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Abstract
The rapid advancement of Artificial Intelligence (AI) has trans-
formed various industries, leading to the widespread distribution
of AI models and data across intelligent systems. As modern data
driven services increasingly integrate distributed knowledge en-
tities, decentralized learning has become a prevalent approach to
training AI models. However, this collaborative learning paradigm
introduces significant security vulnerabilities and privacy chal-
lenges. This paper presents a comprehensive systematic review
on private knowledge sharing in distributed learning, analyzing
key knowledge components utilized in leading distributed learning
architectures. We identify critical vulnerabilities associated with
these components and examine defensive strategies to safeguard
privacy while mitigating potential adversarial threats. Additionally,
we highlight key limitations in knowledge sharing in distributed
learning and propose future research directions to enhance security
and efficiency in decentralized AI systems.

Keywords
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1 Introduction
Owing to the amplified sensitivity and enhanced computing capa-
bilities of end user applications and Internet of Things (IoT) devices,
an enormous amount of data is being generated and collected at
an unprecedented pace. Traditional machine learning systems that
integrate such data into a centralized device to process are becom-
ing less feasible in real-world scenarios because of communication
constraints and the computational overhead of large data silos.
As a promising solution, Distributed Learning (DL) has garnered
substantial attention in contemporary machine learning applica-
tions [160]. DL was introduced to enhance the efficiency, accuracy,
and interpretability of distributed end nodes responsible for data
collection and processing. By leveraging distributed learning, users
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can obtain more precise predictions with significantly lower com-
putational overhead, making distributed learning more applicable
to applications that involve distributed data [132].

DL has gained widespread adoption in industry [120]. How-
ever, for each end node (i.e. a data provider) in a DL framework,
it is essential to enhance its processing power to enable DL. This
requires the transition from single threaded algorithms to paral-
lel algorithms [93]. We categorize distributed architectures into
five main frameworks. Supervised, Unsupervised, Semi-supervised,
Deep Reinforcement Learning, Distributed Transfer Learning, and
Decentralized Large Language Models (DLLMs).

In Distributed Supervised Learning (DSL), the labeled data is
stored across multiple nodes. These nodes collaboratively trainmod-
els while maintaining data locality, enabling scalability and preserv-
ing privacy. Distributed Unsupervised Learning (DUSL) involves
training on unlabeled data from distributed nodes. Distributed Semi-
supervised Learning (DSSL) uses a small labeled dataset with a
larger unlabeled one to make predictions. Distributed Reinforce-
ment Learning (DRL) involves dividing experiences among agents,
utilizing rewards for trainingwithout falling into the other three cat-
egories. It relies on environmental interaction to improve through
trial and error. Distributed Transfer Learning (DTL) is best viewed
as a hybrid architecture, as it combines the characteristics of a
distributed learning architecture by involving decentralized compu-
tation and collaboration - with concepts from Federated Learning
(FL), particularly privacy-preserving collaboration and decentral-
ized model updates, while extending beyond FL by enabling knowl-
edge transfer across heterogeneous tasks and domains.

Modern Large Language Models (LLMs), with parameter counts
reaching into the hundreds of billions, introduce substantial chal-
lenges in scalability, data privacy, and computational efficiency.
While conventional solutions primarily leverage parallelism within
centralized infrastructure to manage these demands, our focus lies
in distributed learning through decentralization. DLLMs address
these concerns by enabling collaborative training or fine-tuning
across multiple autonomous nodes or clients. In this decentralized
setup, participants keep their local data and collaboratively up-
date a global model without sharing raw information, enabling
privacy-preserving learning in distributed environments.
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1.1 Distributed Learning vs. Federated Learning
Federated Learning (FL) architectures, although related, are not
easily classified as traditional distributed learning (DL) due to their
distinct characteristics, particularly the independence of partici-
pants and their federated network structure. In DL, local devices
train on their own data and frequently synchronize with others or
a central server by exchanging partial model updates throughout
the training process [101]. In contrast, FL performs full local train-
ing, sharing only aggregated model parameters periodically, which
helps preserve data privacy. DL often involves sharing various
forms of intermediate information, such as features, predictions, or
processed data, which can increase bandwidth demands and privacy
risks. FL, in contrast, restricts communication to model updates,
making it more suitable for privacy-sensitive scenarios where data
cannot leave local devices. Additionally, DL typically operates in
high-bandwidth, reliable environments such as data centers. How-
ever, FL must deal with unreliable and heterogeneous clients, which
introduce challenges to consistency and convergence.

1.2 Distributed Learning Based Modern
Applications

To understandmodern DL applications in a comprehensive way, it is
essential to explore key frameworks such as Apache Spark, Apache
Flink and TensorFlow Distributed, each offering unique capabilities
in scalability, real-time analytics, and distributed machine learning.

Apache Spark [140], known for its resilient distributed data sets
(RDDs) and in-memory processing, provides high-performance
solutions for big data analytics, complex batch processing, ETL
(Extract, Transform, Load) operations, and streaming analytics. Its
integration with high-level APIs, such as PySpark, SparkSQL, and
Spark Streaming, enables efficient management of massive datasets
in distributed environments, significantly reducing latency and
supporting iterative computations in DL contexts.

The Apache Flink stream-first architecture and precise state
management make it ideal for real-time analytics and event-driven
applications [111]. Its event-driven runtime supports continuous
streaming data, enabling stateful computations and accurate event-
time processing. Flink’s windowing and checkpointing ensure fault
tolerance and consistency, which are key to continuous learning
tasks in dynamic environments such as IoT sensor data or user
behavior analytics.

TensorFlow Distributed offers strong support for distributed
deep learning and large-scale model training via data and model
parallelism [135]. Through synchronous and asynchronous gradient
descent, it optimizes resource use across heterogeneous environ-
ments, including multi-GPU and multi-node clusters. Libraries like
TensorFlow Extended (TFX) streamline the deployment pipeline,
supporting end-to-end workflows from data ingestion to model
monitoring.

Using these tools, DL systems achieve faster processing, greater
scalability, and efficient handling of diverse workloads, from real-
time analytics to complex model training. In DL frameworks, reli-
able communication between nodes is essential for model collabora-
tion, interactive learning, and consistent results [21]. These commu-
nication protocols, shaped by architectural designs and application
needs [9], often involve the exchange of critical components, such

as data batches or model output. We define these as the knowledge
components, including parameters that influence the predictions or
residual artifacts from training.

However, sharing such data and parameters between nodes in-
troduces cybersecurity risks, such as data leakage, inference attacks,
and unauthorized parameter reconstruction. These risks are miti-
gated through privacy-preserving techniques such as Homomor-
phic Encryption (HE) [40] and Differential Privacy (DP) [177]. HE
allows secure computation on encrypted data, while DP protects
privacy by adding calibrated noise to data exchanges, minimizing
risks to individual data points.

1.3 Contributions of This SoK
This systematic review aims to provide a comprehensive view on
knowledge sharing in DL. Focus on the parameters shared during
the communication rounds and the vulnerabilities associated with
them. Later we highlight the limitations associated with the exist-
ing architectures and provide future directions. In summary, our
contribution can be summarized as follows:

(1) Our investigation of key DL architectures includes a cate-
gorization of their strategies and knowledge components,
along with a comparative summary in Table 1.

(2) We identify and discuss critical vulnerabilities associated
with each knowledge component, assuming that the com-
munication phase in distributed learning is prone to attacks.

(3) In the recent literature, we explore different attacks and
methodologies that can exploit different knowledge compo-
nents. To clarify the rationale for selecting attack and defense
mechanisms in our analysis of privacy risks in distributed
knowledge sharing, we developed a table of selection criteria.
Table 7 summarizes the rationale for the inclusion of each
attack and defense based on established literature.

(4) We examine the application of DL in LLMs, focusing on the
implementation of DL, addressing privacy concerns, and
exploring privacy-preserving techniques.

(5) Finally, we discuss the limitations of current DL architec-
tures, particularly their susceptibility to vulnerabilities in
distributed systems. We then explore robust defense mecha-
nisms that can mitigate these vulnerabilities. Table 1 sum-
marizes our contributions in comparison to other surveys
presented in the literature.

