
Leaky Diffusion: Attribute Leakage in Text-Guided Image
Generation

Anastasios Lepipas
Imperial College London
a.lepipas20@imperial.ac.uk

Marios Charalambides
Imperial College London

marios.charalambides22@imperial.ac.uk

Jiani Liu
Imperial College London
jiani.liu23@imperial.ac.uk

Yiying Guan
Imperial College London

yiying.guan23@imperial.ac.uk

Dominika C Woszczyk
Imperial College London

d.woszczyk19@imperial.ac.uk

Mansi
Imperial College London
m.-24@imperial.ac.uk

Thanh Hai Le
Imperial College London
h.le24@imperial.ac.uk

Soteris Demetriou
Imperial College London

s.demetriou@imperial.ac.uk

Abstract
Text–guided diffusion models can be used to generate photoreal-
istic images conditioned on natural language instructions. Due to
their ease of use, millions of users already leverage them to gen-
erate and populate images online. In this work, we reveal the risk
of attribute (authorship and dementia) leakage from such models.
Existing authorship and dementia inferences rely primarily on text.
We show that instructions are a new form of text that can reveal
these attributes. More surprisingly, and in contrast to prior work,
we show that those attributes can be transferred and leaked from
images generated with diffusion models. In particular, we construct
image and multi–modal adversarial models which leverage image
data augmentation and text–image embedding models to achieve
state of the art performance in spear authorship inference (up to
0.877% Top–5 accuracy for 100 authors), while dementia inference
is possible even from the output images alone (0.75% accuracy on
the ADReSS dataset). Our rigorous evaluation shows that such infer-
ences remain robust using different training sets, and when trained
in classifier-independent ways, and against SOTA mitigations such
paraphrasing Transformer models and LLMs.
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1 Introduction
Diffusion models are generative models that have transformed im-
age synthesis. By adding noise to training data and learning to
reverse the process, they can produce images virtually indistin-
guishable from real ones [77]. When guided by text, these models
are known as text-to-image (T2I) models. T2I models enable users
to generate images using natural language instructions (NLIs). Pop-
ular models such as Stable Diffusion, Latent Diffusion, and DALL-E
are widely accessible, with millions of users leveraging them to
create tens of millions of images [48].
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Figure 1: Privacy leakage in Text–to–Image model usage.
Users create natural language instructions which are used
to guide the generation of images. Users share their instruc-
tions and/or the generated images with a false expectation of
privacy online and by default with online model providers.
Mallory who observes the shared data, aims to infer sensi-
tive attributes about the data owner. This figure depicts the
scenario of authorship inference targeting four victim users.
Disclaimer: the images at Step 2 were generated solely for the
purpose of illustration using craiyon [18] which was avail-
able for free online and anonymous usage.

The growing prevalence of T2I models raises privacy concerns.
To illustrate potential privacy risks, consider the scenario depicted
in Figure 1. Alice and Bob, concerned about recent political events,
wish to express their views on online forums but fear potential
backlash. To remain anonymous, they use a T2I model to generate
relevant images, either by running an open-source model offline
(e.g., Stable Diffusion) or using online tools without registration
(e.g., Craiyon [18]). The model aims to align the generated image
with the given instruction in a shared latent embedding space. Both
the textual descriptions (NLIs) and generated images are accessible
to the model provider. Alice and Bob then anonymously share their
generated content on a public forum [48].

Mallory has access to publicly shared data. If Mallory can infer
the author of an NLI, this poses serious privacy risks. Authorship
leakage can compromise user privacy, especially when anonymity is
essential. For example, in some countries, online political content is
heavily censored, with artists facing prosecution or threats [11, 28].
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Dissident artists may rely on T2I-generated images to express their
views anonymously. Similarly, online discussion groups frequently
use AI–generated memes to critique political ideologies [101]. To
minimize potential backlash or draw less attention to themselves,
some users appear to participate using aliases or pseudonyms. Our
analysis found that fewer than 1% of users on the Stable Diffusion,
Midjourney, DALL–E, and DALL–E 2 subreddits use real names
(see Appendix D), suggesting a preference for anonymity. T2I usage
should not expose user identities. If an entity can infer user at-
tributes from NLI inputs, this violates user expectations and might
conflict with privacy regulations, including GDPR (Art. 4(1) and
Recital 30) and UK GDPR, and the California Consumer Privacy
Act (CCPA) (Cal. Civ. Code §1798.140(v)(1)(K) and Cal. Civ. Code
§1798.140(o)). Such inferences pose a significant privacy threat.

Malicious actors can also exploit T2I models to spread misinfor-
mation or distribute toxic and unsafe content online [72, 82]. Such
illicit content is often shared with an expectation of anonymity.
Authorship inference can help attribute unsafe content to its source,
complementing safety filters implemented by model providers.
While safety filters can be disabled or bypassed [10, 109], author-
ship attribution provides an additional layer of accountability. This
approach can assist regulators and law enforcement in identifying
and prosecuting offenders.

To the best of our knowledge, attribute leakage in text-guided
diffusion-based image generation has not been studied. This work
aims to bridge that gap. Previous research has explored authorship
inference in other domains, such as book writing and Wikipedia
article contributions [92, 93]. However, these studies focus solely
on text, whereas T2I models may leak sensitive information from
both the input text and the generated images.

Some inferences from images are possible [13, 63]. However,
existing studies do not address text-guided image generation and
cannot be used for authorship inference or analyzing the relation-
ship between leaked attributes and guiding NLIs. Attribute leakage
in T2I models presents additional challenges. These models em-
ploy a stochastic Markov chain process, which can obscure text
input information. Furthermore, leakage in T2I models is inherently
multi-modal, as inferences may arise from both the input text and
the generated image. The only existing work on T2I attribution fo-
cuses on identifying the source T2I model in a closed-world setting
with four target models [85]. Our study instead investigates the
potential for user attribute leakage. Furthermore, we examine an
understudied attribute that affects a vulnerable population.

Our Approach. In this work, we address these challenges and
investigate the novel research question: Do text-guided diffusion
models for image generation leak user attributes? Motivated by our
guiding examples, we conduct a thorough analysis of authorship
leakage through a set of targeted attacks, which we term spear au-
thorship inference attacks. To further demonstrate attribute leakage,
we examine pathological language characteristics associated with
dementia, a neurocognitive condition, and show that text-guided
diffusion models can encode such highly sensitive traits.

To address our overarching question, we design an attack strat-
egy based on a hierarchical black-box adversary. The adversary
operates at different levels of information access and can succeed
using only black-box observations of T2I usage, making our threat

model both more realistic and more robust than a white-box alterna-
tive. Specifically, the adversary employs three inference strategies:
Input Inference (𝒜𝑖 ), which has access only to the input natural lan-
guage instruction; Output Inference (𝒜𝑜 ), which has access only to
the model’s output image; and Multi-Modal Input-Output Inference
(𝒜𝑖𝑜 ), which leverages both the input text and the generated image.

Our approach to mitigating the effects of stochastic generation is
based on two key insights. First, T2I models utilize embedding mod-
els (e.g., CLIP [73]) that learn a multi-modal embedding space by
jointly training on images and their textual descriptions. Extracting
image embeddings using this approach should produce representa-
tions closely aligned with their NLIs, increasing the likelihood of
retaining input information. Second, the denoising process in T2I
models introduces creative variability, meaning the same NLI can
generate different images each time unless explicitly controlled. We
leverage this by augmenting our image training set, demonstrating
that this not only enhances model generalization and performance,
but also enables highly accurate inferences on images generated by
previously unseen T2I models. Our extensive evaluation confirms
that spear authorship inferences are feasible from both the input
and output of T2I models, with text-image alignment embeddings
significantly improving inference performance. Additionally, our
models remain robust in both closed and open–world settings and
against state-of-the-art obfuscation techniques. Finally, we show
that pathological language markers present in input text persist
through the diffusion process via text-image embeddings, highlight-
ing the risk of leaking sensitive neurocognitive conditions, such as
dementia, from generated images. Our authorship inference models
and examples of NSFW images are available on GitHub [45].
Contributions.We summarize our key contributions as follows:
● Novel Application Domain. To the best of our knowledge, we
are the first to study attribute leakage in T2I models. We hope our
work inspires further research on T2I leakage of novel attributes
and the development of effective mitigation strategies.
● New T2I Black–Box Inference Method.We propose a novel
framework for inferring user attributes in T2I model usage through
hierarchical black-box access, leveraging Text-based, Image-based,
and Multi-Modal Inference Models built on text-image alignment
embeddings.
● New Findings. We demonstrate that T2I images leak authorship
and can encode dementia language markers, enabling dementia
inferences from both text input and generated images. Our best
multi-modal classifier achieved over 79% accuracy on the ADReSS
dataset.
●Rigorous Evaluation.We conduct a rigorous evaluation, demon-
strating that our attacks achieve state-of-the-art performance even
with limited training samples. Our approach remains robust against
unseen T2I models, open-world applications, and state-of-the-art
mitigation strategies.

2 Preliminaries
Pre–trained Language Models. Pre–trained language models
learn contextual understanding by predicting the next words in
the input text. They also exhibit adaptability to various natural lan-
guage processing (NLP) tasks through fine-tuning. The Transformer
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architecture [100] enables these models to incorporate multiple lay-
ers with substantial capacity. Models such as GPT-4V [2], Mistral,
Llama 3, and BERT [22] have achieved significant performance
gains in downstream NLP tasks compared to previous state-of-the-
art approaches. We leverage open-source LLMs to explore potential
defenses against T2I authorship inferences. Additionally, these mod-
els can extract sentence embeddings [36, 92], which our adversarial
models utilize to encode NLIs.
Embedding Models. Embedding models convert raw input, typi-
cally discrete, into low-dimensional vectors that capture the seman-
tic meaning of the original data. These embeddings are widely used
in downstream tasks such as classification and retrieval. Several
models embed text into vector space, including GloVe [71], Dual
Encoders [54], and other variations [36]. More recently, models
have emerged that learn joint representations of text and images.
Models such as CLIP [73], ViT [25], and BLIP-2 [49] train text and
image encoders jointly, embedding both modalities into a shared
vector space where image embeddings are positioned near their
corresponding textual descriptions. For example, CLIP employs an
image encoder 𝑓 (𝑥) and a caption encoder 𝑔(𝑐), training on image-
caption pairs {𝑥, 𝑐}. The model optimizes a cross-entropy loss that
encourages a high dot product 𝑓 (𝑥) ⋅𝑔(𝑐) for matching pairs and a
low dot product for mismatched pairs. These models have achieved
remarkable success in tasks such as image captioning, multi-modal
LLMs like GPT-4V [2], and guiding T2I models to generate images
closely aligned with their NLI inputs. To the best of our knowledge,
we are the first to leverage multi-modal representations to combine
NLIs with T2I images for conducting attribute inference attacks.
Text-to-Image Generation Models. Text-to-image (T2I) mod-
els have recently gained widespread popularity for their ability to
generate high-quality synthetic images efficiently. Early T2I gen-
eration methods [75, 111] relied on GAN networks [30]. However,
the advent of diffusion models [77, 78] has significantly enhanced
T2I generation, surpassing previous GAN-based architectures in
quality and performance.

