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Abstract

Although cloud providers offer many options for encrypting ob-
ject storage and rotating the encryption key, the cloud ultimately
possesses the key, leaving data vulnerable to insider attacks, legal
demands, and storage bugs. Moreover, current key rotation methods
do not re-encrypt existing objects, exposing the data indefinitely to
adversaries with stolen keys. This paper introduces AKEso, the first
cloud storage system to achieve post-compromise security, thus
restoring data confidentiality after a key compromise. For efficient
key rotation, AkEso adapts the asynchronous group key agreement
protocols of messaging applications to storage clients. For scal-
able object re-encryption, AKEso makes novel use of a cloud-side
enclave to coordinate an updatable encryption scheme among un-
trusted cloud functions. Our evaluations demonstrate that AKEso
re-encrypts a 10 G bucket 2.5X faster than a naive method that
fetches and re-encrypts each object, with a monthly expense that
is only 15.6-19.3% higher than the current, less secure, provider
encryption options.
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1 Introduction

Organizations increasingly store tremendous amounts of data in
the cloud using object storage services such as Amazon S3 [108],
Google Cloud Storage (GCS) [56], and Azure Blob Storage [93].
These object stores are the dominant cloud persistence paradigm
due to their scalability, availability, and pay-as-you-go billing. How-
ever, as these stores grow in importance, they are also a prime target
for multiple threat actors. For instance, in several data leaks [5, 7-
11], adversaries have exploited bugs [70] in the storage stack of
the cloud provider to gain access to customer data. At the same
time, cloud provider insider threat incidents [104] and disclosures
of customer data to law enforcement [1, 3, 4, 16] call into question
the data stewardship of otherwise trustworthy providers.

Security & privacy problem. While cloud providers offer vari-
ous options for encrypting stored data (see §2) these mechanisms
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ultimately rely on provider-managed, cloud-side encryption, where
the storage infrastructure is responsible for generating and man-
aging data encryption keys (DEKs). Although this model simplifies
key management for users, it places full control over data confi-
dentiality and privacy in the hands of the provider. As a result, the
provider retains persistent access to plaintext data and unilaterally
determines how that data may be used or disclosed. For example,
terms of service may permit data reuse for purposes such as tar-
geted advertising, third-party analytics, or training proprietary Al
models—often without meaningful user consent [54, 66, 120].

In addition to privacy concerns, provider-controlled encryption
limits customer agency in key lifecycle management and regulatory
compliance. While customers may rotate keys, such rotations only
change the key encryption key (KEK) used to wrap the DEK in
storage; they do not re-encrypt existing data with a new DEK.
Consequently, if a DEK is compromised, rotating the KEK offers no
protection against retroactive decryption of stored objects.

This is particularly concerning in backup-oriented storage use
cases, where adversaries may collect large volumes of encrypted
data and later exfiltrate a single compromised key. To address this,
cloud encryption mechanisms should support forward secrecy—
ensuring that a compromised key cannot be used to decrypt his-
torical data—and post-compromise security (PCS)—limiting the time
window during which a stolen key remains valid. Indeed, several
high-profile data breaches (affecting Capital One [79], Dropbox [2],
LastPass [51, 76] and Microsoft [6, 95]) involved stolen credentials
or compromised keys that enabled prolonged data exfiltration.

PCS is especially important as cloud storage becomes tightly
integrated with large production ecosystems, such as smartphone
applications [122, 124] and automated processing pipelines. In the
case of smartphone data synced to the cloud, physical theft or foren-
sic access to a device can expose authentication material. Without
PCS, this can enable indefinite access to a user’s cloud data. Like-
wise, in machine learning (ML) workflows, cloud storage is often
used to stage datasets across training and inference phases. A key
compromised early in the pipeline (e.g., during training) could oth-
erwise expose data or model behavior from later stages.

Research question. These limitations motivate the need for sys-
tem designs that support client-controlled encryption models with
strong key lifecycle guarantees, while preserving usability and per-
formance at scale. In this paper, we treat two related problems. First,
how can we prevent the cloud from leaking (whether through accident
or injunction) plaintext cloud storage? Second, in the event that an
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adversary compromises a storage encryption key, how can we recover
the confidentiality and integrity of a customer’s data, and thus limit
the overall damages?

Insufficiency of alternative approaches. There are two broad
approaches to this problem. At one end of the spectrum, storage
clients can encrypt the data client-side before uploading it to the
cloud. This approach, however, is costly, as the organization would
pay at least 4X more in data egress and ingress fees (see Table 5)
to download, re-encrypt, and re-upload the entire bucket on each
key rotation, compared to re-encrypting the data in the cloud. Ad-
ditionally, the most straightforward approach to distributing and
refreshing a group encryption key relies on centralized manage-
ment, which introduces scalability challenges and concentrates risk
in a single authority.

At the other end of the spectrum, the organization could use
cloud provider offerings for trusted execution environments (TEEs),
like Intel SGX [91] or AMD SEV [13, 77, 78], to run a storage proxy
in the cloud that is shielded from the provider and cloud-side ad-
versary. However, prior studies have shown that TEEs have an
appreciable I/O performance tax [86, 97], and thus that using a con-
fidential VM to re-encrypt a bucket could incur up to 30% additional
latency. Attempting to improve performance through horizontal
scaling may be expensive, as a confidential VM costs 20% more than
its normal VM counterpart [55] (see also Table 4). Finally, while
a confidential VM enhances security by safeguarding the storage
encryption key, clients still need to authenticate to this VM. In
other words, such an approach merely shifts the problem from key
leakage to the equally challenging problem of credential leakage.

This paper. Our insight is to leverage recent advances in contin-
uous group key agreement (CGKA) protocols, along with a limited
(and optional) use of a cloud-side TEE, to achieve a middle ground
to these two extremes. In this paper, we present the design and
implementation of AKESO, a cloud storage system that ensures
the confidentiality of the data from the cloud provider, and which
admits recovery of this confidentiality in the event of key compro-
mise.! AKEso has the following three important properties:

1. Post-compromise security. AxEso adapts the CGKA proto-
cols [24, 42] that underpin end-to-end encrypted group messag-
ing [21] to establish a shared encryption key for a group of storage
clients. The clients use the group key for client-side encryption
prior to uploading an object to their cloud bucket. These CGKA pro-
tocols notably enable efficient and post-compromise secure group
key rotation: if an adversary learns the group key, this key is only
valid until the next key rotation. Effectively, for an adversary to in-
definitely compromise the group, the adversary faces the daunting
task of eavesdropping on every key update.

2. Efficient re-encryption. On a key rotation, AKESO re-encrypts
the entire bucket. To autoscale this intensive operation to the bucket
size, AKESO uses a practical updatable encryption scheme [25],
whereby untrusted cloud functions re-encrypt the data without
learning the plaintext. This updatable encryption scheme requires a
trusted principal to perform an initial, less demanding, setup step for
each re-encryption. AKESO supports using either a single cloud-side
TEE to perform this step, or a trusted on-premise machine, though

! Akeso (alternatively, Aceso) is the Greek goddess of the healing (recovery) process.
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our evaluations in §5 show that a TEE is both more performant and
cost-effective.

3. Compatibility. In designing AKESO, we place immediate de-
ployability as a first-level concern. To that end, Akeso does not
require provider-level changes; rather it is compatible with the
current cloud storage services. Additionally, its usage is transparent
to the client-side applications.

Contributions. We make the following contributions:

e We present the design of AKESO, the first system (to our knowl-
edge) that achieves post-compromise security for shared, per-
sistent storage.

e We implement an AKESO prototype on the Google Cloud Plat-
form (GCP), and specifically the Google Cloud Storage (GCS)
service. Our prototype integrates the Asynchronous Ratch-
eting Tree [42] CGKA protocol, updatable encryption, and a
small enclaved service into an elegant cloud-native system.

e We comprehensively evaluate the performance and costs of
AKESO under a set of diverse workloads, and compare these
overheads to existing GCS options for object encryption. Our
benchmarks show that AkEeso has little effect on client I/O
latencies, can re-encrypt a bucket in minutes, and costs less
than $10 more per month compared to provider options for
1 TB and larger buckets.

Paper organization. We review existing cloud storage encryp-
tion options, as well as our threat model and goals, in §2. In §3,
we describe the existing techniques that underpin AKEso, and in
§4 describe how AkEso adapts and composes these techniques for
the cloud storage setting. We present a comprehensive evaluation
of AKEsO’s cost and performance in §5. We discuss configuration
choices for AKEsO in §6, related work in §7, and conclude in §8.

2 Motivation

2.1 Current Cloud Storage Encryption

We begin by summarizing the current encryption options available
to customers for their cloud storage and the limitations in these
methods. In Table 1 we summarize the advantages and disadvan-
tages of each approach in comparison to AkEso. For concreteness,
we focus on Google Cloud Storage (GCS), but note that Amazon
S3 [109] and Azure Blob Storage [94] have similar offerings.

