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Abstract
Federated learning (FL) proposes to train a global machine learning

model across distributed datasets. However, the aggregation proto-

col as the core component in FL is vulnerable to well-studied attacks,

such as inference attacks, poisoning attacks [71] and malicious par-

ticipants who try to deviate from the protocol [24]. Therefore, it is

crucial to achieve both malicious security and poisoning resilience

from cryptographic and FL perspectives, respectively. Prior works

either achieve incomplete malicious security [76], address issues by

using expensive cryptographic tools [22, 59] or assume the avail-

ability of a clean dataset on the server side [32].

In this work, we propose AlphaFL, a two-server secure aggrega-
tion protocol achieving bothmalicious security in the universal
composability (UC) framework [19] and poisoning resilience in
FL (thus malicious

2
) against a dishonest majority. We design mali-

ciously secure multi-party computation (MPC) protocols [24, 26, 48]

and introduce an efficient input commitment protocol tolerating

server-client collusion (dishonest majority). We also propose an effi-

cient input commitment protocol for the non-collusion case (honest

majority), which triples the efficiency in time and quadruples that

in communication, compared to the state-of-the-art solution in

MP-SPDZ [46]. To achieve poisoning resilience, we carry out 𝐿∞
and 𝐿2-Norm checks with a dynamic 𝐿2-Norm bound by introduc-

ing a novel silent select protocol, which improves the runtime by at

least two times compared to the classic select protocol. Combining

these, AlphaFL achieves malicious
2
security at a cost of 25% − 79%

more runtime overhead than the state-of-the-art semi-malicious

counterpart Elsa [76], with even less communication cost.
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1 Introduction
Federated Learning (FL) [63] enables the training of machine learn-

ingmodels acrossmultiple data sourceswithout centralizing data. In

FL, clients train models locally on their own datasets and then send

the local gradient updates to a central server, which aggregates

and redistributes the consolidated model. This iterative process

continues until the model converges. FL is designed to safeguard

user privacy, but it does not offer a definitive assurance of pri-

vacy protection. For example, if an adversary gains access to the

gradient updates sent from individual clients, it may be able to de-

duce information from the clients’ local datasets [13, 14, 22, 59, 76].

A wide range of research has examined and explored various in-

ference attacks that could compromise the privacy of FL systems

[5, 27, 39, 40, 68]. To counteract such attacks, secure aggregation is

applied to safeguard the privacy of the clients’ input data [22, 59, 76].

Another challenge in FL is its susceptibility to poisoning attacks. In

such attacks, malicious actors can inject corrupted updates into the

learning system with the intent of degrading the accuracy of the

global model [11, 80, 84] or embedding backdoors [33, 70, 85, 89]

that could be exploited in the future. Therefore, it is crucial to

achieve the following goals to maintain the robustness of FL sys-

tems: (i) Input Privacy. The private input of all honest clients

must be protected. There should be no single bit leakage about

each client’s update, except the desired final aggregation result. (ii)
Input Integrity/Output Correctness. A malicious server may de-

viate from the protocol and thus perform a Model Poisoning Attack
just as a malicious client will do. Thus, we require input integrity

and output correctness. (iii) Poisoning Resilience. Ensuring poi-

soning resilience in FL is the key to maintaining a reliable global

model in spite of attacks. This involves using robust aggregation

techniques to detect and mitigate corrupted gradient updates.

In single-aggregator setting, RoFL [59] provides input privacy

and an enforcement of norm-based defenses by applying expensive

non-interactive zero-knowledge proofs (NIZK), specifically Bullet-

proofs [15]. Eiffel [22] uses the verifiable Shamir’s secret sharing

scheme [78] in combination with secret-shared non-interactive

proofs (SNIP) to achieve secure aggregation with verified inputs,

which requires a public (honest) server to implement the bulletin

board. Crucial drawbacks of current single-server systems include

the secure channel establishment (or key setup) among clients and

348

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0134


Proceedings on Privacy Enhancing Technologies 2025(4)

the involvement of clients in computation with servers in multiple

rounds. In distributed-server setting, Elsa [76] focuses on safeguard-
ing data privacy and designing efficient protocols for semi-honest

servers to perform norm-based checks rather than ensuring the

output correctness. Thus, the "malicious security" achieved in Elsa
[76] is incomplete from cryptographic point of view. SafeFL [32] on
the other hand, assumes that servers have access to a clean dataset

as an additional resource to carry out the filtering, similar to the

approach proposed in FLTrust [20].
Although applying the SPDZ

2
𝑘 framework [24] already achieves

malicious security against a dishonest majority, simply executing

the existing protocols without any adaption is suboptimal for the

FL scenario, especially regarding the input protocol. In [24], the

input protocol is proposed based on the fact that each party plays

the role of both an input party and a computation node. However

in FL, clients only serve as input parties and may not necessarily be

part of the coming up aggregation process. Thus, they could (and

should) be treated differently from the servers. The discussion of

how to efficiently integrate such external parties into the existing

SPDZ
2
𝑘 scheme (for different corruption models) is still missing.

In this work, we propose efficient protocols to address the above

issue and improve the efficiency of further MPC protocols. We

present AlphaFL: a secure aggregation protocol in a two-server

setting, which achieves bothmalicious security and poisoning
resilience (thus malicious

2
). We tolerate server-client collusion

and thus consider the dishonest majority setting. Following recent

works [12, 59, 76, 80, 94, 102, 104], we include norm-based filtering

mechanisms (e.g. 𝐿∞ and 𝐿2-Norms) against malicious gradient

updates. Our contributions can be summarized as follows:

• We propose maliciously secure input commitment protocols as
backbone to apply the Information-Theoretic Message Authenti-
cation Code (MAC) scheme [24] in secure aggregation. By exe-

cuting the (three-party) input commitment protocol, each client

efficiently shares its gradient and helps to generate the MAC. We

provide detailed mathematical proofs to show that the proba-

bility of successfully introducing an error and still passing the

consistency check in our protocols is negligible. We consider

two cases where one of the three parties is corrupted or a server

colludes with the client (dishonest majority).

• We propose an efficient silent select protocol to filter malicious

gradient updates after the 𝐿2-Norm check. In AlphaFL, servers
secretly aggregate accepted gradient updates without reconstruct-

ing the 𝐿2-Norm bound and check results, which prevents cor-

rupted parties from performing attacks based on inferring the

bound. Compared to the classic select protocol, our protocol cuts

the online communication in half. To support computation of

the 𝐿2-Norm check, we also present
1
a simple way to generate

square correlation on ring.

• We prove the security of proposed protocols in the universal com-
posability (UC) framework [19]. And then we identify a subtlety

in constructing ideal functionalities for the SPDZ
2
𝑘 scheme [24],

which is elaborated in Section 5.3.

• By introducing different building blocks, we build AlphaFL as

an efficient aggregation protocol with malicious
2
security in FL

1
We notice thatMP-SPDZ [46] has a similar idea as us for square correlation genera-

tion and implemented it earlier, but without any documentation.

Figure 1: Aggregation protocol with malicious security in
AlphaFL with distributed servers

systems.We perform a fair evaluation of our scheme and compare

it with other state-of-the-art solutions. The results indicate that in

the non-collusion setting, AlphaFL achieves malicious
2
security

at a cost of 25% − 79% more runtime overhead than the state-

of-the-art semi-malicious counterpart Elsa [76], with even less

communication overhead.

1.1 AlphaFL Overview
Motivation. The fundamental strategy employed by AlphaFL to

counteract threats posed by a malicious server or collusion between

a server and client centers on utilizing a MAC scheme [24], which

empowers servers with the capability to authenticate and verify the

integrity of the results generated during the computation process.

In scenarios where a malicious adversary successfully compromises

a subset of participating parties and diverges from the prescribed

protocol execution, the system is designed so that at least one

honest server will detect the anomaly.

Overview. In AlphaFL, the maliciously secure aggregation pro-

tocol is meticulously divided into five stages as illustrated in Fig. 1.

(1/2) After the local model training, each client C𝑖 securely com-

mits its local gradient update u𝑖 to the servers. This commitment

involves the client in submitting its data in a way that prevents

any subsequent alterations, which is crucial for maintaining data

integrity throughout the process. (3) Servers perform filtering op-

erations by executing checks using both 𝐿∞-Norm and 𝐿2-Norm.

In AlphaFL, we also consider applying a dynamic 𝐿2-Norm bound,

which is computed based on the clients’ private input and thus

must be kept secret from the adversary. (4) Following the filtering

process, the servers proceed to aggregate the accepted updates u𝑖
provided by each client. The crucial part of applying such a dynamic

bound (compared to a public bound) is that servers must perform

the secure aggregation secretly without revealing the bound. We

elaborate our solution in Section 4.3. (5) To ensure the integrity

and correctness of the aggregated resultU, servers perform a MAC

verification. This step ensures the aggregated output is unaltered
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and thus accurately reflects the combined updates of clients. Finally,

servers update the global modelM𝑞−1 toM𝑞 and redistributeM𝑞

to clients.

2 Related Work
Malicious FL clients can compromise the global model in two ways:

a) data poisoning, where harmful data is added to training sets

[50, 81, 82, 86] and b) model poisoning, where attackers submit

a maliciously altered update [4, 30, 61, 90]. Previous studies have

explored mitigating poisoning attacks [53, 57, 66, 67, 98, 102]. One

such approach is utilizing Cosine distance to detect poisoned up-

dates that deviate from benign ones [3, 20, 28, 31, 61, 62]. Cluster-

ing [21, 71, 97] and anomaly detection [2, 44] are also applied to

identify and filter malicious updates. Another approach is clipping

and noising, which smooths updates and reduces discrepancies

[54, 94]. Combining these two methods with secure aggregation is

challenging as it hides necessary inputs. Several methods employ

Byzantine-robust [30] defenses against these threats like Krum [12]

and trimmed mean [99].

To protect user privacy and guarantee output correctness, secure

aggregation in one-server setting is well studied [35, 77, 91, 105].

SecAgg [14] combines masking, Shamir’s secret sharing [78] and

symmetric encryption to protect local models from unauthorized

access. VerifyNet [95] and VeriFL [34] build on top of SecAgg [14]

with additional verifiability features to ensure aggregation accu-

racy. SecAgg+ [10], SVFL [58], and Flamingo [60] use masking

techniques to attempt at a better efficiency. E-SeaFL [8] applies

authenticated homomorphic vector commitments to generate a

proof of the honestly aggregated result. Both [41] and [100] require

a trusted third party to support result verification. Meanwhile, [74]

introduces several attacks in the presence of one malicious server.

While the above works do not consider poisoning attacks from

the clients, Prio [23], Prio+ [1] and Eiffel [22] use SNIP to validate

clients’ input. RoFL [59] also uses NIZK to perform norm-based

defenses. Conversely, Acorn [9] proposes to use range proofs while

Flag [6] improves security for adaptive adversaries. On the other

hand, MLGuard [49], FLGuard [72] and SafeFL [32] apply MPC

protocols to filter invalid inputs. Elsa [76] accelerates online com-

putation by offloading oblivious transfer correlations and Beaver

triples to clients. Prior works also apply techniques such as dif-

ferential privacy [42, 56, 88, 93, 103], trusted execution environ-

ment [45, 64, 65, 75], homormorphic encryption [17, 43, 73, 79, 101],

Zero Knowledge Proofs (ZKPs) [29, 69, 92] and hybrid approaches

[16, 83, 87, 96] to counter corrupted actors in FL.

3 Preliminaries
A bold value x denotes a vector x = {𝑥0, ..., 𝑥𝑛−1}, where 𝑥ℎ (and

sometimes x[𝑖]) is the ℎ-th (𝑖-th) element of x. If a party sets x̃ =

(x, 𝑥𝑡 ), it extends the vector x with an additional element 𝑥𝑡 . We

also use ≡𝑘 to denote the modulo computation. We let ⊗ denote

element-wise multiplication.

3.1 SPDZ
2
𝑘 Secret-sharing

In SPDZ
2
𝑘 [24], an Information-Theoretic MAC Scheme is intro-

duced. Each party holds an additive MAC key share 𝛼 𝑗 ∈ Z2
𝑠 ,

such that 𝛼 = 𝛼0 + 𝛼1mod 2
𝑘+𝑠

is a secret global MAC key. An

authenticated, secret value 𝑥 ∈ Z
2
𝑘 is shared between parties (in

2PC), if each party holds 𝑥 𝑗 ∈ Z
2
𝑘+𝑠 over a larger ring Z

2
𝑘+𝑠 , such

that 𝑥 ′ = 𝑥0 + 𝑥1mod 2
𝑘+𝑠

and 𝑥 = 𝑥 ′mod 2
𝑘
. Additionally, each

party holds a shared MAC𝑚 𝑗 ∈ Z
2
𝑘+𝑠 , such that𝑚 =𝑚0 +𝑚1

and

𝑚 = 𝛼 ·𝑥 ′mod2𝑘+𝑠 . Since 𝛼 is a global MAC key, we abbreviate each

local share as (𝑥 𝑗 ,𝑚 𝑗 ) and denote such a sharing scheme as [·]. A
boolean shared value is denoted as [𝑥]2, where [𝑥] 𝑗

2
← (𝑥 𝑗 ,𝑚

𝑗
𝑥 )

and 𝑥 𝑗 ,𝑚
𝑗
𝑥 ∈ Z2

1+𝑠 . Addition and multiplication of boolean shared

values over Z
2
1+𝑠 correspond to XOR and AND computations over

Z2. As remarked by [26], we only require 𝑧 ← 𝑥 · 𝑦 mod 2, but not

necessarily 𝑧 ← 𝑥 · 𝑦 mod 2
1+𝑠

.

3.2 𝐿2-Norm and 𝐿∞-Norm
The Euclidean Norm of a vector x← (𝑥0, ..., 𝑥𝑛−1), or 𝐿2-Norm, is

defined as 𝐿2 (x) ←
√︃
𝑥2
0
+ ... + 𝑥2

𝑛−1. Performing 𝐿2-Norm check is

central to our approach in countering boosted gradients. Due to

the computation complexity, we bound the square of 𝐿2-Norm by

𝛽2 instead of directly bounding 𝐿2-Norm. However, when working

with cryptographic primitives over finite rings, merely imposing an

upper bound on the 𝐿2-Norm is inadequate for controlling the indi-

vidual component magnitudes, since overflow can cause values to

wrap around the modulus. To overcome this, we supplement the 𝐿2-

Norm bound with an additional component-wise upper limit based

on bit length. With 𝐿∞-Norm, 𝑥max ←𝑚𝑎𝑥
𝑖
|𝑥𝑖 | is now bounded by

2
𝑤−1

for some𝑤 ∈ N. In this work, we simply bound every element

in x by 2
𝑤−1

.

