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Abstract

In the age of ubiquitous smartphone use and widespread image
sharing on social platforms, geolocation poses a critical privacy
concern. Images often carry sensitive spatial and temporal details—
such as street signs, architectural styles, or landmarks—that can
inadvertently disclose the precise whereabouts of individuals and
organizations. Recent advances in large vision-language models
(LVLMs) present an emerging threat by enabling users, regardless of
technical expertise, to extract location cues from seemingly benign
photos. While existing Al-driven geolocation solutions often focus
on narrow datasets or specialized contexts, the generalizable perfor-
mance and privacy implications of zero-shot LVLMs in real-world
settings remain critical questions.

In this paper, we investigate the geolocation capabilities of state-
of-the-art LVLMs. Our findings reveal that while these models
demonstrate a non-negligible capability for image-based geolocation
even without specialized training, their accuracy in absolute terms
is often low, exposing clear limitations in their current state. We
then introduce Ethan, a framework integrating chain-of-thought
(CoT) reasoning. Although ETHAN shows improved performance
(e.g., 28.7% accuracy at the 1 km threshold) and an 85.4% win rate
on GeoGuessr, these results primarily highlight the potential tra-
jectory of such technologies rather than their current widespread,
high-accuracy applicability. Our study underscores the dual na-
ture of LVLMs in this domain: they uncover an emerging privacy
risk due to their inherent, albeit limited, geolocation abilities, yet
also demonstrate significant constraints. We conclude by calling
for further research into the limitations and risks of LVLM-based
geolocation and the development of effective mitigation strategies
to protect sensitive location data.
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Figure 1: Common scenarios of how adversaries extract pri-

vate geolocation information from the victims.

1 Introduction

Geolocation [16, 36, 42, 46] plays a pivotal role in safeguarding user
privacy. As smartphones and other mobile devices become ubiqui-
tous, sharing images on social platforms such as Facebook [38], In-
stagram [39], and Foursquare [20] has grown increasingly common.
These shared images can unintentionally expose sensitive details,
including the time and location of events, identities of individuals,
and interpersonal connections, thereby posing significant threats
to user privacy. Multiple incidents [8, 58] have demonstrated how
private photos can be misused, leading to severe repercussions like
job loss. Consequently, the ability to accurately infer a photo’s loca-
tion, often referred to as “image-based geolocation,” has profound
implications for security, navigation, and social media, making it a
crucial privacy concern.

Given that photos are increasingly tagged with both geographic
coordinates and timestamps, image privacy now heavily intersects
with location privacy. This situation can have dire consequences,
especially in high-stakes environments, as illustrated in Figure 1.
Attackers can exploit geolocation capabilities to extract private
information—ranging from personal and commercial data to state
secrets—potentially securing financial or strategic advantage. Con-
sider, for example, a human rights activist who attends a confi-
dential meeting in a remote area. If someone inadvertently posts a
photo from that same location, an adversary might use the image
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Figure 2: Overview of our work.

to pinpoint the meeting’s venue, thereby endangering the activist
through harassment, surveillance, or physical harm. In Section 2,
we provide additional evidence illustrating the feasibility of such
attacks.

Numerous AI-driven tools already exist for geolocation tasks.
Advanced models such as GeoSpy [3] can not only predict locations
from images but also furnish detailed justifications for their infer-
ences. However, these solutions often require specialized expertise
and substantial setup, limiting their accessibility. The advent of
large vision-language models (LVLMs) [60, 63–65] introduces a
new dimension to this challenge. These models, known for their
proficiency in various complex tasks [13, 15, 15, 32], can potentially
be used by non-technical users to predict a photo’s location by in-
terpreting visual cues. While this capability represents an emerging
threat to privacy by potentially lowering the barrier to location
inference, the actual effectiveness of current zero-shot LVLMs for
reliable geolocation is still a subject of investigation. Early obser-
vations [44] suggest that while LVLMs can perform geolocation to
some extent, their accuracy can be quite limited in absolute terms,
indicating clear limitations.

Despite the remarkable progress in LVLM-based geolocation,
there is a critical gap in our understanding of how these models
performwhen inferring locations from real-world images. Although
existing research [25, 37, 53] has addressed geolocation in isolated
contexts or on specialized datasets, a comprehensive evaluation
spanning diverse environments and data sources remains lacking.
Consequently, it is imperative to undertake a systematic study not
only of the accuracy of these models but also of the factors that
shape their performance and their potential security implications.
This work is crucial for developing guidelines and technologies that
protect users from the unintended privacy risks associated with
geolocation capabilities.

In this paper, we begin by systematically assessing the ability of
state-of-the-art LVLMs to extract geolocation information from im-
ages and by contrasting their performance with that of traditional
geolocation frameworks. Specifically, we address three research
questions: (1) How effectively can current LVLMs perform geoloca-
tion tasks? (2) Can LVLMs be leveraged or adapted to exploit user
privacy in real-world scenarios? (3) Which factors most significantly
affect their geolocation proficiency? Our approach employs a rigor-
ous experimental testbed that incorporates varied datasets, robust
evaluation metrics, and a thorough analysis of the models’ outputs.

Our observations reveal that while LVLMs exhibit a non-negligible
ability to geolocate images by recognizing landmarks or urban

features, their overall accuracy remains low without significant
fine-tuning or specialized prompting. Their reliance on "landmark
knowledge" can hinder broader contextual reasoning, a task where
human experts often incorporate more diverse cues. In contrast,
human geoguessing experts factor in additional cues like terrain,
weather, architectural details, and vegetation to enhance their ac-
curacy.

Motivated by these observations and the need for a more bal-
anced understanding, we propose Ethan, a framework that inte-
grates LVLMs with chain-of-thought (CoT) reasoning [55, 61] to
explore the upper bounds of such systems. While ETHAN achieves
improved accuracy (e.g., 28.7% at 1 km) and performs well on Ge-
oGuessr, its development also serves to highlight the current bound-
aries and complexities involved in achieving reliable image geolo-
cation.

We evaluate Ethan on the large-scaleGeolocationHub dataset,
which comprises 50,000 data points (30,000 for training and 20,000
for testing). As our experiments demonstrate, Ethan achieves state-
of-the-art accuracy across multiple distance thresholds, from 1 km
(street-level) to 2,500 km (continent-level). Notably, Ethan attains
28.7% accuracy at street-level (1 km), 59.2% at city-level (25 km),
91.4% at region-level (200 km), 95.6% at country-level (750 km), and
99.3% at continent-level (2,500 km). In terms of average distance and
composite score, Ethanmaintains an average error of 499.3 km and
an average GeoScore of 4620.9, surpassing other baseline models
across every metric.

Additionally, Ethan demonstrates robust performance in real-
world conditions, as illustrated by its success in the popular Ge-
oGuessr game. Over multiple rounds, Ethan averages a score of
4550.5, substantially exceeding the human benchmark of 4120.3,
with a win rate of 85.4%. In one example, Ethan correctly identi-
fied a complex urban location within 0.3 km of the true coordinates
by capitalizing on subtle architectural and cultural cues. Ablation
studies still confirm the performance of Ethan. These results un-
derscore Ethan’s adaptability and effectiveness in both controlled
laboratory settings and competitive live environments.

Our contributions are threefold:

(1) Evaluation and Emerging Threat Assessment:We pro-
vide a systematic assessment of LVLMs’ baseline geolocation
capabilities, highlighting that while an emerging threat ex-
ists due to their non-negligible performance, their absolute
accuracy is currently limited.

(2) Performance Analysis and Limitations:We investigate
factors influencing LVLM geolocation accuracy, underscor-
ing the impact of data quality, landmark availability, and
generalization capabilities, thereby exposing clear limitations
of current models.

(3) Framework Exploration and Call for Mitigation: We
introduce Ethan [2] to demonstrate how LVLM reasoning
can be structured for geolocation. More importantly, our
overall findings serve as a call for mitigation research to
address the potential privacy risks as these technologies
mature.

This work aims to foster a nuanced understanding of LVLM-based
image geolocation, recognizing both the emerging risks and the
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existing constraints, to encourage proactive research into privacy-
preserving measures.

2 Background

2.1 Location-dependent Privacy

Aphotograph can inadvertently disclose a person’s location through
multiple avenues. Typically, images carry metadata like EXIF [5]
(Exchangeable Image File Format), which encodes details such as
the date and GPS coordinates of when and where the photo was
taken. Although social media platforms such as Facebook [38] and
Instagram [39] strip this metadata from uploaded images, they still
store it in separate databases. Should these databases be compro-
mised by unauthorized access, attackers can track users far more
efficiently. Beyond metadata, the images themselves can reveal lo-
cation clues through visible landmarks or street signs. Moreover,
crowdsourcing—where individuals familiar with a specific locale
identify it from a photo—can further compromise privacy. As a
result, simply removing metadata from photos is insufficient to
protect the location privacy of those depicted [8].

2.2 Image Localizability

The ease of determining an image’s location depends heavily on
its content and distinct features. As illustrated in Figure 3, images
that are straightforward to localize often include recognizable faces,
unique animals, notable objects in indoor settings, striking natu-
ral landmarks, or prominent urban structures and historical sites.
Street-view photos, for instance, are frequently more straightfor-
ward to geolocate because they contain recognizable buildings,
signage, or other context-specific cues, compared to less distinctive
rural backdrops [58]. The availability of relevant data and existing
regulations also influence localizability. For example, advertise-
ments are often easy to pinpoint because they frequently display
explicit place names or other direct indicators that tie them to a
specific region.

