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Abstract
Mix networks allow communication with strong anonymity guar-

antees. In theory, mix networks can scale indefinitely, as additional

nodes can be added to the network to support new users. However,

one factor that limits scalability in current designs is the need for

all clients to know both the identity and the key of every available

mix node.

In circuit-based onion routing, a mechanism that does not re-

quire this knowledge to be globally available exists, but it relies

on the interactivity of the circuit construction to keep its security

guarantees. We therefore set out to investigate whether we can

transfer such a mechanism to the context of message-based mix

networks.

In this paper, we propose Aimless Onions, the first mix format

that enables clients to create onions in amix network without know-

ing which nodes are available. Rather than downloading topology

information, clients only need to acquire constant-size public pa-

rameters. Thus, Aimless Onions overcomes an important scalability

limitation in mix networks, while retaining the same security guar-

antees as the state of the art. Using Aimless Onions, clients sending

25 messages per hour save 74% of bandwidth compared to using

Spinx packets and topology information download, even at today’s

network sizes.

1 Introduction
Mix networks have become a widely used technique for practical

anonymous communication networks (ACNs), as demonstrated by

Loopix [22] or the deployed Nym system.
1
An architectural advan-

tage of mix networks over other anonymity designs is that they

can theoretically scale to support arbitrarily large user bases. As

new users join the network, additional mix nodes can be deployed

so that the load on all nodes remains constant. Good scalability not

only improves usability, but also privacy, as a large user base allows

clients to hide among a larger number of peers, and trust is spread

across a larger number of nodes.

In practice, the scalability of mix networks is limited by the path

selection process (among other factors). During path selection, it is

important that the mix nodes for each path are chosen randomly

from all available nodes, otherwise an adversary can fingerprint

users based on their choices [12]. Current solutions require clients
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to download a complete list of all mix nodes along with their public

keys. This is a suitable solution for today’s ACNs, but even the

current Tor network topology information is 632 KiB in size (com-

pressed) and updated hourly. The size of the topology information

grows linearly with the number of nodes, and if ACNs reach main-

stream adoption, it is not unreasonable to expect it to be an order

of magnitude larger than today.
2
At this point, alternative path

selection methods will have to be in place.

To avoid downloading topology information in Tor, Komlo et al.

proposeWalking Onions [19]. In Tor, a circuit is first constructed

and the authenticity of each relay on it is verified before it is used

for sensitive data. With Walking Onions, the selection of the relays

is also delegated to the (potentially malicious) relays, but verified by

the client to be random and not maliciously biased. This provides

clients with a factor of 10–16 in bandwidth savings.

In mix networks however, onions are prepared and sent by the

client in one go, without establishing a circuit first. Such networks

are advantageous in use cases with low interactivity, such as email

or microblogging, where little data would be sent over the lifespan

of a circuit. However, the Walking Onions method cannot be used

here, as the onion already contains all sensitive data when it is

created, and the sender relinquishes control once they submit it to

the network.

Therefore, we investigate how theWalking Onions method could

be transferred to a mix network design. To do so, we design Aimless
Onions, an approach that avoids downloading topology information

in mix networks and does not require interactivity during path

selection. The challenge in Aimless Onions is to find a way for a

client to properly encrypt and prepare an onion for a path of mix

nodes whose addresses and keys it does not know, without giving

malicious mix nodes the chance to influence the path selection.

At a high level, Aimless Onions defines a large namespace of

virtual names, e.g., all 32-bit integers, as valid onion targets. A set

of authorities, similar to those in Tor, maps each virtual name to a

real mix node. The number of names a mix node receives is used

to weight it, e.g., depending on its available bandwidth. Clients

use identity-based encryption (IBE) [5] to encrypt onions directly to

arbitrary virtual names in the namespace. This way, clients do not

need to know which real nodes exist or what their public keys are.

The authorities collectively generate the IBE secret key material,

tolerating malicious minorities. The key material is distributed to

the corresponding mix nodes so that they can decrypt incoming

onions.

Aimless Onions makes the same trust assumptions as related

work [19], with an anytrust model along the path and an honest

majority among the authorities. The client only needs to download

a single long-lived key per authority, which is independent of the

2
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number of existing mix nodes and has a small size of around 3 KiB

(compared to the 632 KiB of Tor consensus). Thus, Aimless Onions

solves the limitations of scalability in mix networks that are caused

by the path selection process.

Through empirical evaluation, we further find that Aimless

Onions saves bandwidth for clients even at today’s anonymity

network sizes for traditional mix network use cases such as email.

While individual Aimless Onions are larger than their Sphinx coun-

terparts by a factor of up to 11, the bandwidth saved by not down-

loading the network topology makes up for it. For example, given

a Tor-like network with 9 authorities and a path length of 3, clients

sending fewer than 105 onions per hour can save bandwidth.

In this paper we make the following contributions:

• We propose Aimless Onions, the first mix format that en-

ables the construction of onions without needing network

topology information.

• We provide security proofs for Aimless Onions based on

Kuhn et al.’s formal model.

• We build an open-source implementation prototype of Aim-

less Onions.

• We evaluate the Aimless Onions prototype and compare it

against state-of-the-art mix formats under realistic assump-

tions.

This paper is structured as follows: In Section 2 we introduce the

necessary background and notation. In Section 3we look at previous

work related to Aimless Onions. In Section 4 we model the network

and the adversary. In Section 5 we give a high-level description

of our design and design choices. In Section 6 we describe our

format in more detail. In Section 7 we describe how onions are

formed at the client and processed at the mix nodes. In Section 8 we

sketch a security proof of our format. In Section 9 we evaluate our

format using our implementation. In Section 10 we discuss possible

extensions to our format. Finally, in Section 11 we conclude our

findings.

2 Background
In this paper, we work with bilinear groups. We denote the groups

as G1, G2, G𝑇 , and the mapping as 𝑒 : G1 × G2 → G𝑇 . We assume

that the 𝑙-wBDHI assumption [4] holds, which intuitively states

that you cannot compute the mapping 𝑒 (𝑔, ℎ) (𝛼𝑙 ) when given 𝑔, ℎ

and 𝑔 (𝛼
𝑖 )
for 𝑖 from 1 to 2𝑙 , but 𝑖 ≠ 𝑙 .

We use 𝜅 as security parameter. Breaking security guarantees

should require work that scales exponentially in 𝜅.

When working with bitstrings 𝑎, 𝑏 ∈ {0, 1}∗, we write 𝑎 | | 𝑏 to

mean the concatenation of 𝑎 followed by 𝑏. Further, given 𝑥,𝑦 ∈ N,
we write 𝑎 [𝑥..𝑦 ] to denote the substring of 𝑎 spanning from 𝑥 to 𝑦

(exclusively).

2.1 Mix networks
Mix networks are a method of anonymous communication intro-

duced by Chaum [9]. Mix networks guarantee that messages cannot

be traced from sender to recipient by routing them through a series

of mix nodes. Senders apply multiple layers of encryption to each

message, which are successively removed by the mix nodes to en-

sure that messages cannot be linked by their content. This concept

is known as onion encryption. Each mix node further shuffles the

incoming messages before forwarding them to ensure that they

cannot be linked by their order. A mix network operates under the

anytrust assumption, meaning that a single mix node on the path

must be honest for the security guarantees to hold.

Clients in a mix network must know the addresses and keys

of available mix nodes. We use the term consensus to refer to the

document that contains this information for the clients. The exact

method to generate or disseminate a consensus is an implemen-

tation detail of the mix network, but we assume that each client

joining the network needs to download the consensus and regular

updates for it.

2.2 Pseudorandom generators
We make use of pseudorandom generators (PRNG). We define

PRNGs based on Katz and Lindell’s definition [17]:

Definition 1 (PRNG [17]). A PRNG 𝜌 is a polynomial time algo-
rithm such that on input 𝑠 ∈ {0, 1}𝜅 , a string of length 𝑙 (𝜅) (with 𝑙
being a polynomial) is output. We require that

(1) 𝑙 (𝜅) > 𝜅 for all 𝜅.
(2) For all polynomial time distinguishers 𝐷 , |Pr[𝐷 (𝑟 ) = 1] −

Pr[𝐷 (𝐺 (𝑠)) = 1] | is negligible when 𝑟 ←R {0, 1}𝑙 (𝜅 ) and
𝑠 ←R {0, 1}𝜅 .

Intuitively, a PRNG takes a short input seed and outputs random

looking bits. We usually use the PRNG to XOR its output onto

another bitstring, in which case we write 𝑎 ⊕ 𝜌 (...) to mean 𝑎 ⊕
𝜌 (...) [0.. |𝑎 | ] .

2.3 IBE and HIBE
Identity-Based Encryption (IBE) describes encryption schemes in

which the key of a user can be derived directly from their identity.

Definition 2 (IBE [5]). An IBE scheme consists of four algorithms:
(1) Setup : 1

𝜅 → P ×K∗ returns the system parameters and the
master secret key. The system parameters are assumed to be
an implicit argument to the following algorithms.

(2) Extract : K∗ × I → K takes the master key and an identity
and extracts the private key for the given identity.

(3) Encrypt : I ×M → C takes an identity and a message and
returns the message encrypted for the given identity.

(4) Decrypt : I×C×K →M takes a ciphertext and an identity
together with the corresponding private key and decrypts the
given ciphertext.

For an IBE to be correct, it is required that

∀𝑖 ∈ I, (𝑝, 𝑘) ← Setup,𝑚 ∈ M :

Decrypt(𝑖, Encrypt(𝑖,𝑚), Extract(𝑘, 𝑖)) =𝑚.
In a hierarchical IBE (HIBE), the identities form a hierarchy,

and Extract can extract an identity’s private key given either the

master key, or the private key of the identity’s parent.

