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Abstract
Federated Distillation (FD) has emerged as a popular federated
training framework, enabling clients to collaboratively train models
without sharing private data. Public Dataset-Assisted Federated Dis-
tillation (PDA-FD), which leverages public datasets for knowledge
sharing, has become widely adopted. Although PDA-FD enhances
privacy compared to traditional Federated Learning, we demon-
strate that the use of public datasets still poses significant privacy
risks to clients’ private training data. This paper presents the first
comprehensive privacy analysis of PDA-FD in the presence of an
honest-but-curious server. We show that the server can exploit
clients’ inference results on public datasets to extract two critical
types of private information: label distributions and membership
information of the private training dataset. To quantify these vul-
nerabilities, we introduce two novel attacks specifically designed
for the PDA-FD setting: a label distribution inference attack and
innovative membership inference methods based on Likelihood
Ratio Attack (LiRA). Through extensive evaluation of three repre-
sentative PDA-FD frameworks (FedMD, DS-FL, and Cronus), our
attacks achieve state-of-the-art performance, with label distribution
attacks reaching minimal KL-divergence and membership inference
attacks maintaining high True Positive Rates under low False Posi-
tive Rate constraints. Our findings reveal significant privacy risks
in current PDA-FD frameworks and emphasize the need for more
robust privacy protection mechanisms in collaborative learning
systems.

Keywords
Federated Distillation, Membership Inference Attack, Label Distri-
bution Inference Attack

1 Introduction
In recent years, federated learning (FL) has emerged as a promising
paradigm for collaborative machine learning while preserving data
privacy [26]. Traditional FL frameworks, such as FedAvg [26] and
FedSGD, require clients to upload model parameters or gradients
to a central server for aggregation, which can introduce limitations
in both privacy and utility. To address these issues, federated distil-
lation (FD) [3, 13, 15, 22, 36] has gained attention as an alternative
approach that offers enhanced privacy protection and reduced com-
munication overhead [12, 42]. In FD, model-inference outputs or
distilled knowledge are exchanged between the server and clients
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Figure 1: Workflow of Public Dataset-Assisted Federated Dis-
tillation (PDA-FD). During each collaborative training round,
clients first train their private models on their respective pri-
vate datasets, then perform inference on the public dataset
and transmit the resulting logits back to the server as trans-
ferred knowledge. As an honest-but-curious server, the server
can extract private information from target clients’ private
datasets by manipulating and leveraging public datasets.

instead of model parameters. This learning scheme only requires
black-box access to client models, supporting diverse model archi-
tectures across clients. Existing approaches, such as FedMD [22],
DS-FL [13] and Cronus [3], have been proposed to further enhance
the privacy protection and efficiency of collaborative learning.

In these solutions, public datasets are often used to facilitate
knowledge distillation among clients. Knowledge sharing can be
achieved across clients with diverse data distributions by having all
clients perform inference on the same public data and sharing these
inference results as knowledge. We call such a learning scheme
public dataset-assisted federated distillation, or PDA-FD. Despite
the benefits of FD, the privacy implications in such frameworks
have not been thoroughly explored in the existing literature. While
FD generally provides stronger privacy guarantees than traditional
FL, using a public dataset for information exchange can result in
potential privacy leakage. Figure 1 illustrates the workflow of PDA-
FD. In each collaborative training round of PDA-FD, clients need to
train their private models on their respective private datasets before
performing inference on the public dataset and transmitting the
inference results as knowledge to the server. This process enables
better transfer of knowledge learned from private data to other
clients’ private models. However, this process also enhances the
memorization of private datasets by privatemodels, thereby causing
the private models’ inference results on the public dataset to leak
private information from the private dataset. We discover that
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an honest-but-curious server, via manipulating the public dataset
and exploiting the client’ inference results on the public dataset,
can obtain private information from a particular client’s private
training dataset without compromising the training process of PDA-
FD. In particular, the label distribution of the training dataset, and
if specific data belongs to a client’s training dataset (membership
information). These two information leaks are representative and
frequently studied in the ML privacy literature [9, 28, 44].

In this work, we devise two types of privacy attacks against
clients by the server: Label Distribution Inference Attacks (LDIA)
and Membership Inference Attacks (MIA). LDIA reveals privacy in-
formation about the overall data distribution of all client private
datasets combined. In contrast, membership inference attacks en-
able more granular privacy leakage by identifying the presence
of specific data samples in a client’s private datasets. Both LDIA
and MIA can be performed in a black-box manner, requiring only
clients’ inference results on the public dataset, which renders these
attacks practically useful since FD frameworks are generally de-
signed to not transfer a client model to the server. Additionally,
Federated Distillation assumes non-IID data distributions across
clients in the label space. LDIA becomes particularly important in
this context, as inferring the label distribution can reveal signifi-
cant information about a client’s unique data characteristics. For
example, if hospitals were conducting FD to protect patient privacy,
attackers could expose which facilities specialize in rare conditions,
potentially de-anonymizing patients with unique medical profiles
while also compromising institutional privacy. Furthermore, LDIA
and MIA can serve as stepping stones for more sophisticated at-
tacks. For instance, the obtained knowledge can be leveraged to
generate synthetic data that mimics private datasets.

In the recent literature, LDIA and MIA have been extensively
studied in the traditional FL and centralized machine learning set-
tings [17, 27, 28, 31, 35, 46]. They have largely focused on white-box
or gradient-based attacks. For example, Gu et al. demonstrated that a
malicious server in FL can infer label distributions by exploiting the
gradients or parameters uploaded by clients [9]. Similarly, Wainakh
et al. showed that user-level label leakage is possible through gradi-
ent analysis [38]. For MIAs, Nasr et al. developed sophisticated MIA
techniques that exploit the white-box access to model parameters
in FL [28]. The rich information leveraged in these attacks are not
directly accessible in FD settings.

In the FD setting, a few studies have primarily focused on MIAs,
such as FD-Leaks [44],MIA-FedDL [23] and GradDiff [39]. However,
due to reasons such as the use of low-quality shadow models or
overly strong threat model assumptions, these methods tend to
experience decreased effectiveness in real-world FD scenarios. In
FD-leaks, a malicious client leverages its local model as a shadow
model to train an MIA classifier, then applies the classifier on target
sample inference score to determine target sample membership in
other clients’ private datasets. Effective MIA requires attackers to
possess high-quality shadowmodels, which are shadowmodels that
can mimic target model performance. Such shadow models need
to be trained on shadow datasets sharing similar data distributions
with the target model’s training dataset [2, 35]. However, in FD-
leaks, the distribution of the training dataset of themalicious client’s
local model may not be consistent with the distribution of the target
model’s training dataset, resulting in the shadow model used by

the malicious client potentially being a low-quality shadow model,
which leads to limited MIA performance. In MIA-FedDL [23], the
attacker acts as clients, while in GradDiff [39], the attacker can be
either clients or the server. However, for MIA-FedDL and GradDiff,
they assume that the attacker can additionally obtain a carefully
designed shadow dataset with a distribution consistent with the tar-
get client model’s training dataset distribution to train the shadow
models used in MIA. We consider this to be an overly strong threat
model assumption in the FD scenario. In the FD setting, it is chal-
lenging for both clients and the server to obtain the data distribution
of other clients’ private data. Therefore, in a more realistic threat
model where clients and servers cannot directly obtain the private
data distribution of the target client, these MIA methods [23, 39, 44]
in heterogeneous non-IID environments will experience decreased
effectiveness due to the inability to use high-quality shadowmodels
in MIA. Simultaneously, we note that these MIAs in FD scenarios
still combine the use of low-precision classifier-based MIA [35], re-
sulting in their relatively limited performance on the key evaluation
metric of True Positive Rate at low False Positive Rate Region [2].

To address the limitations of the existing works, we aim to com-
prehensively and effectively examine privacy leakage by public
datasets in FD across multiple frameworks (FedMD, DS-FL, and
Cronus) and various data distribution scenarios. We introduce new
attack methods that are specifically tailored to the PDA-FD set-
ting. Specifically, we propose a novel LDIA method based on pub-
lic datasets and extend the state-of-the-art MIA, Likelihood Ra-
tio Attack (LiRA) [2], to overcome the challenges posed by the
limited information available in PDA-FD. To that end, we design
and implement Co-op LiRA and Distillation-based LiRA for MIAs.
These two MIA approaches relax the constraint present in most cur-
rent MIAs [2, 35, 40] that require the attacker to possess a shadow
dataset with the same data distribution as the target model’s train-
ing dataset. In order to obtain shadow models that can effectively
mimic the target model’s performance, in co-op LiRA, the server
executes LDIA as a preliminary attack to obtain the label distri-
bution of all clients’ private data, then selects client models with
label distributions similar to the target client model’s as shadow
models in MIA. In distillation-based LiRA, the server utilizes the
public dataset used in the FD training process, using the target
client model as a teacher model to distill several student models as
shadow models in MIA.

Compared to previous MIA methods in FD, for FD-leaks [44],
through our approach of selecting or training shadow models,
we are able to obtain higher-quality shadow models that can bet-
ter mimic the performance of target client models. Unlike MIA-
FedDL [23] and GradDiff [39], our attack operates under more
realistic threat model assumptions in FD scenarios, requiring only
the existing public dataset from the FD training process rather than
an additional carefully crafted shadow dataset that matches the tar-
get model’s training distribution. Furthermore, our proposed MIAs
adapt and integrate the advanced MIA method LiRA into realistic
FD scenarios with constrained threat model, offering significantly
better performance than classifier-based MIAs [35] used in prior
works [23, 39, 44], thereby bringing privacy research in FD closer in
line with the state-of-the-art developments in the MIA field [2, 40].
Additionally, while some previous works [39, 44] primarily focused
on client-side attacks, our work provides a more holistic view by
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examining both LDIA and MIA from the server’s perspective. A
high-level comparison with the existing work is shown in Table 1.