2.3 Overview of Geolocation Techniques

Visual geolocation generally aims to estimate 2D coordinates or
identify broad regions such as countries, striving to balance wide
applicability and moderate accuracy, even in locales not present in
the training set. Existing methods can be divided into four broad
categories: image retrieval, classification, hybrid, and LVLM-based
approaches. While each category offers unique advantages, all face
limitations regarding model performance, training complexity, and
real-world applicability.
Image Retrieval-based Methods. One intuitive strategy is to
match a query image against a massive reference database, then
assign the location of the closest match as the prediction. Early
work [30, 34, 41] relied on rudimentary features such as color his-
tograms, GIST descriptors, or texture clues. Later methods incorpo-
rated SIFT features and SVMs [29], and deep learning eventually
enhanced retrieval through sophisticated learned representations.
Although these approaches can be highly effective when the data-
base is extensive and current, they do not learn an intrinsic rep-
resentation of the scene. As a result, their accuracy diminishes in
regions with sparse coverage or when environmental changes occur
over time.

Classification-Based Methods. Another way to frame geoloca-
tion is as a classification task [31, 57], wherein the world is par-
titioned into discrete cells based on latitude and longitude. These
cells can be arranged in various ways—regular, adaptive, seman-
tically driven, combinatorial, administrative, or hierarchical. The
key challenge lies in balancing the number and size of these cells:
overly large cells reduce location precision, while too many tiny
cells risk insufficient training data per cell.
Hybrid Approaches. To overcome the pitfalls of simple discretiza-
tion, some methods [14, 25] merge retrieval and classification, of-
ten employing ranking losses or contrastive objectives. One ap-
proach [25] initially applies a coarse classification, then refines it
via regression using prototype networks. However, hybrid solu-
tions demand carefully balanced training sets for multiple modules,
which in turn increases computational complexity and resource
requirements.
LVLM-based Methods. LVLMs show considerable promise for
image-based geolocation. State-of- the-art architectures, such as
GPT-4 [23], have been adapted to geolocation tasks [8], and spe-
cialized applications [44] leverage LVLMs to identify geographic
cues—ranging from text on signage to architectural details and
natural landmarks. Recent research continues to explore their capa-
bilities, for example, by examining fine tuning for diverse cultural
contexts [21], employing multi-image prompting techniques [43],
and assessing zero-shot generalization for out-of-distribution sce-
narios [19]. Nevertheless, the full range and limitations of LVLM
capabilities in geolocation are still not well understood. Addition-
ally, thesemodels can bypassmany traditional privacy defenses (e.g.,
stripping metadata), raising new challenges for ensuring location-
dependent privacy. Despite the usage of LVLMs on geolocation,
the limitations and boundaries of LVLM capabilities remain largely
unexplored. Con- sequently, how to effectively harness their full po-
tential, while mitigating their weaknesses, is still an open question.
Additionally, this introduces a new layer of complexity in manag-
ing location- dependent privacy, as LVLMs can bypass traditional
privacy pro- tections that focus merely on removing or obscuring
metadata.

3 Threat Model

3.1 Threat Model Formulation

We consider a realistic scenario where adversaries aim to uncover
the precise geographic coordinates (latitude and longitude) of im-
ages taken in real-world settings. These images are assumed to be
unaltered and capture natural scenes (e.g., urban streets, rural land-
scapes, or indoor/outdoor gatherings). Importantly, the attackers
do not have access to any additional metadata, such as EXIF tags
or side-channel information (e.g., timestamps, social media logs, or
user profiles). Instead, they rely exclusively on visual cues within
the images—such as architectural styles, vegetation, road layouts,
signage, and other salient features—when attempting to locate the
image on a world map. This restriction reflects common conditions
wherein sensitive information is unintentionally leaked through
photo sharing, yet remains unknown to the adversaries except for
what can be gleaned from the picture itself.

The adversaries’ primary goal is to maximize the precision of
their geolocation predictions, measured in terms of how closely they

412



Mission: Impossible - Image Based Geolocation with Large Vision Language Models Proceedings on Privacy Enhancing Technologies 2025(4)

non-localizable localizable landmarks
Figure 3: Visual representation of image localizability spec-

trum, categorized from non-localizable scenes to recogniz-

able landmarks, illustrating the diversity in the dataset.

approximate the actual coordinates of each image. Even moderate
accuracy—correct to within a few kilometers—can lead to substan-
tial privacy breaches, such as revealing an individual’s place of resi-
dence or exposing a covert meeting site. Highly accurate predictions
(e.g., within street-level accuracy of 1 km) further intensify these
risks, enabling malicious actors to orchestrate stalking, harassment,
or strategic targeting. This threat model thus highlights the peril
of unintentional location disclosure, wherein adversaries—ranging
from sophisticated cybercriminals to casual onlookers—can exploit
seemingly harmless photos for harmful ends. By focusing on vi-
sual cues alone, we capture a worst-case yet increasingly realistic
scenario in which advanced AI models are leveraged to identify
and contextualize minute geographic details. Consequently, our re-
search prioritizes methods to evaluate the severity of these risks and
proposes potential safeguards that preserve user privacy without
unduly limiting the utility of image-sharing platforms.

3.2 Alignment with Regulatory Frameworks

The threat model for Ethan, wherein adversaries derive geoloca-
tion from images, has significant implications under contemporary
data protection and AI governance laws. Processing such data can
implicate Article 9 of the GDPR [17] if the inferred location reveals
sensitive personal details (e.g., attendance at a political rally or spe-
cific healthcare facility), requiring stringent processing conditions.
Furthermore, entities systematically deriving and commercializing
this geolocation data could be classified as "data brokers" under reg-
ulations like California’s CPRA [47], incurring specific registration
and consumer rights obligations. Crucially, the EU AI Act [18] may
classify AI systems like Ethan as "high-risk" if their application
significantly impacts fundamental rights (e.g., privacy through en-
abling stalking or surveillance, as outlined in our threat model) or if
used in specified contexts like biometric identification or certain law
enforcement activities. These frameworks collectively emphasize
the critical need for robust ethical assessments and legal compli-
ance when developing and deploying advanced image geolocation
technologies.

4 Experimental Framework

Before benchmarking existing geolocation techniques and compar-
ing them with LVLM-based solutions, we first outline our approach
to data collection, model selection, and the overall experimental
design guiding our empirical evaluation.

Table 1: Detailed review of geolocation techniques adopted

in the recent three years, highlighting their unique features

and application scopes.

Technique Description

StreetClip [24] Clip-based approach for urban geolocation
GeoClip [10] Alignment technique inspired by clip-based models
GPT-4o [23] Advanced general LVLM
LLaVA [35] Open-source LVLM with visual processing capabilities
GeoSpy [3] Commercial tool for geolocation analysis

4.1 Design Overview

The design of our empirical study is driven by three primary objec-
tives:
• Scenario Coverage: Our goal is to encompass a wide range of
geolocation scenarios—from busy urban streets to remote natural
landmarks. This diversity helps assess how robust and adaptive
different geolocation techniques are under varying environmen-
tal conditions.

• State-of-the-Art Techniques: By focusing on geolocation so-
lutions developed or substantially updated within the last three
years, we ensure that our findings are aligned with the latest
methodological and technological advances.

• Reproducibility and Accessibility:We prioritize publicly ac-
cessible techniques, including those with released model weights
and datasets, to facilitate reproducible research and practical
deployment in real-world settings.
Following these principles, our empirical framework comprises

three core components:
(1) Dataset Compilation:We carefully select existing datasets to cap-

ture a range of geolocation contexts, ensuring thorough evalua-
tion across diverse environments. In particular, after reviewing
available data sources, we curate our own dataset (Section 4.3)
to mitigate biases and data leakage present in existing datasets.

(2) Technique Selection: Based on the criteria above—public accessi-
bility, recency, and availability of resources—we choose a set of
cutting-edge geolocation methods for analysis.

(3) Evaluation Framework: Building on prior research, we employ
multiplemetrics, includingHaversine distance [56], GeoScore [6],
and administrative boundary accuracy [10], to comprehensively
assess geolocation performance.
By pursuing these strategies, our study probes the capability

boundaries of state-of-the-art geolocation methods, examining both
their security implications and potential vulnerabilities.

4.2 Collection of Geolocation Methods

We perform a broad review of both academic and commercial ge-
olocation techniques, selecting those that reflect cutting-edge de-
velopments in the field.

Selection Criteria. We use the following criteria to choose geolo-
cation methods:
• Public Accessibility: Techniques must provide publicly available
pre-trained models or APIs to ensure broader applicability.

• Availability of Weights and Datasets: We prioritize methods that
release training code and datasets, thereby fostering reproducibil-
ity.
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• Temporal Relevance:We include only techniques created or signif-
icantly updated within the last three years to capture the latest
progress.

Selection Results. Table 1 lists the five final techniques we eval-
uate. This set includes two academic image-geolocation solutions
(StreetClip [24] and GeoClip [10]), two large vision language mod-
els (GPT-4o [23] and LLaVA [35]), and one commercial platform
(GeoSpy [3]). Combining commercial and open-source solutions
ensures both technological diversity and practical relevance.

Table 2: Summary of datasets utilized in geolocation tech-

niques, indicating the variety and scale of images used in our

analysis.

Dataset Number of Images Cutoff Date

Im2GPS [26] 237 2008
Im2GPS3k [50] 2,997 2017
YFCC4k [50] 4,536 2017
YFCC26k [48] 26,000 2022

4.3 Dataset Construction

While exploring open-source geolocation datasets, we identified
biases and data leakage that could invalidate results. To resolve
these issues, we developed our own dataset, which we describe
below, starting with an assessment of existing open-source data.