As Figure 1 shows, GCS offers several options for encrypting
cloud storage, and all rely on a key-wrapping scheme: GCS generates
a data encryption key (DEK) to encrypt the object’s content, and
Google encrypts (wraps) the DEK with a key encryption key (KEK).
GCS stores the wrapped DEK with the corresponding object. GCS
encrypts an object when it is stored in a bucket, decrypts the object
before it serves it to a client, and automatically rotates the DEK
every time the client modifies the object. By default, Google uses
AES-256 in Galois Counter Mode (GCM), as implemented by the
Tink cryptographic library [61].

For managing KEKs, Google uses its Cloud Key Management
Service (KMS), which supports software- and hardware-backed
KEKs, as well as externally managed KEKs. A KEK never leaves the
KMS; thus, when GCS needs to wrap or unwrap a DEK, GCS makes
a remote procedure call to the KMS to perform this operation.
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Table 1: Properties of AkKEso and Alternative Approaches

Scalablity Scalability Cost . : .
Approach Latency (Performance) (Key Management)  ($) Achieves PCS Re-encryption Speed

Default (CMEK) ) T i) i O =

TEE Proxy l ! i) T o} =

Client-side Encryption o l l l © !

AKESO > 7 7 T [ i)

Great (), Good (1), OK («»), Bad (]), Terrible (|})
Yes (@), No (O), Depends (©)
CMEK CSEK referred to as Cloud HSM, and the KMS forwards key opera-
tions to the HSM. Google uses Marvell LiquidSecurity HSMs,
O =0 % =0 which comply with FIPS 140-2 Level 3-validation [57].
©/v \ KMS / e Imported keys: The customer generates their KEK and im-
e | ports it into the KMS (or Cloud HSM). This option satisfies
Bring-Your-Own-Key policies, such as where a regulatory re-
Client-side TEE Proxy quirement stipulates that key generation occur in a specific
O environment.

g) g ¢ Externally managed keys: The customer uses a compatible
TEE key manager that is external to Google Cloud to create and
~i® \/ . control their KEKs, and configures the KMS to forward key

Figure 1: Comparison of GCS encryption options (CMEK and
CSEK) and other alternatives (TEE Proxy and Client-side).
The KEK (teal key) encrypts the DEK (orange key), which
in turn encrypts the object (yellow circle). The arrows show
the interactions between the client and the cloud, and within
the cloud subsystems, when the client downloads the object.
Note that the TEE proxy and client-side encryption would
also result in GCS applying a layer of encryption (not shown).

Default encryption. By default, Google encrypts (at no charge)
all storage object content server-side before it writes the content to
disk. For this default encryption, Google generates and manages the
corresponding KEKs: Google may use a single KEK to wrap DEKs
across objects and across customers. Periodically, the KMS rotates
a KEK, and uses the new key version for all subsequent object
creations and modifications. The KMS continues to store prior keys
so that the customer can access previously existing objects.

Customer-managed encryption keys. To comply with diverse
customer policies for KEK management, GCS offers several (non-
free) options for customer-managed encryption keys, or CMEKs.
Here, managed refers to the customer’s ability to set permissions
on keys, monitor key usage, configure different keys for individual
objects, and specify the mechanisms for generating and storing
keys. These options reflect a spectrum in the balance of key control
between Google and the customer, and include:

o Software-generated keys: Google generates the KEK.
e Hardware-generated keys: Google generates the KEK in
a Google-managed and -owned hardware security module,
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operations to this external key manager. This option satis-
fies Hold-Your-Own-Key policies, such as requirements that
restrict key custody.

Customer-supplied encryption keys. With a customer-supplied
encryption key (CSEK), the customer provides the KEK as an in-
put argument to each storage operation, and GCS uses the KEK
to wrap the GCS-generated DEKs. Google does not permanently
store a CSEK, but rather purges this key from its system after each
operation. To ensure key consistency, GCS stores a hash of the
CSEK with the object; as such, a CSEK associates with an individual
object, rather than an entire bucket.

Limitations. Despite the array of options, in all approaches the
cloud provider generates the DEK, which allows them to decrypt
the data. Even in the case of a trustworthy provider, the DEK is
still (for some time) accessible on the cloud storage system, thereby
exposing it to an infiltrator. Although the CMEK options allow a
customer to set a key rotation schedule, this simply changes the
KEK that GCS uses for newly created objects; it does not re-encrypt
the contents of existing objects with a new DEK. Thus, an adversary
with access to the DEK can decrypt the object until it is modified,
at which point GCS changes the object’s DEK. Unfortunately, as
we show in Appendix C, customers heavily use cloud storage for
read-only data, such as media files; for such objects, the DEK does
not change.

2.2 Alternative Approaches

Client-side encryption. Customers may also choose to encrypt
their data client-side using a cipher suite of their choice before
uploading it to GCS. In this setup, the customer is fully responsible
for key management, including storage and rotation. Since GCS is
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Figure 2: The sender’s workload (here, measured as latency)
for a key update operation using ART and using a pairwise
Double Ratchet key transport. Both axes are log-scale. ART
scales as O(log(N)), whereas pairwise Double Ratchet scales
O(N) (where N is the group size).

unaware that the data is already encrypted, it applies its default
server-side encryption, resulting in double encryption. As noted in
§1, this approach can lead to significantly higher data egress fees
compared to performing re-encryption in the cloud.

This design also assumes that clients share a group key. In the
simplest case, each client interacts with a trusted client-side key
manager to obtain the new key upon rotation. However, traditional
key transport—where the key manager encrypts the key to each
client’s public key—does not provide PCS guarantees, as an attacker
who steals a client’s secret identity key can decrypt future key
transport messages. To achieve PCS, the key transport must use a
protocol like the Double Ratchet algorithm [99].

The main drawback of a pairwise Double Ratchet approach is
that the sender’s workload (in this case, the key manager’s) scales
linearly with the number of clients, whereas a tree-based key agree-
ment protocol achieves logarithmic scaling. To experimentally con-
firm this, we develop Go-based versions of the Double Ratchet
algorithm and the Asynchronous Ratcheting Tree (ART) key agree-
ment protocol (see §4 for details), and use Go’s benchmark support
to measure the sender’s latency for a key update as the group size
increases (to measure the key manager’s work, the key manager
serially processes each member’s key transport message). Figure 2
confirms the computational complexity of the two approaches, and
that pairwise Double Ratchet is an impractical key management
strategy for large groups.

TEE encryption proxy. As we mentioned in §1, an alternative
approach to ensure key confidentiality and support key rotation is
to deploy an encryption proxy within a TEE in the cloud (see §3.3
for background on TEEs). In this design, the clients send queries
to the proxy over attested and mutually-authenticated TLS. The
proxy, which is the only component with access to the encryption
key, forwards requests to GCS and handles encryption or decryp-
tion as needed. For re-encryption, the TEE proxy generates a new
encryption key, and retrieves and re-encrypts each object.

While prior studies [86, 97] noted appreciable I/O overheads
when using TEEs (upwards of 30% additional latency), we conduct
our own I/O performance measurements to specifically compare
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Figure 3: The throughput of GCS CMEK and our TEE Proxy
for file uploads and downloads. For both GCS CMEK and the
TEE Proxy, we use their respective REST APIs.

the latency and scalability of the TEE-proxy approach to GCS’s
CMEK encryption option. To do this, we implement a simple TEE
proxy as an HTTPS gateway to a storage bucket. The gateway
supports two operations: PUT (write an entire object) and GET (read
an entire object). We wrote the TEE proxy in Go and create a
separate goroutine for each client request. Figure 3 compares the
throughput performance of the TEE proxy and the CMEK option
as the number of clients increases, showing that the TEE proxy is
both slower and less scalable.

2.3 Threat Model

Our setting consists of three principals: (1) the storage clients, who
share access to an encrypted cloud store; (2) the cloud provider, who
operates the cloud services, and (3) an adversary, whose goal is to
learn the plaintext of the cloud storage objects. We now detail our
trust assumptions and threat model for each of these principals.

Storage clients. We assume that the storage clients mutually trust
one another (for instance, they belong to the same company): they
follow the protocol and do not intentionally leak the plaintext or
the key material. A client may be either cloud-side or on-premise.
If the client is hosted in the cloud (for instance, the client is a
microservice), we assume that the client runs in a TEE so as to
maintain the confidentiality of the storage data it accesses.

TEEs. AxEeso uses TEEs in two capacities: to shield cloud-side
clients, and to host a special storage service called AKESOD (see §4).
We assume that the cloud-side clients may contain vulnerabilities,
thus allowing an adversary to extract their keys and credentials
despite having the added protection of a TEE. In contrast, we as-
sume that the AKEsoD software is vetted and bug-free, and thus
immune to exploitation or accidental key leakage. Note that for
clarity and consistency, the remainder of this paper assumes that
clients are hosted outside the cloud. We assume that side-channel
attacks [30, 37, 50, 106, 107, 117, 119] are out-of-scope; we trust the
CPU designers to patch such vulnerabilities.

Cloud provider. We assume the cloud provider is semi-trusted.
Concretely, the provider faithfully follows the protocols and service-
level agreements, and does not persist old copies of a storage object.
Specifically, if a client updates a storage object, the provider over-
writes or otherwise removes the old version (we discuss relaxing
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this assumption in §6). The provider may comply with law enforce-
ment demands to disclose customer data (including a customer’s
storage), and may be susceptible to insider threats.