Table 1: Summary of Privacy Attacks in FL & FD

Method Attacker Framework Ideal 𝐷𝑠ℎ𝑎𝑑𝑜𝑤
* Attack Goal

[9] Server FL Required LDIA
[28] Server&Client FL Required MIA
[23] Client FD Required MIA
[44] Client FD Not Required MIA
[39] Server&Client FD Required MIA

Ours Server FD Not Required LDIA&MIA
* 𝐷𝑠ℎ𝑎𝑑𝑜𝑤 that has the same data distribution as 𝐷𝑡𝑟𝑎𝑖𝑛 .

In our study, our key findings include: (1) LDIA can be success-
fully achieved across multiple PDA-FD frameworks that signifi-
cantly outperform random guessing baselines. (2) The proposed
co-op LiRA and distillation-based LiRA shows high effectiveness
in terms of the True Positive Rate (TPR) in a low False Positive
Rate (FPR) region. (3) We also show that the effectiveness of LDIA
and MIA varies with data distributions. Adversaries can generally
achieve higher attack success rates when data follows more uni-
form distributions compared to non-IID settings. Our findings col-
lectively reveal significant privacy risks in current PDA-FD frame-
works and highlight the need for more advanced privacy-preserving
mechanisms.

2 Understanding the Privacy Risks in PDA-FD
2.1 PDA-FD
Federated Distillation (FD) [3, 13, 15, 22, 36] is a specialized FL
framework distinct from traditional FL. FD exchanges model out-
puts or distilled knowledge between the server and clients instead
of model parameters, which significantly reduces communication
overhead. Additionally, FD only requires black-box access to client
models and supports diverse model architectures across clients. As
a result, FD not only better preserves privacy but also offers greater
utility compared to traditional FL frameworks.

In our study, we focus on one category of FD frameworks, Public
Dataset-Assisted Federated Distillation (PDA-FD) [3, 13, 22].
The workflow of PDA-FD is shown in Figure 1. In PDA-FD, the
server leverages a public dataset to facilitate knowledge trans-
fer among clients. The public dataset is prepared by the server
and shared with all the clients during the collaborative training
rounds [3, 13, 22]. The PDA-FD framework typically involves three
phases in each collaborative training round: local updates phase,
communication phase, and knowledge distillation phase.

During the local updates phase, client 𝑛 trains its local model
𝜃𝑛 on its private dataset 𝐷𝑛 using stochastic gradient descent [21].
The loss function L(𝑥,𝑦, 𝜃𝑛) is defined to calculate the error be-
tween the prediction posterior 𝑓𝜃𝑛 (𝑥)𝑦 of the training data and
its ground truth label 𝑦. Cross-entropy is often used as the loss
function: L(𝑥,𝑦, 𝜃𝑛) = −𝑙𝑜𝑔(𝑓𝜃𝑛 (𝑥)𝑦).

During the communication phase, a set of data samples 𝑆𝑡 are
selected by the server from the public dataset. For each selected sam-
ple 𝑥𝑘 , the client’s local model 𝜃𝑛 performs inference to obtain the
corresponding logits 𝑧𝜃𝑛 (𝑥𝑘 ) and sends the logits to the server. Af-
ter collecting the logits from all clients, the server aggregates them
using an aggregation algorithm 𝑓𝑎𝑔𝑔(eg. average aggregation [22])
to get an aggregated logits 𝑍𝑘 . The server then distributes 𝑍𝑘 back

to each client. At the end of the communication phase, each client
will receive the logits set {𝑍𝑘 | 𝑘 ∈ 𝑆𝑡 } from server.

During the knowledge distillation phase, client𝑛 performs knowl-
edge distillation [11] using the aggregated logits 𝑍𝑘 returned by
the server as the soft labels. These aggregated logits 𝑍𝑘 represent
knowledge learned by other clients’ private models on their own
private datasets, allowing clients to learn from other clients’ knowl-
edge and further improve their own model’s performance. In this
case, the loss function will be the mean absolute errors (MAE):

L(𝑥,𝑦, 𝜃𝑛) =
1
𝑁

𝑁∑︁
𝑛=1

��𝑍𝑘 − 𝑧𝜃𝑛 (𝑥𝑘 )�� (1)

or Kullback-Leibler (KL) divergence values [19]:

L(𝑥,𝑦, 𝜃𝑛) =
𝑁∑︁
𝑛=1

𝑍𝑘 · log
(

𝑍𝑘

𝑧𝜃𝑛 (𝑥𝑘 )

)
(2)

The overall procedure of PDA-FD learning is summarized in Algo-
rithm 1. Different PDA-FD frameworks [3, 13, 22] require clients to
upload either logit vectors or prediction probability vectors during
communication.
Algorithm 1 Public Dataset-Assisted Federated Distillation

Require: Private datasets {𝐷𝑛}𝑁𝑛=1, public dataset 𝐷𝑝𝑢𝑏 , local mod-
els {𝜃𝑛}𝑁𝑛=1, number of collaborative training round 𝑇 , public
data index set {𝑆𝑡 }𝑇𝑡=1.

1: for collaborative training round 𝑡 = 0 to 𝑇 do
2: ⊲ Local Updates Phase
3: Each client trains local model 𝜃𝑛 on private dataset 𝐷𝑛
4: ⊲ Communication Phase
5: Each client computes logits {𝑧𝜃𝑛 (𝑥𝑘 ) | 𝑘 ∈ 𝑆𝑡 } for public

data {𝑥𝑘 |𝑘 ∈ 𝑆𝑡 }
6: Each client sends logits set {𝑧𝜃𝑛 (𝑥𝑘 ) | 𝑘 ∈ 𝑆𝑡 } to server
7: for 𝑘 ∈ 𝑆𝑡 do
8: 𝑍𝑘 ← 𝑓𝑎𝑔𝑔 ({𝑧𝜃𝑛 (𝑥𝑘 )}𝑁𝑛=1)
9: end for
10: Server sends aggregated logits {𝑍𝑘 | 𝑘 ∈ 𝑆𝑡 } to clients
11: ⊲ Knowledge Distillation Phase
12: Each client trains 𝜃𝑛 on {𝑥𝑘 | 𝑘 ∈ 𝑆𝑡 } using {𝑍𝑘 } as soft

labels
13: end for

In this paper, we primarily focus on three PDA-FD frameworks:
FedMD [22], DS-FL [13] and Cronus [3]. Each has a specific cus-
tomization of the procedure demonstrated inAlgorithm 1. In FedMD,
each client𝑛 needs to train their local model 𝜃𝑛 on the public dataset
𝐷𝑝𝑢𝑏 until convergence before the collaborative training. In DS-FL,
the server employs the entropy reduction aggregation (ERA)[13]
algorithm as 𝑓𝑎𝑔𝑔 during the communication phase. ERA acceler-
ates convergence and enhances the robustness of DS-FL in non-IID
data distribution scenarios. In Cronus, the server utilizes the mean
estimation algorithm proposed by Diakonikolas et al. [7] for logits
aggregation algorithm 𝑓𝑎𝑔𝑔 to enhance robustness.

2.2 Privacy Risks Analysis
Federated Distillation [3, 13, 22] relies on clients and server using
inference logits from public datasets to facilitate knowledge transfer
and improve model performance. However, we find that in the
existing PDA-FD algorithms [3, 13, 22], as shown in Algorithm 1,
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to better transfer knowledge from each client’s private model, it is
often necessary to train the private model on the private dataset
for few epochs during local updates phase before communication
phase in collaborative training rounds.We believe that this behavior
increases the private model’s overfitting level to its own private
dataset, which inherently raises privacy leakage risks [46].

Our analysis of FedMD training on CIFAR10 [18], as illustrated
in Figure 2, confirms these concerns by tracking one client’s model
accuracy and its overfitting to private dataset (measured by in-
ference loss on private dataset) throughout collaborative training.
Despite the initial training on both public and private datasets,
model accuracy continues to improve significantly during collabo-
rative rounds, demonstrating effective knowledge transfer via pub-
lic datasets. However, during each round’s local updates(LU) phase,
the overfitting level to private data substantially increases. More
critically, during the subsequent communication phase, which oc-
curs prior to the knowledge distillation(KD) phase, the server needs
to interact with client private models through the public dataset
to help process and distribute knowledge among all clients. This
interaction, combined with the elevated overfitting level, makes
privacy attacks feasible. Meanwhile, to ensure effective PDA-FD
training and facilitate the processing of clients’ generated logits,
PDA-FD protocols [3, 13, 22] typically require the server to pre-
pare a public dataset for all the clients before training and to select
subsets for knowledge distillation in each round. Therefore, an
honest-but-curious server is capable of launching privacy attacks
against a target client’s private dataset by carefully crafting the
public dataset and leveraging the inference logits generated by the
client. The privacy threat posed by such a server to clients should
be given significant attention [9, 28, 39].

Figure 2: Visualizing the client’s private model performance
trend and overfitting trend to private dataset(members)
through collaborative training rounds in FedMD [22].

