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Abstract
Large language models (LLMs) have demonstrated remarkable per-

formance in various tasks, but protecting their intellectual prop-

erty (IP) is a growing concern. While conventional training-based

watermarking is computationally expensive, function invariant

transformations (FITs) offer a lightweight alternative, yet remain

vulnerable to adaptive attacks. We propose a novel white-box wa-

termarking scheme combining error correction codes (ECCs) with

weight permutations. By encoding model identifiers using ECCs,

our approach guarantees reliable watermark extraction under vari-

ous attacks. A linear assignment-based extraction algorithm further

enhances its efficiency. Extensive evaluations show that our method

offers robust watermarking capabilities. It has a minimal impact

on model performance while effectively defending against removal

and forgery attacks. Overall, our approach serves as a scalable and

reliable solution for safeguarding the intellectual property of LLMs.

Keywords
watermarking, error correction code, large language models

1 Introduction
The emergence of large language models has brought about a re-

markable transformation in the field of machine learning, especially

within the domain of natural language processing. Noteworthy ex-

amples such as GPT-4 [44], Llama [63], and DeepSeek [15] have

exhibited impressive performance in tasks ranging from natural lan-

guage understanding [16, 61], code generation [4, 43], to complex

reasoning [67, 74]. Their widespread adoption has driven significant

advancements in the field.

However, the high performance comes at a significant cost. Train-

ing large language models requires substantial computational re-

sources and expertise, making their development highly expensive.

As these models grow in value, protecting their intellectual property

(IP) becomes increasingly important. Instances of IP infringement

have occurred [50], where pre-trained models developed by one
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party were falsely claimed as the original work of another. Such

incidents highlight the urgent need for robust mechanisms to safe-

guard model ownership and authenticity. This concern is further

strengthened by recent legislative efforts worldwide. Governments

in the United States, the European Union, and China have intro-

duced AI-related regulations [12, 17, 62] to oversee the develop-

ment and use of AI technologies. In this context, watermarking

techniques [13, 25, 69] have emerged as a promising approach to ad-

dress these challenges by embedding unique identifiers into models

to establish ownership and trace provenance. Traditional neural net-

work watermarking methods typically rely on optimization-based

techniques to embed watermarks during pre-training or fine-tuning

phases. These approaches have shown success in smaller neural

networks, effectively balancing utility and robustness. However,

the computational overhead of such training-based watermarking

methods becomes prohibitive as the scale of models grows, mak-

ing them impractical for large language models. Tackling these

challenges necessitates the development of scalable watermarking

techniques that can efficiently embed and robustly verify water-

marks without significantly affecting model performance.

A promising alternative to training-based watermarking is lever-

aging function invariant transformations [18] (FITs), which embed

watermarks without modifying the model architecture or training

process. FITs preserve a model’s functionality while altering its

internal representation, such as by permuting the dimensions of

the model weights. The different parameters of FITs function as

unique watermarks, enabling model providers to trace the model’s

provenance without the need for retraining. While the FIT-based

watermarking method offers a lightweight and efficient approach

to embedding watermarks in large language models, it typically

necessitates white-box access for extraction, and most importantly,

its robustness against adaptive attacks remains a significant chal-

lenge. Adversaries with knowledge of the watermarking scheme

can apply FITs with random parameters to remove or forge the wa-

termark, rendering FIT-based watermarks vulnerable to tampering

and unauthorized modifications. Moreover, the existing method

for extracting weight permutation transformations is computation-

ally expensive, causing a significant performance overhead during

watermark verification.

To address these challenges, we propose a novel white-box water-

marking scheme that integrates error correction codes (ECCs) with

weight permutations to efficiently and robustly watermark large
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language models. Weight permutation, as a type of FIT, reorders

the dimensions of transformer model weights while preserving

functionality. It enables the generation of functionally equivalent

copies of the original model with distinct weight arrangements,

where the different transformation parameters (i.e., permutations)

serve as unique watermarks. To enhance the robustness of this

simple FIT-based watermarking approach, we encode the model

identifier using generalized Reed-Solomon codes, a type of ECC,

thereby transforming it into a codeword with error correction ca-

pabilities. Through a sophisticated permutation mapping design,

the encoded model identifier is subsequently converted to a se-

quence of permutations, which acts as the watermark embedded

within the model weights. This approach enables model providers

to almost always detect tampering attempts during watermark ex-

traction, significantly increasing the difficulty of adaptive attacks.

Moreover, we introduce a linear assignment-based permutation

extraction algorithm that efficiently retrieves watermarks while

resisting watermark obfuscation attacks leveraging other FITs. Our

approach is extensively evaluated on six large language models,

demonstrating its effectiveness in inserting and extracting water-

marks with minimal impact on model performance, while offering

robust protection against removal and forgery attacks and various

model modifications.

Overall, our contributions can be summarized as follows:

(1) We propose a novel white-box watermarking scheme that

integrates error correction codes with weight permutations,

providing theoretical guarantees for detecting tampering at-

tempts and ensuring reliable watermark recovery.

(2) For efficient watermark extraction, we devise a permutation ex-

traction algorithm based on linear assignment solving, which

can resist watermark obfuscation attacks based on other func-

tion invariant transformations.

(3) Our extensive evaluation demonstrates that our approach has

minimal impact on large language model performance and

provides strong resistance against removal and forgery attacks

and various model modifications.

2 Preliminaries
In this section, we first provide a brief overview of the transformer

architecture, which is the foundation of large language models. We

then describe the background of function invariant transformations

(FITs) and generalized Reed-Solomon codes.

2.1 Transformer-based Language Models
The input of a transformer neural network is a sequence of tokens

(𝑥1, · · · , 𝑥𝑛) ∈ V𝑛
. An embedding layer 𝐸 ∈ R |V |×𝑑 maps each

token 𝑥𝑖 to a vector 𝑧𝑖 ∈ R𝑑
, where |V| is the vocabulary size and 𝑑

is the embedding dimension. The input sequence 𝒛 = (𝑧1, · · · , 𝑧𝑛) ∈
R𝑛×𝑑

is passed through a series of blocks, each consisting of a

self-attention layer and a feed-forward network, and the output

is a sequence of hidden states 𝒉 = (ℎ1, · · · , ℎ𝑛) ∈ R𝑛×𝑑
. In the

following, we describe the relevant components in the transformer

architecture that are commonly used in large language models.

2.1.1 Self-attention Layers. In a self-attention layer, the input se-

quence 𝒛 is transformed into queries 𝑄 = 𝒛𝑊𝑞 ∈ R𝑛×𝑑𝑘 , keys

𝐾 = 𝒛𝑊𝑘 ∈ R𝑛×𝑑𝑘 , and values 𝑉 = 𝒛𝑊𝑣 ∈ R𝑛×𝑑𝑣
, where 𝑊𝑞 ,

𝑊𝑘 , and𝑊𝑣 are learnable weights, and we refer to them as query,

key, and value weights, respectively. The output is computed as a

weighted sum of the values:

Attention (𝑄,𝐾,𝑉 ) = Softmax

(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 , (1)

where Softmax is applied row-wise. The attention operator is ap-

plied multiple times in parallel, resulting in ℎ output heads that are
concatenated and projected back to the original dimension:

MultiHead (𝒛) = Concat (head1, · · · , headℎ)𝑊𝑜 , (2)

where head𝑖 = Attention(𝒛𝑊 (𝑖 )𝑞 , 𝒛𝑊 (𝑖 )
𝑘
, 𝒛𝑊 (𝑖 )𝑣 ), and𝑊𝑜 ∈ Rℎ𝑑𝑣×𝑑

is the learnable output projection matrix. In practice, 𝑑𝑘 and 𝑑𝑣

are usually set equal, and the query weights𝑊
(𝑖 )
𝑞 are stacked into

a single matrix𝑊𝑞 ∈ R𝑑×ℎ𝑑𝑘 and similarly for𝑊𝑘 and𝑊𝑣 to en-

able parallel computation. We call 𝑑𝑘 the hidden dimension of the

attention head.

Many recently developed large language models adopt Grouped-

Query Attention (GQA) [3] to improve computation efficiency. In-

stead of using independent attention heads, GQA divides ℎ𝑞 query

heads into ℎ𝑘 groups, where each group shares a single key and

value head. Suppose there are 𝑔 query heads in each group, then

ℎ𝑞 = 𝑔 · ℎ𝑘 . The 𝑖-th key head 𝐾 (𝑖 ) is paired with 𝑔 consecutive

query heads 𝑄 ( 𝑗 ) for 𝑖 · 𝑔 ≤ 𝑗 < (𝑖 + 1) · 𝑔. The stacked query, key,

and value weights have shape 𝑑 × ℎ𝑞𝑑𝑘 , 𝑑 × ℎ𝑘𝑑𝑘 , and 𝑑 × ℎ𝑘𝑑𝑣 ,
respectively.

2.1.2 Feed-forward Layers and Residual Connections. The output
of attention is then fed to a feed-forward network consisting of two

linear layers with an activation function Act:

FFN (𝒉) = Act (𝒉𝑊1 + 𝑏1)𝑊2 + 𝑏2, (3)

where𝑊1 ∈ R𝑑×𝑑
ff , 𝑏1 ∈ R𝑑

ff ,𝑊2 ∈ R𝑑
ff
×𝑑
, and 𝑏2 ∈ R𝑑

are learn-

able parameters, and common choices for activation functions in-

clude ReLU, GELU [26], and SwiGLU [55]. 𝑑ff is usually called the

intermediate dimension of the feed-forward network.

Residual connections are applied for each self-attention layer

and feed-forward network:

𝒉𝑙 = ATN
𝑙
(
LN

𝑙
atn

(
𝒛𝑙
) )
+ 𝒛𝑙 , (4)

𝒛𝑙+1 = FFN
𝑙
(
LN

𝑙
ffn

(
𝒉𝑙
) )
+ 𝒉𝑙 , (5)

where LN is the normalization operator, such as Layer Normaliza-

tion [5] or RMSNorm [76], and ATN and FFN are the self-attention

layer and feed-forward network, respectively.

2.1.3 Positional Embeddings. Positional embeddings are used to

encode the position of tokens in the input sequence. Some relative

positional embeddings may change Eq. (1). For example, the widely

used rotary embeddings [59] compute the inner product of the𝑚-th

query and the 𝑛-th key as:

𝑄𝑚𝐾
⊤
𝑛 = 𝑧𝑚𝑊𝑞𝑅Θ,𝑛−𝑚 (𝑧𝑛𝑊𝑘 )⊤ , (6)

where 𝑅Θ,𝑛 is a block diagonal matrix with 2 × 2 rotation matrices:(
𝑅Θ,𝑛

)
𝑖
=

(
cos𝑛𝜃𝑖 − sin𝑛𝜃𝑖
sin𝑛𝜃𝑖 cos𝑛𝜃𝑖

)
, (7)

with rotation angles 𝜃𝑖 = 10, 000−2𝑖/𝑑 .
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2.1.4 Language Modeling Head. The last hidden state of the trans-

former is passed through a linear layer to generate logits for each

token in the vocabulary:

Logits (𝒉) = 𝒉𝑊lm + 𝑏lm . (8)

Some models use weight tying [49] to share the embedding matrix

𝐸 and the output projection matrix𝑊lm by setting𝑊lm = 𝐸⊤.

2.2 Function Invariant Transformations
Function invariant transformations can generate functionally equiv-

alent copies of the model by leveraging the model’s invariance to

certain operations. The operations applied to themodel are regarded

as a stealthy watermark, which can be extracted (under a non-blind

white-box setting) and verified by the watermark owner. For trans-

former neural networks, three types of operations are proposed

to generate functionally equivalent models in [18]: weight permu-

tation, scaling/unscaling, and invertible matrices in QK products,

which are briefly described as follows.

Weight permutation (WP) can be applied at four different places

in the transformer neural network:

(1) Embedding dimension. The columns of the embedding matrix

𝐸 can be permuted, and invariance can be obtained by propa-

gating the permutation to all other parameters.

