
MatchQuest: Fast and Secure Pattern Matching
Pranav Jangir

New York University

pj2251@nyu.edu

Nishat Koti

Aztec Labs

nishat@aztec-labs.com

Varsha Bhat Kukkala

IIT Tirupati

varshabhat@iittp.ac.in

Arpita Patra

Indian Institute of Science

arpita@iisc.ac.in

Bhavish Raj Gopal

Indian Institute of Science

bhavishraj@iisc.ac.in

Abstract
Pattern matching (PM) is the technique of identifying occurrences

of a short pattern in a long text, where both, the pattern and text, are

a string of characters. Since several applications demand the privacy

of the pattern and the text in the process of identifying matches,

designing secure solutions for PM is gaining popularity. Moreover,

given the variety of applications that consider PM, we design secure

solutions for three popular variants of PM—exact, wildcard and

approximate. Our solutions are designed using the techniques of

secure multiparty computation (MPC) in the two-party semi-honest

setting. All of our solutions attain a fast response time, which is the

time taken from submission of the input to obtaining the output, and

forms a crucial parameter when analysing the performance of any

protocol. Moreover, our protocols also provide an improved online

communication complexity in comparison to prior works. Since

determining if two secret-shared values are equal forms a crucial

component in all the PM variants, we design a novel constant-

round equality protocol in the two-party semi-honest setting. Our

equality protocol outperforms all the prior works in the considered

setting and can also be of independent interest. We implement all

our protocols on the MPC framework of MOTION2NX to showcase

the practicality of the designed solutions. In comparison to prior

works that consider DNA matching (over 2-bit characters), our

pattern matching protocols see improvements of up to 2 orders

of magnitude in response time. Our equality protocol, too, excels

over all existing constructions. To analyse the performance of our

equality protocol in comparison to prior work, we benchmark it for

varying input sizes. We observe that with increasing input sizes, the

improvement in response time of our protocol keeps on increasing,

with improvements of up to 9.7× for 256-bit inputs.

Keywords
Secure computation, secure pattern matching, secure equality

1 Introduction
The problem of identifying occurrences of a given string in a text,

commonly referred to as pattern matching (PM), finds use in vari-

ous application scenarios. This includes applications such as text-

processing [28], information retrieval [32, 44], intrusion detection

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(4), 308–328
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0132

systems [23], DNA sequence analysis [29, 63], spam filtering [9],

etc. Typically, the applications involve two parties, where one party

holds a (small) pattern and wishes to identify every occurrence of

this pattern within a (long) text that is held by a different party.

Here, both the pattern and text comprise a string of characters.

Given the wide variety of applications that rely on pattern match-

ing, there are well-defined variants of the problem that have been

explored. For instance, in the case of text retrieval systems, it is

often required to identify and retrieve occurrences where the given

pattern exactly matches a substring in the text. This is known as ex-
act pattern matching and is the most commonly considered variant.

On the other hand, there are applications that require the flexibility

of searching with errors or allowing a small divergence. In the

case of pattern matching with wildcards, the flexibility is limited

to the extent that certain characters in predetermined positions in

the pattern are allowed to match any character in the text. These

characters, denoted by ∗ in the pattern, are known as wildcard

characters. Pattern matching with wildcards finds use in bioinfor-

matics [18, 26], software patching [11, 36, 62] and DNA analysis

[37]. Alternatively, in applications such as face recognition systems

[58] and DNA profiling [63], where the position of errors is not

known a priori, approximate pattern matching is used. Here, when

comparing the pattern to a substring in the text, we bound the total

number of positions where the pattern and the substring mismatch.

Several applications that rely on pattern matching deal with

patterns and text that comprise sensitive user information. This has

motivated the need for designing privacy-preserving variants for

pattern matching, and has been well studied in the literature [37,

52, 57, 58]. We showcase the need for designing privacy-preserving

solutions for pattern matching through the following illustrative

use case. Consider a hospital that stores the genomic data of its

patients and a research organisation that identifies genetic markers
1
.

This organisation may wish to validate that an identified genetic

marker corresponds to a specific disease. For this, they may be

required to identify the frequency as well as the occurrences of

this genetic marker in the genome sequence of patients who have

suffered from the said disease. This would require collaboration

between the research organisation and the hospital to share their

respective data. However, since each organisation considers its

data to be sensitive and private, it may not be willing to disclose

this information. That is, the hospital wishes to keep the genome

data (text) private, and the research organisation wishes to keep

its genetic marker (pattern) private. This motivates the need to

design secure solutions for pattern matching, which ensure that

1
A genetic marker is a short DNA sequence that captures a genetic mutation or

variation that helps identify diseases.

308

https://orcid.org/0000-0002-8311-8586
https://orcid.org/0000-0003-4923-8215
https://orcid.org/0000-0001-9579-4963
https://orcid.org/0000-0002-8036-4407
https://orcid.org/0000-0001-8642-7686
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0132

MatchQuest Proceedings on Privacy Enhancing Technologies 2025(4)

the pattern is not leaked to the text owner and vice versa. Further,

the pattern owner must only learn positions in the text where a

match to the pattern is found.

There are various privacy-enhancing technologies that can be

used to design privacy-preserving solutions for pattern matching.

Keeping efficiency at the centre stage, the current work relies on

the technique of secure multiparty computation. Secure multiparty

computation (MPC) enables a set of 𝑛 parties to jointly compute a

function on their private inputs while guaranteeing that no subset

of at most 𝑡 < 𝑛 parties, controlled by an adversary, learns anything

other than the function output. In the current scenario, the private

inputs are the pattern and the text against which matches are to be

identified. The function to be computed securely is pattern match-

ing. We next highlight our contributions which revolve around

designing efficient MPC protocols for pattern matching.

1.1 Our Contributions
To ensure wider usability, we design secure protocols for the three

popular variants of exact, wildcard and approximate pattern match-

ing. Since determining if two values are equal to each other forms a

key operation across all the variants, we additionally design secure

equality check protocol for the same, which can be of independent

interest. When designing these protocols, we make several choices

that drive toward efficient constructions. The objective and the

design choice made to achieve it are described next.

– Lightweight clients: To facilitate participation of lightweight data

owners and reduce computational overhead, we design protocols

in the secure outsourced computation (SOC) setting. This entails

hiring powerful servers to carry out the MPC protocol on inputs

(pattern and text) which are secret-shared 2
among the servers by the

respective owners. Our work considers a two server model, where

protocols are designed in a 2-party computation (2PC) setting.

– Fast response time: Since several applications such as intrusion

detection and DNA analysis, are time-sensitive, designing MPC

protocols with a fast response time is crucial. That is, the time

taken from submitting the inputs to generating the output must be

minimised. To aid in this, the protocols are cast in the preprocessing
model where the compute-intensive input-independent computa-

tions are pushed to the preprocessing phase3. This facilitates fast
input-dependent computations in the online phase, leading to a fast
response time. To further aid in improving online efficiency, we

aim to design protocols with constant online rounds, while keeping

the communication and computation cost minimal. Furthermore,

the protocols are designed to operate over the ring algebraic struc-
ture that leverages the system architecture [20, 38, 51] to improve

overall efficiency.

We next elaborate on our contributions in designing the proto-

cols for the variants of pattern matching (§1.1.1) considered and

our generic protocol for equality (§1.1.2), followed by highlights of

our benchmarks (§1.1.3).

2
The input is distributed among servers such that they cannot learn anything about

the underlying secret input based on the share that they receive.

3
Note that the preprocessing phase facilitates performing multiple operations in

parallel since the computations are input independent. Thus, the preprocessing phase

is not a bottleneck for response time, and we focus on attaining an efficient online

phase. Hence, unless stated otherwise, the reported costs in terms of both rounds and

communication are always with respect to the online phase.

1.1.1 Pattern matching. To achieve a fast online phase, we design

pattern matching protocols that have constant rounds, and highly

efficient communication and computation complexity in the online

phase. For this, we consider pattern P comprising sP characters and
text T comprising sT characters. Here, each character is denoted

by an ℓ-bit value chosen from the alphabet set Σ ⊂ Z
2
ℓ . For all

three variants of pattern matching, to identify every occurrence of

pattern, P is matched against every sP-sized contiguous substring

in T. There are sT− sP+1 such substrings in T and all these matches

can be computed in parallel. Therefore, a constant-round protocol

to identify a match will yield a constant-round pattern matching

protocol. The equality protocol serves as the main building block

for identifying a match. However, despite having a constant-round

equality protocol, naively using the same does not suffice to obtain

a constant-round pattern matching protocol. The challenges faced

in attaining the same, while satisfying distinct matching criteria

for each pattern matching variant, are discussed next.

Exact: Recall that this variant of pattern matching checks whether

every character in the pattern is an exact match with the corre-

sponding character in the substring of text under consideration.

Since there are sP number of characters to be matched, it would

appear that invoking the generic equality check protocol sP times,

on each pair of characters, in parallel, would suffice. However, this

additionally requires an overhead of log
2
(sP) rounds to verify that

all the sP equality check invocations pass before concluding it is

a match. In contrast, we design an efficient 2-round protocol for

exact pattern matching with O(sT)-bits communication. A detailed

comparison of our protocols with prior works appears in Table 1.

We note that our work is the first to achieve a communication

complexity independent of the pattern size and character size.

Wildcard: Unlike the previous variant, wildcard pattern matching

offers the flexibility of having one or more wildcard characters

in the pattern which can match with any character in the text.

Thus, the challenge is to not only perform a match against an

array of character inputs, but also do so in the presence of wildcard

characters. A naive solution to this can be obtained similar to the

naive approach for exact pattern matching, where we perform a

character by character match while accounting for the wildcards.

However, this would require one additional round to determine

the positions of the wildcard in the pattern. In contrast, we design

a wildcard pattern matching protocol that overcomes this. This

results in attaining a wildcard pattern matching protocol with the

same online complexity of exact pattern matching. A comparison

of our protocol with relevant prior works appears in Table 1.

Approximate: Unlike the previous case, where only the presence

of a wildcard allows for amismatch, the approximate variant instead

bounds the maximum number of mismatches between the pattern

and the substring of the text, and hence is more generic. Thus, we

are required to track the number of mismatches, say 𝑘 , and deter-

mine if it is below a predetermined threshold 𝜏 . A naive solution

would entail invoking our equality check protocol sP times, on each

pair of characters, in parallel, to determine the total number of mis-

matches. Following this, relying on a comparison protocol
4
would

allow determining if the number of mismatches 𝑘 is lesser than 𝜏 .

Thus, the naive solution would require 3 rounds (i.e., 2-rounds for

4
We rely on the state-of-the-art protocol of [16].

309

Proceedings on Privacy Enhancing Technologies 2025(4) Jangir et al.

Protocol Reference Rounds

Communication (bits)

Computation

Online Preprocessing

Exact

[58]
†

3 O(sTsPℓ (𝜅 + sPℓ)) - O(sTsPℓ)-OTs
[63]

‡
2 O(sT𝜅 + sP |Σ|𝜅) - O((sT + sP |Σ|)-HE

Naive log
2
(sP) + 2 O(sTsPℓ) O (sTsPℓ (𝜅 + ℓ)) O(sTsP log(ℓ))-PRGs

Ours 2 O(sT𝜆) O(sT (𝜆(𝜅 + 𝜆))) O(sT log(𝜆))- PRGs + O(sT)-Hashes

Wildcard

[37] 2 O(sPℓ + (𝜅ℓ + 𝜅′)sT)) O(sTsP (𝜅 + ℓ)) O(sT)-Hashes
Naive log

2
(sP) + 3 O(sTsPℓ) O (sTsPℓ (𝜅 + ℓ)) O(sTsP log(ℓ))-PRGs

Ours 2 O(sT𝜆) O (sT (𝜆(𝜅 + 𝜆) + sP (𝜅 + ℓ))) O(sT log(𝜆))-PRGs + O(sT)-Hashes

Approximate

[58]
†

3 O(sTsPℓ (𝜅 + sPℓ)) - O(sTsPℓ)-OTs
[63]

‡
2 O(sT𝜅 + sP |Σ|𝜅) - O((sT + sP |Σ|)-HE

Naive 3 O(sTsPℓ) O(sTsPℓ (𝜅 + ℓ) O(sTsPℓ)-PRGs
Ours 1 O(sTℓ) O(sTsPℓ (𝜅 + ℓ) O(sTsPℓ)-PRGs

†
The OTs in the online phase of [58] can be preprocessed. Despite this, the online communication cost of the protocol is O(sTsP2ℓ2) which is prohibitive.

‡ [63] provides an HE based solution for exact and approximate pattern matching which has a high computational overhead.

ℓ- size of the character; sT - size of the text; sP - size of the pattern; Σ - alphabet set; |Σ | - the size of the alphabet set. Note that the number of entries in the alphabet set |Σ | may

only be a proper subset of 2
ℓ
. Hence Σ < 2

ℓ
. 𝜆 denotes the hash size (256 bits), 𝜅 denotes the computational security parameter (128) and 𝜅′

denotes the statistical security

parameter (40). Note that ℓ is application-specific(2 bits for DNA-matching, 8 bits for ASCII). sP ranges from some Bytes to several KiloBytes, making sP .ℓ much greater than 𝜆.

All protocols are computationally secure and in semi-honest two party computation setting.

Table 1: Comparison of pattern matching protocols.

equality as described in §1.1.2 and 1-round for comparison) and

communication complexity of O(sTsPℓ)-bits. However, we design a

approximate pattern matching protocol that requires only 2 rounds

and O(sTℓ) communication. Further, by taking the inputs in an en-

coded fashion, we reduce the complexity to 1 rounds. A comparison

of our protocol with prior works appears in Table 1.

1.1.2 Equality. Equality forms an important primitive for pattern

matching. To this end, we design a novel constant-round equality

check protocol over rings in the 2-party setting. Specifically, our

protocol incurs 2 rounds and 2(ℓ + log
2
(2ℓ)) bits of communication

in the online phase. A comparison of our equality protocol with the

relevant prior works that operate in 2 party setting over rings is

provided in Table 2. This can be of independent interest as equality

check is used in various applications such as heavy hitters [4, 33],

ML inference [51], and decision tree training [1], to name a few.

Ref. Rounds

Communication #PRG

invocations
†

Online Preprocessing

[12] log
2
(ℓ) ≈ 4ℓ O(ℓ𝜅) -

[50] log
4
(ℓ) ≈ 8

3
ℓ O(ℓ𝜅) -

[16] 1 2ℓ O(ℓ𝜅2) O(ℓ)
Ours 2 2(ℓ + log

2
(2ℓ)) O(ℓ (ℓ + 𝜅))‡ O(log(ℓ))

†- number of local sequential PRG invocations in the online phase.

‡- note that ℓ𝜅 is the dominating term here.

ℓ denotes the size of the input.

Table 2: 2PC equality protocols over rings.

Alternative variant:Our equality protocol works over the additive
sharing semantics. However, someworks [51] design equality proto-

cols over augmented additive sharing semantics (see §3) to achieve

better communication. Our equality protocol also extends to oper-

ate on augmented sharing semantics which allows for an improved

online communication complexity of 𝑂 (log ℓ) bits in two rounds.

Our augmented sharing-based equality protocol outperforms the

same of [51], since the latter requires higher online communication

of approximately 5ℓ/3 bits and 𝑂 (log
4
(ℓ)) rounds. We believe that

this equality protocol may be of independent interest, such as for

applications considered in [51].

1.1.3 Benchmarks. We establish the practicality of all our protocols

by empirically evaluating them on MOTION2NX [17] framework.

– Pattern matching: We compare the performance of each variant

of our pattern matching protocols with their respective naive vari-

ants while varying sT and sP. We report below the improvements

observed for sT = 10KB, sP = 1KB and ℓ = 8
5
. In comparison to the

naive variants, our solution for exact and wildcard pattern match-

ing achieves up to 3 orders of magnitude improvement in both

response time and communication. With respect to approximate

pattern matching, we witness an improvement of up to 2 orders

of magnitude in communication. We also compare our protocols

to the prior work and report the performance while retaining the

settings considered in the prior work. With respect to [63], we

see an improvement of 100× and 10× for exact and approximate

pattern matching respectively. Due to the lack of concrete costs

and the absence of code in [58], we are unable to provide such a

comparison. Despite having improved communication over [37]

for larger values of ℓ , we are unable to provide an empirical com-

parison since the implementation of [37] does not allow varying ℓ .

To provide a close comparison with works that do not have code,

we fall back on the detailed complexities reported in Table 1.