2.3 Training Data Privacy Attacks
Machine learning models face privacy attacks targeting training
data. We focus on two key threats: Label Distribution Inference
Attacks (LDIA) [9, 38] and Membership Inference Attacks (MIA) [2,
24, 32, 35, 45], representing privacy violations on the dataset and
the sample levels, respectively. They are also among the most inves-
tigated privacy attacks in the field. LDIA infers the proportion of dif-
ferent labels in a client’s private dataset. For a local model 𝜃𝑛 trained
on dataset 𝐷𝑛 =

⋃𝑀
𝑚=1 𝐷

𝑚
𝑛 , where 𝐷𝑚𝑛 represents data of label𝑚,

the ground truth label distribution is: p = (𝑝1, 𝑝2, . . . , 𝑝𝑀 ) , 𝑝𝑚 =

|𝐷𝑚
𝑛 |
|𝐷𝑛 | . The attack function maps from the observable information
to an estimated label distribution: A : 𝜃𝑛 ↦→ p̂ = (𝑝1, 𝑝2, . . . , 𝑝𝑀 ).

In MIA, the attacker determines whether a data sample (𝑥,𝑦)
belongs to the target model 𝜃 ’s training dataset. This attack is de-
fined as:A : 𝑥, 𝜃 ↦→ {0, 1}, where 1 indicates member. MIA exploits
the behavioral differences of models on training(member) versus
non-training data(non-member), leveraging higher confidence or
lower loss on training samples due to overfitting [35, 46].

3 Methodology
3.1 Threat Model
Adversary Knowledge. We investigate PDA-FD in the context of
Horizontal FL (HFL), where clients’ private data’s label distributions
can be non-IID. We consider a threat model where the server acts
as an honest-but-curious [30] adversary. The server attacker is not
allowed to modify the learning process or affect the performance
of FD training but gets to select public dataset members used for
knowledge transfer; this privilege for the server is common in PDA-
FD frameworks [3, 13, 22]. The server can select members of the
public dataset in each collaborative training round. In each training
round, the server can only black-box access to clients’ models, and
it only interacts with client models by running inferences on public
data. The server can only obtain logit vectors or prediction vectors
of every public data sample each client model provides without
visibility into the private models’ weights or architectures.
Adversary’s Objective. The server aims to infer sensitive infor-
mation about a target client’s private dataset, specifically label
distribution information and membership information, through
two main attack vectors: LDIA and MIA.

3.2 Label Distribution Inference Attack
In Federated Distillation, the server only has black-box access by us-
ing a public dataset in PDA-FD. The core idea behind our proposed
LDIA is that the logits or prediction values produced by a client’s
model still carry information about the distribution of labels in its
training data. This is due to the tendency of neural networks to over-
fit their training distribution, even when regularization techniques
are applied [46].

To validate this idea, we conduct a motivating experiment using
the CIFAR-10 dataset [18]. We sample a subset of data with a non-
IID label distribution from CIFAR-10 as the training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 .
Subsequently, we train a deep neural network model 𝜃 on this
training set. We use the trained model 𝜃 to infer on data 𝑥 from
the CIFAR-10 test dataset, which consists of ten different labels, to
obtain the logits vector 𝑧𝜃 (𝑥) from these inference results. We also
apply the softmax function to get the posterior probabilities vector
𝑣𝑥 of each image prediction:

𝑣𝑥,𝑖 =
𝑒𝑧𝜃 (𝑥 )𝑖∑10
𝑗=1 𝑒

𝑧𝜃 (𝑥 ) 𝑗
(3)

, where 𝑣𝑥,𝑖 is the probability for the 𝑖−th label. For each label,
we have 500 data samples for model inference and calculate the
mean posterior probability vector across all the samples 𝑉𝑚𝑒𝑎𝑛 =
1
|𝑆 |

∑
𝑘∈𝑆 𝑣𝑥𝑘 , where 𝑆 represents the subset for each label.

Figure 3 illustrates the mean posterior probability vector 𝑉𝑚𝑒𝑎𝑛
for predictions made by model 𝜃 on the subset of data for each label,
alongside the label distribution of the training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 used
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Figure 3: The mean vector of posterior probability vectors
𝑉𝑚𝑒𝑎𝑛 predicted by the model 𝜃 on 500 data samples with the
same label in CIFAR10.

Client logits set Server 
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Inferred Label Distribution
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Figure 4: Workflow of Label Distribution Inference Attack.

for model 𝜃 . As seen in the figure, the labels “cat” and “truck” have
a larger proportion among all labels in the training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 .
However, they constantly appear with higher probabilities in the
model’s predictions, even for samples of other classes. For example,
when the model is presented with “horse” images, the average pre-
diction probabilities are 0.57, 0.22, and 0.07 for classes “horse”, “cat”
and “truck”, respectively, which are the top-3 predictions. In this
case, the model assigns higher probabilities to the over-represented
classes, i.e., “cat” and “truck”, over the other incorrect classes. This
indicates that the model is able to retain the distribution of its train-
ing dataset to some extent. Such an observation suggests that in FD,
where clients share logits or probability values of their models on
public data samples, a malicious server could potentially infer the
label distribution of clients’ private training data. Even though the
public data may have a different distribution, the clients’ models
will still exhibit biases reflective of their training data distributions.

With all these positive verification experiment results, we design
a LDIA method in PDA-FD that consists of the following steps:
(1) As shown in Figure 4, the server selects a subset of the public
dataset 𝐷𝑝𝑢𝑏 for each round of FD, which is denoted as 𝐷𝑖𝑛𝑓 . This
selection needs to ensure that the samples are evenly distributed
across different classes, which not only helps minimize bias in LDIA
but also enhances FD’s performance. (2) During the communication
phase, each client performs inference on the selected public data
samples {𝑥𝑘 | 𝑘 ∈ 𝑆𝑡 }. The generated logits are sent to the server.
(3) The server receives logits from all the participating clients and
selectively aggregate the logits sent by the target client. The server

uses the resulting vector to infer the label distribution of the target
client’s private dataset.

Formally, the LDIA process can be expressed as:

𝑝 =
1

| 𝐷𝑖𝑛𝑓 |
∑︁

𝑥∈𝐷𝑖𝑛𝑓

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑧𝜃 (𝑥)) (4)

, where 𝑝 denotes the inferred label distribution, 𝜃 is the target
model, and 𝑧𝜃 (𝑥) represent the logits vector obtained by model 𝜃
when inferring on data 𝑥 . To enhance accuracy and robustness, we
average the inferred label distributions over 𝑁 rounds and report
the averaged distribution as the final LDIA result. This mitigates the
impact of potential anomalies or fluctuations in individual rounds,
thus improving overall stability.

3.3 Membership Inference Attacks
MIA in machine learning aims to determine whether a specific data
sample was used to train a model. Recent works have demonstrated
the feasibility of MIA in traditional FL and centralized machine
learning setting, where adversaries have either white-box access to
the model’s parameters and gradients or access to shadow datasets
matching the target model’s training dataset’s data distribution for
performing MIA [2, 35, 40]. However, in the context of PDA-FD, the
server is limited to black-box interactions with the target client’s
model, and lacks knowledge of clients’ private data distributions,
making it challenging to obtain appropriate shadow datasets. To
address this challenge, we propose adapting and enhancing existing
MIA approaches by combining themwith the unique characteristics
of the FD process.

Traditional MIA techniques often exploit the observation that
machine learningmodels behave differently on data they are trained
on versus data they aren’t. The difference typically manifests as
higher confidence or lower loss on training samples. In our proposed
attack, we extend the state-of-the-art MIA technique, Likelihood
Ratio Attack (LiRA), proposed by Carlini et al. [2].

Offline LiRA uses multiple reference ("out") models to establish a
baseline prediction distribution for membership inference through
hypothesis testing. The key assumption is that member samples
have statistically different prediction scores between target and
reference models, while non-members exhibit similar predictions
across all models. For a target sample (𝑥,𝑦), LiRA first queries all
reference models to obtain posterior probabilities, which are then
standardized using the following scaling function:

𝜙 (𝑓𝜃 (𝑥)𝑦) = log
(

𝑓𝜃 (𝑥)𝑦
1 − 𝑓𝜃 (𝑥)𝑦

)
(5)

where 𝑓𝜃 (𝑥)𝑦 denotes the posterior probability from a reference
model 𝜃 . The scaled scores from reference models are fitted to a
Gaussian distribution N(𝜇out, 𝜎2out). The membership probability
𝜆 is then computed by comparing the target model’s scaled score
𝜙 (𝑓𝜃𝑡 (𝑥)𝑦) with this distribution:

𝜆 = 1 − Pr[𝑍 > 𝜙 (𝑓𝜃𝑡 (𝑥)𝑦)],where 𝑍 ∼ N(𝜇out, 𝜎2out). (6)
A higher scaled score 𝜙 (𝑓𝜃𝑡 (𝑥)𝑦) relative to 𝜇out indicates a higher
probability of (𝑥,𝑦) being a member of the training dataset.

While LiRA is a powerful and effective technique for MIAs, di-
rectly applying it in the context of PDA-FD presents challenges.
In traditional LiRA, the attacker needs the ability to train multiple
reference models that mimic the target model’s behavior but behave
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Figure 5: Workflows of two proposed Membership Inference
Attacks(Co-op LiRA and Distillation-based LiRA).

differently on the target samples, specifically, prediction discrep-
ancies between target and reference models should be larger for
members than for non-members. However, training such models
requires access to a shadow dataset with a distribution similar to the
target model’s training data [2, 40]. As shown in Figure 6a, when
the data distribution of the reference model’s training dataset differs
from that of the target model’s training dataset, the attacker cannot
distinguish members based on prediction discrepancies between
reference and target models for members versus non-members. The
prediction discrepancy is quantified as the difference between the
target model’s prediction probability and the mean of reference
models’ prediction probabilities for the target sample.

