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Abstract
Federated Learning has emerged as a privacy-oriented alternative to
centralized Machine Learning, enabling collaborative model train-
ingwithout direct data sharing.While extensively studied for neural
networks, the security and privacy implications of tree-based mod-
els remain underexplored. This work introduces TimberStrike, an
optimization-based dataset reconstruction attack targeting horizon-
tally federated tree-based models. Our attack, carried out by a single
client, exploits the discrete nature of decision trees by using split
values and decision paths to infer sensitive training data from other
clients. We evaluate TimberStrike on State-of-the-Art federated
gradient boosting implementations across multiple frameworks, in-
cluding Flower, NVFlare, and FedTree, demonstrating their vulnera-
bility to privacy breaches. On a publicly available stroke prediction
dataset, TimberStrike consistently reconstructs between 73.05% and
95.63% of the target dataset across all implementations. We further
analyze Differential Privacy, showing that while it partially miti-
gates the attack, it also significantly degrades model performance.
Our findings highlight the need for privacy-preserving mechanisms
specifically designed for tree-based Federated Learning systems,
and we provide preliminary insights into their design.

Keywords
Federated Learning, Privacy Attacks, Dataset Reconstruction At-
tack, Gradient Boosting Decision Trees

1 Introduction
Federated Learning (FL) [41] is a Machine Learning (ML) para-
digm in which decentralized nodes can collaboratively train a
model. Specifically, these nodes train a shared global model un-
der the coordination of a central server, known as Parameter Server
(PS), while keeping their local data private. There are different
types of Federated Learning. Between them, we focus on horizon-
tal FL [29], where clients (or nodes) have different datasets but
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share the same feature space. FL is considered an alternative to
traditional centralized ML training in privacy-sensitive domains,
such as healthcare [23, 43]. The adoption of FL in applications like
healthcare [49] and finance [1] is largely driven by data-sharing
regulations, such as the European Union’s General Data Protection
Regulation (GDPR) [55] and the United States’ Health Insurance
Portability and Accountability Act (HIPAA) [7]. However, even if
the paradigm does not involve data exposure, FL does not always
guarantee the privacy of training data. Indeed, several studies have
demonstrated that attackers can infer sensitive information from
the exchanged model updates [26, 68], such as individual training
samples or specific dataset properties.

Originally designed for Artificial Neural Networks (ANNs), FL
has been extended to tree-based models [33, 39, 40, 53], given
their strong performance on tabular data [35]. In particular, works
proposing federated tree-based systems adapt FL settings to ensem-
bles of Decision Trees (DTs), such as Gradient Boosting Decision
Trees (GBDT) [20] and eXtreme Gradient Boosting (XGBoost) [10].

To the best of our knowledge, unlike ANNs, for which several
privacy attacks and defenses have been proposed for both tabu-
lar [54] and non-tabular data [68], the privacy of tree-based models
in FL remains underexplored. Prior works [33, 48] have addressed
privacy concerns in federated tree-based systems by adapting ex-
isting privacy defenses such as Differential Privacy (DP) [17, 27],
Secure Multi-Party Computation (MPC) [34], and Homomorphic
Encryption (HE) [2]. Additionally, some studies have explored pri-
vacy attacks against tree-based vertical FL systems [12, 38, 52]. In
contrast, the State-of-the-Art (SotA) lacks an in-depth examina-
tion of privacy attacks in tree-based horizontal FL scenarios. This
gap in the SotA is relevant given the strong appeal of tree-based
models for their interpretability and high performance on tabular
datasets, which are especially prevalent in healthcare and other
critical sectors where the horizontal FL paradigm is widely used.