3.2.1 Limitation of a Norm-based Defense. Some studies [59, 80, 85]

have shown that norm-based defenses can effectively defend against

many sophisticated poisoning attacks. However, recent research

has highlighted its inherent limitations in terms of effectiveness

against various backdoor attacks. For example, [89] forces a model

to misclassify data points living on the tail of the input distribution.

RoFL [59] also proves that a tail backdoor remains effective for

a long period even in the presence of norm-based defenses. In

addition, both works [59, 89] have shown that an strong attacker

can continuously influence the global model on tail data points by

periodically lower the attack intensity, without being detected by

the norm-based defenses. We refer to Flame [71] and RoFL [59] for

more comprehensive benchmarks.

3.3 Threat Model
3.3.1 Malicious Adversary in UC. In this paper, we consider se-

curity against malicious adversaries, where a corrupted party can

arbitrarily deviate from the protocol. Let REALΠ,A,Z denote the

output of an environment machineZ interacting with the adver-

saryA executing the protocol Π in the real world. Let IDEALF,S,Z
denote the output ofZ interacting with a simulator S connected

to an ideal functionality F in the ideal world:

Definition 1 (Universal Composability (UC) security). Let
F be a functionality and let Π be a protocol that computes F . Protocol
Π is said to uc-realizes F in the presence of static malicious
adversaries if for every non-uniform probabilistic polynomial time
(PPT) adversaryA, there exists a non-uniform PPT adversary S, such
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that for any environmentZ:

IDEALF,S,Z
𝑐≡ REALΠ,A,Z,

where
𝑐≡ denotes the computational indistinguishability.

We follow the security definition described in the UC framework

[19]. Using a hybrid model, an uc-secure protocol can be abstracted

as an ideal functionality and invoked within other protocols.

3.3.2 Malicious Client in Federated Learning. We let C𝑐 denote the

compromised clients and 𝑞 denote the index of iteration. In the

scope of federated learning, an adversary B may control a subset of

clients and thus manipulate their local updates {u𝑖 }𝑖∈𝑐 . We formally

describe the adversarial goal as follows:

Definition 2 (Compromised model [71]). LetM be the benign
model and letM′ denote the compromised model. Let 𝐷𝑐 denote the
trigger set, where for each 𝑥 ∈ 𝐷𝑐 there is a manipulated output 𝑐′ cho-
sen by the adversary. The model is said to be successfully compromised
by the adversary, if:

𝑓 (M′, 𝑥) =
{
𝑧′ ≠ 𝑓 (M, 𝑥) ∀𝑥 ∈ 𝐷𝑐 ,

𝑓 (M, 𝑥) Otherwise.

In the meantime, the model M′ should be hard to be distin-

guished with the benign modelM.

3.3.3 Malicious2 Security. In the traditional Security with Abort
paradigm [55], input validity is out of scope by definition. In FL,

a malicious adversary may not just deviate from the protocol, but

also corrupts a subset of clients and use malicious inputs to ma-

nipulate the final result as explained in Section 3.3.2. We thus use

the term Malicious2 Security to denote the malicious security in

the UC framework and poisoning resilience in FL. In this work, we

consider two different settings: one where a malicious adversary

corrupts either a subset of clients or a server (non-colluding case),

and another where it corrupts a subset of clients together with one

of the servers (server-client collusion). We will elaborate these two

settings in Section 4.1.

3.3.4 Trivial Attacks. An adversary can corrupt a server, causing

it to disconnect from the network, which cannot be prevented by

other honest protocol participants. Meanwhile, any corrupted party

may falsely abort under the Security with abort paradigm [55], even

if all other parties are behaving honestly. Furthermore, we do not

discuss the case where the adversary corrupts two servers.

4 Important Building Blocks
In this section, we propose our input commitment protocols ΠInCom

against an honest majority and ΠInCom
Diho against a dishonest majority.

Then we present a simple protocol ΠSqGen
to generate square cor-

relations with the help of Beaver triples, which is implemented in

MP-SPDZ [46]. Regarding the privacy of dynamic 𝐿2-Norm bounds,

we propose a silent select protocol ΠSiSelect
to obliviously filter

malicious gradient updates.

4.1 Input Commitment Protocol
As mentioned previously, the input protocol in [24] is constructed

where each participant serves as a computation node. In fact, each

Protocol ΠInCom

Private inputs: A client C𝑖 holds x, where x =

{𝑥0, ..., 𝑥𝑡−1} ∈ Z𝑡

2
𝑘+𝑠 and C𝑖 ∈ {C0, ...,C𝑛−1}.

Public inputs: Public parameters 𝑘 , 𝑠 and sid.
Outputs: S𝑗 outputs [x] 𝑗 ← (x𝑗 ,m𝑗 ) ∈ (Z𝑡

2
𝑘+𝑠 ,Z

𝑡

2
𝑘+𝑠 ),

where S𝑗 ∈ {S0, S1}. C𝑖 outputs (x0, x1).
Initialize: C𝑖 and S0 call their F CR,glo

instance, receive

𝛼0
$← 2

𝑠
. ThenC𝑖 and S1 call their F CR,glo

instance, receive

𝛼1
$← 2

𝑠
.

Protocol:

1. C𝑖 and S0 call their F CR
instance, receive x0

$← Z𝑡

2
𝑘+𝑠 ,

𝑥0𝑡
$← Z

2
𝑘+𝑠 m0

$← Z𝑡

2
𝑘+2𝑠 and𝑚

0

𝑡

$← Z
2
𝑘+2𝑠 .

2. C𝑖 sets 𝛼 ← 𝛼0+𝛼1
mod 2

𝑘+𝑠
and chooses 𝑥1𝑡

$← Z
2
𝑘+𝑠 ,

then computes x1 ← x−x0 and 𝑥𝑡 ← 𝑥0𝑡 +𝑥1𝑡 mod 2
𝑘+𝑠

.

3. C𝑖 computes MACs asm← x · 𝛼 mod 2
𝑘+2𝑠

and𝑚𝑡 ←
𝑥𝑡 · 𝛼 mod 2

𝑘+2𝑠
. Then it setsm1 ← m−m0

and𝑚1

𝑡 ←
𝑚𝑡 −𝑚0

𝑡 mod 2
𝑘+2𝑠

.

4. C𝑖 now sends (x1, 𝑥1𝑡 ,m1,𝑚1

𝑡 ) to S1.
Consistency Check
5. S0 and S1 call F Rand

, receive r ∈ Z𝑡
2
𝑠 .

6. S𝑗 computes 𝑣 𝑗 ←
𝑡−1∑
ℎ=0

𝑥
𝑗

ℎ
· 𝑟ℎ + 𝑥 𝑗

𝑡 mod 2
𝑘+2𝑠

and 𝑑 𝑗 ←
𝑡−1∑
ℎ=0

𝑚
𝑗

ℎ
· 𝑟ℎ +𝑚 𝑗

𝑡 mod 2
𝑘+2𝑠

.

7. S𝑗 sends 𝑣 𝑗 to S𝑗−1 and computes 𝑣 ← 𝑣0+𝑣1 mod 2
𝑘+2𝑠

.

It then commits and sends 𝑧 𝑗 ← 𝑑 𝑗 − 𝑣 · 𝛼 𝑗
mod 2

𝑘+2𝑠

to S𝑗−1.
8. S𝑗 computes 𝑧 ← 𝑧0+𝑧1 mod 2

𝑘+2𝑠
and checks if 𝑧 = 0,

aborts if not.

Figure 2: Input commitment protocol ΠInCom

party exactly holds a global MAC key share, including the input

party itself. This leaves us with an opportunity to change the global

MAC key share holding and construct efficient protocols in different

corruption settings.

Note that each client operates independently in the Input Com-
mitment stage, so the whole computation can be viewed as a

three-party input commitment protocol, where C𝑖 shares its au-

thenticated input to servers. We first exclude the naive solution,

where we simply let C𝑖 share its input to servers and let the servers

compute the authentication MAC by themselves, since we cannot

guarantee that a malicious server will use the exact share received

from C𝑖 to compute the MAC. For simplicity, we consider static cor-

ruption in this paper and discuss two cases as follows: (i) Honest
Majority: we propose the protocol ΠInCom

as described in Fig. 2,

where we allow one party from {C𝑖 , S0, S1} to be corrupted. This

indicates that either one server ormultiple clients can be corrupted

by a malicious adversary A in the federated learning scenario.

Yet, MP-SPDZ [46] has implemented another variant of the input

commitment protocol, which is proven to be secure if the client

is honest (honest majority) [25]. We show in Section 7.6 that our
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honest majority variant achieves a better efficiency, and then we

provide a security analysis in Section 5.1 to show that the imple-

mented protocol in [46] is vulnerable in the collusion case. (ii)
Dishonest Majority: We consider a more complicated setting,

where the malicious adversary corrupts both the client C𝑖 and a

server from {S0, S1}. Then we propose ΠInCom
Diho as described in Fig. 3.

Again, if we jump out from the first stage and review the entire

aggregation protocol, this means that a server and multiple clients

can be corrupted by the same adversary A.

4.1.1 ΠInCom in Honest Majority Setting. The key idea is to let C𝑖

efficiently distribute MAC shares by holding the global MAC key

𝛼 ← 𝛼0 + 𝛼1
. We use a correlated randomness functionality F CR

(described in Fig. 17) between C𝑖 and S0 to reduce the communica-

tion, which can be implemented by letting parties hold a pre-shared

key and derive pseudo-randomness by evaluating keyed pseudo-

random function (PRF). Then both servers can perform consistency
check to authenticate the distributed MAC shares. We observe that

if C𝑖 is honest, the distributed MAC shares must be correct. If C𝑖

is however maliciously corrupted and distributes incorrect MAC

shares to servers, we show in Section 5.2 that the probability of

passing the consistency check is only 2
−𝑠
, even if C𝑖 holds both 𝛼0

and 𝛼1
. The protocol ΠInCom

is formally described in Fig. 2.

Note that all C𝑖 use the same global MAC key shares 𝛼0, 𝛼1 while

executing ΠInCom
. They obtain the shares by calling the "global"

version of the functionality instance F CR,glo
(described in Fig. 18)

during initialization. It differs from an F CR
instance, since all C𝑖

share the same key (with S0 and S1, respectively) as setup, where
the pre-shared key for an F CR

instance varies from client to client.

We also present two ways to bypass the reliance on F CR,glo
:

• With the assumption of a secure broadcast channel (e.g. as defined

in [7]), servers can broadcast 𝛼 𝑗 to each C𝑖 , since the broadcast

functionality guarantees that all clients receive the same message.

• By relying solely on a peer-to-peer secure channel, servers can

first exchange the commitments of 𝛼 𝑗 with each other and later

decommit to each client. Since there will be at least one honest

server participating in the protocol, it is guaranteed that clients

will receive either the same global MAC key share or the same

commitment of 𝛼 𝑗
.

4.1.2 ΠInCom
Diho in Dishonest Majority Setting. It is easy to see that the

above protocol is no longer secure if C𝑖 can collude with any server,

since the corrupted server can thus easily pass the consistency check
by holding both the global MAC key shares𝛼0

and𝛼1
. In [24],C𝑖 has

to set up the secure channels with both servers and perform a Vector

Oblivious Linear Evaluation (vOLE) functionality F vOLE
(described

in Fig. 14) twice in the online stage. To optimize the communication

overhead for C𝑖 , we apply an asymmetric setting in ΠInCom
Diho and

decompose the computation into 𝛼1 ·x0+𝛼1 ·x1+𝛼0 · (x0+x1). Now,
the first term 𝛼1 · x0 can be computed between servers without

involving C𝑖 and can thus be moved to the preprocessing stage. The

second term 𝛼1 · x1 can be locally computed by S1. C𝑖 only has to

participant in a single F vOLE
in the online stage with S0 to compute

the third term 𝛼0 · x. Finally, servers apply consistency check to

verify the correctness of the computed authentication MACs.

Protocol ΠInCom
Diho

Private inputs: A client C𝑖 holds x, where x =

{𝑥0, ..., 𝑥𝑡−1} ∈ Z𝑡

2
𝑘+𝑠 and C𝑖 ∈ {C0, ...,C𝑛−1}.

Public inputs: Public parameters 𝑘 , 𝑠 and sid.
Outputs: S𝑗 outputs [x] 𝑗 ← (x𝑗 ,m𝑗 ) ∈ (Z𝑡

2
𝑘+𝑠 ,Z

𝑡

2
𝑘+𝑠 ),

where S𝑗 ∈ {S0, S1}. C𝑖 outputs (x0, x1).
Initialize: S0 chooses 𝛼0

$← Z2
𝑠 . Then S1 chooses 𝛼1

$←
Z2

𝑠 . S0 initialize an instance of F vOLE
with C𝑖 , where S0 in-

puts 𝛼0
. (S0, S1) initialize another instance of F vOLE

, where

S1 inputs 𝛼1
.

Preprocessing:

1. S0 calls its F CR
instance (with C𝑖 ), receives x0

$← Z𝑡

2
𝑘+𝑠 ,

𝑥0𝑡
$← Z

2
𝑘+𝑠 .

2. S0 sets x̃0 ← (x0, 𝑥0𝑡 ) ∈ Z𝑡+1
2
𝑘+𝑠 .

3. S0 and S1 call their F vOLE
instance (See Fig. 14) with

input (𝑘 + 2𝑠, 𝑘 + 𝑠, 𝑡 + 1, x̃0) from S0.
4. S0 receives b0 and S1 receives a0 such that a0 = b0+𝛼1 ·x̃0

mod 2
𝑘+2𝑠

.

Protocol:

1. C𝑖 calls its F CR
instance (with S0), receives x0

$← Z𝑡

2
𝑘+𝑠 ,

𝑥0𝑡
$← Z

2
𝑘+𝑠 .

2. C𝑖 chooses 𝑥
1

𝑡

$← Z
2
𝑘+𝑠 , then computes x1 ← x− x0 and

𝑥𝑡 ← 𝑥0𝑡 + 𝑥1𝑡 mod 2
𝑘+𝑠

. It sets x̃← (x, 𝑥𝑡 ) ∈ Z𝑡+1
2
𝑘+𝑠 .