In the PDA-FD context, the server faces significant challenges
in obtaining such a shadow dataset: (1) The FD framework allows
clients to have non-IID private datasets in the label space. Without
knowledge of the specific label distributions in each client’s private
dataset, the server cannot accurately sample shadow datasets that
match the characteristics of the target client’s data. (2) In FD, the
public dataset can be unlabeled, particularly in semi-unsupervised
learning scenarios. In that case, the server simply cannot use these
datasets without labels for training shadowmodels, as label informa-
tion is essential for mimicking the target model’s behaviors. To ad-
dress these unique challenges, as shown in Figure 5, we design and
implement two variants of offline LiRA: Co-op LiRA andDistillation-
based LiRA. Section 5.5 also briefly explores how these approaches
can be combined with indirect attack techniques [25, 41], further
demonstrating the robustness of our proposed attacks.

3.3.1 Co-op LiRA Our proposed Co-op LiRA introduces a novel
approach that leverages our LDIAmethod as a prerequisite to enable
effective membership inference attacks. Unlike traditional MIA
techniques that require shadow datasets with similar distributions
to the target, our method uniquely exploits the collaborative nature
of federated distillation environments. The key innovation of Co-
op LiRA lies in its ability to identify suitable reference models
without additional training. We aim for these reference models to
have training datasets with data distributions closer to the target
model’s distribution, thereby better mimicking the target client
model’s behavior [35]. First, the server conducts LDIA (as described

in Section 3.2) to determine label distributions across all clients.
In the HFL setting, clients with similar label distributions likely
possess closer overall data distributions. This is because the data
distribution may differ in two aspects: the feature and label space.
In the definition of HFL, clients’ data share the same feature space.
In this context, more similar label distributions imply more similar
overall data distributions. These clients’ models can then serve as
effective reference models for performing LiRA against the target
client [2, 35]. While we notice that when target samples appear in
other clients’ private datasets, those clients’ models cannot serve
as reference models. However, this limitation is minimized in real-
world FD deployments where clients typically have mostly disjoint
training datasets to benefit from collaborative learning.

Algorithm 2 outlines the co-op LiRA process in PDA-FD: (1)
When the server prepares the public dataset, it incorporates a set of
potential target samples into the public dataset. During the commu-
nication phase, the server selects subsets containing these target
samples for knowledge transfer, allowing it to obtain posterior
probabilities of the subset of public dataset from all clients’ models,
including the target client. (2) The server conducts LDIA on all
clients. (3) The server calculates the KL-divergence between the
label distributions of the target client and each remaining client,
selecting clients as reference models when their KL-divergence falls
below threshold 𝛽 (0.1). (4) The server performs LiRA hypothesis
test by comparing reference models’ and target client’s posterior
probabilities on the target sample to determine target sample’s
membership probability.

Co-op LiRA eliminates the need for the attacker to train multiple
reference models. However, the drawback of the method is that it
becomes ineffective when very few clients have training data of
the same or similar distribution to the target client.

(a) Reference model trained with
𝐷𝑟𝑒𝑓

(b) Reference model distilled by
using 𝐷𝑟𝑒𝑓

Figure 6: Prediction discrepancies between target and refer-
ence models across members and non-members on CIFAR
10. The target model is trained on dataset 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 while the
adversary can only obtain 𝐷𝑟𝑒 𝑓 , where 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 and 𝐷𝑟𝑒 𝑓 have
different distributions.

3.3.2 Distillation-based LiRA To address the limitation of co-op
LiRA, we proposed another extension of LiRA called distillation-
based LiRA. It is challenging for the server to obtain a shadow
dataset which has same data distribution with the target’s model’s
training dataset to train a reference model; we instead choose to use
knowledge distillation to generate a student model, which is then
used as a reference model for the MIA. On the one hand, the gen-
erated student model should behave similarly to the target model,
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Algorithm 2 Co-op LiRA and Distillation-based LiRA. The shadow
model preparation phase is implemented in lines 6-12 for Co-op
LiRA and lines 14-18 for Distillation-based LiRA.
Require: public dataset 𝐷𝑝𝑢𝑏 , target sample (𝑥,𝑦), target client

private model 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 , clients private models {𝜃𝑛}𝑁𝑛=1, scaling
function 𝜙 , KL-divergence threshold 𝛽 , number of reference
models 𝐾 .

1: M𝑟𝑒 𝑓 ← {}, 𝐶𝑜𝑛𝑓 ← {}
2: ⊲ Communication phase in FD
3: 𝐷𝑝𝑢𝑏 ← 𝐷𝑝𝑢𝑏 ∪ {(𝑥,𝑦)}
4: Server send 𝐷𝑝𝑢𝑏 to all clients and receive {𝑓𝜃𝑛 (𝐷𝑝𝑢𝑏 )}𝑁𝑛=1
5: ⊲ Co-op LiRA
6: 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 ← LDIA(𝜃𝑡𝑎𝑟𝑔𝑒𝑡 )
7: for 𝜃𝑛 ∈ {𝜃𝑛}𝑁𝑛=1 \ {𝜃𝑡𝑎𝑟𝑔𝑒𝑡 } do
8: 𝑝𝑛 ← LDIA(𝜃𝑛)
9: if KL(𝑝𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑝𝑛) < 𝛽 then
10: M𝑟𝑒 𝑓 ←M𝑟𝑒 𝑓 ∪ {𝜃𝑛}
11: end if
12: end for
13: ⊲ Distillation-based LiRA
14: 𝐷𝑑𝑖𝑠𝑡𝑖𝑙𝑙 ← Random sample(𝐷𝑝𝑢𝑏 \ {(𝑥,𝑦)})
15: for 𝑘 = 1 to 𝐾 do
16: 𝜃𝑘 ← Distill(𝜃𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐷𝑑𝑖𝑠𝑡𝑖𝑙𝑙 )
17: M𝑟𝑒 𝑓 ←M𝑟𝑒 𝑓 ∪ {𝜃𝑘 }
18: end for
19: for 𝜃 ∈ M𝑟𝑒 𝑓 do
20: 𝐶𝑜𝑛𝑓 ← 𝐶𝑜𝑛𝑓 ∪ {𝜙 (𝑓𝜃 (𝑥)𝑦)}
21: end for
22: 𝜇𝑜𝑢𝑡 ← mean(𝐶𝑜𝑛𝑓 ), 𝜎2𝑜𝑢𝑡 ← var(𝐶𝑜𝑛𝑓 )
23: return 𝜆 ← 1 − Pr[𝑍 > 𝜙 (𝑓𝜃𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥)𝑦)], where 𝑍 ∼
N(𝜇𝑜𝑢𝑡 , 𝜎2𝑜𝑢𝑡 )

exhibiting close prediction scores on non-member samples. On the
other hand, it produces different prediction scores on member data
that differ from those from the teacher model, since the student
model is trained through knowledge distillation without direct ex-
posure to the training dataset, whereas the teacher model, trained
directly onmember samples, exhibits a degree of overfitting to these
samples. Previous research on MIA [14] has demonstrated that the
student model generated through knowledge distillation can po-
tentially encode membership information of the teacher model.
However, we find significant prediction discrepancies between stu-
dent and teacher models when performing inference on the teacher
model’s member samples. As shown in Figure 6b, the prediction
discrepancies between the teacher and the student model are sig-
nificant for some members while remaining relatively small for
non-members. This distinct pattern enables these distilled student
models to serve as effective reference models for offline LiRA. These
reference models allow attackers to identify members with high
prediction discrepancies while maintaining a low False Positive
Rate, thus achieving high True Positive Rate (TPR) at low False
Positive Rate (FPR), which serves as a critical performance metric
for successful membership inference attacks[2, 40]. We validate this
characteristic of knowledge distillation-based reference models in
Section 4.3.

Algorithm 2 outlines the distillation-based LiRA process in PDA-
FD: (1) When the server prepares the public dataset, it incorporates
a set of potential target samples into the public dataset. During
the communication phase, the server selects subsets containing
the target samples for knowledge transfer. The server obtains the
posterior probabilities predicted by the target client on all the data
samples. These probability values could be used as soft labels to
distill reference models. (2) To create multiple reference models, the
server randomly samples the distillation dataset of distilled model
from the public dataset except the target samples. Using the target
client as the teacher model, the server distills multiple reference
models. (3) The server then infers membership of the target sam-
ples by performing LiRA using the created reference models. This
approach is more robust to heterogeneous data distributions among
clients but comes at the cost of additional computational overhead
for the distillation process.