Adversary. We assume a non-persistent adversary with tempo-
rary access to either the cloud provider’s storage stack or the client.
This adversary can eavesdrop on or intercept client-provider com-
munications as a man-in-the-middle. The adversary can fully com-
promise a client—whether inside a TEE or not—allowing them to
extract secrets, key material, and long-term cloud credentials. With
these, they can impersonate the client, interact with cloud services
on their behalf, or monitor their communications.

In summary, we assume that encryption key compromises are
isolated incidents rather than ongoing events. However, the adver-
sary’s access to (encrypted) cloud data—whether through stolen
cloud credentials or insider privileges—may be permanent.

2.4 Goals

In designing AKEso, we have three primary goals:

G1: Post-compromise security. Informally, post-compromise
security (PCS) means that if an adversary temporarily obtains the
system’s secret keys, the adversary will lose access after a key re-
fresh (assuming the refresh process is not compromised), allowing
the system to regain confidentiality. Cohn-Gordon et al. [41] for-
mally define PCS within the setting of authenticated key exchange,
and Lehmann and Tackmann [85] provide formalisms within the
setting of updatable encryption. We state the PCS property in the
cloud storage setting using a simplified notation that closely follows
that of the TreeKEM paper [24].

We assume that the global state of the storage system S consists
of the following elements:

e G = {my,my, . ..}: the storage group G, consisting of mem-
bers (storage clients) m;.

e O = {0y, 01, ...}: the storage bucket O consisting of storage
objects o0;. Each storage object o; has a name, contents, and
user-specified metadata, called attributes.

e public(G | m;): when applied to the group G, the public data
of the group; when applied to a member m;, the public data
of that member.

e secret(G | m;): when applied to the group G, the secret data
shared by all group members (e.g., a group key); when applied
to a member m;, the secrets specific to that member (e.g., the
member’s private key(s)).

The global state evolves over time as sequence of epochs:
So > S1— ...

where a state transitions from Sj to Si.; via the following operation:

Update, (m;): member m; refreshes its local state and gen-
erates a fresh group key, hence updating secrety1(G) and
secretyyq(m;).

Note that, for clarity, we may suffix an operation with the epoch in

which it occurs. Within a state S, any member may invoke one of
the following cloud storage I/O operations:

e Cloud.Puty(name, contents, [attr]): Put (write) an object.
If the object name does not already exist, the system creates
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the object; otherwise, the system overwrites the existing ob-
ject. If the client provides the optional attr argument, then
this call also updates the object’s attributes.

o Cloud.PutAttrg (name, attrs): Update an object’s attributes.

e Cloud.Gety (name): Get an object and its attributes.

e Cloud.GetAttri (name): Get the attributes for an object.

e Cloud.Pubj (msg): Publish message msg to the system.

Additionally, within a state Sk, an adversary A can call the
following operation to compromise a member:

Compromise (m;): the adversary compromises member m;,
thereby learning secret (G) and secrety (m;).

Using this notation, we define:

Definition 1 (Post-Compromise Security). If an adversary A exe-
cutes Compromisey (m;), and in some subsequent state Sg.. either
(1) m; executes Update; . (m;) or (2) some other member m; exe-
cutes Updatey, . (m;) for which A does not learn secreti,.+1(G),
then starting in state Sg.,+; the objects O are again confidential.

Informally, if A compromises m; in epoch k, then the system
regains the confidentiality of its storage when either m; refreshes
the group key (thus preventing A from learning m;’s contribution
to the group key) or some m; initiates a group key update that
A does not observe (eavesdrop upon), thus preventing A from
deriving the new group key, and hence all subsequent keys (until a
next compromise).

Note that we seek only to provide (and regain) the confidentiality
and integrity of the storage object’s content. In particular, we do not
aim to conceal object metadata or access patterns from an adversary.
Metadata-hiding storage [36, 38, 39, 112] is an important and active
area of research, but is complementary to AKESoO.

G2: Performance and cost. For practicality, the system’s perfor-
mance (such as upload and download latency) and costs (as for cloud
services and data ingress and egress) should be competitive with
the cloud provider’s current cloud storage encryption offerings.

G3: Compatibility and transparency. To promote adoption,
we assume that we cannot modify the cloud provider’s hardware
or software. Thus, our system may only modify the client-side
software, and utilize the available cloud services. Moreover, our
client-side modifications must also be compatible and transparent:
they should extend the conventional storage client software, and
not impose alterations on any higher-level applications.

3 Building Blocks

AKEsO’s high-level contribution is composing multiple existing
cryptographic techniques with TEEs in a setting distinct from their
original target use case. In this section, we briefly review the un-
derlying cryptographic and TEE concepts that AKESoO uses, and in
§4 we detail our approach to integrating these components for the
shared cloud storage setting.

3.1 Continuous Group Key Agreement

Group key establishment is a critical operation for AKESO, as the
clients encrypt data client-slide and periodically rotate the joint
encryption key. Continuous group key agreement (CGKA) proto-
cols are natural extensions of two-party continuous key agreement
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protocols—such as Double Ratchet [99]—that gained popularity
in messaging applications like Signal [40], to the group setting. A
CGKA protocol generates a sequence of symmetric group keys—
derivable by each member of the group—, with each new key mark-
ing the start of a new epoch. From a security perspective, CGKA
protocols aim to provide forward secrecy and post-compromise secu-
rity, limiting the impact of a key compromise to the affected epoch.
Important functional properties include whether the protocol is
asynchronous (allowing clients to update their cryptographic state
independently of others, which may be offline), and decentralized,
(operating without a trusted central authority). Many CGKA proto-
cols also support dynamic group membership, enabling members
to be added or removed over time.

Asynchronous ratcheting tree. If a member must store informa-
tion about all members of the group, and if each group modification
operation involves a distinct message for each member, the storage,
bandwidth, and computational requirements for every operation
is linear in the group size, which is impractical for large groups
(see Figure 2). As a result, many CGKA protocols (and by exten-
sion, AKESO) organize their members into a tree-based data struc-
ture [31, 32, 46, 80, 81, 98, 111]. The first proposal for a CGKA with
PCS guarantees was the Asynchronous ratcheting tree (ART), which
implements all operations using O(log n) storage, bandwidth, and
complexity, both at the sender and the receiver. As Figure 4 shows,
each tree node in ART is a Diffie-Hellman (DH) key pair [47]; all
non-leaf nodes contain two children, and each leaf corresponds to
the key pair for a specific group member. Starting from the leaves,
the private DH key of each parent node is the result of a DH compu-
tation between its two children; this process continues recursively
until yielding the root key, the secret half of which is input to a
key derivation function (KDF) to form the symmetric group key.
The core property of this data structure is that, to compute the root
key, a member must know one secret leaf key, as well as all public
keys on the leaf’s copath (the list of sibling nodes along the leaf’s
path to the tree root). To rotate the group key, a group member m;
generates a new DH key pair for their leaf, computes the new tree,
and broadcasts a KeyUpdate message containing the tree’s new
public keys; each member then recomputes their local tree.

TreeKEM. TreeKEM [24], which forms the basis of the IETF Mes-
saging Layer Security (MLS) standard [21], builds on the structure
of ART by using a similar tree-based design but a different cryp-
tographic construction that reduces computational overhead for
recipients. While ART and TreeKEM share the same group structure
and local state, TreeKEM moves beyond Diffie-Hellman and allows
each tree node to use any keypair that supports key encapsulation
(KEM). Additionally, TreeKEM improves usability by supporting
dynamic group membership and enabling more flexible consistency
through mergeable operations.

3.2 Updatable Encryption

A simple approach to re-encrypt all storage during key rotation
involves downloading the storage objects, re-encrypting them, and
uploading the new ciphertext back to the cloud. However, this
method faces two major challenges: it does not scale with the
bucket size, and incurs significant data egress and ingress costs
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if the re-encryption occurs on-premise, outside the cloud. To over-
come these issues, AKEso must both autoscale object re-encryption,
and perform this process within an untrusted cloud environment.
AKEso solves this by using updatable encryption, a symmetric-key
encryption scheme that allows key rotation by an untrusted third
party, such as the cloud. In such schemes, the client sends a small
update token to the cloud, which uses the token to rotate the en-
crypted storage from the old key to the new one without learning
the plaintext.

Previous research has introduced various updatable encryp-
tion schemes, often focusing on theoretical aspects like ciphertext
unlinkability after re-encryption [35], unidirectionality [92, 96],
resilience to token corruption [45], and metadata leakage [48].
AKEsO’s design directly addresses some of these properties, such
as update token integrity, while others (e.g., unlinkability, unidi-
rectionality, metadata leakage) fall outside its use case and threat
model. Additionally, updatable encryption schemes can be catego-
rized into ciphertext-independent [27, 49] and ciphertext-dependent
schemes [29, 82, 85], where the latter requires the client to download
a small portion of the ciphertext, known as the ciphertext header, to
generate the update token. Despite this minor overhead, ciphertext-
dependent schemes are more efficient, and AKEso employs such a
construction.