1.4 Literature Selection Criteria
We developed our selection criteria through a systematic review of
the literature exploring the intersection of knowledge sharing, ar-
chitectural design, and privacy in DL systems. To enable a rigorous
analysis of privacy risks and mitigation strategies, we introduced a
qualitative framework that maps the relationships between knowl-
edge components, attack vectors, and defense mechanisms. This
framework is represented through structured tables in Appendix A
Table 7 across five DL paradigms: DSL, DUSL, DSSL, DRL, and DTL.
While decentralized LLMs were initially considered in our taxon-
omy, they were excluded from the selection criteria due to limited
empirical evidence and the absence of standard threat models and
benchmarks. Our tables were constructed through an interpretive
analysis of the types of knowledge exchanged between nodes, such

486



SoK: Private Knowledge Sharing in Distributed Learning Proceedings on Privacy Enhancing Technologies 2025(4)

as gradients, logits, embeddings, and internal states, to identify
potential vulnerabilities. Each knowledge component was assessed
for its degree of exposure to various attacks using a qualitative
scale based on three key factors:

• Whether the knowledge is directly exploitable by an attacker.
• The difficulty of obtaining or reverse engineering the knowl-
edge.

• The success likelihood of an attack based on prior empirical
studies.

For instance, in the case of Gradient Leakage (GL) attacks, gradients
were classified as highly exposed because they have been shown to
allow effective reconstruction of training data, especially in early
learning phases. We evaluated the impact of an attack aligning the
required attack inputs with the knowledge actually shared in each
architecture, using literature from 2019 to 2025. In parallel, defense
mechanisms were evaluated on the basis of whether they obscure,
limit, or encrypt the targeted knowledge, such as homomorphic
encryption protecting gradient computations or Differential Pri-
vacy defending against inference-based threats. Appendix A Table 7
complements this analysis by summarizing the required inputs of
each attack, the vulnerable model types, and the corresponding
defensive strategies. This table offers a structured and compara-
tive view of the evolving threat landscape in DL. For clarity and
ease of reference, Appendix B Table 8 provides a complete list of
abbreviations and technical terms used throughout this paper.

2 Knowledge Sharing in a Distributed Learning
Setting

DL is a powerful method that combines the computational resources
and data of multiple nodes to achieve high precision, enabling high-
performance machine learning models to handle large amounts of
data [160]. By leveraging the collective power of multiple partic-
ipants, DL supports sophisticated decision making in intelligent
systems increasingly reliant on artificial intelligence.

DL can be regarded as a form of parallel learning, where tradi-
tional single-thread algorithms are transformed into parallel sys-
tems [70]. Two main approaches to parallelism in DL are (1) data
parallelism and (2)model parallelism. Although data parallelism has
been well studied, this systematic review focuses on model paral-
lelism or model decentralization, which examines how knowledge is
generated through machine learning models. This is crucial as ma-
chine learning models identify unique patterns and make informed
decisions.

Model parallelism isolates knowledge components during DL
and can be categorized into three architectures [179]:

• Tensor parallelism: Distributes model weights, gradients, and
optimizer states across devices to facilitate distributed for-
ward and backward propagation.

• Layer wise parallelism: Also known as optimizer state sharing,
it employs a replica of a single optimizer in parallel data
ranks.

• Layer pipelining: Partitions weights while preserving their in-
tegrity, utilizing either synchronous or asynchronous pipeline
parallelism to support efficient hardware utilization.

In Sections 3 - 7 we analyze distributed deep learning architec-
tures that use model parallelism and identify critical shared infor-
mation, referred to as knowledge. We identify more than twenty
knowledge components and categorize them into four main groups
for better management.

• Neural Network Update Information: Knowledge components
include gradients, weights, batch size, and object size, shared
during iterative updates.

• Neural Network Output Information: Shared output infor-
mation includes logits, layer data (e.g.attention and output
layers), and immediate partition outputs.

• Neural Network Parameter Information: Components include
parameter distribution, aggregation parameters, skewness fac-
tors, tangents of data manifolds, partitioning points, and con-
trol parameters.

• Neural Network Reinforcement Action Information: Includes
components such as cell state, memory, latent distribution
mean and variance, policy gradients, and rewards, which fa-
cilitate reinforcement learning.

The subsequent sections explore knowledge components in var-
ious architectures, evaluate vulnerabilities to attacks targeting
knowledge sharing , and discuss defensive mechanisms to address
these challenges.

3 Knowledge Sharing in Distributed Supervised
Learning

Supervised learning plays an important role when considering
Knowledge sharing among AI. The use of supervised learning is
prevalent in modern AI applications and this approach can also be
implemented in a distributed environment. To gain a deeper under-
standing of the knowledge elements involved in the collaborative
learning stage, we have broken down DSL into three main archi-
tectural types. We will delve into how these traditional machine
learning architectures are utilized in deep learning and examine the
knowledge components associated with each one in the following
sections.

3.1 Distributed Supervised Learning
Architectures

3.1.1 Distributed Training for Multi Layer Perceptrons. A Multi-
layer Perceptron (MLP) is a classic supervised learning model com-
posed of an input layer, hidden layers, and an output layer [45]. In
distributed settings, the model leverages multiple devices to handle
larger datasets and more complex learning tasks. Data is typically
partitioned across these devices, each training a portion of the net-
work, and the collective outputs are then aggregated into a final
model. Within such architectures, studies like Chang et al. [19]
introduced DeepLinQ, a blockchain based privacy aware MLP de-
sign that incorporates distributed optimization and hardware aware
techniques. Similarly, Xia et al. [176] highlighted communication
challenges, proposing mechanisms that allow training to continue
despite packet losses. Their approach emphasizes parameter distri-
bution and aggregation parameters to maintain effective learning
without strictly relying on synchronous gradient updates.
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Paper
Att &
Def

Learning Architecture
Discussion on Knowledge Sharing Shared Knowledge

DSL DUSL DSSL DDRL
[160] ✗ ✓ ✓ ✓ ✓ Touches knowledge sharing based on the com-

munication phase.
Discusses the implications of distributed sys-
tems over conventional ML with challenges
and limitations.

[75] ✓ ✗ ✗ ✗ ✓ Discusses knowledge sharing based on com-
munication efficiency and model convergence.

A comprehensive survey on DL trade-offs in
communication networks.

[141] ✓ ✗ ✗ ✗ ✓ Explores how model participants share knowl-
edge.

Survey on strategies for adapting DL to edge
and fog computing.

[39] ✗ ✓ ✗ ✗ ✗ Discusses edge intelligence approaches but
does not specify knowledge components.

Investigates challenges of running ML models
at the network edge in a distributed manner.

[190] ✓ ✓ ✓ ✗ ✓ Examines classification algorithms in a dis-
tributed setting but does not focus on specific
knowledge components.

Survey on privacy concerns in centralized pa-
tient data and alternative distributed process-
ing approaches.

[143] ✗ ✓ ✗ ✗ ✗ Explores ML aggregation in DL but lacks focus
on specific architectures.

Investigates data aggregation techniques in
distributed ML.

[32] ✓ ✓ ✓ ✗ ✗ Considers knowledge sharing in infrastructure
optimization.

Survey on resource-aware device placement
in distributed edge networks.

Our
Work ✓ ✓ ✓ ✓ ✓ Investigates distributed ML architectures and

shared knowledge components.
Identifies vulnerabilities, exploits, and privacy-
preserving techniques.

Table 1. Comparison of Surveys of Knowledge Sharing in Distributed Learning Architectures. We categorize papers based on attacks and
defenses (Att & Def), learning architectures, Distributed Supervised Learning (DSL), Distributed Unsupervised Learning (DUSL), Distributed
Semi supervised Learning (DSSL), and Distributed Deep Reinforcement Learning (DDRL).

3.1.2 Distributed Convolutional Neural Networks. Convolutional
Neural Networks (CNNs) specialize in tasks such as image recog-
nition and analysis [34]. In distributed CNNs, major layers like
convolution and pooling are partitioned to different nodes for paral-
lelization [18]. Boulila et al. [15] proposed a two step process involv-
ing big data ingestion and splitting satellite images for supervised
classification, followed by a distributed CNN for final classification.
Stahl et al. [150] showed how layer fusion and partitioning can
optimize resource usage, while Zhang et al. [199] presented AD-
CNN, which dynamically assigns tasks (e.g., convolution/pooling
layers) to edge nodes based on real time operational status. These
strategies help handle larger image datasets, reduce training time,
and maintain scalability.

3.1.3 Distributed Recurrent Neural Networks. Recurrent Neural
Networks (RNNs), including Long Short Term Memory (LSTM) and
Gated Recurrent Units (GRU) variants, process sequential data by
retaining information from previous states [189]. In distributed
RNNs, local models train on subsets of data and share parameters
via consensus strategies to achieve a global optimum [129]. Dis-
tributed LSTM approaches frequently appear in language modeling
and machine translation, focusing on methods such as mini batch
distribution [30, 139]. Meanwhile, distributed GRUs can integrate
FL frameworks for cybersecurity applications [152].