2.4 Secret sharing
A (𝑘, 𝑎) secret sharing scheme is a method for splitting a datum 𝑑

(the secret) into 𝑎 shares such that 𝑘 shares are sufficient to recover

the datum 𝑑 , but 𝑘 − 1 shares or fewer do not reveal information

about 𝑑 [25].
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Shamir proposed a method of secret sharing that works by con-

structing a polynomial of degree 𝑘 with the secret as a free coef-

ficient, and then evaluating it at 𝑎 different points to produce the

shares. Knowledge of 𝑘 point-value pairs is enough to reconstruct

the polynomial and thus the secret, but 𝑘 − 1 pairs are not enough

to fully specify the polynomial.

We formally define a secret sharing scheme as follows:

Definition 3 (Secret Sharing). A (𝑘, 𝑎) secret sharing scheme
consists of two algorithms:

(1) Split : D → S𝑎 takes a secret and produces 𝑎 shares.
(2) Combine : S𝑘 → D takes 𝑘 shares and produces the original

secret.

We define the security of secret sharing according to Boneh and

Shoup’s notion of security, which is a formalization of Shamir’s

original guarantee:

Definition 4 (Secret Sharing Security [6]). A secret sharing
scheme is secure, if for all parameters 0 < 𝑘 ≤ 𝑎, for every 𝜎, 𝜎 ′ ∈ D
and every subset 𝐽 of {1, . . . , 𝑎} of size 𝑘 − 1, the distributions {Σ𝑖 }𝑖∈ 𝐽
and {Σ′𝑖 }𝑖∈ 𝐽 are identical (where Σ = Split(𝜎) and Σ′ = Split(𝜎 ′)).

3 Related work
Aimless Onions’s goal is to allow clients to participate in a message-

based mix network without needing to know topology information.

In this section, we discuss related work with similar goals.

Komlo et al. propose Walking Onions for Tor.3 Like Aimless

Onions, Walking Onions allows clients to participate without down-

loading the network consensus first. In Walking Onions, paths are

successively built hop-by-hop, where the next hop is chosen ran-

domly by the current one. However, its security inherently requires

the client to verify the path before sending sensitive data, which is

not possible in our message-based setting.

The Threshold Pivot Scheme [15] is a mix network that combines

mix nodes into groups that share key material. Clients only need

to know which groups exist (rather than knowing individual mix

nodes) and they generate onions that can be processed by any one

node of the group. While this significantly reduces the amount of

topology information the client needs to know, it does so at the cost

of anonymity, as a single malicious node taints the whole group.

Finally, there is a line of research which, like Aimless Onions,

proposes to use identity-based encryption in onion routing [7, 8, 16].

They focus however on reducing the number of round trips needed

for Tor’s circuit creation. Clients still need to know the full network

consensus.

4 System and threat model
We propose Aimless Onions as a generic mix format that can be

used as the basis for new mix networks. Therefore, we leave the

type of mixing, the amount of cover traffic, and the exact parameter

choices as out of scope for this work. We do however assume a

certain basic structure of the network.

We assume that the network consists of three groups of partici-

pants: Clients which use the service, mix nodes which shuffle and

forward messages, and authorities which keep track of the available

3
Tor Proposal 323, https://spec.torproject.org/proposals/323-walking-onions-full.html

mix nodes in the system. We assume that the authorities have a

consistent view of the network, but we do not require a specific

method of synchronization.
4
This mirrors a simplified version of

Tor’s [13] model.

We assume that clients are the ones with the most limited re-

sources like computing power and network bandwidth. As such, we

require our format to be efficient at the client’s side. We assume that

clients want to send few but large messages, e.g., to communicate

via emails.

We design our system in a “service model” [20], where the final

recipient is not part of the anonymity network but merely a host

on the internet. Instead, it is the task of the last mix node to relay

the message according to the application protocol to the intended

recipient. This corresponds to the function of exit relays in Tor, and

matches how Sphinx and anonymous remailers like Mixminion [10]

were designed to be used.

In order to deal with new mix nodes joining the network and

old mix nodes going offline, we assume that the network can run

in epochs. During an epoch, the set of active mix nodes does not

change – new mix nodes will be included in the next epoch, while

mix nodes that go offline will be removed. In practice, mix nodes

may go offline unexpectedly during an epoch, which will lead to

delivery failures for onions routed over those mix nodes. A similar

approach is used by Tor, which produces a new consensus once per

hour.

Instead of fixed mix cascades, we assume a free-route mix topol-

ogy, in which each mix node can connect to every other mix node,

and each mix node can appear at any position in the mixing path.

We assume that a certain fraction of mix nodes are malicious,

meaning they cooperate with the adversary and share their secret

keys. Additionally, we assume that there are malicious authorities,

but that themajority of them are honest, again mirroring the threat

model that Tor assumes. We also assume that the adversary can

monitor the network traffic of all clients and mix nodes, malicious

or not. Given those capabilities, the adversary tries to link messages

to both their sender and their recipient.

5 Design
Our fundamental idea is to allow for clients to freely choose a

sequence of mix nodes as the path for their onion, without them

needing to download a consensus document first. Not knowing the

identities nor keys of the available mix nodes, we employ a name-

based assignment in which the client can simply draw random

names from a circular namespace. Those names then relate to mix

nodes that are online.

As keying material needs to be available in order to build the

onion, but the client only draws random names, we allow the client

to extract the necessary keying material from just the names. For

this purpose, we leverage identity-based encryption (IBE) such that

the client can locally derive all needed keys for the mix nodes. We

design the circular namespace such that its names correspond to

the IBE identities.

4
In particular, we consider the exact method for agreeing on a network state to be out

of scope. An obvious approach would be to use a majority vote as is done in Tor.
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Now, IBE schemes assume the existence of a trusted third party

which acts as the private key generator. This key generator is re-

sponsible for generating the correct secret keys for each identity

using the master secret. In our system, we entrust the authorities

with this task: The authorities need to keep track of the available

mix nodes anyway, and mix nodes need to inform the authorities

about their state. Therefore, having the key generation done by the

authorities is a sensible choice.

With the authorities being in control of the master secret how-

ever, they also gain the ability to generate the secret keys for any

mix node of their choosing. A malicious authority could therefore

undermine the security of the whole system by revealing the secret

keys of honest mix nodes. To prevent this attack, we ensure that

a single malicious authority cannot generate enough secret key

material to overrule the honest authorities. We do so by combining

the IBE encryption with (𝑘, 𝑎) secret sharing, such that at least 𝑘

authorities need to cooperate in order to reveal secret information.

With 𝑘 > 𝑎/2, we retain the trust model in which an honest majority

of authorities is enough to keep the system secure.

With the authorities responsible for generating the keys, we also

need to ensure that a single authority cannot disrupt the network

by not providing the mix nodes with their keys. By choosing the

threshold lower than the total number of authorities (𝑘 < 𝑎), our

design can tolerate authorities that are unavailable.

Further, with the design so far, the clients still operate on an

abstract namespace, whose elements are not related to available mix

nodes yet. Aimless Onions therefore requires a mapping 𝜄 : I → R
between the IBE identities I and the set of mix nodes R to be

constructed. We again delegate this task to the authorities, as they

have the list of available mix nodes. The mapping 𝜄 therefore relates

the client’s randomly drawn names to actual mix nodes.

Since the IBE identities I and the set of mix nodes R are indepen-

dent of each other, there will not be a direct one-to-one mapping –

and since the client chooses identities randomly without knowing

which ones are actually in use, the authorities must ensure that

all identities map to a mix node. As a result, a given mix node can

have multiple identities assigned to it.

Additionally, since clients draw the mix node names randomly

without additional information, they cannot weight their decision

by node properties such as the available bandwidth. To retain this

ability, the namespace is chosen to be very large, i.e. |I | ≫ |R|.
The authorities can then weight the mix nodes by assigning them

a larger or smaller number of identities relative to the other mix

nodes.

As a result of this technique, the identity space can get very

large (e.g. |I | = 2
32
). This would require the authorities to generate

just as many keys for the mix nodes, which would take a lot of

computation time. To avoid generating every single key, Aimless

Onions uses an IBE which supports hierarchical key derivation (a

HIBE). Now the authorities can “combine” the keys for mix nodes

by giving them a key higher up in the hierarchy, and the mix nodes

can then locally derive the remaining keys. As keys in the hierarchy

can only be combined if they share a common ancestor, we optimize

the identity-mapping 𝜄 to group keys for a single mix node under a

common parent as much as possible.

Finally, the authorities can create disjunct subsets of the identity

space to group mix nodes by properties such as their ability to

handle exit traffic or their jurisdiction. By having the prefix bits

of the identity represent those properties, clients can ensure that

a mix node with the right properties handles the onion, while the

mix node’s keys can still be combined using the HIBE technique.

6 Format
In this section we describe the format of our onions. In general, we

follow the same principles as in existing formats like Sphinx [11]

by using layered encryption to provide unlinkability, and MACs

to prevent tagging attacks. The main differences in our format are

that we combine HIBE and secret sharing to encrypt each layer, and

that we include the payload in the MAC to avoid Sphinx’s security

pitfalls regarding tagged payloads [20]. As a result, we exclude

reply blocks (SURBs) from our construction, and leave “aimless”

repliable onions [21] open for future research.

As we ensure a constant fixed packet size, we impose a limit on

the path length: A path may not contain more than 𝑉 hops. This

upper limit ensures that we can bound the size of a packet.

6.1 Packet structure
We consider a packet to consist of two parts, a header𝐻 and the pay-

load Π. The header contains the information necessary to process a

packet at a mix node, whereas the payload contains the (encrypted)

payload data.