(2) Intermediate dimension. The intermediate output between two

linear layers in the feed-forward network can be permuted

while preserving functionality.

(3) Attention heads. The heads of multi-head attention are inter-

changeable, as long as the projection matrices are permuted

accordingly. For GQA, the groups of query heads with their

paired key/value heads can be permuted, and the arrangement

of query heads within each group can be arbitrary.

(4) Hidden dimension. Each attention head can have its hidden di-

mension permuted if it does not affect the attentionmechanism

in Eq. (1). This is not the case for rotary embeddings, where

the permuted hidden dimension does not preserve Eq. (6).

Scaling/unscaling (SU) operation multiplies the layer normaliza-

tion parameters by a constant vector 𝛼 , and divides the rows of

its following (preceding) linear layer by the same vector to remain

functionally equivalent.

Invertible matrix in query-key products (IM) operation multi-

plies the query weights by an invertible matrix and the key weights

by its inverse in the query-key product. To remain function invari-

ant, it is required that the result of Eq. (1) is not affected by the

transformation. In fact, hidden dimension permutation is a special

case of the invertible matrix in query-key products, as permutation

matrices are orthogonal and thus invertible.

We will revisit these transformations and provide their mathe-

matical formulations in the context of watermarking in Section 5.

2.3 Generalized Reed-Solomon Codes
To transmit data over unreliable channels, error correction codes

are used to encode the message in a redundant way, allowing the re-

ceiver to detect and correct errors. In this work, we use generalized

Reed-Solomon codes, which are a class of non-binary linear error

correction codes. A generalized Reed-Solomon code GRS𝑛,𝑘 (𝒆, 𝒗) is
defined over a finite field GF of size 𝑞, where 𝑞 is a prime power,

𝒆 and 𝒗 are evaluation points and scaling factors, and 𝑘 and 𝑛 are

the message and codeword lengths (𝑘 < 𝑛 < 𝑞), respectively. In the

following, we use GRS𝑛,𝑘 to denote a generalized Reed-Solomon

code with parameters 𝑛 and 𝑘 .

A message 𝑚𝑠𝑔 ∈ GF
𝑘
is a sequence consisting of 𝑘 symbols

in the finite field, and it is encoded into a codeword of 𝑛 symbols,

denoted as 𝑐 ∈ GF𝑛 . The received codeword 𝑟 is the codeword 𝑐 with
errors and erasures, where an erasure is a corrupted symbol with

known position, and an error is a corrupted symbol with unknown

position. Any combination of erasures and errors can be corrected

by GRS𝑛,𝑘 as long as the condition

2𝐸 + 𝑆 ≤ 𝑛 − 𝑘 (9)

holds, where 𝐸 is the number of errors and 𝑆 is the number of

erasures. Therefore, 𝑛 − 𝑘 is called the error-correction capability
of the generalized Reed-Solomon code GRS𝑛,𝑘 . When the number

of erasures and errors exceeds the error-correction capability (i.e.,
2𝐸+𝑆 > 𝑛−𝑘), GRS𝑛,𝑘 either fails to decode or returns an incorrect

message. We use GRSenc and GRSdec to denote the encoding and

decoding process of a generalized Reed-Solomon code when the

finite field and other parameters are clear from the context,i.e.,

GRSenc : GF
𝑘 → GF

𝑛, (10)

GRSdec : GF
𝑛 ⇀ GF

𝑘 , (11)

where ⇀ denotes a partial mapping that may be undefined for

some inputs. Although generalized Reed-Solomon codes are not

designed for encryption, it is computationally hard to recover the

original message without the full knowledge of the code parameters,

especially when the finite field is very large.

3 Threat Model
We consider a threat model involving two primary parties: the

model provider and users. The model provider is the legitimate

owner of the LLMwho wishes to embed watermarks into the model

to establish ownership and enable provenance tracing. The water-

marked models are distributed to users, who may be either non-

malicious users or adversaries. All users, whether non-malicious or

adversarial, have full white-box access to the watermarked model,

including the ability to inspect and modify the model weights, but

they do not have access to the original, non-watermarked model.

An adversary’s objective is to remove or forge the embedded water-

mark to evade detection, while still preserving the model’s utility.

We assume the adversary may know the watermarking scheme,

but not the secrets used by the provider during watermarking.

Watermark extraction and verification is performed by the model

provider, who requires white-box access to the watermarked and

original models.

4 Overview
Fig. 1 provides an overview of the integration of error correction

codes with weight permutations for watermarking large language

models. Given a model identifier and a large language model, the

proposed method first encodes the identifier into a codeword with

a generalized Reed-Solomon (GRS) code, which is then converted

to a sequence of permutations. Weights in the model are permuted

according to the permutations, resulting in a watermarked model.
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LLM

LLM
(Watermarked)

(c1, 𝑐2, … , 𝑐𝑛) ∈ Ϝ𝑞
n

Codeword

GRS 
encode

Received Word
(𝑐1, 𝑐2, … , 𝑟𝑛) ∈ Ϝ𝑞

n

Model Identifier

Id: Alice-LLaMa2-Sep27

(5826, 34071, 1121) ∈ Ϝ𝑞
𝑘

𝜙
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decode
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(𝜎1, 𝜎2, … , 𝜎𝑛) ∈ Π𝑛
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Insert

Extract

(𝜋1, 𝜋2, … , 𝜋𝑛) ∈ Π𝑛
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permutation
mapping

inverse
permutation

mapping

Extract𝜙−1 

inverse
permutation

mappingGRS 
decode

Figure 1: An overview of the integration of error correction codes with weight permutations for watermarking large language
models.

To retrieve the model identifier, permutations are extracted from

the watermarked model and then decoded using the GRS code

and the permutation mapping. The usage of error correction codes

ensures that the model identifier can be reliably recovered from

the extracted permutations, as long as the number of corrupted

permutations is within its error correction capability.

In Section 5, we first describe the permutation insertion process,

which is responsible for reordering weights in the model while

preserving its functionality. We extend the WP transformation

proposed in [18] to support the commonly used GQA mechanism.

Moreover, we introduce a linear assignment-based permutation

extraction algorithm to efficiently extract permutations from the

model. These two procedures alone cannot defend against adaptive

attacks, which are also discussed in Section 5.

In Section 6, we present the design of the permutation mapping

to encode symbols in the model identifier into permutations and

decode permutations back into symbols. Combined with the gen-

eralized Reed-Solomon code, it can detect corrupted permutations

during extraction and correct them to recover the original model

identifier. We also propose an enhancement to the permutation ex-

traction algorithm to defend against watermark obfuscation attacks

based on SU and IM transformations.

5 Weight Permutation Watermarking
We first introduce a weight permutation watermarking scheme for

large language models without using error correction codes. The

main difference between this scheme and the vanilla FIT-based

watermarking method [18] is that only weight permutations are in-

volved, and it additionally supports grouped-query attention, which

is not covered in the vanilla FIT-based method. We also propose

a linear assignment-based permutation extraction algorithm to ef-

ficiently extract watermarks, which has a better time complexity

than the brute-force search used in previous studies. Finally, we

discuss potential attacks on this watermarking scheme. In Section 6,

we will extend this scheme by combining error correction codes

with weight permutations to enhance the watermark robustness.

5.1 Permutation Insertion
There are four types of weight permutation transformations that

maintain model invariance, as described in Section 2. We denote

them as 𝑇emb, 𝑇ffn, 𝑇heads, and 𝑇hid, which correspond to embedding

dimension, intermediate dimension, attention heads, and hidden

dimension, respectively. We define a weight permutation transfor-

mation as Perm(𝑙, 𝑡, 𝜋), where 𝜋 is a permutation applied to the

weights in the 𝑙-th attention block, in a way specified by permu-

tation type 𝑡 ∈ T = {𝑇emb,𝑇ffn,𝑇heads,𝑇hid}, and other weights are

adjusted accordingly to ensure the same functionality.

We refer to a certain layer in the model as a permutation slot if it
can be applied with a weight permutation transformation, defined

by a block index 𝑙 , a permutation type 𝑡 ∈ T , and a set of permissible

permutations 𝑅 that preserve function invariance, and we denote

the sequence of permutation slots of a model 𝑓 as 𝑆 𝑓 = [𝑠1, · · · , 𝑠𝑛].
The number of permutation slots is determined by the model struc-

ture and varies for different models. For example, Llama3.2-1B has

16 attention blocks, where each block has two slots
1
for insert-

ing permutations, so 𝑛 ≤ 2 × 16 + 1 = 33 (one extra slot in the

embedding layer). The permutation insertion process involves ap-

plying weight permutation transformations {Perm(𝑙𝑖 , 𝑡𝑖 , 𝜋𝑖 )}𝑛𝑖=1 to
the model 𝑓 at each slot 𝑠𝑖 such that 𝜋𝑖 ∈ 𝑅𝑖 . The permutation

1
Llama models use rotary embeddings, so𝑇hid is not applicable.
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sequence [𝜋1, · · · , 𝜋𝑛] is regarded as a unique watermark of the

watermarked model 𝑓 ′.
We use Π𝑑 to denote the set of all permutations of 𝑑 elements,

and we use 𝜋𝑘 ∈ Π𝑘
𝑑
⊆ Π𝑑𝑘 to denote a block permutation of 𝑑

blocks with 𝑘 consecutive elements in each block. Specifically,

𝜋𝑘 (𝑘 · 𝑖 − 𝑗) = 𝑘 · 𝜋 (𝑖) − 𝑗 for 1 ≤ 𝑖 ≤ 𝑑, 0 ≤ 𝑗 < 𝑘. (12)

i.e., 𝜋𝑘 acts on the blocks as whole units while preserving the

relative positions of elements within each block (e.g., (3, 4, 1, 2) ∈
Π2

2
).We useBP(𝜋 ;𝑘) ≔ 𝜋𝑘 to denote the block permutation induced

by 𝜋 with block size 𝑘 . When applying a permutation 𝜋 to a weight

matrix𝑊 , we use𝑊:,𝜋 (resp.𝑊𝜋,:) to denote the matrix obtained

by permuting the columns (resp. rows) of𝑊 according to 𝜋 . We

use 𝑅 to denote the set of permissible permutations for a specific

permutation type.

5.1.1 Embedding Dimension. The operation Perm(𝜋, ·,𝑇emb) per-
mutes the columns of the embedding matrix 𝐸 ∈ R |V |×𝑑 according

to 𝜋 ∈ 𝑅emb = Π𝑑 , and propagates the permutation to other param-

eters accordingly, i.e., 𝐸′ = 𝐸:,𝜋 ,𝑊𝑞
′ = (𝑊𝑞)𝜋,: (similarly for all𝑊𝑘 ,

𝑊𝑣 ,𝑊1, 𝑏2, LN, and𝑊lm

2
), and𝑊𝑜

′ = (𝑊𝑜 ):,𝜋 (similarly for all𝑊2).

5.1.2 Intermediate Dimension. Perm(𝜋, 𝑙,𝑇ffn) applies 𝜋 ∈ 𝑅ff =

Π𝑑
ff
to the output dimension of the first linear layer in the 𝑙-th feed-

forward network, and permutes the input dimension of the second

linear layer, i.e.,𝑊1

′ = (𝑊1):,𝜋 , 𝑏2′ = (𝑏2)𝜋 , and𝑊2

′ = (𝑊2)𝜋,:.

5.1.3 Attention Heads. Perm(𝜋, 𝑙,𝑇heads) rearranges heads at the
𝑙-th self-attention layer. Depending on whether GQA is used, the

permissible permutations and the insertion operation are different.