3.3 Confidential Computing

Although CGKA and updatable encryption provide robust key man-
agement and encryption in adversarial settings, AKEso faces the
challenge of protecting two remaining security sensitive operations:
managing group membership, and generating the re-encryption
tokens. As we describe in §4, AKESO uses a small orchestrating
process called Akgsop for these operations, and requires that AKE-
SOD run in a trusted environment. While AKEsO’s design provides
flexibility in hosting AKEsOD either on-premise or in the cloud, for
the cloud hosting, the customer must deploy AKEsoD using the
provider’s offerings for confidential computing.
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Figure 5: High-level architecture of AKEso. The clients and
AKESOD trust one another, and we assume that an adversary
cannot breach AKESOD.

Confidential computing is executing a workload on an untrusted
third-party machine (the cloud) in a way that “shields” the work-
load from the third-party: the third-party cannot alter, observe,
or interfere with the computation or its data (though, in practice,
side channels [28, 33, 87-89, 117, 118] weaken these guarantees).
Confidential computing relies on hardware trusted execution en-
vironments (TEEs) to ensure memory isolation from the rest of
the system: an application’s memory is encrypted and integrity-
protected when in DRAM, and decrypted only when the memory
enters the trusted CPU package. When a workload is running within
a TEE, we say that the workload is running within an enclave; as
shorthand, we often simply call the workload an enclave.

Process- and VM-based enclaves. Intel SGX [74, 91] was the
first general approach to confidential computing. By representing
enclaves at the granularity of a part of a process, Intel SGX promotes
a small trusted computing base, but at the expense of incompatibility
with legacy software, though several middleware solutions [18,
22,71, 115] attempt to ease this burden. To allow for unmodified
applications to run within an enclave, the current generation of
TEEs, such as AMD SEV [13, 77, 78], Intel TDX [75], Arm CCA [90],
and IBM’s PEF [73], implements enclaves at the granularity of a
virtual machine (called confidential VMs). Due to their ease of use
and broad provider support, our implementation uses AMD SEV
enclaves, though the AkEso design supports using either a process-
or VM-based enclave for AKESOD.

Attestation. A core property of all enclaves is attestation [14]: a
hardware root-of-trust signs a digest of the initial launch state of
the enclave, forming an attestation report; the customer can retrieve
this report to verify the correct software is running in an enclave.
To allow an attestation to bind some runtime value, the enclave
can include a small amount of user-data in the report; the user-data
is opaque to the secure hardware, but otherwise covered by the
report’s signature.

4 Design & Implementation

In this section, we present a prose-style description of the design
and implementation of our AKEso proof-of-concept. Appendix B
sketches a security proof that Akeso fulfills Definition 1 (PCS).
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Figure 6: Updatable encryption using nested AES. The key
encryption key (KEK) as well as an object’s first data encryp-
tion key (DEK) are sensitive. Subsequent DEKs in the header
serve as update tokens, each of which is the AES key for a
layer of encryption. Dashed lines from a key denote encryp-
tion with AES-GCM, and solid lines denote AES-CTR.

We implement AKESo using Google Cloud Platform (GCP). In
translating the underlying techniques of §3 to the cloud storage
setting, we confront four challenges:

C1: Scaling updatable encryption for practical post-compromise
security

C2: Adapting CGKA from transient messaging to persistent stor-

age (specifically, ensuring PCS applies to both new and exist-

ing data)

Maintaining backward-compatibility with the existing cloud

infrastructure and client software

C4: Ensuring the consistency of the shared group data

C3:

Figure 5 depicts a high-level overview of the AkEso architecture.
For a cloud-native solution, AKESO organizes the clients and or-
chestrating enclave (AkEsoDp) into a CGKA group, and uses GCP’s
Pub/Sub channels for broadcasting the CGKA messages. Addition-
ally, on a key update, AKEsoD triggers GCP to launch untrusted
cloud functions, which receive the corresponding update token
and re-encrypt the objects in the bucket. Our AKESo prototype
uses ART as its CGKA protocol so as to focus on the core CGKA
operation of key update; we leave the other pragmatic features of
group management to future work. We now describe in detail how
AxEso addresses each of the four challenges.

4.1 Scaling Updatable Encryption

AxEso implements a practical version of ciphertext-dependent up-
datable encryption based on a performant, nested-AES scheme from
Boneh et al. [25]. In this scheme, the ciphertext header is a list of
DEKs, and the ART group key serves as a KEK that encrypts this
list. On each key rotation, AKESOD generates a single new DEK for
the entire bucket; AKEsoD decrypts each object’s ciphertext header
with the old group key, appends this new DEK to the list, and re-
encrypts the list with the new group key. The new DEK serves as
the re-encryption token: AKEsoD triggers the cloud functions to
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use this DEK to apply another layer of encryption to each object’s
contents.

Intuitively, if an adversary learns the group key (KEK) at epoch
k, but is unable to eavesdrop on the cloud messages for some later
key update at epoch k + x, the adversary is unable to derive the
KEK for epoch k + x + 1, and thus cannot decrypt an object’s
ciphertext header to reveal the list of DEKs. Appendix B crystallizes
this intuition by providing a proof sketch of PCS that performs
a case analysis with respect to an object’s life cycle, and further
shows that knowledge of the re-encryption token still preserves
the PCS property.

We next describe in further detail how we integrate ART with
nested AES in an object’s life cycle. (Appendix A lists pseudocode
for these major operations.)

Object creation. When a client creates an object, the client ran-
domly generates an AES-256 DEK and encrypts the object content
using AES-GCM (for authenticated encryption with additional data).
This initial DEK is secret and unique to the object (in contrast, the
subsequent DEKSs for re-encryption are update tokens that AKESOD
shares with the cloud and applies to all objects). For AES-GCM’s
additional data, the client uses the object’s name, which defends
against object-swapping attacks where an adversary renames ob-
ject A to B and vice-versa. The client constructs the ciphertext
header by generating a random 16-byte IV (the Base IV), and using
AES-GCM to encrypt the DEK and the data’s authentication tag
(the data tag). The client uses the first 12-bytes of Base IV as the
nonce to the AES-GCM encryption of the DEK and data tag.

GCS supports attaching 8 K of arbitrary metadata (in the form of
key-value pairs) to each cloud object [60]. The client therefore sets
the ciphertext header as the value for metadata key akeso_header,
and uploads the new object with its metadata to cloud storage.

Object re-encryption. A client initiates a group key update by
broadcasting a KeyUpdate message to the group’s Pub/Sub topic.
Upon pulling this message from its topic subscription, AKESOD
saves the old group key, updates its local ART state to derive the
new group key, and generates a random DEK. AKESOD then creates
a notification to cloud storage that includes this DEK, and which
triggers GCP to launch a cloud function when an object’s metadata
changes. This notification uses a distinct channel from the ART
Pub/Sub channel; a client’s cloud credential does not permit access
to this channel.

Next, AKEsOD fetches the metadata for each object in the bucket
and extracts its akeso_header value from the metadata. Using the
old group key, AKEsoD decrypts the encrypted portion of the header
and appends the new DEK. AKEsoD encrypts the list of DEKs (along
with the data tag) using AES-GCM with an incremented nonce value
(an incremented Base IV).2 Figure 6 shows the complete structure
of a ciphertext header after n — 1 key rotations.

After updating the header, AKEsop makes a GCS request to
update the object’s metadata, which subsequently launches the
cloud function. Each cloud function instance receives as input the
DEK and a specific object name. The function instance uses the
DEK to apply another layer of encryption to the object’s content.

2Using a different nonce value is not strictly necessary since the KEK—the header
encryption key—has changed; we do this as a simple means to increase robustness to
brute force attacks.
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As the header’s data tag captures the integrity of the content, the
function instance uses the simpler (unauthenticated) AES-CTR
mode of encryption. Similar to the new encryption of the header,
the cloud function uses an increment of the full 16-byte Base IV for
the IV.3

Maximum encryption layers. As Boneh et al. note [25], a draw-
back of using nested AES for updatable encryption is that the time
for a client to encrypt and decrypt an object grows linearly with
the number of re-encryptions. In practice, AKESOD easily counters
this concern: to prevent an unbounded overhead, AKEsoD enforces
a (configurable) maximum number of layers of encryption. When
fetching object A’s metadata on a key update, if AKEsoD determines
that the new DEK would exceed A’s maximum number of layers,
AxkEesoD downloads the entire object, and resets A’s DEK list to a
size of one. Since an object’s initial DEK is secret, AKESOD must
randomly generate and encrypt A with a fresh initial DEK, rather
than use as the initial DEK the DEK that it generated as an update
token for the other objects. Section §4.3 also describes a simple
client optimization to reduce growth in the number of layers of
encryption.

4.2 Adapting ART to Storage

The need for object re-encryption is the fundamental distinction
between post-compromise security in the persistent storage set-
ting and post-compromise security for transient messaging. The
remaining challenge is the trustworthy construction of the initial
ART group (see Appendix D). As we trust AKESOD to initiate object
re-encryption, it is natural to also designate AKEsoD as the ART
initiator, which must be trusted to create the ART group.