A diffusion model consists of two stages: a forward process
and a backward process. During the forward process, an image
𝑋𝑜 ∼ 𝑞(𝑋𝑜) sampled from a data distribution is progressively noised
over 𝑡 ∈ {1, . . . ,𝑇} steps, forming a Markov chain of latent variables
𝑥1, . . . , 𝑥𝑇 :

𝑞(𝑥𝑡 ⋃︀𝑥𝑡−1) ∶= 𝒩 (𝑥𝑡 ;
⌋︂
𝛼𝑡𝑥𝑡−1, (1 − 𝛼𝑡)ℐ)

where 𝛼𝑡 controls the amount of noise added at each step. It has
been shown that 𝑥𝑇 can be approximated by𝒩 (0,ℐ) [68].

The backward process aims to reverse this transformation by
gradually denoising 𝑥𝑇 ∼ 𝒩 (0,ℐ) through a sequence of steps
𝑥𝑇−1, 𝑥𝑇−2, . . . , 𝑥0. A model 𝜖𝜃 (where 𝜃 represents the model pa-
rameters) can be trained to predict the added noise by minimizing
the difference between the predicted and actual noise, often using
a mean-squared error loss.

The generation process can be guided or controlled. Latent and
Stable Diffusion models are based on the Latent Diffusion Model
(LDM), which denoises samples in the latent space using a U-Net
network to predict the noise at each step. The U-Net architecture
includes self-attention layers for processing image latents and cross-
attention layers for integrating text embeddings. A pre–trained text
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Figure 2: High–level taxonomy of attribute (𝑠∗) inference
attacks against text–to–image models. We assume a hierar-
chical adversary with access to different information of the
text–to–image model: (1) 𝒜𝑖 infers the attribute from the
input prompts 𝑃 only, (2) 𝒜𝑜 infers the attribute from the
output images 𝐼 and (3) 𝒜𝑖𝑜 combines both the input and the
output of the target model for inference.

encoder, such as CLIP, converts the input text instruction into
a latent embedding, which is then applied to the U-Net’s cross-
attention layers to guide the image generation process.

In our work, we utilize Stable Diffusion (Versions 1 and 2.1) [78]
and Latent Diffusion [77], two widely recognized and publicly avail-
able text-guided image generation models. Stable Diffusion V1 was
pre-trained on 256× 256 images from LAION-2B-en [108] and later
fine-tuned on 512 × 512 images from a subset of LAION-5B [83],
using CLIP ViT-L/14 [69] as its text encoder. In contrast, Stable Dif-
fusion V2.1 employs OpenCLIP-ViT/H [70] as a text encoder, which
was trained on a larger and more diverse dataset. Latent Diffu-
sion [77] (LD) was pre-trained on a subset of LAION-5B and utilizes
the CLIP [69] text encoder to guide the generation of synthetic
images.

3 Black-Box Attribute Inference Attacks
3.1 Threat Model and Framework Overview
Threat Model. Users of T2I models frequently share their prompts,
generated images, or both online. For example, the Lexica web-
site [48] hosts a vast collection of Stable Diffusion-generated images
alongside their corresponding prompts and offers an API for re-
trieving prompts or images based on specified criteria. Additionally,
users share such content in online communities, including the “Un-
stable Diffusion” group, which distributes unsafe images generated
with Stable Diffusion. A common but false assumption is that shar-
ing this data ensures anonymity, as there is little expectation that
prompts—or especially synthetic images—can reveal authorship
information. In this work, we investigate the following overarching
questions: Do text-to-image model inputs contain identifiable char-
acteristics of the prompt’s author? Do these characteristics transfer
to the generated outputs? And can an adversary with access to raw
prompts or images infer the author’s identity with some probability?

Our threat model is illustrated in Figure 2. More formally, we
consider an adversary 𝒜 with black-box access to text-to-image
(T2I) models. Black-box attacks pose a greater challenge than white-
box attacks, as the adversary lacks access to the model’s internal
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structure or computations. However, this approach is more realistic,
has broader implications, and is harder to defend against, as it can
be executed not only by T2I model providers but by anyone who
can observe the model’s inputs and/or outputs.

To formulate the adversary’s goal, we adopt the general defini-
tion of attribute inference attacks outlined by Song et al. [92]. We
assume that the adversary𝒜 has access to an auxiliary dataset𝐷𝑎𝑢𝑥

containing labeled data in the form of (𝑥, 𝑠), where 𝑥 belongs to the
input domain 𝑋 (𝑥 ∈ 𝑋 ) and 𝑠 represents a discrete attribute (𝑠 ∈ 𝑆),
with 𝑆 being the set of all possible attribute classes. The goal of 𝒜
is to infer a sensitive attribute 𝑠∗ ∈ 𝑆 given a seemingly innocuous
and previously unseen input 𝑥∗ ∈ 𝑋 . To achieve this, the adversary
aims to learn an adversarial function 𝑓 on 𝐷𝑎𝑢𝑥 that maps the input
domain 𝑋 to the discrete attribute space 𝑆 . Formally, this is defined
as 𝑓𝜃 ∶ 𝑋 → 𝑆 , where 𝜃 represents the learnable parameters of the
function 𝑓 . Furthermore, we consider an extended scenario where
the adversary can infer authorship not only from the raw input
but also from an embedding function 𝐺 , such that 𝑔𝜙 ∶ 𝐺(𝑋)→ 𝑆 ,
where 𝜙 are the learnable parameters of 𝐺 .

For clarity of presentation, we will first focus our analysis on
spear authorship inferences. In Section 5.6, we will extend this anal-
ysis to sensitive pathological language markers, demonstrating
how such markers can also be encoded in both the input and out-
put of T2I models. More concretely, a spear authorship inference
adversary 𝒜 aims to identify, with some probability, the author
𝛼 ∈ 𝐴 from a finite set of target authors 𝐴, where ⋃︀𝐴⋃︀ ≤ 𝑐 and
𝑐 ∈ Z is a small constant. In our evaluation, we experimented with
values of 𝑐 ranging from 100 to 200. Although these attacks are
less scalable, they can have more severe consequences. Large-scale
inference typically targets the general population, leading to broad
but diluted effects, such as user profiling for targeted advertising.
In contrast, spear authorship inference attacks focus on a small set
of high-value individuals—such as company executives or govern-
ment officials—where the intended harm can extend across entire
organizations or societies. We evaluate these attacks both in a
closed-world setting and, in contrast to prior work on authorship
inference, in several open-world settings where the victims are
among unknown individuals.

We consider a hierarchical adversary with access to different
modalities, both before and after processing (see Figure 2 for an
overview of our adversarial setup). Specifically, an adversary target-
ing T2I models may have access to natural language instructions
(the model input), generated images (the model output), or both.
Since these modalities differ, separate models must be designed for
each case. For the input-only scenario, adversarial models must
effectively process text, while for the output-only case they must
handle images. The multi-modal scenario is more complex, as it
requires a combined approach where the choice of text and image
embeddings is crucial for effective multi-class classification. We
next elaborate on the formulations for each type of adversary.
Inference Framework Overview. Figure 3 illustrates our method
for authorship inference in text-to-image (T2I) model usage. With-
out loss of generality, we assume the target sensitive attribute is
authorship, where an author is the user who provides the natural
language instruction (NLI) to the T2I model. Binary attribute infer-
ence is a special case of this framework. Using supervised learning,

Figure 3: Inference Framework Overview

the adversary trains classifiers to infer authorship. Specifically, for a
set of users𝑈 = 𝑈1,𝑈2 ..𝑈𝑐 , NLIs𝑇 = 𝑇1,𝑇2 ..𝑇𝑚 , and images 𝐼 = 𝐼1 ..𝐼𝑚 ,
where𝑚 ≥ 𝑐 , they can train:

● An input-only model (𝐴𝑖 ) using (𝑈 ,𝑇 ) pairs.
● An output-only model (𝐴𝑜 ) using (𝑈 , 𝐼) pairs.
● Amulti-modal model (𝐴𝑖𝑜 ) using (𝑈 ,𝑇 , 𝐼) triplets.

This approach enables authorship inference across different modal-
ities, improving classification accuracy and robustness.

As we will demonstrate, authorship inference models perform
well when the adversary knows the target’s T2I model, a reasonable
assumption given prior model attribution methods [85]. However,
in some cases, the adversary may be unable to reliably identify the
user’s model. Training on images from a different model may not
generalize well, limiting inference accuracy.

To address these challenges, we employ data augmentation for
training inference models. Specifically, the adversary generates
an augmented image set 𝐼+ containing𝑚 × 𝑘 images, where each
𝑡𝑖 ∈ 𝑇 produces 𝑘 new images. By training on 𝐼 ∪ 𝐼+, the adversary
enhances output-only (𝒜+𝑜 ) and input-output (𝒜+𝑖𝑜 ) models.

During inference, the adversary selects the appropriate model to
attribute intercepted samples to target users. While augmentation
increases computational costs, it improves model transferability
and performance (see Section 5.3). Additionally, the adversary can
readily leverage public T2I models to augment their datasets.

Next, we describe the spear authorship inference models. Thus
far, we have focused on a closed-world setting, where all inference
samples originate from a predefined set of target authors. However,
in real-world scenarios such as online forums and social networks,
it is unrealistic to assume the adversary has training data for all
authors. To address this, we introduce an open-world adaptation,
allowing inference on both known and unknown users. We detail
this approach in Section 3.5 and evaluate its effectiveness under
varying known-to-unknown author ratios in Section 5.4.