In this work, we address this gap by proposing TimberStrike,
a novel optimization-based dataset reconstruction attack that ex-
ploits privacy vulnerabilities in horizontally federated tree-based
models. Our primary objective is to demonstrate the vulnerability
to reconstruction attacks of the most promising variants of tree-
based FL systems, implemented by well-known frameworks such
as Flower [4] and NVFlare [48]. Regardless of the approach, we
aim to demonstrate that the attributes that make tree-based models
attractive for FL systems, such as their discrete split values and
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explicit decision paths, effectively expose them to privacy leakage
in collaborative scenarios. Our attack is formalized and evaluated
on federated gradient boosting models (e.g., GBDT and XGBoost),
as these are supported by several widely adopted frameworks. We
consider a threat model in which the adversary acts as an honest-
but-curious client, seeking to steal other clients’ training data by
reconstructing it, without disrupting the training process to remain
undetected. Our intuition is that an adversary with access to the
trees built by other clients may use the splitting criteria generated
from their training datasets to infer them. The attack consists of two
main phases. The first one, namely First-Tree Probing, targets the
first tree of the victim client and infers fundamental information,
such as the number of samples in the training set and the label
distribution. By extracting this information and following the tree
splits, the adversary can generate an initial version of the recon-
structed dataset. The second phase, namely Feature Range Inference,
refines the feature ranges in the reconstructed dataset, improving
the reconstruction of the victim’s data by solving an optimization
problem for each subsequent victim’s tree. We adapt our attack
methodology to four different federated XGBoost variants and one
GBDT implementation. We consider three approaches implemented
in the Flower framework [4] (Bagging, Cyclic, and FedXGBllr [39]),
the histogram-based implementation in NVFlare [48], and a stan-
dalone framework called FedTree [33]. Adapting to the diverse
aggregation mechanisms and implementation strategies of these
systems constitutes a central challenge of our work. Finally, after
analyzing SotA privacy defenses, we offer insights into how hor-
izontal tree-based FL systems should be designed to be resilient
against reconstruction attacks.

We experimentally evaluate our approach on two healthcare
datasets: Stroke Prediction [24] and Pima Indians Diabetes [14].
We demonstrate that the State-of-the-Art (SotA) in horizontal tree-
based FL, implemented in the most popular framework, is vulnera-
ble to the TimberStrike attack. Specifically, we show that Timber-
Strike can reconstruct a significant portion of the target dataset,
achieving a ReconstructionAccuracy (RA) consistently above 73.05%
on the Stroke dataset across all features and implementations, and
up to 95.63% when considering only the most important features.
We further analyze the impact of each attack phase and its de-
pendency on the algorithms’ hyperparameters. Additionally, we
show that while classical privacy defenses like DP reduce attack
effectiveness, they fail to fully mitigate it and significantly degrade
model performance, making the privacy-utility trade-off difficult
to manage. Finally, we provide preliminary insights into the design
of future privacy-preserving horizontal tree-based FL systems by
examining the information leveraged by our attack.
Open Source and Ethics. We release the attack code for all evalu-
ated systems1. Ethical considerations are discussed in Section A.

Our main contributions to the SotA are the following:
• We propose an optimization-based dataset reconstruction at-
tack targeting tree-based horizontal FL systems. To the best
of our knowledge, this is the first work to investigate recon-
struction attacks in this specific setting. Our attack allows
an honest-but-curious client-side adversary to infer other
clients’ training data by leveraging the exchanged model

1https://github.com/necst/TimberStrike

updates. Importantly, the proposed method is compatible
with several SotA tree-based FL frameworks.

• We demonstrate that existing defense mechanisms—when
compatible with our threat model—either fail to mitigate the
attack or incur a substantial loss in model utility. This high-
lights the need for robust privacy-preserving mechanisms
in tree-based FL systems.

• We provide some preliminary insights into the design prin-
ciples of an ideal tree-based FL system that is robust against
such reconstruction attacks.

2 Background
In this section, we introduce the main concepts needed to under-
stand our work. Indeed, we discuss the primers on Gradient Boost-
ing Decision Trees (GBDT), eXtreme Gradient Boosting (XGBoost),
Federated Learning, and federated tree-based systems. For the lat-
ter, we describe the SotA implementations for which we design a
dataset reconstruction attack in this work. In addition, we provide
background on Differential Privacy in Section B.

2.1 Primer on GBDT and XGBoost
To understand our dataset reconstruction attack, we first establish
the key concepts of XGBoost and gradient boosting.
Decision Trees (DTs). A DT [47] is a tree-based model used for
classification and regression tasks. It consists of nodes representing
decision rules, branches representing possible outcomes, and leaves
containing final predictions. The construction of a DT involves
recursively splitting the training dataset based on feature values to
maximize information gain or minimize impurity measures such as
the Gini index or entropy. The final output of a DT is determined
by the values in its leaf nodes (leaf values).