We assume that the clients trust the AKEsoD software (as through
a software vetting process) and possess the hardware measurement
that reflects a faithful launch of the software. A key technical hurdle
is to bind AKEsOD’s attestation to the initial GroupSetup message,
thereby providing clients with assurance about the integrity of
ART’s initial state. Our approach, which is similar to efforts [17,
53, 83, 116] to bind an attestation with the TLS handshake [102], is
for AKESOD to generate its long-term key pair in the enclave, and
include a hash of the public key as user-data in the attestation report.
AxEsoD then includes this report within the GroupSetup message.
Since AKESOD signs the message with its long-term identity key,
the other members have assurance that AKESOD is running within
an enclave.

4.3 Preserving Software Compatibility

For the storage clients, we modify Google’s open source Cloud Stor-
age FUSE (Filesystem in Userspace) adapter [58, 62] —gcsfuse—
which allows users to mount a storage bucket as a local filesys-
tem. Specifically, we integrate the ART protocol into gcsfuse, and
amend gcsfuse to use Google’s Pub/Sub [64] for key update noti-
fications. We extend gcsfuse’s caching layer to invoke the nested
decryption operations when fetching an object from cloud storage,
and to re-apply these layers when uploading a modified object. In
all, we add ~1200 lines of Go code to gcsfuse to implement an

3The IV is: base IV + len(DEKs) — 1
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AKESO client (see Table 7 in Appendix E for the total lines of code
in all AKEsO components).

By default, with file caching enabled [59], on a partial, random
read operation, gcsfuse does not always fetch the entire backing
object from the cloud bucket to the local cache. Similarly, on a write
operation which only appends to a file and does not overwrite any
of its current data, gcsfuse does not always re-upload the entire
file contents. Due to AKEsO’s need for authenticated encryption,
we override these optimizations and ensure that upon opening a
file, the gcsfuse downloads and decrypts the entire object into
the local file cache. Similarly, upon closing (or explicitly syncing a
file), we modify gcsfuse to encrypt and upload the entire file to
the cloud object.

Since any write already requires downloading and re-uploading
the entire object, we treat all writes as new object creations. Specifi-
cally, when a client modifies a file, gcsfuse generates a new random
DEK and uploads the file with a single layer of encryption, re-
gardless of any prior nesting. This approach reduces decryption
overhead for future reads in write-heavy applications.

4.4 Maintaining Object Consistency

Concurrent object accesses and key updates open the possibility
for an object to become inconsistent with respect to its metadata.
We detail the two cases where an access and key update operation
may conflict, and how AxkEso handles these situations.

Case 1 (reads). Suppose the gcsfuse client processes an open
system call to fetch an object during a key update. The challenge
is that there is a race condition between three events: when AKE-
soD processes the key update, when the client processes the up-
date, and when the client fetches the object. To enforce an or-
dering on these operations, AKEsoD adds two additional meta-
data values along with the akeso_header: akeso_kek_hash and
akeso_reencrypt. The former is simply a hash of the new ART
group key. When a gcsfuse client fetches an object, it compares
the hash of its group key to this metadata value; there are two
possibilities:

The hashes differ. This implies that either gcsfuse updated its
key and fetched the object before AkEsoD processed the key
update, or that AKESOD processed the key update but the client
has not. In either case, gcsfuse returns an error for the system
call, indicating that the application should retry.

The hashes are equal. This implies that AKEsoD and the client are
in sync with respect to the header; the only question is whether
the object has the number of layers of encryption as the header
implies, or if the object is awaiting a cloud function to add the last
layer. To detect this scenario, we use a simple locking scheme:
AKESOD sets akeso_reencrypt to true; upon re-encrypting
the object, the cloud function sets this to false. If a gcsfuse
client fetches an object that is awaiting re-encryption, it returns
an error for the system call, indicating that the application should
retry.

We note that our implementation chooses simplicity by placing
the onus of retries on the application. An alternative approach
could modify gcsfuse to use a backoff-and-retry strategy (and
only return an error to the application after a set timeout), or briefly
maintain and try the old group key.
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Case 2 (writes). This case deals with conflicts in writes, as when
a client downloads an object and modifies it during a key update.
AxEeso handles this situation using GCS’s automatic metadata for
an object’s generation and metageneration value. An object’s gen-
eration is a unique number that changes (but does not necessarily
increment) when the object’s content is modified—it logically iden-
tifies an object version. In contrast, the metageneration value resets
to 1 for each generation, and increments for each modification to
an object’s metadata.

GCS enables requests to include preconditions for these values
to prevent object corruption during read-modify-write updates. We
modify gcsfuse to use a precondition when syncing an object to
the cloud storage to enforce that the object has not been modified
since the client opened it. If the object has been modified, the
precondition fails, and gcsfuse returns an error for the system
call (either a close or fsync) that triggered an attempt to write
the object to the cloud. We leave optimizations to this behavior, in
which gcsfuse attempts to resolve the conflict, to future work.

5 Evaluation

In this section, we compare the performance of AKEso to the op-
tions that Google Cloud Platform currently provides for encrypting
cloud storage, as well as to simpler client-side encryption schemes.
We aim to demonstrate that AKEso has comparable performance
to existing alternatives of weaker security properties, and better
performance than naive approaches that provide the same security
properties. We first review these specific alternatives, and describe
for each (1) any changes we made to gcsfuse to use this alternative,
and (2) how we effect a key rotation.

CMEK. With CMEK, a bucket uses a software-generated key with
the GCS customer-managed encryption key feature, as described
in §2.1. To re-encrypt a bucket encrypted with CMEK, AKEsoD first
generates a new KEK in the Cloud KMS. AKEsoD then reads each
object and updates its metadata to specify this KEK. When GCS
observes the update, it re-encrypts the object with a new DEK, and
wraps this DEK with the new KEK.

CMEK-HSM. CMEK-HSM uses a hardware-generated key with
the GCS customer-managed encryption key feature, as described
in §2.1. Re-encryption in CMEK-HSM works similar to CMEK, the
difference being the key is managed by an HSM.

CSEK. CSEK uses the GCS customer-supplied encryption key
feature, as described in §2.1. We modify gcsfuse so that the KEK
it supplies to GCS for all storage operations is the ART group key.
On a key rotation, AKEsoOD uses a GCS API to migrate the object’s
KEK from the old group key to the new one; the DEK itself does
not change.

Akeso-keywrap. In this option, each object is encrypted using
a simple client-side encryption scheme similar to CSEK, but one
which does not share the DEK or KEK with the cloud. Concretely, to
create an object, a client first randomly generates a DEK and nonce,
and encrypts the object’s data with the DEK using AES-GCM before
uploading it to GCS, similar to AkEso. The ART group key serves
as a KEK, and the client uses this key with AES-GCM to encrypt
the DEK, the random nonce, and the data’s GCM tag. Our gcsfuse
client adds this value to the object’s metadata. On a key rotation,
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Figure 7: Latency to read and write an entire object using encrypted cloud storage, relative to the CMEK option. The numbers

above the bars are the absolute latencies for the CMEK cases.

AxkEesop downloads the metadata of each object, re-encrypts the
header with the new group key, and uploads the header back to the
object’s metadata. As in CSEK, the object’s DEK and ciphertext do
not change.

Akeso-strawman. Akeso-strawman provides the same security
guarantees as AKESO, but uses a more naive approach. In this option,
each object is encrypted using AES-GCM, with the key being the
ART group key. We modify gcsfuse to use this key when reading
and writing objects. On a key rotation, AkEsop downloads the
entire object data, decrypts it using the old key, encrypts it using
the new key, and re-uploads it.

5.1 Experimental Setup

Unless otherwise noted, we run AKESOD in a cloud enclave, specifi-
cally GCP’s N2D compute node (base variant - N2D-standard-2)—
an AMD SEV confidential VM. We configure Google Cloud Func-
tions with 512 M memory. The Google Pub/Sub Service handles
the asynchronous aspect of AkEeso for sending and receiving the
GroupSetup and KeyUpdate messages for the storage group, as
well as the MetadataUpdate messages for the cloud functions. We
run all cloud services in the us-east1 region. Our clients run in
the cloud (N2D VMs, but without AMD-SEV) in the same region. *

5.2 1/0O Performance

We first evaluate AKESO’s filesystem I/O performance; that is, how
each encryption option performs from the perspective of an appli-
cation reading and writing the bucket objects through a gcsfuse
mount, as if they were normal files in a filesystem. To assess this,
we use the official benchmarks in the gcsfuse GitHub repo [62]
to measure two common operations: sequentially reading an entire
file from the cloud, and sequentially writing an entire file to the

We initially used local machines for the clients, but switched to cloud machines to
promote reproducibility. Regardless, our evaluations showed identical performance
and network latencies across all strategies in both setups.
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cloud. We modify the benchmarking tools to additionally include
the calls to open and close in the total elapsed time.