3. S0 andC𝑖 call their F vOLE
instance with input (𝑘+2𝑠, 𝑘+

𝑠, 𝑡 + 1, x̃) from C𝑖 .

4. S0 receives a1 andC𝑖 receives b1 such that a1 = b1+𝛼0 · x̃
mod 2

𝑘+2𝑠
.

5. C𝑖 sends (x1, 𝑥1𝑡 , b1) to S1, which sets x̃1 ← (x1, 𝑥1𝑡 ) ∈
Z𝑡+1
2
𝑘+𝑠 .

6. The ℎ-th MAC share is defined as follows:

– S0:𝑚0

ℎ
← a1 [ℎ] − b0 [ℎ].

– S1:𝑚1

ℎ
← a0 [ℎ] − b1 [ℎ] + 𝛼1 · x̃1 [ℎ]

Consistency Check: Same as in ΠInCom
.

Figure 3: Input commitment protocol ΠInCom
Diho in the dishonest

majority setting

4.2 Square Correlation Generation between
Malicious Servers

To compute the squares of secretly shared values, it is more effi-

cient to use square correlations in the online stage compared to

Beaver triples [36, 76]. In the honest majority setting, we can let

C𝑖 generate ( [a], [d], [a′], [d′]) by invoking the protocol ΠInCom
,

where 𝑑ℎ = 𝑎ℎ · 𝑎ℎ and 𝑑 ′
ℎ
= 𝑎′

ℎ
· 𝑎′

ℎ
. Servers can then apply the

correlation sacrifice step to verify the correctness of the generated

correlation [24, 47, 48, 76]. In this section, we forcus on the dishon-

est majority setting. C𝑖 is no longer allowed to distribute the shares.

Instead, servers have to generate the shares via 2PC. First, we would

like to avoid homomorphic encryption and zero knowledge proofs
computation like in [36, 47, 48]. Then we notice that in [24, 47],
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Protocol ΠSqGen

Public inputs: Public parameters 𝑘 , 𝑠 and sid.
Outputs: S𝑗 outputs ( [a] 𝑗 , [d] 𝑗 ), where 𝑗 ∈ {0, 1}, (a, d) ∈
(Z𝑡

2
𝑘+𝑠 ,Z

𝑡

2
𝑘+𝑠 ) and 𝑑ℎ ← 𝑎ℎ · 𝑎ℎ mod 2

𝑘
.

Initialize: S𝑗 send (Init, S𝑗 , sid) to F TripGen
, receives 𝛼 𝑗 .

Protocol:
1. S𝑗 call F TripGen

(See Fig. 13), receives ( [a] 𝑗 , [b] 𝑗 , [c] 𝑗 ),
where a, b, c ∈ Z𝑡

2
𝑘+𝑠 and 𝑐ℎ ← 𝑎ℎ · 𝑏ℎ mod 2

𝑘
.

2. Servers use Open andMAC check (See Fig. 19) to re-

construct e← [b] − [a].
3. If the check passes, servers locally compute ℎ-th share

as [𝑑ℎ] ← [𝑐ℎ] − 𝑒ℎ · [𝑎ℎ] and output ( [a], [d]).

Figure 4: Square correlation generation protocol ΠSqGen

the generated triple will be "rerandomized" by performing a linear

Combine procedure to maintain the security guarantee of the sac-

rificing step. Let ( [𝑎ℎ], [𝑏ℎ], [𝑐ℎ]) denote the ℎ-th generated triple.

In other word, parties do not have any control on the final output

[𝑎ℎ], since only [𝑏ℎ] is locally sampled by parties. As a result, we

cannot trivially adapt the triple generation protocol to a square

correlation generation protocol. We now introduce our protocol

ΠSqGen
as shown in Fig. 4, which is constructed based on F TripGen

described in Fig. 13. Our idea is very simple: we let servers first

generate the normal Beaver triples, then efficiently convert those

to the square correlations. As mentioned in [24], the MAC Check
step can be postponed to the output reconstruction stage and be ef-

ficiently executed in batch. We place the BatchCheck procedure
2

in Fig. 19 and show the correctness of ΠSqGen
as follows:

𝑐ℎ ≡𝑘 𝑎ℎ · 𝑏ℎ ≡𝑘 𝑎ℎ · (𝑎ℎ + (𝑏ℎ − 𝑎ℎ))
≡𝑘 𝑎ℎ · 𝑎ℎ + 𝑎ℎ · (𝑏ℎ − 𝑎ℎ)

⇔ 𝑎ℎ · 𝑎ℎ ≡𝑘 𝑐ℎ − 𝑎ℎ · (𝑏ℎ − 𝑎ℎ)︸     ︷︷     ︸
𝑒ℎ

4.3 Silent Select Protocol
Recap of current 𝐿2-Norm checks. Both Flame [71] and RoFL [59]

have proven that applying a dynamic 𝐿2-Norm bound 𝛽 achieves a

better filter performance compared to using a fixed bound
3
. Current

works such as Flame [71],RoFL [59] and Elsa [76] assume that 𝛽 can

be publicly determined. The servers must hold a separate training

dataset to compute the bound [59], or 𝛽 is essentially reconstructed

on the server side [76]. However, if a separate training dataset is not

available, 𝛽 will then be computed based on the real-time gradient

updates of the clients. This makes 𝛽 an intermediate result, and

a direct reconstruction of 𝛽 (or 𝛽2) will thus leak information to

the adversary. In addition, if we allow one server to collude with

2
We notice that the consistency check described in Fig. 2 and Fig. 3 requires parties to

additionally compute (𝑥𝑡 ,𝑚𝑡 ) compared to BatchCheck. The reason is that parties

must use (𝑥 𝑗
𝑡 ,𝑚

𝑗
𝑡 ) as a mask to hide the distribution of 𝑣 𝑗 and 𝑑 𝑗

(step 6 in Fig. 2).

We refer to the security proof in SPDZ
2
𝑘 [24] for more details.

3
In this work, 𝛽 is set to the mean of all clients’ 𝐿2 norms instead of the median as

suggested in Flame [71] and RoFL [59]. We leave the choice of a dynamic 𝐿2-Norm

bound as an orthogonal research.

Protocol ΠSiSelect

Private inputs: Servers hold [x] and [𝑦]2, where x ∈
Z𝑡

2
𝑘+𝑠 and 𝑦 ∈ Z2. Additionally, F TripGen

is already initial-

ized and S𝑗 holds 𝛼 𝑗 .

Public inputs: Public parameters 𝑘 , 𝑠 and sid.
Outputs: Servers output [z], where 𝑧ℎ = 𝑥ℎ if 𝑦 = 1 and

𝑧ℎ = 0 otherwise.

Preprocessing:
1. S𝑗 ∈ {S0, S1} sends (BitTripGen, S𝑗 , sid) to F TripGen

, re-

ceives ( [a] 𝑗 , [b] 𝑗 , [c] 𝑗 ), where a, c ∈ Z𝑡

2
𝑘+𝑠 , b mod 2

𝑘

∈ Z𝑡
2
, 𝑐ℎ ← 𝑎ℎ · 𝑏ℎ mod 2

𝑘
.

2. Let 𝑏
𝑗

ℎ
and𝑚

𝑗

𝑏ℎ
be S𝑗 ’s share and MAC share of b[ℎ]. S𝑗

defines [b′] 𝑗
2
, where 𝑏

′𝑗
ℎ
← 𝑏

𝑗

ℎ
mod 2

1+𝑠
and 𝑚

𝑗

𝑏′
ℎ

←

𝑚
𝑗

𝑏ℎ
mod 2

1+𝑠
.

Protocol:
1. Servers extend [𝑦]2 to [y]2. They run Open andMAC

check to reconstruct e← [x]− [a] and f ← [y]2+[b′]2.
2. If 𝑓ℎ = 0, S𝑗 sets [𝑧ℎ] 𝑗 ← [𝑐ℎ] 𝑗 + 𝑒ℎ · [𝑏ℎ] 𝑗 .

If 𝑓ℎ = 1, S𝑗 sets [𝑧ℎ] 𝑗 ← 𝑗 ·𝑒ℎ + [𝑎ℎ] 𝑗 − [𝑐ℎ] 𝑗 −𝑒ℎ · [𝑏ℎ] 𝑗

Figure 5: Silent select protocol ΠSiSelect

multiple clients, simply hiding 𝛽2 from servers does not solve the

problem. In Elsa [76], although the comparison between (𝐿2 (u𝑖 ))2
and 𝛽2 is secretly performed, the comparison result 𝑠𝑖 will be re-

constructed. If 𝑠𝑖 = 0, it indicates that (𝐿2 (u𝑖 ))2 ≥ 𝛽2 and servers

should reject C𝑖 for further computation. The drawback of such an

approach is that the adversary is able to guess 𝛽2 several times and

infer the range of 𝛽2 by having (𝐿2 (u𝑖 ))2 in plaintext.

Silent select protocol. We address the the above issue by executing

the select ideal functionality F Select
to "select" only valid gradi-

ent updates. And we propose the silent select protocol ΠSiSelect
to

minimize the online communication overhead compared to the clas-

sic select protocol. We first briefly recap F Select
. Initially, servers

hold [x] and [𝑦]2. F Select
outputs [z], where 𝑧ℎ = 𝑥ℎ if 𝑦 = 1 and

𝑧ℎ = 0 otherwise. A classic select protocol realizing F Select
works as

follows: servers first convert [𝑦]2 to [𝑦] by executing a Boolean-to-

Arithmetic protocol (B2A) then compute the multiplication between

[𝑥ℎ] and [𝑦] with a Beaver Triple. However, such an implementa-

tion is not optimal. It requires two rounds in the online stage and

2𝑡 · (𝑘 + 𝑠) + (𝑠 + 1) bits of communication overhead (regardless of

MAC check).
We now describe the protocol ΠSiSelect

, which consists of a pre-

processing (offline) phase and an online phase. For clarity, we only

consider the server-client collusion case, which indicates that all

correlated randomness must be generated via executing secure

MPC protocols between servers.

a) Preprocessing: The core idea of ΠSiSelect
to accelerate the

online computation is to generate so called Select Correlations in the

preprocessing phase. First, servers generate multiplication triples

( [a], [b], [c]) by calling F TripGen
described in Fig. 13, where 𝑐ℎ ←

𝑎ℎ · 𝑏ℎ mod 2
𝑘
and 𝑏ℎ mod 2

𝑘 ∈ Z2. Compared to a traditional
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Beaver triple, we restrict 𝑏ℎ to be either 1 or 0 over Z
2
𝑘 . Note

that in the Beaver triple generation protocol ΠTriple
[24], parties

first sample 𝑏ℎ
$← Z

2
𝑘+𝑠 then determine 𝑎ℎ and 𝑐ℎ via Combine.

Now in order to generate an authenticated random bit [𝑏ℎ], parties
execute ΠRanBitGen

(described in Fig. 21) instead of sampling 𝑏ℎ
randomly. The crucial step of restricting 𝑏ℎ ∈ Z2 mod 2

𝑘
is to

generate the MAC of 𝑏ℎ at the very beginning of ΠTriple
, so that the

adversary cannot manipulate the value of 𝑏ℎ . After generating the

triple, servers convert the arithmetically shared [𝑏ℎ] to boolean

shared [𝑏′
ℎ
]2 by executing the Arithmetic-to-Boolean protocol (A2B)

provided in [26]. The Select Correlations are essentially defined as

( [a], [b], [c], [b′]2), where 𝑏ℎ mod 2
𝑘 ∈ Z2.

b) Online phase: In the online phase, servers only have to re-

construct e and f in a single round, then locally compute the shared

output [z] supported by Select Correlations. The communication

overhead of ΠSiSelect
(regardless of MAC check) is 𝑡 · (𝑘+2𝑠+1) bits,

which cuts the communication of the classic protocol approximately

in half. We show the correctness of ΠSiSelect
as follows:

(1 − 𝑓ℎ) · (𝑐ℎ + 𝑒ℎ · 𝑏ℎ)+
𝑓ℎ · (𝑒ℎ + 𝑎ℎ − 𝑐ℎ − 𝑒ℎ · 𝑏ℎ)

≡𝑘 𝑓ℎ · (𝑒ℎ + 𝑎ℎ) + (1 − 𝑓ℎ) · (𝑐ℎ + 𝑒ℎ · 𝑏ℎ)
≡𝑘 𝑓ℎ · 𝑥ℎ + 𝑏ℎ · 𝑥ℎ − 2𝑓ℎ · 𝑏ℎ · 𝑥ℎ
≡𝑘 𝑥ℎ · (𝑓ℎ − 2𝑓ℎ · 𝑏ℎ + 𝑏ℎ)
≡𝑘 𝑥ℎ · 𝑠ℎ

5 Security Analysis
In this section, we first analyze the collusion case of the input com-

mitment protocol variant implemented in [46]. Then we formally

prove that the probability of successfully introducing an error into

MACs is negligible while executing ΠInCom
and ΠInCom

Diho . We also

show a subtlety while modeling ideal functionalities for SPDZ
2
𝑘

regarding the global MAC key extraction. Finally, we provide theo-

rems and proofs for the proposed protocols.

5.1 A Collusion Case Analysis for the Input
Commitment Protocol in [46]

In [46], servers first generate a Beaver triple ([𝑎], [𝑏], [𝑐]), then
reconstruct (𝑎, 𝑏, 𝑐) on the client side, who checks the correlation

of the opened triple and broadcasts 𝑥 − 𝑎 to servers. We discuss the

current implementation where the triple generation is implemented

via executing the protocol ΠTripGen
[24] and FMAC

is implemented

via executing the protocol ΠAuth
[24]. While the whole scheme is

secure in the honest majority setting, it is vulnerable to the server-

client collusion. Note that the only secret of the collusion case is

the global MAC key share of the honest party.