Data Collection and Verification. We surveyedwidely used datasets
from prior geolocation research, ultimately selecting four for fur-
ther evaluation, as listed in Table 2. These include Im2GPS [26],
Im2GPS3k [50], YFCC4k [50], and YFCC26k [48], each offering
varying scales and coverage. Our verification process involved two
key criteria: (1) Diversity, requiring a balanced global representa-
tion, and (2) Integrity, ensuring that each image contained enough
contextual information for meaningful location estimation.

However, as shown in Figure 4, a sizeable fraction of these images
proved unsuitable for localization, falling into three categories:
Minimal Context, Contextually Ambiguous, or Highly Misleading.
These findings underscore the necessity for high-quality, context-
rich datasets in geolocation tasks.

Dataset Construction. We introduce GeolocationHub, a 50,000-
image dataset engineered to address the shortcomings observed in
existing resources. Two major strategies guide GeolocationHub’s
development:
• Indoor Scene Filtering. We eliminate indoor images—often rife
with extraneous details—using (1) multi-view image analysis [33]
and (2) keyword filters on annotations (e.g., “indoor,” “room,”
“bed”). Keywords are iteratively refined until the dataset contains
no incorrectly classified images.

• Geographically Balanced Sampling.We sample images worldwide
to mitigate location bias, ensuring neither urban centers nor
remote regions are disproportionately represented.
Figure 6 (omitted for brevity) displays the global distribution of

images in GeolocationHub. Collectively, these measures yield a
robust benchmark for assessing LVLM-based geolocation perfor-
mance.

4.4 Evaluation Framework Design

We adopt a structured pipeline to benchmark conventional (non-
LVLM) and LVLM-based geolocation techniques. Traditional meth-
ods are tested directly on GeolocationHub, while evaluating
LVLM approaches demands additional care due to the impact of
prompt engineering [12, 51]. Consequently, we implement zero-shot,
few-shot, and chain-of-thought prompting strategies and fix the
temperature to zero to ensure reproducible model outputs.We detail
our prompt strategies below.

4.4.1 LVLMPrompt Design. Following established best practices [45,
49, 52], we employ three types of prompts:
• Zero-shot Prompts: Provide only a direct task description. For
instance:

Zero-shot Prompt

You are recognized as the world’s foremost expert in geolo-
cation analysis. Your objective is to meticulously analyze the
provided image and determine its latitude and longitude.

• Few-shot Prompts: Include brief examples of image descriptions
paired with correct geolocations, guiding the model to produce
well-structured responses.

• Chain-of-Thought Prompts: Encourage step-by-step reasoning,
aligning with evidence that iterative reasoning improves perfor-
mance on complex tasks [54].

4.4.2 Evaluation Metrics. To measure geolocation performance in
a comprehensive manner, we use the following metrics:
(1) Haversine Distance: A common metric that calculates the

great-circle distance between two latitude-longitude pairs [27]:

𝑑 = 2𝑟 arcsin
(√
𝑣
)
, 𝑣 = sin2

(𝜙2 − 𝜙1

2

)
+ cos(𝜙1) cos(𝜙2) sin2

(𝜆2 − 𝜆1

2

)
,

(1)

where 𝜙1, 𝜆1 and 𝜙2, 𝜆2 are the latitude and longitude pairs, and
𝑟 is Earth’s approximate radius.

(2) GeoScore: Inspired by the GeoGuessr game [1], GeoScore com-
putes a distance-based score:

GeoScore = 5000 · exp
(
− 𝑑

1492.7

)
,

where 𝑑 is the distance error in kilometers.
(3) Administrative Boundaries: In line with prior work [10,

40], we use five distance thresholds—1 km (street), 25 km (city),
200 km (region), 750 km (country), and 2500 km (continent)—to
measure how often predictions fall within these ranges. This ap-
proach provides a more robust view of performance, minimizing
the skewing effect of outliers on average distances.
By combining these metrics, we capture both fine-grained and

coarse-grained geolocation accuracy, offering a holistic perspective
on each method’s real-world viability.

5 Empirical Study Results and Findings

Following our experimental framework, we conducted an empirical
study to evaluate the effectiveness of various geolocation strategies.
This section presents our results and key insights, comparing both
traditional (non-LVLM) and LVLM-based approaches.
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Contextually Ambiguous

Minimal Context

Highly Misleading

Figure 4: Categorization of images in the original dataset based on their localizability: "Minimal Context" for images with

minimal geographic markers, "Contextually Ambiguous" for visually descriptive but non-localizable images, and "Highly

Misleading" for ambiguous images leading to significant localization errors.

Table 3: Performance of geolocation techniques on various datasets, evaluated using GeoScore (GS) and Administrative

Boundaries (AB) metrics with different prompting techniques.

Technique

GeoScore (0-5000) Administrative Boundaries (Accuracy %)

Im2GPS Im2GPS3k YFCC26k

Street City Region Country Continent

(1 km) (25 km) (200 km) (750 km) (2500 km)

Pre-LVLM StreetClip [24] 3520.5 3591.3 3378.4 10.2 28.7 52.1 69.4 80.5
GeoClip [10] 3535.7 3612.1 3411.9 12.1 30.4 54.2 71.8 82.3

LLaVA
Zero-shot 4086.4 4132.2 4033.8 15.8 35.5 58.9 75.3 85.7
Few-shot 4112.9 4161.4 4061.5 17.3 37.8 61.2 77.1 87.0
Chain-of-thought 4131.7 4180.8 4087.9 18.4 39.1 63.5 78.6 88.2

GPT-4o
Zero-shot 4345.4 4392.8 4289.7 20.7 42.3 66.7 81.5 91.0
Few-shot 4378.2 4417.9 4312.6 21.9 44.1 68.3 83.0 92.1
Chain-of-thought 4403.1 4443.5 4340.2 23.2 46.0 70.1 84.4 93.2

GeoSpy [3] 4570.8 4620.5 4451.6 25.0 53.2 74.0 89.0 97.3

5.1 Geolocation Task Performance

5.1.1 Cross-model Comparison. Table 3 summarizes the perfor-
mance of each model. Overall, all methods—both traditional solu-
tions and LVLM-based models—attain some level of geolocation ac-
curacy without requiring prior domain knowledge. Across multiple
datasets, all models achieve predictions with Haversine distances
below 10 km, providing city-level accuracy. However, pre-LVLM
techniques, such as StreetClip [24] and GeoClip [10], exhibit limita-
tions in complex urban environments and unfamiliar rural settings,
primarily due to their reliance on predefined features and static
models. In contrast, LVLMs deliver higher accuracy onmore diverse
datasets.

For instance, StreetClip achieves a GeoScore of 3520.5 on the
relatively constrained Im2GPS dataset but drops to 3378.4 on the
more varied YFCC26k dataset. These results highlight the growing
need for adaptive, context-aware geolocation methods, a need that
LVLM-based solutions address more effectively.

Finding 1: Modern LVLMs can successfully perform geoloca-
tion tasks without any specialized training or supplementary
contextual information, underscoring critical risks to geoloca-
tion privacy.

We further explore differences in LVLM performance by ex-
amining various prompting strategies. Both GPT-4o and LLaVA
excel when chain-of-thought prompting is used, significantly sur-
passing other methods across all datasets. As an example, GPT-4o
achieves a GeoScore of 4403.1 on Im2GPS3k with chain-of-thought
prompting, compared to 4345.4 without it. LLaVA shows a simi-
lar pattern, improving its GeoScore from 4086.4 to 4131.7. These
findings demonstrate the value of leveraging iterative reasoning,
suggesting that explicit reasoning steps can enhance geolocation
accuracy.

Finding 2: Among the tested industrial-scale models (exclud-
ing GeoSpy), GPT-4o exhibits the most robust performance
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in complex urban scenarios. LLaVA, particularly under chain-
of-thought prompting, excels in settings requiring detailed
contextual reasoning and adaptability.

5.1.2 Examples of Success and Failure.

Successful Geolocation Cases. We observe that some methods
achieve near-perfect location predictions on landmark-rich im-
ages. For instance, GeoSpy correctly identifies the Eiffel Tower in
Paris, earning a GeoScore of 5000 and locating the site within the
1 km street-level threshold. Another high-accuracy example is the
Statue of Liberty, for which GeoSpy again achieves the maximum
GeoScore, successfully pinpointing the monument within 1 km.

Failed Geolocation Cases. Conversely, even the best-performing
LVLMs sometimes fail on images lacking distinctive markers. For
example, GPT-4o struggles with a rainforest scene in Brazil, mis-
classifying it as a forest in the Philippines. This yields a GeoScore
of 7.5, suggesting only continent-level accuracy. Similarly, LLaVA
encounters difficulties localizing a sparse desert landscape in Qatar,
mistakenly placing it in Egypt and earning a GeoScore of 735.8.
These errors highlight the ongoing challenge of handling geograph-
ically generic images.

5.2 Insights and Findings

5.2.1 Model Sensitivity to Data Variations. Our results indicate
that LVLMs are sensitive to the complexity and diversity of the
input data. GPT-4o achieves a GeoScore of 4403.1 on the relatively
constrained Im2GPS dataset but drops to 4340.2 on YFCC26k, a
more diverse dataset. In contrast, GeoSpymaintains relatively stable
performance—4570.8 on Im2GPS and 4451.6 on YFCC26k—likely
reflecting its specialized tuning for geolocation tasks. LVLMs thus
appear to excel when images contain clear landmarks or distinctive
features but face challenges with more generic scenes.

Finding 3: LVLMs generally achieve higher accuracy in con-
texts featuring prominent landmarks or unique regional char-
acteristics.