If the numbers of query heads and key/value heads are the same,

i.e., GQA is not used, the permutation 𝜋 is applied on these heads,

thus should be chosen from 𝑅heads = Πℎ where ℎ is the number of

heads. The query, key, value, and projection weights are permuted

according to the induced block permutation 𝜋𝑑𝑘 ∈ Π𝑑𝑘
ℎ
:

𝑊𝑞
′ = (𝑊𝑞)

:,𝜋𝑑𝑘
, 𝑊𝑘

′ = (𝑊𝑘 )
:,𝜋𝑑𝑘

,

𝑊𝑣
′ = (𝑊𝑣)

:,𝜋𝑑𝑘
, 𝑊𝑜

′ = (𝑊𝑜 )𝜋𝑑𝑘 ,: .
(13)

If GQA is employed with ℎ𝑞 = 𝑔 ·ℎ𝑘 (𝑔 > 1), the query heads and

key/value heads should be permuted differently. The permutation

on key/value heads can be arbitrarily chosen as 𝜋 ∈ Πℎ𝑘
, and the

groups of query heads are permuted accordingly. On the other hand,

each group of query heads can be independently permuted. For

example, if 𝑔 = 3, ℎ𝑘 = 2, and 𝜋 = (2, 1), then the two query groups

are swapped, and the three query heads within each group can

be arranged arbitrarily without affecting functionality, e.g., apply-
ing (4, 6, 5, 2, 3, 1) to the six query heads. To put it more formally,

the permutation 𝜎 applied on query heads (not query weights) is

similarly induced by 𝜋 and ℎ𝑘 permutations for each group:

𝜎 (𝑔 · 𝑖 − 𝑗) = 𝑔 · 𝜋 (𝑖) − 𝜏𝑖 (𝑔 − 𝑗) + 1 for 1 ≤ 𝑖 ≤ ℎ𝑘 , 0 ≤ 𝑗 < 𝑔, (14)

where 𝜏𝑖 is a permutation of 𝑔 elements that rearranges the query

heads within the 𝑖-th group. We denote this induced permutation 𝜎

as BP(𝜋 ;𝜏1, · · · , 𝜏ℎ𝑘 ), which differs from Eq. (12) in that elements

in each block are permuted according to a given permutation 𝜏𝑖 .

2
If 𝐸 and𝑊lm share weights, the permutation needs to be applied only once.

The query, key, value, and projection weights are permuted by:

𝑊𝑞
′ = (𝑊𝑞):,BP(𝜎 ;𝑑𝑘 ) , 𝑊𝑘

′ = (𝑊𝑘 ):,BP(𝜋 ;𝑑𝑘 ) ,
𝑊𝑣
′ = (𝑊𝑣):,BP(𝜋 ;𝑑𝑘 ) , 𝑊𝑜

′ = (𝑊𝑜 )BP(𝜎 ;𝑑𝑘 ),: .
(15)

Since the construction of 𝜎 depends on both 𝜋 and 𝜏𝑖 , the dimen-

sion permutation operation for GQA takes not only 𝜋 but also

𝜏1, · · · , 𝜏ℎ𝑘 as input, and we have 𝑅GQA = Πℎ𝑘
× (Π𝑔)ℎ𝑘 . Therefore,

the total number of permissible permutations |𝑅GQA | for grouped
query attention is ℎ𝑘 !𝑔!

ℎ𝑘 .

5.1.4 Hidden Dimension. Perm(𝜋, 𝑙 (𝑖 ) ,𝑇hid) permutes the hidden

dimension at the 𝑖-th key head at the 𝑙-th self-attention layer, i.e.,
(𝑊 (𝑖 )𝑞 )′ = (𝑊 (𝑖 )𝑞 ):,𝜋 and (𝑊 (𝑖 )

𝑘
)′ = (𝑊 (𝑖 )

𝑘
):,𝜋 . When GQA is em-

ployed, the permutation 𝜋 ∈ 𝑅hid = Π𝑑𝑘
needs to be applied to

the entire query group paired with the key head. Additionally, the

sequence of rotation frequencies 𝜃𝑖 needs to be permuted according

to 𝜋 to maintain model invariance if rotary embeddings are used.

However, 𝜃𝑖 are not part of the model weights, and they are often

shared across all heads. Therefore, hidden dimension permutation

is only meaningful to models using absolute positional embeddings.

5.2 Permutation Extraction
To retrieve permutations from awatermarkedmodel 𝑓 ′, this method

compares the weights of 𝑓 (original model) and 𝑓 ′ at each slot 𝑠𝑖
to extract the permutation 𝜋𝑖 (and applies the inverse operation

Perm(𝜋−1𝑖 , 𝑙𝑖 , 𝑡𝑖 ) if 𝑡𝑖 is 𝑇emb). Different from scaling/unscaling (SU)

and invertible matrix in query-key products (IM) transformations

that take continuous parameters (e.g., scaling vectors), weight per-

mutation (WP) uses discrete parameters, i.e., permutations. While

the discreteness of permutations offers greater robustness when

extracting the transformation parameters, as recovering the per-

mutation can be less susceptible to numerical noise, it also makes

the extraction process computationally more expensive.

To address this challenge, we propose an efficient permutation

extraction algorithm based on linear assignment solving. Given a

weight matrix𝑊 ′ ∈ R𝑠×𝑑
from a watermarked model, we assume

that it can be represented in the following form:

𝑊 ′ =𝑊𝐶𝜋 + 𝜖 (16)

where𝐶𝜋 ∈ R𝑑×𝑑
is the column permutation matrix determined by

𝜋 ∈ Π𝑑 that we want to extract, i.e., (𝐶𝜋 )𝑖, 𝑗 = 1 when 𝑖 = 𝜋 ( 𝑗) and
0 otherwise,𝑊 ∈ R𝑠×𝑑

is the original weight matrix accessible to

the model provider, and 𝜖 ∈ R𝑠×𝑑
is the noise introduced during

model deployment or modification. Given𝑊 and𝑊 ′, the goal is to
recover the permutation 𝜋 . We frame the problem as a matching

problem between the columns of𝑊 and𝑊 ′. Each column of𝑊

is paired with a column of𝑊 ′, with the matching cost defined by

the Euclidean distance between them. The objective is to recover 𝜋

by minimizing the total cost, which can be formulated as a linear

assignment problem. The following theorem shows that under a

mild assumption on the noise level, the solution to this matching

problem is unique and the desired permutation 𝜋 can be obtained

(complete proof in Appendix A).

Theorem 5.1. If a permutation 𝜋 satisfies Eq. (16) and the follow-
ing condition holds:

min

𝑖≠𝑗
∥𝑊:,𝑖 −𝑊:, 𝑗 ∥2 > 2max

𝑖
∥𝜖:,𝑖 ∥2, (17)
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then 𝜋 is the unique optimal solution to the following linear assign-
ment problem:

𝜋 = argmin

𝜎∈Π𝑑

𝑑∑︁
𝑖=1

cost(𝑖, 𝜎 (𝑖)) = argmin

𝜎∈Π𝑑

𝑑∑︁
𝑖=1

∥𝑊:,𝑖
′ −𝑊:,𝜎 (𝑖 ) ∥2, (18)

where cost(𝑖, 𝜎 (𝑖)) is the cost of matching the 𝑖-th column of𝑊 with
the 𝜎 (𝑖)-th column of𝑊 ′.

The condition Eq. (17) ensures that the noise level is sufficiently

small relative to the minimum column distance of𝑊 . This condi-

tion is practical and often satisfied in real-world scenarios, as the

noise introduced during model deployment or modification (e.g.,

quantization) typically preserves the distinctiveness of the columns.

To extract permutations applied on rows of a weight matrix,

simply transpose the matrix to convert it to a column permutation

extraction problem. For block permutations, we can use another cost

function costblk (𝑖, 𝜎 (𝑖)) that considers the block-wise difference:

costblk (𝑖, 𝜎 (𝑖)) =
𝑏∑︁
𝑗=1

∥𝑊:,𝑖 ·𝑏+𝑗
′ −𝑊:,𝜎 (𝑖 ) ·𝑏+𝑗 ∥2, (19)

where 𝑏 is the size of each block (e.g., hidden dimension 𝑑𝑘 ). We can

also prove the following theorem for block permutation extraction

(complete proof in Appendix A).

Theorem 5.2. Under the assumption of Eq. (17), if the permutation
that satisfies Eq. (16) is a block permutation 𝜋𝑏 ∈ Π𝑏

𝑑
, then 𝜋 is the

unique optimal solution to the following linear assignment problem:

𝜋 = argmin

𝜎∈Π𝑑/𝑏

𝑑/𝑏∑︁
𝑖=1

costblk (𝑖, 𝜎 (𝑖)). (20)

The time complexity of the proposed extraction algorithm is

𝑂 (𝑑3 + 𝑠𝑑2) using Jonker-Volgenant algorithm [29] for linear as-

signment, and it does not require additional storage space. As a

comparison, the permutation extraction method employed in the

previous study [18] essentially performs a brute-force search over

all permutations used for watermarking, which has a theoretical

time complexity of𝑂 (𝐷𝑠𝑑) where 𝐷 is the total number of inserted

permutations by the provider. It also requires 𝑂 (𝐷𝑑) storage space
for all inserted permutations. Therefore, the cost of the brute-force

extraction method grows linearly with the number of inserted per-

mutations. A speed-up in the order of 100× can be achieved by only

considering a subset of columns (rows) for extraction, but this is an

approximation method that can result in up to 30% error rate in the

extracted permutations. In contrast, our linear assignment-based

extraction method not only guarantees a unique optimal solution

but also supports block permutation extraction. This efficiency

gain, coupled with the guarantee of optimality, underscores the

effectiveness of our proposed method over existing approaches.

5.3 Considerations for Potential Attacks
The weight permutation watermarking method without ECCs faces

two adaptive attacks, including watermark obfuscation and water-

mark removal and forgery, which are discussed in the following.

Watermark obfuscation attacks can be launched by applying the

scaling/unscaling (SU) or invertible matrix (IM) transformations

to the watermarked model. These transformations disrupt the per-

mutation extraction process by violating the permutation assump-

tion Eq. (16) for the query and key weight matrices. More specifi-

cally, the SU transformation scales the parameters in layer normal-

ization (and its variants) by a positive constant vector 𝛼 ∈ R𝑑
, and

rescales the rows of the following linear layer by the same vector,

i.e.,
LN
′ = 𝛼 ⊙ LN, 𝑊 ′

1
= diag(1/𝛼)𝑊1, (21)

where ⊙ denotes element-wise multiplication, 1/𝛼 is the element-

wise reciprocal of 𝛼 , and diag(·) constructs a diagonal matrix. The

IM transformation multiplies the query weight matrix𝑊𝑞 by an

invertible matrix 𝑄 ∈ Rℎ𝑑𝑘×ℎ𝑑𝑘 and the key weight matrix𝑊𝑘 by

its inverse 𝑄−1 to preserve Eq. (1), i.e.,

𝑊 ′𝑞 =𝑊𝑞𝑄, 𝑊 ′
𝑘
=𝑊𝑘

(
𝑄−1

)⊤
. (22)

If rotary embeddings are used, then 𝑄 must be a block diagonal

matrixwith 2×2 sub-matrices on the diagonal (proof in Appendix A),

where each sub-matrix is a rotation matrix multiplied by a scaling

factor.

Watermark removal and forgery attacks are essentially caused

by the lack of a mechanism to reliably recover the original model

identifiers from watermarks with corrupted permutations. The ad-

versary could apply a random permutation 𝜎 to a permutation slot,

resulting in a permutation corruption 𝜋 ′ = 𝜎 ◦ 𝜋 during watermark

extraction. The more permutations are corrupted, the more likely

the extractedwatermark cannot bematchedwith any of the inserted

watermarks. Even worse, the extracted watermark may be matched

with a completely different watermark, resulting in a forged wa-

termark. A simple approach to match the extracted watermark

with the inserted watermarks is to use the nearest neighbor search

with some predefined threshold value [18], where the extracted

watermark is considered valid if the distance to the nearest inserted

watermark is below the threshold. However, this approach cannot

reliably determine the model identifier because of the following

two reasons:

(1) The closest watermark to the extracted sequence of permuta-

tions may not be unique if the inserted permutations are not

carefully designed.