For the following proofs, let S0 be the honest server, let S1 and
C𝑖 be corrupted by the adversary A. We first consider notations

used in ΠTripGen
[24]. During the execution of ΠTripGen

, servers

have to compute and verify the MACs of both the output triple

(𝑎, 𝑏, 𝑐) and the sacrificed triple (𝑎, 𝑐). Since now the triple (𝑎, 𝑏, 𝑐)
is reconstructed at C𝑖 , A receives (𝑎0, 𝑏0, 𝑐0) from S0. Again, since
𝜌 ← 𝑡 · [𝑎] − [𝑎] and 𝜎 ← 𝑡 · [𝑐] − [𝑐] − 𝜌 · [𝑏] are opened in the

sacrifice step, A receives 𝜌0 and 𝜎0
from S0 and can thus compute

𝑎0 = 𝜌0− 𝑡 ·𝑎0 mod 2
𝑘+𝑠

and 𝑐0 = 𝑡 ·𝑐0−𝜌 ·𝑏0−𝜎0
mod 2

𝑘+𝑠
(𝑡 is

public). For clarity, we first assume that all values 𝑎0, 𝑏0, 𝑐0, 𝑎0, 𝑐0 ∈
Z
2
𝑘+𝑠 known to A are the exact intermediate values in ΠTripGen

without masking the first 𝑠 bits. Let (𝑚0

𝑎,𝑚
0

𝑏
,𝑚0

𝑐 ,𝑚
0

𝑎
,𝑚0

𝑐
) denote the

MAC shares of S0, A can decompose each MAC share into

𝑚0

𝑥 = (𝑥0 + 𝑥1) · (𝛼0 + 𝛼1) −𝑚1

𝑥 mod 2
𝑘+2𝑠

= 𝑥 · 𝛼1 −𝑚1

𝑥 + 𝑥 · 𝛼0
mod 2

𝑘+2𝑠 ,

where 𝑥 ∈ {𝑎, 𝑏, 𝑐, 𝑎, 𝑐}. We now use notations in Fig. 2 for consis-

tency check, which is consistent with the steps in ΠAuth
to verify

the correctness of the generated MACs. Upon receiving 𝑣0 from S0,
A computes 𝑥0𝑡 as:

𝑥0𝑡 = 𝑣0 −
𝑡−1∑︁
ℎ=0

𝑥0
ℎ
· 𝑟ℎ mod 2

𝑘+2𝑠 ,

where 𝑥ℎ ∈ {𝑎, 𝑏, 𝑐, 𝑎, 𝑐} and all 𝑟ℎ are public.A can then decompose

𝑑0 into

𝑑0 =

𝑡∑︁
ℎ=0

(𝑥ℎ · 𝛼1 −𝑚1

𝑥ℎ
) · 𝑟ℎ︸                        ︷︷                        ︸

𝛾

+
𝑡∑︁

ℎ=0

𝑥ℎ · 𝑟ℎ︸      ︷︷      ︸
𝛽

·𝛼0
mod 2

𝑘+2𝑠

Thus, A can solve 𝛼0
via the following equation:

𝑧0 = 𝑑0 − 𝑣 · 𝛼0
mod 2

𝑘+2𝑠

= (𝛾 + 𝛽 · 𝛼0) − 𝑣 · 𝛼0
mod 2

𝑘+2𝑠

= 𝛾 + (𝛽 − 𝑣) · 𝛼0
mod 2

𝑘+2𝑠

In the real protocol execution, instead of receiving 𝑎0, 𝑏0, 𝑐0, 𝑎0,

𝑐0 ∈ Z
2
𝑘+𝑠 , A actually receives 𝑎0, 𝑏0, 𝑐0, 𝑎0, 𝑐0 ∈ Z

2
𝑘 , where the

first 𝑠 bits are masked by some randomness. However, A can still

infer 𝛼0
, since the equations above still hold for the last 𝑘 bits. Thus,

we conclude that the current implementation in [46] is not secure

against the server-client collusion.

5.2 Consistency Check Details
In ΠInCom. We now analyse the consistency check of protocol

ΠInCom
in the honest majority setting. We observe that all MAC

shares are correctly distributed, if C𝑖 is honest. Thus, we discuss the

case where C𝑖 is corrupted by a malicious adversary A and both

S0 and S1 are honest. Now different from the analysis provided by

[24] where the adversary A does not know the MAC key shares of

other honest parties, both shares 𝛼0
and 𝛼1

are received by A in

ΠInCom
at the initialization. The error that A can introduce to the

ℎ-th MAC is defined as:

𝛾ℎ =𝑚ℎ − 𝛼 · 𝑥ℎ mod 2
𝑘+𝑠

(1)

After taking random linear combinations with the vector r to
compute the MAC of 𝑐 , the reconstructed value 𝑑 = 𝑑0 + 𝑑1 mod

2
𝑘+𝑠

satisfies:

𝑡−1∑︁
ℎ=0

𝑑ℎ =

𝑡−1∑︁
ℎ=0

(𝛼 · 𝑥ℎ + 𝛾ℎ) · 𝑟ℎ + 𝛼 · 𝑥𝑡 + 𝛾𝑡 mod 2
𝑘+2𝑠

(2)

Now different from [24], A cannot introduce any error to 𝑐 ,

since both honest S0 and S1 will reconstruct 𝑣 = 𝑣0 + 𝑣1 mod 2
𝑘+2𝑠

correctly. To pass the consistency check, there must be an error
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𝑒 ∈ Z
2
𝑘+2𝑠 introduced to the equation to compensate the errors 𝛾ℎ

we have defined above, such that:

0 = 𝑧0 + 𝑧1 + 𝑒 mod 2
𝑘+2𝑠

⇔ −𝑒 =
𝑡−1∑︁
ℎ=0

𝑑ℎ − 𝛼 · (
𝑡−1∑︁
ℎ

𝑥ℎ · 𝑟ℎ + 𝑥𝑡 ) mod 2
𝑘+2𝑠

=

𝑡−1∑︁
ℎ=0

𝛾ℎ · 𝑟ℎ + 𝛾𝑡 mod 2
𝑘+2𝑠

(3)

Claim 5.1. Suppose there is at least one non-zero component 𝛾ℎ
mod 2𝑘+𝑠 , then the probability of passing the check is no more than
2
−𝑠 .

Proof. Without loss of generality, we suppose 𝛾0 ≠ 0 mod 2
𝑘+𝑠

,

then we have:

𝛾0 · 𝑟0 =
𝑡−1∑︁
ℎ=1

𝛾ℎ · 𝑟ℎ + 𝛾𝑡︸           ︷︷           ︸
𝑆

mod 2
𝑘+2𝑠

(4)

Let 2
𝑣
be the largest power of two dividing 𝛾0, we know that

𝑣 < 𝑘 + 𝑠 , since 𝛾0 ≠ 0mod 2
𝑘+𝑠

. Therefore, we know that
𝛾0
2
𝑣 is odd

and has multiplicative inverse modulo 𝑘 + 2𝑠 − 𝑣 . We have:

𝑟0 ·
𝛾0

2
𝑣
=

𝑆

2
𝑣

mod 2
𝑘+2𝑠−𝑣

𝑟0 =
𝑆

2
𝑣
(𝛾0
2
𝑣
)−1 mod 2

𝑘+2𝑠−𝑣
(5)

Since 𝑠 < 𝑘 + 2𝑠 − 𝑣 , 𝑟0 is completely determined. By definition

𝑟0 is randomly chosen at 2
𝑠
, we conclude that this particular event

happens with probability 2
−𝑠
. □

In ΠInCom
Diho . We then analyse the consistency check of protocol

ΠInCom
Diho in the dishonest majority setting. Let 𝛼 𝑗

and x̂𝑗 be the actual
value (and vector) used by a corrupt P𝑐 in the F vOLE

instance. We

define the correct value to be 𝛼 𝑗
and x𝑗 , then we define errors as:

𝛾 𝑗 = 𝛼 𝑗 − 𝛼 𝑗
and 𝛿 𝑗 = x̂𝑗 − x𝑗

Note that a corrupted C𝑖 can introduce an error 𝛿 = x − x0 − x1
to the protocol. Without loss of generality, we always set this error

as 𝛿1 = x̂1 − x1, if S0 is not corrupted at the same time. Otherwise

if both C𝑖 and S0 are corrupted, we set this error as 𝛿0 = x̂0 − x0.
We observe following corruption cases:

1. S0 is corrupted: A can introduce both type of errors to the equa-

tion by using incorrect 𝛼0
and x̂0 while executing F vOLE

with S1
and C𝑖 .

2. S1 is corrupted: A can only use an incorrect 𝛼1
while executing

F vOLE
with S0.

3. C𝑖 is corrupted: A can send an incorrect x̂1 to S1.
4. S0 and C𝑖 are corrupted:A can use an incorrect x̂0 while execut-

ing F vOLE
with S1.

5. S1 and C𝑖 are corrupted:A can use an incorrect 𝛼1
while execut-

ing F vOLE
with S0.

Let 𝑐 denote the indexes of corrupted parties. We summarize

errors to the sum of MAC shares:

m0 +m1 = 𝛼1 · x1 +
∑︁
𝑗

a𝑗 − b𝑗 +
∑︁
𝑗∉𝑐

𝛾 𝑗 · x𝑗 +
∑︁
𝑗∉𝑐

𝛼 𝑗 · 𝛿 𝑗

= 𝛼 · x +
∑︁
𝑗∉𝑐

𝛾 𝑗 · x𝑗 +
∑︁
𝑗∉𝑐

𝛼 𝑗 ⊗ 𝛿 𝑗

(6)

which ends up with the same error analysis provided in [24]. So

we directly derive two claims from [24]:

Claim 5.2. If at least one 𝛾 𝑗 ≠ 0 where 𝑗 ∉ 𝑐 , then the probability
of passing the check is no more than 2

−𝑠+log 2.

Claim 5.3. Suppose 𝛾 𝑗 = 0 for all 𝑗 ∉ 𝑐 , and 𝛿 𝑗 is non-zero modulo
2
𝑘+𝑠 in at least one component for some 𝑗 ∉ 𝑐 . Then, the probability
of passing the check is no more than 2

−𝑠+log 𝑠 .

5.3 A Subtlety of Modeling Functionalities for
SPDZ

2
𝑘

While modeling ideal functionalities for SPDZ
2
𝑘 , we found a sub-

tlety that the global MAC key 𝛼 must be explicitly chosen by the

functionality, otherwise the functionality is not able to compute the

authentication MAC of the output. In F InCom
(and FMAC

described

in Fig. 12), 𝛼 is chosen at the initialization stage by the functionality.

We show an example by modeling a B2A functionality F B2A
(or

any functionality F ) without the initialization stage. Now F B2A

must extract 𝛼 by itself after receiving the input [𝑥]2 as 𝛼 ←
(𝑚0

𝑥 +𝑚1

𝑥 ) · (𝑥0 + 𝑥1)−1 mod 2
1+𝑠

, where (𝑥 𝑗 ,𝑚
𝑗
𝑥 ) ∈ (Z2

1+𝑠 ,Z
2
1+𝑠 ).

However, 𝛼 is unique only if 𝑥 ← (𝑥0 + 𝑥1) ∈ Z
2
1+𝑠 has a mul-

tiplicative inverse over Z
2
1+𝑠 . Since we know that there exists at

least an 𝛼 satisfying the equation 𝛼 · (𝑥0 + 𝑥1) ≡1+𝑠 (𝑚0

𝑥 +𝑚1

𝑥 ), a
"bad" case is that there exists {𝛼𝑖 } whose elements all satisfy the

above equation. Thus, the simulation will fail if F B2A
chooses the

wrong 𝛼 to compute the MAC of the output. In addition, simply

add the initialization stage to each functionality does not solve the

problem, since this would allow parties to initialize inconsistent

𝛼 for different functionalities. In [24, 26], a crucial modeling is to

summarize all randomness generation functionalities in a single

preprocessing functionality F Pre
to manage the global MAC key

generation and leave functional computation in the main protocol.

In AlphaFL, we build a wrapper functionality FWrap
described in

Fig. 16, which accepts commands as defined in F InCom
, F SqGen

and

F TripGen
(formally defined in Fig. 7, Fig. 8 and Fig. 13, respectively).

In addition, we include F RanBitGen
described in Fig. 15 into FWrap

,

where FWrap
outputs authenticated bit shares to servers. We show

an overview of different protocols and functionalities in Fig. 6.

5.4 Theorems and Proofs
We formally describe the functionality F InCom

in Fig. 7 and the

functionality F SqGen
in Fig. 8. We use "★" to indicate that a step is

only considered in the honest majority setting. We use "∗" to indi-

cate that a step is only considered in the dishonest majority setting.

Due to the subtlety above, we directly invoke ΠSiSelect
and ΠMSB

in

Fig. 9 (like in [26]) without abstracting them as functionalities. Due

to space limitations, we present the theorems in this section and

refer the reader to Appendix C for detailed proofs.
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Figure 6: Relationship between protocols and functionalities.
Discussed components in this work are highlighted in green.
F Rand is a submodule of all protocols due to consistency check
or Open and MAC check procedure, respectively.

Theorem 5.4. Protocol ΠInCom shown in Fig. 2 uc-realizes F InCom

described in Fig. 7 in the F CR,glo, F CR, F Rand-hybrid model, in the
presence of a malicious adversary, who can corrupt either a subset
of clients C𝑐 ⊆ {C0, ...,C𝑛−1} or a server S𝑗 ∈ {S0, S1}, with static
corruption.

Theorem 5.5. Protocol ΠInCom
Diho shown in Fig. 3 uc-realizes F InCom

described in Fig. 7 in the F CR, F Rand, F vOLE-hybrid model, in the
presence of a malicious adversary, who can corrupt either a subset of
clients or a server S𝑗 or a subset of clients together with a server S𝑗 ,
with static corruption.

Theorem 5.6. Protocol ΠSqGen shown in Fig. 4 uc-realizes F SqGen

described in Fig. 8 in theF TripGen,F Rand-hybridmodel, in the presence
of a malicious adversary who can corrupt a server S𝑗 ∈ {S0, S1}, with
static corruption.

6 Federated Learning with Malicious Security
AlphaFL is built on four core components: preprocessing, input

commitment, filtering, aggregation and MAC check. We represent

detailed outline of the AlphaFL procedure during each training

round in Fig 9. For clarity, we only discuss the more complicated

case in the remaining part, where we allow a malicious server to

collude with multiple clients.

a) Preprocessing. The preprocessing stage is independent of

the real-time input of the online stage. For each C𝑖 , suppose that

the local gradient vector has 𝑡 elements, servers generate 𝑤 · 𝑡
pairs of random arithmetically and boolean shared bits ( [𝑏𝑖 ], [𝑏′𝑖 ]2)
to support the B2A protocol. Servers then do the same to gener-

ate 𝑛 pairs of shared bits ( [𝑝𝑖 ], [𝑝′𝑖 ]2). Besides, servers generate 𝑡
pairs of square correlations ( [𝑎ℎ], [𝑑ℎ]) to support the 𝐿2-Norm

Functionality F InCom

Initialize: For each C𝑖 ∈ {C0, ...,C𝑛−1}, upon receiving

(Init, P𝑖 , sid) from P𝑖 ∈ {C𝑖 , S0, S1}:
1. If P𝑐 ∈ {S0, S1}, wait to receive 𝛼𝑐 ∈ Z2

𝑠 from the adver-

sary. Choose 𝛼𝑐−1 ∈ Z2
𝑠 .