5.2.2 Adaptive Behaviors of LVLMs. Notably, LVLMs exhibit adapt-
ability by adjusting their geolocation reasoning in response to
newly presented data. This quality is crucial for real-world appli-
cations where environmental conditions can change rapidly. Our
analysis reveals that the following factors significantly improve
LVLM predictions:
• Soil Types and Vegetation: Regional differences in soil compo-
sition and plant life can guide the models toward more accurate
estimates.

• Cultural or Architectural Clues: Culturally specific motifs,
architectural designs, and public art provide strong cues for nar-
rowing down potential locations.

• Outdoor Settings: Outdoor images often contain recognizable
structures and natural landmarks, which can further enhance
geolocation precision.

Finding 4: The inherent adaptability of LVLMs supports effec-
tive fine-tuning and deployment across diverse environmental

contexts, making them well-suited for dynamic geolocation
tasks.

6 Ethan: An Enhanced Framework

To overcome the limitations outlined in previous sections, we in-
troduce Ethan, a framework that leverages LVLMs for automated
geolocation. As shown in Figure 5, Ethan integrates two core
components:

• fine-tuning LVLMs to more effectively process real-world
images and extract key information, and

• an innovative chain-of-thought (CoT) prompting strategy [55]
designed to mirror the problem-solving approaches of expert
geoguessers.

This hybrid methodology significantly enhances the precision and
practicality of geolocation predictions. Unlike traditional methods
and naive LVLM strategies, Ethan does not simply ask an LVLM to
identify a location. Instead, it exploits the LVLM’s innate reasoning
capabilities to deduce the location in a manner akin to human
experts.

Seasoned players of geolocation games like GeoGuessr [1] com-
monly rely on recognizable environmental cues (e.g., vegetation,
architecture, signage, vehicle types, and the sun’s position) to make
reasoned guesses about a location. As demonstrated by Finding 4
in our empirical study, although LVLMs excel at detecting these
features within images, they struggle to leverage these elements
cohesively when predicting locations. To address this gap, Ethan
reproduces human-style deductive reasoning via CoT prompting,
guiding the LVLM through a structured, step-by-step analysis. By
mirroring how human geoguessers systematically interpret visual
cues, Ethan enables LVLMs to make accurate inferences from
limited data while preserving the interpretability of the model’s
internal reasoning.

When given an image, Ethan prompts the LVLM to identify
and interpret visible features relevant to geolocation. The model
then compares these details against known geographic and cultural
information, much like an experienced human geoguesser would
match local architecture or vegetation to familiar regions. This
systematic approach not only boosts location-prediction accuracy
but also clarifies how the model arrives at its final decision. Below,
we detail the design and implementation of Ethan to illustrate
how these strategies coalesce effectively.

• Step-by-step Reasoning: Like a skilled GeoGuessr player,
Ethan sequentially inspects each component within an im-
age, referencing a comprehensive repository of geographic
and cultural markers. This gradual process dissects complex
scenes into manageable pieces of information—an essential
element for precise geolocation.

• Integration of Diverse Data Sources: By fusing knowl-
edge from satellite imagery, street-level photos, and cultural
databases, Ethan expands the contextual landscape avail-
able for each analysis, thereby enhancing the LVLM’s ability
to link specific image features to particular regions.

• Adaptive Learning: Ethan adapts over time by learning
from each geolocation attempt, refining its strategies and
incorporating lessons from feedback—similar to human ex-
perts who continuously sharpen their skills with experience.
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Figure 5: Workflow of Ethan, a framework that leverages fine-tuning to improve the performance of LVLM-based geolocation.

6.1 Fine-Tuning LVLMs for Geolocation

Our primary objective is to improve LVLMs’ ability to recognize
and interpret images for geolocation tasks. We accomplish this by
fine-tuning LVLMs using GeolocationHub, a curated dataset con-
taining explicit geolocation information (refer to Section 4.3). The
fine-tuning pipeline begins with the generation of image-prompt
pairs, produced by instructing GPT-4o to generate descriptive state-
ments about each image based on the following prompt:

CoT Data Generation

You are the leading expert in geolocation research. You have
been presented with an image, and your task is to determine
its precise geolocation, specifically identifying the country it
was taken in. To accomplish this, examine the image for broad
geographic indicators such as architectural styles, natural land-
scapes, language on signs, and culturally distinctive elements.
Narrow down the location by identifying regional character-
istics such as specific flora and fauna, vehicle types, and road
signs that may point to a region or subdivision within the coun-
try. Pay special attention to highly specific details in the image,
such as unique landmarks, street names, or business names. For
instance, if the location is {address}, with coordinates {lat,
lon}, explain how these elements informed your conclusion by
analyzing visual cues, cross-referencing known geographic data,
and verifying your hypothesis with external resources.

We apply this prompt to each image in GeolocationHub, gener-
ating detailed textual descriptions for fine-tuning. Consistent with
Section 4.3, we randomly inspect 1% of these generated labels to
ensure accuracy, iterating until no erroneous annotations remain.
These curated descriptions, paired with the true geolocation labels,
form a comprehensive dataset for fine-tuning the LVLMs.

We employ the default settings of FastChat [62] for fine-tuning.
We monitor the model’s loss; if training fails to converge, we re-
fine our dataset by adding more sample data and repeat the pro-
cess. In our experiments, convergence typically occurs within three

epochs, mitigating overfitting risks and delivering high-quality
performance.

6.2 Geolocation Strategies

Drawing inspiration from human geoguessing tactics, as discussed
in Section 2, human experts systematically evaluate an image’s fea-
tures (landscape, architecture, signage, etc.) to formulate a logical
conclusion rather than guessing its location outright. This incre-
mental reasoning aligns well with LVLM capabilities. Our design of
Ethan’s geolocation strategies focuses on categories of visual cues
that are widely recognized as informative for geolocation and are
commonly used by human geoguessers. We selected these specific
cue categories because they offer a structured way to decompose
the complex visual analysis task, allowing the LVLM to focus on
distinct aspects of an image that, when combined, provide strong
evidence for a particular location. For instance, infrastructure de-
tails often point to national or regional standards, natural elements
are tied to climate and biome, vehicle characteristics can reflect
local environmental conditions or economic status, and cultural
indicators provide highly localized context. Consequently, we devel-
oped CoT prompts that guide LVLMs to systematically extract and
reason about these specific types of information before producing
a final geolocation estimate:

(1) Infrastructure: The model inspects road markings (e.g., color
and pattern of lane lines), directional signs (e.g., language, script,
shape, color-coding), utility poles, and license plate patterns (if
legible and distinct). These elements often adhere to national
or regional standards, providing strong, broad geographical
constraints.

(2) Natural Elements: The model identifies soil types and col-
oration, prevalent vegetation patterns (e.g., specific tree species,
crops, general flora), distinctive landscape features (e.g., moun-
tains, coastlines, deserts), and even inferred climate indicators
(e.g., presence of snow, arid conditions). These cues are funda-
mental to distinguishing between different biomes and climatic
zones.
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(3) Vehicle Analysis: Themodel notes vehicle types (e.g., common
car models, trucks, motorcycles, agricultural vehicles), their
condition, and any specialized attributes (e.g., snorkels in flood-
prone or off-road areas, rust patterns suggesting coastal or
humid climates, dirt patterns). This analysis can suggest local
environmental factors, economic status, or regional preferences.

(4) Cultural Indicators: The model detects region-specific ele-
ments such as architectural styles (beyond general motifs, in-
cluding specific building materials or construction techniques),
unique business branding visible in shopfronts, clothing styles if
people are prominent, repurposed objects (e.g., tires as planters),
and public art or graffiti styles. These indicators often provide
highly localized or culturally specific context.

By integrating these details with geographical data, Ethan en-
hances its geolocation precision. The model also adapts to variable
data coverage—for instance, areas where Street View imagery pri-
marily exists along major roadways.

6.3 Chain-of-Thought Prompting Integration

To provide a structured geolocation strategy, we employ a step-by-
step CoT approach that guides the LVLM through the logic needed
for accurate geolocation. This strategy helps the model perform
systematic analysis of visual and contextual data, reducing errors
often encountered in complex reasoning tasks.

When presented with an image, CoT prompting nudges the
model to:

(1) Identify any distinctive features (e.g., “Generation 4 gray car
with a snorkel”).

(2) Note road characteristics, if present (e.g., “solid white outer
lines with dashed yellow center lines”).

(3) Assess the surrounding environment (e.g., “semi-arid terrain
with light orange, sandy soil and mountainous vistas”).

(4) Observe infrastructure or cultural elements (e.g., “green direc-
tional signs with white borders”).

(5) Integrate these observations to zero in on the likely region and
produce a final prediction.

This sequential reasoning not only boosts geolocation accuracy
but also clarifies the model’s decision process. By exposing inter-
mediate reasoning steps, we can more easily identify weaknesses in
the fine-tuning pipeline and target them for future improvements.
This structured approach harnesses LVLMs’ advanced capabilities
to deliver high precision in diverse, real-world scenarios while
preserving transparency and interpretability in the model’s predic-
tions.

7 Evaluation

This section presents an in-depth evaluation of Ethan [2] and
addresses three core research questions: (1) To what extent can
Ethan accurately predict locations from images? (2) Under which
conditions does it fail? (3) How well does it perform in real-world
scenarios? (4) How different settings affect the performance of
Ethan? By systematically exploring these questions, we aim to
highlight Ethan’s strengths, uncover its limitations, and gauge its
practical utility in real-world geolocation tasks.