3.2 Knowledge Components in Distributed
Supervised Learning

In Gradients and Parameter Distributions (MLPs) Chang et al. [19]
demonstrated that gradients shared among siloed nodes represent
a core knowledge element. Xia et al. [176] illustrated how parame-
ter distribution and aggregation parameters can facilitate learning

while mitigating delays due to packet loss. These distributions and
aggregations act as the outcomes of multiple learning iterations
and are therefore considered knowledge.

In Layer Outputs and Partitioning (CNNs), the convolution and
pooling layers are often distributed, while the fully connected layer
may remain on a central node [150]. The specific partitioning strate-
gies (partitioning points) and decisions on how to allocate these
layers (the skewness factor) function as shared knowledge in col-
laborative training [127]. In distributed LSTM, cell states, hidden
cell states, and selected weights (e.g., forget gate parameters) are
propagated among nodes [105]. For distributed GRUs, logits and
gradients frequently form the primary knowledge elements to be
exchanged [152].

These knowledge components (gradients, parameter distribu-
tions, layer outputs, and states) guide the collaborative processes in
distributed MLP, CNN, and RNN architectures. They are essential
for efficient training and remain targets for privacy and security
considerations, as discussed in Section 3.3.

3.3 Attacks and Defenses in Distributed
Supervised Learning

Distributed MLPs are susceptible to a range of attacks that ex-
ploit core knowledge components such as gradients, shared model
parameters, and aggregation mechanisms. Model memorization
attacks [153] can target these components in both white-box and
black-box scenarios, allowing adversaries to reconstruct or manip-
ulate sensitive information. White-box attacks use internal model
details to extract data, while black-box attacks infer information
from outputs alone.
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Knowledge Component
Attacks Defenses

MM GL MI PL PU DS FE IA DP MV HE DP SA EA OB TEE
Gradients [152, 176, 179]
Parameter Distribution
[55, 176]
Aggregators [55, 176]
Convolution Layer [34, 150,
199]
Pooling Layer [34, 199]
Fully Connected Layer [150,
199]
Cell States (LSTM) [105]
Logits (GRU) [152]
Skewness Factor [127, 150]
Partitioning Points [127, 150,
199]

Table 2. Attack types: Model Memorization (MM), Gradient Leakage (GL), Membership Inference (MI), Packet Loss (PL), Malicious Parameter
Updates (PU), Data Skewing (DS), Feature Estimation (FE), Inference Attacks (IA), Data Poisoning (DP), and Model Inversion (MV). Defensive
measures: Homomorphic Encryption (HE), Differential Privacy (DP), Secure Aggregation (SA), Encryption-based Secure Aggregation (EA),
Obfuscation (OB), and Trusted Execution Environments (TEE). Vulnerability levels of knowledge components ( - critically exposed, -
significant risk, - attack is possible but harder to exploit, - minor attack surface, - mostly resistant) and effectiveness of defensive
strategies ( - highly effective, - significantly reduces risk, - provides partial protection, - limited effectiveness, - minimal
protection).

In distributed CNNs, vulnerabilities arise at layer boundaries,
data partitioning schemes, and due to non-i.i.d. (skewed) data distri-
butions. Attacks such as model inversion [172], data skewing [76]
and membership inference attacks [147] exploit these characteris-
tics to reconstruct training data or influence model behavior.

To mitigate these risks, defenses like obfuscation (e.g., random-
ized activation masking, noise injection) [182] and Trusted Exe-
cution Environments (TEEs) [123] have been proposed. However,
these mechanisms often trade off model accuracy, training effi-
ciency, and system complexity, highlighting the need for careful
integration into distributed learning pipelines. A comprehensive
mapping of shared knowledge components, associated attack sur-
faces, and corresponding defense mechanisms is provided in Table 2.

Our systematic review identifies core privacy risks in DSL
stemming from knowledge sharing across model architectures.
• MLPs are vulnerable to model memorization and gradient
leakage due to their dense connections and straightforward
computations.

• CNNs exhibit leakage risks amplified by partitioning strate-
gies and data skewness, particularly in heterogeneous set-
tings. Defenses such as differential privacy and obfuscation
are effective mitigations.

• LSTM and GRU models introduce temporal risks through
shared cell states and sequential gradients. While federated
learning helps decentralize exposure, it also introduces com-
munication and convergence challenges.

4 Knowledge Sharing in Distributed
Unsupervised Learning

Unsupervised learning is a technique for finding patterns in un-
labeled data without human direction. Advanced unsupervised
algorithms can uncover hidden patterns in massive datasets, im-
proving accuracy and reliability for classification and prediction
tasks. These algorithms examine unlabeled input data that have not
been organized into specific categories. Instead, they don’t have a
predefined output and focus on discovering relationships and pat-
terns within the input data. The training of the machine learning
model utilizes unlabeled input data. Initially, it interprets the raw
data to uncover hidden patterns. Subsequently, k-means clustering
and other suitable algorithms are applied to group data objects
based on their similarities and dissimilarities [102].

Unsupervised machine learning algorithms are mainly divided
into clustering, which identifies inherent groupings, and associ-
ation, which discovers specific rules based on the application’s
needs. Additionally, these algorithms can perform dimensionality
reduction tasks using methods like Principal Component Analysis
(PCA) and autoencoders. The architecture is defined by selecting
an algorithm that groups data based on similarities and differences.
When these algorithms are deployed in a distributed environment,
it is termed Distributed Unsupervised Learning (DUSL), enhancing
effectiveness, accuracy, and scalability for large datasets. This DUSL
architecture is categorized into distributed generative adversarial net-
works, distributed autoencoders, and distributed self organizing maps,
with each category featuring a unique knowledge sharing scheme
that presents distinct vulnerabilities and defense mechanisms.
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4.1 Distributed Unsupervised Learning
Architectures

4.1.1 Distributed Generative Adversarial Networks. Generative Ad-
versarial Networks (GANs) combine a generator and a discriminator
to learn from data in a two player game [25]. In a distributed set-
ting, GAN training shifts to the edge, leveraging data parallelism or
hybrid (data+model) parallelism. One approach is to place multiple
generators at edge nodes and use a single global discriminator [162].
Another method, PATE-GAN [80], integrates the Private Aggre-
gation of Teacher Ensemble framework to preserve privacy by
leveraging multiple teacher discriminators and a student discrimi-
nator.

MG-GAN [27] extends the idea of multi-generator GANs for
pedestrian trajectory prediction, reducing out-of-distribution sam-
ples by using specialized generators. Discriminator-based GANs
like Hardy et al. [59] adopt a single generator on a parameter
server, with discriminators exchanging peer-to-peer updates. Multi-
generator architectures address mode collapse via hierarchical lay-
ers, distributing generators and discriminators to maintain variety
in synthetic data. Reinforcement learning can also be integrated
for dynamic controller parameters, as seen in [146].

4.1.2 Distributed Autoencoders. Autoencoders are widely used for
feature selection and dimensional reduction [58]. They typically
consist of an encoder mapping input data to a latent representation
and a decoder reconstructing the input from this representation.
In distributed autoencoders, the encoder often resides at multiple
nodes, with the decoder centralized in a global model [97, 202].
Mechanisms like DRASTIC [29] distribute recurrent encoders to a
single collaborative decoder, ensuring model performance compa-
rable to a monolithic version trained on all data. Some architectures
distribute both encoder and the decoder for improved utility, as
in [104], where spatial pattern recognition benefits from encoding
messages into cell seeding configurations.

4.1.3 Distributed SOM. Self Organizing Maps (SOMs) use compet-
itive learning to cluster and reduce dimensionality of high dimen-
sional data [88]. To handle large scale distributed data, variants
like DSOM split computations among nodes [133], improving scal-
ability and speed. Some implementations incorporate FL to avoid
centralizing data [84]. Distributing SOMs across multiple nodes
can also mitigate denial-of-service (DoS) risks [85]. Regardless of
specific application, distributed SOMs initialize and train local maps
on local data, then merge them (a weighted sum) into a global SOM
to ensure consistent clustering and classification.

4.2 Knowledge Components in Distributed
Unsupervised Learning

In these distributed unsupervised architectures, knowledge emerges
through shared outputs, updated parameters, or specific statistical
components. In GANs, knowledge components include learning
iterations, error feedback, and message size [59]. In multi-generator
setups (e.g., MG-GAN [27]), logits serve as the primary outputs
from specialized generators. Approaches like PATE-GAN [80] in-
troduce control parameters and votes from teacher discriminators
to a student discriminator. This distributed discriminator archi-
tecture is depicted in Figure 1. Meanwhile, hierarchical methods

Figure 1. The Learning architecture of DL through distributed
discriminators.

(M-GAN [72]) leverage parameter distributions beyond input layers
to tackle mode collapse.