4 Evaluations
In this section, we conduct a series of experiments to evaluate the
privacy leakage in PDA-FD by conducting the proposed LDIA and
MIA. Our experiments span multiple datasets, various PDA-FD
frameworks [3, 13, 22], and different usage scenarios. Our experi-
ments demonstrate four key aspects: (1) the overall effectiveness
of our proposed LDIA and MIA; (2) the impact of varying non-IID
data distributions; (3) the impact of different PDA-FD frameworks;
and (4) the effect of the number of collaborative training rounds.
4.1 Experiment Setup
4.1.1 Datasets In our experiments, we utilize the following image
datasets that are commonly used to test the performance of different
FD frameworks: CIFAR-10[18], CINIC-10[6], Fashion-MNIST[43].
Additionally, for the completeness of the experiments, we also use a
tabular dataset:Purchase[8]. In our experiments, we partition each
dataset into a 4:1 ratio for clients’ training sets𝐷𝑡𝑟𝑎𝑖𝑛 and the public
dataset 𝐷𝑝𝑢𝑏 . To align with the previous FD frameworks [22, 44],
we also configure a scenario where there is a data distribution
discrepancy between the public dataset and the clients’ private
datasets. In this scenario, we use CIFAR-10 for client training and
CIFAR-100 as the public dataset to simulate distribution shifts. The
details of the specific partitioning of datasets and the number of
classes used in our experiments can be found in Appendix A.1. In
our MIA experiments, to ensure adequate private data for each
client, we select an equal number of samples from the test dataset
to serve as non-members.

In our experiments, we create 10 clients that participate in the
collaborative training. To partition the training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 into
private datasets 𝐷𝑛 for 10 clients, we use Dirichlet distribution
𝐷𝑖𝑟 (𝛼) with 𝛼 values of 0.1, 1 and 10 to generate non-IID data
distribution across all the clients. The smaller the value of 𝛼 , the
more imbalanced the label distribution of 𝐷𝑛 is.

4.1.2 Models. For different datasets, the clients in PDA-FD use
different model architectures. When the private dataset is CIFAR-
10, the clients train the ResNet-18 models [10]. For CINIC-10, the
clients train the MobileNetV2 models [33]. For Fashion-MNIST
datasets, the clients’ local models employ a CNN architecture with
four convolutional layers. When training with the Purchase dataset,
the clients train MLP models consisting of three fully connected
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layers. As the heterogeneity in client model architectures does
not affect our attack methodology[2], we adopted identical model
structures across all clients.

4.1.3 LDIA Metrics. To evaluate the effectiveness of the proposed
LDIA, we adopt the same metrics employed in previous LDIA re-
search [9, 32]. In the equations for calculating these metrics, 𝑝
denotes the inferred label distribution, 𝑝 denotes the ground truth
label distribution,𝑚 represents a specific label, and 𝑀 denotes the
number of labels:
• Kullback-Leibler divergence. Kullback-Leibler divergence(KL
divergence) between the ground truth label distribution and the
inferred label distribution can be calculated using the following
equation:

𝐷𝑖𝑠𝐾𝐿−𝑑𝑖𝑣 (𝑝, 𝑝) =
𝑀∑︁
𝑚=1

𝑝𝑚𝑙𝑜𝑔(
𝑝𝑚

𝑝𝑚
) (7)

This metric represents the similarity between the inferred label
distribution and the ground truth label distribution. A smaller KL
divergence indicates that the two distributions are more closely
aligned.
• Chebyshev distance. The Chebyshev distance represents the
maximum error between the inferred label distribution and the
ground truth label distribution for each target client in an LDIA:

𝐷𝑖𝑠𝐶ℎ𝑒𝑏 (𝑝, 𝑝) =𝑚𝑎𝑥𝑚 | 𝑝𝑚 − 𝑝𝑚 | (8)
A smaller Chebyshev distance indicates a higher reliability of the
LDIA results.

4.1.4 MIA Metrics. Same as previous efforts on MIA [2, 35, 40] ,
we employ the following metrics to evaluate the effectiveness of
the proposed MIAs:
• TPRat lowFPR.Carlini et al. [2] suggested using TPR at low FPR
to measure MIA. A higher TPR in the low FPR region indicates
greater precision of the MIA, which also implies that the attack
is more reliable.
• Balance accuracy and AUC. These two metrics assess the
overall performance of MIA. Balanced accuracy measures the
attacker’s ability to correctly predict true positives and true neg-
atives across all members and non-members. AUC quantifies the
area beneath the ROC curve of the MIA results. It offers a com-
prehensive measure of the attack’s discriminative power across
various classification thresholds.

4.1.5 PDA-FD Frameworks. To comprehensively evaluate the pri-
vacy leakage in the PDA-FD setting, we evaluate three different
PDA-FD frameworks in our experiments: FedMD [22], DS-FL [13],
and Cronus [3]. Each of these FD frameworks employs a distinct
approach to enhance the robustness of the FD algorithms. As men-
tioned in Section 2.1, they behave differently during the local up-
dates phase and use different aggregation algorithms during the
communication phase. In order to optimize the performance of all
the PDA-FD frameworks, we should carefully select the number of
training epochs in each round. Following the approach suggested
by Li et al. in FedMD [22], we initially train the local models to
convergence on the public and private datasets before transitioning
to the shorter update cycles during the distillation phase. Specif-
ically, in the first round of local updates, each client performs 20

epochs of training. In the subsequent rounds, this is reduced to 5
epochs of training for each client. The knowledge distillation phase
consists of 10 epochs of training for each client. To reduce com-
munication cost, we randomly select 5000 data samples from the
public dataset during each communication phase for the CIFAR-10,
CIFAR10/CIFAR100, Fashion-MNIST and Purchase datasets, aligned
with previous PDA-FD studies [22]. The CINIC-10 dataset, given
its difficulty level, uses a set of 10000 randomly selected samples to
ensure adequate knowledge transfer. Table 2 presents the perfor-
mance of the three PDA-FD frameworks across various Dirichlet
distributions and five distinct dataset settings.

Table 2: Performance of the PDA-FD Frameworks.

Datasets Setting Local accuracy Federated accuracy

FedMD DS-FL Cronus

CIFAR10 𝛼=10 54.59% 76.61% 71.31% 70.81%
𝛼=1 46.06% 75.38% 68.45% 67.90%
𝛼=0.1 22.75% 60.55% 45.01% 42.24%

CIFAR10 𝛼=10 53.24% 72.34% 69.54% 68.42%
/CIFAR100 𝛼=1 45.49% 68.41% 65.90% 64.26%

𝛼=0.1 23.31% 49.89% 43.55% 43.43%

CINIC10 𝛼=10 39.31% 67.72% 64.21% 62.92%
𝛼=1 33.37% 62.91% 57.02% 56.49%
𝛼=0.1 20.45% 41.02% 38.48% 37.89%

Fashion 𝛼=10 78.80% 88.68% 87.96% 87.62%
-MNIST 𝛼=1 69.35% 87.98% 85.25% 84.98%

𝛼=0.1 19.58% 80.62% 52.45% 56.34%

Purchase 𝛼=10 82.56% 94.58% 88.35% 88.62%
𝛼=1 72.73% 94.01% 86.83% 89.65%
𝛼=0.1 52.18% 91.80% 72.55% 67.34%

4.2 Experiment Results of LDIA
In the LDIA experiments, the PDA-FD server infers the label dis-
tribution of all clients’ private datasets during the communication
phase in each round. To ensure robustness and account for potential
fluctuations, we compute the final LDIA result for each client by av-
eraging the server’s inferred label distribution over 10 collaborative
training rounds. The overall effectiveness of the attack is evaluated
by averaging these final results across all clients. To provide a mean-
ingful benchmark for our LDIA method, we establish a baseline
comparison, denoted as “Random”, following the same approach of
previous LDIA research [9, 32]. This baseline employs randomly
generated label distributions for each client’s private dataset, serv-
ing as a lower bound for attack performance. Note that for a given
dataset and Dirichlet distribution parameter, the private dataset of
each client remains constant across different PDA-FD frameworks.
Therefore, within the same dataset and Dirichlet distribution, there
is only one set of Random LDIA results.

Main Result. Table 3 presents the performance of the proposed
LDIA on five different datasets across three PDA-FD frameworks.
The results demonstrate the server’s capability to launch effective
LDIA against clients across these datasets, significantly outperform-
ing the random guess baseline on all three key metrics. For instance,
for the DS-FL framework on the CIFAR-10 dataset with 𝛼=1, our
proposed LDIA achieves an average Chebyshev distance of 0.11
and an average KL-divergence of 0.10 across all clients. In contrast,
the random guess baseline yields substantially higher values: 0.20
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and 0.66 for the respective metrics. This significant improvement
underscores the efficacy of our LDIA in accurately inferring clients’
label distributions. Figure 7 provides a visual representation of the
LDIA results for the DS-FL server on the CIFAR-10 dataset, offering
a clearer illustration of the experiment results. We can see from the
figure that for the labels whose inferred proportions deviate from
the ground truth values, the relative rankings of label frequencies
are consistently preserved. This observation highlights the robust-
ness of the proposed LDIA in capturing the essential structure of
label distributions.
Table 3: Performance of the server in conducting LDIAwithin
the different PDA-FD Frameworks.