– Equality: To showcase the performance of our protocol, we com-

pare against both circuit based approach as well as DPF based

equality. Specifically, with respect to the circuit based approach

of [12], we observe improvements up to 4× in run time and up to

1.9× in communication for inputs of size 256 bits. With respect

to the protocol of [50], we observe improvements up to 1.97× in

run time and up to 1.28× in communication for inputs of size 256

5
Since most applications deal with characters encoded in ASCII, we note that 𝑙 = 8

suffices and hence our benchmarks are reported for 𝑙 = 8.

310

MatchQuest Proceedings on Privacy Enhancing Technologies 2025(4)

bits. With respect to DPF based approach of [16], we observe im-

provements up to 9.7× in run time for 256 bits inputs while having

comparable communication costs. Further, when considering the

augmented additive sharing, we compare our protocol against that

of [51] where we observe improvements up to 3.6× in run time and

up to 11.2× in communication.

1.2 Organisation
The rest of the paper is organised as follows. We discuss the related

works in §2 followed by preliminaries in §3. This is followed by

the equality protocol in §4. The exact, wildcard and approximate

pattern matching protocols are discussed in §5, §6 and §7, respec-

tively. Finally, we provide the benchmarks in §8. Supplementary

information for a comprehensive understanding of our equality and

pattern matching protocols such as complexity analysis, security

proofs of protocols, other orthogonal works, other prerequisites,

etc., appear in appendices §A-G.

2 Related Works
Pattern matching: There are several works in the literature that

consider designing privacy-preserving solutions to pattern match-

ing [7, 28, 31, 40, 46, 54, 56, 60, 63]. These works not only differ in

terms of the approaches used to design the solution (such as ho-

momorphic encryption, garbled circuits and secret-sharing based

techniques) but also differ with respect to the variants of PM consid-

ered. For instance, there are several works in the literature that con-

sider homomorphic encryption based solutions [7, 31, 40, 54, 60, 63].

Since these rely on a large number of compute-intensive public

key encryption operations, they are known to be computationally

expensive and prohibitive. Among the HE-based solutions, [63]

considers exact and approximate pattern matching and forms the

state-of-the-art for the said variants of PM. A comparison with

[63] is hence included in Table 1. Despite having a constant round

protocol, the need to perform computationally intensive encryp-

tions renders their solution prohibitively expensive. Specifically,

the number of encryptions required is in the order of the size of

the pattern and alphabet, making the solution infeasible for large

pattern sizes and alphabet sets (such as ASCII). Although, [54] de-

signs a HE-based solution for wildcard pattern matching, the MPC

based solution of [37] outperforms [54]. Hence we directly compare

against [37] which forms the state-of-the-art.

We next discuss works that consider MPC based solutions. To the

best of our knowledge, the work of [30] was the first to consider the

problem of secure pattern matching. However, their approach re-

quired public key operations and heavy computations in the online

phase, making it inefficient. The work of [34] improved upon this

by using a modified Yao’s garbled circuit for exact pattern match-

ing, which required only a constant number of OPRF invocations.

Although the garbled circuit based approach gives a constant round

protocol, the communication cost is known to be prohibitively ex-

pensive. More recently, the work of [58] used Shamir secret sharing

and outsourced OT to achieve constant-round protocols for exact

and approximate pattern matching in the secure outsourced setting.

However, not only do their protocols have high communication

complexity, but they also rely on OTs in the online phase, making

the protocols inefficient. It is important to note that even if the

OTs can be preprocessed using the offline-online OT paradigm, it

does not help in reducing the prohibitively high communication

costs in the online phase, which continue to render the protocols

inefficient. The protocol in [58] was extended for wildcard pattern

matching in the work of [57] by employing cut-and-choose OT.

However, the work of [37], which also considers wildcard pattern

matching, outperforms [57] as well as the HE-based protocol of [54].

This makes [37] the state-of-the-art for wildcard pattern matching.

Despite its improvements, the work of [37] requires a higher online

communication cost of O(sTℓ)-bits. Further, unlike our protocol,
[37] requires knowledge of sP and sT in the preprocessing. This

assumption may not be well suited for all application scenarios.

Moreover, the protocol of [37] is designed specifically for the client-

server setting. That is, to design an efficient 2-round protocol, they

leverage the fact that the inputs are held on clear by the two com-

puting parties, and the output can be learnt on clear by the client. It

is not clear how to extend their protocol to the outsourced setting.

Furthermore, their protocol entails the client performing heavy

computations and, thereby, is unsuitable for lightweight clients. On

the other hand, our protocols in the secure outsourced setting are

more inclusive and cater to a wider set of application scenarios.

Beyond traditional pattern matching, there are other works that

explore other variants such as string similarity matching, keyword

search with public key encryption, and regular expression match-

ing. We note that these works are orthogonal to ours and a brief

discussion of the same appears in A.

Equality: Equality is an important primitive that finds use in var-

ious applications. There are several works in the literature that

consider MPC-based solutions for designing privacy-preserving

equality protocols. The initial works of [22, 41, 48] introduced

constant-round equality protocols over fields, by leveraging the

properties of field. Among these, [41] forms the state of the art

for equality over fields. However, their applicability is limited to

fields and cannot be extended to rings. With respect to protocols

over rings, [64] designs a 2-round protocol, albeit in the 3-party

setting. Further, despite having an honest majority, [64] has com-

munication complexity quadratic in ℓ . Subsequently, the work of

[12] proposed a generic circuit-based equality protocol that also

works over rings, albeit at the cost of requiring a logarithmic num-

ber of rounds, specifically O(log
2
ℓ). Following this, the work of

[50] optimised the circuit-based approach using multi-input multi-

plication gates, thereby reducing the round complexity to O(log
4
ℓ)

and communication to
8

3
ℓ . The work of [51] further improved the

communication to
5

3
ℓ by relying on augmented secret sharing. More

recently, the works of [15, 16] introduced a highly efficient equality

protocol by leveraging function secret sharing. The protocol relies

on distributed point functions(DPFs) to get a constant round equal-

ity protocol. Specifically, these works design 1-round protocols that

require 2ℓ bits of communication. Despite having an efficient round

and communication complexity, DPF-based constructions lag in

terms of computation cost. Specifically, the protocol requires each

party to locally invoke ℓ sequential calls to a pseudorandom genera-

tor (PRG). Instead, our protocol is designed to reduce this to log(2ℓ)
invocations. Note that this significantly improves the response time

as corroborated by our benchmark results in §8. Further, in the 2-

party setting, these protocols suffer from high preprocessing costs,

311

Proceedings on Privacy Enhancing Technologies 2025(4) Jangir et al.

making them inefficient when dealing with large input sizes. Works

such as [21, 25, 45] design generic equality protocols in the n-party

setting. While these protocols can be instantiated in the 2PC setting,

they are less efficient than the customised 2PC equality protocols

discussed above.

3 Preliminaries

Threat model: We design protocols in the 2-party computation

(2PC) setting that operate over additive secret sharing. We let P =

{𝑃0, 𝑃1} denote the set of two parties connected via pairwise private
and authentic channels over a synchronous network. We assume

a static, semi-honest, probabilistic, polynomial time adversary A
that corrupts at most one of the two parties in P. Our protocols are

proven secure in the standard real-world/ideal-world simulation

paradigm. Further, we design our protocols in the secure outsourced

computation setting where two powerful servers
6
are hired to carry

out the computation. These two servers enact the role of the two

parties in the 2PC. The client(s) secret-shares its input (text T or

pattern P) among the servers such that the individual share received

by the server does not leak any information about the client’s input.

The servers run the 2PC protocols for pattern matching and obtain

the output in secret shares and reconstruct it towards the intended

recipient. Our protocol uses the following sharing semantics.

– Additive sharing ([·]-sharing): We say a value x ∈ Z
2
ℓ is [·]-

shared or additively shared over Z
2
ℓ if 𝑃𝑖 for 𝑖 ∈ {0, 1} holds [x]𝑖

such that x = [x]
0
+ [x]

1
.

– Augmented additive sharing(J·K-sharing): A value x ∈ Z
2
ℓ is J·K-

shared if (i) there exists an input-independent mask 𝛿x ∈ Z
2
ℓ that

is [·]-shared, and (ii) there exists a masked value mx = x + 𝛿x such

that mx is known to both the parties in P.

Sharing over Z
2
ℓ is referred to as arithmetic sharing ([·] , J·K)

while over Z2 as Boolean sharing ([·]B , J·KB), where Boolean XOR

replaces arithmetic operations (addition/subtraction). Note that the

above sharing schemes are linear, i.e., given shares of x, y ∈ Z
2
ℓ and

public constants c1, c2 ∈ Z
2
ℓ , parties can non-interactively generate

shares of c1x + c2y.

MPC protocols: We assume parties have access to a common PRF

key that is established as part of a setup phase which facilitates

them to non-interactively sample common random values among

themselves. This allows them to non-interactively generate [·]-
shares and J·K-shares for random values. Further, this also allows

party 𝑃𝑖 to non-interactively generate [·]-shares of a value x. For
this, the parties jointly sample a random value r using the common

PRF key and set the shares as [x]𝑖 = x−r and [x]
1−𝑖 = r. Additionally,

our protocols rely on a collision-resistant hash function, denoted

by H(·). We rely on the following MPC protocols for designing our

protocols—(i) Multiplication (Πmult): Given [·] −shares of values x
and y, the multiplication protocol generates [·]-shares of z = x · y.
We rely on the standard beaver protocol [8] for multiplication. The

online phase of this protocol requires one round of interaction

and 4 elements of communication. (ii) Bit to arithmetic conversion

6
We note that in many practical scenarios, the servers are reputed compa-

nies(Example–AWS,GoogleCloud) that do not have an incentive to collude, as their

reputation is at stake. Hence a semi-honest setting suffices. Moreover, semi-honest be-

haviour can be enforced by attestation using tools— like Intel SGX or ARM TrustZone.

(Πbit2A): Given [·]B-shares of a bit x ∈ Z2 , protocol Πbit2A allows to

generate its [·]-shares. The details appear in §B.

Non-InteractiveMultiplication: The multiplication protocol can

be made non-interactive when the inputs are taken as augmented

additive shares (J·K-shares) instead of additive shares. We refer

to this protocol as ΠNI
Mult. Given J·K−shares of values x and y, the

protocol ΠNI
Mult generates [·]-shares of z = x ·y. The protocol follows

along the lines of the multiplication protocol of [51]. While the

online phase of this protocol requires one round of interaction,

we showcase how it can be made non-interactive when [·]-shares
of z are desired. Recall that a value x is said to be J·K-shared if

x = mx − 𝛿x such that mx is known to both the parties and 𝛿x is

[·]-shared (additive) between 𝑃0 and 𝑃1. Thus, the output z = x · y
can be computed using the following equation.

z = (mx − 𝛿x) (my − 𝛿y) =mxmy − mx𝛿y − my𝛿x + 𝛿x𝛿y

Observe that parties can non-interactively generate the [·]-shares
of the first three terms in the above equation due to the linearity of

[·]-sharing. Additionally, the parties generate [·]-shares of 𝛿x𝛿y in
the preprocessing phase by invoking ΠsetupMULT (from [51]). This

enables them to compute [·]-shares of mz in the online phase non-

interactively. The protocol of [51] requires one round of interaction

to generate J·K-shares of z which can be omitted here. The formal

protocol for ΠNI
Mult appears in Fig. 7.

DPF based equality: Function secret sharing (FSS) [16] allows

to succinctly split a function 𝑓 (·) into additive shares, where each

share of the function is represented by a separate key. Each key

allows the owner to efficiently generate the additive share of the

output 𝑓 (𝑥) on a given input x. Distributed point functions (DPFs)

are a special case of FSS where 𝑓 (·) is a point function 𝑓𝛼,𝛽 (𝑥) := 𝛽 if

𝑥 = 𝛼 , or 0 otherwise. A DPF consists of two algorithms:𝐺𝑒𝑛(·) and
𝐸𝑣𝑎𝑙 (·). The 𝐺𝑒𝑛(·) algorithm takes as input the function 𝑓𝛼,𝛽 (·)
and outputs two keys 𝑘0 and 𝑘1. The 𝐸𝑣𝑎𝑙 (·) algorithm evaluates an

input 𝑥 such that 𝐸𝑣𝑎𝑙 (0, 𝑘0, 𝑥)+ 𝐸𝑣𝑎𝑙 (1, 𝑘1, 𝑥) = 𝛽 for 𝑥 = 𝛼 , and 0

for 𝑥 ≠ 𝛼 . Privacy ensures (𝛼, 𝛽) remains hidden from an adversary

in possession of one of the keys (but not both).

Recent works leverage DPFs to design constant round protocols

for checking equality in the 2PC-with-a-dealer setting. Elaborately,

the protocols work as follows. The dealer generates the keys 𝑘0, 𝑘1

using the 𝐺𝑒𝑛(·) algorithm on the point function 𝑓1,r (·) for some

random r and distributes it to the 2 parties along with shares of r.
Then to check x = y, where x and y are additively shared between

the parties, they first compute [x′] = [x] − [y] and reconstruct

x′+ r. Observe that if x = y then x′+ r = r since x′ = 0. Hence, when

parties locally evaluate the 𝐸𝑣𝑎𝑙 (·) algorithm on their respective

keys, they get additive shares of 1 if x = y and additive shares of 0

otherwise. The formal protocol for the same appears in Fig. 9. In

the 2PC setting, the dealer can be realised using a distributed key

generation protocol. When the input size is not too big, the dis-

tributed generation of the keys can be realised with good concrete

efficiency using the distributed DPF key generation protocol of

[24]. Otherwise, one can use general-purpose secure computation

protocols for emulating the dealer [59].

Pattern matching: We let T denote the text comprising sT charac-
ters, where each character belongs to the alphabet Σ and is an ℓ-bit

string. We let P denote the pattern comprising sP characters which

312

MatchQuest Proceedings on Privacy Enhancing Technologies 2025(4)

belong to Σ, where sP ≤ sT. We let T[𝑖 : 𝑗] denote the substring
of the text starting at (and including) the 𝑖th character to the 𝑗 th

character. Thus, T[𝑖 : 𝑗] is a substring of T comprising 𝑗 − 𝑖 + 1

characters. To keep protocols generic, we instantiate the pattern-

matching protocols with ASCII 8-bit character encoding scheme.

This encoding includes lowercase and uppercase letters A-Z, num-

bers 0 to 9, and common symbols. We note that our protocols are

generic and can be instantiated with any alphabet set. Other com-

mon alphabet sets that are considered in the literature are binary

{0,1} and DNA alphabet set {A, T, G, C}.

Hamming distance:We use hamming distance as a measure of

similarity between two strings for some of our pattern matching

protocols. Given twom-length strings X, Y comprisingm characters

each, hamming distance dH (X, Y) measures number of positions in

which X and Y have different characters. In general, hamming dis-

tance can be computed between two ℓ-bit strings, where it captures

the number of bit positions the two strings differ in.

Parameters and notations: Our protocols are instantiated over

an ℓ-bit ring Z
2
ℓ . 𝜅 denotes the computational security parameter.

For experiments, we use ℓ = 8, 𝜅 = 128. We use uppercase letters

to denote arrays such as X, where X[𝑖] denotes the 𝑖th element of

X. We assume that for an m length array, the elements are indexed

from 1 to m. For an ℓ-bit value r ∈ Z
2
ℓ , we let r𝑖 denote the 𝑖th bit

of r with r0 denoting its least significant bit. We use 1
ℓ
to denote a

string of ℓ 1’s. We use 1{x ⊖ y} to denote that the output is a 1 if

the constraint x ⊖ y is satisfied where ⊖ is a binary operator, and a

0 otherwise. ≡ denotes the congruence operator, and we use log(·)
to denote the logarithm to base 2, unless otherwise stated.

4 Equality Check
Equality check protocol is an essential primitive for pattern match-

ing. Given two secret shared values x, y ∈ Z
2
ℓ , the protocol outputs

[z]B where z = 1{x = y}. Checking x = y can be reduced to check-

ing x − y = 0. Thus, for subsequent discussions, without loss of

generality, we restrict our discussion to checking x = 0, where x is
[·]-shared among the parties.

We design a constant round equality check protocol, ΠEq, with

linear online communication in the input size (ℓ bits). We take the

following approach to achieve this.We reduce checking x = 0, for an

ℓ-bit input x, to checking y = 0 for an 𝑂 (log(ℓ))-bit input y. Given
the reduced input length, checking y = 0 can be realised efficiently

by relying on an existing efficient equality check protocol, which we

abstract out as a functionality FEqZ. We showcase that instantiating

FEqZ using a DPF-based equality protocol allows ΠEq to attain a

constant round complexity with linear communication in the online

phase and outperform prior equality protocols [12, 15, 16, 22, 41, 48].

