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Abstract
The European Health Data Space (EHDS) aims to enable the sharing
of health data across Europe to improve healthcare and research.
While the EHDS mandates anonymization or pseudonymization of
shared health data, these techniques may still allow adversaries to
re-identify individuals. Local differential privacy (LDP) has been
proposed as a formal privacy guarantee that can help mitigate
this issue. In this paper, we consider a common problem when
analyzing health data: estimating means for different groups. We
discuss a generic privacy-preserving method for approximating
the means of different groups in a decentralized setting where
both the group and the value are considered private. We show
that four concrete instantiations of the method based on existing
mean estimation methods (Laplace, Bernoulli, Piecewise, and NPRR)
are locally differentially private. We evaluate their performance on
synthetic and real-world medical datasets. Our results show that the
proposed methods can accurately estimate the group means, while
maintaining privacy. However, similar to other LDP algorithms, our
approach requires a sufficient amount of data (in our case a sufficient
amount of samples per group) combined with a sufficiently large
privacy budget 𝜀 to produce accurate results. We discuss concrete
practical issues like choosing an appropriate input range, dealing
with large privacy budgets through the use of the shuffle model of
differential privacy, and the need for further analysis techniques to
make LDP solutions applicable to practical medical data analysis.

Keywords
local differential privacy, data analysis, group means, decentralized
data, mean estimation

1 Introduction
Trust plays a vital role in medical research as participants share
sensitive personal health information with research organizations.
This trust relationship is typically acceptable for individuals in the
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context of reputable institutions conducting limited studies, how-
ever, the picture is shifting dramatically with initiatives like the
European Union’s upcoming legislation on the European Health
Data Space (EHDS) [21]. This legislation aims to make electronic
health data available to a broader range of organizations and re-
search institutions, potentially without the explicit consent of the
individuals concerned. By expanding the scale of health data shar-
ing and the number of people that have access to shared data, the
EHDS increases the likelihood for the potential exposure of per-
sonal health information [40]. Although the EHDS requires the
anonymization or pseudonymization of shared health data, signifi-
cant vulnerabilities remain and may allow the re-identification of
individuals that are part of the underlying private dataset [5, 41].

Local Differential Privacy (LDP) provides a formal privacy guar-
antee and has the potential to mitigate these problems. Under LDP,
a certain amount of noise is added to each individual data record
before it is shared with a data collector. This means that the data
collector never sees the raw data, and even if they are compromised,
they can only learn a certain amount of information about the data.

In this paper, we consider a common problem when analyzing
health data: estimating the mean of a continuous numerical value
for different groups. More specifically, we consider the scenario
where 𝑛 participants each own a private value (e.g., a survey re-
sponse, a lab measurement, or other sensitive information) and
belong to a private group (e.g., a demographic attribute, a diagnosis,
or other sensitive categories). The goal is to estimate the mean
of the private values for each group while preserving the privacy
of the individual values and group memberships using LDP. This
allows raw health data to remain with its original providers while
still enabling statistical analysis across institutions or individuals.

Related Work. The main building blocks of our methods are ex-
isting LDP methods for mean estimation and frequency estimation.
Estimation of the mean of a scalar value is a common problem in
the LDP literature and has been discussed in many articles [10, 12–
14, 24, 30, 38, 42, 46]. Frequency estimation, i.e., determining how
often a discrete value appears in private data, has gotten even more
attention in the literature [1, 4, 9, 14, 20, 32–34, 37, 38, 42, 43, 48].

However, few works discuss the goal of this paper, i.e., the mean
estimation for different groups. Ding et al. [11] introduce a method
for performing hypothesis tests to compare the mean between two
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groups, but primarily focus on the application of A/B testing and
therefore do not consider the group as private. Friedberg and Rogers
[23] present a method to estimate the mean of a continuous value
for different groups, but only consider the group information as
private, not the value. Juarez and Korolova [31] consider both the
group and the value as private and introduce two methods (Laplace
and Bernoulli) for estimating the mean for the different groups.

Contributions. We extend the work of Juarez and Korolova [31]
in several ways: (1) We generalize their method, introduce two new
variants (Group Piecewise and Group NPRR), and show that they
are 𝜀-LDP. (2) We provide a corrected privacy guarantee for the
Bernoulli method (Theorem 2). (3) We show that the modification
to the Laplace method proposed by Juarez and Korolova [31] to
use different noise scales inside the method does not provide LDP
(Proposition 2). (4) We empirically compare the new and existing
methods on synthetic and real-world datasets. (5) We evaluate the
optimal parameter setting for the new Group Piecewise and Group
NPRR methods.

Organization. The remainder of this paper is organized as fol-
lows: In Section 2, we introduce the definition of LDP. Section 3
formally defines the problem of estimating the mean of a private
value for different groups and introduces relevant LDP methods
used as building blocks for our methods. In Section 4, we introduce
our generic method for estimating the means of different groups
and discuss four concrete instantiations, their privacy guarantees,
and corresponding estimators. Section 5 describes the experimental
setup and presents the results of our experiments on synthetic and
real-world medical datasets. In Section 6, we discuss the limitations
of the methods and discuss open problems and potential solutions.
Finally, Section 7 concludes the paper and provides an outlook
on future work. The proofs for all theorems and propositions are
provided in Section D in the appendix.

2 Local Differential Privacy
Differential privacy (DP) exists in several variants, each tailored to
different trust models and privacy requirements [17]. These models
offer distinct trade-offs between privacy and utility, depending on
the level of trust placed in different entities involved in the data
processing pipeline.

Central DP, first introduced by Dwork et al. [16], assumes a
trusted central entity that collects private data from participants and
applies a DP mechanism to produce privacy-preserving aggregate
results. This model relies on participants’ trust that the central
entity will not misuse or leak their private data. It is useful in
scenarios where data is collected centrally and statistics should be
released in a privacy-preserving manner.

However, this trust assumption is not suitable for all applications,
especially when participants are unwilling to share their data with
a central entity. LDP addresses this issue by eliminating the need
for a trusted curator. Instead of applying privacy mechanisms to
a centralized database, LDP operates directly on individual data
points, making it the primary focus of this paper. Each participant
randomizes their private data before submitting it to an aggregator
who can then analyze the data or compute approximate aggregate

statistics. The perturbation is chosen carefully to enable the estima-
tion of aggregate statistics by the analyst while hiding individual
private data points.

LDP was first formalized by Kasiviswanathan et al. [35] and is
based on a local randomizer which performs the randomization on
the participant’s side. We define LDP as follows:

Definition 1 (Local Differential Privacy). A randomized
algorithm 𝑀 with domain 𝐷 is 𝜀-locally differentially private (an
𝜀-DP local randomizer; 𝜀 > 0) if for all S ⊆ Range(𝑀) and for all
pairs of a participant’s values 𝑥,𝑦 ∈ 𝐷 :

Pr[𝑀 (𝑥 ) ∈ S] ≤ exp(𝜀 ) Pr[𝑀 (𝑦) ∈ S] .

While LDP removes the need for a trusted curator, it introduces
new challenges. Because noise must be added locally, the overall
noise in the data increases, often reducing the utility of the results.
To ensure accurate results, LDP mechanisms often require either
a large number of participants or the choice of a larger privacy
budget 𝜀.

3 Problem Definition
We consider each participant 𝑖 ∈ {1, 2, . . . , 𝑛} out of 𝑛 total par-
ticipants to have private data (𝑔𝑖 , 𝑣𝑖 ), where 𝑔𝑖 ∈ 𝐺, |𝐺 | = 𝑑 is
indicating the group membership and 𝑣𝑖 ∈ 𝐷 is the private value of
interest. Without loss of generality, we assume that 𝐷 = [−1, 1] for
continuous values.1 With 𝑛𝑔 , we denote the number of participants
belonging to group 𝑔, i.e., 𝑛𝑔 =

∑𝑛
𝑖 1𝑔𝑖=𝑔 . We use 1𝐴 to denote the

indicator function which equals 1 if 𝐴 is true and 0 otherwise. To
ensure the privacy guarantee, each participant has to apply an LDP
mechanism𝑀 to their private value and group membership before
sending the perturbed data (𝑔′𝑖 , 𝑣 ′𝑖 ) = 𝑀 (𝑔𝑖 , 𝑣𝑖 ) to the aggregator.
The aggregator then uses the perturbed data to estimate the true
group means𝑚𝑔 = 1

𝑛𝑔

∑𝑛
𝑖 1𝑔𝑖=𝑔 · 𝑣𝑖 from the perturbed data (𝑔′𝑖 , 𝑣 ′𝑖 ).

3.1 (Generalized) Randomized Response
The core building block of our LDP mechanisms is the generalized
randomized response mechanism. Randomized response (RR) was
first introduced by Warner [45] as a method to collect sensitive
information while preserving the privacy of the participants. The
idea is that participants do not answer a sensitive question truth-
fully, but instead randomize their response before submitting it.
The randomized response mechanism is a simple way to achieve
LDP. More formally, the randomized response mechanism𝑀RR for
a binary input 𝑥 ∈ {0, 1} is defined by the probability [44]

Pr[𝑀RR (𝑥, 𝜀) = 𝑦] =
{

𝑒𝜀

𝑒𝜀+1 if 𝑥 = 𝑦
1

𝑒𝜀+1 if 𝑥 ≠ 𝑦
. (1)

Using this definition,𝑀RR is 𝜀-LDP [44].
The randomized response mechanism can be generalized to non-

binary inputs. The generalized randomized response (GRR) mecha-
nism𝑀GRR for a discrete input domain 𝑋 of size |𝑋 | = 𝑑 is defined
by the probability [33, 44]

Pr[𝑀GRR (𝑥,𝑋, 𝜀) = 𝑦] =
{

𝑒𝜀

𝑒𝜀+𝑑−1 if 𝑥 = 𝑦
1

𝑒𝜀+𝑑−1 if 𝑥 ≠ 𝑦
, (2)

1Any bounded interval can be transformed to this interval. Section C in the appendix
discusses the concrete transform used for the experiments in this paper.
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where 𝑥,𝑦 ∈ 𝑋 . This definition of GRR is 𝜀-LDP [44] and reduces
to RR for 𝑑 = 2. Throughout this paper, we use 𝑀GRR (𝑥, 𝑑, 𝜀) as a
shorthand for𝑀GRR (𝑥, {1, 2, . . . , 𝑑}, 𝜀).

3.2 Mean Estimation Mechanisms
Several mechanisms have been proposed for locally differentially
private mean estimation (without group information). We discuss
the most relevant mechanisms in the following, before extending
them to group-wise mean estimation in the next section. We refer
the reader to Raab et al. [39] for a comprehensive overview of the
state-of-the-art in LDP mechanisms and to the original papers for
more details.

3.2.1 Laplace Mechanism. The Laplace mechanism is one of the
first and most well-known LDP mechanisms. It was first introduced
by Dwork et al. [16] for DP and Kasiviswanathan et al. [35] for LDP
and is based on additive noise drawn from the Laplace distribution.
We define the Laplace mechanism as follows:

Definition 2 (Laplace mechanism). Given a private value 𝑣 ∈
[−1, 1] and privacy budget 𝜀 > 0, the Laplace mechanism 𝑀Lap is
defined as

𝑀Lap (𝑣, 𝜀) = 𝑣 + Lap
(

2
𝜀

)
, (3)

where Lap(𝜆) denotes a sample from the Laplace distribution with

probability density function 𝑓𝜆 (𝑥) = 1
2𝜆 𝑒
− |𝑥 |

𝜆 .

3.2.2 Bernoulli-based Mechanisms. Bernoulli-based mechanisms
have been introduced by several works independently [10, 13, 38],
but are in fact equivalent [39]. Their main idea is to use a Bernoulli
random variable to discretize the input value before applying the
randomized response mechanism to the resulting binary value. We
give a general definition in Algorithm 1.

Algorithm 1 Generic Bernoulli-Based Mechanism𝑀Bern

Input: Client’s value 𝑣 ∈ [−1, 1], privacy budget 𝜀 > 0
Output: Perturbed value 𝑣 ′ ∈ {−1, 1}

𝐵 ∼ Bernoulli
( 1+𝑣

2
)

𝑣 ′ ← 2𝑀RR (𝐵, 𝜀) - 1
return 𝑣 ′

3.2.3 Piecewise Mechanism. The piecewise mechanism was first
introduced by Wang et al. [42] and is based on the idea of par-
titioning the output space into three intervals with the “middle”
interval being centered around the true value. The response is then
created by sampling from the output space, where sampling from
the “middle” interval is more likely than sampling from the “outer”
intervals. The 𝜀-LDP piecewise mechanism is defined as follows:

Definition 3 (Piecewise Mechanism [42]). Given a private
value 𝑣 ∈ [−1, 1] and privacy budget 𝜀 > 0, the piecewise mechanism
𝑀PW outputs a perturbed value 𝑣 ′ ∈ [−𝐶,𝐶] where 𝐶 = exp(𝜀/2)+1

exp(𝜀/2)−1 .
The mechanism is defined by the probability

Pr[𝑀PW (𝑣, 𝜀) = 𝑥] =
{
𝑝 if 𝑥 ∈ [𝑙 (𝑣), 𝑟 (𝑣)]

𝑝
exp(𝜀 ) if 𝑥 ∈ [−𝐶, 𝑙 (𝑣)) ∪ (𝑟 (𝑣),𝐶] , (4)

where 𝑙 (𝑣) = 𝐶+1
2 𝑣− 𝐶−1

2 , 𝑟 (𝑣) = 𝑙 (𝑣) +𝐶−1, and 𝑝 = exp(𝜀 )−exp(𝜀/2)
2 exp(𝜀/2)+2 .

3.2.4 NPRR Mechanism. Non-Parametric Randomized Response
(NPRR) was introduced byWaudby-Smith et al. [46] as a generaliza-
tion of the binary Bernoulli-based mechanisms. While their general
solution is interactive and allows for individual privacy budgets
for each participant, we use a non-interactive simplification of the
NPRR mechanism with a single privacy budget for all participants.
Algorithm 2 gives the simplified NPRR mechanism (see Section B
in the appendix for a discussion of the simplification). While the
original algorithm is defined for inputs in [0, 1], the simplified al-
gorithm works with inputs in [−1, 1] to better align with the other
methods in this paper.

Algorithm 2 Simplified Non-Parametric Randomized Response
(NPRR) Mechanism𝑀NPRR

Input:Client’s value 𝑣 ∈ [−1, 1], privacy budget 𝜀 > 0, discretiza-
tion parameter 𝑘 ∈ {1, 2, . . . }
Output: Perturbed value 𝑣 ′ ∈ {−1, 2−𝑘

𝑘 , 4−𝑘
𝑘 . . . , 2𝑘−𝑘

𝑘 = 1}

𝑣 𝑓 ← ⌊ 𝑣+1
2 · 𝑘⌋/𝑘

𝐵 ∼ Bernoulli
(
𝑘 ( 𝑣+1

2 − 𝑣 𝑓 )
)

𝑦 ← 𝑣 𝑓 + 𝐵/𝑘
𝑣 ′ ← 2𝑀GRR (𝑦, {0/𝑘, 1/𝑘, . . . , 𝑘/𝑘}, 𝜀) − 1
return 𝑣 ′

4 Methods
Juarez and Korolova [31] first discussed the idea of estimating the
mean of a group with local differential privacy with the aim to
estimate the performance of a federated learning algorithm for
different demographic groups. We generalize their approach to
work with any mechanism for mean estimation and discuss four
concrete instantiations based on the mechanisms introduced in the
previous section.