Datasets Setting KL divergence Chebyshev distance

FedMD DS-FL Cronus Random FedMD DS-FL Cronus Random

CIFAR10 𝛼=10 0.02 0.01 0.01 0.42 0.04 0.03 0.02 0.13
𝛼=1 0.17 0.10 0.08 0.66 0.14 0.11 0.10 0.20
𝛼=0.1 0.15 0.11 0.07 1.93 0.18 0.16 0.14 0.57

CIFAR10 𝛼=10 0.07 0.05 0.06 0.40 0.07 0.06 0.06 0.12
/CIFAR100 𝛼=1 0.11 0.10 0.10 0.59 0.10 0.11 0.11 0.22

𝛼=0.1 0.11 0.10 0.08 1.59 0.15 0.13 0.14 0.51

CINIC10 𝛼=10 0.01 0.01 0.01 0.64 0.02 0.02 0.04 0.15
𝛼=1 0.06 0.05 0.05 0.57 0.11 0.11 0.10 0.21
𝛼=0.1 0.09 0.08 0.01 1.99 0.14 0.14 0.04 0.56

Fashion 𝛼=10 0.03 0.02 0.02 0.32 0.04 0.04 0.04 0.12
-MNIST 𝛼=1 0.14 0.12 0.12 0.55 0.10 0.09 0.09 0.15

𝛼=0.1 0.21 0.05 0.06 1.54 0.20 0.09 0.11 0.45

Purchase 𝛼=10 0.08 0.03 0.03 0.47 0.06 0.05 0.05 0.13
𝛼=1 0.27 0.14 0.15 0.68 0.13 0.10 0.10 0.18
𝛼=0.1 0.64 0.14 0.14 2.11 0.32 0.15 0.17 0.52

Different Data Distributions. Our experiments reveal a no-
table relationship between the effectiveness of the proposed LDIA
and the uniformity of clients’ label distributions. Specifically, the
LDIA demonstrates lower KL-divergence, Chebyshev distance, and
mean 𝑙1-distance as the clients’ label distributions become more
uniform. This trend is clearly illustrated in our experiments using
the CIFAR-10 dataset within the DS-FL framework. As 𝛼 increases,
indicating a more uniform label distribution across clients, the LDIA
achieves better performance. Conversely, as 𝛼 decreases, indicat-
ing a more skewed distribution, we see an increase in the three
key metrics. Nonetheless, the attack remains effective despite the
reduced accuracy.

Different PDA-FD Frameworks. Our evaluations also reveal
significant differences in the vulnerability of various PDA-FD frame-
works to LDIA. Compared to FedMD, the server can achieve more
effective LDIA on clients within the DS-FL and Cronus frameworks.
This can be attributed to the unique training approach employed
by FedMD during its first collaborative training round. In FedMD,
clients first train their local models on the public dataset before
transitioning to their private dataset. This process serves as a form
of regularization, thus mitigating overfitting to private datasets and,
consequently, reducing vulnerability to LDIA. However, this effect
is diminished when private and public datasets differ significantly
or when the public dataset is unlabeled. In these cases, FedMD’s
LDIA vulnerability becomes comparable to that of the other two
PDA-FD frameworks, as evidenced by the results in Table 3 for the
CIFAR-10/CIFAR-100 datasets. The similarity in LDIA vulnerability
arises from the data distribution shift between public and private
datasets, causing clients’ local models to reduce memorization of

(a) 𝛼 = 10

(b) 𝛼 = 1

(c) 𝛼 = 0.1

Figure 7: The LDIA performance of the DS-FL server on the
CIFAR-10 dataset, under three distinct Dirichlet distributions.
The images depict the best (left), median (center), and worst
(right) LDIA results across all client models.

the public dataset after converging on their private datasets. As a
result, the clients’ local models end up overfitting to their private
datasets to a similar degree across all frameworks.

Different Collaborative Training Rounds. To evalutate the
temporal dynamics of LDIA, we analyze its performance across
multiple collaborative training rounds in various PDA-FD frame-
works, as illustrated in Figure 8. We aggregate the server’s attack

(a) 𝛼 = 0.1 (b) 𝛼 = 1 (c) 𝛼 = 10

Figure 8: Chebyshev distance results of LDIA performed by
the PDA-FD server on the CIFAR-10 dataset, shown for each
collaborative training round.

results across all clients for each round, to represent the overall
LDIA performance over time. The results reveal that the server
successfully executes LDIA on clients in every round. Notably, the
LDIA performance remains relatively stable as the number of col-
laborative training rounds increases, showing neither significant

209



Proceedings on Privacy Enhancing Technologies 2025(4) Haonan Shi, Tu Ouyang, and An Wang

improvement nor decline. This consistency can be attributed to the
local updates phase preceding communication in each collabora-
tive training round within PDA-FD frameworks. While this phase
enhances knowledge transfer among clients, it simultaneously in-
creases the degree of overfitting of each client’s local model to their
private data. This dual effect contributes to the observed stability
in LDIA performance over multiple rounds.

4.3 Experiment Results of MIAs
In our MIA experiments, we evaluate the effectiveness of the pro-
posed attack against 10 clients during the communication phase
across three PDA-FD frameworks. Furthermore, we compare with
existing attacks, including FD-leaks [44], MIA-FedDL [23], Grad-
Diff [39], and Centralize-LiRA [2], that serve as our baselines.

Main Result. We first evaluate co-op LiRA. Given that co-op
LiRA is applicable in scenarios where clients’ label distributions are
similar, we conduct experiments across different datasets using a
Dirichlet distribution with 𝛼 = 10. This parameter setting ensures a
more uniform distribution of labels across clients, aligning with co-
op LiRA’s operational scenario. Table 4 presents the performance
of co-op LiRA during the communication phase of the first collab-
orative training round. Our findings reveal that when the server
attacks a specific client, utilizing only the other 9 clients’ models
as the reference models yields remarkably effective attack results.
This observation underscores the high efficiency and practicality of
co-op LiRA, demonstrating its capability to achieve effective MIA
without the need to train any additional reference models.

We subsequently evaluate the performance of distillation-based
LiRA. For each client, we distill 32 reference models. The distillation
dataset for each reference model consists of a randomly sampled
80% subset of the public dataset used in the communication phase.
This approach ensures a diverse set of reference models. The model
architecture of reference model is same as that of the target client
model. Table 5 presents the average results of the server’s MIA
against all clients during the communication phase during the first
collaborative training round. The results reveal that the server
can launch highly effective MIA against the clients in the non-
IID scenarios. Figure 9 presents the results of MIA experiments
conducted in the DS-FL framework using the CIFAR-10 dataset,
across various Dirichlet distributions. Notably, we observe that even
when the private dataset (CIFAR-10) and public dataset (CIFAR-
100) have significantly different distributions, the server can still
successfully launch MIA against clients by leveraging the distilled
reference models from the public dataset. This finding underscores
the efficacy of distillation-based LiRA in the PDA-FD frameworks,
demonstrating its robustness to dataset disparities between the
public and private data.

Different Data Distributions.We observe that the effective-
ness of the proposed distillation-based LiRA attacks on clients de-
creases as the clients’ label distributions become more imbalanced.
This phenomenon can be explained by the fact that local models
trained on datasets with highly skewed label distributions tend
to produce disproportionately high posterior probabilities for the
dominant labels. This bias also affects the non-member samples
that come from the same over-represented classes. The core prin-
ciple of LiRA relies on difficulty calibration, which becomes less
effective in imbalanced scenarios. As a result of this, the attacker’s

(a) 𝛼 = 0.1 (b) 𝛼 = 1 (c) 𝛼 = 10

Figure 9: Distillation-based LiRA performance of the DS-FL
server on the CIFAR-10 dataset, presented as log-scale ROC
curves under three distinct Dirichlet distributions.

capability to discriminate between members and non-members is
compromised. This leads to a overall degradation in the perfor-
mance of distillation-based LiRA on clients with highly imbalanced
label distributions.

Different PDA-FD Frameworks. The effectiveness of co-op
LiRA remains relatively consistent across FedMD,DS-FL, and Cronus.
However, for distillation-based LiRA, the effectiveness of MIAs
ranks as follows: DS-FL achieves the best performance, followed
by Cronus, with FedMD showing the least effectiveness. In Cronus,
clients upload softmax-processed posterior probability vectors rather
than raw logits for public data during the communication phase.
Compared to logits, the use of posterior probability vectors dimin-
ishes the server’s ability to distill reference models that closely
mimic the target model’s performance. Consequently, this limita-
tion leads to a reduction in the effectiveness of MIA. In the FedMD
framework, clients train on public data before their private datasets
during the local updates phase in their first collaborative training
round. This process leads to clients training on all the target samples
strategically selected by the server, regardless of their membership
status. While experiments demonstrate that subsequent training
on private datasets reduces clients’ memorization of public data,
this initial exposure still impacts the server’s MIA results. How-
ever, when the public dataset is unlabeled, clients cannot train on
it during the first collaborative training round. In this scenario, the
server’s MIA performance on clients remains unaffected.

Different Collaborative Training Rounds. Figure 10 illus-
trates the performance of the proposed MIAs in different PDA-FD
frameworks across multiple collaborative training rounds on the
CIFAR-10 dataset. To evaluate each MIA approach in its intended
scenario, for co-op LiRA, we employ a Dirichlet distribution param-
eter 𝛼=10. While for distillation-based LiRA, we use 𝛼=1. We use
the average TPR at 1% FPR of MIA across all clients as the metric to
quantify performance. The performance of distillation-based LiRA
declines with more collaborative training rounds but eventually sta-
bilizes. We attribute this to the FD process, which gradually reduces
the degree of overfitting of local models to their private data. While
local updates maintain some private data memorization, the perfor-
mance gap between local and distilled reference models for private
data narrows over time. The performance of co-op LiRA remains
relatively stable as the collaborative training rounds increase. We at-
tribute this stability to two key factors. First, the non-target clients
in co-op LiRA cannot effectively learn membership information
from the server-aggregated logits during the communication phase.
Second, while the FD process reduces the overfitting level of local
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Table 4: Performance of the server in conducting Co-op LiRA within the different PDA-FD Frameworks.