In Autoencoders, knowledge typically manifests in the encoded
representations or latent distributions sent from distributed encoders
to a global or collaborative decoder [29]. Semi-supervised settings
add latent distribution mean and variance statistics for classifica-
tion [104]. SOMs use the final global map generated from merging
locally trained SOMs [133]. Thus, merged classification logits repre-
sent a significant knowledge component, as they ensure consistent
and accurate representation of the distributed data.

These knowledge components, ranging from gradients, logits, and
parameter distributions to latent statistics, are central to collaborative
learning in distributed systems but also pose privacy and security
risks.

4.3 Attacks and Defenses on DUSL
Distributed Unsupervised Learning (DUSL) involves the exchange
of knowledge components such as logits, weights, controller pa-
rameters, and gradients, rendering it susceptible to various secu-
rity threats, including feature estimation, model reconstruction, and
model poisoning. These vulnerabilities primarily emerge during
communication phases, where secondary attributes such as batch
sizes and distribution means may be intercepted and exploited by
adversaries.

An adversary can, for instance, perform feature estimation by
monitoring gradient updates or partial logits to approximate the
underlying data distribution. In model reconstruction attacks, the
adversary uses leaked information (e.g., weights, partial gradients)
to recreate or approximate the global model, thereby gaining insight
into private data sets.Model poisoning represents a more aggressive
scenario, in which adversaries inject malicious updates designed to
degrade the overall performance of the model or introduce targeted
biases.

One avenue of defense is gradient sharing reduction . By restrict-
ing the frequency or granularity of gradient exchange, it becomes
harder for an attacker to infer sensitive data. Techniques may in-
volve quantizing or masking gradients before transmission to re-
duce the potential for reconstruction [62]. Another is differential
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Attacks Defenses
Knowledge Component MI MP PI PR EA PP IA MR FE IM DP DR EN DA
Logits (GANs, SOMs) [27, 198]
Gradients [146, 198]
Controller Parameters (GANs) [72, 80,
146]
Batch Sizes [59]
Error Feedback (GANs) [59]
Latent Dist. Mean/Var. (Autoen-
coders) [29, 104]
Data Rep. Snippets (Autoencoders) [29]
Merged Class. Logits (SOMs) [84, 85,
133]

Table 3. Attack types: Membership Inference (MI), Model Poisoning (MP), Property Inference (PI), Privacy Re-identification (PR), Eavesdrop-
ping Attacks (EA), Preference Poisoning (PP), Inference Attacks (IA), Model Reconstruction (MR), Feature Estimation (FE), and Interception
during Map Merging (IM). Defensive measures: Differential Privacy (DP), Dimensionality Reduction (DR), Encryption (EN), and Data
Augmentation (DA). Vulnerability levels of knowledge components ( - critically exposed, - significant risk, - attack is possible
but harder to exploit, - minor attack surface, - mostly resistant) and effectiveness of defensive strategies ( - highly effective, -
significantly reduces risk, - provides partial protection, - limited effectiveness, - minimal protection).

privacy (DP), where calibrated noise is added to the updates before
sharing, offering formal privacy guarantees but potentially impact-
ing the accuracy of the model [62]. DP introduces calibrated noise
into training data, gradients, or outputs to prevent the leakage of
sensitive information [1]. By bounding the influence of any single
data point, DP enables formal privacy guarantees even under adver-
sarial inference, though it often incurs a trade-off in model accuracy
and convergence speed. Dimensionality Reduction (DR) techniques
such as PCA or autoencoders can further minimize privacy risks by
projecting sensitive data into lower-dimensional spaces, reducing
the exposure of fine-grained patterns exploitable by attackers.

In parallel, Encryption (EN)methods, ranging from symmetric en-
cryption to fully homomorphic encryption, secure data and model
parameters during transmission and computation [4]. Although en-
cryption ensures confidentiality against passive adversaries, perfor-
mance overhead remains a limiting factor, particularly in real-time
or resource-constrained environments.

Finally, Data Augmentation (DA) can enhance privacy and model
robustness by synthetically expanding the training set, making it
harder for attackers to link model behaviors to specific inputs [186].
Techniques such as mixup, random cropping, or adversarial aug-
mentation introduce controlled variability that masks original data
distributions without requiring architectural changes.

Balancing these defenses in distributed settings such as DUSL
remains a challenge. Each technique offers distinct trade-offs across
privacy, utility, and efficiency dimensions. Hence, adaptive integra-
tion strategies, guided by task requirements and threat models, are
essential to achieve practical and secure learning frameworks. A
comprehensive overview of the knowledge components, associated
attack vectors, and corresponding defense strategies is provided in
Table 3.

This section explores knowledge sharing in DUSL, focusing
on architectures like GANs, Autoencoders, and SOMs.
• We have identified unique vulnerabilities tied to shared
components such as logits and latent representations. These
components expose models to property inference, model
reconstruction, and poisoning attacks.

• These attacks are particularly difficult to detect in unsu-
pervised settings due to the lack of labeled data. Without
ground truth, anomalies in latent structures or clustering
outputs can go unnoticed, and implicit feature manipula-
tions may not manifest in obvious output errors.

• Defense mechanisms like DP and encryption effectively
reduce information leakage but come with trade-offs in
computation, scalability, and model utility. Emerging strate-
gies such as partition obfuscation offer a promising balance
between privacy and performance.

5 Knowledge Sharing in Distributed
Semi-supervised Learning

Semi-supervised learning addresses the challenge of classifying
large, heterogeneous, and difficult to label data commonly found in
modern edge and cloud device services. This method is widely used
in industry to process vast amounts of data obtained from smart
devices like IoT sensors, which are abundant but hard to classify due
to their diversity. In current applications, semi-supervised learning
is a key approach for handling such data [211].

This semi-supervised learning architecture combines classifica-
tion and clustering algorithms to group data based on similarity
and then uses clustering algorithms to determine the relevance of
the data samples. The data can then be labeled and used for ma-
chine learning. It is clear that semi-supervised learning can be used
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Figure 2.Knowledge Sharing in Distributed Semi-supervised Learn-
ing.

for both inductive and transductive learning tasks [161]. Based
on these approaches, we recognize three major architectures of
semi-supervised learning: semi-supervised GANS, distributed trans-
formers, and distributed contrastive learning mechanisms. The dis-
tributed semi-supervised learning (DSSL) process, depicted in Fig-
ure 2, forms the foundation for the architectures discussed in Sec-
tions 5.1.1, 5.1.2, and 5.1.3.

5.1 Distributed Semi-supervised Architectures
5.1.1 GANs. Semi-supervised GANs expand the functionality of
conventional GANs (originally unsupervised) by incorporating a
supervised component to handle limited labeled data alongside
a larger pool of unlabeled data [197]. In a distributed setting, this
architecture is referred to asDistributed Semi-supervised GANs (DSS-
GAN).

Zhou et al. [209] proposed generating additional data for minor-
ity classes to address imbalanced datasets, effectively leveraging
GANs in a semi-supervised manner. Similarly, [68] expands this
to fully utilize labeled and unlabeled data for robust classification.
Once deployed in a distributed environment, where generators, dis-
criminators, and classification modules can be decentralized across
multiple nodes, these setups form a DSSGAN. As shown in Fig-
ure 2, the independence of these components underscores the DL
paradigm.

5.1.2 Distributed Transformers. Transformers [159] utilize self at-
tention mechanisms for sequence-to-sequence tasks in natual lan-
guage processing (NLP) and related fields. When distributed, trans-
formers handle large datasets efficiently. FeSTA [130], for instance,
applies split learning with vision transformers [31] to achieve dis-
tributed training, whereas [127] introduces an Agnostic ViT ap-
proach, distributing a transformer as a central model and offloading
specialized tasks (e.g., convolutional heads) to client nodes. The
Pipe Transformer [64] further optimizes distributed training with
an elastic pipelining process. These methods exemplify model par-
allelism and data parallelism in distributed transformers to handle
large scale tasks efficiently.

5.1.3 Distributed Contrastive Learning. Contrastive learning [57]
is a semi-supervised paradigm that learns a generalized data rep-
resentation by comparing augmented views of the same or differ-
ent samples. In a distributed framework, Federated Contrastive
Learning (FCL) [174] applies this idea to medical images, shar-
ing encoded features between multiple parties while preserving
privacy. This decentralized approach uses contrastive loss to im-
prove performance, as each client contributes to a more diverse
dataset through locally computed representations. Despite its rel-
ative novelty, FCL [174] stands out as a state-of-the-art solution
that integrates semi-supervised contrast learning in a distributed
environment.