The generic mechanism for perturbing group and value is given
in Algorithm 3 and works as follows. Each client applies GRR to
perturb their group 𝑔 as 𝑔′ = 𝑀GRR (𝑔,𝑑, 𝜀1), where |𝐺 | = 𝑑 is the
number of groups. If GRR changes the group (𝑔′ ≠ 𝑔), the client
replaces their true value 𝑣 by a different “neutral” value 𝑒0 – in the
case of the four specific algorithms we discuss in this paper, we
set 𝑒0 = 0. Other values are possible, but potentially lead to more
complex formulas for the resulting mean estimators. The client
then perturbs their value 𝑣 as 𝑣 ′ =𝑀 (𝑣, 𝜀2) using a method-specific
mechanism. Note that this means that the client never directly
reports the unperturbed “neutral” value 𝑒0 to the aggregator (doing
this could leak the fact that 𝑔′ ≠ 𝑔). Finally, the client sends (𝑔′, 𝑣 ′)
to the aggregator, who can then estimate the mean for each group.
The range of 𝑣 and 𝑣 ′ depends on the choice of the mechanism𝑀

and is discussed in detail in the following sections.
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Algorithm 3 Generic mechanism for group-value responses
Parameters:Mechanism𝑀 : 𝐷 → 𝑂 , neutral value 𝑒0
Input: Client’s group 𝑔 ∈ {1, 2, . . . , 𝑑}, value 𝑣 ∈ 𝐷 and privacy
budgets 𝜀1, 𝜀2 ∈ [0,+∞]
Output: Perturbed tuple (𝑔′, 𝑣 ′), 𝑔′ ∈ {1, 2, . . . , 𝑑}, 𝑣 ′ ∈ 𝑂

𝑔′ ← 𝑀GRR (𝑔,𝑑, 𝜀1)
if 𝑔′ ≠ 𝑔:
𝑣 ← 𝑒0

𝑣 ′ ← 𝑀 (𝑣, 𝜀2)
return (𝑔′, 𝑣 ′)

Unlike themechanisms introduced in the previous section, this al-
gorithm takes two parameters 𝜀1 and 𝜀2 which influence the overall
𝜀-LDP guarantee of the algorithm. We discuss concrete interactions
between 𝜀1, 𝜀2, and 𝜀 in the following sections. From the general
composition theorem of differential privacy [15, 17], we obtain that
the sequential application of an 𝜀1-LDP mechanism and an 𝜀2-LDP
mechanism is 𝜀-LDP with 𝜀 = 𝜀1 + 𝜀2. In the following sections, we
will show that in three out of four cases, we get a better privacy
guarantee for the resulting algorithm (i.e., 𝜀 < 𝜀1 + 𝜀2).

To estimate the mean per group, we need an estimate of the
number of participants in each group since the true number of
participants per group requires knowledge of the private group
memberships 𝑔𝑖 and is therefore unknown2. Since the group infor-
mation only depends on the output of the GRR mechanism, we can
define a general estimator for the number of participants in each
group which works regardless of the choice of mechanism𝑀 . This
is essentially the same estimator as for frequency estimation with
GRR [44].

Definition 4 (Estimator of 𝑛𝑔). Let 𝑛𝑔 be the true number of
participants in group 𝑔, i.e., 𝑛𝑔 =

∑𝑛
𝑖=1 1𝑔𝑖=𝑔 . The estimator �̂�𝑔 for the

number of participants in group 𝑔 is given by

�̂�𝑔 =
1

𝑝 − 𝑞

(
𝑛∑︁
𝑖=1

1𝑔′
𝑖
=𝑔 − 𝑛𝑞

)
, (5)

where 𝑝 = 𝑒𝜀1
𝑒𝜀1+𝑑−1 and 𝑞 = 1−𝑝

𝑑−1 = 1
𝑒𝜀1+𝑑−1 .

Proposition 1. The estimator �̂�𝑔 is unbiased.

To estimate each group’s mean value, we combine the group size
estimator �̂�𝑔 with a separate estimator for the sum of the values
within each group, denoted 𝑠𝑔 . In the following, we introduce four
instantiations of Algorithm 3 and corresponding estimators for 𝑠𝑔 .

4.1 Laplace Mechanism
The first mechanism 𝑀𝐺

Lap uses the Laplace mechanism 𝑀Lap :
[−1, 1] → R with 𝑒0 = 0 as the neutral value. Following the general
Laplace mechanism (Definition 2), the value is perturbed by adding
Laplace noise scaled by 𝜆 = 2

𝜀2
. This method was first introduced

by Juarez and Korolova [31], who showed the privacy guarantee
which we repeat in Theorem 1.

Theorem 1 (Juarez and Korolova [31]). The mechanism𝑀𝐺
Lap

is 𝜀-LDP with 𝜀 = max
{
𝜀2,

𝜀2
2 + 𝜀1

}
.

2Juarez and Korolova [31] assume that the number of participants per group is known.

The optimal privacy allocation for the Laplace mechanism would
therefore be 𝜀1 = 𝜀

2 and 𝜀2 = 𝜀.
Juarez and Korolova [31] also claimed that it would be beneficial

to use a different scale for the Laplace noise in the case when the
group was changed (𝑔′ ≠ 𝑔) by the algorithm. In this variant, the
value would be perturbed as before if the group was not changed,
but the neutral value 𝑒0 would be perturbed with a different scale for
the Laplace noise. However, we show that the resulting mechanism
would not satisfy LDP:

Proposition 2. The mechanism 𝑀𝐺
Lap is not 𝜀-LDP if the noise

scale in the case 𝑔′ = 𝑔 differs from the case 𝑔′ ≠ 𝑔.

We now give an estimator for the sum of values within each
group. This is based on the estimator and proof given by Juarez and
Korolova [31]. However, their original paper provides an estimator
for the mean which requires the (unknown) group size to be known.

Definition 5 (Estimator of 𝑠𝑔 for the Laplace Mechanism).
Let 𝑠𝑔 be the true sum of values in group 𝑔 and (𝑔′𝑖 , 𝑣 ′𝑖 ) =𝑀𝐺

Lap (𝑔𝑖 , 𝑣𝑖 ).
The estimator 𝑠Lap

𝑔 for 𝑠𝑔 is given by

𝑠
Lap
𝑔 =

1
𝑎

𝑛∑︁
𝑖=1

1𝑔′
𝑖
=𝑔 · 𝑣 ′𝑖 , (6)

where 𝑎 = 𝑒𝜀1
𝑒𝜀1+𝑑−1 .

Proposition 3 (Modified from Juarez and Korolova [31]).
The estimator 𝑠Lap

𝑔 is unbiased.

4.2 Binary Bernoulli Mechanisms
The second mechanism𝑀𝐺

Bern uses the Bernoulli mechanism𝑀Bern :
[−1, 1] → {−1, 1} with 𝑒0 = 0 as the neutral value. This method
was also discussed by Juarez and Korolova [31], who claimed an
incorrect privacy guarantee (𝜀1 = 𝜀2 = 𝜀) and only considered
the case 𝑑 = 2. We extend their proof to general 𝑑 and provide a
corrected privacy guarantee. This method first perturbs the group
using GRR and then perturbs the true value (or 0 if the group was
changed) using a binary Bernoulli mechanism.

Theorem 2 (Modified from Juarez and Korolova [31]). The
mechanism𝑀𝐺

Bern is 𝜀-LDP with 𝜀 = max{𝜀1 + ln
(

2𝑒𝜀2
𝑒𝜀2+1

)
, 𝜀2}.

For a given 𝜀, the optimal privacy allocation would therefore be
𝜀1 = 𝜀 − ln

(
2𝑒𝜀
𝑒𝜀+1

)
and 𝜀2 = 𝜀.

Definition 6 (Estimator of 𝑠𝑔 for the Bernoulli mechanism).
Let 𝑠𝑔 be the true sum of values in group 𝑔 and (𝑔′𝑖 , 𝑣 ′𝑖 ) =𝑀𝐺

Bern (𝑔𝑖 , 𝑣𝑖 ).
The estimator 𝑠Bern

𝑔 for 𝑠𝑔 is given by

𝑠Bern
𝑔 =

1
𝑎(2𝑏 − 1)

𝑛∑︁
𝑖=1

1𝑔′
𝑖
=𝑔 · 𝑣 ′𝑖 (7)

where 𝑎 = 𝑒𝜀1
𝑒𝜀1+𝑑−1 and 𝑏 = 𝑒𝜀2

𝑒𝜀2+1 .

Proposition 4 (Modified from Juarez and Korolova [31]).
The estimator 𝑠Bern

𝑔 is unbiased.
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4.3 NPRR Mechanism
The third mechanism 𝑀𝐺

NPRR uses the NPRR mechanism 𝑀NPRR :
[−1, 1] → {−1, 2−𝑘

𝑘 , 4−𝑘
𝑘 . . . , 2𝑘−𝑘

𝑘 } with 𝑒0 = 0 as the neutral value.

Theorem 3. The resulting mechanism𝑀𝐺
NPRR is 𝜀-LDP with 𝜀 =

max
{
𝜀1 + ln

(
(𝑘+1)𝑒𝜀2
𝑒𝜀2+𝑘

)
, 𝜀2

}
.

For a given 𝜀, the optimal privacy allocation would therefore be
𝜀1 = 𝜀 − ln

(
(𝑘+1)𝑒𝜀
𝑒𝜀+𝑘

)
and 𝜀2 = 𝜀.

Definition 7 (Estimator of 𝑠𝑔 for the NPRR Mechanism).
Let 𝑠𝑔 be the true sum of values in group𝑔 and (𝑔′𝑖 , 𝑣 ′𝑖 ) =𝑀𝐺

NPRR (𝑔𝑖 , 𝑣𝑖 ).
The estimator 𝑠NPRR

𝑔 for 𝑠𝑔 is given by

𝑠NPRR
𝑔 =

1
𝑎𝑏

𝑛∑︁
𝑖=1

1𝑔′
𝑖
=𝑔 · 𝑣 ′𝑖 , (8)

where 𝑎 = 𝑒𝜀1
𝑒𝜀1+𝑑−1 , and 𝑏 = 𝑒𝜀2 −1

𝑒𝜀2+𝑘 .

Proposition 5. The estimator 𝑠NPRR
𝑔 is unbiased.

4.4 Piecewise Mechanism
The final mechanism 𝑀𝐺

PW uses the piecewise mechanism 𝑀PW :
[−1, 1] → [−𝐶,𝐶] with 𝑒0 = 0 as the neutral value.

Proposition 6. The mechanism𝑀𝐺
PW is 𝜀-LDP with 𝜀 = 𝜀1 + 𝜀2.

In the case of the piecewise mechanism, we cannot find a better
privacy bound than given by the general composition theorem.
Therefore, we cannot derive a clear optimal privacy allocation
between 𝜀1 and 𝜀2 from this result. In the experiments in this paper,
we set 𝜀1 = 𝜀2 = 𝜀

2 .

Definition 8 (Estimator of 𝑠𝑔 for the PiecewiseMechanism).
Let 𝑠𝑔 be the true sum of values in group 𝑔 and (𝑔′𝑖 , 𝑣 ′𝑖 ) =𝑀𝐺

PW (𝑔𝑖 , 𝑣𝑖 ).
The estimator 𝑠PW

𝑔 for 𝑠𝑔 is given by

𝑠PW
𝑔 =

1
𝑎

𝑛∑︁
𝑖=1

1𝑔′
𝑖
=𝑔 · 𝑣 ′𝑖 , (9)

where 𝑎 = 𝑒𝜀1
𝑒𝜀1+𝑑−1 .

Proposition 7. The estimator 𝑠PW
𝑔 is unbiased.

5 Experiments
In this section, we empirically test the performance of the four
algorithms by comparing them on synthetic data. We also assess
their impact on medical data analysis by inspecting individual use
cases from real-world medical datasets.

5.1 Data
First, we use synthetic data as a preliminary validation to verify
the correctness of the methods, to find the optimal discretization
parameter for NPRR, to compare different settings of 𝜀1 and 𝜀2 for
the Piecewise method, to compare the performance of the methods
in general, and to investigate the impact of unbalanced data. Next,
we transition to the AQUILA dataset to represent typical obser-
vational studies. Finally, we test the methods on scenarios from
the comprehensive MIMIC-IV dataset to align more closely with
aspects of secondary use expected in the forthcoming European

Health Data Space (i.e., the large-scale sharing of health data for
research and development purposes).

As real data does not always conform to the input range [−1, 1]
required by the algorithms, we transform the raw data before exe-
cuting the algorithm and also transform the resulting means back
to the correct value range. We describe this process in Section C in
the appendix.

5.1.1 Synthetic Data. We use four synthetic datasets to compare
the utility of the proposed methods. Each dataset consists of 𝑑
groups, each with an equal number of participants. The input range
for these datasets is [𝑠, 𝑟 ] = [−1, 1] if not stated otherwise in the
following sections.

The datasets are defined as follows:
• Uniform: This dataset consists of 𝑑 groups, each with data
uniformly sampled from the full domain [𝑠, 𝑟 ]. Consequently,
all groups have (roughly) the same mean.
• Normal: This dataset consists of 𝑑 groups, with evenly
spaced population means 𝜇𝑔 . Each group 𝑔 has values sam-
pled from a normal distribution N (

𝜇𝑔,
𝑠+𝑟
5𝑑

)
.

• Constant: This dataset consists of 𝑑 groups with the same
evenly spaced means as the Normal dataset. However, each
group only has values exactly equal to 𝜇𝑔 .
• Extremum: This dataset consists of 𝑑 groups with the same
evenly spaced means as the Normal dataset. The values are
either 𝑠 or 𝑟 , sampled from a Bernoulli distribution to ap-
proximate the target mean.

The data distributions for the synthetic datasets are visualized
in Figure 21 in the appendix.

5.1.2 AQUILA. To represent data from observational studies, we
use the AQUILA dataset [36]. AQUILA is an ongoing, multicenter,
prospective, non-interventional study to assess different aspects of
treatment with Secukinumab (a monoclonal antibody) in patients
with ankylosing spondylitis (AS) and psoriatic arthritis (PsA).

The dataset contains entries for 1912 patients (993 female, 919
male), with 668 patients with AS and 1245 patients with PsA. We
provide an overview of the group and value attributes in Table 1.
The data distribution for the AQUILA dataset is visualized in Fig-
ure 22 in the appendix.

Table 1: Overview of the AQUILA datasets used in the experi-
ments.

(a) Values

Attribute Input Range
Age (years) 18 − 100
BMI (kg m−2) 10 − 60
Height (m) 1.0 − 2.3
Weight (kg) 30 − 200

(b) Groups

Attribute Group Size
Disease 2 (AS, PsA)
Gender 2 (female, male)

5.1.3 MIMIC-IV. We simulate a potential future secondary use
in the EHDS through the use of the MIMIC-IV dataset [28]. This
dataset provides a large collection of health records collected in the
Beth Deaconess Medical Center between 2008 and 2019. We use
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MIMIC-IV [26] version 2.2 and pre-process it using the MIMIC code
repository [27, 29]. The dataset is provided through PhysioNet [25].
This dataset is a good representation of the anticipated secondary
data use in the EHDS context, as it contains routine health care
data from a real hospital and has sufficient size.

We only use the hospital module from the MIMIC-IV dataset,
which contains data for 431 231 hospital admissions for 299 712
patients and primarily provides categorical properties and few nu-
merical ones. For experiments with this dataset, we consider each
individual admission as an individual “participant” in the LDP pro-
cess. MIMIC-IV only contains data for patients 18 years or older.
Table 2 provides a summary of the categories we use for groups
and values. The data distributions for MIMIC-IV datasets with a
group size of two is visualized in Figure 22 in the appendix.

Table 2: Overview of the MIMIC-IV datasets used in the ex-
periments. “Deceased” is a binary value indicating whether
the MIMIC-IV dataset contains information about a patient’s
death. The values for the admission type and location are
given in Table 7 in the appendix.

(a) Values

Attribute Input Range
Age (years) 18 − 100

(b) Groups

Attribute Group Size
Gender 2 (female, male)
Admission
Type

9 (see Table 7)

Admission
Location

11 (see Table 7)

Deceased 2 (no, yes)

5.2 Validation on Synthetic Data
In this section, we evaluate the performance of the proposed meth-
ods using the synthetic datasets. We mainly focus on the scaled
mean absolute error, which is computed by dividing the absolute
error between the estimated and true means by the size of the input
range. This scaled error can be interpreted as a percentage relative
to the input range, allowing for comparisons across different input
ranges. For the group error ratio, we determine the proportion of
incorrect group responses (𝑔′𝑖 ≠ 𝑔𝑖 ) relative to the total number of
participants 𝑛.

5.2.1 Choosing the Discretization Parameter for NPRR. Before com-
paring the performance of the four group mean estimation methods,
we first investigate the influence of the discretization parameter 𝑘
on the NPRR mechanism𝑀𝐺

NPRR. A larger 𝑘 should reduce the error
introduced by the randomized rounding (discretization) procedure,
however it also increases the amount of items for the response
and could therefore increase the error introduced by GRR. We in-
vestigate this influence in this first experiment by executing the
NPRR mechanism for 𝑘 ∈ {1, 2, 3, 4, 8, 16, 32} on data with differing
amounts of groups and group sizes. For this experiment, we use
synthetic data with equal group sizes, where the group size is set to
10 000 participants and the number of groups is varied between 2, 8,
and 64. Each simulation run was repeated 200 times to account for
the randomness in the mechanism. Figure 1 shows the scaled mean

absolute error averaged over the four synthetic datasets. Figure 2
shows the results for the group error ratio.