Datasets TPR at 1% FPR TPR at 0.1% FPR AUC Balance Accuracy

FedMD DS-FL Cronus FedMD DS-FL Cronus FedMD DS-FL Cronus FedMD DS-FL Cronus

CIFAR10 22.15% 21.96% 20.35% 6.67% 6.39% 5.76% 0.819 0.850 0.840 74.07% 77.11% 76.23%

CINIC10 10.97% 11.23% 10.99% 1.78% 1.80% 1.79% 0.794 0.811 0.815 71.55% 73.89% 74.28%

Fashion-MNIST 3.24% 1.80% 1.64% 1.09% 0.31% 0.33% 0.582 0.533 0.531 55.89% 55.38% 54.28%

Purchase 5.85% 4.08% 4.45% 1.67% 0.71% 0.61% 0.616 0.712 0.709 58.41% 66.46% 66.10%

Table 5: Performance of the server in conducting distillation-based LiRA within the different PDA-FD Frameworks.

Datasets Setting TPR at 1% FPR TPR at 0.1% FPR AUC Balance Accuracy

FedMD DS-FL Cronus FedMD DS-FL Cronus FedMD DS-FL Cronus FedMD DS-FL Cronus

CIFAR10 𝛼=10 20.94% 35.76% 32.69% 10.42% 19.42% 14.40% 0.764 0.902 0.867 69.68% 82.01% 78.51%
𝛼=1 17.62% 29.28% 23.83% 8.11% 11.29% 5.77% 0.730 0.839 0.804 66.93% 76.20% 72.94%
𝛼=0.1 9.74% 12.89% 7.20% 2.09% 3.74% 1.13% 0.618 0.680 0.639 58.91% 63.49% 60.64%

CIFAR10 𝛼=10 11.20% 34.61% 28.28% 1.48% 10.92% 5.49% 0.804 0.901 0.891 72.74% 81.93% 80.97%
/CIFAR100 𝛼=1 9.47% 25.94% 19.32% 0.93% 2.40% 1.95% 0.758 0.844 0.821 68.92% 76.61% 73.68%

𝛼=0.1 7.79% 11.34% 5.61% 0.74% 0.51% 0.88% 0.627 0.686 0.652 59.38% 63.67% 61.75%

CINIC10 𝛼=10 13.83% 17.32% 15.91% 3.12% 4.15% 3.85% 0.741 0.855 0.834 71.42% 77.57% 75.26%
𝛼=1 10.96% 13.94% 12.07% 2.37% 3.59% 3.01% 0.704 0.781 0.757 68.93% 70.89% 69.21%
𝛼=0.1 5.91% 6.81% 6.46% 1.25% 1.94% 1.72% 0.649 0.652 0.661 60.27% 61.18% 62.59%

Fashion 𝛼=10 3.07% 1.85% 1.73% 0.91% 0.35% 0.21% 0.588 0.539 0.528 55.94% 59.85% 55.43%
-MNIST 𝛼=1 3.30% 1.71% 1.62% 0.69% 0.26% 0.25% 0.583 0.536 0.522 56.47% 59.51% 54.31%

𝛼=0.1 1.88% 1.39% 1.21% 0.54% 0.19% 0.23% 0.538 0.523 0.519 52.71% 52.35% 51.32%

Purchase 𝛼=10 1.94% 5.91% 2.43% 0.77% 1.31% 1.93% 0.539 0.665 0.706 53.34% 62.69% 65.62%
𝛼=1 1.98% 5.64% 2.69% 0.83% 1.69% 0.68% 0.534 0.654 0.653 53.31% 61.49% 62.24%
𝛼=0.1 1.41% 5.04% 3.04% 0.42% 1.21% 1.19% 0.507 0.591 0.588 52.24% 57.93% 57.69%

models to their private data, the local updates phase, where each
client trains exclusively on its private dataset, maintains a consis-
tent performance gap between local and reference models for their
respective private data. This balance between reduced overfitting
and continued exclusive training on private data likely contributes
to the stability of co-op LiRA’s performance across collaborative
rounds.

(a) Co-op LiRA (b) Distillation-based LiRA

Figure 10: MIA performance across training rounds.

Comparison with Baselines. Our implementations of MIA-
FedDL [23] and GradDiff [39] follow their proposed threat model
settings, where the attacker can obtain a shadow dataset of data
distribution consistent with the target model’s training dataset to
train the shadow model. For the implementations of FD-leaks [44]
and MIA-FedDL, we follow the same baseline experiment setup as
described in GradDiff [39] with one modification: we reposition

the attacker from the client side to the server side. For Centralize
LiRA [2], we chose to implement a more realistic threat model
where the server directly performs LiRA on the target client model,
with shadow models obtained solely through direct training on the
already available public dataset. In our experiments, we chose to
conduct experiments under the FedMD framework, with both the
private dataset and the public dataset being CIFAR10. The parameter
𝛼 of the Dirichlet distribution is set to 1. The results are shown in
Table 6.
Table 6: Comparisonwith Baselines in FedMD(CIFAR10,𝛼=1).

Methods TPR at 1% FPR AUC Accuracy

FD-leaks [44] 0.00% 0.552 54.34%
MIA-FedDL [23] 1.75% 0.643 59.31%
GradDiff [39] 3.04% 0.695 65.17%

Centralize LiRA [2] 6.46% 0.701 62.40%

Co-op LiRA* 7.21% 0.711 64.48%
Distillation-based LiRA* 17.62% 0.730 66.93%

* Our attack

From the table, we can see that our proposed Co-op LiRA and
Distillation-based LiRA exhibit stronger attack performance, espe-
cially on TPR at low FPR region, one of the most important metrics
for measuring MIA performance [2]. FD-leaks shows limited attack
performance due to low-quality shadow models. As for MIA-FedDL
and GradDiff, even under stronger and overly idealistic threat model
conditions, they still demonstrate weaker attack results compared to
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LiRA attacks because they rely on classifier-based MIA techniques
instead of incorporating state-of-the-art MIA methods. Meanwhile,
our Co-op LiRA and Distillation-based LiRA outperform Central-
ized LiRA, further validating that our approaches for shadow model
selection and training enable attackers to acquire higher-quality
shadow models in realistic FD scenarios with constrained threat
model assumptions, resulting in more effective attack results.

5 Ablation Study

5.1 Public Dataset Size
The server in PDA-FD can control communication overhead by
adjusting the size of the public dataset used in each collaborative
training round. We investigate its impact on the performance of
LDIA and MIA. As public data does not affect co-op LiRA, our
evaluations of MIA mainly focus on distillation-based LiRA. In our
experiments, we use the DS-FL framework on the CIFAR-10 dataset
with 𝛼 = 1. Table 7 illustrates the degree of label distribution infor-
Table 7: Impact of Public Data Quantity on Label Distribution
and Membership Information Leakage in PDA-FD.

Datasets size MIA (TPR at 1%FPR) LDIA (KL divergence)

5000 29.28% 0.10
7500 31.84% 0.09
10000 32.01% 0.07

mation and membership information leakage from clients when the
quantity of the public data samples is set to 5000, 7500, and 10000,
respectively. The results indicate that larger public datasets con-
tribute to increased privacy leakage risks for clients. We attribute
this trend to two factors. For distillation-based LiRA, a larger pub-
lic dataset provides a more extensive distillation dataset, enabling
the attacker to obtain more robust reference models. In the case
of LDIA, a larger public dataset serving as the inference dataset
allows the attacker to mitigate the impact of outliers or atypical
data, thereby improving attack accuracy.

5.2 Number of Reference Models
In LiRA, the attacker can form a more accurate Gaussian distri-
bution by utilizing a larger number of reference models, thereby
enhancing the precision of determining whether a target sample
belongs to the target model’s training data. We evaluate the perfor-
mance of distillation-based LiRAwith varying numbers of reference
models. Figure 11 shows results from experiments using the Cronus
framework on CIFAR-10 with 𝛼 = 0.1. The data reveals that the per-
formance of the distillation-based LiRA’s improves as the number
of distilled reference models increases.

Figure 11: The performance of distillation-based LiRA vs.
number of the distilled reference model.

5.3 Public-Private Data Distribution Shift

We also evaluate the impact of varying degrees of data distribution
shift between the public and private datasets on both our attacks and
the FD training process. We conduct our experiments following the
FedMD federated distillation framework, where we set the Dirichlet
distribution to 𝛼 = 1 and the private dataset to CIFAR10. Then,
we compare the attack efficacy of using different public datasets,
including CIFAR10, CIFAR100, TinyImageNet [20], and SVHN [29].
Table 8 shows the performance of FedMD and our attacks, LDIA
and distillation-based LiRA, in different scenarios.
Table 8: Impact of Public-Private Data Distribution Shift.

Public Dataset MIA (TPR at 1%FPR) LDIA (KL divergence) FedMD Accuracy

CIFAR10 17.62% 0.17 75.38%
CIFAR100 9.47% 0.11 68.41%

TinyImageNet 7.83% 0.11 60.01%
SVHN 2.72% 0.18 47.12%

We can see that as the data distribution shift between public and
private datasets increases, both attacks (LDIA andDistillation-based
LiRA) become less effective. For LDIA, larger distribution shifts
make it harder for the inference dataset 𝐷𝑖𝑛𝑓 in LDIA to reflect
the target model’s label sensitivity. For Distillation-based LiRA,
increasing distribution shifts make it more difficult for shadow
models to mimic target model performance by using knowledge
distillation, reducing the attack effectiveness. Notably, we also find
that larger distribution shifts simultaneously hinder the PDA-FD
process itself, as effective knowledge distillation among clients
becomes more difficult, ultimately degrading the overall federated
learning performance.