In fact, when operating with augmented additive sharing semantics

(§3), we note that the online communication complexity can be

further brought down to 𝑂 (log ℓ) bits (further details are deferred
to §C.2).

To check if x ∈ Z
2
ℓ is 0 in ΠEq, we first compute the hamming

distance between a random value r ∈ Z
2
ℓ and the masked value

x + r, followed by checking if this distance is 0. Recall from §3, that

the hamming distance between two values p, q ∈ Z
2
ℓ is the number

of bits that are different in their bit representation. Let a = x + r
for some randomly chosen mask r ∈ Z

2
ℓ . Let c = dH (a, r) be the

hamming distance between a and r. Observe that if x = 0 then

a = r and thus, the hamming distance c = 0. If x ≠ 0, then the bit

representation of a and r differ in at least one position. Hence, the

hamming distance c ≠ 0. Thus, checking x = 0 can be reduced to

checking c = 0. Further, observe that a and r can differ in at most

ℓ bit positions. Hence, 0 ≤ c ≤ ℓ . Therefore, c and its [·]-shares
can be represented in ring Z2ℓ

7
. Thus, if parties generate [·]-shares

of c over Z2ℓ (henceforth, sharing over Z2ℓ is denoted as [·]2ℓ
),

then they can invoke an existing equality protocol, abstracted as a

functionality FEqZ (Fig. 3), on it. Note that FEqZ will be applied on

a smaller-sized 𝑂 (log ℓ)-bit input c.
We next explain the steps for computing the [·]-shares of c over

the ring Z
2
ℓ via the hamming distance computation protocol ΠHam.

Following this, steps for non-interactively translating [·]-shares
from Z

2
ℓ to [·]2ℓ

-shares over the smaller ring Z2ℓ is given. We then

discuss how FEqZ can be instantiated efficiently to realise a constant

round ΠEq protocol.

Protocol ΠHam: The protocol ΠHam takes as input [x] for x ∈ Z
2
ℓ

and outputs [c] (over Z
2
ℓ) where c = dH (x + r, r) for some random

mask r ∈ Z
2
ℓ . Since c denotes the number of bits where x + r and r

differ, observe that c can be obtained by computing the XOR of their

bits followed by computing the sum of the output of the XOR. To

facilitate this XOR computation, the bit representation of r and x+ r
are required, which are generated as follows. Parties can generate

[·]-shares of a random r ∈ Z
2
ℓ during the preprocessing phase. In

the online phase, once the input [x] is available, they can compute

[x] + [r] and reconstruct x + r. Given x + r is known on clear, its

bit representation can be computed locally. In order to generate

the bit representation of r, where r is required to be [·]-shared,
instead of first sampling [·]-shares of r (as described above) and

then generating its bit representation, parties first sample random

bits r𝑖 for 𝑖 ∈ {0, . . . , ℓ − 1}, and then generate r by composing these

bits. Elaborately, parties non-interactively generate [·]B-shares of
random bits r𝑖 ∈ Z2 for 𝑖 ∈ {0, . . . , ℓ − 1} (as discussed in §3).

Following this, they generate their arithmetic shares, [r𝑖], using
the Πbit2A protocol (§3), and set [r] =∑ℓ−1

𝑖=0
2
𝑖 [r𝑖]. Having obtained

arithmetic shares of bits in r and a = x + r, parties compute their

XOR by using the arithmetic equivalent of XOR, where p⊕ q can be

written as p + q − 2pq. Specifically, they compute [c𝑖] = a𝑖 ⊕ [r𝑖] =
a𝑖 + [r𝑖] − 2a𝑖 · [r𝑖] and set [c] =

∑ℓ−1

𝑖=0
[c𝑖]. The ΠHam protocol

appears in Fig. 1.

The online phase of ΠHam involves performing one reconstruc-

tion, requiring communicating 2ℓ bits in 1 round of interaction. The

preprocessing phase involves ℓ calls to bit to arithmetic conversion

protocol which requires communicating ℓ (𝜅 + ℓ) bits in 2 rounds of

interaction. Observe that although the hamming distance c ≤ ℓ , the

protocol ΠHam outputs shares of c in the ring Z
2
ℓ . We next describe

how to non-interactively convert the shares of c over the ring Z
2
ℓ

to shares over Z2ℓ .

7
Note that one can rely on the ring Zℓ . However, this results in the protocol having

a probability of failure that is 1/2
ℓ
. This failure probability can be eliminated by

relying on the ring Z2ℓ . The detailed failure probability analysis when working over

Zℓ appears in §C.1

313

Proceedings on Privacy Enhancing Technologies 2025(4) Jangir et al.

Inputs: [·]-shares of a value x ∈ Z
2
ℓ .

Outputs: [·]-shares of c over Z
2
ℓ where c = dH (x + r, r) for a random

r ∈ Z
2
ℓ .

Protocol:
Preprocessing:

– Parties sample [·]B-shares of r𝑖 ∈ Z2 for 𝑖 ∈ {0, . . . , ℓ − 1}
– Parties compute [r𝑖] = Πbit2A ([r𝑖]B) for 𝑖 ∈ {0, . . . , ℓ − 1}
– Parties compute [r] =∑ℓ−1

𝑖=0
2
𝑖 · [r𝑖]

Online:

– Parties compute [a] = [x] + [r] and reconstruct a
– Parties compute [c] =∑ℓ−1

𝑖=0
(a𝑖 + [r𝑖] − 2a𝑖 · [r𝑖])

Protocol ΠHam

Figure 1: Hamming distance protocol

Share conversion from ring Z
2
ℓ to Z2ℓ : Given [c], to generate

the additive shares of c over the ring Z2ℓ , denoted as [c]2ℓ
, party

𝑃𝑖 locally computes [c]2ℓ
𝑖 = [c]𝑖 mod 2ℓ . The correctness of this is

argued below.

Case 1: c = [c]
0
+ [c]

1
(over Z) : then [c]𝑖 ≤ 2ℓ for 𝑖 ∈ {0, 1}

Since c ≤ 2ℓ ,⇒ [c]𝑖 ≡ [c]𝑖 mod 2ℓ for 𝑖 ∈ {0, 1}
⇒ c ≡ c mod 2ℓ ≡ ([c]

0
+ [c]

1
) mod 2ℓ

⇒ c ≡ [c]2ℓ
0
+ [c]2ℓ

1

Case 2: c = [c]
0
+ [c]

1
− 2

ℓ
(over Z) : ⇒ c + 2

ℓ = [c]
0
+ [c]

1

⇒ (c + 2
ℓ) mod 2ℓ ≡ ([c]

0
+ [c]

1
) mod 2ℓ

⇒ c mod 2ℓ + 2
ℓ

mod 2ℓ ≡ [c]
0

mod 2ℓ + [c]
1

mod 2ℓ

⇒ c ≡ [c]2ℓ
0
+ [c]2ℓ

1
since 2ℓ |2ℓ due to the choice of ℓ = 8

In this way, [·]2ℓ
-shares of c can be generated, followed by invok-

ing FEqZ on it. Note that for correctness to hold, 2ℓ should divide 2
ℓ
.

Hence, we select the smallest ring size that satisfies this condition.

The complete protocol: To summarise, ΠEq takes as input two [·]-
shared values x, y ∈ Z

2
ℓ , and outputs [·]B-shares of bit z = 1{x = y}.

It begins by locally computing [x′] = [x] − [y]. This is followed by

invoking ΠHam on [x′] to compute [c] such that c = dH (x′ + r, r)
for a random r ∈ Z

2
ℓ . [c] is non-interactively converted to [c]2ℓ

via

the ring change transformation. Finally, FEqZ is invoked on [c]2ℓ
to

generate [z]B. Formal ΠEq protocol appears in Fig. 2 with security

proof in §G.

Inputs: [·]-shares of x, y ∈ Z
2
ℓ .

Outputs: [·]B-shares of a bit z such that z = 1{x = y}.
Protocol:
– Parties compute [x′] = [x] − [y]
– Parties compute [c] = ΠHam ([x′]) (Fig. 1)
– Party 𝑃𝑖 for 𝑖 ∈ {0, 1} locally sets [c]2ℓ

𝑖 = [c]𝑖 mod 2ℓ

– Parties invoke FEqZ (Fig. 3) on [c]2ℓ
to generate [z]B.

Protocol ΠEq

Figure 2: Equality protocol

Instantiating FEqZ: FEqZ (Fig. 3) takes as input a 𝑘-bit value x and
outputs [z]B such that z = 1{x = 0}. To ensure that ΠEq has linear

communication complexity with constant round complexity in the

online phase, we instantiate FEqZ with a distributed point function

(DPF) based equality protocol [16], denoted as ΠEqZ, since these are

the most efficient with respect to the online complexity. The DPF-

based equality protocol requires to communicate 2𝑘 bits in 1 round

of interaction in the online phase. The preprocessing phase of ΠEqZ

essentially involves generating the DPF keys. For this we rely on

the key generation protocol of [24] which requires communication

𝑘 (3𝜅 + 2)bits in 𝑘 rounds of interaction (for 𝑘-bit input). Since FEqZ

is invoked on log(2ℓ)-bit input in ΠEq, the online communication

cost due to FEqZ is only 2 log
2
(2ℓ) bits. Thus, ΠEq requires 2 rounds

and 2ℓ + 2 log
2
(2ℓ) bits of online communication where the linear

communication of 2ℓ bits is due to the reconstruction that occurs as

part of ΠHam. It is interesting to note that this linear communication

overhead in the online phase can be completely eliminated if one

chooses to operate over augmented additive sharing semantics

(§3). Elaborately, the reconstruction step in ΠHam can be made non-

interactive, thereby eliminating the 2ℓ bits of online communication.

This implies that the online cost of ΠEq will mainly be due to the

reliance on FEqZ, which is only 2 log(2ℓ) bits. Additionally, 2 bits
of communication are required to generate the augmented shares

from additive shares of z (output of FEqZ). Further details of this

protocol are deferred to §C.2.

FEqZ interacts with parties in P and ideal-world adversary S. It
receives as input [·]-shares of x ∈ Z

2
𝑘 from the parties and S, and

proceeds as follows.

– Reconstruct x using the received [·]-shares.
– If x = 0, set z = 1 else set z = 0, and generate [·]B-shares of z.
– Send (Output, [z]B𝑖) to 𝑃𝑖 for 𝑖 ∈ {0, 1}.

Functionality FEqZ

Figure 3: Ideal functionality for ΠEqZ

ΠEq vs. DPF-based equality: As can be observed from above,

the online communication and round complexity of DPF-based

equality turns out to be better than that of ΠEq. Given this, one

may be misled to think that DPF-based equality is better than

ΠEq. It is important to note here that despite DPF-based equality

having slightly better online communication and round complexity

than ΠEq, the main bottleneck in the former is the computation

cost. Elaborately, when operating on an ℓ-bit input, it requires ℓ

sequential PRG computations. On the contrary, since ΠEq invokes

the DPF-based equality on a 𝑂 (log(ℓ))-bit input, the number of

sequential PRG calls required is only log(2ℓ)). This saving in the

number of sequential PRG computations allows us to witness a

significant saving of around 4× for ℓ = 64-bit inputs, as evident

from the experimental numbers reported in Table 3 (§8). With

respect to the preprocessing, we note that using the key generation

protocol of [24] requires an exponential (in the input length ℓ)

number of PRG computations, which is highly inefficient when

ℓ > 16. While there exist other key generation protocols such as

[59] which require only a linear number of PRG calls, they have a

very high communication cost. Thus, existing DPF-based equality

protocols either have highly inefficient computation cost or high

communication cost in the preprocessing phase. On the other hand,

since ΠEq invokes the DPF-based equality on 𝑂 (log(ℓ))-bit inputs,
the number of PRG calls required in the preprocessing phase, when

relying on [24], is only linear therein. In this way, since computation

314

MatchQuest Proceedings on Privacy Enhancing Technologies 2025(4)

cost is the bottleneck in DPF-based equality protocols, and we

require invoking the latter only on 𝑂 (log(ℓ))-sized inputs, ΠEq

turns out to be more efficient than a DPF-based equality.

5 Exact Pattern Matching
Wenext present a secure two-party protocol for exact patternmatch-

ing. The protocol takes as input two arrays representing the text

T and the pattern P of size sT and sP, respectively. The protocol
outputs an array O of size sT − sP + 1 where the 𝑖𝑡ℎ-index of O
denotes whether P matches the sP-length subarray T[𝑖 : 𝑖 + sP − 1].
Note that the pattern can only start in positions 1 to sT − sP + 1 in T
since the pattern itself is sP-characters long. At a high level, the pro-

tocol works by searching for the occurrence of the pattern in every

sT − sP + 1 possible position. Note that there exist efficient clear-

text algorithms (e.g., Knuth-Morris-Pratt or Boyer-Moore) which

leverage information such as positions in the text or pattern that

contain the same characters to eliminate searching at certain posi-

tions and thereby improve efficiency. However, a secure solution

cannot leverage such information to improve efficiency as these

algorithms are not data-oblivious and leak information about the

pattern and text. Hence, to ensure data-obliviousness a secure solu-

tion would require searching for the occurrence of the pattern at

every sT − sP + 1 possible positions. Further note, the occurrence of

the pattern in each position in the text can be checked in parallel.

Hence, without loss of generality, we next discuss our approach to

check the occurrence of the pattern at position 𝑖 in T.
A straightforward approach to check for the occurrence of the

pattern at position 𝑖 in the text is as follows. Begin by checking the

equality of the characters in the pattern with the corresponding

characters in the text from position 𝑖 to 𝑖 + sP − 1, i.e., check P[𝑗] ?

=

T[𝑖+ 𝑗−1] for 𝑗 ∈ {1, . . . , sP}. Let the result of these equality checks
be stored in an arrayO′

𝑖 of size sP, i.e.,O
′
𝑖 [𝑗] = 1{P[𝑗] = T[𝑖+ 𝑗−1]}.

Observe that these sP equalities can be performed in parallel and

will require 2 rounds using the equality protocol described in §4.

Note that if P occurs at T[𝑖], then each entry in O′
𝑖 should be a 1. To

check for this, one can compute the AND of all the sP entries in O′
𝑖 .

Computation of this AND can be accomplished in log(sP) rounds
via the tree-based approach. Hence, the total number of rounds

required for checking the occurrence of P at T[𝑖] is 2 + log(sP). To
check for the occurrence of P in T, since this check can be performed

in parallel at each T[𝑖] for 𝑖 ∈ {1, . . . , sT − sP + 1}, performing exact

pattern matching requires 2 + log(sP) rounds. The protocol for the
same appears in Fig. 14. Observe here that despite our constant

round equality protocol, naively using it for exact pattern matching

does not yield a constant round protocol and instead results in a

protocol with round complexity dependent on the size of P.
We instead strive to design an exact pattern matching protocol

which has a constant online round complexity and also improves

in terms of the online communication and computation cost (Fig.

4). For this, we proceed as follows. Let T𝑖 denote the sP-length
substring of text beginning at position 𝑖 in T, i.e., T𝑖 = T[𝑖 : 𝑖 +
sP − 1]. We compute the difference between the characters in T𝑖
and P and store it in X𝑖 . To check if P matches T𝑖 , our goal boils
down to checking if each character in X𝑖 is a 0. While this can be

realised by computing the OR of all the entries in X𝑖 using the tree-

based approach discussed earlier, this will again require logarithmic

number of rounds. Instead, we achieve this in constant rounds as

follows.

Since parties have [·]-shares of the entries in X𝑖 , observe that
if each entry in X𝑖 is 0, then shares of X𝑖 held by one party will

be the negative of the shares held by the other party. That is, if

x = 0 then [x]
0
+ [x]

1
= 0 and hence [x]

0
= − [x]

1
. Thus, we

let one party, say 𝑃0, compute hash of concatenation of shares of

each entry in X𝑖 , while the other party 𝑃1 compute the hash of

the concatenation of the negative of its shares. That is, 𝑃0 com-

putes h𝑖0 = H ([X𝑖 [1]]0
| | [X𝑖 [2]]0

| | . . . | | [X𝑖 [sP]]0
) and 𝑃1 com-

putes h𝑖1 = H (− [X𝑖 [1]]1
| | − [X𝑖 [2]]1

| | . . . | | − [X𝑖 [sP]]1
). Our goal

reduces to checking for equality of h𝑖0 and h𝑖1, which can be re-

alised in constant rounds by invoking ΠEq on [·]-shares of h𝑖0, h𝑖1
of 𝜆 bits (hash size).

Observe that this protocol requires 2 rounds in the online phase.