The structure of our format is shown in Figure 1: All crypto-

graphic operations depend on a randomly drawn master key. This
master key is provided to the mix nodes at the beginning of the

header.

The remaining part of the header then contains the per-hop

information, consisting of the ID of the next hop, a MAC to ensure

hop-by-hop integrity and the header for the next mix node. In

addition to those required fields, a fixed amount of additional data

can be included here, for example to provide delays for Poisson

mixing [22].

Finally, the packet contains an onion-encrypted version of the

payload. As we design our format in the service model, this payload

is revealed to the last mix node on the path, and as such, contains the

address of the recipient and the message. We note that our format

does not provide end-to-end confidentiality or integrity between

the sender and the recipient, but only between the sender and the

last mix node. To provide full end-to-end security, the message must

be processed by e.g. PGP or S/MIME before being onion-wrapped.

6.2 Packet and field sizes
For a clearer protocol description, we denote the sizes of the differ-

ent header components as given in Table 1.

With this, we get a per-hop header size of

|𝐻hop | = 𝑎 · |Σ| + |𝜇 | + |𝑟 |,
where 𝑎 is the number of authorities. The total size of the header is

then given as

|𝐻 | =𝑉 · |𝐻hop |.

7 Protocol
We will specify our design, next. We define our name hierarchy on

top of binary numbers: A number 𝑥0 . . . 𝑥 𝑗−1 ∈ {0, 1} 𝑗 is the parent
296



Aimless Onions: Mixing without Topology Information Proceedings on Privacy Enhancing Technologies 2025(4)

Σ1 Σ... Σ𝑎

MAC next hop (data) 𝐻 ′

Π

{0, 1}𝜅 →R
master key 𝜎1 𝜎... 𝜎𝑎

secret share

HIBE encrypt

use to key

𝐻

encrypt

Π′

encrypt

Header Payload

Figure 1: General layout of an aimless onion.

Size of . . . Symbol

. . . a secret share |𝜎 |

. . . an encrypted share |Σ|

. . . the MAC |𝜇 |

. . . the next hop |𝑟 |
Table 1: Symbols for the sizes of the header elements.

Æ è 𝑥0 𝑥1 𝑥2 𝑥3𝔅(𝑟 )

Figure 2: Split of the identity name into flag bits (thick rect-
angles) and weighting bits (dashed rectangles).

of 𝑥0 . . . 𝑥 𝑗−1𝑥 𝑗 ∈ {0, 1} 𝑗+1

. Further, we assume that for a given mix

node 𝑟 ∈ R,𝑤 (𝑟 ) gives the mix node’s desired weight.

7.1 Bucketization
To allow a client to choose a mix node with desired properties (such

as allowing exit traffic), we split the name into two parts: We denote

the first 𝑓 bits of the name as flag bits and use them to represent a

node’s properties. The remaining 𝑗 bits are freely assigned to the

nodes by the authorities. We call this part the weighting bits. A
client who wants to ensure that the selected node has the desired

properties can thus fix the flag bits and only choose the weighting

bits randomly.

A name is therefore represented by an element of {0, 1} 𝑓 +𝑗 ,
where 𝑓 are the number of flag bits, and 𝑗 are the number of weight-

ing bits. We call all names sharing the same first 𝑓 bits a bucket, and
we call 𝔅 : R → {0, 1} 𝑓 the bucketization function which assigns

each relay its prefix. A visualization of this structure is shown in

Figure 2.

7.2 Identity allocation
The authorities first split all mix nodes into their respective buckets

with the help of𝔅. Within each bucket, the authorities then allocate

the identities to the mix nodes. In the following, we detail the

process for a single bucket.

For each bucket 𝐵, we denote the subset of I representing this

bucket as I𝐵 . That is, each 𝑛 ∈ I𝐵 has the same prefix of 𝑓 bits.

Using that, we define how large each mix node’s identity allocation

should be, proportional to its weight𝑤 (𝑟 ) in its bucket:

𝑖 (𝑟 ) = |I𝐵 | ·𝑤 (𝑟 ) ·
( ∑︁
𝑟 ′∈I𝐵

𝑤 (𝑟 ′)
)−1

.

Now, when choosing which 𝑖 (𝑟 ) identities to allocate to a given

mix node, we want to optimize for the number of needed HIBE

keys, as we can only use the hierarchical key derivation for a set

of 2
𝑥
keys sharing a common prefix. As the flag bits for a bucket

are always the same, our allocation algorithm only concerns itself

with the weighting bits within a bucket.

We implement an allocation system similar to the buddy alloca-

tor [18] to assign names from I𝐵 to nodes:

First, the authorities allocate the full bucket I𝐵 to the largest
5

mix node, corresponding to the case in which all identities of a mix

node share no common prefix in weighting bits. If no mix node 𝑟

with 𝑖 (𝑟 ) ≥ |I𝐵 | exists, they partition the current bucket in halves,

one half I𝐵
0
where all identities have a weighting bits prefix of 0

and one half I𝐵
1
where the prefix is 1. They subsequently check if

the size of those subsets matches the largest mix node.

If the allocationmatches exactly, that is 𝑖 (𝑟 ) = |I𝐵
0
|, they allocate

I𝐵
0
to 𝑟 and are done with 𝑟 , so they can continue with I𝐵

1
and the

next mix node according to size.

If the mix node should be allocated even more identities, that is

𝑖 (𝑟 ) > |I𝐵
0
|, they also allocate I𝐵

0
to 𝑟 , but keep 𝑟 with the reduced

size 𝑖 (𝑟 ) ← 𝑖 (𝑟 ) − |I𝐵
0
| in the list of mix nodes that need identities

allocated.

If the size of the halves is still too large, that is 𝑖 (𝑟 ) < |I𝐵
0
|, they

again split the subsets in halves by splitting them according to the

next bit in the common prefix, giving the subsets I𝐵
00
, I𝐵

01
, I𝐵

10
and

I𝐵
11
.

In all cases, this allocation-and-splitting process is repeated until

all needed allocations have been satisfied, or the subsets cannot

be further subdivided. At the end, any unallocated subsets are

distributed to the mix nodes with largest 𝑖 (𝑟 ), even if that gives

them more identities than desired. A pseudocode of this algorithm

is shown in Algorithm 1.

With this algorithm we prevent that a mix node has many iden-

tities that do not share a common prefix, as that would prevent

the HIBE mechanism to combine the keys. Instead, the algorithm

ensures that a mix node is allocated large amounts contiguous

identities which share a common prefix.

In other words, this algorithm treats the identities as leaves of a

binary tree of depth 𝑓 + 𝑗 and tries to allocate 𝑖 (𝑟 ) identities to 𝑟 in
a way that those identities make up a large subtree. This is similar

to load balancing using client IP wildcard patterns [26], and the

resulting allocation corresponds to the wildcard rules.

The authorities then repeat this process for the remaining buck-

ets.

5
Largest by bandwidth, breaking ties by sorting their IP addresses lexicographically.
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𝑅 ← R; /* set of mix nodes */

𝐶 ← [𝜀]; /* current shared prefixes */

𝑠 ← |I𝐵 |; /* current subset size */

while 𝐶 ≠ ∅ do
𝑟 ←𝑚𝑎𝑥 (𝑅) by 𝑖 (𝑟 );
if 𝑖 (𝑟 ) < 𝑠 then

if 𝑠 > 1 then
𝑠 ← 𝑠

2
;

𝐶 ← [c...0, c...1|𝑐 ∈ 𝐶];
else

𝑖 (𝑟 ) ← 𝑖 (𝑟 ) − 1;

remove and allocate first of 𝐶 to 𝑟 ;

else
𝑖 (𝑟 ) ← 𝑖 (𝑟 ) − 𝑠;
remove and allocate first of 𝐶 to 𝑟 ;

Algorithm 1: Identity-Mix-Node allocation mechanism.

7.3 Primitives
For our construction, we need the following primitives:

• A hash function ℎ : {M, H, P, F} × {0, 1}𝜅 → {0, 1}𝜅 to derive

subordinate keys from the master key. The symbols M, H, P, F
are used to differentiate keys for the MAC (M), the header
encryption (H), the payload encryption (P) and the padding

computation (F).
• Amessage authentication code 𝜇 : {0, 1}𝜅×{0, 1}∗ → {0, 1}𝜅 ,
which we model as a function that takes a key and input bits

and outputs a tag.

• A keyed pseudorandom generator 𝜌 : {0, 1}𝜅 → {0, 1}∗ as
defined in Definition 1.

7.4 Packet creation
To create a packet, the client first picks 𝜈 random identities 𝑟𝑖 from

I. These represent the path of the onion through the network.

The client now computes the onion with the following steps:

(1) The client has the recipient address Δ and the message𝑀 .

(2) The client draws 𝜈 random keys 𝑘𝑖 ←R {0, 1}𝜅 . These repre-
sent the master keys for each hop.