(2) The threshold value for the nearest neighbor search must be

chosen empirically to balance between sensitivity and speci-

ficity, and it cannot provide a strict guarantee of accuracy.

Therefore, the nearest neighbor search matching method could not

serve as a reliable watermark identification mechanism to defend

against permutation corruption, allowing adversaries to potentially

remove or forge watermarks.

6 Error Correction Enhanced Weight
Permutation

To defend against watermark removal and forgery attacks, we in-

corporate error correction codes and a permutation mapping into

the weight permutation watermarking method. The intuition is that

when extracted permutations are corrupted by adversaries, the error

correction codes can help recover the original model identifier, thus

enhancing the robustness of the watermarking scheme. In addition,

the encoding process can be viewed as a lightweight encryption

method, which can prevent adversaries from directly reading the
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Algorithm 1: Robust weight permutation watermarking

Data: Transformer model 𝑓 , watermarked model 𝑓 ′ , model

identifier 𝑖𝑑 , generalized Reed-Solomon code GRS𝑛,𝑘

1 function insert-model-identifier(f, id, GRS𝑛,𝑘 ) is
2 𝑐 ← GRSenc (𝑖𝑑 ) ;
3 𝑓 ′ ← insert-permutations(𝑓 , 𝜙 (𝑐 ) ) ;
4 return 𝑓 ′;

5 function extract-model-identifier(f, f’, GRS𝑛,𝑘 ) is
6 𝜎 ← extract-permutations(𝑓 , 𝑓 ′ ) ;
7 𝑖𝑑 ← GRSdec (𝜙−1 (𝜎 ) ) ;
8 if 𝑖𝑑 is undefined then return Fail;

9 return 𝑖𝑑 ;

model identifier from the watermarked model. To defend against

watermark obfuscation attacks, we propose an improvement for

the linear assignment-based permutation extraction method. For

clarity, we use the term watermark to refer to the sequence of per-

mutations applied to the model, and model identifier to refer to the

actual message that identifies the model.

The overview of the error correction enhanced robust weight

permutation watermarking method is shown in Algorithm 1. The

model identifier 𝑖𝑑 is given as a sequence of 𝑘 symbols in a finite

fieldGF of size𝑞. Then it is encoded into a codeword 𝑐 = [𝑐1, · · · , 𝑐𝑛]
of 𝑛 symbols using a generalized Reed-Solomon code GRS𝑛,𝑘 (𝒆, 𝒗).
With a permutation mapping 𝜙 , the codeword 𝑐 is interpreted as a

sequence of permutations [𝜋1, · · · , 𝜋𝑛], which is inserted into the

model as a watermark. After the adversary applies adaptive attacks,

the provider extracts the permutations [𝜎1, · · · , 𝜎𝑛] and decodes

it using 𝜙−1 and GRSdec to recover the original model identifier.

As long as the number of corrupted permutations introduced by

adversaries does not exceed the correction capability of the error

correction code, the original model identification identifier can

be uniquely recovered. Additionally, the corrupted permutations

can be detected during permutation extraction with a very high

probability. The stealthiness of the code can be further enhanced

by choosing the parameters 𝒆 and 𝒗 carefully.

6.1 Permutation Mapping
The permutation mapping 𝜙 is a parameterized injective function

that maps symbols in the finite field GF to a subset of permutations

of 𝑑 elements, i.e., 𝜙𝑑 : GF → Π𝑑 . Its inverse 𝜙𝑑
−1

is a partial

function that converts a subset of Π𝑑 back to the symbols in GF, i.e.,
𝜙𝑑
−1

: Π𝑑 ⇀ GF. This subset should be chosen carefully because

some permutations may not be safe for watermarking. For example,

if the permutation has many fixed points (i.e., 𝜋 (𝑖) = 𝑖) and the

adversaries have access to parts of multiple different models, they

may compare the arrangement of weights in different models to

find common fixed points, thus potentially revealing part of the

original private model. Therefore, we restrict the set of permissible
permutations 𝑅𝑖 in each slot to permutations with no fixed points,
also called derangements, denoted by D𝑑 where 𝑑 is the number of

elements. The size of D𝑑 is given by the subfactorial !𝑑 , which is

the nearest integer to 𝑑!/𝑒 .
Suppose we have a ranking function 𝑟𝑑 for all derangements of

𝑑 elements [42], i.e., 𝑟𝑑 : D𝑑 → {1, · · · , !𝑑} is a bijective mapping.

The inverse 𝑟𝑑
−1

is denoted as the unranking function. We can then

construct 𝜙𝑑 as follows:

𝜙𝑑 (𝑖GF) = 𝑟𝑑 −1 (𝛼 · integer(𝑖GF)) , (23)

where the 𝑖-th symbol 𝑖GF in GF is mapped to the (𝛼 · 𝑖)-th derange-

ment, and the scaling factor 𝛼 = ⌊!𝑑/𝑞⌋ obfuscates the mapping

and ensures that the derangements are uniformly distributed. For

an extracted permutation 𝜋 ∈ Π𝑑 , it is decoded as:

𝜙𝑑
−1 (𝜋) =

{(
𝑟𝑑 (𝜋 )

𝛼

)
GF

, if 𝜋 ∈ D𝑑 and 𝛼 | 𝑟𝑑 (𝜋),
↑, otherwise.

(24)

In other words, if 𝜋 is not a derangement, or 𝑟𝑑 (𝜋) is not a multiple

of 𝛼 , then 𝜋 does not belong to the chosen subset of derangements

for watermarking, in which case we denote 𝜙𝑑
−1 (𝜋) ↑ as undefined.

It is easy to see that 𝜙𝑑
−1 (𝜙𝑑 (𝑠GF)) = 𝑠GF for all 𝑠GF ∈ GF.

For GQA, we need to permute the groups and the individual

query heads within each group. Consequently, we need a sophis-

ticated permutation mapping 𝜙ℎ𝑘 ,𝑔 that can encode a symbol in

GF to a derangement of order ℎ𝑘 and ℎ𝑘 derangements of order 𝑔

where ℎ𝑘 is the number of key heads and 𝑔 is the group size. We

first construct a pair of coprime integers 𝑢1 < (!𝑔)ℎ𝑘 and 𝑢2 <!ℎ𝑘
such that 𝑢1 and 𝑢2 are the largest primes less than (!𝑔)ℎ𝑘 and !ℎ𝑘 .

Then we obtain two remainder values𝑚1 and𝑚2 by:{
𝑠 = 𝛽 · integer(𝑠GF) ≡𝑚1 mod 𝑢1,

𝑠 = 𝛽 · integer(𝑠GF) ≡𝑚2 mod 𝑢2,
(25)

where 𝛽 = ⌊𝑢1𝑢2
𝑞
⌋ scales 𝑠 to the range of [0, 𝑢1𝑢2). Finally, we

define 𝜙ℎ𝑘 ,𝑔 as follows:

𝜙ℎ𝑘 ,𝑔 (𝑠GF) =
(
𝜙ℎ𝑘 (𝑚2), 𝜙𝑔 (𝑚1,1), · · · , 𝜙𝑔 (𝑚1,ℎ𝑘

)
)
, (26)

where (𝑚1,1, · · · ,𝑚1,ℎ𝑘
) are the base-!𝑔 representation of𝑚1. The in-

verse 𝜙ℎ𝑘 ,𝑔
−1 (𝜎, 𝜋1, · · · , 𝜋ℎ𝑘 ) is defined similarly as 𝜙𝑑

−1
: use 𝜙ℎ𝑘

−1

and 𝜙𝑔
−1

to decode 𝜎 and 𝜋𝑖 back to remainders𝑚1 and𝑚2, and

then solve Eq. (25) by the Chinese remainder theorem to obtain the

symbol 𝑠GF. Since 𝑢1 and 𝑢2 are coprime, the Chinese remainder

theorem guarantees that a unique solution 𝑠 exists in the range of

[0, 𝑢1𝑢2). If 𝜙ℎ𝑘
−1 (𝜎) or any 𝜙𝑔−1 (𝜋𝑖 ) is undefined, or 𝛽 does not

divide the solution 𝑠 , then the inverse is considered as undefined.

Similarly, we have 𝜙ℎ𝑘 ,𝑔
−1 (𝜙ℎ𝑘 ,𝑔 (𝑠GF)) = 𝑠GF for all 𝑠GF ∈ GF.

By lifting the definitions of 𝜙𝑑 and 𝜙ℎ𝑘 ,𝑔 to sequences of sym-

bols, we obtain the overall permutation mapping 𝜙 . The design of

𝜙 makes it easy to detect corrupted permutations caused by ad-

versaries. Given a derangement 𝜋 that is inserted into model 𝑓 ′,
assume that the adversary corrupts it to 𝜋 ′ = 𝜎 ◦𝜋 , then this corrup-
tion can be detected by the provider if 𝜙−1 (𝜋 ′) is undefined, whose
probability can be bounded by the following theorem (complete

proof provided in Appendix B).

Theorem 6.1. Suppose the adversary corrupts a derangement 𝜋 ∈
D𝑑 by compositing it with a permutation 𝜎 ∈ Π𝑑 , resulting in the
extracted permutation 𝜋 ′ = 𝜎 ◦𝜋 . Denote the probability that𝜙−1 (𝜋 ′)
is defined as 𝑝corrupt, i.e., the corruption is not detected during decoding,
then 𝑝corrupt ≤ 𝑞

𝑑!
if 𝜎 ∼ U(Π𝑑 ).
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Algorithm 2: Reed-Solomon code parameters setting

Input: Total number of model identifiers 𝑁 , maximal probability

for failing to detect a corruption𝑚𝑝 , codeword length 𝑛

Output :Finite field size 𝑞, identifier length 𝑘

1 𝑢 ← ⌊log
2

(
𝑚𝑝 min𝑖 |𝑅𝑖 |

)
⌋;

2 for 𝑘 = 1 to 𝑛 − 1 do
3 𝑙 ← ⌈log

2

(
𝑁

1

𝑘
)
⌉;

4 if 𝑙 ≤ 𝑢 then
5 𝑞 ← 2

𝑙
;

6 return 𝑞, 𝑘 ;

6.2 Error Correction Code Setting
We use generalized Reed-Solomon codes because they (1) operate

over a finite field instead of only binary symbols, which is suitable

for the large permutation space, and (2) have a high correction

capability. To setup a generalized Reed-Solomon code, we need to

specify four parameters: codeword length 𝑛, identifier (message)

length 𝑘 , finite field size 𝑞, and the other parameters 𝒆 and 𝒗.
We set the codeword length 𝑛 to the maximum number of per-

mutation slots in the model to maximize the tolerance to corrupted

permutations. The parameters 𝒆 and 𝒗 can be arbitrarily chosen by

the provider to stay stealthy.

The settings of 𝑞 and 𝑘 depend on the robustness requirements

and there is a trade-off between them. On the one hand, the error

correction capability of the code is determined by𝑛−𝑘 , so we would
like a smaller 𝑘 for better correction capability. On the other hand,

a smaller 𝑞 is also preferred to lower the chance that the provider

fails to detect a corrupted permutation, as shown in Theorem 6.1.

Being able to detect corrupted permutations contributes to the

overall robustness, because when the corruption is detected, it is

essentially an erasure with known position, while if the corruption

is not detected, it becomes an error that is more expensive to correct.

Therefore, the smaller the value of 𝑞, the more likely the provider

can detect corrupted permutations, and the more corruption can be

corrected by the error correction code. However, we cannot have a

small 𝑘 and a small 𝑞 at the same time, because the total number of

different model identifiers is 𝑞𝑘 , which should be sufficiently large

for distributing models.