Further, it has a communication complexity that is𝑂 (sT𝜆) (where 𝜆
denotes the bit-length of the hash), unlike the naive protocol whose

complexity is 𝑂 (sTsP). Moreover, observe that the number of calls

to ΠEq is also reduced to𝑂 (sT) in comparison to the𝑂 (sTsP) in the

naive solution.

Inputs: [·]-shares of text T with sT characters and pattern P with sP
characters, where each character in these two arrays is [·]-shared.
Outputs: [·]B-shares of (sT − sP + 1)-sized array O, where O[𝑖] = 1 if

P occurs at position 𝑖 in T, and 0 otherwise.

Protocol:
– For 𝑖 = 1 to sT − sP + 1

◦ [T𝑖] = [T[𝑖 : 𝑖 + sP − 1]], [X𝑖] = [T𝑖] − [P]
◦ 𝑃0 computes h𝑖0 = H ([X𝑖 [1]]0

| | [X𝑖 [2]]0
| | . . . | | [X𝑖 [sP]]0

) and
𝑃1 computes h𝑖1 = H (− [X𝑖 [1]]1

| | − [X𝑖 [2]]1
| | . . . | | − [X𝑖 [sP]]1

)
◦ Parties generate [·]-shares of h𝑖0, h𝑖1 non-interactively (§3)

◦ [O[𝑖]]B = ΠEq ([h𝑖0] , [h𝑖1]) (Fig. 2)

Protocol ΠExactPM

Figure 4: Exact pattern matching

As described earlier, note that relying on the equality protocol

that takes as input augmented secret shares results in inflating the

round complexity of ΠExactPM. This is because in Fig. 4, generating

J·K-shares of h𝑖0, h𝑖1 (to be fed as input to the equality protocol)

will require one round of interaction. This is unlike in the current

scenario where generating [·]-shares of h𝑖0, h𝑖1 can be performed

non-interactively.

Output of Pattern Matching: Following along prior works, we
designed our protocols to output positions where matches occur.

However, the type of output required may depend on the consid-

ered application. Alternate output types include revealing only the

existence of a match or the count of matches. We note that our

protocols can be extended efficiently to cater to these output types

as well–(1) count of matches can be computed without additional

overhead by summing the output vector (with 1s and 0s) gener-

ated in our protocol, (2) existence of a match can be computed

by checking if count equals zero, which requires one additional

equality check. Looking ahead, we note that these adaptations, to

provide alternative outputs, are also applicable to our wildcard and

approximate pattern matching protocols.

315

Proceedings on Privacy Enhancing Technologies 2025(4) Jangir et al.

6 Wildcard Pattern Matching
Unlike exact pattern matching, wildcard pattern matching allows

the pattern to include one ormore occurrences of a special character,

called a wildcard, which can match any character in the text. This

wildcard character can be represented as a 0 in the pattern. To

account for wildcards, the protocol takes an additional array W
of length sP as input, where W[𝑗] = 0 if the 𝑗 th character in P is

a wildcard, and a 1 otherwise. A pattern with wildcards is said to

match the substring in the text starting at position 𝑖 if for all for

𝑗 ∈ {1, . . . , sP}, P[𝑗] = T[𝑖 + 𝑗 − 1] orW[𝑗] = 0.

Unlike the case of exact pattern matching, the presence of wild-

card characters introduces an additional challenge. Recall that in

exact pattern matching, it sufficed to compute the difference of

the characters in P and T𝑖 denoted as X𝑖 , followed by checking if

each entry in X𝑖 is 0. In wildcard pattern matching, however, the

presence of wildcards will not result in X𝑖 computed in this way

to comprise entirely of all 0s since the wildcard character may not

match the corresponding character in T𝑖 . Hence, to account for wild-
cards, we ensure that before we compute X𝑖 , the characters in T𝑖
that correspond to wildcard positions are forced to be 0. To achieve

this, we proceed as follows. Recall that W is defined to have a 0 in

positions that contain a wildcard and 1 elsewhere. Hence, to force

the characters in T𝑖 corresponding to positions having wildcard

characters in P to 0, we perform a component-wise multiplication

of elements in W with those in T𝑖 . In this way, for positions where

there exists a wildcard character, the corresponding difference be-

tween characters in T𝑖 and P in X𝑖 will be 0. For the rest of the

positions, if the characters in T𝑖 and P match, only then the entries

in X𝑖 will be 0. Thus, if T𝑖 and P match in all positions except for

where a wildcard is present, the protocol correctly outputs a 1. Hav-

ing computed X𝑖 in this way, the protocol can now proceed as in

the case of exact pattern matching, where parties compute the hash

of the concatenation of the shares of entries in X𝑖 and check for the

equality of the hashes.

Inputs: [·]-shares of pattern P with sP characters, where each character

in the array is [·]-shared and P[𝑖] = 0 if the 𝑖th position in P is a wildcard.

J·K-shares of text T. Additionally, J·K-shares of arrayW of length sP such

that W[𝑗] = 0 if P[𝑗] is a wildcard character, and 1 otherwise.

Outputs: [·]B-shares of (sT − sP + 1)-sized array O, where O[𝑖] = 1 if

P occurs at position 𝑖 in T, and 0 otherwise.

Protocol:
– For 𝑖 = 1 to sT − sP + 1

◦ JT𝑖K = JT[𝑖 : 𝑖 + sP − 1]K
◦ Component-wise multiply elements in JT𝑖K and JWK via ΠNI

Mult to

generate

[
T′𝑖
]
, and set [X𝑖] =

[
T′𝑖
]
− [P]

◦ 𝑃0 computes h𝑖0 = H ([X𝑖 [1]]0
| | [X𝑖 [2]]0

| | . . . | | [X𝑖 [sP]]0
) and

𝑃1 computes h𝑖1 = H (− [X𝑖 [1]]1
| | − [X𝑖 [2]]1

| | . . . | | − [X𝑖 [sP]]1
)

◦ Generate [·]-shares of h𝑖0, h𝑖1
◦ [O[𝑖]]B = ΠEq ([h𝑖0] , [h𝑖1]) (Fig. 2)

Protocol ΠWildPM

Figure 5: wildcard pattern matching

Note that in the online phase, the above protocol requires one

round for the component-wise multiplication and 2 rounds for

equality check. Instead, we observe that the component-wise mul-

tiplication can be performed non-interactively in the online phase

by taking the inputs in an encoded fashion. Elaborately, we take

as input the augmented additive shares (J·K-shares) of T and W,

which allows generating additive shares ([·]-shares) of T𝑖 ∗W, non-

interactively, by invoking ΠNI
Mult (Fig. 7). The rest of the computation

continues operating on additive shares
8
. Finally, note that taking

J·K-shares of T,W as input and naively executing the steps discussed

earlier introduces the challenge that the pattern size and text size

should be known in the preprocessing phase. We discuss in §D.2

how this can be circumvented. The formal protocol for wildcard

pattern matching appears in Fig. 5.

7 Approximate Pattern Matching
Unlike wildcard pattern matching, the approximate variant allows

mismatches to occur even without specifying wildcard characters.

These mismatches can occur in any position. However, P is said to

approximately match a substring in T, if the number of mismatches

between P and the substring in T is within some public threshold 𝜏 .

Unlike the exact and wildcard pattern matching protocols, we

are now interested in identifying the number of mismatches, h, be-
tween P and a substring in T, followed by determining if h ≤ 𝜏 . Our

approach to determining h is as follows. Consider the scenario of

matching Pwith T at position 𝑖 , i.e., the substring T𝑖 = T[𝑖 : 𝑖+sP−1],
where 𝑖 ∈ {1, . . . , sT − sP + 1}. To determine h𝑖 that counts the num-

ber of mismatches between P and T𝑖 , we perform character-wise

equality (using ΠEq described in §4) and count the number of posi-

tions where these two strings mismatch. To facilitate counting the

number of mismatches, the outputs of the character-wise equality

checks have to be added. Since addition is an arithmetic operation,

the output of ΠEq is required to be generated as an arithmetic share

rather than a Boolean share, unlike as described in §4. Such an

equality protocol can be realised similar to ΠEq with the difference

that FEqZ (within ΠEq) is instantiated with a DPF-based equality

protocol such that it generates arithmetic shares of the output in-

stead of Boolean shares. This requires additionally communicating

ℓ log(ℓ) bits in the preprocessing phase. Having generated the arith-

metic shares of the output of equality, the number of mismatches

h𝑖 can now be computed locally by summing up these outputs of

equality check protocol, followed by checking if h𝑖 ≤ 𝜏 by invoking

Fcomp (Fig. 10).

A straightforward realization of the above steps for approximate

pattern matching results in requiring 2 online rounds for equality

protocol and 1 online round for Fcomp (assuming Fcomp is instan-

tiated via distributed comparison function (DCF) [16]). Thus, the

number of online rounds required is 3. Moreover, the online com-

munication is 𝑂 (sTsPℓ) bits due to the need for 𝑂 (sTsP) calls to
equality protocol required to check the equality of each character

in P with each character in T𝑖 for 𝑖 ∈ {1, . . . , sT − sP + 1}. We reduce

this round as well as communication complexity to 1 round and

𝑂 (sTℓ) bits, respectively, as follows. Note that unlike in the case of

exact and wildcard pattern matching where the equality protocol

is invoked on 𝜆 = 256 bit input (size of the hash), in approximate

8
Recall, as discussed in §5, that we do not rely on invoking the equality protocol

on J·K-shared inputs because this would require an additional round of interaction

to generate J·K-shares of h𝑖0, h𝑖1 . This is unlike in the current scenario where the

[·]-shares of h𝑖0, h𝑖1 , that are fed as input to ΠEq , can be generated non-interactively.

316

MatchQuest Proceedings on Privacy Enhancing Technologies 2025(4)

pattern matching, it is invoked on ℓ = 8 bit inputs. Hence, instead

of relying on our 2 round equality protocol, we can perform the

equality check by directly relying on DPF-based equality protocol.

Observe that since the latter is invoked on small-sized input, its

computation cost is reasonable, and it also results in having a re-

duced online round complexity of 1 in comparison to our equality

protocol. In fact, we are able to completely eliminate the online

cost due to the equality protocol by making the online phase of the

DPF-based equality protocol non-interactive, as follows.

DPF-based equality protocol [16] takes as input [·]-shares of
an ℓ-bit input. In its online phase, it reconstructs a masked value

corresponding to the input, which can abstracted out as generating

J·K-shares of the input. This step requires communicating 2ℓ-bits in

1 round of interaction. This is followed by local computation that

results in generating [·]-shares of the output. Hence, to save on the

interaction within the DPF-based equality, we take the inputs to

approximate pattern matching in an encoded fashion. This encod-

ing is essentially a J·K-sharing of the inputs instead of [·]-sharing.
Thus, encoding the inputs in this way allows us to realise the online

phase of the DPF-based equality protocol non-interactively. Fur-

ther, encoding the inputs also allows us to save on 𝑂 (sTsPℓ) bits of
communication which would have otherwise been required during

the online phase for each of the 𝑂 (sTsP) invocations of equality
(recall that each character in P is compared with each character in

T𝑖 for equality, for 𝑖 ∈ {1, . . . , sT − sP + 1}). Note that, as in the case

of wildcard pattern matching, taking as input J·K-shares of T and P
introduces challenges such as requiring the knowledge of pattern

size and text size in the preprocessing. We discuss in §D.2 how

this can be avoided. In this way, the approximate pattern matching

protocol requires only 1 round of interaction and communication

of 𝑂 (sTℓ) bits in the online phase (as required when instantiat-

ing Fcomp via DCFs). The formal protocol for approximate pattern

matching appears in Fig. 6 where ΠEqZA denotes the DPF-based

equality protocol with a non-interactive online phase. ΠEqZA takes

J·K-shares of the input, say x ∈ Z
2
ℓ and generates [·]-shares of z

such that z = 1 if x = 0 and z = 0 otherwise.

Inputs: J·K-shares of text T with sT characters and pattern P with sP
characters, where each character in these two arrays is J·K-shared. A
public threshold 𝜏 .

Output: [·]B-shares of (sT − sP + 1)-sized array O, where O[𝑖] = 1 if P
occurs at position 𝑖 in T with a mismatch of at most 𝜏 characters, and 0

otherwise.

Protocol:
– For 𝑖 = 1 to sT − sP + 1 do (in parallel)

◦ For 𝑗 = 1 to sP do (in parallel)

• JX𝑖 𝑗 K = JT𝑖 [𝑗]K − JP𝑖 [𝑗]K
•

[
h𝑖 𝑗

]
= ΠEqZA

(
JX𝑖 𝑗 K,Z2

ℓ

)
(Fig. 13)

◦ [h𝑖] =
∑sP

𝑗=1
(1 −

[
h𝑖 𝑗

]
)

◦ [O[𝑖]]B = Fcomp ([h𝑖] , 𝜏) (Fig. 10)

Protocol ΠApprxPM

Figure 6: Approximate pattern matching

8 Benchmarks
We empirically evaluate the performance of our equality check

protocol and the protocols for the considered variants of pattern

matching while accounting for various parameters. We benchmark

the performance over LAN on Ubuntu servers with AMD Ryzen

Threadripper PRO 5965WX, utilizing four cores with 16GB RAM.

The machines have a bandwidth of 1Gbps. We implement our pro-

tocols on top of MOTION2NX framework [17]. We consider a band-

width of 1 Gbps and 0.05 ms of latency for LAN. Our code accounts

for multi-threading wherever possible (4 threads). We note that our

code
9
is developed for benchmarking, is not optimised for industry-

grade use. We consider online run time and communication costs of

the protocols as benchmark parameters for comparison. We bench-

mark the preprocessing cost and report it in §F. For completeness,

we report the benchmarks over WAN in §F.

8.1 Performance of Equality
We compare the performance of our equality protocol, ΠEq, with

that of circuit-based equality protocols [12, 50] and DPF-based

equality protocol [16] across varying input lengths and report the

costs in Table 3. With respect to [12], ΠEq outperforms in terms

of run time and communication. As expected, the improvements

over [12] increase with the increase in input length, where we see

improvements of up to 4× and 1.9×, respectively, in terms of run

time and communication for 32B=256 bit inputs. This improve-

ment arises since [12] and [50] require a logarithmic number of

rounds as opposed to the constant 2 rounds for ΠEq. Moreover, the

communication cost of [12] is approximately 4ℓ bits as opposed

to 2ℓ + 2 log(2ℓ) bits for ΠEq. Compared to [50], we witness an

improvement of 1.9× and 1.28× in run time and communication

for 32B=256 bit inputs. Observe that for ℓ = 1𝐵, 2𝐵, [50] has better

communication complexity and the same round complexity as ours.

Despite this, our costs are comparable to that of [50]. Further, as

ℓ increases, our protocol outperforms the protocol of [50]. This is

because, as ℓ increases, the round complexity of [50] increases by

a factor of O(log(ℓ)) whereas our protocol has a constant round
complexity of 2 rounds. With respect to the protocol of [16], ΠEq

witnesses improvements of up to 9.7× in run time when considering

256-bit inputs (32B) despite having a slightly higher communication

cost. This is attributed to the improved computation cost of ΠEq,

which, as discussed in §4, requires only log(2ℓ) sequential calls to
a PRG unlike the ℓ sequential calls required in the protocol of [16].

Thus, as expected, with increasing ℓ , the improvements in run time

over [16] also increase from 1.2× to 9.7×. In this way, our protocol

attains a fast response time compared to prior approaches.

The work of [51] also provides an equality protocol in the 2PC

semi-honest setting, where they leverage an augmented additive

sharing scheme (J·K-sharing) to attain a fast online phase. When

drawing a comparison with the protocol of [51], directly comparing

it with ΠEq may not yield a fair comparison since ΠEq is designed to

be generic and operate with additive shares ([·]-shares) unlike [51].
Instead, we showcase how ΠEq can also leverage operating with

augmented additive shares to attain an improved online commu-

nication complexity and compare the resulting protocol with that

in [51]. While our modified equality protocol, ΠEqAS , is described

9
https://github.com/Bhavishrg/MOTION2NX/tree/PatternMatching

317

Proceedings on Privacy Enhancing Technologies 2025(4) Jangir et al.