(3) The client computes the filler strings Φ𝑖 like in Sphinx [11]:

Φ0 = 𝜀

For 𝑖 = 1 to 𝜈 :

Φ𝑖 =

(
Φ𝑖−1 | | 0 |𝐻hop

|
)
⊕ 𝜌 (ℎ (H, 𝑘𝑖−1))

(4) The client fills the initial header with random bits:

𝐻𝜈 ←R {0, 1} |𝐻 |−𝑎 · |Σ |

(5) In reverse order of the path, the client now starts wrapping

the onion by calculating for 𝑖 = 𝜈 to 𝑖 = 1:

𝜎𝑖, 𝑗 = Split(𝑘𝑖 )
Σ𝑖, 𝑗 = Encrypt(𝑟𝑖 , 𝜎𝑖, 𝑗 , pk𝑗 )
Π𝜈 = (Δ, 𝑀) ⊕ 𝜌 (ℎ(P, 𝑘𝜈 ))
Π𝑖 = Π𝑖+1 ⊕ 𝜌 (ℎ(P, 𝑘𝑖 ))
𝜂𝑖 = (𝑟𝑖+1 | | 𝐻𝑖+1) [0.. |𝐻 |−𝑎 |Σ | ]
𝐻 𝑖 = Σ𝑖,1 | | Σ𝑖,... | | Σ𝑖,𝑎
| | ( (𝜇 (ℎ (M, 𝑘𝑖 ) , 𝜂𝑖 | | Π𝑖 ) | | 𝜂𝑖 ) ⊕ 𝜌 (ℎ (H, 𝑘𝑖 )))

(6) The client can now send (𝑟1, 𝐻 1,Π1) to the first node in the

path.

7.5 Packet processing at mix nodes
When a mix node 𝑟 receives a packet (𝑟, 𝐻,Π), it proceeds as fol-
lows:

(1) It splits off the 𝑎 encrypted secret shares Σ 𝑗 from the start

of 𝐻 : 𝜎1, . . . , 𝜎𝑎, 𝐻
′ = 𝐻

(2) It decrypts each share with the secret key from the 𝑗 th au-

thority: 𝜎 𝑗 = Decrypt(𝑟, Σ 𝑗 , sk𝑗 )
(3) It recombines the secret shares into the onion master secret:

𝑘 = Combine(𝜎1, . . . , 𝜎𝑎). If recombination fails, the onion is

discarded.

(4) It pads and decrypts the header part: 𝜂 =

(
𝐻 ′ | | 0 |𝐻hop

|
)
⊕

𝜌 (ℎ (H, 𝑘))
(5) Now it can parse the MAC, the next address and the next

header: 𝑡, 𝑟+1, 𝐻+1 = 𝜂

(6) If 𝑡 ≠ 𝜇 (ℎ (M, 𝑘) , 𝑟+1 | | 𝐻+1 | | Π) the mix node discards the

packet, as it has been tampered with.

(7) Otherwise, the mix node forwards (𝑟+1, 𝐻+1,Π ⊕ 𝜌 (ℎ(P, 𝑘)))
to the next node 𝑟+1.

7.6 Node address retrieval
So far, we have addressed mix nodes by their identity number 𝑟 ∈ I.
The identity needs to be translated to a proper network address

during operation, so a client can send an onion to the first mix node,

and mix nodes can forward onions to the following mix node along

the path. For this, we describe two methods:

Clients and small mix nodes can simply ask an authority directly

to resolve the single identity-address mapping, akin to doing a “DNS

request” before sending the packet. Large mix nodes can download

the whole mapping in advance, which avoids frequent round-trips

to resolve node identities but incurs a large bandwidth cost. Such

mix nodes can also act as “mirrors” which answer requests for small

clients, allowing this lookup service to be distributed, fault-tolerant

and scalable.

While such requests disclose information to a potentially mali-

cious mirror, we note that within our threat model, this information

is already know to the global active adversary: They can observe

the link from client to first hop and thus learn which first hop a

client has chosen. Further, in all mix network designs, clients are

only anonymous within those who share a common prefix before a

corrupted node, so learning the mapping between client and first

node does not yield any advantage.
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7.7 Key distribution
We consider the exact approach with which keys are distributed

(e.g., through an HTTP API hosted by the authorities) to be out-of-

scope, and dependent on the mix network that Aimless Onions is

used in. However, we sketch a design of a possible implementation

that fulfills our requirements:

Each authority has a long-lived key pair that it can use to sign

data. The list of authorities and corresponding key pairs is embed-

ded in the client software, like done in Tor. Using this key pair, the

authorities can generate their master public key each epoch, and

make a signed version of it available under their HTTP endpoint.

Those keys can also be collected and mirrored by third parties, as

the signature can be used to verify their authenticity.

The mix nodes also have the list of authorities and authority keys

embedded in the software. They use this information to establish a

secure and authenticated channel (e.g., with a TLS certificate) to the

mix node to advertise themselves for the next epoch. The authori-

ties gather all mix node advertisements and perform the identity

allocation. Afterwards, the mix nodes can re-use the authenticated

channel and retrieve their secret keys.

8 Security
In this section, we sketch our security argument and give an intu-

ition behind it. The full formal proof can be found in Section A.

Our argument considers the cryptographic security of a single

Aimless Onion, meaning that it cannot be tracked by its content.

Attacks such as timing analysis, denial of service or equivocation

attacks are not part of the formal model, and as such are not cov-

ered by our argument. However, we discuss their implications in

Section 10.

Our argument is based on the formal model of onion routing

by Kuhn et al. [20]. We adapt their model to include the notion

of key-generating authorities, and allow for a minority of those

authorities to be semi-honest.

Their first property, Tail Indistinguishability (TI), ensures that

a malicious receiver cannot distinguish two onions that share the

same path after an honest mix node. The property is modelled using

a game between a challenger and an adversary. The challenger

receives a message and a path from the adversary, and uses them

to build an onion. Additionally, it builds a second onion that has a

different prefix to the path. The challenger then randomly selects

one of those onions, and gives its processed form to the adversary.

The adversary must decide which onion has been processed.

We prove that Aimless Onions fulfills TI by making a hybrid

argument: In our hybrid, the parts of the header that contain in-

formation about the path before the honest mix node are replaced

by randomly chosen bits. This hybrid is indistinguishable from the

original game, as there, the honest mix node encrypts this part of

the header.We then look at the remaining pieces of information that

the onion depends on and see that none depend on the challenger’s

choice of onion.

Kuhn et al.’s second property, Layer Unlinkability (LU), ensures

that the adversary cannot recognize an onion after it has passed

through an honest mix node. This property is also modelled as a

game between a challenger and an adversary. The adversary again

provides the challenger with a message and a path, of which the

challenger creates an onion. The challenger also creates a stand-in

onion that shares only the prefix of the path, but has a random

destination and message. The adversary is given the processed form

of the first onion, as well as a random choice between the first onion

or the stand-in. Again, the adversary must decide which of the two

onions it has received.

We prove that Aimless Onions fulfills this property via a hybrid

argument. We successively replace values in the onion generation

procedure with randomness, such that the final onion consists only

of random values. The adversary however cannot notice those

replacements as that would imply breaking the HIBE encryption,

or alternatively breaking the secret sharing.

9 Evaluation
We evaluate our format in four aspects: First, we evaluate how

accurately our identity-node mapping 𝜄 represents the mix nodes’

desired weight, based on the size |I | of the namespace. Then we

evaluate how the choice of |I | affects the computation time for

the HIBE operations. Afterwards, we fix |I | and do an in-depth

evaluation of the computational effort required by the clients to

form onions, the mix nodes to process onions and the authorities

to generate keys. Finally, we evaluate the bandwidth overhead that

our format induces for each packet, and compare it to the overhead

of downloading the list of mix nodes at the start of each epoch.

9.1 Weight representation accuracy
We first investigate how accurately our scheme can represent the

different weights of mix nodes, depending on the size of the identity

space |I |. We expect that a larger identity space will allow for a

more accurate representation of the weights, but will also cause the

HIBE to be less efficient. Therefore, we want to find the smallest

identity space that gives an acceptable representation accuracy.

To evaluate the representation accuracy, we use Tor’s consensus

to get an example of a real-life bandwidth distribution, and we

assign each relay a weight proportional to its bandwidth. We then

run our allocation mechanism (Algorithm 1) for increasing identity

space sizes |I | = 2
𝑑
, 𝑑 ∈ {1, 2, ...}. For each size, we compute

the mean absolute percentage error (MAPE) between the resulting

weights and the initial weights. A MAPE of 10% for instance means

that on average, each relay’s assigned weight differed from the

initial weight by 10%.

In addition to our allocation algorithm, we also run a modi-

fied version that can “skip” the final allocations and leave parts of

the identity space unallocated. While this is not useful in practice

(onions sent to those identities would be lost), it helps to better

understand the scaling behavior of the allocation algorithm by pro-

viding a lower bound: This modified version has at most a MAPE

of 100%, as the worst case for a relay is to stay unallocated.

From our results (Figure 3, top left) we can see that our expecta-

tions are correct: The baseline starts at a high MAPE, meaning that

there is a large average deviation from allocated weight to desired

weight of a relay. The deviation starts to decrease steeply at around

|I | = 2
10
and falls below 1% at |I | = 2

27
.

For the actual allocation algorithm, we see a second effect: It

cannot leave identities unallocated, so with a small |I |, a few mix

nodes will have vastly overrepresented weights. This leads to a
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Figure 3: Mean absolute percentage error (MAPE) between allocated weight and actual weight for different identity space sizes
|I | = 2

𝑥 . The “must allocate” points represent Algorithm 1, while the baseline represents a version of the algorithm that can
leave identities unallocated. Top-left represents the variant without buckets, top-right the variant with fine-grained buckets,
and bottom-left the variant with coarse buckets.

very high MAPE (9666% at |I | = 2
1
). As |I | grows, so does the

number of mix nodes with overallocations, leading first to a decrease
in representation accuracy. However, once |I | is large enough to

accurately represent the desired weights, the overall deviation also

approaches zero in the same way the baseline does.

We run two more variants of this experiment to see the effect of

the bucketization on the accuracy: As each bucket contains fewer

mix nodes, we expect that fewer bits are required to achieve a good

representation accuracy. The bits that we save in weighting bits

can then be used as flag bits.