5.4 Resilience Against DP-SGD

To evaluate the robustness of our proposed LDIA and MIA methods,
we assess their effectiveness when the target client employs DP-
SGD[1] during the local updates phase. DP-SGD is a state-of-the-art
privacy-preserving model training technique. Our experimental
setup includes 10 clients participating in DS-FL training on the
CIFAR-10 dataset (𝛼 = 10). We conduct LDIA and Co-op LiRA
attacks against the clients during the second round of training. In
DP-SGD, it introduces noise to gradients during training, governed
by three key parameters. The clipping bound (𝐶) limits the influence
of individual data points on model parameters. The noise multiplier
(𝜎) determines the amount of noise added to gradients. The privacy
budget (𝜀) balances privacy guarantees and model utility, with
smaller values providing stronger privacy at the cost of potentially
noisier updates. In our experiments, we set 𝐶 to be 10 and vary 𝜎
to adjust 𝜀. This setup allows us to evaluate our proposed attack
under different privacy protection levels.
Table 9: Performance of MIA and LDIA against DP-SGD for
DS-FL trained on CIFAR-10.

𝜎 𝜀 Average acc LDIA(KL divergence) MIA(TPR at 1%FPR)

0 ∞ 59.09% 0.03 15.76%
0.1 >10000 48.68% 0.07 2.86%
0.3 >5000 41.29% 0.08 2.11%
0.5 >2000 28.53% 0.09 1.54%
1.0 231 21.34% 0.10 1.29%
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5.5 Resilience Against Evasive Clients
To proactively protect their privacy, cautious clients may choose to,
in each communication round, avoid sending to the server the logits
of some samples in the public dataset, particularly the ones that are
also in its training dataset. To counter such defense, we propose
two countermeasures as follows: (1) In co-op LiRA, a shadow target
model can be distilled using the logits of the samples in the public
dataset provided by the target model, and then obtain the logits
of the target sample from this shadow target model as an approxi-
mation to the one from the target clients’ model. The intuition is
that although knowledge distillation reduces the distilled student
model’s membership information of the teacher model [14], it still
preserves statistically significant enough membership information
for a percentage of the members in teacher’s training data, thus al-
lowing some success in the MIA attack to the teacher model. (2) We
can also leverage a technique called indirect queries [25, 41], which
is to first obtain logits of samples in the target sample’s neigh-
borhood from the target model and subsequently perform MIA
using information encoded in these neighborhood logits. Neighbor
samples are generated by adding noises to the target sample.

We conduct experiments to evaluate the effectiveness, and the ex-
periments are on the CIFAR-10 dataset with a Dirichlet distribution
parameter 𝛼=10, with co-op LiRA as the MIA method. Equipped
with the first countermeasure, the attack achieves a TPR of 4.53%
at 1% FPR. Implementing a simplified version of the second coun-
termeasure gives the attack a TPR of 4.23% at 1% FPR. Note that
in implementing countermeasure two, we add random Gaussian
noise to the target samples to generate neighbor samples, with the
noise clipped to the [-0.7, 0.7] range. Studies in [25, 41] implement
more advanced schemes to learn from the neighbor logits, leading
to better attacks. We leave studying such schemes as future work.

6 Privacy Risk in Federated Distillation
While FL is designed to protect clients’ private data, recent re-
search [9, 23, 28, 39, 44] reveals significant privacy risks in these
frameworks. In FL, Gu et al. [9] demonstrated that server-side LDIA
could achieve a KL-divergence of 0.01 between the inferred and
the ground truth label distributions on CIFAR-10. Nasr et al. [28]
showed that server or client-side MIA could reach accuracies of
92.1% and 76.3%, respectively, on CIFAR-100.

FD frameworks transfer distilled knowledge between partici-
pants instead of informative model parameters and gradients. This
mechanism generally provides more privacy protection for each
client’s data than traditional FL frameworks (FedAVG, FedSGD,
etc.). However, through the lens of LDIA and MIA, we observe that
although privacy leakage risk in FD appears less severe than in
FL, significant risks remain, as state-of-the-art privacy attacks can
still achieve non-trivial success rates based on the results in the
literature and our experiments. Our work is the first to propose
a LDIA method targeting the FD frameworks, and we achieve a
KL divergence of 0.02 between the inferred and the ground-truth
label distributions on CIFAR-10. This attack is less successful than
in the traditional FL frameworks, but label distribution leakage
has been demonstrated. Targeting the PDA-FD frameworks, Liu
et al. [23] proposed a client-side MIA method attaining 67.0% bal-
anced accuracy on CIFAR-100. Yang et al. [44] also demonstrated
a client-side MIA method that achieved an up to 75% balanced

accuracy on CIFAR-100. Similarly, our MIA methods (co-op LiRA
and distillation-based LiRA) demonstrate considerable server-side
MIA effectiveness in achieving a TPR of up to 35.76% at a 1% FPR
on CIFAR-10. In addition, effective MIA methods are reported to
target other FD frameworks. For example, Wang et al. [39] reported
that their MIA attack achieved 67.06% and 79.07% accuracy on Fed-
Gen [47] and FedDistill [16] respectively, on CIFAR-10. One of the
objectives of our study is to motivate future research on privacy
risks in various FD frameworks and, more broadly, FL frameworks.

7 Related Work
MIA and LDIA. Shokri et al. [35] pioneered MIA research by
demonstrating how model output confidence scores could reveal
training data membership. Nasr et al. [28] extended this to FL, show-
ing how both passive and active adversaries could exploit gradients
and model updates. LDIA represents another significant privacy
threat in FL. Gu et al. [9] introduced LDIA as a new attack vec-
tor where adversaries infer label distributions from model updates.
Wainakh et al. [38] further explored user-level label leakage through
gradient-based attacks in FL. Recent works have exposed the vulner-
ability of FD to inference attacks. Yang et al. [44] proposed FD-Leaks
for performing MIA in FD settings through logit analysis. Liu et
al. [23] and Wang et al. [39] enhanced MIA using shadow models
via respective approaches MIA-FedDL and GradDiff, though their
assumptions were limited to homogeneous environments.
Defenses and Countermeasures. DPSGD [1] can be employed
during the training phase to mitigate against privacy attacks to the
client model. Additionally, specialized MIA defense methods such
as SELENA [37], HAMP [5] and DMP[34] can be integrated into the
training process. Several studies have proposed enhanced FD frame-
works with improved privacy protection mechanisms to reduce
client privacy leakage. Zhu et al. [47] investigated data-free knowl-
edge distillation for heterogeneous federated learning. They pre-
sented an approach that reduces the need for public datasets. Chen
et al. [4] proposed FedHKD, where clients share hyper-knowledge
based on data representations from local datasets for federated
distillation without requiring public datasets or models.

8 Conclusion
In this paper, we examine the privacy risk of using public datasets
as the knowledge transfer medium in FD through the lens of la-
bel distribution information and membership information leakage,
measured by attack success rates. We evaluate three public-dataset-
assisted FD frameworks (FedMD, DS-FL, and Cronus) using our
proposed LDIA method and two MIA methods: Co-op LiRA and
Distillation-based LiRA. Our LDIA method performs considerably
well measured in KL divergence (an average KL divergence of 0.10
in one setup), demonstrating a non-trivial risk level of label dis-
tribution information leakage. Co-op LiRA and Distillation-based
LiRA, two MIA attacks for FD, achieve a state-of-the-art success
rate evident by relatively high TPRs at low FPRs (up to 34.61%
TPR at 1% FPR), indicating troublesome membership leakage risk.
These findings underscore the privacy vulnerabilities that persist in
PDA-FD frameworks, highlighting the need for enhanced privacy-
preserving mechanisms in FD environments.
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A Additional Experiment Details
A.1 Data Splits on Different Datasets
The details of the specific partitioning of datasets(CIFAR10, CIFAR-
10/CIFAR-100, CINIC-10, Fashion-MNIST and Purchase) and the
number of classes used in our experiments.

Table 10: Datasets division.

Datasets number of classes 𝐷𝑡𝑟𝑎𝑖𝑛 𝐷𝑝𝑢𝑏 𝐷𝑡𝑒𝑠𝑡

CIFAR-10 10 40000 10000 10000
CIFAR-10/CIFAR-100 10 40000 10000 10000

CINIC-10 10 72000 18000 90000
Fashion-MNIST 10 48000 12000 10000

Purchase 10 21589 5397 11565

B Additional Ablation Study
B.1 Number of Epochs in Local Updates Phase
Prior to the communication phase, clients train their local mod-
els on their private datasets during the local updates phase. This
process enhances the local model’s memorization of private data,
facilitating knowledge transfer between clients but also potentially
increasing privacy leakage. We measure the impact of the number
of training epochs in the local updates phase on the leakage of label
information and membership information from clients. As shown in
Table 11: Impact of Number of Training Epochs on Label
Distribution and Membership Information Leakage in PDA-
FD.

Number of Epochs MIA (TPR at 1%FPR) LDIA (KL divergence)

2 8.10% 0.15
4 14.64% 0.10
6 15.43% 0.09

Table 11, there is an increase in label distribution and membership
information leakage from clients in DS-FL as the number of the
local update training rounds increases from 2 to 6 on the CIFAR-10
dataset (𝛼=1).
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