3.2 Input Attack (𝒜𝑖 )

Formulation. In this setup, 𝐷𝑎𝑢𝑥 consists solely of natural lan-
guage instructions submitted to a text–to–image model, along with
their corresponding author labels: 𝐷𝑎𝑢𝑥 = {(𝑡𝑖 , 𝛼𝑖)}𝑖 , where 𝑡 ∈ 𝑇 ,
𝑇 is the set of all instructions, 𝑖 = 1..𝑛, and 𝑛 is the total number of
training samples. 𝒜𝑖 aims to learn 𝑓𝜃 ∶ 𝑇 → 𝑆 and 𝑔𝜙 ∶ 𝐺(𝑇 )→ 𝑆 .
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Design and Implementation. We construct multiple adversarial
models to infer authorship from text. Our embedding-based classi-
fiers (𝑔𝜙 ) consist of an embedding extraction component followed
by a linear classification layer. We experiment with pre-trained In-
ferSent and BERT models for embedding extraction, both of which
have demonstrated strong performance in various NLP tasks. Ad-
ditionally, we fine-tune BERT on our dataset of NLIs. BERT em-
beddings (a 768-dimensional vector) are fed into a linear layer for
multi-class classification, while InferSent embeddings are processed
through a dense layer with a softmax activation function. Training
is optimized using the Adam optimizer [44].

Our raw-text classifier (𝑓𝜃 ) directly learns from 𝑇 . We hypothe-
size that T2I users have distinct interests, subjects, or styles, which
influence the vocabulary used in their NLIs. Thus, features like
Bag-of-Words (BoW) should effectively capture author differences
in instructions. Unlike other stylography features, which are im-
portant for large document inferences, BoW focuses solely on the
presence of words, not their order or sentence structure. We use
BoW to extract features relevant to word occurrence within NLIs,
employing a TF-IDF vectorizer. These BoW features are then passed
through a dense layer with a softmax activation function for multi-
class classification.

3.3 Output Attack (𝒜𝑜 )

Formulation. In this setup, 𝐷𝑎𝑢𝑥 consists of image outputs from
a text–to–image model along with their corresponding author la-
bels (𝑖, 𝛼), where 𝑖 ∈ 𝐼 and 𝐼 is the set of all generated images. 𝒜𝑜

aims to learn 𝑔𝜙 ∶ 𝐺(𝐼)→ 𝑆 . Note that for 𝐴𝑜 , we do not consider
learning directly from the raw data (𝑓𝜃 ∶ 𝐼 → 𝑆) because we ex-
pect abstract attributes like authorship, or semantically meaningful
context related to authorship, to be more effectively captured in
image embeddings. These embeddings are generally more useful
than handcrafted features extracted from raw data.

Design and Implementation. A straightforward approach to
infer authorship from image embeddings is to apply pre-trained
CNN models, such as ResNet [34], InceptionV3 [96], or VGG19 [41],
to extract image features. These embeddings have proven effective
for image classification. CNNs employ a hierarchical structure,
enabling more abstract representations compared to handcrafted
feature extraction methods like SIFT [55] and HOG [20].

However, our key insight is that inferring authorship from im-
ages generated by NLIs requires embeddings suited for semantic
image processing—ones that encode relationships between textual
descriptions and images. Traditional image embeddings, while su-
perior to handcrafted methods, primarily capture objects in images
but struggle to generalize to unseen objects, styles, and topics. To
address this, we use models (𝐺(𝐼)) that learn visual representations
from natural language supervision. Specifically, our𝒜𝑜 attack mod-
els leverage vision transformer architectures such as CLIP [69] and
ViT [106]. CLIP is used in some T2I models to encode NLIs and
guide the diffusion process, whereas ViT serves as a more general
vision transformer model.

The transformer-based vision embeddings are then passed to
various popular classifiers configured for multi-class classification
using the scikit-learn library [26]. In particular, we employ an SVM

classifier with aOne-Vs-One approach, a Logistic Regression classifier
using the One–Vs-The–Rest method, and a Naive Bayes classifier
leveraging amultinomial model to compute class probabilities. Addi-
tionally, we use Decision Trees, Random Forests, Neural Networks,
and KNN classifiers with a multi-label approach.

Note that training on a single image generated from an NLI for
a given T2I model may not always be effective. This is due to the
approximate nature of the diffusion process, which can produce
different images each time based on user-specified input parameters.
For instance, the cfg scale parameter (classifier-free guidance scale)
in Stable Diffusion controls the diversity of the generation process,
determining how strictly the model follows the given instruction.
Furthermore, for each NLI and diversity setting, multiple images
may serve as representative visual interpretations of the instruction.
A key insight of our output attack strategy is to incorporate data
augmentation into the training process to address this variability.
Specifically, for each NLI instruction, we generate multiple images
and use all of them to train the adversarial models. We denote this
attack model as 𝒜+𝑜 .

3.4 Multi–Modal Input–Output Attack (𝒜𝑖𝑜 )
Formulation. In this setup, we consider a multi-modal adver-
sary (𝒜𝑖𝑜 ). The auxiliary dataset 𝐷𝑎𝑢𝑥 consists of natural language
prompts for a text-to-image model, the corresponding generated
images, and author labels for each prompt (𝑡, 𝑖, 𝛼). 𝒜𝑖𝑜 aims to
learn the mapping 𝑔𝜙 ∶ 𝐺𝑇 (𝑇 )⊕𝐺 𝐼 (𝐼)→ 𝑆 , where the adversary is
restricted to learning from the combination of text and image em-
beddings. This design choice is based on our previous observation
that transformer-based image embeddings more effectively capture
image representations for this inference task.

Design and Implementation. Similarly to 𝒜𝑜 , we leverage CLIP
to extract image embeddings. A key property of CLIP is its ability
to extract both text and image embeddings, with the crucial ad-
vantage that embeddings from different modalities share the same
feature space. CLIP’s contrastive learning approach brings images
closer to their corresponding text descriptions while pushing dis-
similar images further apart in the latent space. The textual and
vision embeddings are combined after flattening the text embed-
dings. Since both reside in the same feature space, we use simple
concatenation–rather than alternative methods like averaging–to
effectively enrich the information available to our multi–modal
classifiers. We train the same classifiers as in the output attack,
denoting the non–data–augmented multi-modal attack as 𝒜𝑖𝑜 and
the data–augmented version as 𝒜+𝑖𝑜 .

3.5 Open World Adaptation
In some settings the adversary might not know all participants and
therefore available content might appear from unknown authors.
This corresponds to an open–world setting which better suits sce-
narios on some real–world discussion forums and social network
groups. Here we adapt our formulation for such a setting and de-
sign proof–of–concept spear authorship inference model for the
𝐴𝑖 adversary. We use 𝐴𝑐

𝑖 and 𝐴𝑜
𝑖 to distinguish between the closed

and open world adversary respectively.
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Formulation. In this setup, 𝐷𝑎𝑢𝑥 contains only natural language
instructions submitted to a text–to–image model along with the
author labels. The fundamental difference between the 𝐴𝑐

𝑖 and the
𝐴
𝑜
𝑖 approach is that in the latter case the corresponding authors 𝑥

consist of both known 𝛼 and unknown 𝛽 authors: 𝐷aux = {(𝑡𝑖 , 𝑥𝑖) ⋃︀
𝑥𝑖 ∈ {𝛼𝑖 , 𝛽𝑖}}, where 𝑡 ∈ 𝑇 . 𝑇 is the set of all instructions, 𝑖 = 1..𝑛,
and 𝑛 is the total number of training samples.

Design and Implementation. The ratio of 𝛽 ∶ 𝛼 can vary with
𝛽 > 𝛼 . To assess the effectiveness of our approach, we introduce
multiple versions of open–world datasets 𝐷𝑎𝑢𝑥 , each incorporating
a greater number of unknown authors 𝛽 (detailed in Section 5). To
combat against the imbalanced nature of the dataset, we employed
a weighted random sampler, in which the weights are inversely pro-
portional to the class frequency. For our inference model we employ
a variant of Sentence Transformer architecture, all-MPNet-base-v2
[5]. We selected this model for its speed, compact size, and strong
embedding performance. all-MPNet-base-v2 achieved state–of–
the–art results in both Performance Sentence Embeddings (assess-
ing the quality of embedded sentences) and Performance Semantic
Search (evaluating the quality of embedded search queries and para-
graphs), outperforming 37 other sentence transformer models [76].
These models were benchmarked by averaging the Performance
Sentence Embeddings and Performance Semantic Search, with con-
sideration for speed and model size. We fine–tuned the model for
each targetted 𝛽 ∶ 𝛼 ratio for 20 epochs using the AdamW optimizer
and minimizing the categorical cross-entropy loss per sample:

𝐿(𝑥, 𝑥) = −
𝛼+1
∑
𝑖=1

𝑤𝑖𝑥𝑖 log(𝑥𝑖)

where 𝑥𝑖 is the true label, 𝑥𝑖 the predicted probability for author
𝑖 ,𝑤𝑖 = 1

𝑓𝑖
, and 𝑓𝑖 is the class frequency.

4 Evaluation Setup
Datasets. We use DiffusionDB Large [104], a large-scale text-to-
image NLI dataset containing 14million images generated by Stable
Diffusion from 1.8million NLIs. All NLIs were collected from Stable
Diffusion Discord channels, and all images were generated using
Stable Diffusion Version 1. We preprocess the dataset by removing: i)
exact duplicate NLIs ii) NLIs containing non-English characters, iii)
NLIs with at least one NaN or Null character, and iv) all whitespace.
We refer to the resulting dataset as ‘DiffusionDB’. The remaining
unique authors and prompts are 10, 334 and 1, 760, 664, respectively.
We also use NLIs from ‘DiffusionDB’ to create images with Stable
Diffusion (v2.1) and Latent Diffusion to further investigate the
behavior of our spear authorship inferences. To study dementia
markers, we use the ADReSS dataset [56], which contains speech
transcriptions from both a control cohort and a dementia cohort
tasked with describing a given image.
Spear Authorship Inference Evaluation Metric. To measure
model performance, we use accuracy, defined as the fraction of
correctly predicted records. In multi–class classification, Top-1 ac-
curacy requires themodel’s highest–probability prediction tomatch
the expected answer exactly. Top–N accuracy, on the other hand,
measures how often the correct class appears within the top N
predictions, e.g., in the softmax distribution [29]. Top–N accuracy

is a strong indicator of privacy violations and aligns with privacy
regulations. For instance, under GDPR, absolute certainty in identi-
fying a data subject is not required; a probabilistic inference can
suffice for differential treatment [81]. Prior work has leveraged
Top-5 accuracy to evaluate authorship inference [92]. To facilitate
comparison with related work and due to space constraints, we
primarily report Top-5 accuracy, noting Top–1 accuracy when rele-
vant. A full breakdown of Top–1 to Top–5 accuracies is provided
in Appendix A for relevant experiments.
Research Questions. Our evaluation seeks to address the follow-
ing key research questions: RQ1: Are T2I spearheaded authorship
identification attacks effective? RQ2: How do the number of avail-
able training samples and the size of the target author set affect
the attack performance? RQ3:What properties of NLIs and their
generated images can be indicative of authorship? RQ4: Do these
attacks depend on the target T2I model? RQ5: Can the attacks be
adapted to an open–world setting? RQ6: Do these attacks remain
robust against SOTA mitigation strategies? RQ7: Do T2I models
encode other user attributes in their generated images?