In the first variant, we use flags inspired by Tor: Fast, Guard,
Stable and Exit, as well as the country (represented as an 8 bit

integer) of the node. This gives 12 flag bits for a total of 4096 buckets.

In this variant, we can see that the MAPE falls below 10% at 21 bits

(Figure 3, top right). However, we can also see that only 368 buckets

are non-empty, meaning that a lot of the identity space is wasted

on empty buckets.

In the second variant, we coarsen the buckets: We now only

distinguish exit and non-exit nodes, and we consider the continent

instead of the country. This requires only 4 flag bits and leads to

12 (out of 14) non-empty buckets. In this variant, the MAPE falls

below 10% at 30 bits (Figure 3, bottom left).

We repeat all three variants with a Nym-like network with 240

nodes, and find that a smaller identity space is sufficient. For the

base variant (i.e. all nodes in a single bucket), we get a MAPE of

below 10% at |I | = 2
16
. For the first variant (fine bucketization),

we get a MAPE of below 10% at |I | = 2
13
, but only 46 buckets are

non-empty. For the second variant (coarse bucketization), we get a

MAPE of below 10% at |I | = 2
15
.

9.2 Rust implementation
As the basis for our performance benchmarks, we implemented

a prototype of Aimless Onions in Rust. We chose Rust because

it is a fast, memory-safe language with a rich ecosystem of avail-

able cryptographic libraries. In our prototype, we aim for 𝜅 = 128

bits of security, in line with the current NIST recommendation for

symmetric key lengths [3].

We implement the HIBE of Boneh et al. [4], as it leads to small

ciphertexts. Further, to avoid embedding our secret shares in G𝑇 ,

we use the HIBE as hybrid encryption. This gives us a ciphertext in

G1 × G2 × {0, 1}𝑙 , where 𝑙 is the size of the plaintext.
For the underlying curve, we use BLS12-381 as suggested by

the IETF draft for pairing-friendly curves.
6
While the security of

BLS12-381 is estimated to be only 126 bits [2], it is still adopted in

practice due to its faster performance compared to other curves.

For the remaining primitives, we chose the sha3, aes, ctr and
hmac crates to provide implementations for our symmetric prim-

itives, as well as bls12_381_plus for the BLS12-381 curve and

shamirsecretsharing for the implementation of Shamir’s secret

sharing.
7

9.3 HIBE operations
All benchmarks in this section were run on a server with a 2.5 GHz

CPU and 2 GiB of RAM.

In this experiment we want to evaluate how the size of the

identity space I affects the performance of the HIBE operations.

Together with the accuracy evaluation from Section 9.1, we use this

to judge the right size for I.
For this experiment, we use our Rust implementation to measure

the time it takes to create an onion (corresponding to the HIBE

encryption), to unwrap an onion (decryption), to derive a relay’s key

(hierarchical key derivation) and to generate a key by the authority

(key generation with the master key). We fix all parameters except

for the size of the identity space, which we vary from |I | = 2
1
to

|I | = 2
64
.

We expect the onion creation time to scale linearly in the depth

of the hierarchy space, as each additional level increases the HIBE

key size by one group element. Similarly, the key derivation for a

6
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/

7
All crates can be found at https://crates.io/crates/$name
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Format 𝑎 Avg. Time [ms]

Sphinx — 0.19 (±0.00)

Aimless

Onions

1 105.42 (±0.00)

3 316.32 (±0.03)

5 527.19 (±0.09)

7 737.92 (±0.06)

9 948.70 (±0.05)

Table 2: Benchmark results of the onion creation procedure
for Sphinx and Aimless Onions with a varying amount of
authorities. The path length is fixed to 3 and the payload size
is fixed to 1024 bytes. The number of authorities is denoted
as 𝑎. Reported value is the mean ± standard error.

relay and the key generation for the authority each do more work

for larger keys. On the other hand, we expect the onion decryption

process to be independent of |I |, as the derived HIBE key is only

used to key a symmetric cipher.

Our results (shown in Figure 4) confirm our expectations. For

all operations dependent on the key size, we see a clear increase in

computation time. Doubling the depth leads to roughly a doubling

in expected computation time.

With those results, and the results from Section 9.1, we choose to

set |I | = 2
32
for the following benchmarks. This gives a goodweight

representation and makes the identities fit into 32-bit integers.

9.4 Computation benchmarks
All benchmarks in this section were run on a ThinkPad E14 Gen 4

with an AMD Ryzen 5 5625U and 16 GB of memory.

We first benchmark the client’s needed time to form an onion.

For this experiment, we evaluate in three dimensions most likely

to vary in different deployments: In one experiment, we vary the

payload size, in a second one the path length and in a third one

the number of authorities. In all cases, we compare against the

implementation of Sphinx from the Nym project.
8

We expect the payload size to have a negligible impact on the

performance, as the complete payload is processed using a fast

symmetric cipher. Further, we expect both the path length and the

authority count to have a linear impact on the onion creation time,

as each of those dimensions adds more expensive HIBE operations.

Those HIBE operations form the dominating expensive part of the

processing time.

Our results confirm our expectations. We see a linear increase

both when increasing the number of authorities (Table 2), as well

as when we increase the path length (Figure 5). The payload size

had no impact on the onion creation time. In total, creating Aimless

Onions onions is around 3 orders of magnitude slower than creating

Sphinx onions, but still takes less than 1 second. For the message-

based system we target, this does not cause a bottle neck, as users

send messages infrequently: For example, Rosenfeld et al. state that

the average WhatsApp user only sends 39 messages per day [23].

In the second benchmark, we evaluate the performance impact

of Aimless Onions on mix nodes that unwrap onions. This consists

8
https://github.com/nymtech/sphinx

Format 𝑎 Avg. Time [ms]

Sphinx — 0.10 (±0.00)

Aimless

Onions

1 2.74 (±0.01)

3 8.29 (±0.01)

5 13.65 (±0.01)

7 19.06 (±0.00)

9 24.52 (±0.00)

Table 3: Benchmark of the onion processing procedure at a
mix node with varying number of authorities. The payload
size is fixed to 1024 bytes. The number of authorities is de-
noted as 𝑎. Reported value is the mean ± standard error.

of two parts: First, the mix node has to derive the correct key for

the chosen identity. Then, the mix node has to actually decrypt and

unwrap the onion. In both cases, we expect a linear dependency of

the needed time and the authority count, as the processes need to

be done once per existing authority.

For key derivation with |I | = 2
32
, we measure a time of 158 ms

per key per authority (single threaded). For 9 authorities, this results

in a time of 1473 ms per key. This process has to be done once for

each identity, but the key can be derived in advance and re-used

for all onions sent to the same identity. In the case of |I | = 2
20
, this

time is reduced to 72 ms (per key per authority), leading to 648 ms

for 9 authorities.

For onion unwrapping, our results (Table 3) also confirm a linear

relationship between unwrapping time and authority count. We

can see that Aimless Onions processing is around 450 times slower

than Sphinx, but can still complete in less than 30 milliseconds per

onion even for a setting with 9 authorities, giving a throughput of

around 33 onions per second (single threaded). These numbers are

again independent of the payload size, as the payload is processed

with a symmetric cipher, which takes only negligible time. As a

result, we do not consider the throughput of onion decryption to

be the limiting factor in our design: Assuming 39 messages per

day per user [23] and pre-derived keys, each mix node has enough

throughput to handle the onions of over 70000 users per thread.

Finally, we determine how long an authority needs to generate

all required keys for the mix nodes. We do so to assess whether the

authority can keep up with the key generation for all nodes. For

that, we have taken the 2023-11-08 14:00 Tor consensus containing

8584 relays and their advertised bandwidth as sensible real-world

data. We then allocate those relays according to our algorithm, and

measure the time it takes to generate the secret keys for all relays.

Our experiment shows that using a single core, the authority

needs about 16 minutes to generate all secret keys. This process

can be sped up linearly, such that it takes only 16/𝑛 minutes using 𝑛

CPU cores. With epoch lengths of one hour, as used for example in

Tor, the authorities in Aimless Onions are fast enough to generate

all necessary keys during an epoch before the next one starts.

9.5 Bandwidth baseline
Before we evaluate the bandwidth usage of Aimless Onions, we

first establish a baseline to compare against. To do so, we look at
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Figure 4: Computation time of the various steps for different identity space sizes |I | = 2
𝑑 . We omit the standard error as it is

too small to be seen in the plots.
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Figure 5: Benchmark of the onion creation procedure for a
varying path length, fixed authority count of 3, fixed payload
size of 1024 bytes and a hierarchy size of |I | = 2

32.

Tor
9
and Nym as two existing and deployed anonymous commu-

nication networks, and we measure the bandwidth they use for

bootstrapping the network topology.

For Tor, the list of relays is published in the consensus document.

We can obtain recent consensuses from the CollecTor service
10
to

find their size at around 3 MiB. However, the consensus can be

compressed during transmission, so this does not reflect the real

bandwidth usage.

To find out the actual amount of transmitted data, we use the Tor

client and its diagnostic output. We start a fresh instance with no

cached network information, wait for the bootstrapping to complete,

and then look at the reported values in the client’s log. In addition,

we capture the bootstrapping process using tcpdump to verify the

numbers that the Tor client measures.

With this technique, we can see that the Tor client downloads

about 632 KiB for the consensus, 14 KiB for the authorities’ certifi-

cates, and 11 MiB for the relays’ microdescriptors. These values are

averaged over 16 bootstrapping runs, and the tcpdump capture ver-

ifies those numbers. As we care about the consensus only, we will

use the 632 KiB as a baseline for Tor, representing approximately

7400 relays.