Input size (B) Protocol Run time(ms) Comm. (B)

1

[12] 0.26 3.50

[50] 0.14 2.50

[16] 0.18 2.00

ΠEq 0.14 3.00

2

[12] 0.41 7.50

[50] 0.17 5.00

[16] 0.23 4.00

ΠEq 0.18 5.25

8

[12] 0.58 31.50

[50] 0.31 21.00

[16] 0.79 16.00

ΠEq 0.21 17.75

16

[12] 1.17 127.50

[50] 0.54 85.00

[16] 2.74 64.00

ΠEq 0.28 66.25

Table 3: Comparison of equality for varying input sizes.

in §C.2, its comparison with [51] appears in Table 4. Observe that

ΠEqAS improves in terms of run time and communication. This is

because the round complexity of ΠEqAS is just 2 instead of log
4
(ℓ)+1

in [51]. Moreover, ΠEqAS requires communicating only 2 log(2ℓ) + 2

bits as opposed to approximately 5ℓ/3 bits. This exponential saving

in rounds and communication is witnessed as an improvement of

up to 3.6× and 11.2×, respectively, for 256-bit (32B) inputs. This
improvement increases with increasing input size, as evident from

Table 4.

Input size (B) Protocol Run time (ms) Comm. (B)

1

[51] 0.21 1.75

ΠEqAS 0.14 1.25

2

[51] 0.35 3.25

ΠEqAS 0.17 1.50

8

[51] 0.53 13.50

ΠEqAS 0.21 2.00

32

[51] 0.99 28.00

ΠEqAS 0.27 2.50

Table 4: Comparison of equality when operating with aug-
mented additive sharing scheme for varying input sizes.

8.2 Performance of Pattern Matching Protocols
We next analyse the performance of our pattern matching protocols

in comparison to their naive solutions. Since the performance is

dependent on the pattern and text sizes, we vary these parameters

when analysing the same.

8.2.1 Exact pattern matching. Table 5 reports performance for ex-

act pattern matching
10
. As evident, our solution outperforms the

naive solution (Fig. 14) in terms of run time as well as communica-

tion, where we see improvements of up to 3 orders of magnitude

in the run time and 2 orders of magnitude in terms of communica-

tion. This improvement stems from the design of ΠExactPM, which

has a constant round complexity as opposed to 𝑂 (log(sP)) in the

naive solution. Moreover, ΠExactPM is designed to reduce the num-

ber of invocations to ΠEq where it requires only 𝑂 (sT) calls to ΠEq

as opposed to 𝑂 (sTsP) calls in the naive solution. This design of

ΠExactPM allows it to witness tremendous improvement in run time

and communication.

Further, observe that for a fixed sT, the run time of the naive

solution increases linearly with increasing sP. This is expected be-

cause both the round and communication complexity of the naive

solution have a dependency on sP as well. This is where our im-

provement comes in, where we make this complexity independent

of sP for ΠExactPM by reducing the number of calls to ΠEq as well as

introducing the hash-based optimisation. Elaborately, the number

of calls to ΠEq in ΠExactPM is sT − sP + 1, and this number reduces

as sP increases for a fixed sT. This reduction leads to a decrease in

run time as well as communication of ΠExactPM as sP increases.

Text size (sT) Pattern size (sP) Protocol Run time (s) Comm. (MB)

100B 10B

Naive 0.10 0.14

Ours 0.01 0.05

1KB

10B

Naive 1.06 1.58

Ours 0.07 0.51

100B

Naive 9.65 14.40

Ours 0.05 0.47

10KB

10B

Naive 10.59 15.98

Ours 0.59 5.19

100B

Naive 104.91 158.40

Ours 0.55 5.15

1KB

Naive 953.76 1440.02

Ours 0.46 4.68

Table 5: Performance of exact pattern matching for varying
text size (sT) and pattern size (sP) for ℓ = 8.

8.2.2 Wildcard pattern matching. Table 6 reports performance for

wildcard pattern matching. As evident, our solution outperforms

the naive solution (Fig. 15) in terms of run time as well as communi-

cation, where we see improvements of up to 3 orders of magnitude

in the run time as well as communication. Similar to exact pat-

tern matching, this improvement stems from the design of ΠWildPM,

which has a constant round complexity as opposed to𝑂 (log(sP)) in
the naive solution. Moreover, ΠWildPM requires only 𝑂 (sT) calls to
ΠEq as opposed to 𝑂 (sTsP) calls in the naive solution. This design

of ΠWildPM allows it to witness tremendous improvement in run

time and communication.

Further, observe that for a fixed sT, the run time of the naive

solution increases linearly with increasing sP. This is expected
10
When invoking equality on inputs from Z

2
𝑘 , we invoke FEqZ over Z𝑘 instead of

Z2𝑘 (for 𝑘 = 256 = 2
8
) since implementation for FEqZ supports operating on Z

2
8 .

Note that this change introduces a failure probability of
1

2
256

, as discussed in §C.1,

which is small for the pattern matching application.

318

MatchQuest Proceedings on Privacy Enhancing Technologies 2025(4)

Text size (sT) Pattern size (sP) Protocol Run time (s) Comm. (MB)

100B 10B

Naive 0.24 0.37

Ours 0.01 0.05

1KB

10B

Naive 2.55 4.12

Ours 0.07 0.51

100B

Naive 12.12 37.45

Ours 0.08 0.47

10KB

10B

Naive 23.23 41.56

Ours 0.61 5.19

100B

Naive 215.21 411.85

Ours 0.71 5.15

1KB

Naive 1969.80 3744.05

Ours 2.49 4.68

Table 6: Performance of wildcard pattern matching for vary-
ing text size (sT) and pattern size (sP) for ℓ = 8.

because both the round and communication complexity of the

naive solution have a dependency on sP as well. On the contrary,

this complexity is independent of sP for ΠWildPM. Similar to the case

of exact pattern matching, the number of calls to ΠEq in ΠWildPM
is sT − sP + 1, and this number reduces as sP increases for a fixed
sT. This reduction leads to a decrease in the communication cost

ΠWildPM as the sP increases. However, the run time of ΠWildPM
continues to increase with increasing sP, albeit at a slower rate.

The upward trend in run time stems from the fact that although

the communication and rounds are independent of sP, ΠWildPM
involves performing 𝑂 (sTsP) local multiplications in the first step.

The time taken for this computation overpowers the savings due to

the reduced round and communication complexity, and results in

showcasing an increasing run time with increasing sP. In fact, due

to this additional computation, the run time of ΠWildPM is slightly

higher than that of ΠExactPM.

8.2.3 Approximate pattern matching. Table 7 reports performance

for approximate pattern matching. As expected, ΠApprxPM outper-

forms the naive solution (Fig. 16) due to the saving in round as

well as communication complexity, where we see improvements

of up to 7× in communication. Despite the improved round and

communication complexity, we note that the saving brought in run

time brought in by ΠApprxPM over the naive solution is roughly only

8%. This is because local computations dominate the run time and

form the bottleneck. Additionally, when considering a fixed sT, we
note that the run time steadily increases despite the complexity

being independent of sP. This can again be attributed to the same

reason that computation costs form the bottleneck. Finally, note

that although the online communication and round complexity of

approximate pattern matching are better than exact and wildcard

pattern matching (Table 1), the former has a significantly high com-

putation cost. This results in the run time of approximate pattern

matching being higher than exact and wildcard variants.

8.2.4 Comparison with prior works. The code for most of the prior

works on secure pattern matching via MPC is not available. Hence,

we are unable to provide an explicit comparison with these. How-

ever, in what follows, we draw a direct comparison based on the

numbers reported in the respective works. To give a fair comparison,

Text size (sT) Pattern size (sP) Protocol Run time (s) Comm. (KB)

100B 10B

Naive 0.44 20.188

Ours 0.37 2.88

1KB

10B

Naive 4.15 221.788

Ours 4.06 31.68

100B

Naive 37.09 201.628

Ours 36.86 28.80

10KB

10B

Naive 41.16 2237.788

Ours 40.91 319.68

100B

Naive 408.04 2217.628

Ours 405.44 316.80

1KB

Naive 4428.64 2016.028

Ours 4074.68 288.00

Table 7: Performance of approximate pattern matching for
varying text size (sT) and pattern size (sP) for ℓ = 8.

we benchmark our protocols in a similar environment as considered

in the respective prior works. Hence, we also consider 𝑙 = 2 when

drawing a comparison.

For exact pattern matching, we report a comparison with the

protocol of [63] in Table 8 (first row). We observe improvements of

around two orders of magnitude in the response time. Note that we

were unable to establish a comprehensive analysis comparison with

respect to varying text and pattern lengths due to unavailability

of such data in [63]. With respect to [58], we note that they do

not tabulate costs for varying text lengths. Hence, a comparative

analysis could not be conducted.

Text size (sT) Pattern size (sP) Threshold (𝜏) Protocol Run time (s)

25B 5B 0

[63] 1.00

Ours 0.04

50B 10B 1

[63] 2.44

Ours 0.18

240B 48B 4

[63] 9.16

Ours 3.76

1.96KB 402B 9

[63] 77.89

Ours 12.33

5KB 1KB 14

[63] 262.49

Ours 25.35

Table 8: Comparison of exact (row 1) and approximate pattern
matching with [63] for varying text and pattern size for ℓ = 2.

For approximate pattern matching, Table 8 reports a compari-

son with the work of [63] for varying text size, pattern size and

threshold, as considered in [63]. In comparison to [63], we observe

improvements of up to 10.3× in response time. Moreover, for a

fixed pattern size and text size, we note that since the complexity

of ΠApprxPM is independent of the threshold, its complexity does

not vary as the threshold varies. On the contrary, the complexity of

[63] increases with an increase in the threshold. We are unable to

report such a comparison with respect to the approximate pattern

matching protocol of [58] for the same reasons as stated earlier.

Finally, with respect to wildcard patternmatching, in comparison

to the protocol of [57], although our protocol has the same round

complexity, its communication cost improves for larger values ℓ .

319

Proceedings on Privacy Enhancing Technologies 2025(4) Jangir et al.

We believe this will result in our protocol having a better response

time than that of [57]. However, since the implementation of [57]

does not allow varying ℓ , we are unable to empirically corroborate

our claims. Further, note that [57] operates in the client-server

setting. Hence, the client is required to actively participate in all

the computations, which is not the case in our protocol, thereby

enabling lightweight clients to utilize our protocol. Finally, unlike

in our protocols, [57] requires knowledge of pattern and text size

during preprocessing, which may not be feasible in practice.

9 Conclusion
We design secure solutions for three variants of pattern matching—

exact, wildcard and approximate. In the process, we design a novel

protocol for equality check which has a constant online round

complexity and linear online communication and outperforms all

the prior equality protocols [12, 15, 16, 22, 41, 48]. We implement

all our protocols for the different variants of pattern matching and

showcase how they improve over their respective naive solutions

and prior works.

Acknowledgments
Arpita Patra would like to acknowledge the support of the Center of

Excellence for Cybersecurity (CySecK) at Indian Institute of Science,

Government of Karnataka and Google Privacy Research Award.

Bhavish Raj Gopal would like to Acknowledge the financial support

provided by the Prime Minister’s Research Fellowship (PMRF-ID,

0202952).

References
[1] Mark Abspoel, Daniel Escudero, and Nikolaj Volgushev. Secure training of

decision trees with continuous attributes. Cryptology ePrint Archive, 2020.
[2] Nitish Andola, Sourabh Prakash, S Venkatesan, and Shekhar Verma. Improved

secure server-designated public key encryption with keyword search. In CICT
2017. IEEE, 2017.

[3] Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. Privacy-preserving

search of similar patients in genomic data. Cryptology ePrint Archive, 2017.
[4] Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny Pinkas,

Katsumi Takahashi, and Junichi Tomida. Efficient secure three-party sorting

with applications to data analysis and heavy hitters. In CCS, 2022.
[5] Mikhail J Atallah, Florian Kerschbaum, and Wenliang Du. Secure and private

sequence comparisons. In Proceedings of the 2003 ACM Workshop on Privacy in
the Electronic Society, 2003.

[6] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key encryption

with keyword search revisited. In ICCSA 2008. Springer, 2008.
[7] Joshua Baron, Karim El Defrawy, Kirill Minkovich, Rafail Ostrovsky, and Eric

Tressler. 5pm: Secure pattern matching. Journal of computer security, 21, 2013.
[8] Donald Beaver. Efficient multiparty protocols using circuit randomization. In

CRYPTO, 1992.
[9] Battista Biggio, Giorgio Fumera, Ignazio Pillai, and Fabio Roli. A survey and

experimental evaluation of image spam filtering techniques. Pattern recognition
letters, 2011.

[10] Wang BingJian, Chen TzungHer, and Jeng FuhGwo. Security improvement

against malicious server’s attack for a dpeks scheme. Int J Inf Educ Technol, 2011.
[11] Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana Raykova,

and Kevin Shi. A simple obfuscation scheme for pattern-matching with wildcards.

In CRYPTO, 2018.
[12] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-

performance secure multi-party computation for data mining applications. Inter-
national Journal of Information Security, 11, 2012.

[13] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.

Public key encryption with keyword search. In International conference on the
theory and applications of cryptographic techniques. Springer, 2004.

[14] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E Skeith III. Public

key encryption that allows pir queries. In Annual International Cryptology
Conference. Springer, 2007.

[15] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant

Kumar, and Mayank Rathee. Function secret sharing for mixed-mode and fixed-

point secure computation. In Eurocrypt, 2021.
[16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocessing

via function secret sharing. In TCC, 2019.
[17] Lennart Braun, Rosario Cammarota, and Thomas Schneider. A generic hybrid 2PC

framework with application to private inference of unmodified neural networks

(extended abstract). In PriML@NeurIPS, 2021.
[18] Philipp Bucher and Amos Bairoch. A generalized profile syntax for biomolecular

sequence motifs and its function in automatic sequence interpretation. In Ismb,
1994.

[19] Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon Lee. Off-line

keyword guessing attacks on recent keyword search schemes over encrypted

data. In Workshop on secure data management. Springer, 2006.
[20] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. ASTRA:

High Throughput 3PC over Rings with Application to Secure Prediction. In ACM
CCSW@CCS, 2019.

[21] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Marcel Keller, Peter Scholl,

and Nikolaj Volgushev. New primitives for actively-secure mpc over rings with

applications to private machine learning. In IEEE S&P, 2019.
[22] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.

Unconditionally secure constant-rounds multi-party computation for equality,

comparison, bits and exponentiation. In TCC, 2006.
[23] Sarang Dharmapurikar and John W Lockwood. Fast and scalable pattern match-

ing for network intrusion detection systems. IEEE JSAC, 2006.
[24] Jack Doerner and Abhi Shelat. Scaling oram for secure computation. In CCS,

2017.

[25] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.

Improved primitives for mpc over mixed arithmetic-binary circuits. In CRYPTO,
2020.

[26] Laurent Falquet, Marco Pagni, Philipp Bucher, Nicolas Hulo, Christian JA Sigrist,

Kay Hofmann, and Amos Bairoch. The prosite database, its status in 2002. Nucleic
acids research, 2002.

[27] Keith B Frikken. Practical private dna string searching and matching through

efficient oblivious automata evaluation. In Data and Applications Security XXIII:
23rd Annual IFIP WG 11.3 Working Conference. Springer, 2009.

[28] Rosario Gennaro, Carmit Hazay, and Jeffrey S Sorensen. Text search protocols

with simulation based security. In PKC, 2010.
[29] Ashish Prosad Gope and Rabi Narayan Behera. A novel pattern matching algo-

rithm in genome sequence analysis. International Journal of Computer Science
and Information Technologies, 2014.

[30] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and

pattern matching with security against malicious and covert adversaries. In TCC,
2008.

[31] Carmit Hazay and Tomas Toft. Computationally secure pattern matching in the

presence of malicious adversaries. JoC, 2014.
[32] Wing-Kail Hon, Rahul Shah, and Jeffrey S Vitter. Ordered pattern matching:

Towards full-text retrieval. 2006.

[33] Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal,

and Somya Sangal. Vogue: Faster computation of private heavy hitters. TDSC,
2022.

[34] Jonathan Katz and Lior Malka. Secure text processing with applications to private

dna matching. In CCS, 2010.
[35] Florian Kerschbaum. Practical private regular expression matching. In IFIP

International Information Security Conference. Springer, 2006.
[36] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. Deductive program

repair. In International Conference on Computer Aided Verification, 2015.
[37] Vladimir Kolesnikov, Mike Rosulek, and Ni Trieu. Swim: Secure wildcard pattern

matching from ot extension. In FC, 2018.
[38] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. SWIFT: Super-fast

and robust privacy-preserving machine learning. In USENIX Security, 2021.
[39] Peeter Laud and Jan Willemson. Universally composable privacy preserving

finite automata execution with low online and offline complexity. Cryptology
ePrint Archive, 2013.