5 Evaluation
5.1 Attack Effectiveness
To answer RQ1, we evaluate the overall effectiveness of our spear-
headed attacks in a closed-world setting. For the threat model, we
fix the number of authors to ⋃︀𝐴⋃︀ = 100, a reasonable size for a
spearheaded attack. This choice aligns with prior work on author-
ship identification [92] to facilitate comparison. We then assess the
ability of 𝒜𝑖 , 𝒜𝑜 , and 𝒜𝑖𝑜 to identify target authors. Specifically,
we evaluate 7 𝒜𝑖 architectures, 11 𝒜𝑜 architectures, and 12 𝒜𝑖𝑜

architectures, as described in Section 3.
The models’ performance is compared using a limited number

of training samples per author, i.e., ⋃︀𝐷𝛼
𝑎𝑢𝑥 ⋃︀ = 10, 30, 50, 70, 90. This

represents a challenging scenario for the adversary, who, as we will
demonstrate, improves as more labeled samples become available.
Authors are selected by first identifying those with at least 100
prompts (3947⇑10334) in theDiffusionDB dataset, and then randomly
choosing 100. For the 𝒜𝑜 models, we repeat the experiments twice:
once using CLIP embeddings from images and once using ViT
embeddings, to evaluate the (in)dependence on the text encoder of
the underlying T2I model.

Next, we repeat the experiments with ⋃︀𝐷𝛼
𝑎𝑢𝑥 ⋃︀ = 70 while varying

the number of authors, i.e., ⋃︀𝐴⋃︀ = 100, 150, 200. This resulted in
training and evaluating 49 𝒜𝑖 models, 154 𝒜𝑜 models, and 84 𝒜𝑖𝑜

models. Although increasing the number of authors beyond 200 is
outside the scope of our spear authorship attack, we conduct some
preliminary experiments and provide insights into the adversary’s
ability in such settings.

Input Attack (𝒜𝑖 ) Effectiveness. We compare our InferSent and
BERT embedding-based classifiers, as well as our Bag–of–Words
(BoW) classifier, against one of the best-performing models from
Song and Raghunathan [92] (LSTM_BookCorpus). Additionally, we
compare against an improved version that we trained on our dataset
(LSTM). We also evaluate a Logistic Regression (LR) multi-class clas-
sifier trained with text embeddings extracted using CLIP [69], a vi-
sion transformer model. Finally, we compare against TextCNN [43],
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which has shown success in other authorship attribution works [79,
86].

Our results are summarized in Figure 4(a). We found that all our
classifiers (InferSent, BERT, LSTM_DiffusionDB, and BoW) outper-
form the other models, significantly surpassing the performance of
TextCNN, LR, and LSTM_BookCorpus baselines. The LSTM trained
on our dataset performed better than the baselines, but still fell short
compared to our attack models. InferSent achieved the best perfor-
mance with a top-5 accuracy of 0.77, leveraging only 70 labelled
NLIs per author for training. Performance gradually improved as
more training samples were added 1. In contrast to prior work on
authorship identification from text [92], we observe that even with
limited training samples, models like BoW, which do not rely on
pre-trained unsupervised embeddings, generalize well and perform
effectively in our task. This can be attributed to the nature of the
text in NLIs. NLIs have more constrained stylistic properties; for
example, all NLIs describe an image, and authors use NLIs to gen-
erate specific sets of images with distinct styles. Additionally, NLIs
tend to be shorter than sentences from books. We provide a more
detailed analysis of this in Section 5.2.

Additionally, when increasing the number of authors (⋃︀𝐴⋃︀ = 200)
while using a small number of training samples per author (⋃︀𝐷𝛼

𝑎𝑢𝑥 ⋃︀ =
70), the InferSent and BoW models remain robust, whereas the
performance of the other models begins to degrade.

Output Attack (𝒜𝑜 ) Effectiveness. As explained in Section 3,
our adversarial models use CLIP-large [69] and ViT-large [106] to
extract image embeddings, which are then fed into several popular
classical classification algorithms: Support Vector Machine (SVM),
Logistic Regression (LR), Random Forest (RF), Naive Bayes (NB),
Decision Tree (DT), Neural Network (NN), and K-Nearest Neighbor
(KNN). All classifiers are configured using the default parameters
from the scikit-learn library [26].

We compare these with traditional CNN-based models for image
feature extraction. Specifically, we evaluate a Residual Network–
50 (ResNet50) [34], a 50-layer convolutional neural network pre-
trained on ImageNet-1k [80] for image classification tasks. Instead
of using the image embeddings from CLIP/ViT as input to a classi-
fier, as in our attack models, we first use the ResNet50 baseline to
extract image features from the input images. To improve gener-
alization, we apply image perturbations using ImageDataGenera-
tor [42] from Keras. Since ResNet50 has not been trained for the
authorship identification task, we add a custom classification head
and fine-tune the model. To prevent overfitting or underfitting due
to an inappropriate number of epochs, we use early stopping, mon-
itoring the validation loss to terminate training. We set the total
number of training epochs to 100, the patience to 3 epochs, and the
validation split to 0.2. We apply the same procedure to other state-
of-the-art pre-trained CNN models, including ResNet50V2 [35],
InceptionV3, and VGG19. Lastly, since authorship attribution from
T2I-generated images is a novel task, we denote “RC” as the random
choice (RC) probability of an author being in the top–5 predicted
authors.
1We investigated the ability of the models to improve as more unique prompts become
available. We leveraged the maximum number of unique prompts required to obtain
100 unique authors from DiffusionDB. In this case our best-performing model,𝒜𝑖 ,
achieved a Top–5 accuracy of 94.8% using 1,500 available prompts per author, and a
70:30 train–test split.

Our results are summarized in Figures 4(b) and 4(c). Note that
the results presented in this section are from attack models without
data augmentation. Nevertheless, we observe that it is possible to
identify NLI authors from T2I-generated images with high top–5
accuracy. Additionally, we find that training simple classifiers us-
ing both CLIP and general ViT embeddings yields better results
compared to classifying directly on more traditional image feature
embeddings extracted with high-performing CNNs. Logistic Re-
gression with CLIP and ViT embeddings consistently outperformed
other models. For instance, Logistic Regression with CLIP embed-
dings on 70 training samples per author achieved the highest top–5
accuracy of 0.79, outperforming all other models (see Figure 4(b)).
Using ViT embeddings, Logistic Regression also outperforms the
other models with a top–5 accuracy of 0.77 on 70 training samples
(see Figure 4(c)).

As we increase the number of authors (⋃︀𝐴⋃︀ = 200) while keep-
ing the number of training samples small (⋃︀𝐷𝑎𝑢𝑥 ⋃︀ = 70), Logistic
Regression and SVM using CLIP and ViT embeddings remain the
highest-performing attacks, although with an expected drop in
performance in the limited training samples available scenario.

Input-Output Multi-Modal Attack(𝒜𝑖𝑜 ) Effectiveness.We eval-
uate this attack scenario similarly to the output adversary (𝒜𝑜 ).
As explained in Section 3, instead of solely learning from image
embeddings, our models concatenate these with text embeddings
from the same feature space. For comparison, we use the baseline
classification models from 𝒜𝑜 , modified for multi-modal learning.
Specifically, we use the models in 𝒜𝑜 to extract image feature em-
beddings, which are then concatenated with text embeddings from
CLIP, after flattening them to match the image embedding dimen-
sions. As before, we annotate the results with an RC adversary,
as this is a novel adversarial task, and we aim to provide a naive
baseline to better highlight the improvements achieved by more
sophisticated adversarial models.

Our results are summarized in Figure 4(d). Similar to the𝒜𝑜 case,
leveraging CLIP embeddings (for both NLIs and images) outper-
forms the other models. For instance, Logistic Regression with 70
training samples per author surpasses the other models with a top–
5 accuracy of 0.88. Compared to the𝒜𝑜 scenario, this represents an
11% performance increase under the same experimental conditions.
With 200 authors, the models remain robust, with the highest top–5
accuracy slightly dropping to 0.85. In general, the multi–modal𝒜𝑖𝑜

adversary performs better than both the single-modality image-only
𝒜𝑜 and text-only 𝒜𝑖 adversaries. The classifiers also demonstrate
better robustness as the number of target authors increases.

NSFW Content. The inference models could be potentially used
for attribution of not safe for work (NSFW) content created with
T2I models. Here we evaluate the attribution capabilities of each
of the 𝒜𝑖 , 𝒜𝑜 and 𝒜𝑖𝑜 models. We classify an image as NSFW if it
attains a safety score of ≥ 0.7 [46]. Given the limited quantity of
unsafe content within DiffusionDB, setting this threshold allows
us to identify only 115 authors in total, each associated with a
minimum of 100 unsafe images. After manual observation, we found
that a significant number of images include nude content. Table 1
shows the best performing classifiers. We note that when ⋃︀𝐴⋃︀ =
100, Logistic Regression excels with 0.74 and 0.85 Top–5 accuracy
under𝒜𝑜 and𝒜𝑖𝑜 , respectively. These results demonstrate that the
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(a) Input Attack (𝒜𝑖 ). (b) Output Attack (𝒜𝑜 ), using CLIP embeddings.

(c) Output Attack (𝒜𝑜 ), using ViT embeddings. (d) Multi–Modal Input–Output Attack (𝒜𝑖𝑜 ), using CLIP embeddings.
Figure 4: Comparison of all adversary models on DiffusionDB.

our inference models can be an important tool in NSFW content
attribution.

Table 1: The Top–5 accuracy of the best performing (in paren-
thesis) Authorship Inference models using NSFW images.