Analyzing the results of the mean estimation, we see that all
settings of 𝑘 perform similarly well, especially when considering
the large standard deviation of the different variants. However,
there is a slight trend towards a better performance for larger 𝑘
for larger 𝜀 and a worse performance for larger 𝑘 for smaller 𝜀.
This is most obvious for the dataset with 2 groups and becomes
less pronounced for the datasets with 8 and 64 groups, where the
difference in performance between the different settings of 𝑘 is
almost negligible. The overall magnitude of the error is very similar
for the different number of groups, but the standard deviation
increases as the number of groups increases.

The discretization parameter 𝑘 not only influences the error of
the mean estimation, but also the amount of errors in the group
information. The group error therefore differs for the different
settings of 𝑘 . While all parameter settings show a similarly large
group error for small 𝜀, the group errors deviate more for larger 𝜀.
While all settings of 𝑘 show a decreasing group error for increasing
𝜀, the group error is generally smaller for smaller 𝑘 .

5.2.2 Choosing 𝜀1 and 𝜀2 for the Piecewise Mechanism. The Piece-
wise mechanism has a total privacy budget of 𝜀 = 𝜀1 + 𝜀2 and
therefore requires a split of 𝜀 into 𝜀1 and 𝜀2. We investigate the
influence of this split on the mean estimation error. Tables 3, 4, and
5 show the mean scaled absolute error of the Piecewise mechanism
for different settings of 𝜀1, 𝜀 and 𝜀2 = 𝜀 − 𝜀1 for 2, 8, and 64 groups,
respectively. For 𝜀 > 1, the best performing ratio 𝜀1/𝜀 is between
0.3 and 0.4 for 2 groups, while for 8 groups it is between 0.4 and
0.5, and for 64 groups it is between 0.6 and 0.7. For 𝜀 ≤ 1, the best
performing ratio is more erratic and does not follow the same trend
as for larger 𝜀. The error in this regime is generally very large and
does not produce a meaningful result. Considering the trend for
larger 𝜀, we can conclude that the optimal split of 𝜀 into 𝜀1 and 𝜀2
depends on the number of groups and a larger number of groups
requires a larger 𝜀1. However, in all cases, the best performing set-
ting shows only a small improvement over the default choice of
𝜀1 = 𝜀2 = 𝜀/2, especially when considering the large standard devia-
tion of the errors (often on the order of magnitude of the error itself;
see Tables 8, 9, and 10 in the appendix). Setting 𝜀1 = 𝜀2 = 𝜀/2 is
therefore a meaningful default, as it leads to a similar performance
as the best performing setting for the different group sizes and does
not require any additional tuning.

5.2.3 Estimating the Mean. In this experiment, we evaluate the ac-
curacy of the four groupmean estimationmethods (Group Bernoulli,
Group Laplace, Group Piecewise, and Group NPRR) on the synthetic
datasets.We use fixed group sizes of 10 000 participants and vary the
input range ([−1, 1], [−50, 50], [0, 100]) and the number of groups
({2, 8, 64}). Each simulation run was repeated 200 times to account
for the randomness in the mechanism. Figure 3 shows the results
averaged over the four synthetic datasets. Figure 4 shows the re-
sults for the group error ratio. We only show the results aggregated
over all input ranges, as the different input ranges did not lead to a
noticeable difference in the error.

Similar to the previous experiment, the standard deviations of the
errors are quite large and overlap for all methods. Therefore, there is
no clear best-performing method. Instead, we observe the following
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Figure 1: Scaled absolute error (absolute error divided by the data range of the dataset) for the Group NPRR method with
different settings of 𝑘 . The group size in all three subfigures is equal to 10 000. Shaded regions indicate the standard deviation
over the randomness of the mechanism. The data for this figure was averaged over all four synthetic datasets (see Figure 7 in
the appendix for detailed figures). The Figure shows that the error is generally smaller for larger 𝑘 at larger 𝜀 and larger for
smaller 𝑘 at smaller 𝜀, but the difference is small.
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Figure 2: Group error ratio for the Group NPRR method with different settings of 𝑘 . The group error ratio gives the number of
incorrect group responses divided by the number of participants. The experiment uses the same setting as Figure 1. The Figure
shows that the group error ratio is smaller for smaller 𝑘 and shrinks with increasing 𝜀. An increased number of groups leads to
a higher group error.

Table 3: Mean scaled absolute error (absolute error divided by the data range of the dataset) of the Piecewise mechanism for
different settings of 𝜀1, 𝜀 and 𝜀2 = 𝜀 − 𝜀1 for 2 groups averaged over the four synthetic datasets. Each group consists of 10 000
participants. The lowest error for each 𝜀 is shown in bold.

𝜀1/𝜀 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
𝜀

0.1 7.51×101 1.55×101 1.71 3.91×10−1 4.06×10−1 4.67×10−1 6.13×10−1 9.29×10−1 1.80
0.5 5.71×10−2 4.56×10−2 4.90×10−2 5.38×10−2 6.39×10−2 7.80×10−2 1.04×10−1 1.57×10−1 3.01×10−1

1.0 2.38×10−2 2.04×10−2 2.18×10−2 2.39×10−2 2.74×10−2 3.33×10−2 4.34×10−2 6.41×10−2 1.28×10−1

2.0 1.04×10−2 8.68×10−3 8.79×10−3 9.53×10−3 1.13×10−2 1.37×10−2 1.79×10−2 2.58×10−2 5.20×10−2

4.0 4.68×10−3 3.43×10−3 3.37×10−3 3.58×10−3 4.28×10−3 5.40×10−3 7.04×10−3 1.09×10−2 2.28×10−2

6.0 2.97×10−3 2.03×10−3 1.92×10−3 2.03×10−3 2.31×10−3 3.06×10−3 4.30×10−3 6.72×10−3 1.45×10−2

8.0 2.22×10−3 1.40×10−3 1.21×10−3 1.28×10−3 1.58×10−3 2.07×10−3 2.98×10−3 4.72×10−3 1.05×10−2

10.0 1.79×10−3 1.03×10−3 8.21×10−4 8.72×10−4 1.11×10−3 1.55×10−3 2.21×10−3 3.69×10−3 8.15×10−3
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Table 4: Mean scaled absolute error (absolute error divided by the data range of the dataset) of the Piecewise mechanism for
different settings of 𝜀1, 𝜀 and 𝜀2 = 𝜀 − 𝜀1 for 8 groups averaged over the four synthetic datasets. Each group consists of 10 000
participants. The lowest error for each 𝜀 is shown in bold.

𝜀1/𝜀 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
𝜀

0.1 6.66×10−1 1.42 4.13 3.43 4.48 5.86 8.49 3.48×101 2.33×101

0.5 7.01×10−1 8.89×10−1 5.11×10−1 3.17×10−1 2.61×10−1 2.91×10−1 3.70×10−1 5.33×10−1 1.01
1.0 5.54×10−1 1.30×10−1 8.72×10−2 8.56×10−2 9.28×10−2 1.07×10−1 1.33×10−1 1.85×10−1 3.55×10−1

2.0 1.14×10−1 3.72×10−2 3.02×10−2 2.88×10−2 2.97×10−2 3.22×10−2 3.87×10−2 5.24×10−2 9.67×10−2

4.0 2.57×10−2 1.30×10−2 9.49×10−3 8.03×10−3 7.55×10−3 8.07×10−3 9.72×10−3 1.36×10−2 2.62×10−2

6.0 1.51×10−2 7.04×10−3 4.54×10−3 3.63×10−3 3.38×10−3 3.73×10−3 4.77×10−3 7.23×10−3 1.49×10−2

8.0 1.03×10−2 4.44×10−3 2.72×10−3 2.05×10−3 1.94×10−3 2.29×10−3 3.17×10−3 5.02×10−3 1.06×10−2

10.0 7.80×10−3 3.17×10−3 1.80×10−3 1.29×10−3 1.28×10−3 1.63×10−3 2.33×10−3 3.84×10−3 8.39×10−3

Table 5: Mean scaled absolute error (absolute error divided by the data range of the dataset) of the Piecewise mechanism for
different settings of 𝜀1, 𝜀 and 𝜀2 = 𝜀 − 𝜀1 for 64 groups averaged over the four synthetic datasets. Each group consists of 10 000
participants. The lowest error for each 𝜀 is shown in bold.

𝜀1/𝜀 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
𝜀

0.1 6.21×10−1 1.59 2.37 3.20 7.60×101 7.37 1.15×101 4.28×102 4.35×101

0.5 8.62 1.18 2.08 2.64 4.54 5.50 1.70×101 1.41×101 1.17×102

1.0 5.64×10−1 1.04 1.54 2.17 2.40 3.25 4.42 4.08 1.53×101

2.0 5.48×10−1 9.50×10−1 1.07 8.49×10−1 3.31×10−1 2.37×10−1 2.44×10−1 3.05×10−1 5.17×10−1

4.0 6.98×10−1 5.49×10−1 8.13×10−2 4.86×10−2 3.78×10−2 3.27×10−2 3.20×10−2 3.69×10−2 5.94×10−2

6.0 7.50×10−1 6.54×10−2 2.72×10−2 1.64×10−2 1.12×10−2 8.89×10−3 8.55×10−3 1.03×10−2 1.86×10−2

8.0 4.76×10−1 3.05×10−2 1.35×10−2 7.26×10−3 4.65×10−3 3.71×10−3 3.93×10−3 5.50×10−3 1.12×10−2

10.0 1.52×10−1 1.87×10−2 7.59×10−3 3.83×10−3 2.42×10−3 2.08×10−3 2.53×10−3 3.92×10−3 8.46×10−3

trends: The Group NPRR method performs best for large 𝜀 (see also
the previous experiment for the setting of 𝑘), whereas the Group
Bernoulli method (equivalent to NPPR with 𝑘 = 1) performs best for
small 𝜀, closely followed by the Group Laplace and Group Piecewise
methods. The performance of these three methods levels off quickly
for larger 𝜀, with the Group Bernoulli method showing the largest
error for large 𝜀, which resembles their behavior in the non-group
setting (see Raab et al. [39] for detailed results in the non-group
setting). Examining the detailed results for the various datasets
(refer to Figure 9 in the appendix), we observe similar trends across
all datasets, except for the Extremum dataset. In the Extremum
dataset, the Group Bernoulli method outperforms the othermethods
for all 𝜀 settings. This behavior can be attributed to the fact that the
Extremum dataset contains only the two extreme values 𝑠 and 𝑟 ,
which align with the values used by the Group Bernoulli method for
rounding. Consequently, the rounding procedure does not introduce
any additional error in this case.

Examining the group error, we observe that all methods exhibit a
similar group error ratio for 𝜀 = 0.1, which decreases as 𝜀 increases.
The Group Bernoulli method and the NPRR variants follow the
same patterns as in the previous experiment, with Bernoulli (NPRR
with 𝑘 = 1) showing the lowest group error and NPRR with 𝑘 = 32
showing the highest. Both the Piecewise and Laplace methods,
which use 𝜀1 = 𝜀/2, display the same group error that gradually

decreases with larger 𝜀. Generally, the group error is higher for a
greater number of groups, and the reduction in group error becomes
noticeable only at larger 𝜀 values.

5.2.4 Impact of Group Imbalance. To examine the effect of group
imbalance, we use synthetic datasets with two groups of varying
sizes. We simulate datasets where the first group has 𝑛0 = 10 000
participants, and the size ratios between the first and second group
are 𝑛0/𝑛1 = {1, 0.1, 0.01}. This means the second group has sizes of
{10 000, 100 000, 1 000 000} participants.

Figure 5 presents the results for mean estimation across different
methods. The error patterns for the various methods are similar to
those observed in balanced groups in the previous section. The error
magnitude does not change substantially with different imbalance
ratios, but the standard deviation is generally larger for imbalanced
groups.

To explore the increased standard deviation further, we display
the scaled absolute error for individual groups in Figure 11 in the
appendix. This figure shows that the error for the larger group is
generally smaller than that for the smaller group and that the error
for the larger group decreases with increasing imbalance, while the
error for the smaller group increases slightly. This indicates that
the mean estimation error of one group is influenced not only by
the group size but also by the size of the other group. However, this
effect is rather small.

243



Proceedings on Privacy Enhancing Technologies 2025(4) Raab et al.

0 2 4 6 8 10
Y

10−3

10−1

101

103

Sc
al
ed

M
A
E

2 groups

0 2 4 6 8 10
Y

10−3

10−1

101

103
8 groups

0 2 4 6 8 10
Y

10−3

10−1

101

103
64 groups

Bernoulli Laplace Piecewise (50%) NPRR (k=8) NPRR (k=16) NPRR (k=32)

Figure 3: Scaled absolute error (absolute error divided by the data range of the dataset) for the different proposed methods.
The group size in all three subfigures is equal to 10 000. Shaded regions indicate the standard deviation over the randomness
of the mechanism. The data for this figure was averaged over all four synthetic datasets (see Figure 9 in the appendix for
detailed figures). The Figure shows that most methods perform similarly well, with the Group NPRR method showing the best
performance for large 𝜀 and the Group Bernoulli method showing the best performance for small 𝜀.
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Figure 4: Group error ratio for the different proposed methods. The group error ratio gives the number of incorrect group
responses divided by the number of participants. The experiment uses the same setting as Figure 3. The Figure shows that the
group error ratio shrinks with increasing 𝜀, but at different rates for the different methods.

5.3 Validation on Medical Data
In this section, we examine individual subsets of the AQUILA
and MIMIC-IV datasets to assess the performance of the differ-
ent mean estimation methods in a real-world scenario. To visual-
ize the randomness in the mechanisms, we simulate each setting
200 times. For each dataset, we plot the individual mean estima-
tion results and the true mean for each group across various 𝜀
settings ({0.5, 1.0, 4.0, 10.0}). We focus on the variance of the esti-
mated means and their proximity to the true mean, as these factors
are crucial for the utility of the methods and their potential appli-
cation in medical data analysis. If the variance is too high or the
estimated mean deviates from the true mean, the results must be
considered unreliable. The magnitude of the variance or deviation
that can be considered acceptable in practice depends on the con-
crete use case and further down-stream analysis questions. For this
reason, we keep this analysis rather vague and present the results
and their relative comparison.

5.3.1 AQUILA. For the AQUILA dataset, we discuss the two com-
binations mean age per disease and mean height per gender in more
detail and show further results in the appendix (Figures 12 and 13).
Figure 6a shows the results for the mean age per disease and Fig-
ure 6b shows the results for the mean height per gender.

For groups defined by the disease attribute, there are roughly
twice as many participants with PsA compared to AS, while the
groups are almost balanced for the gender attribute. Despite this
imbalance, both figures exhibit similar behavior across different 𝜀
settings. For small 𝜀 values (0.5 or 1.0), the estimated means show
high variance and often deviate significantly from the true mean,
sometimes spanning the entire input range for 𝜀 = 0.5. As 𝜀 in-
creases (2.0 or 4.0), the variance decreases, and the estimated means
become closer to the true mean. The different methods display simi-
lar trends as observed with synthetic data: the Bernoulli method has
the smallest variance for small 𝜀 but the largest for large 𝜀, while the
Laplace and Piecewise methods maintain consistent variance with
a slight decrease for larger 𝜀. The NPRR method shows very high
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Figure 5: Scaled absolute error (absolute error divided by the data range of the dataset) for the different proposed methods for
imbalanced groups. The group size for the first group is equal to 10 000. The second group has 10 000 participants in the first
subfigure, 100 000 participants in the second subfigure, and 1 000 000 participants in the third subfigure. Shaded regions indicate
the standard deviation over the randomness of the mechanism. The figure shows that there is no substantial difference in the
error magnitude for different imbalance ratios, but the standard deviation is generally larger for more imbalanced groups.

variance for small 𝜀 but the smallest variance for larger 𝜀 values
(4.0 and 10.0).