In addition to a full consensus, Tor allows for clients to down-

load consensus diffs. These diffs only contain changes between an

old consensus and the current one, which reduces the amount of

data transmitted for clients that have access to an old consensus

9
https://torproject.org

10
https://metrics.torproject.org/collector.html

document. We include a diff-based baseline to represent clients that

stay connected to the network for longer.

To estimate the size of a consensus diff, we use Arti
11
to connect

to a Tor relay, and download diffs for the last ten consensuses. From

this, we see diff sizes ranging from 88 KiB (for the newest consensus

diff) to 713 KiB (for the oldest consensus diff). We therefore use

415 KiB as the baseline for the diff size, which corresponds to the

average over the last ten diffs.

For Nym,we examine their client to find the API endpoints where

the network topology is downloaded from.
12,13

Those documents

are 197 KiB and 49 KiB in size. As the Nym client does not use

compression, we use the resulting sum of 246 KiB as the baseline

for Nym, representing 240 mix nodes and 134 gateways. Again, we

use tcpdump to verify those numbers.
14

9.6 Bandwidth overhead
In our second experiment, we want to evaluate the overhead in

onion size and therefore bandwidth usage when switching from

Sphinx to Aimless Onions. In particular, we want to find the break-

even point at which the Sphinx setup (loading a large initial con-

sensus and sending small onions) becomes more efficient than our

approach (loading a small consensus and sending large onions).

As Aimless Onions embeds more key material into the header,

and relies on cryptographic primitives with large ciphertext expan-

sion, we expect the onions to be larger than Sphinx onions. However,

this overhead depends only on the path length and authority count,

as the payload itself is encrypted using symmetric encryption and

therefore does not contribute to the additional overhead of Aimless

Onions compared to Sphinx.

We expect to see a linear dependency between the Aimless

Onions onion size and the number of authorities, as each authority

leads to an additional key share that needs to be embedded at each

hop. Similarly, we expect to see a linear dependency between the

onion size and the path length, as each hop leads to a fixed extra

amount of information that is added to the header. In any case,

we expect Aimless Onions to produce bigger packets than Sphinx,

but this overhead will be offset by the fact that no list of mix node

identities and keys (a “consensus”) must be downloaded.

To get the values, we use the Sphinx and Aimless Onions im-

plementations to output the actual onion size for various system

11
https://crates.io/crates/arti-client

12
https://validator.nymtech.net/api/v1/mixnodes/active

13
https://validator.nymtech.net/api/v1/gateways

14
The client actually downloads the documents twice, but we only count them once.
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parameters. In three different experiments, we first vary the au-

thority count while keeping the path length and payload size fixed,

then we vary the path length and keep the other parameters fixed,

and finally we vary the payload size.

From our first experiment we see that an increasing number of

authorities increases the Aimless Onions size linearly, while not

affecting the size of Sphinx onions. The second experiment shows

that the size of both Sphinx and Aimless Onions onions increases

linearly with the path length. However, the per-hop increase is

larger with Aimless Onions than with Sphinx. Finally, in the last

experiment we confirm that both Sphinx and Aimless Onions scale

linearly with the payload size with the same factor of 1.

While individually, Sphinx onions are always smaller than Aim-

less Onions, we see that we can save data when we consider the

total bandwidth that a client spends, including the initial consensus

download. This is shown in Figure 6 for different combinations of

parameters. For Tor-like parameters with 9 authorities and a path

length of 3, we see that clients sending less than 105 onions per

hour benefit from Aimless Onions. When using consensus diffs, this

number drops to 69 onions per hour. For Nym, the break-even point

is at 27 onions, as Nym is a smaller network with less topology data,

and uses a path length of 5. With the average instant messaging

user sending around 39 messages per day [23], Aimless Onions is

beneficial for the vast majority of messaging users.

10 Discussion
So far, we have outlined the base version of Aimless Onions. In this

section, we want to outline some shortcomings of this design and

how they can be improved.

Mix node double choosing. Tor ensures that a path does not con-

tain the same relay (or two relays run by the same entity) twice.

With Aimless Onions, we cannot guarantee this: even if the client

picks different identities, it does not know whether those map to

the same mix node.

For networks with manymix nodes, the chance of this happening

is small. For a Tor-sized network with around 8600 nodes, Tor’s

bandwidth distribution and a path length of 3, the chance to double-

pick a node is 0.10%. For a Nym-sized network with around 240

equally-probable nodes and a path length of 5, this chance increases

to 4.13%. By using a stratified topology and separating the layers

into different buckets, this possibility can be eliminated completely.

Balancing mix node and authority work. In our design, we de-

scribe a setup in which we interpret identities as binary numbers.

This allows the authorities to make optimal use of the hierarchical

derivation feature of the HIBE structure to combine many keys,

but it leads to a tall hierarchy and a potentially large amount of

keys that a mix node has to derive. By choosing a different basis

for the identity space, we can balance this work better between

the authorities and the relays. For example, if we use quaternary

numbers as the basis for our identity space, we can keep the total

number of identities |I | the same while halving the depth of the

hierarchy. This increases the work for the authorities to generate

the keys, but decreases the work for the relays to locally derive

their keys.

Faulty and malicious authorities. In our design, authorities are

responsible for generating the keys that mix nodes use for their

operation. As a result, a faulty authority may not provide those

keys in time. Due to the threshold secret sharing, our design can

tolerate up to 𝑎 − 𝑘 faulty authorities while staying operational.

Further, malicious authorities may partition clients by providing

them with different public keys, thereby making the secret shares

they encrypt recognizable. The key distribution method we describe

in Section 7.7 cannot prevent such an attack. To solve this problem,

a stronger agreement protocol (like Tor’s voting mechanism) needs

to be implemented between the authorities, and all keys must be

signed by each authority. The design of such a Byzantine agreement

protocol is out of scope for this paper.

Supporting replies. Assuming that all onions should look the

same, hop-by-hop integrity is at odds with replies, as a sender can-

not precompute the MACs for the reply onion [21]. Our design

of Aimless Onions offers strong hop-by-hop integrity at the cost

of not supporting anonymous replies via single-use-reply-blocks

(SURBs). However, we can relax the hop-by-hop integrity guar-

antees and support SURBs in a Sphinx-style setup. We detail the

changes necessary for that in Section B.

Denial of service attacks. While all anonymous communication

networks are susceptible to denial of service (DoS) attacks to some

extent, the potential for DoS attacks in Aimless Onions is exacer-

bated because the relays spend much longer to unwrap a packet

than the sender needs to wrap it. We expect honest nodes to discard

duplicate packets, and so the scope of such an attack is limited, as

clients still have to work to build fresh packets. Like related work,

we consider other protective measures to be out of scope for this

paper, but point to Tor’s proof-of-work or Nym’s credential system

as possible solutions.

Threshold HIBE. The requirements we identify in our design

make the use of a threshold HIBE (T-HIBE) [14] seem natural. How-

ever, we note that the size of the ciphertext in T-HIBE scales with

the depth of the hierarchy. As we use tall hierarchies, the T-HIBE

overhead would be very large. We therefore use a traditional HIBE

with a ciphertext whose size is independent of the hierarchy depth,

and combine it with threshold secret sharing to obtain functionality

similar to that of a T-HIBE.

11 Conclusion
Mix networks offer great scalability, as additional nodes can be

added to support new clients. However, current designs require

clients to maintain a consistent, up-to-date view of the global net-

work topology in order to prevent epistemic attacks [12]. In practice,

the distribution of this topology information, which grows linearly

with the number of nodes in the network, limits scalability.

In this paper, we propose a novel mix packet format, Aimless
Onions, which relieves clients of the need to download topology

information without compromising anonymity guarantees. Instead,

each client only needs to download constant-size public parameters,

independently of the number of mix nodes.

We provide formal proof of Aimless Onions’s security guaran-

tees and evaluate its performance with realistic parameters from

303



Proceedings on Privacy Enhancing Technologies 2025(4) Daniel Schadt, Christoph Coijanovic, and Thorsten Strufe

0 20 40 60 80 100 120 140
Number of onions

0

256

512

768

To
ta

l d
at

a 
[K

iB
] Aimless (1)

Aimless (5)
Aimless (9)

Sphinx
Sphinx (diff)

0 20 40 60 80 100 120 140
Number of onions

0
256
512
768

1024
1280

To
ta

l d
at

a 
[K

iB
] Aimless (1)

Aimless (5)
Aimless (9)
Sphinx

Figure 6: Total amount of data transmitted for sending 𝑛 onions (including the consensus download). The Aimless parameters
gives the number of authorities. The intersection between the lines is the break-even point. The left graph represents a Tor-like
scenario with Tor’s consensus size and 3 hops, while the right side uses a Nym-like scenario with Nym’s consensus size and 5
hops. The left graph additionally contains a scenario in which the size of a Tor consensus diff is used.

the Tor and Nym networks. We find that individual packets in Aim-

less Onions are larger than packets in currently used formats, but

in scenarios in which users send only a few messages, Aimless

Onions saves bandwidth compared to downloading a consensus up

front even at today’s network sizes. We also find that our protocol

requires more computational effort than existing protocols, but is

still feasible to use in practice.

While we acknowledge the downsides of Aimless Onions in a

deployed system, we see it as a step towards building mix networks

that can scale to support mainstream adoption.
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A Security
In this section, we prove the security of Aimless Onions. We do so

in two steps: First, we focus on our use of HIBE and secret sharing

to show that the onion key cannot be recovered by the adversary.

This step justifies our trust assumption, as we show that corrupting

authorities gives the adversary no advantage, as long as no majority

of authorities has been corrupted. We can therefore use the anytrust
model, which is commonly used in mix networks.