Experiment Setup : ⋃︀𝒟𝑎𝑢𝑥 ⋃︀ = 10...90 with ⋃︀𝒜⋃︀ = 100
Training Samples

10 20 30 40 50 60 70 80 90
𝒜𝑖

(InferSent) 0.61 0.72 0.76 0.78 0.80 0.81 0.83 0.84 0.85

𝒜𝑜

(LR) 0.61 0.67 0.72 0.73 0.73 0.74 0.74 0.75 0.77

𝒜𝑖𝑜

(LR) 0.69 0.77 0.81 0.83 0.84 0.85 0.86 0.86 0.87

5.2 Leakage Analysis
In this section, we aim to gain a deeper understanding of why au-
thorship inference is possible in T2I. Specifically, we explore (a) why
authorship leakage occurs through natural language instructions
and (b) why leakage is possible through generated images.

The importance of words authors use in NLIs. One of our
main findings is that simple techniques based on bag of words
(BoW) achieve impressive performance in inferring authorship from
NLIs. To better understand why this is possible, we analyze the
authors’ NLIs. We randomly sample 50 authors from our training
set of 100 authors, and for each author, we randomly select 50
NLIs. The choice of 50 instead of 100, as used in the attacks, is
due to computational constraints and easier visualization. Next,
we extract the TF–IDF embeddings for each NLI. Since TF–IDF
embeddings are multi-dimensional and difficult to visualize, we
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(a) t–SNE Cluster Centroids of
per–author NLI TF–IDF embeddings.
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(b) In–Cluster and Out–Cluster
Distances of per-author NLI TF–IDF
embeddings.
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(c) t–SNE Cluster Centroids of
per–author CLIP image embeddings.
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(d) In–Cluster and Out–Cluster
Distances of per–author CLIP image
embeddings.

Figure 5: Analysis on 50 authors with 50 NLIs each (a,b) and
50 images generated from those NLIs using DiffusionDB.

apply t-SNE [99] (t-distributed Stochastic Neighbor Embedding),
a widely-used unsupervised dimensionality reduction technique,
to reduce the dimensionality of each NLI’s TF–IDF embedding to
two. We then calculate the per-author centroids of the TF–IDF
embeddings by averaging across the two dimensions, as shown in
Figure 5a. Finally, we compute the Euclidean distances for both
in-cluster and out-cluster NLIs. As seen in Figure 5b, most in-cluster
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distances are small (indicating greater similarity between NLIs),
while the out-cluster distance distribution is shifted toward larger
values. Figure 5a shows that the cluster centroids of author TF–IDF
embeddings are sufficiently separated. The 𝑃25, 𝑃50, 𝑃75, and 𝑃90
percentiles for in-cluster distances are 10.7, 24.3, 38.8, and 52.1,
respectively, while for out-cluster distances, they are 45.0, 51.9, 61.0,
and 68.1. The minimum out-cluster distance is 38.1, and nearly 75%
of in-cluster distances are below this threshold.

The importance of image embeddings for author separability.
To analyze the output space of T2I models for authorship separabil-
ity, we follow a similar methodology as in the NLI term analysis,
but instead of analysing TF–IDF embeddings of NLIs, this time
we focus on CLIP image embeddings of images from DiffusionDB.
We note that for this experiment we use the same 50 authors and
prompts as previously. Figures 5c and 5d show the per–author clus-
ter centroids of CLIP image embeddings after t–SNE dimensionality
reduction and the cluster distance distributions. These results show
that separability is more challenging on the output compared to
the input of T2I models which is expected due to the lossy image
generation process which is inevitable due to the imperfect align-
ment between instruction and image. Nonetheless it is still possible
with cluster centroids not overlapping. Also the 𝑃25, 𝑃50, 𝑃75, 𝑃90
for in–cluster distances and out–cluster distances are 17.6, 28.0,
41.6, 53.4 and 43.2, 50.0, 57.4, 63.1 respectively with the minimum
out–cluster distance is 36.7 and between the median and 75% of
in–cluster distances are still below that threshold.
Discussion on content dependence. Other works on authorship
inference showed that authors’ stylometric features might be cor-
related with the text topic [65] and more generally the content of
the written text might be biasing classification. Our experiments
show that it is still possible to perform classification on authorship
and dementia inference even on similar content. Specifically, our
experiments with NSFW images conduct authorship attribution
on only NSFW content, while our dementia inference model (Sec-
tion 5.6) is trained on descriptions of the same image. In the case of
authorship inference it is still possible that different authors might
focus on different topics. Therefore, the inference models might
need to be retrained periodically as the target users’ interests shift.
We do not expect this to happen very often and existing models
dependent on user interests are successfully deployed in practice
(e.g., personalized advertising).

5.3 Model Diversity
To answer RQ4 on whether our attacks depend on the T2I model we
design a separate experiment. This experiment is performed on the
output attacks because the effect of the T2I model (generated im-
ages) is better isolated if we focus only on the output. By definition
input attacks are independent of the T2I model, and input–output
attacks can only be better than output attacks. In this experiment
we want to analyze the performance of our attack models when
trained on images of a T2I model and perform inference on images
of the same model (classifier–dependent attacks), and when trained
on images of a T2I model and perform inference on images of an-
other model (classifier independent attacks). We evaluate models
trained and tested on images from both SD v2.1 and LD, and to show
the benefits of data augmentation we train the models without and

Table 2: Top–5 Accuracy of Best Performing Output Attack
(𝒜𝑜 ) models without and with data augmentation in model–
dependent (*) and model–independent inference settings.

Training Images Test Images T2I Models

T2I Model Data
Augmentation

Stable
Diffusion v2.1

Latent
Diffusion

Stable
Diffusion v2.1

NO 0.559* (LR) 0.541 (LR)
YES 0.805* (KNN) 0.803 (KNN)

Latent
Diffusion

NO 0.553 (LR) 0.553* (LR)
YES 0.802 (KNN) 0.807* (KNN)

with data augmentation. This totals 8 different settings for which
we evaluate all our attack models from Section 5.1.

To generate the datasets for the non–augmented attacks, we use
the same set of 100 authors with 100 NLIs each from Section 5.1
to generate 10, 000 new images using the open–source and free
LD [77] and SD v2.1 [78] models. To generate the data augmented
datasets we repeat the above but instead of generating one image for
each NLI we generate 5 image variants per NLI. Table 2 summarizes
all our results where we only report the best performing output
model due to space limitations.

We first observe that non data–augmented output attacks (𝒜𝑜 )
do not achieve the same performance as the non data–augmented
output attacks on DiffusionDB (see Section 5.1). We hypothesize
that this is because the authorship content might transfer better
in the DiffusionDB (Stable Diffusion v1 model). To examine this
hypothesis we use the CLIP score to evaluate the similarity be-
tween the NLI and the output images (non–augmented datasets)
from DiffusionDB, Stable Diffusion v2.1, and Latent Diffusion. To
calculate the CLIP scores we use the multi–modal CLIP–Large [69]
to extract text and image embeddings from NLIs output images
respectively. Since the embeddings are in the the same vector space
we can then calculate their cosine similarity. The CLIP score ranges
between (︀0..100⌋︀ and higher scores indicate higher similarity. Fig-
ure 6 shows the cumulative distribution function of the CLIP scores
for the three models. Given prior work [32], a CLIP score around to
0.26 indicates that a generated image is has good alignment to its
input prompt. Clearly, DiffusionDB has significantly more images
(around 80%) with score ≥ 0.26 than Stable Diffusion v2.1 (around
55%) and Latent Diffusion (around 20%). This might explain why
the non–augmented attacks are more successful on DiffusionDB
images. However, as shown on Table 2 our data–augmented at-
tacks (𝒜+𝑜 ) achieve high Top–5 accuracy in model–dependent and
model–independent settings and across training sets.

5.4 Open–World Evaluation
In Section 3.5 we introduced our approach for adapting the spear
authorship inference problem to an open–world setting and intro-
duced our open–world spear authorship inference model (𝐴𝑜

𝑖 ). Here
we evaluate this approach (RQ5).

Experiment Setup.We introduce unknown authors (𝛽) into our
existing target author (𝛼) dataset. We mimic five scenarios with
different ratios of unknown to target authors (𝛽 ∶ 𝛼) ranging from
5:1, 7:1, 10:1 to 20:1. Specifically, we randomly select 500, 700, 1,000,
and 2,000 unknown authors, and then for each author we randomly
select 5 NLIs, resulting in 2,500, 3,500, 5,000, and 10,000 unknown
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Figure 6: CDF of CLIP scores for 10K images per model.

Table 3: Top–1 & Top–5 accuracy on different ratios of un-
known to target authors for the open–world experiment.

Ratio of Unknown : Target authors
Accuracy 5 ∶ 1 7 ∶ 1 10 ∶ 1 20 ∶ 1 90 ∶ 1
Top–1 0.7530 0.7559 0.7343 0.7293 0.6251
Top–5 0.8620 0.8631 0.8437 0.8236 0.6981

author prompts, respectively. To further extend the open-world
setting, we incorporate the entire DiffusionDB author set, yielding
8,884 unknown authors (a ratio of ∼90:1). For each setting we use
a 70:30 train:test split to train and evaluate our 𝐴𝑜

𝑖 model for each
setting and report the Top-1 and Top-5 accuracy.

Results. Table 3 summarizes our results. As expected the perfor-
mance of the 𝐴𝑜

𝑖 inference model gradually decreases as we intro-
duce more unknown authors. Nonetheless, in all settings inferences
demonstrate Top–5 accuracy between 80%−−86% with even Top–1
accuracy consistently above 70%. This demonstrates effectiveness
of spear authorship inferences in open–world settings.

5.5 Robustness Against Obfuscation
To further analyze the robustness of the inference models derived
with our methods (RQ6), we explore plausible strategies one could
employ to obfuscate the target attribute. Since the image genera-
tion is conditioned on the text input, it is reasonable to assume that
if obfuscation is successful on the input domain, then the gener-
ated images from the obfuscated instructions will also be harder
to distinguish between authors. Hence, we select several strategies
that can be applied on text. These include, Pegasus [112] which
is a SOTA text paraphrasing model, and a differentially private
approach proposed by Mattern et al. [62] which adds noise through
a temperature value (inverse of 𝜖) at the word level. Additionally,
we use top performing and open source LLMs Llama3 (8B parame-
ters) [3] and Mistral (7B parameters) [4] to generate paraphrases of
NLIs in a zero–shot setting.