To balance the trade-off, we first set a total number of model

identifiers 𝑁 that the provider needs to manage and a maximal

probability𝑚𝑝 that the provider can tolerate for failing to detect a

corrupted permutation. Then we determine 𝑞 and 𝑘 by maximizing

the error correction capability while satisfying the constraints:

max

𝑞=2𝑡 ,𝑘
𝑛 − 𝑘

s.t. 𝑞𝑘 ≥ 𝑁, 𝑞

min𝑖 |𝑅𝑖 |
≤𝑚𝑝 , 𝑡 ∈ N

(27)

wheremin𝑖 |𝑅𝑖 | is the minimal number of permissible derangements

across all slots. The second constraint is a very conservative estima-

tion of𝑚𝑝 because |𝑅𝑖 | is usually much smaller than 𝑑! (or ℎ𝑘 !𝑔!
ℎ𝑘

for GQA slots). We’ve put the provider in a very unfavorable po-

sition by assuming that the adversary’s attack always makes the

extracted permutation fall into the set of permissible derangements.

Such a defensive strategy ensures a high robustness of the water-

marking method. We additionally require 𝑞 to be a power of two for

efficient implementation of the finite field arithmetic. Algorithm 2

presents the procedure to determine 𝑞 and 𝑘 . For example, if we

set𝑚𝑝 = 0.0001 and 𝑁 = 10
7
for Llama3.2-1B, then 𝑞 = 2

24
and

𝑘 = 1, which guarantees that the provider can detect corrupted

permutations with a probability more than 99.99% and manage

up to 10
7
different model identifiers. At the same time, the error

correction capability of the code is maximized to 𝑛 − 𝑘 = 32.

6.3 Robust Permutation Extraction
With slight modifications, the proposed linear assignment-based

extraction method can defend against scaling/unscaling attacks (i.e.,
SU transformation), which violate the assumption in Eq. (16) by

multiplying the rows with a constant vector 𝛼 :

𝑊 ′ = diag(𝛼)𝑊𝐶𝜋 + 𝜖. (28)

To defend against this attack, we first normalize the rows of𝑊 and

𝑊 ′ to cancel out the scaling/unscaling effect, and then solve Eq. (18)
to extract the permutation. The uniqueness of the optimal solution

can still be guaranteed under the accordingly adjusted assumption

about the scale of 𝜖 .

Theorem 6.2. Solution of Eq. (28) is also the unique optimal solu-
tion to the linear assignment problem in Eq. (18) after normalizing the
rows of𝑊 and𝑊 ′, if the normalized matrices satisfy the condition
in Eq. (16), where the normalization is defined as:

normalize(𝑊 ) = diag

(
1

∥𝑊1,:∥2
, · · · , 1

∥𝑊𝑠,:∥2

)
𝑊 . (29)

The invertible matrices in QK products (i.e., IM transformation)

can be defended more straightforwardly. We extract permutations

from value weights (i.e.,𝑊𝑣), instead of query and key weights

(i.e.,𝑊𝑞 and𝑊𝑘 ). Because the value weight is not affected by IM

transformation, the permutation extracted from𝑊𝑣 can be directly

used to decode the model identifier.

6.4 Summary
Compared with the vanilla FIT-based watermarking method, the

proposed error correction enhanced weight permutation water-

marking approach offers the following advantages:

(1) It can defend against adaptive attacks based on SU and IM

transformations, and we’ve established a strict guarantee for

this property through Theorem 6.2.

(2) It can tolerate a certain level of permutation corruption, and

the provider can detect corrupted permutations with a high

probability, thus correcting up to 𝑛 − 𝑘 erasures, which makes

the watermark removal and forgery attacks more difficult.

(3) It supports the commonly used GQA mechanism in large lan-

guage models, and has a lower time complexity for watermark

extraction compared to the brute force search method.

(4) The parameter𝑚𝑝 has a direct relationship with the robustness

level and can be set according to the provider’s requirements,

whereas the threshold value in the vanilla FIT-based method

needs to be empirically determined.

The error correction code essentially serves as a matching mech-

anism between model identifiers and extracted permutations. The

matching result is guaranteed to be unique and correct within the

error correction capability, as the generalized Reed-Solomon code is

190



Robust and Efficient Watermarking of Large Language Models Using Error Correction Codes Proceedings on Privacy Enhancing Technologies 2025(4)

Table 1: Watermark settings.

Model 𝑛 𝑞 𝑘 #Blk 𝑑 ℎ 𝑑ff

Llama3.2-1B 33 2
24

1 16 2,048 8×4 8,192

Llama3.2-3B 57 2
8

3 28 3,072 8×3 8,192

Llama2-7B 65 2
24

1 32 4,096 32 11,008

Llama3.1-8B 65 2
24

1 32 4,096 8×4 14,336

Gemma-7B 57 2
24

1 28 3,072 16 24,576

Ministral-8B-I 73 2
24

1 36 4,096 8×4 12,288

Table 2: Permutation sampling strategies by the adversary.

Strategies Description Example

Uniform

Sample a permutation from Π𝑑 with

equal probability (excluding identity).

(2, 4, 3, 1)

Swap

Sample a permutation by swapping two

elements uniformly at random.

(2, 1, 3, 4)

Cycle

Sample a permutation by generating a

random cycle.

(2, 3, 4, 1)

Derangement

Uniformaly sample a derangement from

𝑃𝑑 at random.

(2, 4, 1, 3)

a maximum distance separable (MDS) code. In contrast, the vanilla

FIT-based method uses a nearest neighbor search method to match

the extracted permutation with the model identifier, which not only

has a higher computational overhead but also lacks a guarantee of

uniqueness and correctness.

7 Evaluation
In this section, we first evaluate the utility of watermarked models.

Then we verify the theoretical guarantee on the probability of

detecting corruption in the watermark by simulating various attack

settings. We further evaluate the robustness and efficiency of the

proposed watermarking method.

7.1 Experiment Setting
Model.We use six language models with varying sizes for evalu-

ation, including Llama3.2-1B, Llama3.2-3B, Llama2-7B, Llama3.1-

8B, Gemma-7B, and Ministral-8B-Instruct-2410. These models all

use pre-normalization with RMSnorm [5], rotary position embed-

dings [59], and SwiGLU activation [55], except for Gemma-7B,

which uses tanh-based approximation of GELU [26]. They also

employ GQA except for Llama2-7B and Gemma-7B.

Watermark settings. We set 𝑚𝑝 to 0.0001 and 𝑁 to 10
7
for all

watermarking experiments, and the parameters 𝒆 and 𝒗 of GRS𝑛,𝑘

are randomly generated. The ranking and unranking functions

for derangements are implemented using algorithms in [42], both

with linear time complexity. Identifier length 𝑘 , finite field size 𝑞,

codeword length 𝑛, and dimensions are shown in Table 1, where

#Blk is the number of attention blocks, ℎ is the number of heads in

the multi-head attention (in the form of ℎ𝑘 ×𝑔 if GQA is used), and

the meanings of other dimensions are consistent with Section 2.

Attacks and model modifications. The probability of failing

to detect corruption given in Theorem 6.1 is derived assuming a

Table 3: Model utility evaluation results for baseline method.

Model PPL(w/o) Setting PPL changes Distortion

Llama2-7B 9.937

WP 0.0 0.16%

SU +0.001 0.17%

IM 0.0 0.16%

All +0.001 0.17%

Gemma-7B 8.934

WP +0.002 7.67%

SU – –

IM 0.0 7.92%

WP+IM +0.002 7.91%

Table 4: Model utility evaluation results for proposed
method.

Model PPL (w/o) PPL (w/) PPL changes Distortion

Llama3.2-1B 9.194 9.195 +0.001 1.45%

Llama3.2-3B 7.449 7.449 0.0 1.15%

Llama2-7B 9.937 9.937 0.0 0.13%

Llama3.1-8B 6.151 6.151 0.0 1.17%

Gemma-7B 8.934 8.935 +0.001 7.68%

Ministral-8B-I 13.102 13.102 0.0 1.09%

uniform sampling strategy for the adversary. In practice, differ-

ent strategies can be employed by the adversary to maximize the

probability of undetected corruption. However, synthesizing the

optimal adversary strategy is a challenging problem, as it highly

depends on the underlying permutation mapping that is assumed

to be unknown to the adversary (ranking and unranking functions

can be chosen arbitrarily). Therefore, we consider three additional

strategies when estimating the probability: swap, cycle, and de-

rangement, as explained in Table 2. These strategies are also used

to evaluate the robustness against watermark forgery attacks. We

evaluate the robustness against commonly used model modification

techniques, including quantization, pruning, and fine-tuning.

Baselines. We compare the proposed method with the baseline

method described in [18], which utilizes function invariant trans-

formations, including weight permutation (WP), scaling/unscaling

(SU), and invertible matrices in QK products (IM). The baseline

method applies one or a combination of these transformations to

watermark the models. Since it does not support models with GQA,

we exclude GQA models from the baseline evaluation.

7.2 Model Utility
7.2.1 Utility Metrics. Although weight permutations theoretically

preserve the model’s functionality, floating-point errors can lead

to observable utility distortions, particularly when the models are

loaded in 16-bit precision to optimize memory usage and inference

speed. We measure the perplexity of models on the WikiText-2

dataset [41] before and after watermarking to evaluate the genera-

tion quality changes, denoted as PPL (w/o) and PPL (w/), respec-

tively. The input token sequence length is set to 4,096 for calculat-

ing the perplexity, which measures how well the model predicts

against the ground truth. The lower the perplexity, the better the
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Figure 2: Estimated probability of failing to detect corruption
under different parameter settings and sampling strategies.

model performs. However, the focus of this evaluation is the rela-

tive change in perplexity after watermarking. We also calculate the

token distortion, which is the percentage of top-1 tokens given by

the watermarked model that are different from the original model’s

predictions.

7.2.2 Results. We report the perplexity changes and token distor-

tion for the baseline method and our proposed method in Table 3

and Table 4, respectively. The perplexity changes are almost negli-

gible for all models, with the largest change being 0.002 for Gemma-

7B when applying the WP transformation. The token distortion is

around 1% for most models, except for Gemma-7B, where it reaches

7%. SU transformation does not maintain invariance for Gemma-7B

because it adopts a non-linear scaling in layer normalization. There-

fore, we only report the results for WP, IM, and their combination.

These results indicate that the generation quality remains largely

unaffected by the watermarking process, thus preserving the utility

of the original models.

7.3 Probability of Failing to Detect Corruption
7.3.1 Estimation Method. We investigate the probability of failing

to detect corruption through simulations under different sampling

strategies by the adversary. We simulate corruption using the con-

figurations in Table 1, targeting 𝑇heads slots of the models. This

is because ℎ is smaller than 𝑑 and 𝑑ff, making the attention head

permutation slots more vulnerable to undetected corruption. For

GQA, we consider three corruption settings: (1) permuting only

the groups, (2) permuting only the heads within one group, and

(3) permuting both groups and all heads within each group. Each

simulation is repeated 100,000,000 times, and the estimated prob-

ability is calculated as the ratio of undetected corruptions to the

total number of simulations.

7.3.2 Results. In Fig. 2, we report the estimated probability under

different attack settings and their 95% confidence intervals. Addi-

tionally, we show the baseline probabilities considered when setting

the parameters of the Reed-Solomon codes in Eq. (27), represented

by grey dashed lines. Results for ℎ = 32, 8 × 4 with only group

permutation, and all settings with only head permutation within

one group are not shown because the estimated probabilities are all

0. The estimation results show that cycle and derangement strate-

gies are more likely to introduce undetected corruption than the

uniform strategy. Swap strategy fails across all settings, and just

permuting heads within one group for GQA is also ineffective in

evading detection. For GQA, permuting both groups and all heads

within each group is the most effective setting, and the estimated

probability when using a cycle strategy sometimes even exceeds

the theoretical baseline value. Despite that, all estimation results

are below the predefined threshold𝑚𝑝 = 0.0001, indicating that the

proposed watermarking method can effectively detect corruption

under different attack settings.

7.4 Robustness
We evaluate the robustness of the proposed method against (1)

various model modifications, (2) watermark obfuscation attacks, in-

cluding the SU and IM transformations, and (3) watermark removal

and forgery through compositing random permutations.