Implementation Overview. We developed Ethan using approxi-
mately 1,138 lines of Python code, aligning with the design princi-
ples detailed in Section 6. The system seamlessly integrates fine-
tuned LVLMs and a CoT prompting strategy. This integration is
crucial for decomposing complex images into identifiable segments
(e.g., architecture, vegetation, road signs) before synthesizing these
observations into a coherent geolocation prediction.

To address RQ1, we use the dataset constructed in Section 6 for
evaluation. For a fair assessment, Ethan is divided into a training
set and a testing set, ensuring that the fine-tuning process does not
affect the testing phase. Following the empirical study, we measure
the performance of Ethan using Haversine Distance, GeoScore,
and Administrative Boundary Scales, and compare it with four
solutions from the previous study. For RQ2, we perform a detailed
failure analysis by examining instances where Ethan failed to
accurately predict geolocations. To address RQ3, we test Ethan on
the GeoGuessr game [1], the most popular geolocation competition
platform, where it competes against human players.
Methodology. To ensure a thorough and fair evaluation, our ex-
perimental methodology includes:

(1) Training-Testing Split: We divide the GeolocationHub dataset
into 30,000 images for fine-tuning and 20,000 images for testing
to prevent data leakage and ensure reliable performance metrics.

(2) Baseline Comparisons: We assess Ethan alongside StreetClip,
GeoClip, GPT-4o, LLaVA, and GeoSpy, using the same 20,000
testing images. This setup results in 10 model configurations
(Ethan plus each baseline in zero-shot, few-shot, or chain-
of-thought modes, where applicable) multiplied by 20,000 test
images, yielding 200,000 unique trials.

(3) Performance Metrics: We employ Haversine Distance, GeoScore,
and administrative boundary thresholds (street, city, region,
country, and continent) to capture both fine-grained and large-
scale geolocation accuracy.

(4) Real-world Competition: To further validate Ethan’s capabilities,
we test it on the GeoGuessr [1] platform by pitting it against
human players, providing insights into Ethan’s robustness in
dynamic and unpredictable environments.

7.1 RQ1 (Effectiveness)

Overall Performance on GeolocationHub. Table 4 compares
Ethan with five baselines across multiple distance thresholds.
Ethan consistently leads the pack, excelling in high-precision
scenarios and broader geographical scales. For instance, Ethan
achieves a 28.7% accuracy at the strict street-level threshold (1 km),
surpassing GeoSpy by over 2% (26.5%). This advantage becomes
even more pronounced at the city level (25 km), where Ethan at-
tains 59.2% accuracy compared to GeoSpy’s 51.1%. At the region
level (200 km), Ethanmaintains a robust 91.4% accuracy—outperforming
all baselines by at least 5%. Its strong performance persists at coun-
try (95.6%) and continent (99.3%) scales.
Distance and Score Analysis. In addition to raw accuracy, we
examine average Haversine distance and GeoScore. Ethan achieves
an average distance of 499.3 km, an improvement of 46.5 km over
GeoSpy (545.8 km). Although 499.3 km might sound relatively large,
it is partly influenced by the global scope of the dataset, where
missed predictions in extremely remote locations can inflate average
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Technique

Distance (% @ km) Avg Distance Avg Geoscore

Street City Region Country Continent

(km) (0-5000)

(1 km) (25 km) (200 km) (750 km) (2,500 km)

Pre-LVLM StreetClip [24] 4.3 39.2 78.1 92.5 97.3 1225.6 3520.1
GeoClip [10] 5.1 40.7 76.5 93.1 97.8 1215.4 3640.2

GPT-4o
Zero-shot 15.8 45.3 82.2 90.4 98.2 869.7 4205.3
Few-shot 16.7 46.9 83.6 91.7 98.7 664.3 4298.7
Chain-of-thought 18.2 47.6 84.1 92.2 99.1 159.9 4375.9

LLaVA
Zero-shot 10.4 42.5 80.4 87.6 96.3 1180.8 3751.8
Few-shot 12.1 43.3 81.2 89.2 97.1 974.6 3812.6
Chain-of-thought 14.3 44.7 82.3 90.3 98.0 869.5 3968.4

GeoSpy [3] 26.5 51.1 85.7 93.9 99.1 545.8 4507.3

Ethan 28.7 59.2 91.4 95.6 99.3 499.3 4620.9
Table 4: Geolocation evaluation results of Ethan vs. the benchmark solutions over the dataset.

values. Meanwhile, Ethan attains an average GeoScore of 4620.9,
which is 2.5% higher than GeoSpy’s 4507.3. Notably, when focusing
on high-density areas like megacities, Ethan’s average distance
drops substantially due to the abundance of unique landmarks and
contextual cues that facilitate accurate localization.
Qualitative Examples. Ethan’s success often hinges on its abil-
ity to analyze subtle visual cues. For instance, in a sample image
depicting a bustling New York City street, Ethan accurately placed
the location within 500m by identifying a combination of build-
ing styles, road markings, and recognizable storefronts—earning a
perfect GeoScore of 5000. By contrast, StreetClip located the image
3.2 km away, and LLaVA missed by over 5 km, primarily due to
difficulty interpreting overlapping urban elements.

Additionally, Ethan excelled in a rural Midwest setting where
the visual scene showcased relatively uniform farmland. By scru-
tinizing soil coloration, architectural styles of barns, and regional
vegetation, Ethan deduced a location within 10 km. Other models
(including GPT-4o in zero-shot mode) struggled in this scenario,
sometimes conflating the region with farmland in neighboring
states, resulting in an average error of over 50 km.

Summary of RQ1 Findings

Ethan demonstrates significant performance gains over
both traditional and LVLM-based baselines. Its superior
accuracy at small distance thresholds underscores the effec-
tiveness of its chain-of-thought prompting and fine-tuning
approach, validating its design for precise location infer-
ence.

7.2 RQ2 (Failure Case Analysis)

Although Ethan shows compelling advantages, certain conditions
can substantially degrade its performance. To explore these short-
comings, we examined misclassifications spanning from minor

street-level inaccuracies to major continental-scale errors. This sec-
tion details our findings and illustrates Ethan’s vulnerabilities,
many of which mirror those found in human geolocation errors.
Low-Visibility Conditions. Images captured in inclementweather
(e.g., heavy fog, torrential rain) or taken at night significantly re-
duce the clarity of critical landmarks, road signs, and architectural
details. In one case, a photograph from a fog-shrouded portion
of San Francisco’s Golden Gate Park led Ethan to misplace the
scene in a rural area 100 km away. Manual inspection revealed that
the essential cues—skyline, signage, and building outlines—were
obscured, making it nearly impossible for Ethan to pinpoint the
exact coordinates.
Minimal Landmark Environments. Another prevalent failure
mode involves unremarkable rural landscapes and deserts lacking
clear distinguishing features. A notable example arose with a desert
in Nevada, which Ethan incorrectly tagged as a similarly barren
region in Arizona, missing the correct location by over 150 km. Such
errors primarily stem from the absence of topographical or man-
made features—like road signs, recognizable buildings, or unique
vegetation—that CoT prompting typically leverages for accurate
predictions.
Homogeneous Urban Zones. Although Ethan generally excels
in cities, repetitive urban layouts present challenges. Large housing
districts or planned communities can look nearly identical across
neighborhoods. In one instance, Ethan placed a Tokyo residential
street in a nearby district 30 km away, primarily due to the identical
building facades and minimal signage. While 30 km remains within
a city-wide error margin, it underscores how uniform architectural
styles can hinder fine-grained localization.
Rapidly Changing Scenes. Construction sites and newly devel-
oped areas often differ drastically from archived images used in
training. In a test image featuring a newly built park in New York
City, Ethan erred by 80 km because the model’s training data
predated the park’s completion, leading it to rely on outdated en-
vironmental cues. This situation underscores the significance of
continually updating training data to reflect evolving real-world
conditions.
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Condition

Distance (% @ km) Avg Distance Avg Geoscore

Street City Region Country Continent

(km) (0-5000)

(1 km) (25 km) (200 km) (750 km) (2,500 km)

Ethan on Street View Images (Subset) 28.1 58.5 90.8 95.1 99.0 505.2 4590
Ethan on Non-Street View Images 14.7 39.2 76.1 88.5 96.5 980.4 3820

Table 5: Ablation Study: Impact of Input Image Source on Ethan Performance. Results on a 2,000-image Street View subset vs.

1,000 diverse non-Street View outdoor images.

Prompt Variant

Distance (% @ km) Avg Distance Avg Geoscore

Street City Region Country Continent

(km) (0-5000)

(1 km) (25 km) (200 km) (750 km) (2,500 km)

Zero-shot Prompt 11.5 34.8 77.9 89.1 97.0 1050.6 3680
Few-shot Prompt 20.3 49.1 86.0 92.5 98.3 720.1 4250
Full Ethan CoT Prompt (Ours) 28.1 58.5 90.8 95.1 99.0 505.2 4590

Table 6: Ablation Study: Impact of Prompt Template Variants on Ethan Performance (using the 2,000-image Street View subset).

AdversarialModifications toKey Features.To evaluate Ethan’s
robustness, we applied small adversarial perturbations via SGA [22],
carefully altering crucial features (e.g., vegetation color, road de-
signs, or building silhouettes) identified in Ethan’s chain-of-thought.
We tested 2,500 images (500 from each continent) that Ethan had
correctly identified with street-level precision. After these adver-
sarial changes, Ethan’s street-level accuracy plummeted by 74.3%,
dropping below 10%. This stark decrease confirms Ethan’s heavy
reliance on specific visual cues and emphasizes the need for adver-
sarial defenses to preserve reliability.