2.1.1 Gradient Boosting Decision Trees and XGBoost. GBDT [20]
is an ensemble learning method that trains DTs sequentially, with
each new tree correcting the residual errors of the previous ones.
After training all trees, the learning rate determines each tree’s con-
tribution. XGBoost [10] is an optimized implementation of GBDT
that improves training efficiency by incorporating 𝐿1 and 𝐿2 regular-
ization, as well as parallelizing tree construction and tree pruning.
Below, we introduce key definitions related to XGBoost and GBDT.
Base Score and Initial Predictions. The base score is a global
model parameter. It is the global bias of the model, i.e., the initial
prediction before any trees are trained. This value is crucial in
TimberStrike since it influences Hessian calculations in the first
trained tree, which we exploit for dataset reconstruction.
Gradient andHessianComputation. Each data point contributes
to training a new tree through the gradient and Hessian values that
are then used to compute the gain for a certain split:

𝑔𝑖 = 𝜕𝑦𝑖 (𝑡−1)
𝑙 (𝑦𝑖 , 𝑦𝑖 (𝑡−1) ), ℎ𝑖 = 𝜕

2
𝑦𝑖

(𝑡−1) 𝑙 (𝑦𝑖 , 𝑦𝑖
(𝑡−1) ), (1)

where 𝑙 is the loss function, 𝑦𝑖 is the true label, 𝑦𝑖 (𝑡−1) is the predic-
tion of the 𝑖-th sample at iteration 𝑡 − 1, 𝑔𝑖 (gradient from sample 𝑖)
measures how much a sample’s prediction needs to be corrected
and ℎ𝑖 (Hessian value of sample 𝑖) determines confidence in the cor-
rection. Finally, the total Hessian value and gradient at a node are
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respectively 𝐻 =
∑𝑁
𝑖=1 ℎ𝑖 and 𝐺 =

∑𝑁
𝑖=1 𝑔𝑖 where 𝑁 is the number

of samples assigned to that node.
Histogram-Based Hessian computation. It is possible to use
histogram-based optimization for split identification. For each fea-
ture, continuous feature values are discretized into histogram bins,
reducing memory usage and computational cost. A small number
of split points is proposed. The algorithm accumulates the gradient
and Hessian values within each bin, enabling rapid computation of
split gains and improving the efficiency of tree construction.
Tree Construction and Leaf Assignments. XGBoost trees are
built using a histogram-based approach that selects the best split
by maximizing the gain:

Gain =
1
2

(
𝐺2
𝐿

𝐻𝐿 + 𝜆 +
𝐺2
𝑅

𝐻𝑅 + 𝜆 − (𝐺𝐿 +𝐺𝑅 )2
𝐻𝐿 +𝐻𝑅 + 𝜆

)
− 𝛾, (2)

where 𝐺𝐿 , 𝐻𝐿 , 𝐺𝑅 , and 𝐻𝑅 are total gradients and Hessians for
the left and right child nodes, while 𝜆 and 𝛾 are regularization
parameters. At inference time, each sample follows a decision path
dictated by its feature values, eventually landing in a leaf node.

2.2 Federated Learning
Federated Learning (FL) [41] is a learning paradigm in which mul-
tiple parties collaboratively train an ML model while keeping data
decentralized, ensuring it remains on client devices. FL typically
adopts a client-server architecture, relying on a central server, com-
monly referred to as the Parameter Server (PS). Clients train a
model on their local datasets and send the resulting updates to the
server. The server then aggregates these updates and returns an
updated global model, which the clients use for subsequent training
rounds or predictions. Fully decentralized architectures [6], where
clients exchange and aggregate model updates with peers, have
also emerged, but are beyond the scope of this work.
Federated Learning Classification. FL can be classified into three
categories [29, 36]: horizontal, vertical, and federated transfer learn-
ing. In horizontal FL, clients share the same feature space but have
different row samples. In vertical FL, clients have the same row
samples but different feature spaces. Federated transfer learning, on
the other hand, occurs when clients differ in both feature spaces
and row samples. In this work, we target horizontal FL systems.