[40] Dongmei Li, Xiaolei Dong, and Zhenfu Cao. Secure and privacy-preserving

pattern matching in outsourced computing. SCN, 2016.
[41] Helger Lipmaa and Tomas Toft. Secure equality and greater-than tests with

sublinear online complexity. In ICALP, 2013.
[42] Ning Luo, Chenkai Weng, Jaspal Singh, Gefei Tan, Ruzica Piskac, and Mariana

Raykova. Privacy-preserving regular expression matching using nondeterminis-

tic finite automata. Cryptology ePrint Archive, 2023.
[43] Ning Luo, Chenkai Weng, Jaspal Singh, Gefei Tan, Mariana Raykova, and Ruzica

Piskac. Privacy-preserving regular expression matching using tnfa. In European
Symposium on Research in Computer Security, pages 225–246. Springer, 2024.

[44] Victor Wing-Kit Mak, Kuo Chu Lee, and Ophir Frieder. Exploiting parallelism in

pattern matching: An information retrieval application. ACM TOIS, 1991.
[45] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. Rabbit:

Efficient comparison for secure multi-party computation. In FC, 2021.

320

MatchQuest Proceedings on Privacy Enhancing Technologies 2025(4)

[46] Payman Mohassel, Salman Niksefat, Saeed Sadeghian, and Babak Sadeghiyan.

An efficient protocol for oblivious DFA evaluation and applications. In CT-RSA,
2012.

[47] Payman Mohassel, Salman Niksefat, Saeed Sadeghian, and Babak Sadeghiyan.

An efficient protocol for oblivious dfa evaluation and applications. In CT-RSA
2012. Springer, 2012.

[48] Takashi Nishide and Kazuo Ohta. Multiparty computation for interval, equality,

and comparison without bit-decomposition protocol. In PKC, 2007.
[49] Koji Nuida. Privacy-preserving datase search protocol for chemical compounds

with additive-homomorphic encryption. In Proc. Computer Security Symposium
2012, Oct., 2012.

[50] Satsuya Ohata and Koji Nuida. Communication-efficient (client-aided) secure

two-party protocols and its application. In International Conference on Financial
Cryptography and Data Security, 2020.

[51] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. ABY2.0:

Improved mixed-protocol secure two-party computation. In USENIX Security,
2021.

[52] Hong Qin, Hao Wang, Xiaochao Wei, Likun Xue, and Lei Wu. Privacy-preserving

wildcards pattern matching protocol for iot applications. IEEE Access, 7, 2019.
[53] Takanori Saito and Toru Nakanishi. Designated-senders public-key searchable

encryption secure against keyword guessing attacks. In CANDAR 2017. IEEE,
2017.

[54] Mohamad Hasan Samadani and Mehdi Berenjkoub. Secure outsourced pattern

matching based on bit-parallelism. The Modares Journal of Electrical Engineering,
16, 2016.

[55] Thomas Schneider and Oleksandr Tkachenko. Episode: efficient privacy-

preserving similar sequence queries on outsourced genomic databases. In Proceed-
ings of the 2019 ACM Asia conference on computer and communications security,
2019.

[56] Juan RamónTroncoso-Pastoriza, Stefan Katzenbeisser, andMehmet Celik. Privacy

preserving error resilient dna searching through oblivious automata. In CCS,
2007.

[57] Xiaochao Wei, Lin Xu, Minghao Zhao, and Hao Wang. Secure extended wildcard

pattern matching protocol from cut-and-choose oblivious transfer. Information
Sciences, 529, 2020.

[58] Xiaochao Wei, Minghao Zhao, and Qiuliang Xu. Efficient and secure outsourced

approximate pattern matching protocol. Soft Computing, 22, 2018.
[59] Peng Yang, Zoe L Jiang, Shiqi Gao, Jiehang Zhuang, Hongxiao Wang, Junbin

Fang, Siuming Yiu, and Yulin Wu. Fssnn: Communication-efficient secure neural

network training via function secret sharing. Cryptology ePrint Archive, 2023.
[60] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and

Takeshi Koshiba. Privacy-preserving wildcards pattern matching using symmet-

ric somewhat homomorphic encryption. In ACISP, 2014.
[61] Wei-Chuen Yau, Raphael C-W Phan, Swee-Huay Heng, and Bok-Min Goi. Key-

word guessing attacks on secure searchable public key encryption schemes with

a designated tester. International Journal of Computer Mathematics, 2013.
[62] Fang Yu, Randy H Katz, and Tirunellai V Lakshman. Gigabit rate packet pattern-

matching using tcam. In Proceedings of the 12th IEEE International Conference on
Network Protocols, 2004. ICNP 2004., pages 174–183. IEEE, 2004.

[63] Maryam Zarezadeh, Hamid Mala, and Behrouz Tork Ladani. Efficient secure

pattern matching with malicious adversaries. TDSC, 2020.
[64] L. Zhou, Z. Wang, H. Cui, Q. Song, and Y. Yu. Bicoptor: Two-round secure three-

party non-linear computation without preprocessing for privacy-preserving

machine learning. In S&P, 2023.

A Related Works
Here, we discuss other orthogonal lines of works related to pattern

matching.

String similarity: An orthogonal line of work considers the ques-

tion of determining the similarity between a given string (pattern)

and each string in a database of strings [3, 5, 37, 55]. Unlike our set-

ting, where we consider the pattern and substring of the text to be

of equal length, the focus in these works is on securely computing

edit distance metrics to compute the similarity of two strings of

different lengths. Finally, these works aim to propose new metrics

for computing edit distance or focus on improving the efficiency of

existing metrics.

Regular expression matching: Another set of works [27, 35, 39,

42, 43, 47] consider a more generic verison of pattern matching

known as regular expressing matching. Here, the pattern is repre-

sented in the form of a regular expression and aim is to identify a

match in text using this structured pattern. We note that these pro-

tocols are less efficient in comparison to customized exact, wildcard

and approximate pattern-matching protocols. They often incur a

round complexity linear in the pattern size and communication

complexity in the order of alphabet size making them inefficient

for the scenarios considered in this work.

Public-key encryption with keyword search: Another orthog-
onal line of work [2, 6, 10, 13, 14, 19, 49, 53, 61] considers the

question of designing encryption schemes that allows performing

search on the ciphertexts. These techniques are designed for ap-

plications where a client stores encrypted data on external server,

subsequently performing search on this data. Here it is often as-

sumed that text and pattern come from the same client, and pattern

is required to be known in advance as encryption depends on it. It

is non-trivial to extend them for general pattern-matching.

B Preliminaries
Non-interactive multiplications: The formal protocol for ΠNI

Mult
appears in Fig. 7

Inputs: J·K-shares of x, y ∈ Z
2
ℓ .

Outputs: [·]-shares of z = xy.

Protocol:
Preprocessing:

– Party 𝑃 𝑗 for 𝑗 ∈ {0, 1} samples random [𝛿z] 𝑗
– Parties execute ΠsetupMULT

(
[𝛿x] ,

[
𝛿y

])
to generate

[
𝛿xy

]
.

Online:

Local Computation
– Party 𝑃 𝑗 for 𝑗 ∈ {0, 1} locally computes [z] = 𝑖 · mxmy − mx

[
𝛿y

]
𝑖
−

my [𝛿x]𝑖 +
[
𝛿xy

]
𝑖
.

Protocol ΠNI
Mult

Figure 7: Non-interactive multiplication protocol

Bit to arithmetic: Given [·]B −shares of values x, the bit to arith-

metic protocol generates [·]-shares of x. Let xa denote the value of x
when viewed over the ℓ−bit ring Z

2
ℓ . Observe that, x = [x]

0
⊕ [x]

1
,

thus xa can be expressed as xa = [x]a
0
+ [x]a

1
− 2 [x]a

0
· [x]a

1
. To

generate [·]-shares of xa, parties generate [·] shares of y such that

y = [x]a
0
· [x]a

1
using the multiplication protocol. Following this,

party 𝑃𝑖 for 𝑖 ∈ {0, 1} can compute [xa]𝑖 = [x]a𝑖 − 2 [y]𝑖 . We denote

the protocol as ΠBit2A and the formal details appear in Fig. 8.

321

Proceedings on Privacy Enhancing Technologies 2025(4) Jangir et al.

Inputs: [·]B-shares of x ∈ Z
2
ℓ .

Outputs: [·]-shares of x.
Protocol:
– Parties generate [y] = [x]a

0
· [x]a

1
using correlated OTs.

– Party 𝑃𝑖 for 𝑖 ∈ {0, 1} locally computes [xa]𝑖 = [x]a𝑖 − 2 [y]𝑖

Protocol ΠBit2A

Figure 8: Bit to arithmetic protocol

DPF based equality: The formal protocol for DPF based equality

of [16] appears in Fig. 9. Here, FDistKeyGen denotes the ideal func-

tionality that realises the DPF 𝐺𝑒𝑛(·) algorithm. In our protocols,

we instantiate FDistKeyGen using the protocol of [24].

Inputs: [·]B-shares of x, y ∈ Z
2
ℓ .

Outputs: [·]-shares of y such that z = 1 if x = y and 0 otherwise.

Protocol:
Preprocessing:

– Parties 𝑃0 and 𝑃1 invoke FDistKeyGen on random J·K-shared value r to
obtain evaluation key 𝑘0 and 𝑘1 respectively.

Online:

– Parties compute [x′] = [x] − [y] + [r].
– Party 𝑃𝑖 sends [x′]𝑖 to 𝑃𝑖−1 to reconstruct x′ .
– Party 𝑃𝑖 sets JzK𝑖 = 𝐸𝑣𝑎𝑙 (𝑖, 𝑘𝑖 , x′) .
– Parties output [z].

Protocol Πdpfeq

Figure 9: DPF based equality protocol of [16]

Comparison: The ideal functionality for comparison appears in

Fig. 10. While Fcomp can be instantiated using circuit-based com-

parison of [51], this incurs a round complexity of log
4
ℓ . Instead, we

instantiate Fcomp with via distributed comparison function (DCF)

which has a constant round complexity of 1 round.

Fcomp interacts with parties in P and S. It receives as input [·]-shares
of x, y ∈ Z

2
𝑘 from the parties and S, and proceeds as follows.

– Reconstruct x, y using the received [·]-shares.
– If x ≤ y, set z = 1 else set z = 0, and generate [·]B-shares of z.
– Send (Output, [z]B𝑖) to 𝑃𝑖 for 𝑖 ∈ {0, 1}.

Functionality Fcomp

Figure 10: Ideal functionality for secure comparison

C Equality
C.1 Error Analysis
Recall that in the equality protocol to check if x ∈ Z

2
ℓ is 0, we

rely on calculating the Hamming distance c between a randomly

chosen value r ∈ Z
2
ℓ and the masked value a = x + r. The protocol

then checks if c equals zero. Since a and r can differ in at most

ℓ bit positions, it follows that 0 ≤ c ≤ ℓ . Observe that when c is
represented in the ring Zℓ , if c = ℓ (in Z), then c = ℓ mod ℓ = 0 (in

Zℓ). Consequently, the protocol may yield an incorrect result when

c = ℓ since it gets mapped to 0 in Zℓ . However, we show that the

probability that this erroneous event occurs is negligible in ℓ , i.e.,

the probability of c = ℓ is at most
1

2
ℓ . Hence for cases where ℓ is

large, we can work with the ring Zℓ instead of Z2ℓ .

This probability can be explained by considering that c = dH (x+
r, r) = ℓ implies that x + r = r̄, where r̄ represents the bitwise

complement of r. Now, we claim that for any given x ∈ Z
2
ℓ , there

exists at most one r ∈ Z
2
ℓ satisfying x + r = r̄. This can be reasoned

as follows: If x + r = r̄, then x = r̄ − r. We now consider two cases.

Case 1: x is even. Observe that if x is even, no such r can exist

to satisfy this equation. This is because if r is odd, then r̄ is even,
and vice versa. Consequently, r̄ − r will always be odd. Hence, the
probability that the hamming distance c = ℓ is 0 if x is even.

Case 2: x is odd. In this case, there exists precisely one r for which
the equation holds. Let’s assume for contrary that two such values,

r and r′, exist such that x = r̄ − r = r̄′ − r′. We can consider two

cases: (i) If r > r′, this implies that r̄ < r̄′ (this is because, at the first
position from MSB where r and r′ differ, r will have 1, and r′ will
have 0 since r > r′. When we take the complement of both, r̄ will
have 0, and r̄′ will have a 1 at this position (while all the previous

positions from MSB will be the same) which implies r̄ < r̄′). This
further implies that r̄ − r < r̄′ − r′. This directly contradicts our

assumption that x = r̄ − r = r̄′ − r′. (ii) Conversely, if r < r′, this
implies that r̄ > r̄′, which leads to r̄ − r > r̄′ − r′. Again, this
contradicts our assumption that x = r̄− r = r̄′− r′. Thus, there exists
a unique r such that, x = r̄ − r when x is odd and the probability of

randomly sampling such an r is 1

2
ℓ .

C.2 Equality With Augmented Secret Sharing
We rely on the following primitives from [51] for designing our

equality protocol over augmented secret sharing, (i) Bit to arith-

metic conversion (Πbit2AAS): Given J·KB-shares of a bit x ∈ Z2 , proto-

col Πbit2AAS allows to generate its J·K-shares. The protocol requires
one round of interaction in the online phase. (ii) Resharing (ΠReSH):

Given [·]-shares of a value x ∈ Z
2
ℓ , protocol ΠReSH allows to gener-

ate J·K-shares of x. The protocol requires one round of interaction

in the online phase. (iii) Conversion from J·K-shares to [·]-shares,
non-interactively: Given J·K-shares of a value x ∈ Z

2
ℓ , its [·]-shares

can be obtained non-interactively as—𝑃0 sets [x]
0
= mx − [𝛿x]0

while 𝑃1 sets [x]1
= − [𝛿x]1

.

Hamming distance computation. The protocol ΠHamAS takes as

input augmented shares, JxK for x ∈ Z
2
ℓ and outputs augmented

shares, JcK (over Z
2
ℓ) where c = dH (x + r, r) for some random

mask r ∈ Z
2
ℓ . The protocol follows along the lines of protocol

ΠHam. However, the online phase of the protocol can be made

non-interactive as follows. Recall that for a value x ∈ Z
2
ℓ that is J·K-

shared, there exists a uniformly random input-independent mask

𝛿x ∈ Z
2
ℓ that is [·]-shared that (in the preprocessing phase), and

there exists a masked value mx = x + 𝛿x such that mx is known

to both the parties in P. Given this, to reconstruct a = x + r in
the protocol, parties first reconstruct a′ = 𝛿x + r. Observe that

can happen in the preprocessing phase as shares of both 𝛿x and r
are independent of the input x and available to both parties in the

preprocessing phase. Following this, the parties can reconstruct

a = a′+mx locally as both parties knowmx. The rest of the protocol

follows along the lines of ΠHam. The formal protocol for ΠHamAS

protocol appears in Fig. 11. The protocol requires communication

322

MatchQuest Proceedings on Privacy Enhancing Technologies 2025(4)

of ℓ (𝜅 + ℓ) + 2ℓ bits in the preprocessing phase while it is non-

interactive in the online phase.

Equality. The protocol ΠEqAS takes as input two J·K-shared
values x, y ∈ Z

2
ℓ , and outputs J·KB-shares of bit z = 1{x = y}.

The protocol follows along the lines of ΠEq except that it works

on augmented additive sharing. It begins by locally computing

Jx′K = JxK − JyK. This is followed by invoking ΠHamAS on Jx′K to
compute the JcK such that c = dH (x′+ r, r) for a random r ∈ Z

2
ℓ . JcK

is locally converted to [c], followed by non-interactively generating
[c]2ℓ

via the ring change transformation. Following this, parties

invoke FEqZ on [c]2ℓ
to generate [z]B. Finally, ΠReSH is invoked on

[z]B to generate JzKB. The formal protocol for ΠEq appears in Fig.

12. The protocol ΠHamAS is non-interactive in the online phase, this

eliminates the linear communication overhead in the online phase.

The formal protocol for ΠEqAS protocol appears in Fig. 12. The pro-

tocol requires communication of ℓ (𝜅 + ℓ) + log(2ℓ) (3𝜅 + 2) + 2ℓ

bits in the preprocessing phase, while it requires 2 rounds and

2(log(2ℓ) + 1) bits of communication in the online phase. The costs

follow from the costs of ΠHamAS , ΠEqZ and ΠReSH.

Inputs: J·K-shares of a value x ∈ Z
2
ℓ .

Outputs: J·K-shares of c over Z
2
ℓ where c = dH (x + r, r) for a random

r ∈ Z
2
ℓ .