Figure 7 shows the 10% trimmed mean of running each workload
50 times under each encryption option, varying the object sizes
from 10 K up to 100 M. Although the distribution of object sizes
differs slightly by provider (see Figure 13 in Appendix C), we note
that across GCP, AWS, and Azure: 10 K—100 K bounds the median
object size of all providers and captures a third of all objects; 1 M-
2 M tightly bounds the 90 percentile; 10 M is roughly the 95
percentile; 100 M is the 99™ percentile. For Axeso, we apply only a
single layer of encryption (we analyze the impact of increasing the
layers later in this section). The results show that the performance
of AKEso is similar to the existing encryption options despite pro-
viding stronger security guarantees. This is not unexpected, as each
option performs a similar AES-GCM operation of the file contents.
The read latencies consistently show a variability of 3-11% relative
to their mean. In contrast, the write latencies show a wider variabil-
ity of 5-50% relative to their mean. We attribute this to the default
write path in gcsfuse, where files are written locally as temporary
files before being written out to cloud storage [63]

To demonstrate the variation in measurements, Figure 8 shows
a CDF of AKEsO’s read and write latency for a 10 M object. Sequen-
tial read operations with AKEso are typically faster. In contrast,
sequential writes show more variability and higher tail latencies.

Overhead of nested-AES layers. A property of nested-AES up-
datable encryption is that the work to decrypt the data increases
with the number of re-encryptions (that is, the number of layers of
encryption). To evaluate the rate of this increase, we use Go’s bench-
marking apparatus to develop benchmarks for the nested-decrypt
function in our Go package. We run this benchmark on the same
client cloud VM, varying the data size and the number of layers
of encryption. Table 2 shows the times and associated overheads
compared to the 1-layer baseline. Note these times only include the
cryptographic operations, and do not include the I/O overhead of
retrieving the object. While exact timings vary by machine (our
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Figure 8: CDF of latencies to read and write a 10 M object
with AkEso.

Table 2: Time (ms) to Decrypt Objects with Varying Layers
of Encryption

{Q
J}é % 1 10 50 100
J
10K 0.02 0.04  (ox) 0.13 (65%) 0.24  (120x)
100 K 0.08 0.24 (3.0x) 1.02 (12.8x) 1.97 (24.6X)
1M 1.49 334  @ox) 12.01 (17.2X) 21.62  (33.6%)
10M |10.58 27.65  (26%) 105.78  (100%) 207.52  (196x)
100 M [90.89 | 310.90 (ax) | 124590  @37x) | 2010.10  (e21x)

cloud VM includes the AES-NI hardware extension), the results
demonstrate AKEsO’s flexibility to tailor the maximum encryption
layers to the bucket’s profile while keeping overhead low.

5.3 Key Rotation

We evaluate key rotation performance by measuring the time re-
quired to rotate the encryption key for all objects in the cloud store
under various encryption options.

Time to re-encrypt bucket. We first evaluate buckets of varying
sizes, but where each object is 2 M. As Figure 13 of Appendix C
shows, 2 M reflects the 90 percentile of real-world object sizes.
Our range of buckets sizes (16 M up to 10 G) spans nearly the 50
through g9qth percentiles of our bucket size estimates for GCP, AWS,
and Azure in Table 6 of Appendix C.

Figure 9 shows the mean re-encryption time relative to CMEK
across 10 runs, with error bars representing one standard deviation.
As bucket size increases, AKESO demonstrates superior scalability
compared to other client-side strategies. For the 10 G bucket, AKEso
(0.4477 + 0.0093) outperforms Akeso-strawman (1.1060 + 0.0108)
by 2.5%, due to scalability of cloud functions for re-encryption.
AxEso performs comparably to Akeso-keywrap (0.3967 + 0.0044),
despite providing stronger security guarantees through full data
re-encryption rather than merely rewrapping keys.

Next we evaluate the re-encryption time for a 1 G bucket (which
closely corresponds to the 80 percentile of bucket sizes as per
Table 6), but vary the object sizes to capture 80% of the object
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counts, as per Figure 12 in Appendix C. Figure 10 presents mean
times across 10 runs, with error bars omitted for readability. Storing
data in fewer, larger objects proves more efficient: AKESO requires
98.7 + 6.6 seconds for 1024 1 M objects but only 7.1 + 0.3 seconds
for 64 16 M objects (14X improvement). AKESO consistently outper-
forms alternatives while providing stronger security guarantees,
achieving 4.6x faster re-encryption than CMEK for 16 M objects.
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Table 3: Comparison of Time (s) to Re-encrypt a 1 G Bucket
for Different VM Types and Locations
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Table 4: Comparison of Monthly Costs (USD) for Running
AKEso and Alternatives on an N2D (n2d-standard-2) Machine

Time to re-encrypt an object. In addition to the time to encrypt
an entire bucket, we are also interested in the time to encrypt a
single object; as we described in §4.4, this time reflects a period
during which a client object access may fail. Figure 11 shows that
despite AKESO’s superior performance demonstrated in the previous
two experiments, it is consistently slower than the other encryption
options for re-encrypting a single object. This is largely due to the
latency between AxkEsoD updating the metadata and the cloud
function starting.

Overhead of AKEsoD enclave. To measure the overhead of
running AKESOD within an enclave, we perform a re-encryption
operation using three identically configured AMD EPYC Milan VMs
on Google Cloud: a non-confidential version, a confidential VM
with AMD SEV, and a confidential VM with AMD SEV-SNP. As
Table 3 shows, re-encrypting a 1 G bucket containing 2 M objects
incurs an overhead factor in the range of 1.02-1.06x for AMD SEV
and 1.04-1.15X for AMD SEV-SNP.

5.4 Monthly Costs

We use Google’s Cloud Pricing Calculator [55] to estimate the
monthly costs for running the four cloud storage encryption op-
tions: CMEK, CMEK-HSM, CSEK and AkEso. Specifically, we look
at the costs for key rotation. We assume an object size of 1 M, and
choose bucket sizes of 10 G, 100 G, 1 T and 10 T. All the cloud
components are in the same region. We also assume key rotation
happens every 30 days, and that the storage group has 32 members.

Table 4 shows the monthly cost of running the four encryption
options. The difference between the estimates is that CMEK, CMEK-
HSM, and CSEK use a regular Compute Engine, while AKEsO uses
a Compute Engine with AMD SEV support. AKESO is modestly
more expensive than the non-secure alternatives, ranging from
15.6-19.3% more for a 10 G bucket, and only 2.4-14.4% more for a
10 T.

We additionally estimate the difference between running AKEso
in a cloud-side enclave and running AKEso in a secure but non-
confidential on-premises server. We assume the compute cost of
running AKESO on-premises is negligible, the bucket size is 10 T,
objects are 1 M, and that a single key rotation occurs each month.
The on-premise AKESOD performs the exact same functions as the
cloud enclave version, but, as Table 5 shows, incurs over 4x the
monthly expenses due to the cost of data egress [101] during a key
rotation. Nevertheless, organizations may have special needs that
require an on-premise AKESOD; for instance, while side channels
are outside the scope of our threat model, an organization that is
wary of such attacks may opt for an on-premise deployment.

Location VM Type Akeso Strawman Bucket Size CMEK CMEK-HSM CSEK AKESO
Non-Confidential 45.955 132.412 10 G 63.96 65.84 63.78 76.12
Same region AMD SEV 48.860 135.094 100 G 68.31 70.19 67.58 80.38
AMD SEV-SNP 52.716 135.883 1T 87.33 89.21 84.06 98.67
Non-Confidential 147.769 479.875 10T 299.96 301.84 268.38 307.04
Different region | AMD SEV 151.027 484.801
AMD SEV-SNP 153.983 514.898
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Table 5: Monthly Cost (USD) of AKEso Running on a Cloud
Enclave vs. an On-Premises Server

AKESO Cloud Enclave On-Premises
Compute 75.97 0
Storage 204.7 204.7

Cloud Function 26.37 26.37
Data Egress 0 1126.4
Total 307.04 1357.47

6 Discussion

Frequency of key rotations. To ensure regular rotation of the
ART group key by all clients, AKEso defaults to a simple round-
robin system. The rate of key rotation (one week by default) is a
global configuration, and clients take turns initiating a key update.

Unfortunately, a rushing attacker may try to exfiltrate all data
before a re-encryption operation. Based on Figure 9, AKESO re-
encrypts a bucket at ~0.02 GB/s. To simulate an attacker, we launched
a VM in the same region as the bucket, and measured that the at-
tacker could download data from the bucket at nearly 0.15 GB/s.
Rather than use a fixed epoch, AkEso could dynamically determine
the epoch length by monitoring the volume of data access. This is
based on the principle that higher data access volumes correlate
with increased security risk.

Using the setup in Table 5 as an example, a 10 T bucket costs
$26.37 (10 M req/month) for cloud functions. With egress at $0.11/G,
clients (or an attacker) would access ~240 G ($26.37/$0.11) before
reaching this re-encryption cost threshold. Using these metrics, a
simple rule of thumb is to re-encrypt when egress costs equal the
re-encryption cost, as ~1/20 of the total bucket volume would have
been accessed, and AkEso could still encrypt roughly 13% of the
bucket before the attacker finishes. Despite the speed advantage of
a rushing attack, we note that AKEso is also valuable for ensuring
data integrity—namely, that the attacker is eventually locked out
from modifying existing data.