Next to the actual mean estimates, we are also interested in
the difference between the means of two groups. We show the
results for the difference between the means of the two groups
for the AQUILA dataset in Figures 15 and 16 in the appendix. The
violin plots illustrate the distribution of the random results for the
difference between the means of the two groups across various 𝜀
settings. In all cases, the means of the random results are close to
the true difference between the means of the two groups, indicating
that the mean estimation methods are unbiased. Furthermore, we
observe similar trends as in the previous plots, with the NPRR
method exhibiting a very large variance for small 𝜀 and a smaller
variance compared to the other methods for larger 𝜀. Additionally,
Figures 18 and 19 illustrate the frequency with which the order
of means was correctly estimated across 200 random runs. These
plots indicate that the accuracy of mean order estimation improves
with increasing 𝜀, with most methods achieving a 100% accuracy for
datasets where the difference between group means is substantial.
For smaller differences, the Bernoulli method occasionally fails to
estimate the correct order of means, not reaching a 100% accuracy
even for 𝜀 = 10.0. For all methods, the 𝜀 value of first reaching
a 100% accuracy varies depending on the difference between the
group means. In the case of the BMI per gender dataset, the group
difference is so small, that no method consistently estimates the
correct order for all random runs, even at the highest 𝜀 settings.

5.3.2 MIMIC-IV. For the MIMIC-IV dataset, we discuss the two
combinations mean age per gender and mean age per admission
location in more detail and show further results in the appendix
(Figure 14). Figure 6c shows the results for the mean age per gender
and Figure 6d shows the results for the mean age per admission
location.

For the groups defined by the gender attribute, we have roughly
balanced groups (with roughly 10% more female than male). How-
ever, for the admission location groups, there is a large imbalance

with most participants (232 476) being in group 2, a few thousand
each in group 1, 4, 5, 7, and 9, and only a few hundred in groups 0
and 3.

For the case where groups are defined by the gender, we see
a very similar behavior to the AQUILA dataset, but with a much
smaller variance in the estimated means.

For the admission location, we see a large variance in the esti-
mated means for small 𝜀 (0.5 and 1.0) and a smaller variance for
larger 𝜀 (2.0 and 4.0). For 𝜀 = 0.5, only the two largest groups show
a variance in the mean estimate that is not covering the full input
range. For 𝜀 = 1.0, the variance decreases and the estimated means
are closer to the true mean. For 𝜀 = 4.0 and 𝜀 = 10.0, the variance
for most groups is very small and only the smallest groups still
show a larger variance.

The fact that the variance is still large for 𝜀 = 1.0 points towards
the fact that not only the number of participants in the group but
also the number of groups has an impact on the variance of the
estimated means.

We show the results for the difference between the means of the
two groups for the MIMIC-IV dataset in Figures 17 in the appendix.
The results are similar to the AQUILA dataset, with the means of
the simulation results being close to the true difference between the
means of the two groups. This indicates that the mean estimation
methods are unbiased. As the number of participants in the groups is
much larger for the MIMIC-IV dataset, the variance of the estimated
means is much smaller compared to the AQUILA dataset. We also
see this in the ratio of the correct order of the means in Figures 20
in the appendix, where the order of the means is estimated correctly
in almost all cases. The order ratio is only smaller than 100% for
the smallest 𝜀 settings.

6 Discussion
In this paper, we have introduced and evaluated several methods
for estimating the mean of a group of participants in a decentralized
setting where both the group and the value are considered private.
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(a) AQUILA dataset. Group: Disease, Value: Age.
Participants per group: AS: 683, PsA: 1278
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(b) AQUILA dataset. Group: Gender, Value: Height.
Participants per group: F: 993, M: 921
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(c) MIMIC-IV dataset. Group: Gender, Value: Age.
Participants per group: F: 224 796, M: 206 066
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(d) MIMIC-IV dataset. Group: Admission Location, Value: Age.
Participants per group: 0: 185, 1: 10 006, 2: 232 476, 3: 358, 4: 4204, 5:
5401, 6: 114 815, 7: 7798, 8: 35 964, 9: 3842, 10: 15 813
See Table 7 in the appendix for group descriptions.

Figure 6: Individual results for the mean estimation for different groups and values using data from the AQUILA and MIMIC-IV
datasets. Each method was executed 200 times and each resulting mean estimate is shown as a single point to visualize the
randomness of the mechanism. The true mean is shown as a solid line. All subfigures show that the variance of the estimated
means generally decreases with increasing 𝜀. The different methods exhibit similar trends, with the NPRR method performing
best for larger 𝜀 and the Bernoulli method performing best for smaller 𝜀. The variance of the estimated means is generally
higher for smaller groups and smaller 𝜀.
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6.1 General Findings
We have seen that the accuracy of the estimated means depends
largely on the number of participants in the corresponding group,
the total number of groups and the value of 𝜀. It also depends on
the number of participants in the other groups, but to a lesser
extent. When groups have many participants and 𝜀 is large, group
means can be estimated quite accurately, but when they are not
large enough or there are too many groups, the estimated means
resemble a uniform sampling from the relevant input domain and
are therefore not very useful. These results are generally in line with
the findings for mean estimation methods which do not consider
group information [39]. One notable exception is the Piecewise
mechanism, which does not perform as well as in the non-group
setting [39].

The results of the experiments on the MIMIC-IV dataset show
that the methods can be applied to real-world medical data and
provide meaningful results, given enough participants in each
group combined with a reasonably large value of 𝜀. For the smaller
AQUILA dataset, the results are less reliable, as the number of par-
ticipants per group is smaller and a larger value of 𝜀 is required to
obtain accurate estimates. Given the requirement of a large value
of 𝜀 for accurate estimates, a method should be chosen that works
well with a large value of 𝜀 such as NPRR with a large 𝑘 .

6.2 Limitations
A common challenge with LDP methods is the requirement for
a large dataset to achieve accurate estimates, which we also ob-
served in our experiments. As discussed above, the accuracy of
the estimated means depends on the number of participants in the
corresponding group, the total number of groups, and the value
of 𝜀. When the number of participants in the groups is small or
the number of groups is large, the accuracy of the mean estimates
deteriorates. This limitation is inherent to the LDP framework and
is not specific to the methods proposed in this paper.

Specifically, the group-based mean estimation methods proposed
in this paper are particularly affected when the number of groups
is large or the number of participants per group is small. In such
cases, the GRR method used for estimating the group information
may not yield accurate results, which in turn affects the accuracy of
the mean estimates. Considering the error introduced by the group
information, alternative methods from frequency estimation, such
as 𝑘-Subset [43, 48] or RAPPOR [20], could potentially yield better
results compared to GRR. However, these alternatives require a
thorough investigation of their privacy guarantees and the resulting
mean estimators, which we leave for future work.

Additionally, the Piecewise mechanism specifically presents a
problem in deriving an optimal setting for the privacy parameters
𝜀1 and 𝜀2. As discussed in Section 5.2.2, setting these parameters
to 𝜀/2 is an acceptable default, but not optimal. Further research is
needed to develop strategies for optimally setting these parameters
in different scenarios or to find a theoretically optimal ratio.

6.3 Towards Application
Before the methods in this paper can be used in a real-world appli-
cation, several challenges need to be addressed by practitioners.

6.3.1 Choosing the Input Range. All discussed group mean esti-
mation methods, like most other LDP methods, require a bounded
input domain to function well. In our experiments, we predeter-
mined the size of the input range. This presents two challenges: If
the input range is too small, many data points become “outliers” and
must be projected to the boundaries of the input range, negatively
impacting the quality of the mean estimate. Conversely, if the input
range is too large, the accuracy of the mean estimate deteriorates,
as the error magnitude increases linearly with the input range size
– similar to the non-group setting [39].

We propose a potential solution to this issue and leave the de-
tailed analysis for future work. One possible approach is to im-
plement a binary search for the input domain. The idea is to start
with a very large input range and then iteratively narrow it down
by asking participants whether their data falls within the current
range. Participants use randomized response to perturb their an-
swers, and frequency estimation is used to estimate the proportion
of participants within the chosen range. This process continues
until the estimated proportion of participants within the range falls
below a certain threshold.

According to the composition theorem, summing the 𝜀 values
of individual queries in pure LDP results in a large overall 𝜀, weak-
ening the privacy guarantee. A potential solution could be the use
of the shuffle model of differential privacy [7]. In this model, the
shuffler collects the data from the participants and shuffles it before
sending it to the analyst. By removing the connection between the
participants and their responses, the shuffle model can provide a
stronger privacy guarantee than pure LDP. Furthermore, the shuffle
model allows each query to use the full 𝜀 without additional pri-
vacy loss [19]. This raises the question whether this method is only
applicable in the shuffle model, or if it can also be adapted for the
local model. Further research is needed to explore the feasibility
and effectiveness of this approach in both models, potentially lead-
ing to more robust and practical privacy-preserving data analysis
techniques.

6.3.2 Large Privacy Budgets. As we have seen in the experimental
results, the privacy budget 𝜀 required for accurate mean estimates
can be quite large. In the pure LDP setting, this is not desirable, as
the privacy guarantee becomes weaker (or even meaningless) with
larger values of 𝜀. Furthermore, following the composition theorem,
the privacy budget needs to be summed up over multiple queries,
which can quickly lead to a very large value of 𝜀 for which the LDP
guarantee is not very strong (or even meaningless).

Possible solutions to this problem include the use of other notions
of privacy (see next section) or the use of the shuffle model of
differential privacy. This would allow for a larger value of 𝜀 for the
LDP mechanism while still achieving a good DP protection for the
resulting means.

Furthermore, the shuffle model also allows for multiple queries
for different attributes without having to sum up the privacy bud-
get [19], which is a significant advantage over the pure LDP setting.
Since the shuffle model directly builds on the LDP model, the meth-
ods introduced in this paper can be directly applied in the shuffle
model without any modifications.

To actually provide additional trust, the shuffler needs to be
operated by trusted entities, such as hospitals or doctors in the
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healthcare domain, who are already trusted by patients to handle
their data. We leave the application of the shuffle model and the
evaluation of the methods for this model for future work.

6.3.3 Other Notions of Privacy. While this work focuses on pure
LDP, other variants exist. Metric LDP, for example, relaxes the in-
distinguishability requirement over the entire domain, allowing for
more accurate data analysis while still protecting privacy [3]. This
approach can be applied in any domain with a defined metric and
offers a better privacy-utility trade-off, especially with advanced
statistical utility measures like the earth mover’s distance [2, 6, 18].
However, applying metric LDP to group mean estimation, particu-
larly for medical data, requires further research into adaptations of
methods, the correct selection of metrics, and a careful analysis of
the privacy guarantees and utility of the resulting estimators.

6.3.4 Need for Further Analysis Methods for Medical Data. While
calculating the means of groups is a common task in medical data
analysis, it is not sufficient to fully understand the underlying data.
We discuss some additional methods in the following.

Frequency Estimation with Groups. Similar to the methods pro-
posed in this paper, it is possible to estimate value frequencies over
multiple private groups. This can be done by replacing the mean
estimation component of our generic algorithm (Algorithm 3) with
one of the many existing frequency estimation methods. However,
the problem of estimating frequencies for multiple groups is also
equivalent to estimating the joint distribution between the cate-
gorical groups and values, which has also been discussed in LDP
literature [8, 22, 22, 47, 49]. Indeed, the joint distribution estimation
algorithm by Xue et al. [47] outperformed a combination of GRR
for both groups and values in preliminary experiments. We leave a
detailed comparison for future work.

Comparing Group Means with Significance. In medical data anal-
ysis, it is common to use statistical tests to determine if differences
in group means are significant. Ding et al. [11] have shown how to
perform hypothesis tests to compare the mean between two groups
by using their Bernoulli mechanism [10]. However, as stated in the
related work, this method does not consider the group as private.
Additionally, Waudby-Smith et al. [46] show how to estimate the
mean and confidence intervals for the population mean on the basis
of their NPRR method. Building on the group-wise mean estimation
and the ideas of these works, developing methods for comparing the
means of different groups with significance in a privacy-preserving
manner is a promising direction for future research.

7 Conclusion
Given the developments in the European Union towards the large-
scale secondary use of health data for research and development,
there is an urgent need for proper privacy-preserving data analysis
procedures. In this paper, we discussed the estimation of group
means as a central data analysis task and discussed four LDP meth-
ods for this task.We showed their privacy guarantees, and evaluated
their performance on synthetic and real-world medical datasets.
While these methods provide a foundation for data analysis in
the EHDS, further methods are needed to make LDP applicable to
practical medical data analysis.

Going forward, differential privacy should certainly play a role in
the context of the EHDS (to protect published aggregation results
from attacks). However, LDP may not be feasibly applied in all
situations (especially when the amount of available data is small or
high accuracy is required). In these cases, combinations with the
shuffle model of differential privacy or cryptographic solutions like
secure multi-party-computation should be considered. Relaxations
of the privacy guarantee (e.g., (𝜀, 𝛿)-(L)DP, or metric LDP) could
also be considered for practical applications. However, the impact
of these relaxations on the privacy guarantee and the accuracy of
the results should be carefully evaluated.
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A Additional Figures & Tables

Table 6: Notation used in this paper

Symbol Description
1𝐴 Indicator function for 𝐴, equals 1 if 𝐴 is true and 0 otherwise
𝑛 Number of participants
𝑑 |𝐺 | = 𝑑 , number of groups
𝐺 Set of groups
𝜀 Privacy parameter
(𝑔𝑖 , 𝑣𝑖 ) 𝑔𝑖 ∈ 𝐺, 𝑣𝑖 ∈ [−1, 1], group and value of participant 𝑖
(𝑔′𝑖 , 𝑣 ′𝑖 ) Perturbed group and value response of participant 𝑖 , (𝑔′𝑖 , 𝑣 ′𝑖 ) =𝑀 (𝑔𝑖 , 𝑣𝑖 )
𝑘 Discretization parameter for the Group NPRR method
𝑛𝑔 𝑛𝑔 =

∑𝑛
𝑖 1𝑔𝑖=𝑔 , number of participants in group 𝑔

𝑠𝑔 𝑠𝑔 =
∑𝑛

𝑖 1𝑔𝑖=𝑔 · 𝑣𝑖 , sum of values of group 𝑔
𝑚𝑔 𝑚𝑔 = 1

𝑛𝑔

∑𝑛
𝑖 1𝑔𝑖=𝑔 · 𝑣𝑖 , mean of group 𝑔

�̂�𝑔 Estimated number of participants in group 𝑔
�̂�𝑔 Estimated mean of group 𝑔
𝑠𝑔 Estimated sum of group 𝑔
Lap(𝜆) Sample from a Laplace distribution with scale 𝜆 and probability density function 𝑓 (𝑥) = 1

2𝜆 𝑒
− |𝑥 |

𝜆

Bernoulli(𝑝) Sample from a Bernoulli distribution with parameter 𝑝 .

Table 7: Categories from MIMIC-IV groups and their corresponding indices used in the figures in this paper.

Group Name Categories
Admission Type AMBULATORY OBSERVATION (0), DIRECT EMER. (1), DIRECT OBSERVATION (2), ELECTIVE (3), EU OBSERVA-

TION (4), EW EMER. (5), OBSERVATION ADMIT (6), SURGICAL SAME DAY ADMISSION (7), URGENT (8)
Admission Location AMBULATORY SURGERY TRANSFER (0), CLINIC REFERRAL (1), EMERGENCY ROOM (2), INFORMATION

NOT AVAILABLE (3), INTERNAL TRANSFER TO OR FROM PSYCH (4), PACU (5), PHYSICIAN REFERRAL (6),
PROCEDURE SITE (7), TRANSFER FROM HOSPITAL (8), TRANSFER FROM SKILLED NURSING FACILITY (9),
WALK-IN/SELF REFERRAL (10)

Discharge Location ACUTE HOSPITAL (0), AGAINST ADVICE (1), ASSISTED LIVING (2), CHRONIC/LONG TERM ACUTE CARE (3),
DIED (4), HEALTHCARE FACILITY (5), HOME (6), HOME HEALTH CARE (7), HOSPICE (8), OTHER FACILITY
(9), PSYCH FACILITY (10), REHAB (11), SKILLED NURSING FACILITY (12)
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Table 8: Mean scaled absolute error (absolute error divided by the data range of the dataset) of the Piecewise mechanism for
different settings of 𝜀1, 𝜀 and 𝜀2 = 𝜀 − 𝜀1 for 2 groups averaged over the four synthetic datasets. Each group consists of 10000
participants. The lowest error for each 𝜀 is shown in bold. The standard deviation is shown in parentheses below the mean error.