Protocol:
Preprocessing:

– Parties sample J·KB-shares of r𝑖 ∈ Z2 for 𝑖 ∈ {0, . . . , ℓ − 1}
– Parties compute Jr𝑖K = Πbit2AAS

(
Jr𝑖KB

)
for 𝑖 ∈ {0, . . . , ℓ − 1}

– Parties compute JrK =
∑ℓ−1

𝑖=0
2
𝑖 · Jr𝑖K and generate [r] from JrK (see

§3)

– Parties compute [a′] = [𝛿x] + [r] and reconstruct a′

Online:

– Parties set a =mx+a′ and compute JcK =
∑ℓ−1

𝑖=0

(
a𝑖 + Jr𝑖K − 2a𝑖 · Jr𝑖K

)

Protocol ΠHamAS

Figure 11: Hamming distance computation with a random
value

Inputs: J·K-shares of x, y ∈ Z
2
ℓ .

Outputs: J·KB-shares of a bit z such that z = 1{x = y}.
Protocol:
– Parties compute Jx′K = JxK − JyK
– Parties compute JcK = ΠHamAS

(
Jx′K

)
(Fig. 11).

– Parties generate [c] from JcK
– Party 𝑃𝑖 for 𝑖 ∈ {0, 1} locally sets [c]2ℓ

𝑖 = [c]𝑖 mod 2ℓ

– Parties invoke FEqZ (Fig. 3) on [c]2ℓ
to generate [z]B.

– Parties generate JzKB = ΠReSH ([z]) .

Protocol ΠEqAS

Figure 12: Equality protocol

C.3 Non-interactive Protocol for Equality With
Zero

The non-interactive protocol for equality with zero over augmented

additive shares is given in Fig. 13. The protocol takes as input

J·K-shares of a value x and outputs [·]-shares of the z such that

z = 1{x = 0}. Our protocol relies on the generation and evaluation

of DPF as described in [16]. The preprocessing phase of the protocol

involves distributively generating the DPF keys for the point 𝛿x.

We abstract this as a functionality FDistKeyGen which takes as input

[·]-shares of a value r and outputs keys 𝑘0, 𝑘1 such that 𝑃𝑖 receives

𝑘𝑖 . We instantiate it with the distributed key generation protocol of

[24]. The online phase involves the evaluation of the DPF function

[16] on the shared keys, denoted as 𝐸𝑣𝑎𝑙 (·). This function takes as

input the party index 𝑖 , the corresponding key 𝑘𝑖 , and the masked

input𝑚𝑥 and outputs party 𝑃𝑖 ’s share of the output.

Inputs: J·K-shares of x ∈ Z
2
ℓ .

Outputs: [·]-shares of z over Z
2
ℓ such that z = 1{x = 0}.

Protocol:
Preprocessing:

– Parties invoke FDistKeyGen ([𝛿x]) to distributively generate keys such

that 𝑃𝑖 receives 𝑘𝑖 .

Online:

Local Computation
– Party 𝑃𝑖 computes [z]𝑖 = 𝐸𝑣𝑎𝑙 (𝑖,mx, 𝑘𝑖) .

Protocol ΠEqZA

Figure 13: Equality with zero over augmented secret sharing

D Pattern Matching
D.1 Naive Variants of Pattern Matching
The formal protocol for the naive variants of exact, wildcard and

approximate PM appears in Fig. 14, Fig. 15 and Fig. 16 respectively

Inputs: [·]-shares of T with sT characters and P with sP characters,

where each character in these two arrays is [·]-shared.
Outputs: [·]B-shares of (sT − sP + 1)-sized array O, where O[𝑖] = 1 if

P occurs at position 𝑖 in T, and 0 otherwise.

Protocol:
– For 𝑖 = 1 to sT − sP + 1 do (in parallel)

◦ For 𝑗 = 1 to sP do (in parallel)

•
[
O′
𝑖 [𝑗]

]B
= ΠEq ([P[𝑗]] , [T[𝑖 + 𝑗 − 1]]) (Fig. 2)

– For 𝑖 = 1 to sT − sP + 1 do (in parallel)

◦ [O[𝑖]]B = ∧sP
𝑗=1

[
O′
𝑖 [𝑗]

]B

Protocol ΠExactPM-Naive

Figure 14: Naive exact pattern matching

Inputs: [·]-shares of text T with sT characters and pattern P with sP
characters, where each character in these two arrays is [·]-shared. Addi-
tionally, [·]-shares of array W of length sP such that W[𝑖] = 0 if P[𝑖] is
a wildcard character, and 1 otherwise.

Protocol ΠWildPM-Naive

323

Proceedings on Privacy Enhancing Technologies 2025(4) Jangir et al.

Outputs: [·]B-shares of (sT − sP + 1)-sized array O, where O[𝑖] = 1 if

P, with wildcard characters, occurs at position 𝑖 in T, and 0 otherwise.

Protocol:
– For 𝑖 = 1 to sT − sP + 1

◦ [T𝑖] = [T[𝑖 : 𝑖 + sP − 1]]
◦ Component-wise multiply [T𝑖] and [W] via Πmult to generate

[
T′𝑖
]

◦ For 𝑗 = 1 to sP do (in parallel)

•
[
O′
𝑖 [𝑗]

]B
= ΠEq ([P[𝑗]] , [T𝑖 [𝑗]]) (Fig. 2)

– For 𝑖 = 1 to sT − sP + 1 do (in parallel)

◦ [O[𝑖]]B = ∧sP
𝑗=1

[
O′
𝑖 [𝑗]

]B
Figure 15: Naive wildcard pattern matching

Inputs: [·]-shares of text T with sT characters and pattern P with sP
characters, where each character in the arrays are [·]-shared. A public

threshold 𝜏 .

Output: [·]B-shares of (sT − sP + 1)-sized array O, where O[𝑖] = 1 if P
occurs at position 𝑖 in T with a mismatch of at most 𝜏 characters, and 0

otherwise.

Protocol:
– For 𝑖 = 1 to sT − sP + 1 do (in parallel)

◦ For 𝑗 = 1 to sP do (in parallel)

•
[
h𝑖 𝑗

]
= ΠEqA ([T𝑖 [𝑗]] , [P𝑖 [𝑗]])

◦ [h𝑖] =
∑sP

𝑗=1
(1 −

[
h𝑖 𝑗

]
)

◦ [O[𝑖]]B = Fcomp ([h𝑖] , 𝜏) (Fig. 10)

Protocol ΠApprxPM-Naive

Figure 16: Naive approximate pattern matching

D.2 Input Sharing for Pattern Matching
Recall that our protocols work in the secure outsourced setting.

This entails the clients (pattern and text owner) secret sharing the

inputs to the servers that carry out the MPC protocol for pattern

matching. They obtain the output in secret shares and reconstruct it

towards the intended recipient. Recall that for exact pattern match-

ing protocol the clients have to generate [·]-shares of the input
towards the server. The generation of [·]-shares towards the server
for an ℓ−bit input x held by a client can be achieved as follows. The

client locally generates [·] −shares of x and sends [x]𝑖 to server 𝑃𝑖
for 𝑖 ∈ {0, 1}. This requires 1 round and 2ℓ bits of communication

from clients to the servers. In the case of wildcard pattern matching

and approximate pattern matching we use special input encoding

where some of the input are taken as augmented secret shares (J·K-
shares). Recall that in J·K-sharing of a value x, there exists a random
mask 𝛿x independent of x that is [·] shared between the parties.

The generation of J·K-shares towards the server for an ℓ−bit input x
held by a client can be achieved as follows. First, the client receives

the randomness 𝛿x used by the servers in the preprocessing phase

following which the client generates and sends mx = x + 𝛿x to

the servers. This requires 2 rounds and 4ℓ bits of communication

between the client and the servers. This can be further optimised

by establishing a common PRF key between each of the servers

and the client in the setup phase. In this case, the server 𝑃𝑖 , for

𝑖 ∈ {0, 1}, and the client use the shared key to sample [𝛿x]𝑖 . This

allows the client to non-interactively obtain 𝛿x and thus reduce the

cost of input sharing to 1 round and 2ℓ bits of communication.

In the case of wildcard patternmatching and approximate pattern

matching, naively using the encoding requires the servers to know

the size of the pattern and the text in the preprocessing phase. We

take the example of wildcard pattern matching to elucidate this.

The inputs to wildcard pattern matching consist of [P] where every
character in the pattern is [·]-shared, JTK where every character in

the text is J·K-shared and JWK where each element in the wildcard

array W is J·K-shared. Thus the parties generate [𝛿T [𝑗]] for 𝑗 ∈
{1, ..., sT} and [𝛿W [𝑘]] for 𝑘 ∈ {1, ..., sP} (using the common PRF

keys established with the text and pattern owner). To check whether

a match occurs at position 𝑖 , the first step entails multiplying the

𝑗𝑡ℎ character in the text substring T𝑖 with the 𝑗𝑡ℎ element in the

wildcard array W for 𝑗 ∈ {1, . . . , sP + 1}. This is computed using

ΠNI
Mult (Fig. 7) on inputs JW[𝑗]K and JT𝑖 [𝑗]K. The preprocessing

phase for the same involves generating [·]-shares of 𝛿T𝑖 [𝑗]W[𝑗] =
𝛿T𝑖 [𝑗] · 𝛿W[𝑗] . Thus, to check for match in all positions, the parties

have to generate 𝛿T𝑖 [𝑗]W[𝑗] = 𝛿T𝑖 [𝑗] · 𝛿W[𝑗] for all 𝑖 ∈ {0, 1, ..., sT −
sP + 1} and 𝑗 ∈ {1, ..., sP}. Observe that for the parties to perform
this computation, they should be aware of the sP and sT.

We next describe how the servers can perform the preprocessing

when the pattern and text size are not known. The preprocessing

for approximate pattern matching also follows along the same

lines with the only difference being the computations involved

in the preprocessing phase. In the case of approximate pattern

matching, the computations involve the generation of the keys for

DPFs corresponding to the point 𝛿T𝑖 [𝑗]−𝛿P[𝑗] for all 𝑖 ∈ {0, 1, ..., sT−
sP + 1} and 𝑗 ∈ {1, ..., sP}.. On a high level, the servers preprocess

many instances of wildcard pattern matching for fixed text and

pattern size. Later, during the input-sharing phase, the servers

receive multiple sharings of the same input depending on the size

of the pattern and text. Elaborately, let m and n be the size of

the pattern and text that the parties fix during the preprocessing.

The parties in the preprocessing generate [𝛿T [𝑗]] , [𝛿W [𝑘]] and[
𝛿T[𝑗]W[𝑘]

]
= [𝛿T [𝑗] · 𝛿W [𝑘]] 𝑗 ∈ {1, ...,m}, 𝑘 ∈ {1, ..., n}. There

are four possible cases:

Case 1: sP ≤ m and sT ≤ n. Parties use [𝛿T [𝑗]] for 𝑗 ∈ {1, ..., sT}
and [𝛿W [𝑘]] for 𝑘 ∈ {1, ..., sP} and discard the remaining prepro-

cessing data. Thus, parties have all necessary preprocessing data to

proceed with the computation.

Case 2: sP > m and sT ≤ n. Let sP ≤ 𝑞 ·m. For simplicity assume

that 𝑞 = 2. In this case, parties take 2 copies of the shares of T
as input denoted by T1, T2

. Let W = W1 | |W2
such that W1

is of

size𝑚 and W2
is of size sP −m. In the preprocessing, the parties

perform the necessary preprocessing corresponding to T1,W1
and

T2,W2
(assuming W2

is of length m). Thus, during the preprocess-

ing, the parties generate

[
𝛿T1 [𝑗]

]
,
[
𝛿W1 [𝑘]

]
and

[
𝛿T1 [𝑗]W1 [𝑘]

]
and[

𝛿T2 [𝑗]
]
,
[
𝛿W2 [𝑘]

]
and

[
𝛿T2 [𝑗]W2 [𝑘]

]
for 𝑗 ∈ {1, ...,m}, 𝑘 ∈ {1, ..., n}.

Following this the parties have JT1K, JT2K and JW1K, JW2K after

the input sharing phase. Now to check for the occurrence of pat-

tern at position 𝑖 , the parties construct the text substring T𝑖 as
T1 [𝑖 : 𝑖 +𝑚] | |T2 [𝑖 +m + 1 : sP]. Observe that, from JT1K, JT2K, the
parties can construct JT𝑖 𝑗 K non-interactively. Following this, the

324

MatchQuest Proceedings on Privacy Enhancing Technologies 2025(4)

parties can proceed with the computation as they have the neces-

sary preprocessing data corresponding to JT𝑖K and JWK. For any
sP ≤ 𝑞 ·m, the parties take 𝑞 copies of T as input.

Case 3: sP ≤ m and sT > n. Let sT ≤ 𝑟 · n. For simplicity as-

sume that 𝑟 = 2. In this case, parties take 2 copies of the shares

of W as input denoted by W1,W2
. Let T = T1 | |T2

such that T1
is

of size 𝑛 and T2
is of size sT − n. In the preprocessing, the parties

perform the necessary preprocessing corresponding to T1,W1
and

T2,W2
(assuming T2

is of length n). Thus, during the preprocess-

ing, the parties generate

[
𝛿T1 [𝑗]

]
,
[
𝛿W1 [𝑘]

]
and

[
𝛿T1 [𝑗]W1 [𝑘]

]
and[

𝛿T2 [𝑗]
]
,
[
𝛿W2 [𝑘]

]
and

[
𝛿T2 [𝑗]W2 [𝑘]

]
for 𝑗 ∈ {1, ...,m}, 𝑘 ∈ {1, ..., n}.

Following this the parties have JT1K, JT2K and JW1K, JW2K after the
input sharing phase. Observe that the parties have the necessary

preprocessing to check for the occurrence of the pattern at positions

1 to n− sP + 1. Similarly, for positions n+ 1 to sT − sP + 1, the parties

have the necessary preprocessing to check for the occurrence of the

pattern. Now to check for the occurrence of the pattern at position

𝑖 ∈ {n − sP + 2, ..., n}, the parties construct the text substring T𝑖 as
T1 [𝑖 : 𝑖 +n] | |T[n+ 1 : sP] andW asW1 [1 : n− 𝑖] | |W2 [n− 𝑖 + 1 : m].
Observe that, from JT1K, JT2K, JW1K and JW2K the parties can con-

struct JT𝑖 𝑗 K and JW2K non-interactively. Following this, the parties

can proceed with the computation as they have the necessary pre-

processing data corresponding to JT𝑖K and JWK. For any sT ≤ 𝑟 ·m,

the parties take 𝑟 copies of W as input.

Case 4: sP > m and sT > n. Let sP ≤ 𝑞 · m and sT ≤ 𝑟 · n. This
case is an amalgamation of cases 2 and 3 where the parties take 𝑞

copies of T and 𝑟 copies of W.

Depending on the application scenario, m and n can be chosen

to ensure that 𝑞 and 𝑟 are small constants. Thus, the client-to-server

communication remains O(sT + sP).

E Communication Complexity
We let ℓ denote the number of bits required to represent the char-

acter, let sP denote the number of characters in the pattern P and

sT denote the number of characters in the text T. Let 𝜅 denote the

computational security parameter and 𝜆 denote the hash size.

Lemma E.1: The protocol ΠHam (Fig. 1) requires communication

ℓ (𝜅 + ℓ) bits in the preprocessing, while it requires 1 round and 2ℓ

bits communication in the online phase.

Proof. The preprocessing cost involves ℓ invocation of Πbit2A
which requires ℓ (𝜅 + ℓ) bits. The online phase involves one recon-
struction which requires 1 round and 2ℓ bits of communication. □

Lemma E.2: The protocol ΠEqZ [16] instantiated with DPFs requires

communication of ℓ (3𝜅 + 2) bits in the preprocessing phase, while

it requires 1 round and ℓ bits of communication in the online phase.

Proof. The preprocessing cost involves distributed generation

DPF of which requires a communication of ℓ (3𝜅 + 2) bits ([24]).
The online phase involves one reconstruction which requires 1

round and 2ℓ bits of communication. □

Lemma E.3: The protocol ΠEq (Fig. 2) when instantiated with ΠEqZ

requires communication of ℓ (𝜅 + ℓ) + log(2ℓ) (3𝜅 + 2) bits in the

preprocessing phase, while it requires 2 rounds and 2(ℓ + log(2ℓ))
bits of communication in the online phase.

Proof. The costs follow from the costs of protocols ΠHam and

one invocation of EqZ instantiated with DPFs where log(2ℓ) bits
are required to represent the input. □

Lemma E.4: The protocol ΠExactPM (Fig. 4) requires communication

(sT − sP + 1) (𝜆(𝜅 + 𝜆) + log(2𝜆) (3𝜅 + 2)) bits in the preprocessing
phase, while it requires 2 rounds and 2 (sT − sP + 1) (𝜆 + log(2𝜆))
bits of communication in the online phase.