5.2 Knowledge Components in Distributed
Semi-supervised Learning

Across these DSSL architectures (DSSGAN, Transformers, and Con-
trastive Learning), core knowledge components can be found, DSS-
GAN blends traditional unsupervised GAN elements (generator-
discriminator interplay) with a supervised classifier. Key knowledge
often includes the tangents of the data manifold estimated by the
generator [91, 209], as well as gradients and parameters for classifi-
cation tasks [86]. Distributed classifiers can also exchange logits to
fine tune decision boundaries [54]. In distributed transformer ar-
chitectures, communication revolves around task specific head/tail
parameters, gradients, and selected outputs of crucial layers (e.g.,
the last multi headed attention). Mechanisms like permutations
or pipelining protect data confidentiality [128, 130] while sharing
these intermediate outputs and gradients among nodes.

Distributed Contrastive Learning frameworks (DCL) [174] focus
on exchanging continuous predictive logits and pretext logits related
to augmented samples. In both the pretext and supervised phases,
the intermediate data representation forms a central knowledge ele-
ment. When multiple target models are appended, gradients and
parameters associated with each client’s local updates similarly
become essential knowledge sharing components. By identifying
these knowledge components across DSSGAN, distributed trans-
formers, and DCL, one can better understand how semi-supervised
tasks are tackled collaboratively while still addressing privacy and
security concerns inherent to distributed machine learning.

5.3 Attacks and Defenses on Distributed
Semi-supervised Learning

DSSL continues to face substantial security challenges due to the
interplay between a small labeled dataset and a vast pool of un-
labeled data. As knowledge is exchanged during the supervised
phase, vulnerabilities arise when data representations are shared or
exposed.

For instance, DSSGANs rely on tangents of the data manifold [91,
209] to guide generator training, which can be intercepted by ad-
versaries aiming to perform data poisoning [16, 155] or model re-
construction [109, 204]. Furthermore, gradients [54, 86, 130] and
parameters [127, 128, 159] shared in DSSGAN, Transformer, and
Contrastive Learning frameworks are susceptible to gradient leak-
age [155] and parameter inference [109].
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Attacks Defenses
Knowledge Component DP MR GL PI DI GR MP FE AA WS OB PS SR
Tangents of Data Manifold (DSS-
GANs) [91, 209]
Gradients (DSSGANs, Transformers,
DCL) [54, 86, 130]
Parameters (Transformers, DSSGANs,
DCL) [127, 128, 159]
Classification Logits (DSSGANs) [155,
204]
Task-Specific Head and Tail Parameters
(Transformers) [64, 130]
Intermediate Data Representations
(DCL) [122, 174]
Pretext Logits (DCL) [50, 174]

Table 4. Attack types: Data Poisoning (DP), Model Reconstruction (MR), Gradient Leakage (GL), Parameter Inference (PI), Data Inference
(DI), Graph Reconstruction (GR), Model Poisoning (MP), Feature Estimation (FE), Adversarial Attacks (AA). Defensive measures: Weighted
Steiner Tree (WS), Obfuscation (OB), Privacy-preserving Embedding Sharing (PS), and Secure Representation Sharing (SR). Vulnerability
levels of knowledge components ( - critically exposed, - significant risk, - attack is possible but harder to exploit, - minor attack
surface, - mostly resistant) and effectiveness of defensive strategies ( - highly effective, - significantly reduces risk, - provides
partial protection, - limited effectiveness, - minimal protection).

When classification logits or task specific head and tail param-
eters are exchanged (as in distributed transformers [64, 130]), at-
tackers may exploit model poisoning [16] or feature estimation [16]
techniques. Similarly, pretext logits in distributed contrastive learn-
ing [50, 174] can be used to perform feature estimation [16] or even
adversarial attacks [50] if intercepted. Moreover, intermediate data
representations in DCL settings [122, 174] face graph reconstruc-
tion [155, 204] and data poisoning [155] threats when shared among
multiple nodes.

To counter these risks, various defensivemeasures have been pro-
posed.Differential privacy [155] is frequently employed tomask sen-
sitive gradients or embedding information, mitigating gradient leak-
age and parameter inference [109]. Encrypting gradients [109] fur-
ther reduces exposure during communication, while secure param-
eter sharing [128] and privacy preserving embedding sharing [130]
help safeguard classification logits and intermediate representa-
tions. Techniques like Bad Data Detection [2] use weighted Steiner
tree algorithms [87] to detect and isolate malicious updates, mini-
mizing the impact ofmodel poisoning [16] on Semi supervised train-
ing. Obfuscation [128] and pipelining with secure aggregation [92]
further protect Transformers’ head and tail parameters, while se-
cure multi-party computation [122] fortifies representation sharing
in DCL against adversarial interception.

Table 4 provides a comprehensive overview of knowledge com-
ponents, their associated attack vectors and defense mechanisms
specifically tailored for Distributed Semi supervised Learning ar-
chitectures. By integrating these defenses, DSSL can mitigate vul-
nerabilities inherent in sharing gradients, parameters, and repre-
sentations, without completely sacrificing model performance.

This section examines knowledge sharing in DSSL, focusing
on architectures like DSSGANs, Distributed Transformers, and
Contrastive Learning models.
• By combining labelled and unlabelled data, these models
enhance generalisation but also introduce risks through
shared gradients, embeddings, and attention weights.

• These shared components may encode semantic patterns
that can reveal private attributes or reconstruct inputs, es-
pecially problematic in settings where anomalies are harder
to detect due to limited labels.

• Key threats include data poisoning, gradient leakage, and
feature inference. Defenses such as Weighted Steiner Trees,
Privacy-Preserving Embedding Sharing, and Secure Repre-
sentation Sharing are explored as mitigation strategies.

6 Knowledge Sharing in Distributed Deep
Reinforcement Learning

Reinforcement Learning has become an essential learning paradigm
in AI research. This learning mechanism is crucial for making reli-
able predictions in more complex and dynamic environments [81].
Since it makes predictions on the dynamic environments, the in-
telligent agents associated with the learning need to take actions
based on the environment in order to maximize the notion of re-
warding desired behaviors. The reinforcement learning mechanism
is mainly based on making decisions sequentially, and its decisions
are dependent on the output of the previous input. Deep Reinforce-
ment Learning extended to a distributed setting to make the model
operate the way it desired. All the components that need to make a
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Attacks Defenses
Knowledge Component AP PV AA RM GL RR MI MC GDP DP SA AT
Policy Weights (DDRL) [36, 117]
Reward Memory (DDRL) [69, 117]
Gradients (DDRL) [74, 113]
State-Action Pairs (DDRL) [69, 74]
Aggregated Gradients (DDRL) [36, 74]
Replay Buffer Data (GORILA, IMPALA) [113, 117]
Policy Components (IMPALA, SEED RL) [74, 113, 114]
Experience Data (DDRL) [74, 113, 114]

Table 5. Attack types: Adversarial Perturbations (AP), Policy Value Manipulation (PV), Adversarial Attacks (AA), Reward Manipulation (RM),
Gradient Leakage (GL), Recursive Reconstruction (RR), Monitoring and Inference (MI), Memory Corruption (MC), Gradient Disaggregation
(GDP). Defensive measures: Differential Privacy (DP), Secure Aggregation (SA), and Adversarial Training (AT). Vulnerability levels of
knowledge components ( - critically exposed, - significant risk, - attack is possible but harder to exploit, - minor attack surface,

- mostly resistant) and effectiveness of defensive strategies ( - highly effective, - significantly reduces risk, - provides partial
protection, - limited effectiveness, - minimal protection).

culminative reward should be shared among the participants along-
side the components that are essential for the parallelization of the
distributed nodes.

6.1 Distributed Deep Reinforcement Learning
Architectures

When general neural networks are combined with a reinforcement
learning framework, it is known as Deep Reinforcement Learning.
This framework efficiently achieves its goals by incorporating tech-
niques such as optimization, function approximation, mapping, and
rewards that enhance the performance of the model. This method
combines various techniques to make it easier for users to reach
their objectives without significant effort. Deep reinforcement learn-
ing also utilize algorithms that identify the most efficient path to
achieving predefined goals in order to facilitate their learning. In a
distributed setting, it is known as Distributed Deep reinforcement
learning (DDRL).

DDRL architectures are continuously evolving. The GORILA
architecture [117] is a prime example of DDRL, comprising a pa-
rameter server, worker, learner, and replay buffer, and relying on
the Deep Q-Network (DQN) algorithm [114] to estimate Q-values.
Distributed Proximal Policy Optimization (PPO) [69] leverages mul-
tiple agents to collect data concurrently for more efficient training,
while the Actor-Critic framework [113] mitigates some of GORILA’s
drawbacks by enabling asynchronous parallel data generation. IM-
PALA [36] diverges from traditional gradient calculation by trans-
mitting trajectories of experience—comprising active state, current
state, reward, and memory to a global model for optimization.