𝜀1/𝜀 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
𝜀

0.1 7.51×101 1.55×101 1.71 3.91×10−1 4.06×10−1 4.67×10−1 6.13×10−1 9.29×10−1 1.80
(1.92×103 ) (3.84×102 ) (6.67×101 ) (1.21 ) (5.47×10−1 ) (4.03×10−1 ) (5.05×10−1 ) (7.36×10−1 ) (1.38 )

0.5 5.71×10−2 4.56×10−2 4.90×10−2 5.38×10−2 6.39×10−2 7.80×10−2 1.04×10−1 1.57×10−1 3.01×10−1

(1.06×10−1 ) (3.64×10−2 ) (3.72×10−2 ) (4.11×10−2 ) (4.84×10−2 ) (5.95×10−2 ) (7.93×10−2 ) (1.15×10−1 ) (2.28×10−1 )
1.0 2.38×10−2 2.04×10−2 2.18×10−2 2.39×10−2 2.74×10−2 3.33×10−2 4.34×10−2 6.41×10−2 1.28×10−1

(2.00×10−2 ) (1.55×10−2 ) (1.64×10−2 ) (1.82×10−2 ) (2.09×10−2 ) (2.54×10−2 ) (3.35×10−2 ) (4.91×10−2 ) (9.62×10−2 )
2.0 1.04×10−2 8.68×10−3 8.79×10−3 9.53×10−3 1.13×10−2 1.37×10−2 1.79×10−2 2.58×10−2 5.20×10−2

(8.49×10−3 ) (6.55×10−3 ) (6.57×10−3 ) (7.27×10−3 ) (8.35×10−3 ) (1.02×10−2 ) (1.36×10−2 ) (1.96×10−2 ) (3.94×10−2 )
4.0 4.68×10−3 3.43×10−3 3.37×10−3 3.58×10−3 4.28×10−3 5.40×10−3 7.04×10−3 1.09×10−2 2.28×10−2

(3.76×10−3 ) (2.79×10−3 ) (2.67×10−3 ) (2.77×10−3 ) (3.29×10−3 ) (4.07×10−3 ) (5.37×10−3 ) (8.03×10−3 ) (1.71×10−2 )
6.0 2.97×10−3 2.03×10−3 1.92×10−3 2.03×10−3 2.31×10−3 3.06×10−3 4.30×10−3 6.72×10−3 1.45×10−2

(2.42×10−3 ) (1.71×10−3 ) (1.57×10−3 ) (1.62×10−3 ) (1.81×10−3 ) (2.37×10−3 ) (3.28×10−3 ) (5.10×10−3 ) (1.10×10−2 )
8.0 2.22×10−3 1.40×10−3 1.21×10−3 1.28×10−3 1.58×10−3 2.07×10−3 2.98×10−3 4.72×10−3 1.05×10−2

(1.81×10−3 ) (1.19×10−3 ) (9.72×10−4 ) (1.04×10−3 ) (1.27×10−3 ) (1.63×10−3 ) (2.32×10−3 ) (3.60×10−3 ) (8.07×10−3 )
10.0 1.79×10−3 1.03×10−3 8.21×10−4 8.72×10−4 1.11×10−3 1.55×10−3 2.21×10−3 3.69×10−3 8.15×10−3

(1.50×10−3 ) (9.25×10−4 ) (7.02×10−4 ) (7.12×10−4 ) (8.73×10−4 ) (1.22×10−3 ) (1.72×10−3 ) (2.81×10−3 ) (6.22×10−3 )

Table 9: Mean scaled absolute error (absolute error divided by the data range of the dataset) of the Piecewise mechanism for
different settings of 𝜀1, 𝜀 and 𝜀2 = 𝜀 − 𝜀1 for 8 groups averaged over the four synthetic datasets. Each group consists of 10000
participants. The lowest error for each 𝜀 is shown in bold. The standard deviation is shown in parentheses below the mean error.

𝜀1/𝜀 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
𝜀

0.1 6.66×10−1 1.42 4.13 3.43 4.48 5.86 8.49 3.48×101 2.33×101

(2.78 ) (8.82 ) (4.44×101 ) (2.16×101 ) (2.73×101 ) (3.40×101 ) (6.48×101 ) (6.28×102 ) (1.56×102 )
0.5 7.01×10−1 8.89×10−1 5.11×10−1 3.17×10−1 2.61×10−1 2.91×10−1 3.70×10−1 5.33×10−1 1.01

(3.51 ) (8.59 ) (5.33 ) (3.98 ) (2.65×10−1 ) (2.43×10−1 ) (2.98×10−1 ) (4.19×10−1 ) (7.95×10−1 )
1.0 5.54×10−1 1.30×10−1 8.72×10−2 8.56×10−2 9.28×10−2 1.07×10−1 1.33×10−1 1.85×10−1 3.55×10−1

(4.48 ) (1.06 ) (8.06×10−2 ) (6.85×10−2 ) (7.19×10−2 ) (8.19×10−2 ) (1.01×10−1 ) (1.42×10−1 ) (2.68×10−1 )
2.0 1.14×10−1 3.72×10−2 3.02×10−2 2.88×10−2 2.97×10−2 3.22×10−2 3.87×10−2 5.24×10−2 9.67×10−2

(2.18 ) (3.53×10−2 ) (2.45×10−2 ) (2.21×10−2 ) (2.27×10−2 ) (2.45×10−2 ) (2.90×10−2 ) (3.94×10−2 ) (7.28×10−2 )
4.0 2.57×10−2 1.30×10−2 9.49×10−3 8.03×10−3 7.55×10−3 8.07×10−3 9.72×10−3 1.36×10−2 2.62×10−2

(3.04×10−2 ) (1.21×10−2 ) (7.75×10−3 ) (6.28×10−3 ) (5.91×10−3 ) (6.16×10−3 ) (7.38×10−3 ) (1.03×10−2 ) (2.00×10−2 )
6.0 1.51×10−2 7.04×10−3 4.54×10−3 3.63×10−3 3.38×10−3 3.73×10−3 4.77×10−3 7.23×10−3 1.49×10−2

(1.69×10−2 ) (6.42×10−3 ) (3.89×10−3 ) (2.98×10−3 ) (2.65×10−3 ) (2.94×10−3 ) (3.69×10−3 ) (5.48×10−3 ) (1.14×10−2 )
8.0 1.03×10−2 4.44×10−3 2.72×10−3 2.05×10−3 1.94×10−3 2.29×10−3 3.17×10−3 5.02×10−3 1.06×10−2

(1.10×10−2 ) (4.07×10−3 ) (2.40×10−3 ) (1.72×10−3 ) (1.56×10−3 ) (1.80×10−3 ) (2.47×10−3 ) (3.82×10−3 ) (8.13×10−3 )
10.0 7.80×10−3 3.17×10−3 1.80×10−3 1.29×10−3 1.28×10−3 1.63×10−3 2.33×10−3 3.84×10−3 8.39×10−3

(8.14×10−3 ) (2.92×10−3 ) (1.63×10−3 ) (1.10×10−3 ) (1.04×10−3 ) (1.28×10−3 ) (1.81×10−3 ) (2.94×10−3 ) (6.34×10−3 )
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Table 10: Mean scaled absolute error (absolute error divided by the data range of the dataset) of the Piecewise mechanism for
different settings of 𝜀1, 𝜀 and 𝜀2 = 𝜀 − 𝜀1 for 64 groups averaged over the four synthetic datasets. Each group consists of 10000
participants. The lowest error for each 𝜀 is shown in bold. The standard deviation is shown in parentheses below the mean error.

𝜀1/𝜀 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
𝜀

0.1 6.21×10−1 1.59 2.37 3.20 7.60×101 7.37 1.15×101 4.28×102 4.35×101

(2.48 ) (1.17×101 ) (1.42×101 ) (1.55×101 ) (1.44×103 ) (3.65×101 ) (6.14×101 ) (8.28×103 ) (2.32×102 )
0.5 8.62 1.18 2.08 2.64 4.54 5.50 1.70×101 1.41×101 1.17×102

(1.59×102 ) (5.40 ) (1.29×101 ) (1.20×101 ) (3.21×101 ) (2.82×101 ) (2.33×102 ) (9.37×101 ) (2.39×103 )
1.0 5.64×10−1 1.04 1.54 2.17 2.40 3.25 4.42 4.08 1.53×101

(2.29 ) (4.65 ) (7.77 ) (1.40×101 ) (1.41×101 ) (3.16×101 ) (7.99×101 ) (6.63×101 ) (6.48×102 )
2.0 5.48×10−1 9.50×10−1 1.07 8.49×10−1 3.31×10−1 2.37×10−1 2.44×10−1 3.05×10−1 5.17×10−1

(2.22 ) (6.04 ) (1.09×101 ) (1.57×101 ) (2.71 ) (6.10×10−1 ) (2.04×10−1 ) (2.42×10−1 ) (4.00×10−1 )
4.0 6.98×10−1 5.49×10−1 8.13×10−2 4.86×10−2 3.78×10−2 3.27×10−2 3.20×10−2 3.69×10−2 5.94×10−2

(4.66 ) (1.12×101 ) (7.21×10−1 ) (4.49×10−2 ) (3.07×10−2 ) (2.53×10−2 ) (2.44×10−2 ) (2.79×10−2 ) (4.49×10−2 )
6.0 7.50×10−1 6.54×10−2 2.72×10−2 1.64×10−2 1.12×10−2 8.89×10−3 8.55×10−3 1.03×10−2 1.86×10−2

(8.55 ) (5.66×10−1 ) (2.81×10−2 ) (1.47×10−2 ) (9.19×10−3 ) (6.96×10−3 ) (6.56×10−3 ) (7.85×10−3 ) (1.41×10−2 )
8.0 4.76×10−1 3.05×10−2 1.35×10−2 7.26×10−3 4.65×10−3 3.71×10−3 3.93×10−3 5.50×10−3 1.12×10−2

(1.03×101 ) (3.81×10−2 ) (1.35×10−2 ) (6.53×10−3 ) (3.92×10−3 ) (2.97×10−3 ) (3.05×10−3 ) (4.22×10−3 ) (8.48×10−3 )
10.0 1.52×10−1 1.87×10−2 7.59×10−3 3.83×10−3 2.42×10−3 2.08×10−3 2.53×10−3 3.92×10−3 8.46×10−3

(2.27 ) (2.12×10−2 ) (7.44×10−3 ) (3.47×10−3 ) (2.06×10−3 ) (1.68×10−3 ) (1.97×10−3 ) (3.01×10−3 ) (6.42×10−3 )
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Figure 7: Scaled absolute error (absolute error divided by the data range of the dataset) for the Group NPRR method with
different settings of 𝑘 . The group size in all three subfigures is equal to 10 000. Note that this also means, that all three have a
different number of total participants: 20 000 for 2 groups, 80 000 for 8 groups, and 64 000 for 64 groups. Shaded regions indicate
the standard deviation over the randomness of the mechanism.
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Figure 8: Group error ratio for the Group NPRR method with different settings of 𝑘 . The group error ratio gives the number of
incorrect group responses divided by the number of participants. This figure uses the same settings as Figure 7.
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Figure 9: Scaled absolute error (absolute error divided by the data range of the dataset) for the proposed methods. The group size
in all three subfigures is equal to 10 000. Note that this also means, that all three have a different number of total participants:
20 000 for 2 groups, 80 000 for 8 groups, and 64 000 for 64 groups. Shaded regions indicate the standard deviation over the
randomness of the mechanism.
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Figure 10: Group error ratio for the proposed methods. The group error ratio gives the number of incorrect group responses
divided by the number of participants. This figure uses the same settings as Figure 9.
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Figure 11: Scaled absolute error (absolute error divided by the data range of the dataset) for the different proposed methods
with different group sizes and imbalances. The error is shown per method and group. Shaded regions indicate the standard
deviation over the randomness of the mechanism.
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Figure 12: Individual results for the mean estimation for different groups and values using data from the AQUILA dataset with
disease as the group. Participants per group: AS: 683, PsA: 1278. Each method was executed 200 times and each resulting mean
estimate is shown as a single point to visualize the randomness of the mechanism. The true mean is shown as a solid line.
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Figure 13: Individual results for the mean estimation for different groups and values using data from the AQUILA dataset
with gender as the group. Participants per group: F: 993, M: 921. Each method was executed 200 times and each resulting mean
estimate is shown as a single point to visualize the randomness of the mechanism. The true mean is shown as a solid line.
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10 521, 12: 43 013

Figure 14: Individual results for the mean estimation for different groups and values using data from the MIMIC-IV dataset
with age as the value. Each method was executed 200 times and each resulting mean estimate is shown as a single point to
visualize the randomness of the mechanism. The true mean is shown as a solid line.
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Figure 15: Individual results for the mean estimation for different groups and values using data from the AQUILA dataset with
disease as the group. Participants per group: AS: 683, PsA: 1278. Each method was executed 200 times. Each data point shows the
percentage of runs, where the order of the mean estimate for the two groups was correct (i.e., the same as for the true group
means). The difference between the true means is displayed in the figure.
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Figure 16: Individual results for the mean estimation for different groups and values using data from the AQUILA dataset with
gender as the group. Participants per group: F: 993, M: 921. Each method was executed 200 times. Each data point shows the
percentage of runs, where the order of the mean estimate for the two groups was correct (i.e., the same as for the true group
means). The difference between the true means is displayed in the figure.
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Figure 17: Individual results for the mean estimation for different groups and values using data from the MIMIC-IV dataset
with age as the value. Each method was executed 200 times.
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Figure 18: Individual results for the mean estimation for different groups and values using data from the AQUILA dataset with
disease as the group. Participants per group: AS: 683, PsA: 1278. Each method was executed 200 times. Each data point shows the
percentage of runs, where the order of the mean estimate for the two groups was correct (i.e., the same as for the true group
means). The difference between the true means is displayed in the figure.
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(b) Value: BMI
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(c) Value: Height
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(d) Value: Weight

Figure 19: Individual results for the mean estimation for different groups and values using data from the AQUILA dataset with
gender as the group. Participants per group: F: 993, M: 921. Each method was executed 200 times. Each data point shows the
percentage of runs, where the order of the mean estimate for the two groups was correct (i.e., the same as for the true group
means). The difference between the true means is displayed in the figure.
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(a) Group: Gender. Group sizes: F: 224 796, M: 206 066
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(b) Group: Deceased. Group sizes: no: 324 785, yes: 106 077

Figure 20: Individual results for the mean estimation for different groups and values using data from the MIMIC-IV dataset
with age as the value. Each method was executed 200 times. Each data point shows the percentage of runs, where the order of
the mean estimate for the two groups was correct (i.e., the same as for the true group means). The difference between the true
means is displayed in the figure.
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Figure 21: Distribution of the different synthetic datasets used in this paper. First column: two groups. Second column: three
groups. Third column: four groups.
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Figure 22: Distribution of the AQUILA and MIMIC-IV datasets used in this paper.
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B Notes on the Simplified NPRR Mechanism
The general interactive NPRR mechanism [46] is given by the fol-
lowing algorithm (for fixed 𝐺𝑡 =𝐺 and 𝑟𝑡 = 𝑟 ):

Algorithm 4 NPRR mechanism [46]
Input: Value 𝑣 ∈ [0, 1], parameters 𝐺 ∈ {1, 2, . . . }, 𝑟 ∈ (0, 1]
Output: Perturbed value 𝑣 ′ ∈ {0, 1

𝐺 ,
2
𝐺 , . . . ,

𝐺
𝐺 }

𝑣𝑐 ← ⌈𝑣 ·𝐺⌉/𝐺 ; 𝑣 𝑓 ← ⌊𝑣 ·𝐺⌋/𝐺
if 𝑣𝑐 = 𝑣 𝑓 then
𝑦 ← 𝑣

else

𝑦 ∼
{
𝑣𝑐 with probability 𝐺 · (𝑣 − 𝑣 𝑓 )
𝑣 𝑓 with probability 𝐺 · (𝑣𝑐 − 𝑣)

end if
𝑈 ∼ Uniform{0, 1

𝐺 ,
2
𝐺 , . . . ,

𝐺
𝐺 }

𝑣 ′ ∼
{
𝑦 with probability 𝑟
𝑈 with probability 1 − 𝑟

return 𝑣 ′

We can simplify this algorithm, by making it non-interactive
and making some assumptions that fit the use case in this paper.
We assume that 𝜀 and 𝐺 are given and set 𝑟 = 𝑒𝜀−1

𝑒𝜀+𝐺 to ensure
that the mechanism is 𝜀-LDP as discussed in [46]. Following this
assumption, we can replace the final sampling step of 𝑣 ′ with the
GRR mechanism for domain size 𝐺 + 1 and privacy parameter 𝜀.