Data and crash consistency. AxkEeso relies on Google Cloud’s
guarantees for write consistency. Specifically, the cloud functions
that re-encrypt the data update the ciphertext in a single write
operation, and Google Cloud ensures this write either succeeds
or fails and thus that the data is not left in an inconsistent state.
If a cloud function crashes before updating the ciphertext, the
akeso_reencrypt metadata value (the flag that AKEsoD sets and
the cloud function unsets upon completion) will still be set. Al-
though currently unimplemented, AKEsoD could inspect this flag
and retry the operation. Existing systems like Ariadne [113] or
Nimble [15] could handle the crash fault tolerance of AkEsobD itself.
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Relaxing assumptions on cloud provider. In our threat model
(§2.3), we make the strong assumption that the cloud provider
adheres to data removal requests and does not persist versions of
an object. AKESO makes this assumption to ensure an adversary
with an old key cannot retrieve the corresponding old ciphertext.
Note that even if the cloud provider’s data removal is not perfect
(e.g., old data exists in caches), the bar for an adversary is still quite
high, as the adversary would have to compromise both a client
(to learn a KEK) and then the cloud infrastructure (to recover old
versions of the objects).

Dynamic group membership. Like the original ART paper [42],
our AKEsO prototype does not yet support dynamic group member-
ship. We note that the TreeKEM [24] and MLS [21] protocols that
build upon ART prominently feature the ability for groups to add
or remove members. We leave these extensions to future work.

7 Related Work

There is considerable research in securing remote storage. Our
intent is not to survey this vast field, but rather contrast our work
with prior efforts that similarly incorporate TEEs or prioritize key
rotation.

TEEs. Several works integrate TEEs—notably Intel SGX [72, 91]—
into the cloud’s storage stack to ensure the confidentiality and
integrity of the data, as well as an array of other properties. For
instance, systems like Pesos [84] and SeGShare [52] use a TEE as a
secure cloud-side proxy for managing encryption keys and enforc-
ing fine-grained access controls. SPEICHER [20] instead stores data
directly in the TEE (using the TEE as a secure caching layer), and
develops advanced techniques for persisting the data with fresh-
ness guarantees. KVSEV [123] is a confidential key-value store built
on AMD SEV, incorporating special measures to defend against
attackers with physical access to DRAM who may attempt active
DRAM corruption or replay attacks. Finally, rkt-io [114] aims to
improve the storage performance of individual cloud applications
by leveraging userspace I/O libraries within an SGX enclave for
kernel-bypass I/O.

Although TEEs play a central role in previous works, AKESO’s
use of a TEE is much more limited, and even optional. The AKESOD
enclaved service functions merely as an ART group member, with
the added responsibilities of managing group membership and
updating object metadata during key updates. A storage group
could instead run AKESOD on a trusted on-premise server, and this
decision fundamentally represents a trade-off in renting computing
power (a confidential VM) or paying for data ingress and egress
(the on-premise server).

Provisioning TEEs. For completeness, we also highlight the use
of cloud storage for non-interactively provisioning a confidential
VM with sensitive data; this use case is orthogonal to AKEso, despite
the overlap in some terminology. Specifically, Google’s Split-Trust
Encryption Tool (STET) [65] uses Shamir secret sharing [110] to dis-
tribute a DEK across multiple key management systems, eliminating
the need for unilateral trust in a single key manager. Customers
can use STET to encrypt data on the client side, ensuring that only
an attested confidential VMs can reconstruct the DEK and access
the data.
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Group key management. In the group storage setting, many
systems use pairing-based cryptography [26] to cryptographically
enforce access controls among the group members, and rotate keys
on membership changes. The work of Piretti et al. [100] was perhaps
the first to use Attribute-Based Encryption (ABE) [23, 67] in the
context of a distributed, shared filesystem. Later, Excalibur [105]
and Sieve [121] use ABE for acess control for cloud-side and client-
side applications respectively. More recently, IBBE-SGX [44] applies
Identity-Based Broadcast Encryption (IBBE) [103] to manage access
controls in the face of group membership changes, and uses SGX to
reduce the computational complexity. In contrast, AKESO’s access
control is fundamentally bucket-granular: AKEso uses the ART
protocol to rotate keys within a bucket, while relying on the cloud
provider’s existing Identity and Access Management (IAM) controls
for managing access across buckets.

Untrusted third-party re-encryption. Ateniese et al. [19] use
proxy re-encryption (the public-key counterpart to updatable en-
cryption) to develop a distributed filesystem with fine-grained ac-
cess controls. Their system uses a key-wrapping scheme where
a symmetric key encrypts a file, and a user’s public key encrypts
this symmetric key. A (mostly) untrusted server interposes on file
access, and rewraps the key to the requestor’s public key if the
requestor has suitable permissions. Sieve [121] instead uses an
ABE-based hybrid approach to cryptographically enforce access
controls and revoke permissions, and a key homomorphism [27]
to safely outsource the symmetric re-encryption of the data. Other
systems use re-encryption to translate ciphertext to a more perfor-
mant scheme [69], or simply explore techniques for improving the
speed of re-encryption altogether [12, 25, 49, 85]. AKESO is unique
not in its application or scheme for updatable re-encryption, but
rather in its use of cloud-native services to scale the re-encryption
of an entire cloud store.

8 Conclusion

We have presented AkEso, the first cloud storage system that
guarantees the post-compromise security of a customer’s data.
AKEsoO notably adapts the continuous group key agreement pro-
tocols from messaging applications to the cloud setting, granting
cloud users great control over their data’s confidentiality and pri-
vacy. A distinct challenge in the cloud setting is the need to re-
encrypt all storage on a key rotation. To scale this intensive op-
eration, AKESO leverages an updatable encryption scheme, thus
allowing untrusted cloud functions to perform the re-encryption
without learning the plaintext. We demonstrated that AKEso scales
re-encryption at modest monthly costs while maintaining overall
/0 performance. To assist further research in developing secure
and private cloud systems, we make our code publicly available at
https://github.com/etclab/akeso-artifact.
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A Pseudocode Protocol Definitions

We list here the pseudocode for a group member to create a storage
object, and for AkEso and the cloud functions to jointly re-encrypt
the storage. These operations build upon the notation of §2.4 and
follow the prose-level descriptions in §4.1.

As preliminaries, the system uses:

Symmetric encryption scheme:

e k « KeyGen: Generate a key k.
o ct « Enc(k, 0): Encrypt object o using key k.
e 0 « Dec(k, ct): Decrypt ciphertext ct using key k.

Authenticated encryption with additional data (AEAD):

e k « AEAD.KeyGen: Generate a key k.

e ct,tag « AEAD.Enc(k, pt, ad): Encrypt plaintext pt using
key k, producing the ciphertext ct and authentication tag tag.
The tag also covers the additional data ad.

e pt « AEAD.Dec(k, ct, ad, tag): Decrypt ciphertext ct us-
ing key k, additional data ad, and authentication tag tag. If
authentication succeeds, produces the plaintext pt; otherwise
1.

Cryptographic hash function:
digest « H(data)

Other primitives. We abstract the nested AES decryption opera-
tion of §4.1 with the function:

pt « NestedDecrypt(k, ct_hdr, ct): Decrypt the nested-
encrypted ciphertext ct using key k and ciphertext header
ct_hdr. On success, returns the plaintext pt; otherwise L.

Major AKEsoO algorithms. Following the notation in §2.4, we
use K as an alias for the group encryption key at epoch k:

Ky «— secretsi(G)

We present AKESO’s main algorithms in Algorithms 1, 2, and 3.

Algorithm 1 Member.CreateObject,

Input o,oName > object content and name
dek «— AEAD KeEYGEN

ct, dataTag « AEAD.Enc(dek, o, o0Name)

hdr, hdrTag « AEAD.ENc(Kk, dataTag || dek, nil)

attrs « {}

attrs[ ‘akeso_header’] « hdr || hdrTag

attrs| ‘akeso_kek_hash’]| « H(%})

Croup.Put(oName, ct, attrs)

B Security Analysis

In this section, we sketch a proof that AKEso satisfies Definition 1
(PCS) using the notation from §2.4 and AKESO’s major algorithms
from Appendix A.
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Algorithm 2 Akesod.Update;.

token « KeYGEN

> This Cloud.Pub triggers a cloud function to process an object
when its metadata (but not content) changes. The cloud function
receives the token as input. <

Croup.PuB(token)

for all oName € S do

attrs «— CLouD.GETATTRS(0Name)

hdr, hdrTag « attrs[ ‘akeso_header’]

deks, dataTag <« AEAD.DEc(%K}, hdr, nil, hdrTag)

if LEn(deks) = Config.MaxLayers then

> Reset to a single encryption layer <

0, attrs « CLouD.GET(oName)

pt «— NESTEDDECRYPT(K}, attrs[ ‘akeso_header’], o)

dek « AEAD.KEYGEN

ct, dataTag « AEAD.Enc(dek, pt,o0Name)

hdr, hdrTag < AEAD.Enc(%Kj.1, dataTag || dek, nil)

attrs « {}

attrs| ‘akeso_header’] « hdr || hdrTag

Croup.Put(oName, ct, attrs)

else

deks « apPEND(deks, token)

hdr, hdrTag « AEAD.ENc(Kj+1, datatag || deks, nil)

attrs[ ‘akeso_header’] « hdr || hdrTag

attrs| ‘akeso_kek_hash’] « H(Kj+1)

attrs[ ‘akeso_reencrypt’] « true

CLoupn.PUTATTR(0Name, attrs)

Algorithm 3 CloudFunction.Update;

Input oName, token > object name, re-encryption token
ct, attrs < CLouD.GET(oName)
ct « Enc(token, ct)
attrs| ‘akeso_reencrypt’| « false
Croun.Put(oName, ct, attrs)

B.1 Assumptions

For simplicity, we assume the deployment does not place a limit
on the maximum number of encryption layers. Additionally, we
assume that a compromise occurs at the start of an epoch, and that
any exfiltration of data simultaneously occurs at the start of that
epoch.