Additionally, approaches like Ape-X [74] and R2D2 [113] im-
plement Recurrent Replay Distributed Reinforcement Learning to
reduce variance and accelerate convergence through a gradient
prioritization scheme. Finally, SEED RL [35] scales reinforcement
learning to larger environments by improving sample efficiency
with multiple parallel actors and learners, addressing similar chal-
lenges found in IMPALA.

6.2 The Attacks and Defenses on DDRL
Distributed Deep reinforcement learning (DDRL) is vulnerable
to attacks targeting key knowledge components such as policy
weights [36, 117], reward memory [69, 117], gradients [74, 113],
state-action pairs [69, 74], and experience data [74, 113, 114]. These
are exploited through adversarial perturbations [36], policy and re-
ward manipulation [117], and replay buffer poisoning [113], leading
to skewed learning or model sabotage. Interception of policy com-
ponents can also compromise decision processes [77, 151], while
gradient leakage and model poisoning [113], as well as inference
in state action pairs [69], enable subtle degradation of learning
performance.

To mitigate these threats, defensive strategies such as differ-
ential privacy [51], perturbation [168], local model updates [145],
gradient prioritization [36], and secure aggregation [145] are em-
ployed. Techniques like buffer sanitization [168] further protect
against poisoning by filtering malicious data. Collectively, these
methods reinforce DDRL by ensuring how experience data, state
action mappings, and policy parameters are shared and updated.
Table 5 outlines these components, attacks, and defenses.

This section investigates knowledge sharing in distributed
deep reinforcement learning (DDRL) frameworks.
• Vulnerabilities arise from shared elements like policy
weights, gradients, and replay buffers, which expose models
to risks due to frequent updates and cumulative learning.

• Attacks such as reward manipulation and gradient disag-
gregation exploit these components to distort training or
extract sensitive information.

• Defenses include adversarial training, secure aggregation,
differential privacy, and buffer sanitisation, offering layered
protection across the reinforcement learning pipeline.
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Attacks Defenses
Knowledge Component DL PU BA MP PL KTI MT HE SS DP
Shared Model Parameters (DTL) [3, 52, 169]
Model Alignment Transfer Compo-
nents(PPDTL) [53, 138, 191]
Source/Target Domain Data with Model Up-
dates (End-to-End PPDTL) [44, 138]

Table 6. Attack types: Data Leakage (DL), Poisoned Updates (PU), Backdoor Attacks (BA), Model Poisoning (MP), MMD Privacy Leaks
(PL), Knowledge Transfer Inference (KTI), Misaligned Transfer (MT). Defensive measures: Homomorphic Encryption (HE), Secret Sharing
(SS), and Differential Privacy (DP). Vulnerability levels of knowledge components ( - critically exposed, - significant risk, - attack is
possible but harder to exploit, - minor attack surface, - mostly resistant) and effectiveness of defensive strategies ( - highly effective,

- significantly reduces risk, - provides partial protection, - limited effectiveness, - minimal protection).

7 Knowledge Sharing in Distributed Transfer
Learning

Transfer Learning is a machine learning technique where a model
developed for a specific task is reused to improve performance on
a related task [125]. It can be applied to various learning tasks, in-
cluding supervised [116], unsupervised [207], semi-supervised [23],
and reinforcement learning [213].

Distributed transfer learning (DTL) combines transfer learning
with distributed learning principles [170], particularly for edge re-
source utilization in knowledge sharing and task offloading [195].
Xu et al. [178] present a DTL model based on multisource heteroge-
neous transfer learning, incorporating Domain Specific Embedding
(DSE) and Global Shared Embedding (GSE). DSE is unique to each
domain, while GSE captures features across all domains.

Hashemian et al. [61] contribute with two architectures: PP-
DUSTR (Privacy Preserving Unsupervised Transfer Learning) and
PPDESTR (Privacy Preserving Distributed Semi-supervised Trans-
fer Learning). PPDUSTR trains a Privacy Preserving Support Vector
Machine (PPSVM) on a server, ensuring client data privacy, while
PPDESTR addresses privacy concerns in semi-supervised learning
through techniques like pseudo-labeling. Additionally, Mignone
et al. [112] introduce DISHTRA (distributed heterogeneous trans-
fer learning) for link prediction tasks in Positive Unlabeled (PU)
learning, using the MapReduce model with Apache Spark to handle
large datasets across multiple nodes.

7.1 Knowledge Components in Distributed
Transfer Learning

In DTL, knowledge components being transferred often include
shared model parameters, transfer components (e.g., embedding lay-
ers or domain adaptation modules), and domain embeddings (DSE
and GSE). By leveraging pre trained models or transfer modules,
DTL can effectively reuse knowledge to boost performance on
related tasks in different domains. PPDUSTR and PPDESTR intro-
duce privacy-preserving protocols that handlemodel alignment and
transfer component analysis (TCA) without exposing raw data [61].
DISHTRA focuses on large scale PU learning by distributing domain
embeddings and mapping functions across multiple nodes [112].

These shared components allow nodes to coordinate tasks such
as classification, clustering, or link prediction while minimizing

communication overhead. Heterogeneous ormulti source transfer ar-
chitectures [178] rely on unique and global embeddings (DSE/GSE)
to capture domain invariant features, thereby enhancing adaptabil-
ity and preserving performance in distributed environments.

7.2 Attacks and Defenses in Distributed
Transfer Learning

Despite the benefits of knowledge reuse, DTL is susceptible to
data leakage, poisoned updates, backdoor attacks, and model poi-
soning [3, 52, 169]. For instance, an adversary intercepting shared
model parameters or transfer components may reconstruct sensitive
data or introduce malicious perturbations. Further, model misalign-
ment and inference attacks arise from insecure domain adaptation
mechanisms (e.g., MMD-based approaches) [53].

As mitigation, Privacy Preserving Distributed Transfer Learning
(PPDTL) protocols [98], homomorphic encryption (HE) [138], and
secret sharing (SS) [44] are widely adopted. These approaches en-
crypt parameters or domain embeddings before exchange, ensuring
secure computation under partial or fully homomorphic conditions.
Additionally, DP can be applied to obfuscate sensitive gradients
or embeddings, reducing the likelihood of inference attacks. For
MMD based methods, Secure MMD (SMMD) [191] and HE for MMD
loss [138] defend against MMD privacy leaks by preventing direct
access to raw distributions. Table 6 summarizes the main knowledge
components, potential attacks, and defense techniques across DTL
architectures, highlighting how secure transfer protocols ranging
from partially homomorphic encryption (PHE) to advanced DP
schemes help maintain data security and privacy while exploiting
the advantages of reuse in distributed learning setups.

This section explores knowledge sharing in DTL architectures
such as PPDUSTR, PPDESTR, and DISHTRA.
• The architectures reuse components like embeddings and
transfer modules across tasks and nodes.

• Shared embeddings and transfer modules could become
common targets for attacks, such as backdoors and
misalignment-based inference.

• To mitigate, defenses such as HE, secret sharing, and secure
MMD techniques have been explored in the literature.
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8 Distributed Learning in Large Language
Models

The advancements in large language models (LLMs) have revolu-
tionized a wide range of domains, from natural language processing
(NLP) to conversational AI. Models such as GPT and BERT leverage
massive datasets and high-performance computing infrastructures
to achieve state-of-the-art results in understanding and generat-
ing human language. However, their centralized training paradigm
raises concerns about privacy, data governance, and scalability, es-
pecially when sensitive or proprietary data is distributed across
multiple entities. To address these challenges, the concept of de-
centralized LLMs has emerged, where model training and inference
are performed collaboratively between distributed nodes without
requiring direct data sharing.

This paradigm enhances privacy preservation and compliance
with data sovereignty regulations, while also enabling participation
from resource-constrained stakeholders. Nonetheless, decentralized
LLMs introduce new complexities in synchronization, communi-
cation overhead, and ensuring consistency across heterogeneous
environments. Balancing these factors is critical to realizing secure,
efficient, and inclusive language model ecosystems.

8.1 Distributed LLM Architectures
8.1.1 Partial Fine Tuning. Partial fine tuning targets specific com-
ponents of a pretrained LLM, such as attention weights or output
embeddings, while leaving foundational layers intact. This method
reduces computational overhead and preserves data privacy, as only
updated parameters are shared [208]. SplitLoRA [100] exemplifies
this approach by splitting training between clients and a server,
yielding faster and more accurate fine tuning. As an open source
benchmark for split learning (SL) in LLMs, SplitLoRA effectively
demonstrates how partial fine tuning enhances model performance
without extensive resource demands.