Summary of RQ2 Findings

Ethan is less effective in low-visibility settings, feature-
scarce environments, and rapidly changing locales. Ad-
ditionally, adversarial manipulations of CoT-relevant fea-
tures can substantially undermine its geolocation abilities,
signifying a clear avenue for future research on robust
training and mitigation techniques.

7.3 RQ3 (Real-world Application)

Deployment onGeoGuessr.To validate Ethan’s utility in realistic
scenarios, we tested it on the crowd-favorite geolocation game
GeoGuessr [1]. By developing specialized wrappers, we automated
the process of submitting Ethan’s predictions directly into the
game’s interface. We ran 41 rounds of Ethan matches against
randomly paired human competitors, capturing average scores,
win rates, and distance metrics.
Comparison with Human Players. Table 7 shows Ethan aver-
aged a score of 4550.5, which exceeds human players’ 4120.3, and
dominated the win rate by over 70 percentage points (85.4% vs.
14.6%). Ethan’s best guess landed within 0.3 km of the true loca-
tion—very close to the best human guess of 0.7 km—and its worst er-
ror stretched 5,258.2 km (compared to 5,443.5 km for humans). These
metrics demonstrate Ethan’s impressive overall performance in

Competitor Type Ethan Human Competitor

Average Score 4550.5 4120.3
Win Rate (%) 85.4 14.6
Closest Distance (km) 0.3 0.4
Farthest Distance (km) 5258.2 5443.5

Table 7: Average Performance of Ethan versus Human Com-

petitors in GeoGuessr over Multiple Rounds

a real-world-style setting, where images may be unpredictable or
contain partial obstructions.
QualitativeObservations inGeoGuessr.One of themost striking
examples of Ethan’s effectiveness emerged in a remote Norwegian
village test. Despite the town’s uniform houses and mountainous
terrain, Ethan inferred regional details from subtle indicators like
road signage typography, architectural roofing, and local vegeta-
tion. This analysis yielded a final guess only 2 km from the real spot.
Human competitors averaged 5 km off, reflecting Ethan’s aptitude
for synthesizing nuanced or less obvious signals. In another suc-
cessful case, a highly urbanized district in Tokyo was nailed within
300m by Ethan, thanks to consistent scanning of multi-level archi-
tecture, signage languages, and road geometry. By contrast, many
human players guessed roughly 1.5 km away, possibly due to the
fast-paced nature of the game and the complexity of distinguishing
among visually similar Tokyo wards.

Still, Ethan stumbled on feature-sparse scenes—a deficiency
shared by humans. For instance, a generic Australian beach was
misidentified by 250 km, and a desert region in Nevada was incor-
rectly placed in Mongolia (over 5,200 km off). These errors highlight
the ongoing need for better training coverage of visually homoge-
neous locales and further reinforcement of the chain-of-thought
pipeline to handle ambiguous or minimal cues.
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Summary of RQ3 Findings

Ethan consistently demonstrates strong performance in
competitive, real-world-style scenarios like GeoGuessr,
frequently outperforming human opponents. However,
feature-poor environments continue to present challenges
for both Ethan and human players, emphasizing the need
for more sophisticated feature extraction and training-data
diversification.

Overall Implications. The GeoGuessr evaluation underscores
Ethan’s adaptability and reliability when confronted with diverse
global imagery, sporadic clue availability, and time constraints that
mirror real-world geolocation challenges. Such capabilities hold
promise not just for entertainment-oriented platforms but also for
high-stakes applications, including surveillance, border security,
and disaster response, where timely and precise geolocation can
be paramount. Yet, as identified in RQ2, caution is necessary when
dealing with adversarial images or visually unremarkable settings,
revealing avenues for further optimization.

7.4 RQ4 (Ablation Study)

We conducted ablation studies to understand the contributions
of input image source (Street View vs. non-Street View) and our
Chain-of-Thought (CoT) prompting formulation within the Ethan
framework. These used a random 2,000-image subset from the
GeolocationHub test split.

7.4.1 Impact of Input Image Source. Ethan, fine-tuned on Street
View images from GeolocationHub, was tested against 1,000 di-
verse non-Street View outdoor images from public sources. Table 5
presents the results.

Table 5 shows reduced accuracy for Ethan on non-Street View
images (e.g., doubled average distance error, lower GeoScore), indi-
cating specialization to Street View’s visual characteristics. Future
work should focus on enhancing generalization to diverse image
sources, possibly via broader training data or domain adaptation.

7.4.2 Impact of Prompt Template Variants. We compared Ethan’s
structured CoT prompt against two simpler variants (detailed in
Appendix) on the 2,000-image Street View test subset using the
fine-tuned Ethan model. Table 6 shows the comparison.

Results in Table 6 confirm the value of Ethan’s detailed CoT. The
Zero-shot prompt performedworst. The Few-shot prompt improved
this, but our Full Ethan CoT prompt, guiding analysis of distinct
cue categories, achieved substantially better results. This shows
that the CoT prompt’s specific structure is critical for effective
geolocation.

Summary of RQ4 Findings

These ablations show that both input data characteristics
and prompt design significantly influence Ethan’s perfor-
mance.

8 Limitations

Dataset Coverage and Geographical Bias. Although we aim for
geographic balance in GeolocationHub (Appendix A.2), it inherits
the biases of Google Maps Street View, which overrepresents North
America and Europe while underrepresenting regions like Africa
and parts of Asia. This skew, especially toward urban areas, may
limit generalization to poorly covered regions. Future work should
incorporate diverse sources such as community-contributed images
and satellite data to improve representativeness.

Sensitivity to Visual Features and Environmental Conditions. Ge-
olocation accuracy in Ethan and similar LVLMs is affected by im-
age quality and environmental conditions. Adverse weather, poor
lighting, and seasonal variations (e.g., snow or shadows) can obscure
key features and introduce noise. Since image capture conditions
in GeolocationHub are uncontrolled, such factors may bias the
model. Moreover, models can latch onto transient cues like vehicles
or advertisements; although CoT prompting encourages attention
to stable landmarks, sensitivity to dynamic content remains.

Generalization Concerns. While Ethan improves geolocation
accuracy, it may overfit to Street View imagery, limiting out-of-
distribution (OOD) performance on other domains such as artis-
tic, historical, or aerial views. Additionally, it remains vulnerable
to adversarial image modifications—posing risks in sensitive con-
texts—and its reasoning failures or hallucinations, even with CoT
prompting, are not yet well understood. Enhancing robustness and
interpretability are important directions for future work.

9 Conclusion

This paper explored LVLMs for image geolocation, revealing a non-
negligible, albeit currently low-accuracy, zero-shot capability that
signals an emerging privacy threat. Our Ethan framework, using
CoT reasoning and fine-tuning, improved accuracy (e.g., 85.4% Ge-
oGuessr win rate), highlighting potential system evolution rather
than current precise reliability. The study also exposed LVLM limi-
tations, including sensitivity to data variations, landmark reliance,
and vulnerability in feature-scarce or adversarial conditions. The
core finding is that foundational LVLM geolocation capabilities
exist, necessitating proactive privacy measures. We thus issue a
strong call for mitigation research, focusing on defenses, privacy-
preserving LVLM architectures, and ethical guidelines. Understand-
ing LVLM capabilities and limitations in geolocation is vital for
developing effective safeguards and managing societal implications
as technology advances.
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A Geographic Distribution

A.1 Sampling Strategy

To achieve balanced sampling across geographic locations, we im-
plemented a country-based sampling method to build Geoloca-
tionHub. We used the area of each country as aweight to determine
the number of data points for each country. A weighted sampling
approach was then applied to allocate and sample the data points
accordingly.
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Figure 6: Geographic distribution of data density from our

dataset.

A.2 GeolocationHub Data Distribution and

Bias Quantification

Figure 6 illustrates the global data point density of our Geoloca-
tionHub dataset. As mentioned in Section 5, a key goal during
curation was to achieve a more geographically balanced representa-
tion than often found in typical web-scraped image datasets, which
tend to over-represent populous regions of North America and
Europe. Our weighted sampling strategy by country area aimed to
mitigate this.

A.2.1 Continental Distribution. While perfect uniformity is chal-
lenging due to variations in available Street View coverage, the
GeolocationHub dataset achieves a more balanced continental
distribution. The approximate breakdown of the 50,000 images by
continent is as follows:

• North America: 20% (≈ 10,000 images)
• Europe: 22% (≈ 11,000 images)
• Asia: 25% (≈ 12,500 images)
• South America: 15% (≈ 7,500 images)
• Africa: 10% (≈ 5,000 images)
• Oceania: 8% (≈ 4,000 images)

This distribution reflects our effort to increase representation from
typically underrepresented continents like Africa and South Amer-
ica, guided by the area-weighted sampling. A visual representation
of this distribution, such as a bar chart, could further illustrate this
balance (not included in this paper for brevity, but derivable from
the dataset).

A.2.2 Urban versus Rural Representation. Quantifying a precise
global urban/rural split is complex due to varying definitions. How-
ever, we endeavored to include a significant proportion of images
from non-urban settings, as traditional datasets are often heavily

skewed towards cities. Based on an automated heuristic using pop-
ulation density data associated with the image coordinates (e.g.,
coordinates falling within areas with <150 persons/km2 classified
as rural/low-density suburban), we estimate the following approxi-
mate split for GEOLOCATIONHUB:

• Urban / Dense Suburban: 65% (≈ 32,500 images)
• Rural / Low-Density Suburban / Natural Landscapes: 35% (≈
17,500 images)

This 1̃/3 representation for non-urban scenes is a deliberate effort
to provide data for evaluating geolocation models in more chal-
lenging, less feature-dense environments. The specific criteria for
urban/rural classification involved using publicly available gridded
population data (e.g., GPWv4 [9]) and applying a threshold to the
cell corresponding to the image’s coordinates. It is important to
note that this is an approximation, as Street View coverage itself is
not uniformly distributed across all urban and rural areas globally.