We also consider an adaptive version of the 𝒜𝑖 model, where
the adversary is assumed knowledge of the defense mechanism. In
the adaptive setting, the inference models are trained on both the
original data and on data obfuscated by the respective mechanism,
and tested on unseen obfuscated data.We select our best performing

Figure 7: The attack success rate of static and adaptive adver-
sarial InferSent-based models against LLMs and PEGASUS.
The defense method is shown in parentheses.

Table 4: Semantic similarity between original and para-
phrased NLIs, using PEGASUS, Llama3 and Mistral.

Sequence–to–Sequence Model (PEGASUS)
Temperature (T) 1.0 (No DP) 1.5 2.0 3.0 5.0 10.0 15.0
Privacy Budget

(𝜖 = 1⇑𝑇 ) 1.00 0.67 0.50 0.33 0.20 0.10 0.07

Mean Similarity 0.770 0.757 0.730 0.670 0.588 0.537 0.520
Large Language Models (LLMs)

Llama3 (8B) Mistral (7B)
Mean Similarity 0.693 0.743

𝒜𝑖 model, InferSent, and run it both in a static and an adaptive
setting when each defense mechanism is in place. Due to space
limitations, the experimental details and a more rigorous analysis is
deferred to the Appendix B. Here we briefly summarize the results.

We evaluated the performance of the inference models in terms
of privacy, utility of the NLIs, and end–to–end utility. Figure 7
shows the inference performance in the static and adaptive setting
where only a few approaches such as Llama3 and word differential
privacy with Pegasus (𝜖 ≤ 0.33) being the more promising. However,
as shown on Table 4, with such 𝜖 values the semantic similarity
of the obfuscated NLI with the original user intended NLI drops
below 60%. To analyze end to end utility we measure the CLIP
scores for 500 synthetic images generated with the original NLIs
and the most promising obfuscation approaches (see Figure 8). We
find that only a small percentage of the generated images of all
defense models has ≥ 0.26 CLIP score indicating a large loss in
semantics in the output space (see an example in Figure 9 and in
Appendix B.2 a further discussion). Overall, we conclude that while
text paraphrasing can be a promising approach for obfuscating
authorship in both the input and output space of T2I models, the
large loss in utility highlights the need for future work in attribute
obfuscation.

5.6 Leakage of Other Attributes
We have demonstrated that authorship information can be leaked
through both the input (natural language instructions) and the out-
put (generated images) of text–to–image models. However, other
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Figure 8: CDF of CLIP scores for 500 images generated from
original NLIs (Stable Diffusion v2.1), and from paraphrased
NLIs using different obfuscation mechanisms.

attributes may be at risk as well (RQ7). Inspired by the fact that
pathogenic markers are identifiable via text [12, 115] here we study
whether they survive the diffusion process and appear in the gen-
erated images. This should be possible, if such language markers
are embedded in the joint text–image latent space used to guide
the denoising process. Then if the denoising process is accurate,
then it is possible that the markers will affect the respective image.
To study this effect, we leverage an existing dataset with manual
transcriptions of image descriptions from a control group and a
group suffering from Alzheimer’s disease. Alzheimer’s disease is
a type of dementia neurocognitive condition which affects (very
conservatively) tens of millions of vulnerable users worldwide with
its number of cases expected to triple by 2050 to over 150million [1],
and its leakage from technology usage has not been studied before.
Alzheimer’s disease is extremely sensitive with patients vulnera-
ble to manifestations of restlessness and agitation which require
management through costly antipsychotic drugs. Leaking one’s
condition can be manipulated for targeted advertising, spear phish-
ing attacks, bias in the workplace and others and thus constitutes a
major privacy concern.

Dataset. The ADReSS [56] dataset, is a subset of the DementiaBank
dataset [14] that is pre–processed and balanced in terms of age and
gender. Participants are diagnosed with various stages of dementia.
During the experiment, 156 participants are provided with the
same “Cookie Theft Picture” shown in Figure 10 and are asked
to describe it orally. The descriptions are manually transcribed
eliminating the effect of ASR errors. The ADReSS dataset contains
healthy-control (CC) and dementia–labelled (AD) descriptions (see
Figure 11 in Appendix E for example of prompts), with 54 train
and 24 test samples for each class, for a total of 156. We further
preprocess the dataset to remove irrelevant sentences. For example,
after manual analysis, we observed that the descriptions might
contain clarification questions irrelevant to the task of describing
an image. One such example is shown in Figure 10. We manually
remove all such instances from the transcriptions to ensure the
descriptions are more valid and focused.

Experimental Setup. To test whether dementia–related language
markers are encoded in joint text–image representations used in
text–guided diffusion models, we use the same black–box approach
used to study spear authorship leakage. In particular, we first verify
that dementia can be inferred from text and reproduced the text–
only classifier from Balagopalan et al. [12] which achieves SOTA
results in dementia classification from transcribed speech. In our
implementation we preprocess the text data using a pre–trained
BERT tokenizer. Then we split the data into training/test sets with
70 ∶ 30 split. Then we train the model using the pre–trained BERT
model’s parameters, fine–tuning the entire BertForSequenceClassi-
fication model, using AdamW (adam with weight decay) optimizer
and a learning rate = 2𝑒 − 5 scheduled over 20 epochs. The model’s
performance is evaluated on the validation set for each fold. Our
best model achieves 87.5% accuracy which matches the reported
87.5% accuracy from Zhu et al. [115].

This approach though uses BERT embeddings. To study whether
the dementia features are encoded in text–image embeddings which
are used in text–guided image generation with diffusion, we train
𝐴
𝑑
𝑖 dementia inference models on the CLIP embeddings extracted

from the ADReSS cleaned image descriptions. We train the mod-
els for 100 epochs using the Binary Cross Entropy Loss. The 𝐴𝑑

𝑖

model will show whether joint representations encode dementia
language markers. To further show whether the final generated
images guided by such representations can leak dementia, we need
to further study the success of dementia classifiers trained on the
generated images (𝐴𝑑

𝑜 ). The ADReSS dataset only provides the im-
age description (text). We use the descriptions to generate images
with Stable Diffusion v2.1 and Latent Diffusion. Then we extract
CLIP embeddings from the images and train all model architectures
used in 𝐴𝑜 spear authorship inferences. We use a 70 ∶ 30 train-
ing/test split (20% of the training set is used for validation to avoid
overfitting to the test set) because of the small size of the ADReSS
dataset. Lastly, for completeness we also retrain all the 𝐴𝑖𝑜 models
on the concatenated text and image embeddings using the same
training settings as above to derive the 𝐴𝑑

𝑖𝑜 .

Table 5: The accuracy of the best performing (in parenthesis)
Dementia Inference models using images from Stable Diffu-
sion v2.1 and Latent Diffusion.

𝒜𝒅
𝒊 𝒜𝒅

𝒐 𝒜𝒅
𝒊𝒐

Stable Diffusion v2.1 0.833 (NN) 0.75 (SVM) 0.797 (RF)
Latent Diffusion 0.729 (NN) 0.771 (NN)

Discussion. The highest performing models are shown on Table 5.
Our findings demonstrate that pathological markers in textual im-
age descriptions are encoded in joint text–image representations
as shown at the high accuracy (83.3%) of the 𝒜𝑑

𝑖 model in differ-
entiating between dementia and control descriptions from such
representations. Moreover, our𝒜𝑑

𝑜 results (75% accuracy) show that
the images generated with diffusion–based T2I models guided by
such representations can themselves contain indications of the con-
dition which reveals a previously unidentified privacy risk with the
usage of such models by vulnerable populations. Finally, the 𝒜𝑑

𝑖𝑜

accuracy is close to 80% which improves compared to𝒜𝑑
𝑜 but drops
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(a) samurai mecha on
ghost of tsushima box
art

(b) samurai mecha on
ghost of tsushima box
art

(c) The ghost of tsushima
box art has samurai
mecha on it. (Similarity:
0.88)

(d) The samurai mecha is
on the ghost of tsushima
box art. (Similarity: 0.88)

(e) The samurai mecha is
on the ghost of shushima
box art (Similarity: 0.85)

(f) samurai mecha
(Similarity: 0.67)

(g) There were samurai
mehaga on that piece.
(Similarity: 0.59)

(h) There are art objects
for which samurai
iconography can be
associated - samurai me
(Similarity: 0.58)

(i) There are art
reproductions of
Tokugawa box pieces.
benkins on (Similarity:
0.54)

(j) A cover of Ghost of
Tsushima features a
striking fusion of
traditional Japanese
warrior...(Similarity :
0.78)

(k) Mecha samurai
depicted on the cover art
of Ghost of Tsushima
(Similarity: 0.88)

Figure 9: Qualitative comparison of end–to–end utility of mitigation strategies. T2I images, their NLI and text similarity score in
parenthesis with the original NLI. (𝑎) shows the original image included in DiffusionDB; (𝑏) the original NLI is given as input
to Stable Diffusion V2.1 [78]; in (𝑐), (𝑑), (𝑒), (𝑓 ), (𝑔), (ℎ) and (𝑖) the input is the paraphrased NLI with different temperatures
(𝑇 = 1, 1.5, 2, 3, 5, 10 and 15). In ( 𝑗) and (𝑘) we use the paraphrases from Llama3 and Mistral. The full text produced by Llama (j) is
“A cover of Ghost of Tsushima features a striking fusion of traditional Japanese warrior attire and futuristic machinery, in a
unique and captivating image of a samurai–inspired mecha.”

Figure 10: An example of a transcription (bottom) of an AD
patient describing the Cookie Theft picture shown above.

compared to 𝒜𝑑
𝑖 . The latter may be due to vector concatenation

increasing dimensionality, potentially diluting the signal–to–noise
ratio and reducing𝒜𝑑

𝑖𝑜 accuracy relative to𝒜𝑑
𝑖 . This may be due to

vector concatenation increasing dimensionality, which can dilute
the signal-to-noise ratio and degrade performance.

In recent work [59] we further showed that removing patholog-
ical language markers such as discourse tokens (e.g. “um”, “well”
etc.) which were shown in prior studies to be indicative of demen-
tia in speech and language, reduces classification accuracy in all
settings with drastic decreases of more than 10% in the𝒜𝑑

𝑜 and𝒜𝑑
𝑖𝑜

settings.

6 Related Work
Inferences in T2I. Others [85] illustrated how to attribute a gener-
ated image to its source T2I model, while Carlini et al. [16] demon-
strated how to extract training examples from diffusion models.
Also, Qu et al. [72] showed how prone these models are to generate
unsafe content. However, to the best of our knowledge, our work
is the first to demonstrate attribute leakage from NLIs and images.