Then, we consider Aimless Onions’s security in Kuhn et al.’s

formal model of onion routing [20] by looking at the two properties

they define: Tail-Indistinguishability (TI) and Layer-Unlinkability
(LU).
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A.1 HIBE and secret sharing
Before we go on to prove the security of our packet format as a

whole, we first consider our combination of HIBE and secret sharing

in our threat model to show that the adversary has no advantage if

less than the majority of authorities are corrupted.

In general it cannot be assumed that the composition of multi-

ple cryptographic primitives maintains the security of the overall

construction. To simplify our security proof we first show that our

combination of HIBE and secret sharing is secure via a custom

security notion SH-IND.

We define our notion based on an indistinguishability game

which asks the adversary to differentiate between two messages.

Those messages are secret shared and then HIBE encrypted, just

like in Aimless Onions. We then show that we can reduce this new

property to the security properties of HIBE and secret sharing.

Definition 5 (SH-IND). We define the (𝑘, 𝑎) shared-HIBE-indis-
tinguishability (SH-IND) game as follows:

(1) The challenger picks a bit 𝑏 ←R {0, 1} randomly.
(2) The challenger generates 𝑎 HIBE instances using Setup.
(3) The adversary submits an identity 𝐼 and two messages𝑚0 and

𝑚1 of same length to the challenger.
(4) The challenger splits𝑚𝑏 into 𝑎 secret shares 𝜎1, . . . , 𝜎𝑎 .
(5) The challenger encrypts each share 𝜎𝑖 with the HIBE and iden-

tity 𝐼 : Σ𝑖 = Encrypt(𝐼 , 𝜎𝑖 ).
(6) The challenger gives the encrypted shares Σ1, . . . , Σ𝑎 to the

adversary.
(7) The adversary can query the oracle O with an index 𝑖 ∈
{1, . . . , 𝑎} to retrieve the 𝑖 th HIBE secret key. The adversary
may do this up to 𝑘 − 1 times.

(8) The adversary produces a guess 𝑏′ and wins if 𝑏′ = 𝑏.

We say that a scheme is SH-IND secure iff no PPT adversary has a
non-negligible advantage in 𝜅 to win the HS-IND game.

Lemma 1. Given a IND-ID-CPA secure HIBE and a secure secret
sharing algorithm, our combination of HIBE and secret sharing from
Section 6 is SH-IND secure.

Proof. First, we note that the adversary can only obtain 𝑘 − 1

HIBE secrets at maximum. Without loss of generality, we assume

that the adversary obtains the first𝑘−1 secrets: If the adversary does

not obtain the first HIBE secrets, we can re-order the encrypted

shares accordingly, as each share contains an equal amount of

information. This is a result of secret sharing security (Definition 4)

when applied to subsets consisting of a single element.

We now define a hybrid game𝐻1, where in step (6) the challenger

does not give all shares to the adversary. Instead, the challenger

encrypts a random value 𝑅 ←R {0, 1} |𝜎𝑖 | using the HIBE, and then

gives the adversary 𝑎 − 1 “real” shares and 1 “random” encryption.

The adversary cannot distinguish this hybrid from the actual

game, as distinguishing would break the IND-ID-CPA of the under-

lying HIBE:

Assume that there is a distinguisher 𝔇 that can differentiate

between 𝐻1 and the SH-IND game. We then construct an adversary

ℌ that wins the IND-ID-CPA game:

(1) The IND-ID-CPA challenger C sets up the IND-ID-CPA chal-

lenge and gives ℌ the system parameters.

(2) ℌ generates 𝑎 − 1 HIBE instances using Setup.
(3) ℌ chooses a message𝑚 ←R D and an identity 𝐼 ←R I.
(4) ℌ splits𝑚 into 𝑎 secret shares 𝜎1, . . . , 𝜎𝑎 , as well as a “fake

share” �̃� ←R S.
(5) ℌ uses the 𝑎 − 1 HIBE instances to produce encryptions of

the first 𝑎 − 1 shares: Σ𝑖 = Encrypt(𝐼 , 𝜎𝑖 )
(6) ℌ provides Cwith the ID 𝐼 and themessages𝑚0 = 𝜎𝑎 ,𝑚1 = �̃�

as challenge, and receives the challenge ciphertext Σ𝑛 .
(7) ℌ now provides𝔇 with Σ1, . . . , Σ𝑎 .
(8) On queries to the oracle O from𝔇,ℌ returns the correspond-

ing HIBE secret key. We note that we assume corruption to

only appear in the first 𝑘 − 1 keys, therefore𝔇 can not ask

for the key of the last instance, which is only known to C.
(9) If𝔇 returns “real game”, ℌ returns 𝑏 = 0 to C. Otherwise, ℌ

returns 𝑏 = 1.

We can see that ℌ interpolates between the SH-IND game and

𝐻1 forD, and the winning advantage ofℌ in the IND-ID-CPA game

is equal to the distinguishing advantage of𝔇.

We can repeat this process 𝑎−𝑘 times, such that the final 𝑎−𝑘+1

shares only contain random values. As each hybrid is indistinguish-

able to its predecessor, the final hybrid is also indistinguishable to

the original game.

In this final hybrid however, the adversary has at maximum

access to 𝑘 − 1 secret shares. Due to the secret sharing security

(Definition 4), any value 𝑥 ∈ D is still as likely to be the message,

as the distributions of less than 𝑘 shares are indistinguishable. □

Corollary 1. Given a random secret 𝑠 ←R {0, 1}𝜅 which is first
secret shared and then each share HIBE encrypted, no PPT adver-
sary has a non-negligible advantage of recovering a bit of 𝑠 given at
maximum 𝑘 − 1 shares.

A.2 Tail-indistinguishability
The notion of Tail-indistinguishability (TI) ensures that the onion

format protects against malicious receivers. The definition is game

based and asks an adversary to distinguish between two onions

whose paths have different prefixes, but continue along the same

suffix after passing through an honest mix node. We recall the

original definition of TI by Kuhn et al.:

Definition 6 (Tail-indistinguishability [20]). TI is defined
by the following game:

(1) The adversary receives the challenge public key and the router
identity 𝑟 𝑗 .

(2) The adversary may submit any number of onions 𝑂𝑖 of her
choice to the challenger. The challenger sends the output of
ProcOnion(𝑆𝐾,𝑂𝑖 , 𝑟 𝑗 ) to the adversary.

(3) The adversary submits amessage𝑚, a path 𝑃 = (𝑟1, . . . , 𝑟 𝑗 , . . . ,

𝑟𝜈 ) with honest node at position 𝑗 , as well as key pairs for all
nodes 𝑟𝑖 with 𝑖 ≠ 𝑗 .

(4) The challenger checks that the path is valid, that the public
keys correspond to the secret keys. If the challenge is valid, it
sets bit 𝑏 at random.

(5) The challenger creates the onion with the adversary’s input
choice:

(𝑂1, . . . ,𝑂𝜈+1) ← FormOnion(𝑚, 𝑃, (𝑃𝐾)𝑃 ) .
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It also creates a random onion with a randomly chosen path 𝑃 =

(𝑟1, . . . , 𝑟𝑘 = 𝑟 𝑗 , . . . , 𝑟 �̄�+1 = 𝑟𝜈+1) that includes the subpath
from the honest relay to the corrupted receiver:

(𝑂1, . . . ,𝑂𝜈+1) ← FormOnion(𝑚, 𝑃, (𝑃𝐾)𝑃 )
(6) If 𝑏 = 0, the challenger gives (𝑂 𝑗+1, 𝑟 𝑗+1) to the adversary.

Otherwise, the challenger gives (𝑂𝑘+1, 𝑟𝑘+1) to the adversary.
(7) The adversary may submit any number of onions 𝑂𝑖 of her

choice to the challenger. The challenger sends the output of
ProcOnion(𝑆𝐾,𝑂𝑖 , 𝑟 𝑗 ) to the adversary.

(8) The adversary produces guess 𝑏′.
TI is achieved if any PPT adversary has only a negligible advantage

in guessing 𝑏′ = 𝑏 correctly.

We adapt the original definition slightly to reflect that the adver-

sary can corrupt up to 𝑘 − 1 authorities, and that the authorities are

responsible for generating the mix nodes’ secret keys. Further, we

write [𝑟𝑖 ] to mean all identities that map to 𝑟𝑖 . We highlight those

adaptions in blue in the definition below.

Definition 7 (Aimless-TI). The Aimless-TI game is defined as
follows:

(1) The challenger simulates 𝑎 authorities by setting up 𝑎 HIBE
instances.

(2) The adversary receives the challenge router identity 𝑟 𝑗 .
(3) The adversary may submit any number of onions 𝑂𝑖 of her

choice to the challenger. The challenger sends the output of
ProcOnion(𝑆𝐾,𝑂𝑖 , 𝑟 𝑗 ) to the adversary.
The adversary may also inquire the secret keys of any relay 𝑟𝑖 ,[
𝑟𝑖
]
≠

[
𝑟 𝑗

]
, as well as 𝑘 − 1 secret keys of relay 𝑟 𝑗 .

(4) The adversary submits amessage𝑚, a path 𝑃 = (𝑟1, . . . , 𝑟 𝑗 , . . . ,

𝑟𝜈 ) with honest node at position 𝑗 .
(5) The challenger checks that the path is valid. If the challenge is

valid, it sets bit 𝑏 at random.
(6) The challenger creates the onion with the adversary’s input

choice:

(𝑂1, . . . ,𝑂𝜈+1) ← FormOnion(𝑚, 𝑃, (𝑃𝐾)𝑃 ) .
It also creates a random onion with a randomly chosen path 𝑃 =

(𝑟1, . . . , 𝑟𝑘 = 𝑟 𝑗 , . . . , 𝑟 �̄�+1 = 𝑟𝜈+1) that includes the subpath
from the honest relay to the corrupted receiver:

(𝑂1, . . . ,𝑂𝜈+1) ← FormOnion(𝑚, 𝑃, (𝑃𝐾)𝑃 )
(7) If 𝑏 = 0, the challenger gives (𝑂 𝑗+1, 𝑟 𝑗+1) to the adversary.