Furthermore, we can replace the if-else block with a single sam-
pling operation. We sample a new Bernoulli random variable 𝐵

with probability𝐺 · 𝑣 − 𝑣 𝑓 and set 𝑣 ′ = 𝑣 𝑓 + 𝐵/𝐺 . Notice that 𝐵 = 0
corresponds to 𝑣 𝑓 and 𝐵 = 1 corresponds to 𝑣𝑐 . Further notice that
𝐵 = 0 always if 𝑣𝑐 = 𝑣 𝑓 and 𝑦 = 𝑣 in this case.

To obtain the simplified algorithm given in Algorithm 2, we apply
these changes, rename 𝐺 to 𝑘 to avoid confusion, and transform
the input range [0, 1] to [−1, 1] to more closely align with the other
algorithms. We perform the transformation by replacing every
occurrence of 𝑣 to 𝑣+1

2 and the output 𝑣 ′ to 2𝑣 ′ − 1.

C Notes on the data transformation
All algorithms are defined for input in [−1, 1], but real data is from
[𝑟, 𝑠] ⊂ R. Therefore, we define a function to transform the true
input 𝑥 ∈ [𝑟, 𝑠] to the mechanism input 𝑣 = 𝑇 (𝑥) ∈ [−1, 1] and a
function to transform the estimated sum 𝑠𝑔 of transformed values
back to the correct value range.

We set 𝑇 (𝑥) = 2𝑥−𝑟
𝑠−𝑟 − 1 to transform from [𝑟, 𝑠] to [−1, 1]. We

then set 𝑣𝑖 = 𝑇 (𝑥𝑖 ) and use 𝑣𝑖 as input to a mechanism. We now
want to find a function𝑇 (𝑦) that transforms the resulting sum (over
mechanism outputs for the values in [−1, 1]) back to the correct
sum for values in [𝑟, 𝑠].

By choosing 𝑇 (𝑦) = 𝑠−𝑟
2 𝑦 + �̂�𝑔 ( 𝑠+𝑟2 ), we get:

E
[
𝑇 (𝑠𝑔)

]
= E

[ 𝑠 − 𝑟
2 𝑠𝑔 + �̂�𝑔

( 𝑠 + 𝑟
2

)]
By the Linearity of Expectation, we get:

=
𝑠 − 𝑟

2 E
[
𝑠𝑔

] + E [
�̂�𝑔

] ( 𝑠 + 𝑟
2

)

Inserting the expecations for the sum and the count:

=
𝑠 − 𝑟

2

( 𝑛𝑔∑︁
𝑖=1

𝑣𝑖

)
+ 𝑛𝑔

( 𝑠 + 𝑟
2

)
Replacing 𝑣𝑖 =𝑇 (𝑥𝑖 ) (see above):

=
( 𝑛𝑔∑︁
𝑖=1

𝑠 − 𝑟
2 𝑇 (𝑥𝑖 )

)
+ 𝑛𝑔

( 𝑠 + 𝑟
2

)
Insert the definition of 𝑇 (𝑥):

=
( 𝑛𝑔∑︁
𝑖=1

𝑠 − 𝑟
2

(
2𝑥𝑖 − 𝑟
𝑠 − 𝑟 − 1

))
+ 𝑛𝑔

( 𝑠 + 𝑟
2

)
=

( 𝑛𝑔∑︁
𝑖=1

𝑥𝑖 − 𝑟 − 𝑠 − 𝑟
2

)
+ 𝑛𝑔

( 𝑠 + 𝑟
2

)
=

( 𝑛𝑔∑︁
𝑖=1

𝑥𝑖

)
− 𝑛𝑔

(
𝑟 + 𝑠 − 𝑟

2

)
+ 𝑛𝑔

( 𝑠 + 𝑟
2

)
=

( 𝑛𝑔∑︁
𝑖=1

𝑥𝑖

)
− 𝑛𝑔

( 𝑠 + 𝑟
2

)
+ 𝑛𝑔

( 𝑠 + 𝑟
2

)
=

𝑛𝑔∑︁
𝑖=1

𝑥𝑖

Consequently, the application of the two transfer functions to the
raw inputs and the unbiased sum estimate leads to an unbiased
estimate of the correct sum.

In practice, the use of two estimators (𝑠𝑔 AND �̂�𝑔) probably leads
to additional noise compared to untransformed data in [−1, 1] when
estimating a sum. Note that for symmetric intervals [𝑠, 𝑟 ], where
𝑠 = −𝑟 , the fraction 𝑠+𝑟

2 becomes 0, and �̂�𝑔 does not impact the
result at all.

Furthermore, this problem only affects the sum estimation and
is not relevant when estimating a mean as �̂�𝑔 = 1

�̂�𝑔
𝑇 (𝑠𝑔). The

expectation of this mean estimate is
1
�̂�𝑔

𝑇 (𝑠𝑔) = 1
�̂�𝑔

( 𝑠 − 𝑟
2 𝑠𝑔 + �̂�𝑔

( 𝑠 + 𝑟
2

))
=
𝑠 − 𝑟

2
1
�̂�𝑔

𝑠𝑔 +
�̂�𝑔

�̂�𝑔

( 𝑠 + 𝑟
2

)
=
𝑠 − 𝑟

2
1
�̂�𝑔

𝑠𝑔 + 𝑠 + 𝑟
2

We see that we do not have an additive term that is based on the
count estimator for the transformed mean estimation. Instead, we
only have a constant factor and a constant offset to transform the
mean estimate to the correct value range.

D Proofs
D.1 Proof for the group count estimator

Proof of Proposition 1. To show that our estimator �̂�𝑔 is an
unbiased estimator of the true count 𝑛𝑔 or participants in group 𝑔,
we calculate E

[
�̂�𝑔

]
and demonstrate that it equals 𝑛𝑔 .

For this proof we need the expectation of an indicator function.
This expectation is equal to the probability of the event it indicates,
i.e., E

[
1𝑔′

𝑖
=𝑔

]
= Pr[𝑔′𝑖 = 𝑔].
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The probability Pr[𝑔′𝑖 = 𝑔] depends on the true group of par-
ticipant 𝑖 . That is, if participant 𝑖 is in group 𝑔 (i.e., 𝑔𝑖 = 𝑔), they
will respond with 𝑔′𝑖 = 𝑔 with probability 𝑎 = 𝑒𝜀1

𝑒𝜀1+𝑑−1 . If their true
group is not 𝑔 (i.e., 𝑔𝑖 ≠ 𝑔), they will respond with 𝑔′𝑖 = 𝑔 with
probability 𝑞 = 1−𝑎

𝑑−1 . Therefore, we have:

Pr[𝑔′𝑖 = 𝑔] =
{
𝑎 if 𝑔𝑖 = 𝑔,

𝑞 if 𝑔𝑖 ≠ 𝑔,

We now calculate the expectation of our estimator:
E

[
�̂�𝑔

]
= E

[
1

𝑎 − 𝑞

(
𝑛∑︁
𝑖=1

1𝑔′
𝑖
=𝑔 − 𝑛𝑞

)]
Linearity of Expectation:

=
1

𝑎 − 𝑞E
[

𝑛∑︁
𝑖=1

1𝑔′
𝑖
=𝑔 − 𝑛𝑞

]
Linearity of Expectation:

=
1

𝑎 − 𝑞

(
E

[
𝑛∑︁
𝑖=1

1𝑔′
𝑖
=𝑔

]
− 𝑛𝑞

)
Linearity of Expectation:

=
1

𝑎 − 𝑞

(
𝑛∑︁
𝑖=1

E
[
1𝑔′

𝑖
=𝑔

]
− 𝑛𝑞

)
Expectation of the indicator function:

=
1

𝑎 − 𝑞

(
𝑛∑︁
𝑖=1

Pr[𝑔′𝑖 = 𝑔] − 𝑛𝑞
)

Split the sum into the two possible cases (𝑔𝑖 = 𝑔 and 𝑔𝑖 ≠ 𝑔):

=
1

𝑎 − 𝑞
©­«©­«

𝑛𝑔∑︁
𝑖=1

𝑎 +
𝑛∑︁

𝑗=𝑛𝑔+1
𝑞
ª®¬ − 𝑛𝑞ª®¬

=
1

𝑎 − 𝑞
(
𝑛𝑔𝑎 + (𝑛 − 𝑛𝑔)𝑞 − 𝑛𝑞

)
=

1
𝑎 − 𝑞

(
𝑛𝑔𝑎 − 𝑛𝑔𝑞

)
=

1
𝑎 − 𝑞𝑛𝑔 (𝑎 − 𝑞)

= 𝑛𝑔

□

D.2 Proofs for the Group-wise Laplace-based
Mean Estimation

Proof of Theorem 1. For completeness, we reproduce the proof
by Juarez and Korolova [31] for the group-wise Laplace-based mean
estimation mechanism and give additional intermediate steps and
explanations.

Let 𝑥0 = (𝑔0, 𝑣0) and 𝑥1 = (𝑔1, 𝑣1) be two different inputs and
𝑦 = (𝑔′, 𝑣 ′) be an output of the mechanism. From the mechanism’s
definition, we have that for any input 𝑥 = (𝑔, 𝑣),

Pr[𝑦 | 𝑥] =


𝑒𝜀1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′ − 𝑣) if 𝑔′ = 𝑔

1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′) if 𝑔′ ≠ 𝑔

Here 𝑓Lap(0,𝜆) (𝑥) denotes the probability density function of the
Laplace distribution given by 𝑓Lap(0,𝜆) (𝑥) = 1

2𝑏 𝑒
− |𝑥 |

𝜆 for 𝑥 ∈ R and
𝜆 > 0. The reasoning behind these probabilities is that, when the
mechanism preserves the group, 𝑣 ′ = 𝑣 + 𝑌 where 𝑌 ∼ Lap(0, 2

𝜀2
).

Therefore, the probability of observing 𝑣 ′ is the probability of sam-
pling 𝑣 ′ −𝑣 from a Laplace distribution with zero mean and scale 2

𝜀2
.

When the mechanism changes the group, it sets 𝑣 = 0 and samples
𝑣 ′ from 𝐿𝑎𝑝 (0, 2

𝜀2
) as well.

If 𝑥0 and 𝑥1 have the same group, we consider two cases: 𝑔′ = 𝑔

(Case 1) and 𝑔′ ≠ 𝑔 (Case 2). If 𝑥0 and 𝑥1 differ in group, we consider
two cases: 𝑔′ = 𝑔0 ≠ 𝑔1 (Case 3) and 𝑔′ = 𝑔1 ≠ 𝑔0 (Case 4).

Case 1: 𝑔′ = 𝑔. Using the probability of Pr[𝑦 | 𝑥] when 𝑔′ = 𝑔

for both 𝑥0 and 𝑥1, we obtain

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] =

𝑒𝜀1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′ − 𝑣0)

𝑒𝜀1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′ − 𝑣1)

=
𝑓Lap(0, 2

𝜀2 )
(𝑣 ′ − 𝑣0)

𝑓Lap(0, 2
𝜀2 )
(𝑣 ′ − 𝑣1)

=
1

4/𝜀2
𝑒
− |𝑣
′−𝑣0 |
2/𝜀2

1
4/𝜀2

𝑒
− |𝑣′−𝑣1 |

2/𝜀2

= 𝑒
|𝑣′−𝑣1 |

2/𝜀2
− |𝑣
′−𝑣0 |
2/𝜀2

= 𝑒𝜀2 ( |𝑣
′−𝑣1 |−|𝑣′−𝑣0 |

2 )

Applying the Triange inequality:

≤ 𝑒𝜀2 ( |𝑣0−𝑣1 |
2 )

Using |𝑣0 |, |𝑣1 | ≤ 1:

≤ 𝑒 2𝜀2
2

= 𝑒𝜀2

Case 2: 𝑔′ ≠ 𝑔. Using the probability of Pr[𝑦 | 𝑥] when 𝑔′ ≠ 𝑔

for both 𝑥0 and 𝑥1, we obtain

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] =

1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′)

1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′)

= 1
= 𝑒0

Case 3: 𝑔′ = 𝑔0 ≠ 𝑔1. Using the probability of Pr[𝑦 | 𝑥] when
𝑔′ = 𝑔0 for 𝑥0 and 𝑔′ ≠ 𝑔1 for 𝑥1, we obtain
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Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] =

𝑒𝜀1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′ − 𝑣0)

1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′)

=
𝑒𝜀1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′ − 𝑣0)

𝑓Lap(0, 2
𝜀2 )
(𝑣 ′)

=
𝑒𝜀1 1

4/𝜀2
𝑒
−|𝑣′−𝑣0 |

2/𝜀2

1
4/𝜀2

𝑒
−|𝑣′ |
2/𝜀2

= 𝑒𝜀1𝑒
|𝑣′ |
2/𝜀2
− |𝑣
′−𝑣0 |
2/𝜀2

= 𝑒𝜀1𝑒
𝜀2

( |𝑣′ |
2 −

|𝑣′−𝑣0 |
2

)
= 𝑒

𝜀1+𝜀2
( |𝑣′ |−|𝑣′−𝑣0 |

2

)
Applying the Triangle Inequality:

≤ 𝑒𝜀1+𝜀2
( |𝑣0 |

2

)
Using |𝑣0 | ≤ 1:

≤ 𝑒𝜀1+ 𝜀2
2

Case 4: 𝑔′ = 𝑔1 ≠ 𝑔0. Using the probability of Pr[𝑦 | 𝑥] when
𝑔′ ≠ 𝑔0 for 𝑥0 and 𝑔′ = 𝑔1 for 𝑥1, we obtain

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] =

1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′)

𝑒𝜀1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′ − 𝑣1)

=
𝑓Lap(0, 2

𝜀2 )
(𝑣 ′)

𝑒𝜀1 𝑓Lap(0, 2
𝜀2 )
(𝑣 ′ − 𝑣1)

=
1

4/𝜀2
𝑒
−|𝑣′ |
2/𝜀2

𝑒𝜀1 1
4/𝜀2

𝑒
−|𝑣′−𝑣1 |

2/𝜀2

= 𝑒
|𝑣′−𝑣1 |

2/𝜀2
− |𝑣′ |2/𝜀2

−𝜀1

= 𝑒𝜀2
|𝑣′−𝑣1 |−|𝑣′ |

2 −𝜀1

Applying the Triangle Inequality:

≤ 𝑒𝜀2
|𝑣1 |

2 −𝜀1

Using |𝑣1 | ≤ 1:

≤ 𝑒 𝜀2
2 −𝜀1

Combining all cases, we have that the mechanism is 𝜀-locally
differentially private with 𝜀 = max{𝜀2, 𝜀1+ 𝜀2

2 ,
𝜀2
2 −𝜀1} = max{𝜀2, 𝜀1+

𝜀2
2 }. □

Proof of Proposition 2. We show that using different noise
scales for the value perturbation when the group is preserved and
when the group is changed does not produce a locally differentially
private mechanism.

Let 𝑥0 = (𝑔0, 𝑣0) and 𝑥1 = (𝑔1, 𝑣1) be two different inputs and
𝑦 = (𝑔′, 𝑣 ′) be an output of the mechanism. We keep the default
noise scale of 2

𝜀2
for the value perturbation when the group is

preserved and set the noise scale to 𝑘
𝜀2

when the group is changed.
We have that for any input 𝑥 = (𝑔, 𝑣),

Pr[𝑦 | 𝑥] =


𝑒𝜀1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′ − 𝑣) if 𝑔′ = 𝑔

1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 𝑘𝜀2 )

(𝑣 ′) if 𝑔′ ≠ 𝑔

For a mechanism to be considered 𝜀-locally differentially private,
the ratio of the probabilities of any two outputs 𝑦0 and 𝑦1 given
two inputs 𝑥0 and 𝑥1 must be bounded by 𝑒𝜀 . We now show that
in some cases, there is no bound on this ratio. Consider the case
where 𝑥0 and 𝑥1 differ in group and 𝑔′ = 𝑔0 ≠ 𝑔1.

