀2 = 𝜀 − 𝜀1 to the circular do-

main, then the total error is plotted

in the right figure. In this figure, the optimal assignment is 𝜀1 = 1.32

and 𝜀2 = 5.69.

From the curve of the total error, we can see that 𝜀2 affects the

total error more than 𝜀1. Even if 𝜀1 is set to 0, the total error is not

significantly affected, and it is still is significantly smaller than the

case of 𝜀2 = 0. This is because the circular domain has a larger range

than the classical domain, thus the error of the circular domain is

more sensitive to the privacy parameter.

Note that the optimality for the polar coordinate data is under

the specific error metric L2D ≔ L(𝑦1, 𝑥1) + Lmod (𝑦2, 𝑥2). If the
error metric differs, the optimal error might not be preserved.

B.7 Comparison under Small 𝜀 (Section 7.1.1)
Figure 20 presents the whole-domain error comparison of OGPM,

PM-C, and SW-C under smaller 𝜀 values, specifically 𝜀 = 0.4 and

𝜀 = 0.8. In these scenarios, all three mechanisms approach the

uniform distribution more closely compared to cases with larger
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𝜀. Consequently, their errors are also more similar to each other.

Statistically, when 𝜀 = 0.4, the error of OGPM is at most 0.008

smaller than that of PM-C and SW-C. For 𝜀 = 0.8, the error of

OGPM is at most 0.015 smaller than that of PM-C and SW-C.

B.8 Expected Error of the B-Laplace Mechanism
(Section 7.1.3)

The B-Laplace mechanism redefines a Laplace-shaped distribution

on a bounded domain as the perturbation mechanism. For the data

domain D → ˜D = [0, 1) → [0, 1), the B-Laplace mechanism is

defined as follows:

Definition B.1 (Bounded Laplace Mechanism, adapted from [19]).
The B-Laplace mechanism M(𝑥) : [0, 1) → [0, 1) is given by the

probability density function (PDF) as follows:

𝑝𝑑 𝑓 [M(𝑥) = 𝑦] = 1

𝐶𝑦

· 1

2𝑏
exp

(
− |𝑦 − 𝑥 |

𝑏

)
∀𝑦 ∈ [0, 1),

where 𝑏 is the scale parameter, and 𝐶𝑦 =
∫
1

0

1

2𝑏
exp

(
− |𝑦−𝑥 |

𝑏

)
d𝑥 is

the normalization constant.

According to Theorem 3.5 and Corollary 4.5 in [19], the B-Laplace

mechanism satisfies 𝜀-LDP whenever 𝑏 ≥ 1/𝜀. Using the best scale

parameter 𝑏 = 1/𝜀, the normalization constant becomes 𝐶𝑦 =

(1 − exp(−𝜀))/2. We can compute the expected 𝐿1 error of the B-

Laplace mechanism as follows (this computation is not included

in [19]):

𝐸𝑟𝑟 (𝑥,M) =
∫

1

0

|𝑦 − 𝑥 | · 𝑝𝑑 𝑓 [M(𝑥) = 𝑦]d𝑦

=

∫
1

0

|𝑦 − 𝑥 | · 1

𝐶𝑦

· 1

2𝑏
exp

(
− |𝑦 − 𝑥 |

𝑏

)
d𝑦

=
𝜀

1 − exp(−𝜀)

∫
1

0

|𝑦 − 𝑥 | exp (−𝜀 |𝑦 − 𝑥 |) d𝑦.

The above integral can be numerically computed using the Python

library function scipy.stats.laplace.expect() or analytically

solved. The final result for the expected error is

2 − (1 + 𝜀𝑥)𝑒−𝜀𝑥 − (1 + 𝜀 (1 − 𝑥))𝑒−𝜀 (1−𝑥 )
𝜀 (1 − 𝑒−𝜀 ) ,

which is a closed-form expression w.r.t. 𝑥 and 𝜀.
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