Otherwise, the challenger gives (𝑂𝑘+1, 𝑟𝑘+1) to the adversary.
(8) The adversary may submit any number of onions 𝑂𝑖 of her

choice to the challenger. The challenger sends the output of
ProcOnion(𝑆𝐾,𝑂𝑖 , 𝑟 𝑗 ) to the adversary.

(9) The adversary produces guess 𝑏′.

Theorem 1. Aimless Onions fulfills Aimless-TI.

Intuitively, Aimless-TI requires onions that traverse the same

path after an honest node to be indistinguishable, no matter which

path they traversed before.

Proof. The challenger provides the adversary with the onion

after the honest mix node. Therefore, we must assume that all mix

nodes following this honest node are malicious.

We now do a hybrid argument: For our first hybrid𝐻1, we modify

the Aimless-TI game such that FormOnion at the honest mix node

replaces parts of the header with randomness. In particular, given

the honest node 𝑟 𝑗 , we replace 𝜂 𝑗 with

𝑅 ←R {0, 1} |𝐻 |− (𝜈− 𝑗 ) · |𝐻hop
|

𝜂′𝑗 = (𝑟𝑖+1 | | 𝐻𝑖+1) [0..(𝜈− 𝑗 ) · |𝐻hop
|] | | 𝑅

Intuitively, we have FormOnion replace the suffix of the header

which contains the encrypted padding from the previous hops with

randomly chosen bits. We keep the prefix of the header, as that

part will be used by the following mix nodes to further process the

onion.

For the adversary, this hybrid is indistinguishable to the original

game. This is a result of the PRNG security: In the original game,

the PRNG is used as a one-time-pad to decrypt the header. In 𝐻1,

those values are replaced by truly random bits. Distinguishing

those cases implies that the PRNG output can be distinguished

from randomness, which contradicts our PRNG definition.

In 𝐻1, we now look at the various elements that the adversary

will see, and whether they contain information about 𝑏:

• 𝐻𝜈 is a random bit string, chosen independently of 𝑏.

• 𝑘𝑖 are random keys, chosen independently of 𝑏.

• 𝜎𝑖 only depend on 𝑘𝑖 , and therefore not on 𝑏.

• Σ𝑖 only depend on 𝜎𝑖 and the mix node identities which are

the same in both scenarios. Σ𝑖 therefore is also independent

of 𝑏.

• Π𝜈 contains the final recipient and the message, both of

which are the same in either scenario and therefore indepen-

dent of 𝑏.

• 𝐻𝑖 only contains the information discussed above and ran-

dom bits, independent of 𝑏.

In conclusion, the onion does not contain any information that

depends on 𝑏 and could be used by the adversary to determine the

correct scenario. □

A.3 Layer-unlinkability
The notion of LU ensures that an onion cannot be re-identified after

passing through an honest mix node. The definition is game based

and asks an adversary to identify which of two onions has been

processed at an honest mix node. We recall the original definition

of LU by Kuhn et al. as well:

Definition 8 (Layer-unlinkability [20]). LU is defined by the
following game:

(1) – (4) as in Definition 6
(5) The challenger creates the onion with the adversary’s input

choice:

(𝑂1, . . . ,𝑂𝜈+1) ← FormOnion(𝑚, 𝑃, (𝑃𝐾)𝑃 )

and a random onion with a a randomly chosen path 𝑃 =

(𝑟1, . . . , 𝑟𝑘 = 𝑟1, . . . 𝑟𝑘+𝑗 = 𝑟 𝑗 , 𝑟𝑘+𝑗+1, . . . , 𝑝 �̄�+1), that includes
the subpath from the honest sender to the honest node of 𝑃
starting at position 𝑘 ending at 𝑘 + 𝑗 , and a random message
𝑚′:

(𝑂1, . . . ,𝑂 �̄�+1) ← FormOnion(𝑚′, 𝑃, (𝑃𝐾)𝑃 )
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(6) If 𝑏 = 0, the challenger gives (𝑂1, ProcOnion(𝑂 𝑗 )) to the ad-
versary. Otherwise, the challenger gives (𝑂1, ProcOnion(𝑂 𝑗 ))
to the adversary.

(7) The adversary may submit any number of onions𝑂𝑖 ,𝑂𝑖 ≠ 𝑂 𝑗 ,
𝑂𝑖 ≠ 𝑂𝑘+𝑗 of her choice to the challenger. The challenger sends
the output of ProcOnion(𝑆𝐾,𝑂𝑖 , 𝑟 𝑗 ) to the adversary.

(8) The adversary produces guess 𝑏′.
LU is achieved if any PPT adversary has only a negligible advantage

in guessing 𝑏′ = 𝑏 correctly.

Weagainmodify the original LU game to accomodate the changes

in the system model that Aimless Onions assumes:

Definition 9 (Aimless-LU). The Aimless-LU game is defined as
follows:

(1) – (5) as in Definition 7
(6) – (9) as (5) – (8) in Definition 8

Theorem 2. Aimless Onions fulfills Aimless-LU.

Proof. We use a hybrid argument to prove Theorem 2.

In the first hybrid 𝐻1, we modify the behavior of FormOnion

and ProcOnion at the honest node. In particular, when FormOnion

creates the layer for node 𝑟 𝑗 , it does not embed the master key 𝑘 𝑗

in the header, but rather draws a random identifier 𝐼 𝑗 ←R {0, 1} 𝜅
and saves the tuple (𝐼 𝑗 , 𝑘 𝑗 ). When ProcOnion is called to process

the onion at the honest mix node, it looks up the identifier 𝐼 𝑗 in the

header to retrieve the saved key 𝑘 𝑗 .

For the adversary, this hybrid is indistinguishable to the Aimless-

LU game as per Corollary 1.

In the second hybrid 𝐻2, we modify ProcOnion such that 𝑟 𝑗 will

reject an onion when 𝐼 𝑗 is saved, but the onion was not output

by FormOnion. This means that the adversary can not modify the

challenge onion to provide it to the oracle.

For the adversary, this hybrid𝐻2 is indistinguishable from𝐻1: As

the onion header and content are protected via a MAC, forging an

onion that has the correct 𝐼 𝑗 would imply a forged MAC tag, which

the adversary can only find with negligible probability. From this

we conclude that the adversary also cannot modify the challenge

onion in 𝐻1, preventing tagging attacks.

In our final hybrid 𝐻3, we change FormOnion to use true ran-

domness instead of 𝜌 when encrypting the header and payload.

We have FormOnion save the used randomness indexed by 𝐼 𝑗 , and

modify ProcOnion to use this same randomness to unwrap the

onion again.

For the adversary, this hybrid 𝐻3 is indistinguishable from 𝐻2:

The only difference between 𝐻3 and 𝐻2 is the use of real random-

ness instead of pseudorandomness. Per definition of a PRNG, the

adversary cannot distinguish the output of a PRNG (with unknown

key) and a real random generator.

In 𝐻3 however, the randomness constitutes a one-time-pad en-

cryption of the header and the payload. As such, no information

about the contained values can leak to the adversary. From the in-

distinguishability of 𝐻3 and 𝐻2, 𝐻2 and 𝐻1, and 𝐻1 and the original

game, we conclude that Theorem 2 holds. □

A.4 Other attacks
In this section, we have proven the cryptographic security of Aim-

less Onions. We consider other attacks on onion routing and mix

networks (such as traffic analysis, drop attacks, denial of service,

etc.) as out-of-scope for this paper, as we can employ other state-

of-the-art defenses (such as mixing delays and message loops from

Loopix [22]). Those attacks and defenses however are independent

of the underlying packet format and can be implemented on top of

Aimless Onions.

B Supporting replies
Sphinx supports replies by allowing the sender to precompute a

Sphinx header (a SURB). A recipient can take this SURB, attach their

reply to it, and send it through the mix network, without learning

who the final recipient of their reply will be.

We can support SURBs in Aimless Onions by adjusting the for-

mat:

• We add a field in the header for the final mix node on the

path. For forward messages, this field contains a designated

sentinel value. For replies, this field contains the destination.

• We change the MAC in the header to no longer include the

payload, but only the header.

• We change the format such that a wide-block cipher like

Lioness [1] or AEZ
15
is used for the payload. Such a cipher

ensures that a small change in the ciphertext will lead to

unpredictable changes in the plaintext.

• When Alice sends her message to Bob, she encrypts the

payload (0𝜅 | | Bob | |𝑚).
• When the final mix node receives Alice’s message, it finds

the sentinel value in the header. It then checks if the prefix

of the payload is 0
𝜅
. If not, the message has been tagged and

must be discarded. Otherwise, it forwards𝑚 to Bob.

• When Bob replies, he appends his message to the precom-

puted header and sends it to the first mix node along the

reply path.

• The final mix node on the reply path will find Alice’s address

in the header field, and can thus forward the message to

Alice.

We note that this variant has no hop-by-hop integrity, as a modi-

fied payload is only recognized at the final mix node (on the forward

path), or the recipient (on the reply path). The security proof that we

give in Section A does not hold for this variant, and must be adapted

to rely on properties that do not assume hop-by-hop integrity [24].

15
https://www.cs.ucdavis.edu/~rogaway/aez/
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