We have that

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] =

𝑒𝜀1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′ − 𝑣0)

1
𝑒𝜀1+𝑑−1 𝑓Lap(0, 𝑘𝜀2 )

(𝑣 ′)

=
𝑒𝜀1 𝑓Lap(0, 2

𝜀2 )
(𝑣 ′ − 𝑣0)

𝑓Lap(0, 𝑘𝜀2 )
(𝑣 ′)

=
𝑒𝜀1 1

4/𝜀2
𝑒
−|𝑣′−𝑣0 |

2/𝜀2

1
2𝑘/𝜀2

𝑒
−|𝑣′ |
𝑘/𝜀2

=
𝑒𝜀1 1

2𝑒
−|𝑣′−𝑣0 |

2/𝜀2

1
𝑘 𝑒
−|𝑣′ |
𝑘/𝜀2

=
𝑘

2 𝑒
𝜀1𝑒

|𝑣′ |
𝑘/𝜀2
− |𝑣
′−𝑣0 |
2/𝜀2

=
𝑘

2 𝑒
𝜀1+𝜀2 ( 2|𝑣′ |−𝑘 |𝑣′−𝑣0 |

2𝑘 )

Applying the Triangle Inequality:

≤ 𝑘

2 𝑒
𝜀1+𝜀2 ( |2𝑣

′−𝑘𝑣′+𝑘𝑣0 |
2𝑘 )

Using |𝑣0 | ≤ 1, 𝑘 > 0:

≤ 𝑘

2 𝑒
𝜀1+𝜀2 ( 𝑘+| (2−𝑘 )𝑣

′ |
2𝑘 )

Next, we need to find an upper bound for 𝑘+| (2−𝑘 )𝑣′ |
2𝑘 . Choosing

𝑘 = 2, we have 𝑘+|𝑣′ (2−𝑘 ) |
2𝑘 = 𝑘

2𝑘 = 1
2 . In all other cases, this term

depends on 𝑣 ′ and can be arbitrarily large as 𝑣 ′ ∈ R. Therefore, the
mechanism is not locally differentially private for 𝑘 ≠ 2. □

Proof of Proposition 3. Our proof for the sum estimate is
based on the proof of the mean estimator by Juarez and Korolova
[31].

We show that the estimator 𝑠Lap
𝑔 is unbiased. We model the term

1𝑔′
𝑖
=𝑔 · 𝑣 ′𝑖 as a random variable 𝑉𝑖 :
(1) 𝑔𝑖 = 𝑔: 𝑉𝑖 =𝐺𝑖 (𝑣𝑖 + 𝑌𝑖 )
(2) 𝑔𝑖 ≠ 𝑔: 𝑉𝑖 =𝐺𝑖𝑌𝑖
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The randomvariables𝐺𝑖 ∼ Bernoulli(𝑎) and𝐺𝑖 ∼ Bernoulli( 1−𝑎
𝑑−1 )

model the group perturbation. The randomvariables𝑌𝑖 ∼ Lap(0, 2
𝜀2
)

model the Laplace mechanism.
We can now calculate the expectation of the estimator:

E
[
𝑠

Lap
𝑔

]
= E

[
1
𝑎

𝑛∑︁
𝑖=1

𝑉𝑖

]
Linearity of Expectation:

=
1
𝑎

𝑛∑︁
𝑖=1

E [𝑉𝑖 ]

Splitting the sum into the two possible cases:

=
1
𝑎

©­«
𝑛𝑔∑︁
𝑖=1

E [𝐺𝑖 (𝑣𝑖 + 𝑌𝑖 )] +
𝑛∑︁

𝑖=𝑛𝑔+1
E

[
𝐺𝑖𝑌𝑖

]ª®¬
Independence of random variables:

=
1
𝑎

©­«
𝑛𝑔∑︁
𝑖=1

E [𝐺𝑖 ] E [𝑣𝑖 + 𝑌𝑖 ] +
𝑛∑︁

𝑖=𝑛𝑔+1
E

[
𝐺𝑖

]
E [𝑌𝑖 ]ª®¬

Linearity of Expecation, E [𝐺𝑖 ] = 𝑎 and E [𝑌𝑖 ] = 0:

=
1
𝑎

©­«
𝑛𝑔∑︁
𝑖=1

𝑎(𝑣𝑖 + 0) +
𝑛∑︁

𝑖=𝑛𝑔+1
0ª®¬

=
1
𝑎

𝑛𝑔∑︁
𝑖=1

𝑎𝑣𝑖

=
𝑛𝑔∑︁
𝑖=1

𝑣𝑖

= 𝑠𝑔

□

D.3 Proofs for Group-wise Bernoulli-based
Mean Estimation

Proof for Theorem 2. We reproduce the original proof by Juarez
and Korolova [31], give some additional explanations and extend it
to the general case of 𝑑 groups. Furthermore, we provide a correc-
tion to the original proof that results in a different privacy guaran-
tee.

As in the original proof, we denote 𝑎 = 𝑒𝜀1
𝑒𝜀1+𝑑−1 and 𝑏 = 𝑒𝜀2

1+𝑒𝜀2 .
Let 𝑥0 = (𝑔0, 𝑣0) and 𝑥1 = (𝑔1, 𝑣1) be two different inputs and
𝑦 = (𝑔′, 𝑣 ′) be an output of the mechanism.

Let 𝑥0 = (𝑔0, 𝑣0) and 𝑥1 = (𝑔1, 𝑣1) be two different inputs and
𝑦 = (𝑔′, 𝑣 ′) be an output of the mechanism. From the mechanism’s
definition, we have that for any input 𝑥 = (𝑔, 𝑣),

Pr[𝑦 | 𝑥] =
{
𝑎 (1+(2𝑏−1)𝑣′𝑣)

2 if 𝑔′ = 𝑔
1−𝑎

2(𝑑−1) if 𝑔′ ≠ 𝑔

Since 𝑣 ∈ [−1, 1], and 𝑣 ′ ∈ {−1, 1}, we can bound the term 𝑣 ′𝑣
as −1 ≤ 𝑣 ′𝑣 ≤ 1. Using this fact, an upper bound of Pr[𝑦 | 𝑥] for
𝑔′ = 𝑔 is

Pr[𝑦 | 𝑥] ≤ 𝑎(1 + 2𝑏 − 1)
2 = 𝑎𝑏 (10)

and a lower bound is

Pr[𝑦 | 𝑥] ≥ 𝑎(1 − 2𝑏 + 1)
2 = 𝑎(1 − 𝑏) . (11)

For the case where the two inputs 𝑥0 and 𝑥1 do not differ in
group, the proof is identical to the original proof as 𝑑 does not
appear in the calculation. We reproduce this part of the proof for
completeness.

In the following, we bound Pr[𝑦 | 𝑥0]/Pr[𝑦 | 𝑥1] and distinguish
four cases. If 𝑥0 and 𝑥1 have the same group, we consider two cases:
𝑔′ = 𝑔 (Case 1) and 𝑔′ ≠ 𝑔 (Case 2). If 𝑥0 and 𝑥1 differ in group, we
consider two cases: 𝑔′ = 𝑔0 ≠ 𝑔1 (Case 3) and 𝑔′ = 𝑔1 ≠ 𝑔0 (Case 4).

Case 1: 𝑔′ = 𝑔. Using the upper and lower bounds for Pr[𝑦 | 𝑥0]
and Pr[𝑦 | 𝑥1] respectively, we obtain

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] ≤

𝑎𝑏

𝑎(1 − 𝑏) =
𝑏

1 − 𝑏 = 𝑒𝜀2 (12)

Case 2: 𝑔′ ≠ 𝑔. Using the probability of Pr[𝑦 | 𝑥] when 𝑔′ ≠ 𝑔

for both 𝑥0 and 𝑥1, we obtain
Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] = 1 ≤ 𝑒𝜀2 (13)

Case 3: 𝑔′ = 𝑔0 ≠ 𝑔1. Using the upper bound for Pr[𝑦 | 𝑥0], we
obtain

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] =

𝑎𝑏
1−𝑎

2(𝑑−1)

≤ 2(𝑑 − 1)𝑎𝑏
1 − 𝑎

= 2(𝑑 − 1)

(
𝑒𝜀1

𝑒𝜀1+𝑑−1

) (
𝑒𝜀2

1+𝑒𝜀2

)
𝑑−1

𝑒𝜀1+𝑑−1

= 2 𝑒𝜀1𝑒𝜀2

1 + 𝑒𝜀2

= 𝑒
𝜀1+ln

(
2𝑒𝜀2
𝑒𝜀2+1

)
Note that this result differs from the original proof by Juarez and

Korolova [31] and gives a worse privacy guarantee. The original
proof incorrectly states that this ratio can be bounded by 𝑒𝜀1 , but
this only holds for 𝜀2 = 0.

Case 4: 𝑔′ = 𝑔1 ≠ 𝑔0. Using the lower bound for Pr[𝑦 | 𝑥0] and
that 1 ≤ 𝑒𝜀2 , we obtain

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] ≤

1−𝑎
2(𝑑−1)

𝑎(1 − 𝑏)

=
1

2(𝑑−1)
𝑑−1

𝑒𝜀1+𝑑−1

𝑒𝜀1
𝑒𝜀1+𝑑−1

(
1 − 𝑒𝜀2

1+𝑒𝜀2

)
=

1
2(𝑑−1)

𝑑−1
𝑒𝜀1+𝑑−1

𝑒𝜀1
𝑒𝜀1+𝑑−1

1
1+𝑒𝜀2

=
1

2(𝑑 − 1)
𝑑 − 1

𝑒𝜀1 + 𝑑 − 1
𝑒𝜀1 + 𝑑 − 1

𝑒𝜀1
(1 + 𝑒𝜀2 )

=
1 + 𝑒𝜀2

2𝑒𝜀1

≤ 2𝑒𝜀2

2𝑒𝜀1

= 𝑒𝜀2−𝜀1
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Again, we see that 𝑑 cancels out, and we obtain the same result as
for 𝑑 = 2 in the original proof.

Combining the upper bounds of the different cases, we can
conclude that the mechanism is 𝜀-LDP with 𝜀 = max{𝜀2, 𝜀1 +
ln

(
2𝑒𝜀2
𝑒𝜀2+1

)
, 𝜀2 − 𝜀1} = max{𝜀2, 𝜀1 + ln

(
2𝑒𝜀2
𝑒𝜀2+1

)
}. □

Proof of Proposition 4. We prove that the estimator 𝑠Bern
𝑔 is

unbiased.
We model the term 1𝑔′=𝑔 · 𝑣 ′𝑖 as a random variable 𝑉𝑖 :

(1) 𝑔𝑖 = 𝑔 : 𝑉𝑖 =𝐺𝑖

(
2
(
𝑅𝑖𝐵𝑖 + (1 − 𝑅𝑖 ) (1 − 𝐵𝑖 )

) − 1
)

(2) 𝑔𝑖 ≠ 𝑔 : 𝑉𝑖 =𝐺𝑖

(
2
(
𝑅𝑖𝐵𝑖 + (1 − 𝑅𝑖 ) (1 − 𝐵𝑖 )

) − 1
)

The random variables 𝐺𝑖 ∼ Bernoulli(𝑎) and 𝐺𝑖 ∼ Bernoulli( 1−𝑎
𝑑−1 )

model the group perturbation. The randomvariables𝑅𝑖 ∼ Bernoulli (𝑏)
model the perturbation of the Bernoulli sample using random-
ized response. The random variables 𝐵𝑖 ∼ Bernoulli

(
1+𝑣𝑖

2

)
and

𝐵𝑖 ∼ Bernoulli
( 1

2
)
model the Bernoulli sampling for the value

perturbation.
The expected value of the estimator 𝑠Bern

𝑔 is

E
[
𝑠Bern
𝑔

]
=

1
𝑎(2𝑏 − 1)

𝑛∑︁
𝑖=1

E
[
1𝑔′

𝑖
=𝑔 · 𝑣 ′𝑖

]

Linearity of Expecation

=
1

𝑎(2𝑏 − 1)
©­«
𝑛𝑔∑︁
𝑖=1

E [𝑉𝑖 ] +
𝑛∑︁

𝑗=𝑛𝑔+1
E

[
𝑉𝑗

]ª®¬
Insert definitions of 𝑉𝑖 :

=
1

𝑎(2𝑏 − 1)

( 𝑛𝑔∑︁
𝑖=1

E [𝐺𝑖 (2(𝑅𝑖𝐵𝑖 + (1 − 𝑅𝑖 ) (1 − 𝐵𝑖 )) − 1)] +

𝑛∑︁
𝑗=𝑛𝑔+1

E
[
𝐺 𝑗 (2(𝑅 𝑗𝐵 𝑗 + (1 − 𝑅 𝑗 ) (1 − 𝐵 𝑗 )) − 1)]ª®¬

Independence of random variables, Linearity of Expectation, Ex-
pecations of the random variables:

=
1

𝑎(2𝑏 − 1)

( 𝑛𝑔∑︁
𝑖=1

𝑎

(
2
(
𝑏

1 + 𝑣𝑖
2 + (1 − 𝑏) 1 − 𝑣𝑖2

)
− 1

)
+

𝑛∑︁
𝑗=𝑛𝑔+1

1 − 𝑎
𝑑 − 1

(
2
(
𝑏

1
2 + (1 − 𝑏)

1
2

)
− 1

)ª®¬
=

1
𝑎(2𝑏 − 1)

( 𝑛𝑔∑︁
𝑖=1

𝑎

(
2
(
𝑏

1 + 𝑣𝑖
2 + 1 − 𝑣𝑖

2 − 𝑏 1 − 𝑣𝑖
2

)
− 1

)
+

𝑛∑︁
𝑗=𝑛𝑔+1

1 − 𝑎
𝑑 − 1

(
2 1

2 − 1
)ª®¬

=
1

𝑎(2𝑏 − 1)

( 𝑛𝑔∑︁
𝑖=1

𝑎 (𝑏 + 𝑏𝑣𝑖 + 1 − 𝑣𝑖 − 𝑏 + 𝑏𝑣𝑖 − 1) + 0
)

=
1

𝑎(2𝑏 − 1)

( 𝑛𝑔∑︁
𝑖=1

𝑎(2𝑏 − 1)𝑣𝑖
)

=
𝑛𝑔∑︁
𝑖=1

𝑣𝑖

= 𝑠𝑔

□

D.4 Proofs for Group-wise NPRR-based Mean
Estimation

Proof of Theorem 3. We denote 𝑎 = 𝑒𝜀1
𝑒𝜀1+𝑑−1 and 𝑏 = 𝑒𝜀2

𝑒𝜀2+𝑘 ,
where 𝑑 is the number of groups and 𝑘 is the parameter of NPRR.
We will use 1−𝑎

𝑑−1 = 1
𝑒𝜀1+𝑑−1 and 1−𝑏

𝑘 = 1
𝑒𝜀2+𝑘 throughout the proof.