2.3 Federated Tree-Based Systems
Recent studies demonstrate that FL can be applied to tree-based
models [8, 56, 61, 62]. For instance, researchers proposed FL systems
based onmodels like Gradient Boosting Decision Trees (GBDT) [33],
XGBoost [64], and Random Forest (RF) [16, 25]. In this work, we
focus on several federated gradient boosting implementations in-
tegrated into widely adopted frameworks, including Flower Bag-
ging and Cyclic [4], NVFlare’s histogram aggregation [48], FedXG-
Bllr [39], and FedTree [33]. Our focus is driven by the unique vulner-
abilities of GBDT in the federated setting. Indeed, GBDT learns trees
sequentially by leveraging detailed gradient statistics to refine prior
errors, creating a richer and more exploitable attack surface for data
reconstruction. Since our attack targets these specific mechanisms,
RFs and simpler DTs are outside our work scope.
FlowerXGBoost Bagging. The server distributes the global model
to each client in the environment. The clients then use this global

Client 1

Client 2

Client N

PS

Client N

Client 2

Client 1

Round > 1
Loop

Round 1
Initialization

Figure 1: Flower Bagging algorithm schema.
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Figure 2: Flower Cyclic algorithm schema.
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Figure 3: FedXGBllr algorithm schema.

model as a starting point for the next boosting round. In particular,
each client trains a new local tree based on the prediction obtained
from the global model, then it sends this tree to the server, which
aggregates them by concatenation in the order of arrival. This pro-
cess repeats until the desired number of trees (or training rounds)
is achieved. Such an approach is implemented in the Flower frame-
work. Finally, the schema in Figure 1 summarizes the algorithm.

Flower XGBoost Cyclic. In this protocol, depicted in Figure 2,
the global tree ensemble is sequentially updated by different clients.
At each round, the server sends the current ensemble to a selected
client in a round-robin manner. The client then trains and con-
catenates a new tree (or trees for multiclass classification) to the
ensemble before returning it to the server. This iterative process
continues until the ensemble reaches a predefined number of trees.
FedXGBllr [39]. As shown in Figure 3, this protocol introduces a
two-phase training strategy to federate XGBoost. In the first phase
(first round), clients independently train XGBoost models and send
them to the server, which aggregates (concatenation) them into a
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Figure 4: NVFlare Histogram-based algorithm schema.

global ensemble. The second phase (all subsequent rounds) involves
constructing a dataset where each sample is represented by the leaf
values it reaches across all trees in the aggregated ensemble. This
dataset is then used as input to a federated one-dimensional Con-
volutional Neural Network (CNN 1-D), which is trained to predict
the sample labels. The intuition is that the learned parameters of
the CNN correspond to the learning rates assigned to each tree.
NVFlare - XGBoost Histogram Aggregation. Developed by
NVIDIA, NVFLARE supports federated XGBoost training [48] by
directly federating the XGBoost library. Among the implemented
variants, NVFLARE enables histogram aggregation of gradient and
Hessian statistics. Unlike the previously described mechanisms, a
histogram-based federated algorithm trains each single tree in a
distributed manner. At each training round, clients compute and
send histograms with gradient and Hessian values to the server,
as depicted in Figure 4. The server aggregates the histograms by
summing them across all clients and returns the resulting global
histograms. This global view enables each client to determine the
best next split in the tree based on the combined data distribution.
This is possible due to the additive properties of gradients and
Hessians. Specifically, as discussed in Section 2.1, each tree node
maintains an aggregated gradient 𝐺 and Hessian 𝐻 , computed by
summing the individual gradients and Hessians of all samples that
fall into that node. Therefore, when histograms are aggregated
across clients, it is equivalent to increasing the number of samples
contributing to the statistics of each node.
FedTree [33]. FedTree provides a custom GBDT implementation.
Like NVFlare, it employs histogram aggregation to train tree ensem-
bles in a privacy-preserving manner. However, the key distinction is
that in FedTree, the server does not send the aggregated histograms
back to the clients. Instead, it uses the aggregated histograms to
compute the node information, which is then sent to the clients.
This information also includes the aggregated gradient 𝐺 and Hes-
sian 𝐻 values. In addition, the authors state that the framework
offers three levels of protection. The first level, 𝐿0, provides no
protection. The second level, 𝐿1, protects local histograms by us-
ing secure aggregation [5] for horizontal FL and HE for vertical FL.
Finally, the highest level, 𝐿2, applies DP to prevent information
leakage from histograms at both the server and client sides.