*2. If C𝑖 is corrupted, wait to receive (𝛼0, 𝛼1) ∈ (Z2
𝑠 ,Z2

𝑠 )
from the adversary. Ignore subsequent messages.

3. Store 𝛼 ← 𝛼𝑐 + 𝛼𝑐−1 mod Z
2
𝑘+𝑠 .

4. Send 𝛼 𝑗
to S𝑗

*5. Send (𝛼0, 𝛼1) to C𝑖 .

Macro MacGen(x) (internal subroutine only):
1. Compute m← x · 𝛼 mod 2

𝑘+𝑠
.

2. Wait to receive m𝑐
from S, then set m𝑐−1 ← m −m𝑐

.

InCom: For each C𝑖 ∈ {C0, ...,C𝑛−1}, upon receiving

(InCom, P𝑖 , sid) where P𝑖 ∈ {C𝑖 , S0, S1}:
1. If P𝑐 ∈ {S0, S1}, wait to receive (x𝑐 ,m𝑐 ) ∈ (Z𝑡

2
𝑘+𝑠 ,Z

𝑡

2
𝑘+𝑠 )

from the adversary and (x,C𝑖 , sid) from C𝑖 where x ∈
Z𝑡

2
𝑘+𝑠 , set x

𝑐−1 ← x − x𝑐 .
2. If C𝑖 is corrupted (individually or simultaneously), wait

to receive (x0, x1) from the adversary, compute x ←
x0 + x1 mod 2

𝑘+𝑠
.

3. Send x𝑗 to S𝑗 .
∗4. Wait for the adversary to send messages (guess, S𝑗 , 𝐵 𝑗 )

for 𝑗 ∉ 𝑐 , where 𝐵 𝑗 efficiently describes a subset of

{0, 1}𝑠 . If C𝑖 is the only corrupted party, ignore queries

if S𝑗 ≠ S0. If 𝛼 𝑗 ∈ 𝐵 𝑗 , send success to the adversary.

Otherwise abort.

5. Run MACGen(x). Send m𝑗
to S𝑗 .

Figure 7: Input commitment functionality F InCom

Functionality F SqGen

The functionality F SqGen
has all the same features as

F InCom
, with the additional command:

Square Correlation Generation: Upon receiving

(SqCoGen, P𝑖 , sid) from P𝑖 ∈ {C𝑖 , S0, S1} (or P𝑖 ∈ {S0, S1}
in 2PC):

1. If P𝑐 ∈ {S0, S1}, wait to receive (𝑎𝑐 , 𝑑𝑐 ) ∈ (Z
2
𝑘+𝑠 ,Z

2
𝑘+𝑠 )

from the adversary, sample random 𝑎𝑐−1
$← Z

2
𝑘+𝑠 .

*2. If C𝑖 is corrupted, wait to receive (𝑎0, 𝑎1, 𝑑0) from the

adversary.

3. Compute 𝑎 ← 𝑎𝑐 + 𝑎𝑐−1 mod Z
2
𝑘 . Compute 𝑑 ← 𝑎 · 𝑎

mod Z
2
𝑘 .

4. Sample 𝑟
$← Z2

𝑠 , compute 𝑑 ← 𝑑 + 2𝑘 · 𝑟 mod 2
𝑘+𝑠

, set

𝑑𝑐−1 ← 𝑑 − 𝑑𝑐 .
5. Send (𝑎 𝑗 , 𝑑 𝑗 ) to S𝑗 .
6. Run MACGen({𝑎, 𝑑}). Send (𝑚 𝑗

𝑎,𝑚
𝑗

𝑑
) to S𝑗 .

Figure 8: Square correlation generation functionality F SqGen
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AlphaFL

Parameters: At current iteration 𝑞, let 𝑛 denote the number of clients, 𝑡 denotes the size of gradient vectors. Let𝑤 be the parameter

for 𝐿∞, 𝜏 be the minimal valid inputs required to proceed the aggregation protocol. 𝛽 is the 𝐿2-Norm bound.

Output: 𝑡-valued global aggregate vector

Initialize: S𝑗 ∈ {S0, S1} sends (Init, S𝑗 , sid) to FWrap
, receives back 𝛼 𝑗

.

Preprocessing: For each client C𝑖 ∈ {C0, ...,C𝑛−1}:
1. S𝑗 sends (RanBitGen, S𝑗 , sid) to FWrap

, receives [b] 𝑗 where b mod 2
𝑘 ∈ Z𝑤∗𝑡

2
. Let 𝑏

𝑗

𝑖
and𝑚

𝑗

𝑏𝑖
be S𝑗 ’s share and MAC share of

b[𝑖]. S𝑗 defines [b′] 𝑗
2
, where 𝑏

′𝑗
𝑖
← 𝑏

𝑗

𝑖
mod 2

1+𝑠
and𝑚

𝑗

𝑏′
𝑖

←𝑚
𝑗

𝑏𝑖
mod 2

1+𝑠
.

2. S𝑗 sends (RanBitGen, S𝑗 , sid) to FWrap
, receives [p] 𝑗 where p mod 2

𝑘 ∈ Z𝑛
2
. Let 𝑝

𝑗

𝑖
and𝑚

𝑗
𝑝𝑖

be S𝑗 ’s share and MAC share of p[𝑖].
S𝑗 defines [p′] 𝑗

2
, where 𝑝

′𝑗
𝑖
← 𝑝

𝑗

𝑖
mod 2

1+𝑠
and𝑚

𝑗

𝑝′
𝑖

←𝑚
𝑗
𝑝𝑖

mod 2
1+𝑠

.

3. S𝑗 sends (SqCoGen, S𝑗 , sid) to FWrap
, receives ( [a] 𝑗 , [d] 𝑗 ), where (a, d) ∈ (Z𝑡

2
𝑘+𝑠 ,Z

𝑡

2
𝑘+𝑠 ) and 𝑑ℎ ← 𝑎ℎ · 𝑎ℎ mod 2

𝑘
.

4. S𝑗 sends (SqCoGen, S𝑗 , sid) to FWrap
, receives ( [𝛿] 𝑗 , [𝛾] 𝑗 ), where (𝛿,𝛾) ∈ (Z

2
𝑘+𝑠 ,Z

2
𝑘+𝑠 ) and 𝛾 ← 𝛿 · 𝛿 mod 2

𝑘
.

Input Commitment: For each client C𝑖 :

1. C𝑖 locally computes the gradient update u𝑖 ← {𝑢0, ..., 𝑢𝑡−1}, where 𝑢ℎ ← (𝑢ℎ,0, ..., 𝑢ℎ,𝑤−1) ∈ Z𝑤
2
.

2. S0, S1 and C𝑖 send (InCom, P𝑖 , sid) to FWrap
, servers receive [u𝑖 ]2 ∈ Z𝑤∗𝑡

2
.

𝐿∞-Norm and B2A: For each C𝑖 :

1. Servers run the Open phase of BatchCheck to reconstruct c← [u𝑖 ]2 + [b′]2, where c ∈ Z𝑤∗𝑡
2

.

2. For ℎ ∈ {0, ..., 𝑡 − 1}, let ( [𝑢ℎ,0], ..., [𝑢ℎ,𝑤−1]) be the arithmetic shares of bits in 𝑢ℎ . Servers locally compute [𝑢ℎ,𝑖 ] ← 𝑐𝑤 ·ℎ+𝑖 +
[𝑏𝑤 ·ℎ+𝑖 ] − 2 · 𝑐𝑤 ·ℎ+𝑖 · [𝑏𝑤 ·ℎ+𝑖 ].

3. Servers finally compute [𝑢ℎ] ←
𝑤−2∑
𝑖=0

2
𝑖 · [𝑢ℎ,𝑖 ] +

𝑘−1∑
𝑖=𝑤

2
𝑖 · [𝑢ℎ,𝑤].

𝐿2-Norm Computation: For each client C𝑖 :

1. For ℎ ∈ {0, ..., 𝑡 − 1}, servers run the Open phase of BatchCheck to reconstruct 𝑓ℎ ← [𝑢ℎ] − [𝑎ℎ].

2. S0 computes [𝑣]0 ←
𝑡−1∑
ℎ=0

[𝑑ℎ]0 + 2𝑓ℎ · [𝑎ℎ]0 − 𝑓ℎ · 𝑓ℎ , S1 computes [𝑣]1 ←
𝑡−1∑
ℎ=0

[𝑑ℎ]1 + 2𝑓ℎ · [𝑎ℎ]1.

𝐿2-Norm Check: Servers compute [𝛽] ←
∑[𝑣𝑖 ]
𝑛

for 𝑖 ∈ {0, ..., 𝑛 − 1} and [𝛽2] using ( [𝛿], [𝛾]) as above, then for each C𝑖 :

1. Servers compute [𝑦] ← [𝑣] − [𝛽2].
2. Servers run ΠMSB

with input [𝑦] to extract the authenticated shared sign bit [𝑠]2 of 𝑦 (𝑠 = 1 indicates that 𝑣 < 𝛽2).

Aggregation:
1. For each client C𝑖 , servers run ΠSiSelect

with [u𝑖 ] and [𝑠𝑖 ]2 as inputs, receive [z𝑖 ] as output.
2. Servers run the Open phase of BatchCheck to reconstruct 𝑒𝑖 ← [𝑠𝑖 ]2 + [𝑝′𝑖 ]2. Servers compute [𝑠𝑖 ] ← 𝑒𝑖 + [𝑝𝑖 ] − 2 · 𝑒𝑖 · [𝑝𝑖 ].

3. Servers run the Open phase of BatchCheck to reconstruct 𝜏 ′ ←
𝑛−1∑
𝑖=0

[𝑠𝑖 ]. If 𝜏 ′ < 𝜏 , servers abort the computation.

4. Otherwise, servers compute [U𝑞] ← 1

𝜏 ′ ·
𝑛−1∑
𝑖=0

[z𝑖 ], where z𝑖 = {0} if 𝑠𝑖 = 0 and z𝑖 = u𝑖 otherwise .

MAC Check:
1. Servers run the BatchCheck to check the MACs on values that have been so far opened.

2. If servers do not abort, they open and check the MAC on [U𝑞] using the SingleCheck procedure explained in Fig. 20.

Figure 9: Maliciously secure aggregation protocol in AlphaFL

computation. Note that ΠInCom
Diho , ΠMSB

and ΠSiSelect
also involve pre-

processing computation, we refer to Fig. 3, Fig. 22 and Fig. 5 for

more details.

b) Input Commitment. During this stage, each client C𝑖 sub-

mits its authenticated input to servers. We set aside the straight-

forward method where C𝑖 would simply share its input with the

servers. This is flawed since there is no guarantee that a malicious

server will use the precise input share received from C𝑖 . We present

the solutions in Section 4.1.

c) Filtering. As mentioned in Section 1, we apply 𝐿∞-Norm
and 𝐿2-Norm checks to filter malicious gradient update sent by

compromised clients. Recall that by applying 𝐿∞-Norm check, each

element 𝑢ℎ of C𝑖 ’s local gradient update u𝑖 is bounded by 2
𝑤−1

. In

the Input Commitment stage,C𝑖 shares overall𝑤 ·𝑡 authenticated
bits to servers for u𝑖 with size 𝑡 , where each 𝑢ℎ is decomposed

into𝑤 bits. Thus, the 𝐿∞-Norm is automatically maintained while

executing ΠInCom
Diho (with 𝑘 = 1), where the last authenticated bit

is considered to be the sign bit of 𝑢ℎ . In order to perform the 𝐿2-

Norm check, servers have to first perform a boolean-to-arithmetic
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conversion (B2A) supported by the pre-computed authenticated

random bits and then compute the square of the 𝐿2-Norm of u𝑖 .
Finally, servers execute the protocol ΠMSB

described in Fig. 22 to

securely extract the most significant bit of [𝑦] ← [𝑣] − [𝛽2].
d) Aggregation and MAC Check. After completing the 𝐿2-

Norm check, servers run ΠSiSelect
to compute [z𝑖 ] and run the B2A

protocol to compute [𝑠𝑖 ] from [𝑠𝑖 ]2. If 𝜏 ′ > 𝜏 , servers run theMAC
check phase of BatchCheck to verify all values that have been

opened so far. If the MAC check passes, servers proceed to run the

SingleCheck to reconstruct the authenticated aggregation result

U𝑞 and useU𝑞 to update the global modelM𝑞−1. They finally send
the latest version of the modelM𝑞 to all clients.

7 Evaluation
In this section, we quantify the computational and communica-

tion overhead of AlphaFL. We do not benchmark the robustness of

norm-based poisoning defense, as it is tangential to this work and

has already been evaluated in RoFL [59]. We focus on the input com-

mitment and the secure aggregation tasks. Similar to prior work,

we omit the local training phase and do not include preprocessing

time in any of the benchmark results in this section.

7.1 Experiment Setup
We evaluated all the tasks on an Ubuntu 24.04.1 LTS VM with 48

vCPUs and 128GB RAM, hosted by a workstation with 2 Intel(R)
Xeon(R) Gold 5317 CPUs. All clients and servers are executed as

separate processes. The network is configured with 1ms round-trip

latency and 10Gbps bandwidth. We consider the gradient updates

as 32-bit values, and perform the 𝐿2-Norm computation and ag-

gregation over 64-bit ring, i.e., 𝑤 = 32, 𝑘 = 64, 𝑠 = 63. We choose

𝑠 = 63 instead of 𝑠 = 64 for better memory alignment in our input

commitment implementation.

7.2 Implementation
We implemented AlphaFL in two parts, both based on MP-SPDZ
v0.3.9 [46]. The most secure aggregation building blocks are im-

plemented in Python, withMP-SPDZ high-level interface, except

the novel input commitment protocols, which are written in C++,
using MP-SPDZ lowest-level interface, as the required functional-

ities are not available at higher level. The source code is publicly

available at https://github.com/Barkhausen-Institut/AlphaFL.

7.3 Comparison against a Single Aggregator
We first evaluate the end-to-end performance of AlphaFL against a

single aggregator. The evaluation involves two main phases. One is

the input commitment between the clients and servers. The other

is a secure aggregation between the servers, including 𝐿∞-Norm
and 𝐿2-Norm checks. We implement and evaluate the protocol

ΠInCom
and the protocol ΠInCom

Diho separately. The corresponding end-

to-end runtimes are denoted as AlphaFL-Ho and AlphaFL-DiHo,
respectively.