8.1.2 Collaborative Agreement on What to Share. Collaboration
mechanisms in distributed LLMs focus on selectively sharing gradi-
ents, weights, or feature representations to respect data sovereignty
and satisfy privacy regulations [180]. This approach promotes
trust among participants while maintaining robust collective learn-
ing [79]. Frameworks like CLLM4Rec [212] and CoLLM [201] il-
lustrate how user and item embeddings, textual features, and in-
teraction data are transformed into token sequences or treated as
a separate modality, respectively. By clearly defining the shared
components, these methods seamlessly integrate collaborative in-
formation into LLMs for improved recommendation capabilities.

8.1.3 Periodic Update Sharing. Periodic update sharing in LLMs in-
volves exchanging updates at predefined intervals to address evolv-
ing domain specific or linguistic needs. NewTerm [28] demonstrates
this by releasing benchmarks for newly coined terms, allowing an-
nual performance evaluations of LLMs on emerging vocabulary.
Similarly, the Self Information Update (SIU) task [187] periodically
integrates fresh textual data, instruction response pairs, and distil-
lation strategies into a distributed LLM framework. By bundling
these updates, SIU ensures consistent performance improvements
and mitigates outdated content in long running models.

8.1.4 RAG with Distributed Learning. Retrieval Augmented Gener-
ation (RAG) integrates an external retrieval mechanism into LLM
inference, enabling the model to access relevant knowledge from a
distributed corpus during decoding. In distributed learning envi-
ronments, RAG architectures benefit from horizontally partitioned
knowledge sources across multiple nodes, where each participant
contributes domain specific documents or embeddings. This dis-
tributed RAG paradigm enhances factual grounding and supports
low latency responses by parallelizing retrieval and generation.
Recent systems leverage secure retrieval protocols to mitigate in-
formation leakage, ensuring that query embeddings and retrieved
content remain private during collaboration [103].

8.1.5 Federated Fine Tuning. Federated fine tuning relies on de-
centralized datasets to tailor a pre trained LLM to specific tasks.
FlexLoRA [7] leverages Low Rank Adaptation (LoRA) configura-
tions and dynamically adjusts local model ranks to accommodate
client resource constraints, aggregating them into a global model
via Singular Value Decomposition (SVD). FLoRA [165] further re-
fines federated fine tuning by adopting a noise free aggregation
mechanism for heterogeneous LoRA updates. These frameworks
enable distributed clients to share only the essential weight matri-
ces and model insights, preserving efficiency and adaptability in
large scale LLM deployments.

8.2 Knowledge Sharing in Distributed LLMs:
Attacks and Defenses

Distributed LLMs rely on the exchange of specific knowledge com-
ponents to enable the development of collaborative models while
maintaining privacy and efficiency. As discussed earlier, methods
such as partial fine-tuning and frameworks such as SplitLoRA [100]
and FlexLoRA [165] optimize resource usage by sharing only up-
dated parameters, attention weights, or LoRA weight matrices.

Collaborative agreements similarly govern the selective sharing
of gradients, user-item embeddings, textual features, and historical
interaction data to improve model performance while adhering
to privacy regulations. However, these shared components can be
exploited by sophisticated attacks, posing risks to both the integrity
of the model and the privacy of the contributor. Model inversion
attacks, for instance, can exploit shared embeddings or gradients
to reconstruct sensitive local datasets.

For example, user-item embeddings shared in frameworks like
CLLM4Rec [212] and CoLLM [201], or newly sourced textual infor-
mation from the Self-Information Update (SIU) [187] task, could be
reverse engineered to extract private data about users or contribu-
tors. Furthermore, data poisoning attacks can target periodic update
sharing mechanisms, such as those in NewTerm [28] , by inject-
ing malicious data that propagates through the system, corrupting
collaborative models and shared benchmarks.

To counter such threats, privacy-preserving techniques must
be tightly integrated with model-sharing mechanisms. For exam-
ple, applying DP to shared knowledge components, such as LoRA
weights or collaborative embeddings, can obscure sensitive informa-
tion through controlled noise. In frameworks such as FlexLoRA and
FLoRA [165], this involves adding DP to LoRA ranks or the SVD-
based aggregation [60], enabling secure sharing of task-specific
insights without exposing private data.
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9 Limitations of Current Knowledge Sharing
Schemes and Future Directions

Across distributed learning paradigms DSL, DUSL, DSSL, DDRL,
DTL, and distributed LLM, we observe a consistent challenge: com-
ponent level knowledge sharing significantly enhances learning
utility, but inherently expands the system’s attack surface. No single
defense mechanism—encryption, differential privacy (DP), secure
multiparty computation (SMPC), trusted execution environments
(TEEs), or obfuscation—can offer comprehensive protection. This
underscores the growing necessity for hybrid approaches that in-
telligently combine multiple techniques.

9.1 Preserving Privacy While Maximizing
Utility

Defensive mechanisms used in isolation impose major trade-offs:
encryption introduces latency, DP compromises accuracy, SMPC
inflates communication overhead, and obfuscation reduces model
interpretability. To address these constraints, hybrid approaches
have emerged that layer complementary protections on the most
sensitive knowledge components.

Encryption-centric hybrids, such as SMPC + (P)HE Participants
first secret-share model updates, then encapsulate these shares us-
ing partially homomorphic encryption. Aggregation is performed
directly in the encrypted domain, minimizing plaintext exposure
while keeping communication costs manageable. This method is
especially suitable for DDRL replay buffer statistics or DTL embed-
dings where exact aggregation is essential.

Noise-centric hybrids such as TEE + DP/HE Model updates are
decrypted only within the enclave memory. Inside the TEE, light-
weight DP or fine-grained HE operations are applied before re-
leasing the results. In SplitLoRA-like settings, LoRA matrices are
shielded within the enclave and further perturbed with calibrated
DP noise, ensuring privacy even in the event of host compromise.

9.1.1 Adaptive Orchestration. Despite progress, production envi-
ronments lack adaptive privacy orchestrators—systems capable of
dynamically adjusting noise levels or encryption depth based on ad-
versarial activity, system load, or drift in data distribution; ranking
knowledge components by risk and selectively applying heavier
protections to high-leakage targets and coordinating privacy poli-
cies across device hierarchies without disrupting ongoing training.
Such orchestration would require real-time feedback through pri-
vacy loss estimators, throughput monitors, and threat signals to
adjust parameters, rotate keys, or reconfigure learning splits on
demand.

9.1.2 Cost Modeling and Benchmarking. A comprehensive cost
model for hybrid defenses remains absent, prompting the need for
a unified framework to evaluate their effectiveness. We propose
a joint metric framework where utility is defined as a function of
accuracy and convergence, privacy is measured in terms of differ-
ential privacy parameters and ciphertext entropy, and overhead is
evaluated through latency, accuracy, and bit operations. Standardiz-
ing these metrics across various learning paradigms is essential to
reveal the inherent trade-offs between privacy, utility, and efficiency.
This standardization can guide the design of optimally balanced

hybrid architectures that align with both business objectives and
regulatory requirements.

9.2 Towards Unified, Modular Privacy
Frameworks

As detailed throughout Sections 3–8, current systems lack a modu-
lar privacy stack that supports plug-and-play hybrid defenses for
components such as gradients (DSL), logits (DUSL), LoRA matrices
(LLMs), or trajectories (DDRL). A consistent API offering modular
primitives for encryption, DP, SMPC, and TEE offloading would:

• enhance reproducibility by decoupling defense mechanisms
from model training logic;

• support compliance by embedding auditability and privacy
accounting by design;

• offer a sandbox for performance benchmarking across het-
erogeneous systems.

9.3 Open Research Questions
Our systematic review identifies several open research questions.

RQ1: How can privacy orchestrators be designed to dynamically co-
optimize differential privacy budgets, cryptographic parameters, and
secure multiparty computation (SMPC) participation in response to
real-time workload changes, latency constraints, and varying privacy
risk levels in distributed AI systems?

RQ2: Which benchmark configurations—across datasets, model
types, and adversarial setups—most effectively quantify privacy–utility
trade-offs for modular defenses against attacks such as model inver-
sion, gradient leakage, and replay poisoning in distributed learning
systems?

RQ3: What interface requirements and abstraction boundaries
enable seamless integration and replacement of evolving privacy-
preserving mechanisms—such as DP, HE, or SMPC—without retrain-
ing models or violating emerging AI regulations like GDPR or the EU
AI Act?

Addressing these challenges will be essential for achieving scal-
able, adaptive, and regulation-compliant privacy frameworks in
distributed AI.