3 Related Work
The research community has put significant effort into studying ad-
versarial ML. With the spread of FL, new threats have emerged [18,
29, 36]. Specifically, FL systems can be vulnerable to several types
of attacks, including free-rider attacks [19], in which participants
do not contribute to the training process but still benefit from the
global model; utility attacks [3, 51], where adversaries manipulate
the training process to gain an advantage; and privacy attacks [46],
where sensitive information about the underlying training dataset
is at risk. In this work, we focus on privacy attacks and their coun-
termeasures. Therefore, the following describes the main related
privacy attacks and defenses.
Attacks. Several prior works focused on privacy attacks in FL,
specifically targeting federated Artificial Neural Networks (ANNs).
Plain gradient sharing has been proven to leak sensitive informa-
tion about the training data [42, 68]. Furthermore, different works
have improved the effectiveness of gradient inversion attacks in
various scenarios. For instance, such attacks can be performed in
the presence of gradient compression [63], when the adversary
does not have access to the model parameters [66], or to reduce
reconstruction complexity [60]. More recently, J. C. Zhao et al. in-
troduced Loki [67], an attack that breaks the anonymity of model
aggregation and is effective against secure aggregation. Another
type of attack leverages a Generative Adversarial Network (GAN)
to generate synthetic data that mimics the training dataset [26].
This approach uses the global model as a discriminator to differ-
entiate between real and synthetic data. The attacker then injects
synthetic samples into the training process, gradually refining the
GAN to produce increasingly realistic data. Z. Wang et al. [57]
propose an improvement to the GAN attack, where the adversary
is also able to extract user-specific private information without
interfering with the training process. A further improvement is
presented in GRNN [44], where the attacker can recover private
information from shared gradients without the need for class la-
bels. In the same scenario, H. Wu et al. introduce a class-property
inference attack [58], where the adversary aims to infer properties
of a specific class in the dataset, focusing on tabular data.

In the tabular data domain, the authors of TabLeak [54] intro-
duce a robust evaluation method for data reconstruction, which we
leverage in our study, as it specifically targets tabular datasets.

While most privacy FL attacks have been studied in the context
of ANN, much less attention has been given to tree-based models.
Some works have explored privacy attacks in vertical FL for tree-
based models [12, 38, 52]. However, horizontal settings remain
unexplored. Therefore, our work aims to close this gap.
Defenses. Several defense mechanisms have been proposed to
enhance privacy in FL systems. Hardware-based solutions, such
as secure enclaves [30], provide isolated execution environments
that protect computations on the server side. Techniques such as
Homomorphic Encryption (HE) [13, 15, 37] offer strong theoretical
privacy guarantees by enabling model aggregation on encrypted
data. In FL, HE is used to protect client updates from server-side pri-
vacy threats. However, its practicality is limited due to the restricted
set of operations that can be performed on ciphertexts. Similarly,
Secure Multi-Party Computation (MPC) [34, 59] allows multiple
parties to jointly compute functions without revealing their inputs.
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In FL, the most widely adopted class of MPC is secure aggrega-
tion [5], which targets server-side threats. Nonetheless, these cryp-
tographic approaches often suffer from substantial computational
and communication overhead [2, 32]. Alternative strategies—such
as Differential Privacy (DP) [33] and Locality-Sensitive Hashing
(LSH) [32]—seek to protect sensitive information by reducing the
granularity of shared data. For instance, DP injects noise into model
updates to protect against privacy threats on both the client and
server sides. Despite their promise, these non-cryptographic de-
fenses introduce trade-offs between privacy and utility, as the noise
added for protection can degrade model performance [31]. Among
the previously discussed approaches, those currently implemented
in FL tree-based systems include Differential Privacy, Secure Multi-
Party Computation (via secure aggregation), and Homomorphic
Encryption. DP protects against both client- and server-side privacy
threats, whereas MPC and HE offer protection only against server-
side threats. Regarding frameworks, NVFLARE supports secure
aggregation, while FedTree implements all three approaches.

3.1 Research Gap and Motivation
Federated Learning has been extensively studied in the context of
Artificial Neural Networks (ANNs), with several works proposing
attacks and corresponding countermeasures to address privacy
concerns. However, to the best of our knowledge, no prior work has
demonstrated a dataset reconstruction attack targeting horizontal
federated tree-based systems. This lack reveals a critical gap in the
security analysis of federated gradient boosting models, despite
their growing use in privacy-sensitive applications.

Tree-based FL frameworks differ substantially from their ANN-
based counterparts in terms of model structure, aggregation mecha-
nisms, and information leakage patterns.While adversarial research
on ANNs has inspired the development of privacy-preserving tech-
niques, tree-based FL systems remain largely untested against real-
istic adversarial scenarios. To address this gap, we propose a novel
dataset reconstruction attack that exploits the inherent properties of
boosted DTs and how they are federated in current FL frameworks.