7.3.1 With Client-Poisoning Resilience.
Baseline.We consider RoFL [59] at commit c1a0c13 for the one-
server setting with 𝑤 = 16 as a showcase. The total runtime is

calculated by summing up the recorded gradient encryption, proof

generation, sending time at one client with the aggregation and

Table 1: End-to-End runtime and total data sent comparison
against the one-server framework RoFL

#Params

Alpha-Ho Alpha-DiHo RoFL
Runtime (second)

62k CIFAR10-S 0.58 7.76 1,848

273k CIFAR10-L 2.88 32.78 14,107

818k SHAKESPEARE 6.31 95.75 28,345
4

Total Data Sent (MB)

62k CIFAR10-S 200 8,201 68

273k CIFAR10-L 887 36,297 301

818k SHAKESPEARE 2,644 108,169 898

proof verification time at the server. The total data sent are the sum

of the data sent by each client.

Parameter Sizes. For this setting, we consider three parameter

sizes, each associated with a distinct dataset: a) LeNet5 [52] trained
on CIFAR10-S, b) ResNet18 [37] trained on the CIFAR10 [51] and
c) LSTM [38] trained on the Shakespeare [18]. We only use 𝑛 = 4

clients in our setup, since RoFL [59] crashes with more clients

during our evaluation.

Comparison. Table 1 shows the results of our end-to-end bench-
marks. RoFL [59] has an advantage in traffic volume thanks to its

one-server setting. In the two-server setting like AlphaFL, each
client needs to communicate with two servers at the same time.

Besides, there are also communications between two servers. It is

not surprising that the total data sent is more than double of that

in the one-server setting.

However, regardless of this communication advantage, RoFL is

still significantly slower than AlphaFL. AlphaFL-Ho is at least 3

magnitudes faster, while AlphaFL-DiHo is at least 2 magnitudes

faster. When we take a closer look at RoFL runtime, we notice that

the majority of time is spent on generating ZKPs at the client side.

ZKPs are still too expensive for this task.

7.3.2 Without Client-Poisoning Resilience.
Baselines. For completeness, we also benchmark two state-of-

the-art one-server frameworks, which support output integrity

verification without poisoning resilience:

• VeriFL [34] at commit 8235a87 with the same settings as in their

paper: bit length 24, half of the number of clients as the threshold

of secret sharing, batch size 1, no dropouts. The total runtime is

calculated by summing up all recorded duration at both client and

server. The total data sent is calculated by summing all recorded

data at each client and multiplying that by the number of clients.

• e-SeaFL [8] at commit 41ede38 in the malicious setting with 3

assisting nodes as suggested. The total runtime is calculated by

summing up all recorded duration at assisting node, client and

server. Similarly, the total data sent includes the outbound traffic

at all assisting nodes, clients and server. Setup phase is always

excluded.

Parameter Sizes. For this setting, we consider three parameter

sizes: a) gradient size 𝑡 = 62𝑘 with 𝑛 = 4 clients, corresponding to

LeNet5 [52] trained on CIFAR10-S, referring to the rows in Table 1,

4
This value is approximated due to server-side logging failure. The actual time should

be longer.
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Table 2: End-to-End runtime and total data sent comparison
against the one-server framework VeriFL and e-SeaFL

#Cli #Par

Alpha-Ho Alpha-DiHo VeriFL e-SeaFL
Runtime (second)

4 62k 0.58 7.76 5.78 97.20

20 100k 3.6 56.14 9.39 163.17

40 100k 7.15 111.11 9.50 194.18

Total Data Sent (MB)

4 62k 200 8,201 2.37 2.60

20 100k 1,610 66,122 19.25 16.41

40 100k 3,218 132,242 38.88 31.67

b) gradient size 𝑡 = 100𝑘 with 𝑛 ∈ {20, 40} clients, referring to the

rows in Table 3 and Table 4. We only use these two gradient sizes

since VeriFL [34] crashes with larger sizes during our evaluation.

Comparison. Table 2 shows the results of our end-to-end bench-
marks. Both VeriFL [34] and e-SeaFL [8] have extreme communi-

cation efficiency. The one-server setting, short bit length of secret

sharing and efficient masking techniques contribute to that.

However, despite of low communication, bothVeriFL and e-SeaFL
are slower than AlphaFL-Ho. e-SeaFL is even much slower than

AlphaFL-DiHo. Both VeriFL and e-SeaFL are hindered by the veri-

fication in the end, which is highly related to the gradient size, less

affected by the number of clients.

7.4 Comparison in the Two-server Setting
Baselines.We benchmark AlphaFL-Ho and AlphaFL-DiHo along
with two state-of-the-art two-server frameworks:

• Elsa [76] at commit eabcfd2 for the two-server setting with

𝑤 = 32, 𝑙 = 64 as a direct comparison. The total runtime is

calculated by summing up all recorded duration at server Alice.

The total data sent is calculated by summing all recorded data at

both servers, Alice and Bob.

• Prio+ [1] at commit eabcfd2 (provided by Elsa [76]) for the two-
server setting with 𝑤 = 32, 𝑙 = 64. The total runtime and the

total data sent are evaluated in the same way as in Elsa [76].

Parameter Sizes. In order to analyze the scalability, we vary

both the size of the gradient vectors and the number of clients while

benchmarking different frameworks. We use two gradient sizes

(#Params) 𝑡 ∈ {100k, 300k} to capture the scale of trained model.

And we set the number of clients (#Clients) to 𝑛 ∈ {10, 20, 30, 40}.
Comparison.We show the end-to-end runtime in Table 3. In

general, running all protocols withmalicious security inAlphaFL-Ho
consumes more runtime than Elsa, but less than Prio+:
• Compared to Elsa, AlphaFL-Ho brings 34% − 79% more runtime

overhead for 𝑡 = 100k and 25% − 75% more for 𝑡 = 300k.

• Compared to Prio+, AlphaFL-Ho is 3.32 − 6.30× as fast for 𝑡 =

100k and 5.70 − 9.32× as fast for 𝑡 = 300k.

Furthermore, parties execute the silent select protocol in both

AlphaFL-Ho andAlphaFL-DiHo, which is skipped in Elsa and Prio+,
resulting in additional runtime. Since the aggregation protocol

executed in AlphaFL-Ho and AlphaFL-DiHo is identical, we can

conclude that executing the input commitment protocol ΠInCom
Diho is

Table 3: End-to-End runtime (in Seconds) comparison in two-
server setting. Parenthesized value is the time consumed by
vOLE. N/A means that the program aborted.

#Clients #Params Alpha-Ho Alpha-DiHo Elsa Prio+

10 100k 1.9 28.67 (24.84) 1.42 11.97

20 100k 3.6 56.14 (49.96) 2.23 14.38

30 100k 4.96 83.62 (75.66) 3.1 19.41

40 100k 7.15 111.11 (101.98) 3.99 23.75

10 300k 5.58 84.84 (75.9) 4.45 51.99

20 300k 10.81 168.1 (152.99) 6.97 61.63

30 300k 16.1 250.68 (230.63) 9.6 N/A

40 300k 21.39 338.21 (311.63) 12.23 N/A

Table 4: End-to-End total data sent (in GBs) comparison in
two-server setting. Parenthesized value is the data sent by
vOLE. N/A means that the program aborted.

#Clients #Params Alpha-Ho Alpha-DiHo Elsa Prio+

10 100k 0.79 32.29 (31.50) 0.82 0.55

20 100k 1.57 64.57 (63.00) 1.65 1.1

30 100k 2.36 96.86 (94.50) 2.47 1.65

40 100k 3.14 129.14 (126.00) 3.29 2.2

10 300k 2.36 96.86 (94.50) 2.47 1.97

20 300k 4.72 193.72 (189.00) 4.94 3.93

30 300k 7.07 290.57 (283.50) 7.41 N/A

40 300k 9.43 387.43 (378.00) 9.88 N/A

the most time-consuming part in AlphaFL-DiHo, even though our

protocol cuts the online computation in half (Section 4.1.2).

We also show the communication overhead in Table 4. We ob-

serve that the communication volume required in AlphaFL-Ho is
very close to Elsa and Prio+, while AlphaFL-DiHo requires ∼ 40×
communication compared to AlphaFL-Ho. This is due to the ex-

ecution of the vOLE functionality F vOLE
within ΠInCom

Diho . We will

elaborate more in the next section.

7.5 Breakdown
To better analyze the performance of each modular protocol ex-

ecuted in AlphaFL-Ho and AlphaFL-DiHo, we provide the break-
down of runtime and traffic in Fig. 10 and Fig. 11. We first set the

gradient size to 100k and vary the number of clients, then we set

the number of clients to 20 and vary the gradient size.

In the honest majority setting, the runtimes of the input com-

mitment protocol, the boolean-to-arithmetic protocol (B2A) and

the 𝐿2-Norm check are almost identical as shown in (a) and (c) of

Fig. 10, while the communication overhead of ΠInCom
dominates

all other modular protocols as shown in (b) and (d) of Fig. 10. This

indicates that the local computation of the B2A protocol and the

𝐿2-Norm check takes up a significant portion of their total runtime.

In the dishonest majority setting, the computation and commu-

nication overhead of ΠInCom
Diho dominates all other parts as shown

in Fig. 11. Regarding the runtime, the execution of ΠInCom
Diho takes

approximately 96% of the total runtime. The time proportion for

executing ΠInCom
Diho remains almost unchanged for different gradient
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Figure 10: Runtime and total data sent breakdown of
AlphaFL-Ho

Figure 11: Runtime and total data sent breakdown of
AlphaFL-DiHo

sizes and number of clients. Meanwhile, the absolute runtime and

communication volume of ΠInCom
Diho increases proportionally to the

parameter sizes and the number of clients, while the communication

cost of the rest can be almost ignored.

When we further take ΠInCom
Diho apart, we notice that vOLE con-

sumes about 96% of the runtime and the traffic (we label the cost

of vOLE as InCom-vOLE in Fig. 11). This also makes vOLE the

most consuming part in the end-to-end evaluation, as shown in the

AlphaFL-DiHo column in Table 3 and Table 4. We have already ap-

plied some transmission optimization by sending in smaller trunks,

which boosts local processing and increases the network utilization

a lot. We note that when executing vOLE, the network bandwidth is

almost always 100% occupied. This means that further optimization

needs to be done at the vOLE protocol level to reduce the traffic

volume, which is not a main focus of our work.

7.6 Microbenchmarks
To show the efficiency improvement of our input commitment

protocols and the silent select protocol, we compare our protocols

against the original ones implemented in MP-SPDZ and provide

microbenchmarks in Table. 5 and Table. 6. To reduce the side effect

Table 5: Input commitment comparison. N/A means that the
compilation failed due to memory requirement.

#Params

Alpha-Ho Alpha-DiHo MP-SPDZ
Runtime (second)

62k CIFAR10-S 0.15 4.79 0.55

273k CIFAR10-L 0.61 24.07 2.27

818k SHAKESPEARE 1.95 70.74 N/A

Total Data Sent (MB)

62k CIFAR10-S 48 2,048 253

273k CIFAR10-L 211 9,063 1,124

818k SHAKESPEARE 628 27,009 N/A

Table 6: Select protocol comparison. The unit for runtime is
second, and the unit for communication is MB.

#Params

Silent Select Classic Select

Runtime Comm. Runtime Comm.

62k CIFAR10-S 0.03 1.00 0.08 1.99

273k CIFAR10-L 0.11 4.42 0.41 8.81

818k SHAKESPEARE 0.32 13.18 1.00 26.27

of parallel execution, we analyze the single client case and vary the

parameter size to benchmark the total runtime and total data sent.

Input commitment protocol.We note that Damgård et al. [25]

propose input and output protocols for non-computing parties in

the honest majority setting, which is highly related to our input

commitment protocol ΠInCom
. Marcel Keller [46] now provides a

modified version inMP-SPDZ, which we simply label asMP-SPDZ
in Table 5. ΠInCom

is at least 3.7× as fast asMP-SPDZ, and requires
less than

1

5
of MP-SPDZ’s communication. On the other hand,

although in the dishonest majority setting ΠInCom
Diho achieves a better

efficiency than the input protocol in [24] as shown in Section 4.1.2,

ΠInCom
Diho is still 31.93 to 39.46 × as slow as ΠInCom

.

Silent select protocol.We implement and benchmark our silent

select protocol ΠSiSelect
against the classic select protocol as imple-

mented inMP-SPDZ. As shown in Table. 6, ΠSiSelect
is 2.67 − 3.72×

as fast as the classic select. In addition, the communication cost

required in ΠSiSelect
is half of what the classic select requires.

8 Conclusion
In this work, we propose AlphaFL: an efficient aggregation proto-

col in two-server setting with malicious security and poisoning

resilience. We design efficient input commitment protocols, and we

propose an efficient silent select protocol to reduce online compu-

tation cost. We further introduce a simple way to generate square

correlation on ring. We prove our protocol secure in the UC frame-

work, and we showcase a subtlety while modeling functionalities

for the SPDZ
2
𝑘 scheme. Aiming at achieving complete malicious

security, AlphaFL exhibits a similar efficiency compared to state-of-

the-art frameworks in the non-collusion case and stimulates more

future work in the collusion case.
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A Ideal Functionalities
A.1 MAC Functionality FMAC.
See Fig 12.

Functionality FMAC

FMAC
generates shares of a global MAC key and, on input

shares of a value, distributes MAC shares of this value. Let

P𝑐 denote the corrupted party, and 𝑐 is the index of the

corrupted party.

Initialize: Upon receiving (Init, S𝑗 , sid) from S𝑗 ∈ {S0, S1}:
1. Wait to receive 𝛼𝑐 ∈ Z2

𝑠 from the adversary. Choose

𝛼𝑐−1 ∈ Z2
𝑠 .

2. Store 𝛼 ← 𝛼𝑐 + 𝛼𝑐−1 mod Z
2
𝑘+𝑠 .

3. Send 𝛼 𝑗
to S𝑗 .

Macro MacGen(ℓ, x) (internal subroutine only):
1. Compute m← x · 𝛼 mod 2

ℓ
.

2. Wait to receive m𝑐
from the adversary, then set m𝑐−1 ←

m −m𝑐
.