10 Conclusion
This paper has offered a comprehensive analysis of the diverse types
of knowledge that can be exchanged during collaborative AI/ML
operations among distributed entities. A key insight is that knowl-
edge sharing in distributed learning is context-dependent, shaped
by architecture, learning goals, and collaboration. We observed
that no single defense mechanism is universally effective. Instead,
each distributed learning paradigm benefits from tailored strate-
gies. For example, techniques such as differential privacy and secure
aggregation prove consistently valuable across supervised and semi-
supervised settings, while obfuscation, adversarial training, and
privacy preserving embedding sharing become more relevant in
unsupervised, reinforcement, and LLM based architectures. The
paper highlights the need for component-level privacy integration
and introduces a multi-dimensional evaluation framework, laying
the foundation for unified, adaptable privacy preserving solutions
in increasingly sensitive distributed learning environments.
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A Literature Selection

Table 7: Attacks, Affected Knowledge Components, and Countermeasures in Distributed Knowledge Sharing

Attack Att Ref Susceptible
Model

Attack input Defense Def Ref

Adversarial Attacks
(AA)

[38] DSSL, DRL Adversarial Examples DP, SA, WS OB,
PS, SR

[1, 13, 67, 110,
175]

Adversarial Perturba-
tions (AP)

[193] DRL State Observations DP, FL [101, 126]

Backdoor Attacks (BA) [6, 22, 38] DTL Trigger Patterns DP, AT [119, 171]
Property Inference (DI) [17, 110] DUSL, DSSL Model Updates and attributes

that apply to a subset of the
OB, PS, SR [67, 110, 203]

Data Leakage (DL) [210] DTL Gradients or Intermediate Re-
sults

HE, SS, DP [4, 33, 115]

Data Poisoning (DP) [12, 78] DSL, DSSL Biasing the model’s output OB, PS, SR, DP [13, 110, 203]
Data Skewing (DS) [76, 154] DSL Data Distribution, Logits DP, OB, TEE [1, 123, 188]
Eavesdropping Attacks
(EA)

[71, 118] DUSL Communication between the
Client and Server

DP, DR, EN [1, 13, 110]

Feature Estimation (FE) [110, 149] DSL, DUSL,
DSSL

Features and Statistics OB, PS, SR, HE,
DP

[1, 4, 13, 110,
131, 142, 182]

Gradient Disaggrega-
tion (GDP)

[192, 194] DRL Aggregated Updated, Individ-
ual Client Updates

DP, SA [1, 13]

Gradient Leakage (GL) [73, 183, 184,
210]

DRL, DSL,
DSSL

Shared Gradient Updates HE, DP, SA, EA,
OB, TE, PS

[1, 5, 13, 123,
148]

Graph Reconstruction
(GR)

[26, 65, 204] DSSL Outputs or Embeddings WS, OB, PS, SR [42, 46, 110,
195]

Inference Attacks (IA) [110, 147, 204] DSL, DUSL,
DRL

Shared Model Updates,
Model’s output or Gradient
patterns

HE, DP, SA, OB,
TE, EN, DA

[43, 62, 82, 83,
106, 158, 186]

Interception during
Map Merging (IM)

[48, 95] DUSL Partial maps or Model frag-
ments

DP, DR, EN, DA [20, 49, 96, 121,
137]

Knowledge Transfer In-
ference (KTI)

[41, 56, 63] DTL Embeddings, Victim’s dataset
poperties

HE, SS, DP [5, 8, 13, 47]

MMD Privacy Leaks
(PL)

[106] DTL Statistical features like Maxi-
mum Mean Discrepancy

HE, SS, DP [5, 8, 13, 47]

Memory Corruption
(MC)

[108] DRL Logits DP, SA, AT [1, 13, 107, 118]

Model Inversion (MV) [172, 194, 206] DSL Representative Inputs HE, DP, SA, EA,
OB, TEE

[89, 134, 163,
164, 181, 196]

Model Memorization
(MM)

[153] DSL Training data updates, Regur-
gitating Sequences

HE, DP, SA, EA,
OB, TEE

[89, 134, 163,
164, 181, 196]

Model Poisoning (MP) [17, 118, 149] DUSL, DSSL,
DTL

Misclassify inputs DP, SR, PS, WS,
DA

[14, 46, 144, 177,
200]

Model Reconstruction
(MR)

[66, 156, 166] DUSL, DSSL shared gradients or model up-
dates

DP, SR, PS, WS,
DA

[14, 46, 144, 177,
200]

Continued on next page
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Table 7 Continued from previous page

Attack Att Ref Susceptible
Model

Attack input Defense Def Ref

Packet Loss (PL) [99, 185] DSL dropping or withholding pack-
ets in transit. Lost model up-
dates

HE, DP, SA, EA,
OB, TEE

[89, 134, 163,
164, 181, 196]

Parameter Inference
(PI)

[90, 124, 167] DSSL global model updates model’s
parameters or architecture

WS, OB, PS, SR [42, 46, 110,
195]

Poisoned Updates (PU) [10, 42] DSL,DTL model updates HE, DP, SA, EA,
OB, TEE

[89, 134, 163,
164, 181, 196]

Policy Value Manipula-
tion (PV)

[11, 136, 199] DRL policy values state inputs or
intermediate signals

DP, SA, AT [1, 13, 107, 118]

Preference Poisoning
(PP)

[24, 37, 94] DUSL skews the learned reward DP, DR, EN, DA [20, 49, 96, 121,
137]

Privacy Re-
identification (PR)

[110, 118, 157] DUSL observed model outputs/up-
date , shared model parame-
ters

DP, DR, EN, DA [20, 49, 96, 121,
137]

Recursive Reconstruc-
tion (RR)

[47, 194, 205] DRL layer-wise gradients, interme-
diate layers

DP, SA, AT [1, 13, 107, 118]

Reward Manipulation
(RM)

[11, 136, 173] DRL reward signal DP, SA, AT [1, 13, 107, 118]

B Abbreviations

Table 8: Abbreviations in Distributed Learning, Architectures, Knowledge Components, and Security

Abbreviation Full Form

General Concepts

AI Artificial Intelligence
ML Machine Learning
DL Distributed Learning
FL Federated Learning
IoT Internet of Things
GPU Graphics Processing Unit
RDD Resilient Distributed Dataset
DL Paradigms

DSL Distributed Supervised Learning
DUSL Distributed Unsupervised Learning
DSSL Distributed Semi-Supervised Learning
DRL Distributed Reinforcement Learning
DTL Distributed Transfer Learning
DLLM Decentralized Large Language Models
Architectures & Models

MLP Multilayer Perceptron
CNN Convolutional Neural Network
RNN Recurrent Neural Network

Continued on next page
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Table 8 – continued from previous page

Abbreviation Full Form

LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
GAN Generative Adversarial Network
SOM Self-Organizing Map
AE Autoencoder
DSSGAN Distributed Semi-Supervised GAN
DCL Distributed Contrastive Learning
PPDTL Privacy Preserving Distributed Transfer Learning
DISHTRA Distributed Heterogeneous Transfer Learning
PPDUSTR Privacy Preserving Unsupervised Transfer Learning
PPDESTR Privacy Preserving Distributed Semi-Supervised Transfer Learning
TF TensorFlow
TFX TensorFlow Extended
ETL Extract, Transform, Load
Knowledge Components

GL Gradient Leakage
GDP Gradient Disaggregation
PU Poisoned Updates
PL Packet Loss / Privacy Leak
PD Parameter Distribution
AP Aggregation Parameters
LO Logits
CP Control Parameters
BS Batch Size
EF Error Feedback
LD Latent Distribution
CS Cell State
HS Hidden State
PPt Partitioning Points
SF Skewness Factor
MCL Merged Classification Logits
DRS Data Representation Snippets
TDM Tangents of Data Manifold
TP Task-specific Parameters
IR Intermediate Representation
SAp State-Action Pairs
RB Replay Buffer
Attacks

MM Model Memorization
GL Gradient Leakage

Continued on next page
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Table 8 – continued from previous page

Abbreviation Full Form

MI Membership Inference
PI Property Inference
PR Privacy Re-identification
MP Model Poisoning
MR Model Reconstruction
FE Feature Estimation
IA Inference Attacks
IM Interception during Map Merging
DS Data Skewing
AA Adversarial Attack
BA Backdoor Attack
DI Data Inference
APert Adversarial Perturbation
KTI Knowledge Transfer Inference
MC Memory Corruption
RM Reward Manipulation
PV Policy Value Manipulation
RR Recursive Reconstruction
Defenses

DP Differential Privacy
HE Homomorphic Encryption
SA Secure Aggregation
EA Encryption-based Aggregation
TEE Trusted Execution Environment
OB Obfuscation
DR Dimensionality Reduction
EN Encryption
DA Data Augmentation
WS Weighted Steiner Tree
PS Privacy-preserving Embedding Sharing
SR Secure Representation Sharing
SS Secret Sharing
AT Adversarial Training
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