Importantly, our threat model—discussed in Section 4—assumes
that the attacker controls a client. Consequently, the attack can
be executed by exploiting only client-side information. As previ-
ously explained, privacy defenses such as Homomorphic Encryp-
tion and Secure Multi-Party Computation are designed to prevent
server-side privacy leakage and, therefore, do not alter the infor-
mation received by clients. As a result, they are ineffective in our
threat model. Moreover, applicable defenses such as Differential Pri-
vacy—specifically in its Local Differential Privacy [31] form—have
not yet been evaluated against real-world attacks in horizontal FL
scenarios. To address this gap, we evaluate the effectiveness of DP
against TimberStrike.

In summary, by introducing a novel attack, we aim to system-
atically uncover key vulnerabilities in tree-based FL systems that
allow adversaries to reconstruct private training datasets with mea-
surable accuracy and to evaluate whether existing defenses can
mitigate such attacks. This work is further motivated by the goal
of proposing theoretical modifications to current frameworks, ul-
timately paving the way for more robust and privacy-preserving
gradient boosting FL architectures.

4 Threat Model
This section defines the threat model by defining the adversary’s
capabilities, objectives, and target.
Adversary’s Capabilities.We assume the adversary can control
a client involved in a horizontal FL system where the server is a
trusted entity. Consequently, they have full white-box access to the
trained global model, allowing them to inspect its internal struc-
ture. In particular, they can access all the information the clients
have at training time. Such information depends on the consid-
ered implementation but, in general, includes the trained DTs, their
splits, leaf values, hyperparameters, and the aggregated gradient
and Hessian values used during training (all definitions about tree-
related concepts in Section 2.1). The adversary is modeled as an
honest-but-curious participant, as in prior work [54], meaning they
strictly follow the protocol without attempting to disrupt the sys-
tem. However, they seek to infer sensitive information about other
participants’ training data by analyzingmodel parameters and train-
ing statistics available on the client side. Unlike prior works, which
assume the honest-but-curious adversary is located on the server,
we assume it resides on one of the clients. This scenario is par-
ticularly relevant in FL settings where participants can be market
competitors and training data is a valuable asset. Moreover, because
the adversary behaves according to the protocol, they are harder to
detect—the attack can be conducted entirely “offline.”
Adversary’s Objective. The adversary aims to reconstruct the
training dataset from other participants in the FL process by an-
alyzing the model parameters and training statistics exchanged
during training. The goal is to infer sensitive information about the
training data, such as the presence of specific samples or the distri-
bution of features and labels in the training data. This information
could be used to gain a competitive advantage or to compromise
the privacy of the participants.
Targeted Implementations. The adversary targets other clients’
datasets by exploiting vulnerabilities in 5 main implementations
of federated tree-based systems, including Flower Bagging and
Cyclic [4], NVFlare histogram-based [48], FedXGBllr [39], and
FedTree [33]. These implementations represent diverse approaches,
each varying in the amount of information exposed during training.
We consider them representative of the SotA in federated tree-based
models and relevant for practical deployments.

5 TimberStrike: Dataset Reconstruction Attack
We propose a novel dataset reconstruction attack, called Timber-
Strike, to assess the privacy risks associated with training federated
tree-based models. TimberStrike specifically targets the implemen-
tations of XGBoost and GBDT in horizontal FL settings.

The attack reconstructs clients’ training data by exploiting infor-
mation accessible to an honest-but-curious adversary. As defined
in Section 4, our threat model—guided by existing FL implementa-
tions—assumes that the adversary, by controlling a client within the
system, can access the trained model(s) in plaintext. Consequently,
the adversary can inspect tree structures, aggregated gradients, and
Hessians. Additionally, they can observe model parameters such as
the base score and learning rate, which remain accessible during
training. Since these statistics and parameters are fundamental to
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Figure 5: TimberStrike attack schema.

understanding the internals of TimberStrike, we provide all relevant
definitions related to gradient boosting in Section 2.1.