7.4.1 Model Modifications. After the distribution of watermarked

models, users may modify the models in various ways for down-

stream tasks, and adversaries may use these modifications to re-

move the watermarks. We evaluate the robustness against three

common model modification techniques for transformer models:

quantization, pruning, and fine-tuning. Firstly, we provide a brief

description of the settings for these techniques in our experiments.

Full details of the settings are provided in Appendix C.

Quantization is a common technique to reduce the memory foot-

print and improve inference speed by converting parts of the model

to lower precision. Post-training quantization methods are among

the most popular model compression techniques, which quantizes

the weights after training. We include four post-training quantiza-

tion settings in the experiments: 8-bit static quantization method

in PyTorch, 4-bit, 3-bit, and 2-bit quantization by AutoGPTQ [21].

Pruning is widely used to reduce the model size for deploy-

ment. Unstructured pruning sets the weights that contribute less

to the model’s performance to zero, while structured pruning re-

moves entire neurons, channels, or even layers. We include two

state-of-the-art unstructured pruning methods, SparseGPT [20] and

Wanda [60], with pruning ratios of 0.5 and 0.7.

Fine-tuning is broadly used to adapt pre-trained models to spe-

cific downstream tasks, and it is also a common strategy to remove

watermarks. Extensive fine-tuning may lead to large deviation in

the model weights, thus potentially affecting watermark extraction.

We use LoRA [27] to fine-tune watermarked models
3
for different

data volumes ranging from 1 million to 100 million tokens on the

WikiText-2 dataset [41]. This dataset is also used for calibration in

quantization and pruning experiments.

Table 5 shows the number of symbols (permutations) that are

different from the original codewords in the extracted watermarks

after applying these model modifications, where S-0.5 (resp. W-0.7)

denotes the SparseGPT (resp. Wanda) pruning method with a prun-

ing ratio of 0.5 (resp. 0.7). Most of the watermarks can be extracted

correctly with no corrupted permutations, even after 2-bit quantiza-

tion, 70% pruning, and 100M token fine-tuning. The only exception

is the 100M fine-tuning on Llama3.1-8B, where one permutation is

corrupted. Since the number of corruptions is within the tolerance,

the model identifier can still be extracted correctly. We’ve demon-

strated that corruption in the watermarks can be detected with

3
LoRA weights are merged into the watermarked model.
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Table 5: Robustness evaluation results on model modifications.

Model

Quantization Pruning Fine-tuning

8-bit 4-bit 3-bit 2-bit S-0.5 S-0.7 W-0.5 W-0.7 1M 5M 10M 50M 100M

Llama3.2-1B 0 0 0 0 0 0 0 0 0 0 0 0 1

Llama3.2-3B 0 0 0 0 0 0 0 0 0 0 0 0 0

Llama2-7B 0 0 0 0 0 0 0 0 0 0 0 0 0

Gemma-7B 0 0 0 0 0 0 0 0 0 0 0 0 0

Llama3.1-8B 0 0 0 0 0 0 0 0 0 0 0 0 0

Ministral-8B-I 0 0 0 0 0 0 0 0 0 0 0 0 0

high probability in Section 7.3, and this corruption in Llama3.1-8B

is also detected by the watermark extraction process. Notably, the

extensively fine-tuned models (100M tokens) exhibit severe perfor-

mance degradation, but the watermarks remain recoverable. This is

because the structure of the embedded permutations is preserved

despite the extensive modifications. The results indicate that the

proposed watermarking method is robust against common model

modifications. This also serves as an empirical validation of the

theoretical guarantee presented in Theorem 6.2.

7.4.2 Watermark Obfuscation via Functional Invariant Transforma-
tions. As discussed in Section 5, the scaling/unscaling (SU) trans-

formation and the invertible matrices in QK products (IM) transfor-

mation can preserve the functionality of the model while violating

our assumption Eq. (16) for permutation extraction. We proposed

an improvement for the extraction method to defend against these

transformations, and we evaluate the robustness of the proposed

method against these detection evasion attacks. After inserting

watermarks, we apply both SU and IM transformations to all lay-

ers of the watermarked models, and then extract permutations

and compare them with the ground truth. Parameters for these

transformations are set to the same values as in [18]:

(1) Scaling/unscaling (SU): scaling factor 𝛼𝑖 satisfies log10 (𝛼𝑖 ) ∼
U(−1, 1) and the transformation is applied to all layer nor-

malization layers and their following linear layers.

(2) Invertible matrices in QK products (IM): rotation degrees are

sampled fromU(0, 2𝜋) and the transformation is applied to

all query and key weights in the attention layers.

We repeated the attacks 10 times on each permutation slot in each

model, and all permutations are extracted correctly with no corrup-
tion, as guaranteed by Theorem 6.2. The results demonstrate that

the proposed method can effectively defend against watermark

obfuscation attacks based on functional invariant transformations.

7.4.3 Watermark Removal and Forgery. An adversary aware of the

watermarking scheme may attempt adaptive attacks to remove or

forge the watermarks. For the baseline method, its authors noted

that the adversary can apply a series of FITs to the watermarked

models to make the extracted watermark invalid, thus removing

the watermark. In fact, the extracted parameters may even be de-

coded into another valid model identifier, constituting a forgery.

The success of such adaptive attacks highly depends on the proper-

ties (e.g., minimum distance) of the set of possible identifiers – a

critical aspect not thoroughly addressed in the baseline work [18].

For instance, using simple integer sequences as identifiers, as in

the baseline, means two identifiers differing by only one element

could potentially be swapped via a single FIT operation, result-

ing in a forgery. Designing robust identifier sets resilient to such

manipulations is non-trivial, underscoring the limitations of the

baseline. Therefore, our evaluation focuses on the robustness of

our method against removal and forgery, rather than re-validating

the baseline’s known weakness.

For the proposed watermarking method, removal and forgery are

more challenging due to the integration of error correction codes

with permutationmapping. An adversary can apply permutations to

corrupt the watermark, but the original model identifier can still be

recovered as long as the number of corrupted permutations is within

theGRS code’s correction capability. To compromise the watermark,

an adversary must introduce corruptions exceeding this capability

(specifically, more than 𝑛 − 𝑘). In this case, two possible outcomes

may occur: (1) Removal: the extracted permutations cannot be

decoded into a valid model identifier; (2) Forgery: the extracted

permutations happen to decode into another valid model identifier.

The outcome depends on the specific errors introduced and the

structure of the GRS code, which is beyond the adversary’s control.

We evaluate ourmethod’s robustness against watermark removal

and forgery attacks following the most effective setting identified in

Section 7.3. For each model, we consider two scenarios: (1) removal

attacks applying 𝑛 − 𝑘 random permutations to randomly selected

layers, and (2) forgery attacks applying 𝑛 random permutations to

all layers. Each attack is repeated 2,000,000 times independently for

watermarked Llama3.2-1B and Llama3.2-3B.

All removal attack attempts failed and the corruptions were all

corrected by the GRS code. For forgery attacks with 𝑛 corruptions,

we observed no successful forgery attempts for both models, and the

extracted permutations cannot be decoded into any valid model

identifier. This result indicates that a determined adversary can re-

move the watermarks by applying a large number of permutations,

but the probability of forging a new watermark appears extremely

low. During the extraction process, all corrupted permutations were

detected. The observed frequency of undetected corruption is far

below the estimated probability in Section 7.3, which is expected

because we were considering the worst-case scenario in the esti-

mation. More experiment details are provided in Appendix D.

7.5 Efficiency
Large language models have vast numbers of parameters, which

makes traditional watermarking methods that require training com-

putationally expensive. The proposed method is much more effi-

cient as it is training-free. The insertion only requires permuting

the weights of the model, thus it can be done efficiently on the CPU.
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Table 6: Average time cost of the proposed method for differ-
ent model sizes (in seconds).

Model 𝑛 Insertion (𝑠) Extraction (𝑠)

Llama3.2-1B 33 1.4 6.7

Llama3.2-3B 57 2.0 18.4

Llama2-7B 65 4.0 33.7

Llama3.1-8B 65 4.8 52.7

Gemma-7B 57 7.6 228.0∗

Ministral-8B-I 73 4.5 45.7

Stable LM-2-12B 81 7.4 124.3

Llama2-13B 85 16.1 129.2

∗
Extraction falls back to sequential mode due to memory constraints.

Table 7: Average time cost of function invariant transforma-
tions for different model sizes (in seconds).

Model

Insertion (𝑠) Extraction (𝑠)

Perm. Scaling QK Perm. Scaling QK

Llama2-7B 4.6 1.0 1.0 423.1 15.5 4.7

Gemma-7B 5.6 1.2 0.4 705.3 19.1 3.3

Llama2-13B 9.1 2.8 2.1 828.1 34.9 10.3

The extraction can be parallelized after extracting the embedding

permutation, and it can be done in the memory without requiring

GPU resources. Nevertheless, the construction of the cost matrices

for the linear assignment problem can be accelerated using GPUs,

which requires much less memory than loading the model itself.

In Table 6, we report the average time cost of inserting and

extracting watermarks for different model sizes. We include two ad-

ditional models, Stable LM-2-12B and Llama2-13B, to demonstrate

the cost for larger models. As a comparison, we also report the

time cost of the baseline method in Table 7. All results are averaged

over 10 runs on a platform with an AMD EPYC 7T83 CPU (using

25 cores), 100GB memory, and an NVIDIA L40 GPU.

Evaluation results show that both methods are efficient in the

insertion process and the proposed method is about 3 ∼ 12 times

faster in the extraction process. This is because our proposed linear

assignment-based permutation extraction algorithm has a better

time complexity than brute-force search, especially when the search

space is large. The efficient insertion and extraction process makes

the proposed method a lightweight watermarking approach for

large transformer models.

8 Discussion
Integration of Other FITs and ECCs. It is possible to integrate

ECCs with other FITs, such as SU and IM. However, continuous

parameters of these transformations (e.g., scaling vectors) are often

more sensitive to numerical perturbations than discrete parameters

(i.e., permutations). This could complicate the design of the encod-

ing mechanism and the robust extraction algorithm. Therefore, we

focus on combining ECCs with weight permutations (WP).

Limitations. The proposed watermarking scheme has several

limitations. Firstly, it is restricted to white-box settings, where the

provider must have full access to the weights of both the original

model and the distributed model. Secondly, although the proposed

method is more robust than existing methods, it still cannot pre-

vent the adversary from removing the watermark if the corruption

exceeds the correction ability of the ECC. Additionally, the design

of the watermarking scheme only provides a theoretical guarantee

against adaptive attacks based on FITs. Sophisticated attacks that

exploit the specific structure of the watermarking scheme may still

be possible. For example, model merging [72] was shown to be

effective against existing fingerprinting methods and quantization-

based watermarking methods [11]. This technique could also be

used to attack the proposed method, as the permutation structures

are likely to be disrupted during the merging process.

Generalization to Larger Models. With the rapid development

of large language models, the architectures and techniques they

employ have become increasingly diverse. However, their essence

remains rooted in the transformer architecture. Therefore, the pro-

posed watermarking scheme remains applicable. Moreover, the

larger the model, the more attention blocks it has, and the higher

the correction ability of the watermark, which makes it more diffi-

cult for the adversary to remove the watermark in larger models.

Attacking Generalized Reed-Solomon Codes. The Sidelnikov Shes-
takov attack [58] is a well-known attack on Reed-Solomon codes.

It exploits the Vandermonde structure of Reed-Solomon generator

matrices to recover the private key parameters. When evaluation

points (i.e., parameters 𝒆) are consecutive integers, certain rows

can be expressed as low-degree polynomial combinations, and the

cost of the attack is significantly reduced [46]. To mitigate this, [23]

proposed randomizing the parity check matrix to make the attack

more difficult. Such a defense mechanism can be incorporated into

the proposed watermarking scheme to enhance its security. Addi-

tionally, using a larger finite field size (e.g., 𝑞 = 2
24
) can increase

the difficulty of the attack.