Proof. This complexity follows from (sT − sP + 1) parallel in-
vocations of ΠEq on input of size 𝜆. □

Lemma E.5: The protocol ΠWildPM (Fig. 5) requires communication

of (sT − sP + 1) (𝜆(𝜅+𝜆)+log(2𝜆) (3𝜅+2)+sP (𝜅+ℓ)) bits in the pre-
processing phase, while it requires 2 rounds and 2 (sT − sP + 1) (𝜆+
log(2𝜆)) bits of communication in the online phase.

Proof. This complexity follows from (sT − sP + 1) sP parallel

invocations of ΠNI
Mult followed by (sT − sP + 1) invocations of ΠEq

on input of size 𝜆. □

Lemma E.6: The protocol ΠApprxPM (Fig. 6) requires communication

of (sT − sP + 1) (sPℓ (3𝜅 + 2ℓ) + ℓ (3𝜅 + 4)) bits in the preprocess-

ing, while it requires 1 round and 2 (sT − sP + 1) ℓ bits of communi-

cation in the online phase.

Proof. This complexity follows from (sT − sP + 1) sP invoca-

tions of ΠEqZA and (sT − sP + 1) invocations of Fcomp. □

F Benchmarks
F.1 Preprocessing Cost
We report the preprocessing cost of our equality and pattern match-

ing protocols. We note that the preprocessing cost reported is just

an estimate computed by accounting for all the computation and

communication involved in the protocol. Table 9 reports the pre-

processing cost of our equality protocol. Table 10, Table 11, and

Table 12 report the preprocessing cost of our exact, wildcard and

approximate pattern matching protocols, respectively.

Input size (B) Run time (ms) Comm. (KB)

1 294.01 0.17

2 369.50 0.35

8 374.64 1.62

32 376.21 12.40

Table 9: Preprocessing cost of our equality protocol for vary-
ing input sizes.

F.2 WAN Benchmarks
In this section, we report the benchmarks of our protocol on WAN.

We consider a bandwidth of 100 Mbps and 100 ms of latency for

WAN.

325

Proceedings on Privacy Enhancing Technologies 2025(4) Jangir et al.

Text size (sT) Pattern size (sP) l Run time (min) Comm. (MB)

100B 10B 0.01 8.93

1KB

10B 0.04 98.11

100B 0.37 89.19

10KB

10B 0.40 989.90

100B 3.47 980.98

1KB 37.27 891.80

Table 10: Preprocessing cost of exact pattern matching for
varying text size(sT) and pattern size (sP) for ℓ = 8.

Text size (sT) Pattern size (sP) l Run time (min) Comm. (MB)

100B 10B 0.01 9.02

1KB

10B 0.08 99.13

100B 0.43 90.12

10KB

10B 0.52 1000.21

100B 3.87 991.20

1KB 54.30 901.09

Table 11: Preprocessing cost of wildcard pattern matching
for varying text size(sT) and pattern size (sP) for ℓ = 8.

Text size (sT) Pattern size (sP) l Run time (min) Comm. (GB)

100B 10B 0.01 0.01

1KB

10B 0.21 0.03

100B 1.03 0.24

10KB

10B 1.39 0.27

100B 7.97 2.67

1KB 115.39 24.20

Table 12: Preprocessing cost of approx pattern matching for
varying text size(sT) and pattern size (sP) for ℓ = 8.

F.2.1 Equality: Table 13 reports the comparison of a single invo-

cation of the equality protocol while varying ℓ from 8 to 256. As

expected, our protocol witnesses improvements of up to 4× and 2×
over the circuit based protocols of [12] and [50] respectively. With

respect to the DPF based protocol of [16], our protocol has a higher

runtime and communication. This is because when considering

a single invocation of equality over WAN, the overhead due to

latency dominates the computational overhead of [16]. Yet, when

multiple parallel invocations are considered, typical in applications

like PHH, PPML, and PM, our equality protocol outperforms [16].

For a small number of parallel equality checks, [16] has better run

time. However, as the number of parallel invocations increases,

the computational overhead of [16] becomes dominant, and our

protocol becomes increasingly competitive. Particularly, with 100

parallel equality checks, our costs are comparable with those of

[16], and beyond 150 invocations, our protocol clearly outperforms

1 10 100 1000 10000

0

1,000

2,000

3,000

Number of multiplications

T
i
m
e
(
s
)

[12]

[50]

[16]

Ours

Figure 17: Comparison of equality for varying number of
parallel equality invocations for ℓ = 256.

it. Specifically, our improvements increase from 1.2× to 6.27×when

increasing the number of parallel invocations of equality from 150

to 10000. This showcases that our protocols are more suitable for

real-world applications.

Input size (B) Protocol Run time(ms) Comm. (B)

1

[12] 303.45 3.50

[50] 218.17 2.50

[16] 101.32 2.00

ΠEq 199.75 3.00

2

[12] 443.60 7.50

[50] 211.07 5.00

[16] 102.73 4.00

ΠEq 198.29 5.25

8

[12] 490.89 31.50

[50] 303.72 21.00

[16] 115.27 16.00

ΠEq 196.92 17.75

16

[12] 817.44 127.50

[50] 405.19 85.00

[16] 105.22 64.00

ΠEq 205.26 66.25

Table 13: Comparison of equality protocol for varying input
sizes on WAN.

F.2.2 Pattern matching: Table 14 reports the performance of exact

pattern matching overWAN.We observe an improvement of up to 4

orders of magnitude in runtime in comparison to the naive variant.

Table 15 reports performance of wildcard pattern matching. We

observe an improvement of up to 4 orders of magnitude in runtime

in comparison to the naive variant. Finally, Table 16 reports the

performance of approximate pattern matching. Similar the the LAN

setting we observe that our protocol only has slight improvement

326

MatchQuest Proceedings on Privacy Enhancing Technologies 2025(4)

over the naive variant. Further the runtime of the protocols remains

comparable to that of WAN. This shows that the computation cost

of aprroximate pattern matching dominates the run time.

Text size (sT) Pattern size (sP) Protocol Run time (s) Comm. (MB)

100B 10B

Naive 1.06 0.14

Ours 2.07 0.05

1KB

10B

Naive 10.65 1.58

Ours 2.13 0.51

100B

Naive 98.06 14.40

Ours 2.15 0.47

10KB

10B

Naive 108.50 15.98

Ours 9.28 5.19

100B

Naive 1056.67 158.40

Ours 9.64 5.15

1KB

Naive 9496.47 1440.02

Ours 9.12 4.68

Table 14: Performance of exact pattern matching for varying
text size (sT) and pattern size (sP) for ℓ = 8 on WAN.

Text size (sT) Pattern size (sP) Protocol Run time (s) Comm. (MB)

100B 10B

Naive 1.29 0.37

Ours 0.20 0.05

1KB

10B

Naive 10.94 4.12

Ours 0.39 0.51

100B

Naive 100.20 37.45

Ours 0.32 0.47

10KB

10B

Naive 111.11 41.56

Ours 0.98 5.19

100B

Naive 1029.47 411.85

Ours 0.96 5.15

1KB

Naive 10250.84 3744.05

Ours 2.50 4.68

Table 15: Performance of wildcard patternmatching for vary-
ing text size (sT) and pattern size (sP) for ℓ = 8 on WAN.

Text size (sT) Pattern size (sP) Protocol Run time (s) Comm. (KB)

100B 10B

Naive 0.54 20.188

Ours 0.47 2.88

1KB

10B

Naive 4.64 221.788

Ours 4.18 31.68

100B

Naive 38.16 201.628

Ours 37.67 28.80

10KB

10B

Naive 42.25 2237.788

Ours 42.00 319.68

100B

Naive 418.11 2217.628

Ours 413.46 316.80

1KB

Naive 4484.34 2016.028

Ours 4197.28 288.00

Table 16: Performance of approximate pattern matching for
varying text size (sT) and pattern size (sP) for ℓ = 8 on WAN.

G Security Proofs
In this section, we provide security proofs for our 2PC protocols in

the standard real-world/ideal-world simulation paradigm. Let A
denote the real-world adversary and S denote the ideal-world ad-

versary. Without loss of generality, we provide the simulator proof

for the case where A corrupts 𝑃0. Since the protocol is symmetric,

the simulation for the case of corrupt 𝑃1 follows similarly. All our

protocols are proven secure in the Fsetup-hybrid model where there

exists an ideal functionality Fsetup to establish common PRF keys

among parties in P. This allows the parties to sample common

random values among themselves non-interactively. Note that the

simulation begins with the simulator S emulating Fsetup to estab-

lish the common keys with the adversary. Since S has access to the

inputs and randomness of A, it can simulate the steps in the real

protocol. In the following, we first provide the ideal functionalities

for the protocols followed by the security proofs.

Protocol ΠHam. The ideal functionality for the hamming distance

protocol ΠHam (Fig. 1) appears in Fig. 18. Let FBit2A denote the ideal

functionality for the bit to arithmetic conversion protocol, Πbit2A.

We have the following lemma.

Lemma G.1: The protocol, ΠHam (Fig. 1) securely realizes the func-

tionality FHam (Fig. 18) in the computational setting against a

semi-honest adversary that corrupts at most one party in P, in

the (FBit2A)-hybrid model.

FEqz-Exp interacts with parties in P and S. It receives as input
[·]-shares of the x from the parties and S, and proceeds as follows.

– Reconstruct x using the received [·]-shares.
– Sample a random r ∈ Z

2
ℓ and compute c = dH (x + r, r) .

– Generate J·K-shares of c.
– Send (Output, [c]𝑖) to 𝑃𝑖 for 𝑖 ∈ {0, 1}.

Functionality FHam

Figure 18: Ideal functionality for ΠHam

S𝑃
0

ΠHam
proceeds as follows.

Preprocessing:

– Non-interactively generate [·]B-shares for random bits r𝑖 ∈ Z2 for

𝑖 ∈ {0, . . . , ℓ − 1}.
– Emulates FBit2A on [r𝑖]B to generate their [·]-shares.
Online:

– Sample and send a random value v ∈ Z
2
ℓ as the honest party’s [·]-

share of a.

Simulator S𝑃
0

ΠHam

Figure 19: Simulator S𝑃0

ΠHam
for corrupt 𝑃0

Proof. The simulator S𝑃0

ΠHam
for a corrupt 𝑃0 appears in Fig. 19.

The simulator emulates FBit2A to simulate the steps ofΠbit2A. Follow-

ing this, S𝑃0

ΠHam
sends a random value v ∈ Z

2
ℓ to A as its [·]-share

of a′. Observe that emulating FBit2A guarantees indistinguishability

of A’s view in the ideal world and the real world. Moreover, the

a reconstructed in the real world is random due to the use of the

random mask r. In the simulation, sinceA receives a random value

327

Proceedings on Privacy Enhancing Technologies 2025(4) Jangir et al.

from S𝑃0

ΠHam
for reconstructing a′, A’s view in the real-world and

ideal-world remain indistinguishable. Observe that the output of

the honest party 𝑃1 in the ideal world protocol is a randomly chosen

share. The output of the honest party in the real protocol is com-

puted as a linear combination of random values [r𝑖]1
for 𝑖 = 0 to

ℓ − 1 (ref Fig. 1) and hence is a random value. Further, the output of

the honest party is independent of the output of S𝑃0

ΠHam
in the ideal

world, and similarly, the output of the honest party is independent

of the view of A in the real world. Hence the joint distribution

of the output of the S𝑃0

ΠHam
and the output of the 𝑃1 in the ideal

world protocol is indistinguishable from the joint distribution of

the view of A and the output of the honest party in the real world

protocol. □

Protocol ΠEq. The ideal functionality for the equality protocol

ΠEq (Fig. 2) appears in Fig. 20.

Lemma G.2: The protocol, ΠEq (Fig. 2) securely realizes the function-

ality FEq (Fig. 20) in the computational setting against a semi-honest

adversary that corrupts at most one party in P, in the

(
FHam, FEqZ

)
-

hybrid model.

Proof. The simulator for a corrupt 𝑃0 appears in Fig. 21. The

simulator emulates FHam. This is followed by local computations to

generate [·]2ℓ
-shares of c. Finally, the simulator emulates FEq. Ob-

serve that emulating FHam and FEq guarantees indistinguishability

of A’s view in the ideal-world and real-world with respect to the

corresponding MPC protocols. With respect to the local operations,

the generation [c]2ℓ
from [c] results in generating random shares

of c over the ring Z2ℓ . This can be argued as follows. The probability

of picking a random value in Z2ℓ is
1

2ℓ
. We will showcase that the

probability of [c]2ℓ
𝑖 for 𝑖 ∈ {0, 1}, generated via the ring change,

mapping to a random value k ∈ Z2ℓ is also
1

2ℓ
. Observe that all val-

ues of the form (k+ 𝑗 ·2ℓ) mod 2
ℓ
when run through the ring change

protocol map to k in Z2ℓ . This is because (k mod 2
ℓ + 𝑗 · 2ℓ mod 2

ℓ)
mod 2ℓ = k. Thus, there exist 2

ℓ

2ℓ
unique values in Z

2
ℓ that map to

the same k in Z2ℓ . Hence, the probability of [c]𝑖 mapping to k ∈ Z2ℓ

is

(
2
ℓ

2ℓ

)
/2

ℓ = 1

2ℓ
. Finally, observe that the output of the honest party

𝑃1 in the ideal world protocol is a randomly chosen share. The

output of the honest party in the real protocol is a random value

(ref Fig. 2). Further, the output of the honest party is independent of

the output of S𝑃0

ΠHam
in the ideal world, and similarly, the output of

the honest party is independent of the view of A in the real world.

Hence joint distribution of output of S𝑃0

ΠHam
and the output of the

𝑃1 in the ideal world protocol is indistinguishable from the joint

distribution of the view of A and the output of the honest party in

the real world protocol. □

FEq interacts with parties in P and S. It receives as input [·]-shares of
the x and y from the parties and S, and proceeds as follows.

– Reconstruct x and y using the received [·]-shares.
– If x = y, set z = 1 else set z = 0, and generate [z]B.
– Send (Output, [z]B𝑖) to 𝑃𝑖 for 𝑖 ∈ {0, 1}.

Functionality FEq

Figure 20: Ideal functionality for ΠEq

S𝑃
0

ΠEq
proceeds as follows.

– Emulate the FHam on [·]-shares of x′ = x − y to generate [·]-shares
of c.
– Computing [c]2ℓ = [c] mod 2ℓ .

– Emulate FEqZ with input [c]2ℓ
.

Simulator S𝑃
0

ΠEq

Figure 21: Simulator S𝑃0

ΠEq
for corrupt 𝑃0

Exact pattern matching. Observe that the protocol for exact

pattern matching ΠExactPM (Fig. 4) relies on invoking the equality

protocol ΠEq, whose security follows as described above. Hence,

ΠExactPM is computationally secure in the semi-honest adversarial

setting with at most one corruption.

Wildcard pattern matching. Observe that the protocol for wild-
card pattern matching ΠWildPM (Fig. 5) relies on ΠNI

Mult and ΠEq and

performs some non-interactive operations. Note that the security

of ΠNI
Mult follows from [51] and the security of ΠEq was established

in Lemma G.2. Additionally, ΠWildPM relies on parties locally com-

puting a collision-resistant hash on their [·]-share and generating

random [·]-shares of these values, where the security of generating
[·]-shares also follows from [51]. Hence, ΠWildPM is computation-

ally secure in the semi-honest adversarial setting with at most one

corruption.

Approximate pattern matching. Observe that the protocol for
approximate pattern matching ΠApprxPM (Fig. 6) relies on ΠEqZA

and Fcomp. The security follows from security of ΠEqZA and Fcomp

instantiated with DPFs and DCFs.

328

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Organisation

	2 Related Works
	3 Preliminaries
	4 Equality Check
	5 Exact Pattern Matching
	6 Wildcard Pattern Matching
	7 Approximate Pattern Matching
	8 Benchmarks
	8.1 Performance of Equality
	8.2 Performance of Pattern Matching Protocols

	9 Conclusion
	Acknowledgments
	References
	A Related Works
	B Preliminaries
	C Equality
	C.1 Error Analysis
	C.2 Equality With Augmented Secret Sharing
	C.3 Non-interactive Protocol for Equality With Zero

	D Pattern Matching
	D.1 Naive Variants of Pattern Matching
	D.2 Input Sharing for Pattern Matching

	E Communication Complexity
	F Benchmarks
	F.1 Preprocessing Cost
	F.2 WAN Benchmarks

	G Security Proofs