Authorship Inference. Prior works used stylometric features to
infer authorship such as character n-grams [84, 93], syntax parse
trees [114], words, part–of–speech tags [38], and topic informa-
tion incorporated into CNN models [89]. Other works leverage
transformer–based architectures such as BERT [22] and RoBERTa
[53] which are fine-tuned to automatically capture writing style
features from raw text [23]. Song and Ragunathan [92] leveraged
embeddings to train classifiers to infer authorship in the Book cor-
pus. Others have leveraged LLMs [39, 40] to avoid the need for
training data. Specifically, Huang et al.[39] employ GPT–4 Turbo
with Linguistically Informed Prompting (LIP) to discriminate among
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20 candidate authors in the Blog corpus, but their macro–F1 drops
from ≈ 0.79 with 10 authors to ≈ 0.55 with 20 authors, indicating
diminishing returns as the author set grows. In contrast, at our scale
of 200 authors we get 68.6% accuracy (see Table 6 in Appendix A.
However, none of these approaches have explored authorship leak-
age in T2I models. We uniquely leverage data augmentation and
multi–modal text–image alignment models to achieve SOTA per-
formance with a large number of authors, limited training sample
sizes, and in classifier–dependent and independent ways.

Authorship Obfuscation. Several works exist aiming to obfuscate
attributes such as authorship in text. Some follow a style transfer
approach [58, 87], others used rule–based modifications [74, 107],
leveraging LLMs for paraphrasing [15, 27], obfuscating machine
generated authorship [103], or used differentially private meth-
ods [62]. We have selected several SOTA representative methods to
evaluate the robustness of our attacks including the differentially
private approach from Mattern et al. [62], and SOTA open source
LLMs. A common limitation of those approaches is the negative
effect on utility. Therefore we also included the SOTA Transformer–
based paraphrasing model [112] which achieves good semantic
preservation. Nonetheless, we have shown in our evaluation, any
negative semantic preservation effects in the text input can be com-
pounded in T2I models to further damage the end–to–end utility
and highlighted the impending need for more practical obfuscation
models to defend T2I users’ privacy.

Dementia Classification. The field of dementia classification from
speech [56] has grown significantly, particularly since the 2020
ADReSS challenge. These models can be categorized into three
main types: those using exclusively acoustic data [17, 57], those
solely utilizing speech transcriptions [12, 31, 57, 67], and hybrid
models combining both [33, 61, 110, 116]. More related to our de-
mentia inference classifiers are models trained on transcriptions.
Among those the best performance was achieved by BERT–based
models [12]. More similar to our output and input–output dementia
inference attacks are the models reported in a preliminary pre–print
article by Zhu et al. [115] which combine information from the orig-
inal “Cookie Theft Picture” with transcriptions to achieve 89.6%
accuracy on the ADReSS dataset. Similarly with Zhu et al. [115] we
also utilize text and image information in our 𝐴𝑖𝑜 inference. How-
ever, both our goal and settings are different. Unlike prior work
focused on dementia classification accuracy,our study investigates
the leakage of cognitive decline markers from text into images and
therefore we focus on the ability to learn from joint text–image rep-
resentations.Also in our setting we do not assume prior knowledge
of the image the participants are trying to describe and instead use
representations extracted from generated images through diffusion
models, a more challenging task. Lastly, in our recent work we lever-
age an explainability–based approach to further understand what
language characteristics contribute to such leakage and analyzed
the relationship between information units in input instructions
and generated images [59].
Image Captioning and Recovering Instructions from Images.
Several studies [37, 91, 95] have used CNNs and RNNs to recon-
struct descriptions from images. Closest to our work, Croitoru et
al. [19] tries to recover the embeddings of the NLIs reaching a

performance of 0.69, but without identifying their authors. In con-
trast, our 𝐴𝑜 attack models leverage only the generated images to
identify their NLI authors with 0.77 Top–5 accuracy with only 70
training samples. Other Transformer–based image–text alignment
models such as BLIP [50] and CLIP [73] can be leveraged for image
captioning. Image captioning seems like a reasonable approach
for inferring authorship because if we can accurately reconstruct
NLIs from T2I images we could potentially infer authorship from
captions. In our research we found that this is not possible with
the current SOTA captioning models which yield poor semantic
similarity with the original NLIs (see Appendix C). Instead our 𝐴𝑜

and 𝒜𝑖𝑜 models classify authors from transformer–based image
embeddings, and they achieve high Top–5 accuracy due to the good
alignment between NLIs and T2I images in that embedding space.

7 Conclusion
We have revealed the threat of attribute leakage in text–guided
diffusion–based image generation models. Unique to our work we
model a hierarchical adversary with different access levels on the in-
put, output or multi–modal input–output access to such models. We
show that by leveraging data augmentation and models which learn
joint representations of text and images to extract multi–modal
embeddings adversaries can achieve state of the art results in spear
authorship inference even with limited training data. Our infer-
ence models are rigorously evaluated and demonstrated robustness
against different training datasets and diffusion models, number
of authors, and strong mitigation strategies, and generalization to
open world settings. We have also shown that text–image encoders
used to guide diffusion models encode pathological speech markers
which allows an adversary to infer the presence of dementia from
natural language instructions and generated images, highlighting a
previously unidentified threat for a vulnerable understudied popu-
lation whose numbers are rapidly increasing. We hope our work
raises awareness on the privacy hazards on the usage of diffusion–
based image generationmodels, and inspire further work on privacy
leakages in such models and mitigation mechanisms to warrant
users’ privacy while achieving acceptable model utility.

Ethical Considerations
Datasets.We use publicly available datasets, namely the Demen-
tiaBank dataset released under the ADReSS Challenge and the Dif-
fusionDB dataset published by Stability AI. DiffusionDB is released
under a CC0 1.0 license that allows uses for any purpose [7] and data
were collected with provisions for both licencing and participant
privacy [104]. The ADReSS dataset has been obtained upon request
through our membership to the Dementia Bank. As members we
are committed to the Dementia Bank’s Code of Ethics [97].

Responsible ResearchConduct.We recognize the broader ethical
implications of deploying attribute inference methods in sensitive
domains. Our study aims to contribute to a better understanding
of these risks and to inform the development of generative models
and safeguards that respect user privacy.
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A Breakdown of Top–5 Accuracy
Table 6 presents Top–1 to Top–5 accuracy results of the inference
models across three setups ⋃︀𝐴⋃︀ = 100, 150, 200 with a fixed training
sample size of 70. Accuracy generally improves from Top–1 to Top–
5 across all inference models (𝒜𝑖 , 𝒜𝑜 and 𝒜𝑖𝑜 ), indicating model
performance consistency as more candidate labels are allowed. For
example, in the ⋃︀𝐴⋃︀ = 200 case, 𝒜𝑖𝑜 achieves 75.30% Top–1 accu-
racy, reaching 85.84% at Top–5, highlighting its robustness across
ranks. Also, in the case of ⋃︀𝐴⋃︀ = 150, the Top–1 accuracy for 𝒜𝑖 is
68.91%, while 𝒜𝑜 drops to 60.05%. This shows a clear performance
gap, indicating that the input space alone provides more precise
author identification than using only the output space. In contrast,
our multi–modal inference model (𝒜𝑖𝑜 performs significantly bet-
ter, achieving 77.74% Top–1 accuracy in the same scenario. This
demonstrates the benefit of leveraging both input and output space.

Table 6: Top 1–to–5 accuracy scores.
Experiment Setup : ⋃︀𝒟𝑎𝑢𝑥 ⋃︀ = 70 with ⋃︀𝒜⋃︀ = 100

Top 1 Top 2 Top 3 Top 4 Top 5
𝒜𝑖 68.91% 75.14% 77.84% 79.91% 81.61%
𝒜𝑜 60.05% 68.54% 73.24% 76.77% 79.44%
𝒜𝑖𝑜 77.74% 82.47% 85.07% 86.77% 88.04%

Experiment Setup : ⋃︀𝒟𝑎𝑢𝑥 ⋃︀ = 70 with ⋃︀𝒜⋃︀ = 150
𝒜𝑖 68.56% 74.05% 77.05% 78.72% 80.25%
𝒜𝑜 54.99% 64.16% 68.78% 71.87% 74.58%
𝒜𝑖𝑜 76.58% 81.74% 84.18% 85.74% 87.14%

Experiment Setup : ⋃︀𝒟𝑎𝑢𝑥 ⋃︀ = 70 with ⋃︀𝒜⋃︀ = 200
𝒜𝑖 68.62% 73.29% 75.75% 77.42% 79.07%
𝒜𝑜 52.54% 61.01% 65.86% 69.10% 71.90%
𝒜𝑖𝑜 75.30% 80.35% 83.23% 84.97% 85.84%

B Robustness Against Obfuscation
Our evaluation (Section 5) shows that adversaries can construct
input (text), output (image) and multi–modal input-output (text–
image) attacks to infer authorship from NLIs and their T2I images.
Here we explore the robustness of our attacks against SOTA miti-
gation mechanisms. These results are summarized in Section 5.5.

B.1 Setup and Mitigation Approaches
Authorship Obfuscators. Authorship inference have been an
issue traditionally studied in the written language domain. In this
study we showed that leakage can happen from both the input
(text) and the output (image) domain of text–to–image models.
However, it is reasonable to assume that if obfuscation is successful
on the input domain, then the generated images from the obfuscated
instructions will also be harder to distinguish between authors.

Prior works have proposed text obfuscation strategies that can
be generally classified into either learning anonymous textual rep-
resentations [105] or developing text transformation mechanisms
that can obfuscate authorship and simultaneously retain the seman-
tics or meaning of the original input [102]. The latter category is
more appropriate in our case since it is easier to integrate in a T2I
scenario.

Given the above, to evaluate the most promising defenses, we
chose a SOTA text paraphrasing model (PEGASUS [112]) as our
baseline obfuscator. Such models tend to achieve good diversity in
text generation while achieving high preservation of the original
semantics of the text. Nonetheless, they are not designed for ob-
fuscation tasks. To mitigate this, we leverage the observations by
Mattern et al. [62] who show that by varying the temperature in the
word sampling stage of language models can be used to inject noise,
offering a privacy–utility control knob. In our implementation, we
apply the pre–trained paraphrase model PEGASUS, to generate
paraphrases of maximum length 𝑛 = 60 while using different tem-
peratures 𝑇 = 1, 1.5, 2, 3, 5, 10 and 15. The temperature value (𝑇 )
has an inverse relationship with the privacy budget value (𝜖), i.e.
𝜖 = 1⇑𝑇 . Generally, the lower the value of epsilon, the higher the
level of privacy protection our defense mechanism can provide, but
this commonly lowers the utility of the data.