Dynamic Watermark Renewal. The lightweight nature of the pro-
posed watermarking scheme enables dynamic updates of embedded

identifiers, which enhances privacy protection in real-world deploy-

ment. Specifically, model providers can issue temporary tokens (e.g.,
time-bound cryptographic keys) as watermarks and refresh them

periodically. This mechanismmitigates risks such as long-term iden-

tifier tracking (where adversaries correlate multiple model copies to

infer ownership patterns) and adaptive reverse-engineering attacks.

Providers can either reconfigure the generalized Reed-Solomon pa-

rameters or adopt distinct rank/unrank functions for permutation

mapping across update cycles. Such flexibility forces adversaries to

restart codebook analysis after each update, significantly increasing

the difficulty of adaptive attacks.

9 Related Work
9.1 Neural Network Watermarking
Model watermarking serves as a passive intellectual property pro-

tection technique that embeds a unique identifier into a model

without significantly affecting its performance. The watermark can

be used to prove ownership, detect unauthorized use, or trace the

provenance of the model [19]. Traditional white-box watermarking

methods [13, 65, 69] exploit the over-parameterization of neural

194



Robust and Efficient Watermarking of Large Language Models Using Error Correction Codes Proceedings on Privacy Enhancing Technologies 2025(4)

networks to embed secret signatures into model weights. These

methods often rely on regularization or optimization techniques

that require training. Additionally, [45] introduced Invariant Neu-

ron Transformations (INTs) to remove white-box watermarks in

convolutional neural networks (CNNs). These transformations shuf-

fle and scale model weights while preserving functionality, which

are essentially the same as the weight permutation (WP) and scal-

ing/unscaling (SU) transformations explored in [18] and this work.

However, they are designed for watermark removal rather than

embedding. Consequently, our proposed method can also resist

INT-based attacks. Black-box watermarking methods [1, 25], on

the other hand, plant a backdoor as a watermark during the train-

ing phase. These watermarks can be extracted by querying the

model with trigger inputs. While avoiding the need for white-box

access during extraction, these methods typically require signif-

icant computational overhead for embedding. The robustness of

black-box watermarking methods has also been questioned, as they

can sometimes be removed by subsequent fine-tuning [2, 54].

Prominent watermarking methods for LLMs leverage backdoor-

based techniques [47, 56, 71]. These methods typically require fine-

tuning to embed backdoors into the model that can be triggered

by specific inputs, which incurs much higher computational over-

head than our approach. Moreover, our approach is developed with

theoretical considerations for robustness against certain adaptive at-

tacks, offering guarantees that are often only empirically evaluated

in existing methods. Another line of research aims to watermark

quantized LLMs during the quantization process [34, 77], which

is computationally efficient but not applicable to all models. Our

approach, which is different from these methods, is built on the

foundation of the FIT-based watermarking method [18] that is

training-free and applicable to all transformer models. However,

adversaries can exploit the same transformation to remove or forge

FIT-based watermarks, making them vulnerable to adaptive attacks.

The integration of ECCs into our watermarking scheme enhances

its robustness against such attacks.

Watermarking LLM-generated content is another active research

area, primarily focusing on distinguishing AI-generated output (e.g.,

text [10, 14, 32], images [66]) from human-created content. These

approaches usually embed watermarks by modifying the model’s

generation process or altering character encodings. Notably, [10]

proposed a novel pseudorandom ECC to watermark generated text,

which is similar to our approach but focuses on the generation

process rather than the model itself.

9.2 Neural Network Model Copyright Protection
Model fingerprinting [6, 40], another kind of passive intellectual

property protection technique, does not require additional tuning or

modification of the model that could tamper with its performance.

Instead, it uses the inherent and unique characteristics [48] of the

model to generate a fingerprint that can be used to identify the

model. The fingerprint can still be extracted even after extensive

modifications to the model [9, 35], such as fine-tuning or pruning.

Therefore, model fingerprinting can be used to trace the origin

of a model, even if the model has been altered. However, finger-

prints cannot be used to identify a specific distributed model since

they are inherent to the model and do not change with distribu-

tion [19]. Watermarking methods, on the other hand, can embed

a unique identifier for each distributed model, allowing the model

provider to trace the origin of each model individually. These two

techniques complement each other and can be used together to

provide comprehensive protection for the model.

Active protection techniques differ from passive protection tech-

niques in that they aim to prevent copyright infringement from

occurring. Model authentication [7, 8, 37] manages the authorized

usage of the model by encoding it with a secret key, so that only

authorized users with valid keys can access the model normally,

while unauthorized users can only use the model with reduced

performance. Another active protection technique is inference per-

turbation [30, 31, 33], which defends against model extraction at-

tacks by modifying the inference results to prevent adversaries

from stealing the model.

9.3 Privacy Threats in Deep Learning
Existing threats to privacy in deep learning can be classified into

three main categories: membership inference, model inversion and

attribute inference, and model extraction. Membership inference

attacks [36, 38, 57] speculate whether a specific data sample was

used to train a given target model, thereby exposing sensitive in-

formation patterns. Model inversion and attribute inference at-

tacks [22, 70, 73] aim to reconstruct sensitive input features or infer

hidden attributes, directly compromising individual privacy. Model

extraction attacks [28, 64, 75] enable adversaries to steal model pa-

rameters or functionalities through black-box queries, potentially

resulting in a privacy breach. Privacy-preserving techniques to

address these privacy threats mainly include data anonymization,

differential privacy [68], homomorphic encryption [24, 53], and

secure multi-party computation [51, 52].

10 Conclusion
In this paper, we integrate error correction codes with weight per-

mutations to develop a novel watermarking scheme for large lan-

guage models. The proposed approach is training-free and has a

lower computational overhead compared to existing FIT-based wa-

termarking methods. We utilize generalized Reed-Solomon codes

to encode the raw model identifier, transforming it into a sequence

of permutations with no fixed points. This strategy effectively safe-

guards against watermark removal and forgery attacks. We further

demonstrate the method’s resistance against various FIT attacks

and provide a probability analysis for detecting corruption in the

watermark. The extensive evaluation results showcase the robust-

ness of our proposed watermarking method against various attacks

with low computational overhead. Overall, our approach provides

a scalable and secure solution for safeguarding the intellectual

property of large language models.
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A Permutation Extraction
In this section, we provide the complete proof of the permutation

extraction algorithm and the theoretical analysis of the permutation

extraction process.

Theorem A.1. Under the assumption of Eq. (17), the permutation
𝜋 that satisfies Eq. (16) is the unique optimal solution to the following
linear assignment problem:

𝜋 = argmin

𝜎∈Π𝑑

𝑑∑︁
𝑖=1

cost(𝑖, 𝜎 (𝑖)) = argmin

𝜎∈Π𝑑

𝑑∑︁
𝑖=1

∥𝑊:,𝑖
′ −𝑊:,𝜎 (𝑖 ) ∥2, (30)

where cost(𝑖, 𝜎 (𝑖)) is the cost of matching the 𝑖-th column of𝑊 with
the 𝜎 (𝑖)-th column of𝑊 ′.

Proof. The cost of 𝜋 is given by

𝑑∑︁
𝑖=1

∥𝑊:,𝑖
′ −𝑊:,𝜋 (𝑖 ) ∥2 =

𝑑∑︁
𝑖=1

∥(𝑊𝐶𝜋 ):,𝑖 −𝑊:,𝜋 (𝑖 ) + 𝜖:,𝑖 ∥2 =
𝑑∑︁
𝑖=1

∥𝜖:,𝑖 ∥2 .

(31)

For any 𝜎 ∈ Π𝑑 that is not 𝜋 , let I = {𝑖 | 𝜋 (𝑖) ≠ 𝜎 (𝑖)}, then we

have:

𝑑∑︁
𝑖=1

∥𝑊:,𝑖
′ −𝑊:,𝜎 (𝑖 ) ∥2 −

𝑑∑︁
𝑖=1

∥𝑊:,𝑖
′ −𝑊:,𝜋 (𝑖 ) ∥2 (32)

=
∑︁
𝑘∈I

(
∥𝑊:,𝜋 (𝑘 ) −𝑊:,𝜎 (𝑘 ) + 𝜖:,𝑘 ∥2 − ∥𝜖:,𝑘 ∥2

)
(33)

≥
∑︁
𝑘∈I

(
∥𝑊:,𝜋 (𝑘 ) −𝑊:,𝜎 (𝑘 ) ∥2 − 2∥𝜖:,𝑘 ∥2

)
. (34)

According to Eq. (17), we have ∥𝑊:,𝜋 (𝑘 ) −𝑊:,𝜎 (𝑘 ) ∥2 ≥ 2𝛿 > 2∥𝜖:,𝑘 ∥2
for all 𝑘 ∈ I, where the last inequality is strict. Therefore, 𝜋 is the

unique optimal solution to the linear assignment problem. □

TheoremA.2. Under the assumption of Eq. (17), if the permutation
that satisfies Eq. (16) is a block permutation 𝜋𝑏 ∈ Π𝑏

𝑑
, then 𝜋 is the

unique optimal solution to the following linear assignment problem:

𝜋 = argmin

𝜎∈Π𝑑/𝑏

𝑑/𝑏∑︁
𝑖=1

costblk (𝑖, 𝜎 (𝑖)). (35)

The block permutation can be obtained by 𝜋𝑏 = BP(𝜋 ;𝑏).

Proof. Similarly, the cost of 𝜋 is given by

𝑑/𝑏∑︁
𝑖=1

𝑏∑︁
𝑗=1

∥𝑊:,𝑖 ·𝑏+𝑗
′ −𝑊:,𝜋 (𝑖 ) ·𝑏+𝑗 ∥2 (36)

=

𝑑/𝑏∑︁
𝑖=1

𝑏∑︁
𝑗=1

∥𝑊:,𝑖 ·𝑏+𝑗𝐶𝜋𝑏 −𝑊:,𝜋 (𝑖 ) ·𝑏+𝑗 + 𝜖:,𝑖 ·𝑏+𝑗 ∥2 (37)

=

𝑑∑︁
𝑖=1

∥𝜖:,𝑖 ∥2 . (38)

For any 𝜎 ∈ Π𝑑/𝑏 that is not 𝜋 , let I = {𝑖 | 𝜋 (𝑖) ≠ 𝜎 (𝑖)}, then we

have:

𝑑/𝑏∑︁
𝑖=1

𝑏∑︁
𝑗=1

∥𝑊:,𝑖 ·𝑏+𝑗
′ −𝑊:,𝜎 (𝑖 ) ·𝑏+𝑗 ∥2 −

𝑑/𝑏∑︁
𝑖=1

𝑏∑︁
𝑗=1

∥𝑊:,𝑖 ·𝑏+𝑗
′ −𝑊:,𝜋 (𝑖 ) ·𝑏+𝑗 ∥2

(39)

=
∑︁
𝑘∈I

𝑏∑︁
𝑗=1

(
∥𝑊:,𝜋 (𝑘 ) ·𝑏+𝑗 −𝑊:,𝜎 (𝑘 ) ·𝑏+𝑗 + 𝜖:,𝑘 ·𝑏+𝑗 ∥2 − ∥𝜖:,𝑘 ·𝑏+𝑗 ∥2

)
(40)

≥
∑︁
𝑘∈I

𝑏∑︁
𝑗=1

(
∥𝑊:,𝜋 (𝑘 ) ·𝑏+𝑗 −𝑊:,𝜎 (𝑘 ) ·𝑏+𝑗 ∥2 − 2∥𝜖:,𝑘 ·𝑏+𝑗 ∥2

)
. (41)

Since ∥𝑊:,𝜋 (𝑘 ) ·𝑏+𝑗 −𝑊:,𝜎 (𝑘 ) ·𝑏+𝑗 ∥2 ≥ 2𝛿 > 2∥𝜖:,𝑘 ·𝑏+𝑗 ∥2 for all 𝑘 ∈ I,
we similarly conclude that 𝜋 is the unique optimal solution to the

linear assignment problem. □

Theorem A.3. Given a block diagonal matrix diag(𝑅1, · · · , 𝑅𝑛),
denoted as 𝑅, where each 𝑅𝑖 is a 2×2 rotation matrix and has different
rotation angles, if an invertible matrix 𝑄 satisfies that 𝑄𝑅𝑄−1 = 𝑅,
then 𝑄 is a block diagonal matrix, i.e., diag(𝑄1, · · · , 𝑄𝑛), where each
𝑄𝑖 is a 2 × 2 rotation matrix multiplied by a scalar.