Despite these efforts, some geographical bias inevitably remains
due to the inherent biases in the source data (Google Maps Street
View coverage) and the practical limitations of global-scale data
collection. This residual bias is discussed further in Section 8.

B Dataset Curation for GeolocationHub

The GeolocationHub dataset, comprising 50,000 high-quality im-
ages suitable for geolocation tasks, was meticulously constructed
using a bottom-up, iterative sampling and filtering approach de-
signed to achieve geographic balance. This appendix details this
process, which complements the overview in Section 6.

B.1 Sampling Strategy and Image Sourcing

The dataset construction process began with the goal of achieving
a geographically balanced collection of images. The core principles
were:

• Primary Source: All images were sourced from Google
Maps Street View.

• Weighted Sampling by Country Area: To ensure geo-
graphic diversity and avoid over-representation of densely
photographed areas, we implemented a country-basedweighted
sampling strategy. The land area of each country was used
as a weight to determine the target number of data points
(i.e., high-quality images) to collect for that country.

• Iterative Quota Fulfillment: For each country, images
were iteratively sampled from random geographic coordi-
nates within its boundaries via Street View. Each sampled
image was then subjected to a quality control process (de-
tailed below). If an image passed the quality control, it was
added to the dataset, contributing to that country’s quota.
This process continued until the weighted quota for each
country was met, or until a reasonable effort to find suit-
able images was exhausted for sparsely covered regions,
ultimately culminating in the 50,000-image dataset.

B.2 Iterative Quality Control with GPT-4o and

Keyword Filtering

Each image sampled from Google Maps Street View underwent the
following quality control steps:
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(1) Image Description Generation: The sampled Street View
image was provided to GPT-4o, which used a dedicated
prompt (see Appendix B.4) to generate a concise, objective
description. This description focused on scene type, key ele-
ments, image quality, and presence of geolocation cues.

(2) Automated Filtering based on Description: The GPT-4o
generated description was then automatically processed:
• Indoor/ObstructedViewFiltering:Keywords indicative
of indoor scenes (e.g., "room," "inside store," "vehicle inte-
rior"), heavily obstructed views (e.g., "blurry dashboard,"
"obstructed by windshield"), or otherwise unsuitable con-
tent (e.g., "underwater," "inside tunnel with no exit visible")
were used to automatically discard the image. The list of
keywords was refined throughout the process. Common
keywords included:
indoor, room, interior, inside, vehicle interior,
dashboard, windshield view (obstructed), blurry,
underexposed, overexposed, tunnel (no exit),
underwater, ceiling, floor, close-up texture

• Low-Context Filtering: Descriptions suggesting a lack
of useful geolocation cues (e.g., "sky only," "close-up of
indistinct ground," "featureless wall," "generic foliage with-
out landmarks") were also used to discard images.

(3) Manual Spot-Checking: A subset (1,000) of images and
their GPT-4o descriptions, especially those borderline or
from rarely sampled regions, underwentmanual spot-checking
to ensure the accuracy of the filtering process and to refine
keywords or description guidelines if necessary.

If an image failed these quality control checks, it was discarded, and
the sampling process for that specific country/region would con-
tinue by selecting new random coordinates until a suitable image
was found or the regional sampling attempt limit was reached. This
iterative “sample -> describe -> filter -> accept/reject & resample if
needed” loop was key to building the dataset one quality image at
a time while adhering to the geographic distribution targets.

B.3 Discarded Samples

Given the bottom-up approach, "discarded samples" refers to im-
ages that were retrieved from Street View but failed the quality
control described above, leading to a re-sampling attempt for that
particular geographic quota slot. It is estimated that for every 2-3
image accepted into the final dataset, approximately one image was
sampled and subsequently discarded due to failing the quality con-
trol (e.g., being indoor, blurry, too dark/bright, or lacking sufficient
visual cues as determined by the GPT-4o description and keyword
filters). This iterative process ensured that the final 50,000 images
in GeolocationHub were of high utility for the geolocation task.

B.4 GPT-4o Image Description Prompt for

Iterative Dataset Curation

The following prompt was used with GPT-4o to generate descrip-
tions for images sampled one-by-one from Google Maps Street
View during the iterative construction of the GeolocationHub
dataset. These descriptions were crucial for the quality control step,

determining if an image was suitable for inclusion based on its
content and clarity.

Classifier:

You’re an AI helping decide if an image should be ACCEPTED
into a geolocation dataset. For each image, give a very brief,
factual description covering:
Scene: Outdoors / Indoors / Vehicle interior
Key elements: Main objects (e.g. buildings, roads, trees,
signs—legible or not)
Quality: Sharpness, lighting, any obstructions
Distinctive features: Noticeable landmarks or generic setting
Geolocation cues: Enough visual hints to attempt geolocation,
or too vague/blurry
End with whether it’s ACCEPT or REJECT.

C Manual Dataset Spot-Checking: Protocol and

Reliability

To ensure the quality and suitability of images within the Geoloca-
tionHub dataset, amanual spot-checking process was implemented
for a subset of images curated through the semi-automated pipeline
(described in Appendix B). This section details the annotation pro-
tocol, including annotator selection and qualification, and reports
the inter-rater reliability for this task.

C.1 Annotator Selection, Qualification, and

Training

A team of three human annotators was enlisted for the dataset
spot-checking task. The criteria and process for their selection and
training were as follows:

• Recruitment: Annotators were undergraduate students in
computer science at our institution, recruited based on their
interest in AI research and data quality assessment.

• Qualification Criteria:

– Demonstrated high attention to detail.
– Proficiency in understanding and applying complex guide-
lines.

– Basic familiarity with image analysis and geographic con-
cepts.

• Training Protocol:

(1) Guideline Review: Annotators were provided with a
comprehensive guideline document (approx. 5 pages). This
document detailed the objectives of the GeolocationHub
dataset, precise definitions of suitable images (clear, out-
door scenes with discernible features for potential geoloca-
tion) versus unsuitable images (e.g., indoor, blurry, heavily
obstructed, featureless, or private/sensitive content inad-
vertently captured). It included numerous visual examples
for each category.

(2) Interactive Training Session: A 2-hour training session
was conducted by senior researchers. This session covered:
– A walkthrough of the annotation interface.
– In-depth discussion of the image suitability criteria and
rejection reasons.

– Clarification of borderline cases and common pitfalls
identified from preliminary automated filtering.
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– Instruction on how to evaluate the relevance and ac-
curacy of GPT-4o-generated image descriptions in the
context of filtering decisions.

(3) Pilot Annotation Task: Before commencing the main
task, each annotator independently labeled a pilot set of
50 diverse images. These images were pre-annotated by
the research team to serve as a gold standard.

(4) Performance Review and Finalization: Annotators’
performance on the pilot task was reviewed. Feedback was
provided, and any misunderstandings of the guidelines
were addressed. All three annotators demonstrated a high
level of concordance with the gold-standard labels (e.g.,
>90% accuracy on the pilot set) and were subsequently
confirmed for the main spot-checking task.

• Compensation: Annotators were compensated for both
their training time and the subsequent annotation work.

C.2 Spot-Checking Task Protocol

The manual spot-checking was performed on 1,000 images that
were either flagged as borderline by the automated system (based
on GPT-4o descriptions and keyword filters) or sampled from geo-
graphic regions with less dense initial data to ensure quality across
diverse areas.

(1) Independent Double Annotation: Each of the 1,000 im-
ages, along with its corresponding GPT-4o generated descrip-
tion, was assigned to two of the three trained annotators
for independent evaluation. This ensured each image was
assessed by two individuals without consultation.

(2) Annotation Task Definition: For each image, annotators
were required to:
• Make a primary judgment: “Accept” (image is suitable for
the dataset) or “Reject” (image is unsuitable).

• If “Reject,” select the primary reason(s) from a predefined
checklist: Indoor Scene, Vehicle Interior/Obstructed by
Vehicle, Poor Image Quality (e.g., Blurry, Over/Under Ex-
posed), Low Context/Featureless (e.g., Sky/Ground only),
Ambiguous/Abstract Content, or Other (with a field for
brief mandatory explanation).

• Optionally, provide brief comments if the GPT-4o descrip-
tion was significantly misleading or if the image presented
a particularly challenging edge case.

(3) Disagreement Resolution: Cases where the two annota-
tors provided conflicting “Accept/Reject” labels were identi-
fied. These (approximately 8% of the spot-checked images)
were then adjudicated by a senior member of the research
team (one of the authors), whomade the final decision. These
instances also served as feedback to refine annotator under-
standing or the guidelines if systemic issues were noted.

C.3 Inter-Rater Reliability (IRR)

To quantify the consistency of the manual spot-checking judgments,
inter-rater reliability was calculated. Before starting the main spot-
checking of the 1,000 images, a separate calibration set of 200 diverse
images (not part of the 1,000) was independently annotated by all
three annotators. The primary task for IRR calculation was the
binary decision of “Accept” or “Reject.”

• Cohen’s Kappa (𝜿 ): Pairwise Cohen’s Kappa was computed
for each of the three annotator pairs (A1-A2, A1-A3, A2-
A3). The average pairwise 𝜅 was 0.82 (individual values:
0.80, 0.83, 0.83), indicating strong agreement.

• Krippendorff’s Alpha (𝜶 ): To assess overall agreement
among the three annotators for the nominal "Accept/Re-
ject" labels, Krippendorff’s 𝛼 was calculated. The resulting
𝛼 = 0.81 also demonstrated good reliability among the an-
notators.