Let 𝑥0 = (𝑔0, 𝑣0) and 𝑥1 = (𝑔1, 𝑣1) be two different inputs and
𝑦 = (𝑔′, 𝑣 ′) be an output of the mechanism. From the mechanism’s
definition, we have that for any input 𝑥 = (𝑔, 𝑣),

Pr[𝑦 | 𝑥] =

𝑎𝑏 if 𝑔′ = 𝑔, 𝑣 ′ ∈ {𝑣𝑐𝑖 , 𝑣

𝑓
𝑖 }

𝑎 1−𝑏
𝑘 if 𝑔′ = 𝑔, 𝑣 ′ ∉ {𝑣𝑐𝑖 , 𝑣

𝑓
𝑖 }

1−𝑎
𝑑−1

1
𝑘+1 if 𝑔′ ≠ 𝑔

where 𝑣𝑐𝑖 = ⌈𝑣 · 𝑘⌉/𝑘 and 𝑣 𝑓𝑖 = ⌊𝑣 · 𝑘⌋/𝑘 .
Since 𝑎, 𝑏 ∈ [0, 1], an upper bound of Pr[𝑦 | 𝑥] for 𝑔′ = 𝑔 is

Pr[𝑦 | 𝑥] ≤ 𝑎𝑏 (14)

and a lower bound is

Pr[𝑦 | 𝑥] ≥ 𝑎 1 − 𝑏
𝑘

(15)

In the following, we bound Pr[𝑦 | 𝑥0]/Pr[𝑦 | 𝑥1] and distinguish
four cases. If 𝑥0 and 𝑥1 have the same group, we consider two cases:
𝑔′ = 𝑔 (Case 1) and 𝑔′ ≠ 𝑔 (Case 2). If 𝑥0 and 𝑥1 differ in group, we
consider two cases: 𝑔′ = 𝑔0 ≠ 𝑔1 (Case 3) and 𝑔′ = 𝑔1 ≠ 𝑔0 (Case 4).
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Case 1: 𝑔′ = 𝑔. Using the upper and lower bounds for Pr[𝑦 | 𝑥0]
and Pr[𝑦 | 𝑥1], we obtain

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] ≤

𝑎𝑏

𝑎 1−𝑏
𝑘

=
𝑒𝜀2

𝑒𝜀2+𝑘
1

𝑒𝜀2+𝑘
= 𝑒𝜀2

Case 2: 𝑔′ ≠ 𝑔. Using the probability of Pr[𝑦 | 𝑥] when 𝑔′ ≠ 𝑔

for both 𝑥0 and 𝑥1, we obtain
Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] = 1 ≤ 𝑒𝜀2 (16)

Case 3: 𝑔′ = 𝑔0 ≠ 𝑔1. Using the upper bound for Pr[𝑦 | 𝑥0], we
obtain

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] ≤

𝑎𝑏
1−𝑎

(𝑘+1) (𝑑−1)

= (𝑘 + 1) 𝑒𝜀1

𝑒𝜀1 + 𝑑 − 1
𝑒𝜀2

𝑒𝜀2 + 𝑘
1
1

𝑒𝜀1+𝑑−1

= (𝑘 + 1) 𝑒
𝜀1𝑒𝜀2

𝑒𝜀2 + 𝑘
One possible upper bound for this term is 𝑒𝜀1+𝜀2 . However, we

can get a tighter bound, by keeping the term as

(𝑘 + 1) 𝑒
𝜀1𝑒𝜀2

𝑒𝜀2 + 𝑘 = 𝑒𝜀1 (𝑘 + 1)𝑒𝜀2

𝑒𝜀2 + 𝑘
= 𝑒

𝜀1+ln
( (𝑘+1)𝑒𝜀2

𝑒𝜀2+𝑘
)

Therefore, we can bound the ratio as
Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] ≤ min

{
𝑒𝜀1+𝜀2 , 𝑒

𝜀1+ln
( (𝑘+1)𝑒𝜀2

𝑒𝜀2+𝑘
) }

= 𝑒
𝜀1+ln

( (𝑘+1)𝑒𝜀2
𝑒𝜀2+𝑘

) (17)

Case 4: 𝑔′ = 𝑔1 ≠ 𝑔0. Using the lower bound for Pr[𝑦 | 𝑥0], we
obtain

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] ≤

1−𝑎
(𝑘+1) (𝑑−1)
𝑎 1−𝑏

𝑘

=
𝑘

(𝑘 + 1) (𝑑 − 1)
1 − 𝑎

𝑎(1 − 𝑏)

=
𝑘

(𝑘 + 1) (𝑑 − 1)
𝑑−1

𝑒𝜀1+𝑑−1
𝑒𝜀1

𝑒𝜀1+𝑑−1
𝑘

𝑒𝜀2+𝑘

=
𝑘

(𝑘 + 1) (𝑑 − 1)
𝑑 − 1

𝑒𝜀1 + 𝑑 − 1
𝑒𝜀1 + 𝑑 − 1

𝑒𝜀1

𝑒𝜀2 + 𝑘
𝑘

=
𝑒𝜀2 + 𝑘
(𝑘 + 1)𝑒𝜀1

≤ 𝑒𝜀2 + 𝑘𝑒𝜀2

(𝑘 + 1)𝑒𝜀1
(Using 1 ≤ 𝑒𝜀2 )

=
(𝑘 + 1)𝑒𝜀2

(𝑘 + 1)𝑒𝜀1

= 𝑒𝜀2−𝜀1

Combining the upper bounds of the different cases, we can con-
clude that the mechanism is 𝜀-LDP with

𝜀 = max
{
𝜀2, 𝜀1 + ln

( (𝑘 + 1)𝑒𝜀2

𝑒𝜀2 + 𝑘

)
, 𝜀2 − 𝜀1

}
= max

{
𝜀2, 𝜀1 + ln

( (𝑘 + 1)𝑒𝜀2

𝑒𝜀2 + 𝑘

)}
□

Proof of Proposition 5. We prove that the estimator 𝑠NPRR
𝑔 is

unbiased.
We model the term 1𝑔′=𝑔 · 𝑣 ′𝑖 as a random variable 𝑉𝑖 :

(1) 𝑔𝑖 = 𝑔 : 𝑉𝑖 =𝐺𝑖

(
2(𝐵𝑖𝑌𝑖 + (1 − 𝐵𝑖 )𝑈𝑖 ) − 1

)
(2) 𝑔𝑖 ≠ 𝑔 : 𝑉𝑖 =𝐺𝑖

(
2(𝐵𝑖𝑌 0

𝑖 + (1 − 𝐵𝑖 )𝑈𝑖 ) − 1
)

where 𝐺𝑖 and 𝐺 𝑗 model the group GRR as Bernoulli random vari-
ables with parameters 𝑎 and 1−𝑎

𝑑−1 , respectively. The Bernoulli ran-
dom variables 𝐵𝑖 model the value perturbation GRR with parameter
𝑏 = 𝑒𝜀2 −1

𝑒𝜀2+𝑘 . 𝑌𝑖 and 𝑌 0
𝑖 model the private values after the stochas-

tic rounding process for the true value 𝑣 and the neutral value
0, respectively. The uniform random variables 𝑈𝑖 model the uni-
form sample from all values (including the "correct" one), i.e.𝑈𝑖 ∼
Uniform({0, 1

𝑘 ,
2
𝑘 . . . , 𝑘𝑘 = 1}).

The expected values of these intermediate random variables are
• E [𝐺𝑖 ] = 𝑎

• E
[
𝐺 𝑗

]
= 1−𝑎

𝑑−1
• E [𝐵𝑖 ] = 𝑒𝜀2 −1

𝑒𝜀2+𝑘 = 𝑏

• 𝑌𝑖 = 𝑣
𝑓
𝑖 + 𝑌𝐵

𝑖 /𝑘 where 𝑌𝐵
𝑖 ∼ Bernoulli(𝑘 ( 𝑣𝑖+1

2 − 𝑣
𝑓
𝑖 )). Then

E [𝑌𝑖 ] = 𝑣
𝑓
𝑖 + 𝑘 ( 𝑣𝑖+1

2 − 𝑣
𝑓
𝑖 )/𝑘 = 𝑣𝑖+1

2
• E

[
𝑌 0
𝑖

]
= 0 (from the definition of E [𝑌𝑖 ] with 𝑣𝑖 = 1

2 )
• E [𝑈𝑖 ] = 0+1

2 = 1
2

Using this model and the expected values of the intermediate
random variables, we get

E
[
𝑠NPRR
𝑔

]
= E

[
1
𝑎𝑏

( 𝑛∑︁
𝑖=1

1𝑔′
𝑖
=𝑔 · 𝑣 ′𝑖

)]
Linearity of expectation

=
1
𝑎𝑏

𝑛∑︁
𝑖=1

E
[
1𝑔′

𝑖
=𝑔 · 𝑣 ′𝑖

]
Split the sum into the two possible cases regarding 𝑔𝑖

=
1
𝑎𝑏

©­«
𝑛𝑔∑︁
𝑖=1

E [𝑉𝑖 ] +
𝑛∑︁

𝑗=𝑛𝑔+1
E

[
𝑉𝑗

]ª®¬
Insert the definitions of 𝑉𝑖 for both cases

=
1
𝑎𝑏

( 𝑛𝑔∑︁
𝑖=1

E
[
𝐺𝑖

(
2(𝐵𝑖𝑌𝑖 + (1 − 𝐵𝑖 )𝑈𝑖 ) − 1

)]
+

𝑛∑︁
𝑗=𝑛𝑔+1

E
[
𝐺𝑖

(
2(𝐵𝑖𝑌 0

𝑖 + (1 − 𝐵𝑖 )𝑈𝑖 ) − 1
)]ª®¬
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All remaining random variables are mutually independent

=
1
𝑎𝑏

( 𝑛𝑔∑︁
𝑖=1

E [𝐺𝑖 ]
(
2(E [𝐵𝑖 ] E [𝑌𝑖 ] + (1 − E [𝐵𝑖 ])E [𝑈𝑖 ]) − 1

)
+

𝑛∑︁
𝑗=𝑛𝑔+1

E
[
𝐺 𝑗

] (
2(E [

𝐵 𝑗

]
E

[
𝑌 0
𝑗

] + (1 − E [
𝐵 𝑗

])E [
𝑈 𝑗

]) − 1
)ª®¬

Insert the expected values of the random variables

=
1
𝑎𝑏

( 𝑛𝑔∑︁
𝑖=1

𝑎

(
2
(
𝑏
𝑣𝑖 + 1

2 + (1 − 𝑏) · 1
2

)
− 1

)
+

𝑛∑︁
𝑗=𝑛𝑔+1

1 − 𝑎
𝑑 − 1

(
2
(
𝑏 · 1

2 + (1 − 𝑏) ·
1
2

)
− 1

)ª®¬
=

1
𝑎𝑏

( 𝑛𝑔∑︁
𝑖=1

𝑎(𝑏𝑣𝑖 + 𝑏 + 1 − 𝑏 − 1)

+
𝑛∑︁

𝑗=𝑛𝑔+1

1 − 𝑎
𝑑 − 1 (𝑏 + 1 − 𝑏 − 1)ª®¬

=
1
𝑎𝑏

𝑛𝑔∑︁
𝑖=1

𝑎𝑏𝑣𝑖 + 0

=
𝑛𝑔∑︁
𝑖=1

𝑣𝑖

= 𝑠𝑔

□

D.5 Proofs for Group-wise Piecewise Mean
Estimation

Proof of Proposition 6. We proof the privacy of the Group
Piecewise mechanism. We denote 𝑎 = 𝑒𝜀1

𝑒𝜀1+𝑑−1 and 𝑝 = 𝑒𝜀2 −𝑒𝜀2/2
2𝑒𝜀2/2+2 .

From the mechanism’s definition, we have 𝐶 = 𝑒𝜀2/2+1
𝑒𝜀2/2−1 , 𝑙 (𝑣) =

𝐶+1
2 · 𝑣 − 𝐶−1

2 , and 𝑟 (𝑣) = 𝑙 (𝑣) +𝐶 − 1.
Let 𝑥0 = (𝑔0, 𝑣0) and 𝑥1 = (𝑔1, 𝑣1) be two different inputs and

𝑦 = (𝑔′, 𝑣 ′) be an output of the mechanism. From the mechanism’s
definition, we have that for any input 𝑥 = (𝑔, 𝑣),

Pr[𝑦 | 𝑥] =


𝑎𝑝 if 𝑔′ = 𝑔, 𝑣 ′ ∈ [𝑙 (𝑣), 𝑟 (𝑣)]
𝑎

𝑝
𝑒𝜀2 if 𝑔′ = 𝑔, 𝑣 ′ ∈ [−𝐶, 𝑙 (𝑣)) ∪ (𝑟 (𝑣),𝐶]

1−𝑎
𝑑−1𝑝 if 𝑔′ ≠ 𝑔, 𝑣 ′ ∈ [−𝐶−1

2 , 𝐶−1
2 ]

1−𝑎
𝑑−1

𝑝
𝑒𝜀2 if 𝑔′ ≠ 𝑔, 𝑣 ′ ∈ [−𝐶,−𝐶−1

2 ) ∪ (𝐶−1
2 ,𝐶]

In the following, we bound Pr[𝑦 | 𝑥0]/Pr[𝑦 | 𝑥1] and distinguish
four cases. If 𝑥0 and 𝑥1 have the same group, we consider two cases:
𝑔′ = 𝑔 (Case 1) and 𝑔′ ≠ 𝑔 (Case 2). If 𝑥0 and 𝑥1 differ in group, we
consider two cases: 𝑔′ = 𝑔0 ≠ 𝑔1 (Case 3) and 𝑔′ = 𝑔1 ≠ 𝑔0 (Case 4).

Case 1: 𝑔′ = 𝑔0 = 𝑔1.

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] ≤

𝑎𝑝

𝑎
𝑝
𝑒𝜀2

= 𝑒𝜀2

Case 2: 𝑔′ ≠ 𝑔0 = 𝑔1.

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] ≤

1−𝑎
𝑑−1𝑝

1−𝑎
𝑑−1

𝑝
𝑒𝜀2

= 𝑒𝜀2

Case 3: 𝑔′ = 𝑔0 ≠ 𝑔1.

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] ≤

𝑎𝑝

1−𝑎
𝑑−1

𝑝
𝑒𝜀2

= (𝑑 − 1) 𝑎

1 − 𝑎 𝑒
𝜀2

= (𝑑 − 1) 𝑒𝜀1

𝑒𝜀1 + 𝑑 − 1
𝑒𝜀1 + 𝑑 − 1

𝑑 − 1 𝑒𝜀2

= 𝑒𝜀1+𝜀2

Case 4: 𝑔′ = 𝑔1 ≠ 𝑔0.

Pr[𝑦 | 𝑥0]
Pr[𝑦 | 𝑥1] ≤

1−𝑎
𝑑−1𝑝

𝑎
𝑝
𝑒𝜀2

=
1 − 𝑎
(𝑑 − 1)𝑎 𝑒

𝜀2

=
1

𝑑 − 1
𝑑 − 1

𝑒𝜀1 + 𝑑 − 1
𝑒𝜀1 + 𝑑 − 1

𝑒𝜀1
𝑒𝜀2

=
𝑒𝜀2

𝑒𝜀1

= 𝑒𝜀2−𝜀1

Combining the upper bounds of the different cases, we can con-
clude that themechanism is 𝜀-LDPwith 𝜀 = max{𝜀2, 𝜀1+𝜀2, 𝜀2−𝜀1} =
𝜀1 + 𝜀2.

□

Proof of Proposition 7. We prove that the estimator 𝑠PW
𝑔 is

unbiased.
We model the term 1𝑔′

𝑖
=𝑔 (𝑣 ′𝑖 ) as a random variable 𝑉𝑖 :

(1) 𝑔𝑖 = 𝑔: 𝑉𝑖 =𝐺𝑖𝑌𝑖

(2) 𝑔𝑖 ≠ 𝑔: 𝑉𝑖 =𝐺𝑖𝑌𝑖

The randomvariables𝐺𝑖 ∼ Bernoulli(𝑎) and𝐺𝑖 ∼ Bernoulli( 1−𝑎
𝑑−1 )

model the group perturbation. The randomvariables𝑌𝑖 =𝑀PW (𝑣𝑖 , 𝜀2)
and 𝑌𝑖 =𝑀PW (0, 𝜀2) model the value perturbation.

We know from the original paper [42], which introduces the
Piecewise mechanism, that each mechanism output 𝑣 ′ is unbiased,
i.e. E [𝑌𝑖 ] = 𝑣𝑖 . We will also use the fact that in the case of 𝑔𝑖 ≠ 𝑔,
we set 𝑣𝑖 = 0 and therefore E

[
𝑌𝑖

]
= 0.

E
[
𝑠PW
𝑔

]
= E

[
1
𝑎

𝑛∑︁
𝑖=1

1𝑔′
𝑖
=𝑔 · 𝑣 ′𝑖

]
Linearity of Expectation:

=
1
𝑎

𝑛𝑔∑︁
𝑖=1

E [𝑉𝑖 ]

Splitting the sum into the two possible cases (𝑔𝑖 = 𝑔 and 𝑔𝑖 ≠ 𝑔):

=
1
𝑎

©­«
𝑛𝑔∑︁
𝑖=1

E [𝑉𝑖 ] +
𝑛∑︁

𝑖=𝑛𝑔+1
E [𝑉𝑖 ]ª®¬

=
1
𝑎

©­«
𝑛𝑔∑︁
𝑖=1

E [𝐺𝑖𝑌𝑖 ] +
𝑛∑︁

𝑖=𝑛𝑔+1
E

[
𝐺𝑖𝑌𝑖

]ª®¬
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Independence of the perturbed values and the group perturbation:

=
1
𝑎

©­«
𝑛𝑔∑︁
𝑖=1

E [𝐺𝑖 ] E [𝑉𝑖 ] +
𝑛∑︁

𝑖=𝑛𝑔+1
E

[
𝐺𝑖

]
E

[
𝑌𝑖

]ª®¬
Expectation of the indicator function + Unbiasedness of the mecha-
nism:

=
1
𝑎

©­«
𝑛𝑔∑︁
𝑖=1

𝑎𝑣𝑖 +
𝑛∑︁

𝑖=𝑛𝑔+1

1 − 𝑎
𝑑 − 1 · 0

ª®¬
=

𝑛𝑔∑︁
𝑖=1

𝑣𝑖

= 𝑠𝑔

Therefore, the estimator 𝑠PW
𝑔 is unbiased. □
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