Proof. Since 𝑄𝑅𝑄−1 = 𝑅, we have 𝑄𝑅 = 𝑅𝑄 , which means that

𝑄 commutes with 𝑅. Denote 𝑄𝑖 𝑗 ∈ R2×2
as the (𝑖, 𝑗)-th block of 𝑄 ,

then we have:

𝑄𝑖 𝑗𝑅 𝑗 = 𝑅𝑖𝑄𝑖 𝑗 . (42)

When 𝑖 ≠ 𝑗 , 𝑅𝑖 ≠ 𝑅 𝑗 as they have different rotation angles, and thus

𝑄𝑖 𝑗 = 0. While for 𝑖 = 𝑗 , 𝑄𝑖𝑖 commutes with 𝑅𝑖 , which means that

𝑄𝑖𝑖 is a rotation matrix multiplied by a scalar. Therefore,𝑄 is a block

diagonal matrix whose blocks are rotation matrices multiplied by

scalars. □

Theorem A.4. Solution of Eq. (28) is also the unique optimal solu-
tion to the linear assignment problem in Eq. (18) after normalizing the
rows of𝑊 and𝑊 ′, if the normalized matrices satisfies the assumption
in Eq. (16), where the normalization is defined as:

normalize(𝑊 ) = diag

(
1

∥𝑊1,:∥2
, · · · , 1

∥𝑊𝑑,:∥2

)
𝑊 . (43)

Proof. It suffices to show that the normalized matrices satisfy

the assumption in Eq. (16). Without loss of generality, we consider

the 𝑖-th row of𝑊 and𝑊 ′, denoted by𝑊𝑖,: and𝑊𝑖,:
′
, respectively.
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Then we have:

𝑊𝑖,:
′ = 𝛼𝑖𝑊𝑖,:𝐶𝜋 + 𝜖𝑖,: (44)

normalize(𝑊𝑖,:
′) = 𝑊𝑖,:

′

∥𝑊𝑖,:
′∥2

(45)

=
𝑊𝑖,:

∥𝑊𝑖,:∥2
𝐶𝜋 +

(
𝑊𝑖,:
′

∥𝑊𝑖,:
′∥2
− 𝑊𝑖,:𝐶𝜋

∥𝑊𝑖,:∥2

)
, (46)

where the first term is the 𝑖-th row of𝑊 after normalization, and

the second term is the new noise term. To show that the new noise

term is efficiently small, we first observe that𝑊𝑖,:
′
is the result of

an affine transformation on𝑊𝑖,:𝐶𝜋 , whose norm is the same as𝑊𝑖,:.

Therefore, if we denote𝑊𝑖,:𝐶𝜋 as 𝑣 , then we have:

𝜖new =
𝛼𝑖𝑣 + 𝜖𝑖,:
∥𝛼𝑖𝑣 + 𝜖𝑖,:∥2

− 𝑣

∥𝑣 ∥2
. (47)

Under the assumption that 𝛼𝑖 > 0 and ∥𝜖𝑖,:∥2 ≪ ∥𝑣 ∥2, i.e., the noise
is much smaller than the parameter, we have:

∥𝛼𝑖𝑣 + 𝜖𝑖,:∥2 =
√︃
𝛼2
𝑖
∥𝑣 ∥2

2
+ 2𝛼𝑖 ⟨𝑣, 𝜖𝑖,:⟩ + ∥𝜖𝑖,:∥2

2
(48)

= 𝛼𝑖 ∥𝑣 ∥2

√︄
1 + 2⟨𝑣, 𝜖𝑖,:⟩

𝛼𝑖 ∥𝑣 ∥2
2

+
∥𝜖𝑖,:∥22
𝛼2
𝑖
∥𝑣 ∥2

2

(49)

≈ 𝛼𝑖 ∥𝑣 ∥2
(
1 + ⟨𝑣, 𝜖𝑖,:⟩

𝛼𝑖 ∥𝑣 ∥2
2

)
. (50)

Therefore, the new noise term can be approximated as:

𝛼𝑖𝑣 + 𝜖𝑖,:
∥𝛼𝑖𝑣 + 𝜖𝑖,:∥2

− 𝑣

∥𝑣 ∥2
≈ 𝛼𝑖𝑣 + 𝜖𝑖,:

𝛼𝑖 ∥𝑣 ∥2
(
1 + ⟨𝑣, 𝜖𝑖,:⟩

𝛼𝑖 ∥𝑣 ∥2
2

) − 𝑣

∥𝑣 ∥2
(51)

≈ 𝛼𝑖𝑣 + 𝜖𝑖,:
𝛼𝑖 ∥𝑣 ∥2

(
1 − ⟨𝑣, 𝜖𝑖,:⟩

𝛼𝑖 ∥𝑣 ∥2
2

)
− 𝑣

∥𝑣 ∥2
(52)

≈ 𝜖𝑖,: − 𝑢⟨𝑢, 𝜖𝑖,:⟩
𝛼𝑖 ∥𝑣 ∥2

, (53)

where 𝑢 is the unit vector of 𝑣 . The norm of the new noise term is

then bounded by:

∥𝜖new∥2 ≈
𝜖𝑖,: − 𝑢⟨𝑢, 𝜖𝑖,:⟩

𝛼𝑖 ∥𝑣 ∥2

2

(54)

=
1

𝛼𝑖 ∥𝑣 ∥2

√︃
∥𝜖𝑖 ∥2

2
− ⟨𝑢, 𝜖𝑖⟩2 (55)

=
∥𝜖𝑖,:∥2 sin𝜃
𝛼𝑖 ∥𝑣 ∥2

(56)

<
𝛿 sin𝜃

2𝛼𝑖 ∥𝑣 ∥2
, (57)

where 𝜃 is the angle between 𝑣 and 𝜖𝑖,:. Consequently, the new

noise term is also efficiently small, and as long as the assumption in

Eq. (16) holds for the normalized matrices, the solution of Eq. (28) is

the unique optimal solution to the linear assignment problem. □

B Corruption Probability Analysis
Theorem B.1. Suppose the adversary corrupts a derangement

𝜋 ∈ D𝑑 by compositing it with a permutation 𝜎 ∈ Π𝑑 , resulting in
the extracted permutation 𝜋 ′ = 𝜎 ◦ 𝜋 . Denote the probability that
𝜙−1 (𝜋 ′) is defined as 𝑝corrupt, i.e., the corruption is not detected during
decoding, then 𝑝corrupt ≤ 𝑞

𝑑!
if 𝜎 ∼ U(Π𝑑 ).

Proof. For a permutation 𝜎 uniformly sampled from Π𝑑 , the

distribution of 𝜋 ′ = 𝜎 ◦ 𝜋 is also uniform over D𝑑 . Since only 𝑞 out

of 𝑑! permutations in D𝑑 can be decoded by 𝜙−1, the probability
that 𝜙−1 (𝜋 ′) is defined is at most

𝑞

𝑑!
. □

C Settings of Model Modification Techniques
We report the settings of model modification techniques in Section 7

and provide relevant details in this section.

C.1 Quantization
Two quantization methods are used in our experiments: 8-bit static

quantization implemented by PyTorch, and AutoGPTQ with 2-bit,

3-bit, and 4-bit quantization. Both quantization methods require a

calibration dataset. For this purpose, we use the first 1,000 samples

from the WikiText-2 dataset. We follow the default settings of

AutoGPTQ for quantization, with group size set to 128 and rows

processed based on decreasing activation.

C.2 Pruning
For unstructured pruning, we use two methods, SparseGPT and

Wanda, to prune the watermarked models with a target sparsity of

0.5 and 0.7. A calibration dataset is also required for pruning, and

we use the same dataset as in the quantization process, except that

we only use 128 samples, as recommended by the default settings.

For SparseGPT, we set the block size to 128 and Hessian dampening

to 0.01. No further hyperparameter for Wanda is required.

C.3 Fine-tuning
We use LoRA to fine-tune watermarked models. The target layers

for LoRA include all linear layers except for the output layer. The

rank 𝑟 is set to 12, 𝛼 is set to 32, and the dropout rate is set to 0.1. We

fine-tune using AdamW [39] with a linear learning rate schedule

and a batch size of 4 on the WikiText-2 dataset. The learning rate is

set to 2e-5 and weight decay is set to 0.01. The first 1,000 steps are

used for warm-up with a warmup ratio of 0.1. We stop fine-tuning

after a certain amount of tokens have been processed, which is set

to 1 million, 5 million, 10 million, 50 million, and 100 million for all

models in our evaluation. The training is performed on an NVIDIA

L40 GPU with 48GB of VRAM.

The performance of fine-tuned watermarked Llama models is

reported in Table 8, which shows the perplexity (PPL) on the test

set of WikiText-2 and the accuracy on the HellaSwag benchmark.

We additionally include the performance of the original water-

marked models (without fine-tuning) for comparison, as indicated

in the Watermarked column. The results show that the perplexity

on WikiText-2 slightly decreases after fine-tuning about 1M tokens,

while the accuracy on HellaSwag is largely preserved. As the num-

ber of fine-tuning tokens increases, the models are overfitted to the

training data, leading to a significant increase in perplexity and a

decrease in accuracy on HellaSwag.

D Watermark Removal and Forgery Attacks
We repeated 2,000,000 times the watermark removal attack for

Llama3.2-1B and Llama3.2-3B under the same settings as in Sec-

tion 7. Each time, the adversary randomly selects 32 and 56 layers

of the model and performs a random permutation on the weights of
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Table 8: Performance of fine-tuned watermarked models.

Model

Watermarked 1M Tokens 5M Tokens 10M Tokens 50M Tokens 100M Tokens

PPL HellaSwag PPL HellaSwag PPL HellaSwag PPL HellaSwag PPL HellaSwag PPL HellaSwag

Llama3.2-1B 8.49 53.55% 8.37 53.64% 8.28 52.21% 109.40 37.02% 58.70 27.49% 1667.03 25.65%

Llama3.2-3B 7.01 61.28% 6.91 61.19% 6.92 61.02% 9.06 37.28% 3679.74 26.25% 418.50 25.29%

Llama2-7B 22.68 61.68% 22.95 61.58% 25.68 60.45% 24.17 59.55% 124.87 52.09% 92797.25 27.60%

Llama3.1-8B 5.97 65.55% 5.97 65.51% 6.39 64.82% 53.13 27.66% 624.44 26.22% 6294.09 25.57%

each selected layer. The number of introduced corruption is within

the error correction capability of each watermark. We observed no

successful removal of the watermark, and the original identifiers

were successfully recovered in all cases.

Table 9 shows the attacking results of watermark forgery. The

number of detected permutation corruptions is reported for each

model, where the number𝑚/𝑛 indicates that there are 𝑛 corrupted

permutations, and𝑚 of them are detected and identified as erasures

during decoding. The number of decode failures and successes are

also reported for each model. If a decode success occurs and the re-

sulting identifier is different from the original one, the forgery attack

is considered successful. Note that for Llama3.2-1B and Llama3.2-

3B, the forgery attack applies 33 and 57 random permutations,

respectively, both exceeding the error correction capability of the

watermark.

Table 9: Simulation results of watermark forgery attacks.

Model

Number of detected

permutation corruption

Decode

failure

Decode

success

Llama3.2-1B 66,000,000/66,000,000 (100%) 2,000,000 0

Llama3.2-3B 114,000,000/114,000,000 (100%) 2,000,000 0
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