Authentication: Upon receiving (MAC, ℓ, 𝑘, S𝑗 , sid) from
S𝑗 ∈ {S0, S1}, where 𝑥 ∈ Z2

𝑘 and ℓ ≥ 𝑘 :
1. Wait for the adversary to send a message (guess, S𝑗 , 𝐵 𝑗 )

for 𝑗 ∉ 𝑐 , where𝐵 𝑗 efficiently describes a subset of {0, 1}𝑠 .
If 𝛼 𝑗 ∈ 𝐵 𝑗 then send success to the adversary. Otherwise
abort.

2. Execute Auth(ℓ, x = {𝑥0, ..., 𝑥𝑡−1}) and then wait for the

adversary to send either OK or Abort. If the adversary
sends OK then send the MAC shares m𝑗

to party S𝑗 ,
otherwise abort.

Figure 12: Functionality FMAC [24]

A.2 Triple Generation Functionality F TripGen.
See Fig. 13.

A.3 Vector Oblivious Linear Evaluation
Functionality F vOLE.

See Fig. 14.

A.4 Random Bit Generation Functionality
F RanBitGen.

See Fig. 15.

A.5 Wrap Functionality FWrap.
See Fig. 16.

A.6 Correlated Randomness Functionality F CR.
See Fig. 17.

A.7 Correlated Randomness Functionality
F CR,glo.

See Fig. 18.

B Protocols
B.1 Batch Check
See Fig. 19.
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Functionality F TripGen

The functionality F TripGen
has all the same features as

FMAC
, with the additional command:

Triple Generation: Upon receiving (TripGen, S𝑗 , sid)
from S𝑗 ∈ {S0, S1}:
1. Wait to receive (𝑎𝑐 , 𝑏𝑐 , 𝑐𝑐 ) ∈ (Z

2
𝑘+𝑠 ,Z

2
𝑘+𝑠 ,Z

2
𝑘+𝑠 ) from

the adversary, sample random 𝑎𝑐−1
$← Z

2
𝑘+𝑠 and𝑏𝑐−1

$←
Z
2
𝑘+𝑠 .

2. Compute 𝑎 ← 𝑎𝑐 + 𝑎𝑐−1 mod Z
2
𝑘 and 𝑏 ← 𝑏𝑐 + 𝑏𝑐−1

mod Z
2
𝑘 . Compute 𝑐 ← 𝑎 · 𝑏 mod Z

2
𝑘

3. Sample 𝑟
$← Z2

𝑠 , compute 𝑐 ← 𝑐 + 2𝑘 · 𝑟 mod 2
𝑘+𝑠

, set

𝑐𝑐−1 ← 𝑐 − 𝑐𝑐 .
4. Send (𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ) to S𝑗 .
5. Run MACGen({𝑎, 𝑏, 𝑐}). Send (𝑚 𝑗

𝑎,𝑚
𝑗

𝑏
,𝑚

𝑗
𝑐 ) to S𝑗 .

Bit Triple Generation: Upon receiving (BitTripGen,
P𝑖 , sid) from P𝑖 ∈ {S0, S1}:
1. Wait to receive (𝑎𝑐 , 𝑏𝑐 , 𝑐𝑐 ) ∈ (Z

2
𝑘+𝑠 ,Z

2
𝑘+𝑠 ,Z

2
𝑘+𝑠 ) from

the adversary, sample random 𝑎𝑐−1
$← Z

2
𝑘+𝑠 and𝑏𝑐−1

$←
Z
2
𝑘+𝑠 , such that 𝑏 ← 𝑏𝑐 + 𝑏𝑐−1 mod 2

𝑘 ∈ Z2.

2. Compute 𝑎 ← 𝑎𝑐 + 𝑎𝑐−1 mod Z
2
𝑘 and 𝑏 ← 𝑏𝑐 + 𝑏𝑐−1

mod Z
2
𝑘 . Compute 𝑐 ← 𝑎 · 𝑏 mod Z

2
𝑘

3. Sample 𝑟
$← Z2

𝑠 , compute 𝑐 ← 𝑐 + 2𝑘 · 𝑟 mod 2
𝑘+𝑠

, set

𝑐𝑐−1 ← 𝑐 − 𝑐𝑐 .
4. Send (𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ) to S𝑗 .
5. Run MACGen({𝑎, 𝑏, 𝑐}). Send (𝑚 𝑗

𝑎,𝑚
𝑗

𝑏
,𝑚

𝑗
𝑐 ) to S𝑗 .

Figure 13: Triple generation functionality F TripGen

Functionality F vOLE

Initialize: Upon receiving (Init, 𝛼, sid) from P𝑖 , store 𝛼

and ignore any subsequent (Init, sid) messages.

Compute: Upon receiving (sid, ℓ, 𝑟 , 𝑡, x) from P𝑗 , where

x ∈ Z𝑡
2
𝑡 :

1. Sample b
$← Z𝑡

2
ℓ . If P𝑗 is corrupted, receive b ∈ Z𝑡

2
ℓ from

the adversary.

2. Compute a← b + 𝛼 · x mod 2
ℓ
.

3. If P𝑖 is corrupted, receive a ∈ Z𝑡

2
ℓ from the adversary

and compute a← b + 𝛼 · x mod 2
ℓ
.

4. If P𝑗 is corrupted, wait for the adversary to input a

meesage (Guess, 𝑆), where 𝑆 efficiently describes a sub-

set of {0, 1}𝑠 . If 𝛼 ∈ 𝑆 , then send (Success) to S. Other-
wise, abort and terminate.

5. Output a to P𝑖 and b to P𝑗 .

Figure 14: Vector oblivious linear evaluation functionality
F vOLE [24]

Functionality F RanBitGen

The functionality F RanBitGen
has all the same features as

FMAC
, with the additional command:

Random Bit Generation: Upon receiving

(RanBitGen, S𝑗 , sid) from S𝑗 ∈ {S0, S1}:
1. Wait to receive 𝑏𝑐 ∈ Z

2
𝑘+𝑠 from the adversary, sample

random 𝑏𝑐−1
$← Z

2
𝑘+𝑠 , where 𝑏 ← 𝑏𝑐 + 𝑏𝑐−1 mod 2

𝑘 ∈
Z2.

2. Send 𝑏 𝑗
to S𝑗 .

3. Run MACGen(𝑏). Send𝑚 𝑗

𝑏
to S𝑗 .

Figure 15: Random bit generation functionality F RanBitGen

Functionality FWrap

Initialize: Same as F InCom
.

Macro MACGen(x): Same as F InCom
.

InCom: Same as F InCom
.

Square Correlation Generation: Same as F SqGen
.

Random Bit Generation: Same as F RanBitGen
.

Bit Triple Generation: Same as F TripGen
.

Figure 16: Wrapper functionality FWrap

Functionality F CR

1. If S𝑗 is corrupted, wait to receive 𝑘 from the adversary.

Otherwise, randomly choose 𝑘 .

2. Send 𝑘 to C𝑖 .

3. Upon receiving (CRGen, P𝑖 , sid) from P𝑖 ∈ {C𝑖 , S𝑗 },
compute 𝑟 ← PRF𝑘 (sid), send 𝑟 to all P𝑖 .

Figure 17: Correlated randomness functionality F CR

Functionality F CR,glo

1. If S𝑗 ∈ {S0, S1} is corrupted, wait to receive 𝑘 from the

adversary. Otherwise, randomly choose 𝑘 .

2. Send 𝑘 to C𝑖 ∈ {C0, ...,C𝑛−1}.
3. Upon receiving (CRGen, P𝑖 , sid) from P𝑖 ∈ {C0, ...,

C𝑛−1, S𝑗 }, compute 𝑟 ← PRF𝑘 (sid), send 𝑟 to all P𝑖 .

Figure 18: "Global" correlated randomness functionality
F CR,glo

B.2 Single Check
See Fig. 20.

B.3 Protocol ΠRanBitGen

See Fig. 21.
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BatchCheck

Open: To open a value 𝑥ℎ :

1. S𝑗 samples 𝑟
𝑗

ℎ
∈ Z𝑡

2
𝑠 , then call FMAC

to obtain [𝑟ℎ] 𝑗 .
2. Servers then compute [𝑥ℎ] ← [𝑥ℎ] + 2𝑘 [𝑟ℎ]. We denote

S𝑗 ’s share and MAC share on 𝑥ℎ as 𝑥
𝑗

ℎ
and𝑚

𝑗

ℎ
.

3. S𝑗 sends 𝑥
𝑗

ℎ
to S𝑗−1 and reconstruct 𝑥ℎ .

MAC Check (in Batch):

1. Servers call F Rand
, receive r

$← Z𝑡
2
𝑠 .

2. Servers then compute 𝑣 ←
𝑡−1∑
ℎ=0

𝑟ℎ · 𝑥ℎ mod 2
𝑘+𝑠

.

3. S𝑗 computes �̃� 𝑗 ←
𝑡−1∑
ℎ=0

𝑟ℎ · 𝑚 𝑗

ℎ
mod 2

𝑘+𝑠
and 𝑧 𝑗 ←

�̃� 𝑗 − 𝛼 𝑗 · 𝑣 mod 2
𝑘+𝑠

.

4. S𝑗 commits and opens 𝑧 𝑗 , then verifies if 𝑧 ← 𝑧0 + 𝑧1
mod 2

𝑘+𝑠
is zero. If the check passes, parties accept 𝑥ℎ =

𝑥 mod 2
𝑘
, otherwise they abort.

Figure 19: BatchCheck procedure [24]

SingleCheck

1. To open [𝑦], servers run Open phase in BatchCheck,
receive 𝑦. We denote S𝑗 ’s MAC share on 𝑦 as𝑚 𝑗

.

2. S𝑗 computes 𝑧 𝑗 ←𝑚 𝑗 − 𝛼 𝑗 · 𝑦.
3. S𝑗 commits and opens 𝑧 𝑗 , then verifies if 𝑧 ← 𝑧0 + 𝑧1

mod 2
𝑘+𝑠

is zero. If the check passes, parties accept𝑦 = 𝑦

mod 2
𝑘
, otherwise they abort.

Figure 20: SingleCheck procedure [24]

B.4 Protocol ΠMSB

See Fig. 22.

C Security Proofs
For the following proofs of theorem 5.4 and theorem 5.5, we first

consider the case in which a single C𝑖 is involved in the protocol

execution. We then extend the proof to the case in which multiple

clients are involved.

C.1 Proof of Theorem 5.4
Let A be a malicious, static adversary that interacts with parties

performing the protocol ΠInCom
as shown in 7. We construct an

adversary S for the ideal model such that no environmentZ can

tell with non-negligible probability whether it is interacting withA
and the protocol F InCom

or with S in the ideal process for F InCom
.

Simulating the case when S0 is corrupted: S simulates a

real execution in which the corrupted S0 controlled by A deliv-

ers message to uncorrupted S1 and C𝑖 in the internal (simulated)

interaction. The S works as follows:

1. Emulate F CR,glo
, generate (𝛼0, 𝛼1), send 𝛼0

to A and F InCom
.

Protocol ΠRanBitGen

Output: Servers output [𝑏], where 𝑏 ∈ Z2.

Protocol:
In the following, parties use an instance of SPDZ

2
𝑘 over

Z
2
𝑘+2 with MAC shares over Z

2
𝑘+𝑠+1 .

1. S𝑗 sample 𝑢 𝑗 $← Z
2
𝑘+2 .

2. S𝑗 call FMAC
with 𝑢 𝑗

as input, receives [𝑢] 𝑗 .
3. Servers compute [𝑎] ← 2[𝑢] + 1.
4. Servers compute [𝑒] ← [𝑎] · [𝑎].
5. Servers run Open and MAC check to obtain 𝑒 , abort if

𝑎 is not odd.

6. Let 𝑐 be the smallest square root modulo 2
𝑘+2

of 𝑒 and let

𝑐−1 be its inverse modulo 2
𝑘+2

. Servers compute [𝑑] ←
𝑐−1 [𝑎] + 1.

7. Let (𝑑 𝑗
,𝑚

𝑗

𝑑
) ∈ (Z

2
𝑘+𝑠+1 ,Z

2
𝑘+𝑠+1 ) be S𝑗 ’s share of 𝑑 and

of its MAC. S𝑗 sets 𝑏 𝑗 ← 𝑑 𝑗

2
and𝑚

𝑗

𝑏
← 𝑚

𝑗

𝑑

2
.

8. Servers call FMAC
to generate a random value [𝑟 ], where

𝑟 ∈ Z2
𝑠 , servers compute [𝑏] ← [𝑏] + 2𝑘 · [𝑟 ].

9. S𝑗 outputs [𝑏] 𝑗 ← (𝑏 𝑗 ,𝑚
𝑗

𝑏
).

Figure 21: Authenticated random bit generation ΠRanBitGen. To
ensure that the first 𝑠 bits are random, we add the step 8 to
the original protocol provided in [26].

2. Emulate F CR
, generate and send x0

$← Z𝑡

2
𝑘+𝑠 , 𝑥

0

𝑡

$← Z
2
𝑘+𝑠 m0

$←

Z𝑡

2
𝑘+𝑠 and𝑚

0

𝑡

$← Z
2
𝑘+𝑠 to A.

3. Emulate F Rand
, generate and send r to A.

4. Act as an honest S1, receive 𝑣0 and send 𝑐1 to A.

5. Compute 𝑣0 and 𝑧0 just asA will do. Set 𝑧1 ← (𝑣0 − 𝑣0) · 𝛼1 − 𝑧0
mod 2

𝑘+2𝑠
.

6. Commit and send 𝑧1 to A, receive commitment 𝑧0 from A.

7. Check if 𝑧0 + 𝑧1 = 0 mod 2
𝑘+2𝑠

, abort as an honest S1 if not.
8. Otherwise, send previously computed (x0,m0) to F InCom

and

halt.

Proof. We now prove that REALF
CR,FRand

ΠInCom,A,Z is indistinguishable

from IDEALF
CR,FRand
FInCom,S,Z .

We first prove that the messages received by adversary during

the protocol execution are distributed identically in the real and

ideal execution. In the real execution 𝑣1 ←
𝑡−1∑
𝑖=0

𝑥1𝑖 ·𝑟𝑖+𝑥1𝑡 mod 2
𝑘+𝑠

is

computed by S1, while in the ideal execution 𝑣1 is chosen uniformly

at random by S. Since 𝑥1𝑡 is distributed uniformly at random to A,

so is the masked value 𝑣1. Note that the consistency check should

always be passed since C𝑖 is honest (under honest majority setting).