These IRR scores provide confidence in the consistency and reliabil-
ity of the judgments made during the manual spot-checking phase
of the GeolocationHub dataset curation.

D Computational Resources

The development, fine-tuning, and evaluation of the Ethan frame-
work were conducted on a high-performance computing cluster.
Specifically, the fine-tuning of the underlying LVLM and the ex-
tensive experimental evaluations presented in this paper utilized
a setup consisting of 8 NVIDIA A100 GPUs, each equipped with
80GB of HBM2e memory.

As Ethan is primarily a fine-tuning method applied to pre-
existing LVLMs, its parameter count and GPU memory footprint
during inference are largely comparable to those of the base LVLM it
is built upon. The fine-tuning process itself, while computationally
intensive, aligns with standard practices for adapting large-scale
models. For instance, a typical fine-tuning run for Ethan on our
50,000-image GeolocationHub dataset (30,000 for training) as
described in Section 4.3, generally converged within three epochs
and required approximately 4 to 6 hours on our 8x A100 setup (exact
time can vary based on batch size and other hyperparameters).

In terms of comparative resource use:
• Compared to other LVLMs: The inference cost of Ethan
(once fine-tuned) is similar to other LVLMs of comparable
size (e.g., the base model it was fine-tuned from, or models
like GPT-4V, LLaVA when performing analogous visual anal-
ysis tasks). The primary additional overhead comes from the
CoT prompting strategy, which may lead to longer genera-
tion sequences and thus slightly increased inference latency
per query compared to a direct zero-shot query to a generic
LVLM.

• Compared to traditional geolocation solutions:As Ethan
is LVLM-based, its computational requirements, particularly
for GPU memory and processing power, are significantly
higher than most traditional, non-deep-learning geoloca-
tion methods (e.g., image retrieval based on SIFT features or
simpler classification models discussed in Section 2). These
traditional methods often run efficiently on CPUs and re-
quire substantially less memory. However, the trade-off is
that LVLMs like Ethan can leverage much richer visual un-
derstanding and reasoning capabilities, as demonstrated by
our results.

The decision to use a powerful GPU setup was driven by the need to
efficiently process large datasets and iterate on model fine-tuning
for a comprehensive evaluation of Ethan’s capabilities.
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E Evaluation Prompts

In this section, we present the prompts used to evaluate various
geolocation methods. In particular, we first present the CoT prompt
used to conduct geolocation task.

Chain-of-thought:

As the world’s elite geolocation expert, your mission is to ana-
lyze the attached image and navigate through your reasoning
to pinpoint the exact geolocation. Detail your analytical process
and finalize the latitude and longitude with utmost accuracy.

Followed by this, we present the prompt used with few-shot
strategy. As introduced in Section 5, we combine a series of prompt-
ing techniques, including emotional prompts, template inputs and
outputs, and accurate task decomposition.

Few-shot:

Leveraging your expertise in geolocation, your task is to analyze
the provided image and deduce its precise location. Accuracy in
determining latitude and longitude is paramount.
Example 1: Image Description: A sandy beach with a no-
table rock formation in the background under a clear sky with
scattered clouds.
Geolocation Process:

• The distinctive rock formation closely resembles the
renowned Twelve Apostles in Victoria, Australia.

• The combination of the sandy beach and clear skies sup-
ports its identification along the southern Australian
coast.

• Verification with existing images and maps confirms the
location as near the Great Ocean Road.

Latitude and Longitude: -38.6633, 143.1051
Example 2: Image Description: A historic building featuring
a large clock tower and gothic architecture, surrounded by red
double-decker buses.
Geolocation Process:

• The gothic architecture and prominent clock tower sug-
gest the Elizabeth Tower in London, United Kingdom.

• The presence of red double-decker buses confirms the
urban setting as London.

• Comparisons with images of Big Ben and the adjacent
area confirm the precise location.

Latitude and Longitude: 51.5007, -0.1246

Zero-shot Prompt

You are recognized as the world’s foremost expert in geolocation
analysis. Your objective is to meticulously analyze the provided
image and determine its latitude and longitude.

F GeoGuessr-Style Evaluation Procedure

To assess Ethan’s performance in a dynamic, real-world-style ge-
olocation challenge, we conducted an evaluation using the popular
online game GeoGuessr [1] (as discussed in Section 7). This appen-
dix details the procedure.

F.1 Evaluation Setup

• Platform Interaction: GeoGuessr presents players with a
series of interactive Street View panoramas, and the goal is to
pinpoint the location on a world map. To evaluate Ethan, we
developed a set of automated scripts (wrappers) to interface
with the GeoGuessr platform.

• Image Extraction: For each GeoGuessr round, our scripts
would capture a static, representative view (ormultiple views,
subsequently stitched or selected) from the initial Street View
panorama presented by the game. Care was taken to select
views that a human player might typically focus on, avoiding
excessive sky or ground if possible, and aiming for a field of
view that captures potential cues.

• Ethan Prediction: The extracted image(s) were then fed as
input to the fine-tuned Ethan model. Ethan would process
the image and output its predicted latitude and longitude
coordinates based on its CoT reasoning.

• Submission and Scoring: The predicted coordinates from
Ethan were programmatically submitted back to the Ge-
oGuessr game interface via our wrapper scripts. The game
then calculated the distance error and awarded a score (0-
5000 points) based on its internal scoring algorithm, which
is inversely proportional to the distance error.

F.2 Experimental Design

• Game Rounds: A total of 41 independent GeoGuessr game
rounds were played by Ethan. Each game typically consists
of 5 locations, resulting in 41 × 5 = 205 distinct locations
being evaluated.

• Map Selection: To ensure diversity and prevent overfitting
to specific map types, a variety of official GeoGuessr maps
were used, specifically, the “World” map.

• Human Competitors: The performance of Ethan was
compared against human players who were playing the same
game rounds simultaneously (if the GeoGuessr challenge
link feature was used).

• Metrics Recorded: For each location guess by Ethan and
human players, we recorded the guessed coordinates, the
true coordinates (provided by GeoGuessr after the guess),
the distance error, and the score awarded by GeoGuessr.

G Reproducibility

To support Ethan and facilitate further research, we have devel-
oped an open-source data processing and analysis pipeline, the
code for which is available on our project website [2].

H Discussion of Potential Defenses

Despite LVLMs’ geolocation capabilities, their potency poses pri-
vacy threats. This section analyzes defense mechanisms to mitigate
these risks by obscuring sensitive location data while preserving
image analysis benefits.

H.1 Developing Privacy-Preserving LVLMs

A forward-looking approach involves incorporating privacy meth-
ods into LVLM design and training. LVLMs naturally extract de-
tailed visual cues; privacy-preserving versions would counter this.
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User

Please infer the location of this image.

Original Image

LLM

This image shows the Statue of Liberty,
located on Liberty Island in New York
Harbor, New York City, USA, at
approximately 40.6892° N latitude and
74.0445° W longitude. 🙂

User

Adversarial Image

LLM

This image features the Eiffel Tower, a
famous landmark located in Paris, France,
at approximately 48.8584° N latitude and
2.2945° E longitude.

🙁

Please infer the location of this image.

Figure 7: Adversarial images mislead the LVLM into recognizing the Statue of Liberty as the Eiffel Tower on LLaVA.

Selective Feature Suppression. During training, models’ sensitivity
to geolocation-revealing cues (e.g., landmarks, specific text) can
be reduced by constraining feature extraction layers, for instance,
by adjusting attention weights or using specialized loss functions.
This makes LVLMs less likely to memorize exact geographic details
while retaining broader understanding.

Differential Privacy Mechanisms. Differential privacy (DP) [4, 7]
introduces noise into training data or gradient updates, statistically
preventing the model from recalling features unique to single exam-
ples. Applied to LVLMs, DP minimizes information leakage about
specific images, discouraging unauthorized geolocation. Though
a potential accuracy trade-off exists, it can be managed by tuning
noise parameters.

H.2 Implementing Real-Time Privacy Filters

Even with privacy-focused training, sensitive information can leak.
An additional defense layer can be implemented at image upload,
especially on social media.

Automatic Image Sanitization. Real-time filters [28, 59] integrated
into upload pipelines (e.g., Instagram, Facebook) could analyze im-
ages for regionally unique identifiers (distinct building facades,
statues, non-native text) and transform or blur them. User toggles
could control these modifications.

User Alerts and Recommendations. Filters could also provide
alerts for high-risk content (e.g., “This image contains identifiable
geographic features. Proceed?” ). Such guidance can foster user aware-
ness and encourage cautious sharing.

H.3 Adversarial Image Modification

Another defense uses adversarial perturbations—subtle pixel alter-
ations degrading geolocation predictions without significant visual

quality loss (Figure 7). Small, often imperceptible noise can cause
LVLMs to misinterpret landmarks.

Technique Spotlight: SGA.. We use SGA [22], which introduces
mild, gradient-guided perturbations. It manipulates crucial chain-
of-thought (CoT) features (signage, vehicles, architecture) to make
the LVLM perceive a generic environment (e.g., Statue of Liberty
misinterpreted as Eiffel Tower by LLaVA [11]). Our tests show
SGA significantly reduces country-level accuracy (78.6% to 3.4%),
indicating high efficacy.

Integration at Scale. Practical deployment must address compu-
tational overhead. Real-time perturbation generation can be de-
manding. However, GPU optimization or cloud-based processing
might mitigate costs, potentially enabling large-scale adoption (e.g.,
browser plugins, smartphone features) for robust user location
privacy.
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