B.2 Proof Sketch

Assume the adversary A compromises AKESO group member m;
in epoch k; that is, A invokes Compromise;. (m;), thereby learning
secrety (G) and secrety (m;). Concretely, for AKEso, we have that:

secrety (G) = {Ki },
secrety (m;) = {Aix. Ci}

where K is the CGKA group key for epoch k, 4; is m;’s secret
for epoch k (e.g., its ART leaf key), and C; is m;’s long-term au-
thentication credential. By our threat model assumptions in §2.3,
we assume that A is nonpersistent, and thus there is some earliest
epoch k' > k for which A does not invoke Compromise. Without
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loss of generality, assume that k¥’ = k + 1. By construction, the
storage system S only advances to epoch k + 1 if a member invokes
Update,. There are two cases:

Case 1 - Update,(m;): If m; invokes Update,, then m; updates
secrety1(G) and secrety, (m;). For AKEso, this means the creation
of a new group key K+ and new member secret A; x.;. The call to
Update(m;), in turn causes m; to invoke Cloud.Pub(KeyUpdate),
which broadcasts the new, public CGKA data (e.g., the updated ART
public keys).

Upon receiving, KeyUpdate, AKEsoD updates its local CGKA
state, deriving Kj.1. AKEsoD then invokes Akesod.Update, (see
Algorithm 2); this appends a new DEK d’ to each object’s ciphertext
header, and calls AEAD.Enc to encrypt this header with Kj.;. The
DEK d’ serves as the updatable encryption token; AKESOD invokes
Cloud.Pub(d”) to broadcast the token to the untrusted cloud func-
tions, which in turn call CloudFunction.Update,. to re-encrypt all
objects with d’.

From the update, A can learn the public CGKA state by us-
ing C; to receive Cloud.Pub(KeyUpdate). Additionally, if A in-
filtrated the cloud backend—say, as an insider—A can observe
Cloud.Pub(d’), and hence d’. Regarding confidentiality, for a given
object o, with name oName, there are four cases:

(A) A did not exfiltrate o, (A did not call Cloud.Gety (oNamey)).
By the security of the CGKA protocol, A cannot derive Kj1.
This implies that A cannot decrypt the o,’s ciphertext header,
and thus cannot learn the DEKs for any inward layers of
encryption. Thus, o, is confidential O

(B) A called Cloud.Get (oName,) and some group member called
Cloud.Puti(oNamey,...). For AKESo, when a member calls
Cloud.Puty(oNamey,...), the member generates a new ci-
phertext header with an object-specific, secret, initial DEK
do o, The update then triggers Akesod.Update to append d” to
the header’s list of DEKs, and encrypt this header with K} ;.
Since A cannot derive Kj1, A cannot learn dy . Thus, o,
is confidential O

(C) A called Cloud.Get, (oName,) and the object has not since
changed (no member of G called Cloud.Put,(oNamey, .. .)).
In this case, if A learns d’, then A has the complete list of
DEK:s for o, and can decrypt each of its layers. However, since
0x s contents are no different, there is no loss of confidentiality
beyond that of the initial breach O

(D) A member calls Member.CreateObject,, to create a new object
ox. This case reduces to the same argument as subcase B. Thus,
04 is confidential O

Case 2 - Update,(m;): If m; (where j # i) invokes Update,,
then A may use C; (or its insider cloud access) to eavesdrop on
Cloud.Pub(KeyUpdate) and Cloud.Pub(d’). Here, the KeyUpdate
message (e.g., the updated ART public keys), combined with the
unchanged Ay ;, allow A to derive Kj.1, and read any object with
NestedDecrypt(...). By our threat model assumptions, A is non-
persistent, and thus there is some epoch k + n where A is unable
to eavesdrop on Cloud.Pub messages. Specifically, if any member
invokes Update,,,, then by the CGKA protocol, A is unable to
derive Kiin+1. This case now reduces to subcases A-D of Case 1,
and the objects are confidential O
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Figure 12: CDF of the number of objects in a bucket for a
sample of 1,000 open buckets from each cloud provider.
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Figure 13: CDF of object sizes from a random sample of 1,000
open buckets from each cloud provider.
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Figure 14: Stacked histogram of the ten most popular file
extensions in a random sample of 1,000 GCP open buckets,
and the percentage of objects in the sample with that exten-
sions. The figure also shows the corresponding prevalence of
these ten extensions in AWS and Azure. The category none
indicates files without an extension, and other includes all
other extensions.

C Pre-evaluation: Bucket Measurements

To add in evaluating AKESO, we conduct a brief measurement study
to analyze the characteristics of real-world cloud storage. By exam-
ining the distribution of bucket sizes, object sizes, and object types,
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Table 6: Bucket Size Estimates
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Table 7: Lines of Code (Go) for each AkEso Component

16M 128M 512M 1G 100G 100G 1T
GCP |46.4% 63.1% 73.9% 78.1%  88.8% 94.6%  98.6%
AWS [57.3% 73.4% 82.1% 86.1% 93.3% 96.7%  99.3%
Azure [43.4% 62.2% 72.2% 76.1%  89.9% 96.4%  99.3%

we can parameterize our experiments to more accurately reflect
actual cloud storage usage.

We collect our measurements using Grayhat Warfare [68], a
platform previously utilized in large-scale studies on cloud bucket
misconfigurations [34, 43]. Grayhat Warfare indexes publicly acces-
sible buckets belonging to AWS, Azure Blob Storage, and GCP, and
provides a RESTful API for searching for buckets and the objects
they contain. As of October 2024, Grayhat Warfare had indexed
over 12.6 billion objects belonging to 327k AWS, 56k Azure, and
81k GCP buckets.

Grayhat Warfare offers both free and paid accounts; we regis-
tered for a free account, which has the following limits:

e A user can only search 22k-36k buckets for a given cloud
provider (about 3.5-5.3% of a provider’s buckets)

o A bucket listing limits its results to 1,000 buckets

o A listing of objects within a bucket limits its results to 2,000
objects (though such a listing also includes the total count of
objects in that bucket)

We acknowledge that publicly accessible buckets may not fully
represent all buckets. Despite this caveat, as well as the limitations
of the free-tier account, our analysis still includes sample sizes
large enough to achieve a 95% confidence level that our sample
statistics accurately reflect the population of Grayhat’s Warfare’s
large bucket index.

For each cloud provider, we list 1,000 buckets, and for each
bucket we list up to the limit of 2,000 objects. Figure 12 shows
that, regardless of provider, roughly 80% of buckets have fewer
than 1,000 objects, and 90% have fewer than 10,000. Regarding the
objects themselves, Figure 13 shows a log-normal distribution of
sizes, with median object sizes varying between 31-49k, depending
on provider. Based on the sampled bucket listings, Table 6 shows
an estimate of the distribution of bucket sizes across provider (for
instance, 46.4% of GCP buckets contain 16 M or less). These bucket
size estimates compute the mean size of a bucket’s listed objects
(recall that Grayhat Warfare limits a listing to 2,000 objects), and
then multiplies this average by the bucket’s total object count.
Finally, Figure 14 presents the top ten most common object (file)
extensions for GCP, and the prevalence of these extensions among
the three providers. The results indicate that media files account
for more than 50% of objects, and that PDFs account for 2-5%. In
other words, more than half of objects are read-only.

D Asychronous Ratcheting Tree

In this section, we provide further details on ART, namely its group
setup operation.
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Component Lines of Code
gesfuse (lines added) 1,206
AKESOD 1,164
ART 1,414
Nested AES 235
Utilities 286
Total 4,305

Group setup. To create the initial tree, ART designates one group
member as the initiator. On startup, the initiator generates an
ephemeral DH key pair (suk, SUK) called the setup key, as well as its
initial ART leaf key Ao.% Each group member sends to the initiator
their public long-term identity key IK, as well as an ephemeral pub-
lic prekey EK. With each prekey EK;, the initiator performs a DH
computation with its secret suk to arrive at each member’s initial
ART leaf key A;. Using these A;, the initiator constructs the com-
plete DH tree. The initiator then broadcasts a signed GroupSetup
message consisting of the public prekeys EK; and identity keys IK;
of each group member, the public setup key, and the tree T of public
keys.

Upon receiving the GroupSetup message, a client performs a
DH computation using the public setup key SUK and their private
prekey ek;, yielding their private leaf key A;. A client then extracts
the keys from T that are on their A;’s copath, and iteratively per-
forms a DH computation with each copath node until deriving the
root key, and ultimately the shared group key.

E Lines of Code

Table 7 shows the lines of code that we wrote (or added) for each
component of AKESO.
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