Moreover, given the stupendous success large language models
(LLMs) exhibit in various tasks, we consider some of the most per-
forming open source large language models (LLMs) to construct
paraphrases of the original NLI [90]. In our work, we employ and
evaluate the Llama3 and Mistral models. We chose these because
they are free and open–source models. Both of them have shown
robust performance on downstream tasks [9, 113]. Specifically, a
single request was made for each unique NLI, which consisted
of a fixed instruction text prepended to the NLI. The prefix we
used was “Paraphrase the following instruction while maintaining
semantics and hiding authorship. Return only the paraphrased out-
put, nothing else”. A single instruction like ‘hide authorship’ can
significantly reduce authorship-verification accuracy—by up to 40
FF1 points—while preserving meaning, as shown with Llama 3 and
GPT–4 on benchmark corpora [88]. This brief phrase aligns with
prior adversarial stylometry work [88] and proves effective and
precise for prompting LLM–driven obfuscation.
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Static and Adaptive Adversary. To be more rigorous in our evalu-
ation of the defense mechanisms, we need to consider an adversary
that is in knowledge of the defense mechanisms and has the ability
to adopt to it. Thus we consider both a static and an adaptive ver-
sion of the 𝒜𝑖 adversary. In a static or non–adaptive setting, the
adversarial models are trained on the source data (similar to the
models presented this far) and tested on obfuscated data. In the
adaptive setting, the adversarial models are trained on both the
original and the obfuscated data by the respective mechanism and
tested on unseen obfuscated data. We select our best performing𝒜𝑖

model, InferSent, and run it both in a static and an adaptive setting
when each defense mechanism is in place.

B.2 Results
Privacy. The privacy results of the static and adaptive adversary
against the mitigation strategies are summarized in Figure 7 where
we show the adversary’s performance under a limited sample set-
ting with 10 >= ⋃︀𝐷𝛼

𝑎𝑢𝑥 ⋃︀ <= 80. Most mitigation strategies seem
promising against a static adversary which stays below a 0.6 Top–5
accuracy with 80 samples. In particular, when leveraging 𝐷𝛼

𝑎𝑢𝑥 = 70
training samples the Top–5 accuracy drops to 0.5 and lower (see
Figure 7) for both LLMs and for Pegasus with 𝜖 <= 0.33. Llama3 of-
fers better protection than Mistral as Top–5 attack accuracy against
Llama3 drops to 0.34 compared to 0.50 against Mistral.

Under the more realistic adaptive adversary, we observe that both
Mistral and Llama3 fail to maintain similar levels of privacy protec-
tion. Mistral allows the attacker to reach 0.70 Top–5 accuracy with
𝐷
𝛼
𝑎𝑢𝑥 = 70 training samples. Llama3 offers better protection com-

pared to Mistral with the attack success rate dropping to 0.63 Top–5
accuracy but much worse than its own performance against a static
adversary. We argue that this happens because Mistral preserves
higher NLI semantics (as we show in the utility analysis). Pegasus
with low privacy protection 𝜖 = 1, 0.66, 0.50 also fails to offer good
guarantees against the adaptive adversary (Top–5 accuracy > 0.64
on 70 training samples and Top–5 accuracy > 0.66 on 80 training
samples). As we increase the privacy protection for Pegasus (lower
𝜖) the adversary success drops below 0.6 but with increased 𝜖 there
is also a bigger penalty on utility as we will analyze later on.

Overall, Llama3 and Pegasus (𝜖 <= 0.33) are the most promising
in providing some privacy protection.

Utility of NLIs. To examine the defense’ ability to preserve utility
we first look at the input space (text) and how the each technique
affects the semantics of the original NLIs. To measure this, we
compute the cosine similarity of the original NLIs with paraphrased
ones using the all–MPNet–Base–v2 sentence transformers [5] model.
The results for all potential mitigation strategies are summarized
in Table 4.

We observe that as expected, the more we increase the privacy
protection for Pegasus (lower 𝜖) the lower the similarity (worse
semantics) is between the original NLI and the paraphrased one.
Mistral achieves the higher similarity but as we have seen the
privacy protection offered is limited.

Overall the most promising approach is Pegasus with 𝜖 = 0.33.
This achieves the best privacy–utility trade–off with Top–5 accu-
racy for the adaptive adversary below 0.6 and semantic similarity

at 0.67. Llama3 is close with slightly better average NLI semantic
similarity but worse protection.

End–to–End Utility. To better understand how the input semantic
similarity offered by promising defense mechanisms translates to
the end–to–end utility of T2I models we first perform a quantitative
analysis comparing the inputs with the resulting outputs and then
provide a qualitative example.

To study whether the generated images align with the inten-
tions of the original NLIs, we compare the original (not obfuscated)
NLI with the output of the T2I model given the obfuscated NLI.
This simulates the scenario where the user provides their original
NLI, and then a privacy layer obfuscates the NLI before making
it available to the T2I model and more broadly accessible to the
adversary. We envision this layer to be part of a user’s device (mo-
bile phone, browser, or voice assistant). To compare the text input
with the image output we use CLIP score computed as described in
Section 5.3.

For our analysis we chose the two most promising mitigation
strategies Llama3 and Pegasus with 𝜖 = 0.33. As a baseline for
comparison we also add PEGASUS without DP (𝜖 = 1.0) which
is one of the state of the art paraphrasing models and therefore
while not optimised for privacy it yields good semantics as it is also
shown on Table 4. Lastly we also add the original CLIP score of the
target model which can serve as a baseline of end–to–end utility
without any defense. For the experiment, and for each case, we
randomly select 10 paraphrased NLIs of 10 authors. The authors are
randomly sampled from the 100 authors dataset used in the Input–
Output Attack (𝒜𝑖𝑜 ) (see Section 5.1). For each NLI we generate
5 sample images with Stable Diffusion v2.1. This resulted in 500
new images per model in total. Next, we compute the CLIP scores
between the original NLIs and the synthetic images generated from
the paraphrased NLIs. Figure 8 presents the CDF of the CLIP scores
with different methods. We observe that only a small percentage of
the generated images of all defense models has ≥ 0.26 CLIP score,
indicating a large loss in semantics in the output space. Hence, none
of the mitigation techniques provide a sufficient trade–off between
the users’ privacy and semantics in both input and output space.

Lastly we provide an example of how an input NLI is paraphrased
by different defense mechanisms and the resulting generated image
from the paraphrased NLI in Figure 9 (see Section 5.5). We observe
that when 𝜖 = 0.33 (Figure 9f) important concepts from the original
image are missing (e.g., samurai’s head is omitted).

Overall. Our analysis showed that text paraphrasing can be a
promising approach to obfuscate authorship. Techniques like LLMs
(Llama3) and word differential privacy with Pegasus can offer some
protection but the loss in semantics might not be acceptable and
thus more needs to be done to adequately and realistically protect
against the T2I authorship inference adversary. The advantage of
the latter category is that it allows users to leverage the model’s
temperature as a privacy control knob to customize the degree of
obfuscation. For LLMs, improvements using prompt–tuning (e.g.
prefix–tuning [47], or p–tuning [52]) or addressing obfuscation
separately in the input (text) and output (image) space might be
avenues for future work but more precise characterization for these
is needed.
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C Caption models for inferring authorship
from T2I–generated images.

To explore whether simply applying SOTA caption models on T2I
images to recover the original NLI and potentially authorship infor-
mation we performed an experiment with three state–of–the–art
caption models, namely BLIP[50], BLIP2 [49] and LlaVA [51]. We
use these models to caption text from 10, 000 images randomly
sampled from DiffusionDB dataset. We then compare the semantics
of the original NLIs and the captions using the all–MPNet-Base-
v2 model. The results are summarize on Table 7. BLIP2 offers the
best similarity score with 0.41 (see Table 7). However, the semantic
results are quite low for all caption models, which indicates that
directly inferring authorship from captions is challenging.

Table 7: Embeddings similarity between the original NLI and
the generated image’s caption produced with BLIP, BLIP–2
and LlaVA.

Pretrained Image Captioning Models
BLIP BLIP-2 LlaVa

Mean Similarity 0.35 0.41 0.35

D Measurement Study
To get a clearer picture of the pervasiveness and nature of anonymity
in such settings, we conducted a supporting study on the official Sta-
ble Diffusion [24], Midjourney [64], DALL–E [21] and DALL–E 2 [6]
subreddits. Using the free version of the publicly available scraping
tool [94] from Apify [8] we could to extract up to 1000 active mem-
bers of a subreddit. Inspired by Marcondes et al. [60] we leverage
a multi-faceted methodology–encompassing pattern recognition,
comparison against known name databases (e.g., NLTK names cor-
pus [98]), structural name–like analysis, fuzzy string matching
and an additional layer of lexical checks using the WordNet data-
base [66]–we differentiate aliases from real names. For example,
this approach flagged user handles containing recognisable nouns
like ‘shark’ or ‘container’ as more likely to be aliases. To assess the
performance of this methodology, we first tested it on the Stable
Diffusion subreddit. Of the 653 unique usernames scraped, 648were
classified as aliases and only 5 as real names. Then, an independent
rater performed a manual analysis to these usernames, resulting in
619/29/3/2/95.5/99.7 for TP/FP/TN/FN/Precision/Recall. We follow
the same procedure for the rest of the aforementioned subreddits.
Table 8 shows our findings, highlighting only fewmisclassifications,
reinforcing the idea that most online users intentionally use aliases
to protect themselves from being personally identified.

Table 8: The number of unique active members that use
aliases or real names as usernames in Stable Diffusion, Mid-
journey, DALL·E and DALL·E 2 subreddits.
Unique Active Members (First 1,000 results per subreddit)

Usernames Subreddits
Stable

Diffusion Midjourney DALL·E DALL·E 2

Aliases 648 738 267 235
Real Names 5 2 1 1

Figure 11: An example of transcriptions/prompts for the
Cookie-Theft Image for the two groups.

E Dementia Dataset
The ADReSS dataset [56] consists of speech transcripts of descrip-
tions of the Cookie Theft Picture (Figure 10 in Section 5.6). These
transcripts are registered for two user groups- Dementia Patients
(AD) and Healthy Control Group (CC). Examples of transcriptions
of the two groups are shown in Figure 11.
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