Thus, any error 𝑒 = 𝑣0 − 𝑣0 introduced byA will cause S1 to open a

commitment with difference (𝑣0 − 𝑣0) · 𝛼1
in the real world, which

is perfectly simulated by the simulator. The above concludes the

identical distribution of messages in the real and ideal execution.

It is easy to see that the probability of passing the consistency

check in both execution is identical. It remains to argue that the

MAC shares output by all parties are identically distributed in both
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Protocol ΠMSB

Private input: Servers hold [𝑥].
Output: Servers output [𝑠]2, where 𝑠 = 1 if 𝑥 < 0 and

𝑠 = 0 otherwise.

Preprocessing:
1. Servers send (RanBitGen, S𝑗 , sid) to F RanBitGen

, receive

( [𝑎], [𝑏0], ..., [𝑏𝑘−1]) where 𝑎, 𝑏𝑖 ∈ Z2.

2. Servers compute [𝑟 ] =
𝑘−1∑
𝑖=0

2
𝑖 · [𝑏𝑖 ].

Protocol:
1. Servers run Open and Batch check to reconstruct 𝑐 ←
[𝑎] + [𝑟 ].

2. Servers compute 𝑐′ ← 𝑐 mod 2
𝑘−1

and [𝑟 ′] =
𝑘−2∑
𝑖=0

2
𝑖 ·

[𝑏𝑖 ].
3. Servers run ΠA2B

with ( [𝑏0], ..., [𝑏𝑘−2]) as input, receive
( [𝑏0]2, ..., [𝑏𝑘−2]2) as output.

4. Servers run ΠBitLT
with (𝑐′, [𝑏0]2, ..., [𝑏𝑘−2]2) as input,

receive [𝑝]2 as output.
5. Servers run ΠB2A

with [𝑝]2 as input, receive [𝑝] as out-
put.

6. Servers compute [𝑥 ′] ← 𝑐′ − [𝑟 ′] + 2𝑘−1 [𝑝] and [𝑑] ←
[𝑥] − [𝑥 ′].

7. Servers run Open and Batch check to reconstruct 𝑒 ←
[𝑑] + 2𝑘−1 [𝑎].

8. Let 𝑒𝑘−1 be the most significant bit of 𝑒 . Servers output

[𝑠]2 ← 𝑒𝑘−1 + [𝑎] − 2𝑒𝑘−1 [𝑎].

Figure 22: Extract MSB protocol ΠMSB [26]. Within ΠMSB, the
A2B protocol ΠA2B, the bitwise comparison protocol protocol
ΠBitLT and B2A protocol ΠB2A can be found in [26].

executions. Note that since C𝑖 is honest, the MACs are already

correctly computed. The MAC shares ofA is received from F CR
in

the real execution, which is simulated by S in the ideal execution.

Thus, they are chosen uniformly at random in both worlds. The

MAC shares of S1 is correctly computed by an honest C𝑖 in the real

execution, where C𝑖 first computes the correct MACs then abstracts

the MACs by the shares received from F CR
. In the ideal execution,

A’s MAC shares are set by F InCom
to the exact computed result.

Then F InCom
sets the MAC shares of S1 in the same way as C𝑖 in

the real execution, so they are distributed identically in both worlds.

We conclude that the simulation is indistinguishable forZ. □

Simulating the case when C𝑖 is corrupted: S simulates a

real execution in which the corrupted C𝑖 controlled by A deliv-

ers message to uncorrupted S0 and S1 in the internal (simulated)

interaction. The S works as follows:

1. Emulate F CR,glo
, generate (𝛼0, 𝛼1), send them to A and F InCom

.

2. Emulate F CR
, generate (x0, 𝑥0𝑡 ,m0,𝑚0

𝑡 ) and send them to A.

3. Compute m and𝑚𝑡 as A will do.

4. Act as an honest S1, receive (x1, 𝑥1𝑡 ,m1,𝑚1

𝑡 ) from A.

5. Perform Consistency Check just as honest S0 and S1 will do, abort
if consistency check fails.

6. Otherwise, send (x0, x1) and m0
to F InCom

, then halt.

Proof. Since both functionalities F CR,glo
and F CR

are emulated

by S,A only sends messages to S and do not receive any messages

from S. Thus, it is clear that the message transcript accessible to

an adversary during the protocol is distributed the same way in

both the real and ideal executions. Again, since S uses the shares

received from A to perform the consistency check just as S0 and S1
do in the real execution, we argue that the probability of passing the

consistency check in both the ideal and real execution is identical.

It remains to show that the MAC shares computed in both worlds

are identically distributed. From Claim 5.1, we know that if the

consistency check passes then parties output correctly generated

MAC shares received from A, except with negligible probability.

Then, we notice that the shares output by S0 in the real execution

are the exact values received from F CR
, which is emulated by S in

the ideal execution. Thus, they are distributed uniformly at random

in both worlds. Then S1 outputs the (correct) MAC shares received

from A in both real and ideal worlds.

We conclude that the simulation is indistinguishable forZ. □

We now discuss when multiple clients are involved. In both cases

above, S has to repeat the simulation steps prior to the consistency

checks until the last client completes its sharing phase. If S0 is

corrupted, then all shares received from the clients remain correct.

Therefore, A gains no additional power except the ability to intro-

duce an error during the consistency check. If a subset of clients are

corrupted, A gains no additional power except the ability to share

more x. In both cases, Claim 5.1 still holds, and the probability of

passing the consistency check in both executions is still identical,

since the consistency check is always performed at the very end

of the protocol execution. We thus conclude that the simulation is

still indistinguishable forZ.

C.2 Proof of Theorem 5.5
Let A be a malicious, static adversary that interacts with parties

performing the protocol ΠInCom
Diho as shown in 7. We construct an

adversary S for the ideal model such that no environmentZ can

tell with non-negligible probability whether it is interacting withA
and the protocol F InCom

or with S in the ideal process for F InCom
.

Simulating the case when S0 is corrupted: S simulates a

real execution in which the corrupted S0 controlled by A deliv-

ers message to uncorrupted S1 and C𝑖 in the internal (simulated)

interaction. The S works as follows:

1. Upon receiving 𝛼0
fromA as input to an instance of F vOLE

, send

𝛼0
to F InCom

.

2. Emulate F CR
instance, sample x0

$← Z𝑡

2
𝑘+𝑠 , 𝑥

0

𝑡

$← Z
2
𝑘+𝑠 , send

(x0, 𝑥𝑡 ) to A.

3. Emulate F vOLE
, receive

ˆx̃0 ← (x̂0, 𝑥0𝑡 ) and b0 fromA as input to

F vOLE
. Note that

ˆx̃0 can be different from x̃0.
4. If A sends any (guess, 𝑆) message to F vOLE

, forward the guess

to F InCom
. If F InCom

aborts then abort, otherwise store the set

𝑆1 = 𝑆1 ∩ 𝑆 (where initially 𝑆1 = Z2
𝑠 ).

5. Sample 𝛼1
$← 𝑆1, honestly compute a0 ← 𝛼1 · ˆx̃0 − b0.

6. Emulate F vOLE
, receive a0 from A as input to F vOLE

.
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7. Sample 𝑥1𝑡
$← Z

2
𝑘+𝑠 , use zero-valued share inputs to set x̃1 ←

(0, 𝑥1𝑡 ). Set x̃← x̃0 + x̃1. Honestly compute b1 ← 𝛼0 · x̃ − a1.
8. Emulate F Rand

, send r
$← Z𝑡

2
𝑠 to A.

9. Act as an honest S1, send 𝑣1 to A, receive back and reconstruct

𝑣 .

10. Receive and open the commitment 𝑧0 fromA. Honestly compute

𝑑1 and open S1’s commitment 𝑧1 ← 𝑑1 − 𝑐 · 𝛼1
.

11. Perform the consistency check. If check fails, abort and terminate.

12. If the check passes then defineA’sMAC shares using the received

values for F vOLE
. Send (x0,m0) to F InCom

and halt.

Proof. We now prove that REALF
CR,FRand

ΠInCom
Diho ,A,Z

is indistinguishable

from IDEALF
CR,FRand
FInCom,S,Z .

We first prove that the message distribution are identical in

the real and idea execution. First, ideal functionalities F CR
, F Rand

,

F Rand
are emulated by S and thus indistinguishable in both worlds.

In the real execution 𝑣1 ←
𝑡−1∑
𝑖=0

𝑥1𝑖 · 𝑟𝑖 + 𝑥1𝑡 mod 2
𝑘+𝑠

is computed by

S1, while in the ideal execution 𝑣1 is chosen uniformly at random

by S. Since 𝑥1𝑡 is distributed uniformly at random to A, so is the

masked value 𝑣1. We note that 𝑧1 is computed in the same way

in both executions, which only reflects the errors introduced by

A and thus perfectly simulated by S. Thus, we conclude that the
messages are identically distributed in both worlds. Besides, since

the errors introduced by A to the ideal execution is the same as in

the real execution, we conclude that the probability of passing the

consistency check in both executions are identical.

Due to Claims 5.2 and 5.3, we know that if the consistency check

passes, then the MAC shares computed in the real protocol execu-

tion are correctly computed as the MAC shares output by F InCom

in the ideal world, except with negligible probability. A’s MAC

shares are set by S to the exact computed result obtained by A. In

the real execution, S1’s MAC shares are obtained by summing up

the random output received from F vOLE
, which serves as random

mask and are distributed uniformly at random forZ. After A ob-

tains its MAC shares, S1’s MAC shares are simply the correct MACs

abstract A’s MAC shares We thus conclude that the simulation is

indistinguishable forZ. □

Simulating the case when S1 is corrupted: Similar to the case

when S0 is corrupted.
Simulating the case when C𝑖 is corrupted: Similar to the case

when S0 is corrupted.
Simulating the case when S1 and C𝑖 are corrupted: S simu-

lates a real execution in which the corrupted S1 and C𝑖 , controlled

byA, deliver messages to the uncorrupted S0 in the internal (simu-

lated) interaction. S works as follows:

1. Emulate F vOLE
, receive 𝛼1

and a0 from A. Send 𝛼1
to F InCom

.

2. Sample x0
$← Z𝑡

2
𝑘+𝑠 , 𝑥

0

𝑡

$← Z
2
𝑘+𝑠 , set x̃0 ← (x0, 𝑥0𝑡 ). Honestly

compute b0 ← 𝛼1 · x̃0 − a0.
3. Emulate F CR

instance, send previously sampled (x0, 𝑥0𝑡 ) to A.

4. Emulate F vOLE
, receive x̃ ← (x, 𝑥𝑡 ) and b1 from A as input to

F vOLE
.

5. If A sends any (Guess, 𝑆) message to F vOLE
, forward the guess

to F InCom
. If F InCom

aborts, then abort; otherwise, store the set

𝑆0 = 𝑆0 ∩ 𝑆 (where initially 𝑆0 = Z2
𝑠 ).

6. Sample 𝛼1
$← 𝑆0. Honestly compute a1 ← 𝛼0 · x̃ − b1.

7. Emulate F Rand
, send r

$← Z𝑡
2
𝑠 to A.

8. Act as an honest S0, send 𝑣0 to A, receive back and reconstruct

𝑣 .

9. Receive and open the commitment 𝑧1 fromA. Honestly compute

𝑑0 and open S0’s commitment 𝑧0 ← 𝑑0 − 𝑣 · 𝛼0
.

10. Perform the consistency check. If check fails, abort and terminate.

11. If the check passes then defineA’sMAC shares using the received

values for F vOLE
. Send (x1,m1) to F InCom

and halt.

Proof. We now prove that REALF
CR,FRand

ΠInCom
Diho ,A,Z

is indistinguishable

from IDEALF
CR,FRand
FInCom,S,Z .

Again, we first prove that the message distribution are identical

in both executions. Compared to the case when S0 is corrupted, the
only difference here is that A is able to send a guess query while

executing the second F vOLE
and the rest of the communications

are identical. We conclude that the messages simulated by S are

indistinguishable from those in the real execution. Since now x̃1

can be a vector of any arbitrary values, A can not introduce any

error by sending x̃ to S. While executing the first F vOLE
, A can

still introduce an error by sending an incorrect 𝛼1
. However, this

does not affect the probability of passing the consistency check in

both worlds, since the errors introduced to the ideal execution are

the same as those in the real execution.

We still need to prove that the distribution of the MAC shares is

identical in both worlds. Again, we know from Claims 5.2 and 5.3

that the MAC shares are correctly computed in the real protocol

execution as the MAC shares output by F InCom
if the consistency

check passes, except with negligible probability. While the A’s

MAC shares are set by S, S0’s MAC shares are the sum of outputs

received from F vOLE
in the real world, which are the correct MAC

shares and thus distributed identically in the ideal world. We thus

conclude that the simulation is indistinguishable forZ. □

Simulating the case when S0 and C𝑖 are corrupted: Similar

to the case when S1 and C𝑖 are corrupted.

We now analyze the case when multiple clients are involved.

The main effect is that A may now be able to send multiple guess

queries to F vOLE
instances. We assume that A has corrupted 𝑞

clients along with S1. During the simulation, S always forwards

guess queries to F InCom
. As long as F InCom

aborts, S simulates

the corresponding F vOLE
instance aborting. If all guesses succeed,

S draws 𝛼 ∈
𝑞−1⋂
𝑖=0

𝑆0,𝑖 . The probability of passing the consistency

check in both words remains identical. We thus conclude that the

simulation is still indistinguishable forZ.

C.3 Proof of Theorem 5.6
Proof Sketch:We construct an adversary S for the ideal execution

such that the environment machineZ cannot distinguish between

the real execution of protocol ΠSqGen
with A (REALΠSqGen,A,Z)
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and the ideal execution of F SqGen
with S (IDEALFSqGen,S,Z). We

observe that the simulator only needs to simulate the Open and

MAC check procedures to reconstruct e. It is easy to see that

the distribution of e is identical in the ideal and real executions,

since both a and b are just random vectors chosen by F TripGen

in the real execution and emulated by S in the ideal execution.

Following the proof of [24], we also conclude that the probability

of passing the check is the same in both executions. It remains to

show that the square correlation shares output by the servers are

identically distributed in both executions. Due to Equation 4.2, we

know that the square shares are correctly computed if e is correctly
reconstructed, except with negligible probability. S will set the

exact computed result of A as its output from F SqGen
, then the

honest party’s output will be chosen by F SqGen
as a random mask

to the correct square correlation, which distributed identically in

both executions. We thus conclude that ideal and real executions

are indistinguishable to the environment machineZ.
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