The intuition behind our approach is that an attacker, by control-
ling a client, can exploit the sequential nature of boosted trees. By
analyzing the decision splits and gradient statistics shared by other
clients, the attacker can infer information about the training data
that influenced the tree construction. The attack can be performed
at each round of training. However, the more rounds that have
been completed, the more trees have been trained. Therefore, the
attack will be more accurate. As depicted in Figure 5, TimberStrike
can be divided into two main phases that need to be repeated for
each client the adversary targets. The first phase, First-Tree Prob-
ing, examines the first tree trained by the client under attack to
infer sample counts and label distributions, and to initialize the
reconstructed dataset based on the observed tree splits. The sec-
ond phase, Feature Range Inference, refines the reconstruction by
solving an optimization problem on each subsequent tree trained
by the client under attack. Following, we provide a detailed ex-
planation of the attack by describing each phase in depth. Finally,
we discuss its adaptation to different federated gradient boosting
implementations. Note that the attack formalization pertains to a
binary classification task. However, it can be extended tomulti-class
classification, for which we provide a formalization in Section E.

5.1 First-Tree Probing
As shown in Section 2.3, regardless of the specific federated imple-
mentation, the client receives the global model from the Parameter
Server (PS) at least once. This means the controlled client has visi-
bility into the global model, which contains trees contributed by
all other clients. In this phase, the attacker targets a specific client
and selects the first tree trained by that client. The motivation for
selecting the first tree is that it is built on predictions obtained
using the base score. As we will explain, this plays a crucial role in
TimberStrike. As depicted in Figure 5, this first phase of Timber-
Strike can be further divided into four steps, aimed at inferring the
number of samples per leaf, inferring the label distribution in the
leaves, initializing the dataset, and computing per-sample statistics.
Inferring the Number of Samples per Leaf. After clients re-
ceive the aggregated trees from the PS, the adversary can infer the
number of samples assigned to each leaf 𝑗 by analyzing the first
tree trained by the chosen victim. Before discussing how we can

obtain this information, let us first analyze the gradient and Hessian
statistics for a binary classification task. In particular, given a log
loss (or binary cross-entropy loss) function, these statistics can be
obtained [11, 21] for each sample 𝑖 , starting from Equation (1):

𝑔𝑖 = 𝑝𝑖 − 𝑦𝑖 , ℎ𝑖 = 𝑝𝑖 · (1 − 𝑝𝑖 ), (3)

where the probability score 𝑝𝑖 = 𝜎 (𝑥), 𝑥 is the sum of outputs of
the previously trained trees, 𝜎 (𝑥) = 1

1+𝑒−𝑥 , and 𝑦𝑖 is the label of
the 𝑖-th sample. Now, by analyzing the first tree, we know that
𝑝𝑖 only depends on the base score, which is the constant global
bias of our model. Considering base score is already a probability,
for each sample during the training of the first tree, we have 𝑝𝑖 =
𝜎 (𝜎−1 (𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒)) = 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 . We can, therefore, write:

ℎ𝑖 = 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 · (1 − 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 ), (4)

and the total aggregated Hessian for a given leaf 𝑗 as:

𝐻 𝑗 =

𝑁 𝑗∑︁
𝑖=1

ℎ𝑖 𝑗 = 𝑁 𝑗 · 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 · (1 − 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 ), (5)

where 𝑁 𝑗 represents the number of samples assigned to the leaf 𝑗 .
Solving for 𝑁 𝑗 , we obtain:

𝑁 𝑗 =
𝐻 𝑗

𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 · (1 − 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 ) , (6)

By disposing of both the base score and the total aggregated Hessian
for each leaf in the tree, we can solve the above equation.
Inferring the Label Distribution in the Leaves. Once Timber-
Strike infers the number of samples per leaf, it can infer the distri-
bution of labels within each leaf, forming the foundation for dataset
initialization. Indeed, by knowing the label distribution and the
number of samples, an adversary can initialize a dataset with the
same size and distribution as the targeted one. To obtain this infor-
mation, we can exploit the aggregated gradient for each leaf 𝑗 . In
gradient boosting, this gradient is given by the formula:

𝐺 𝑗 = −
𝑙𝑒𝑎𝑓 _𝑣𝑎𝑙𝑢𝑒 𝑗

𝜂
· (𝐻 𝑗 + 𝜆), (7)

where 𝜂 is the learning rate and 𝜆 is the regularization parameter.
Since the gradient for each sample depends on its label, we leverage
the following expression to differentiate between samples labeled
as 0 and 1 (binary classification):

𝐺 𝑗 =

𝑁 𝑗∑︁
𝑖=1
𝑔𝑖 𝑗 = 𝑁

(0)
𝑗

· 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 − 𝑁 (1)
𝑗

· (1 − 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 ), (8)

where 𝑁 (0)
𝑗

and 𝑁 (1)
𝑗

denote the number of samples with labels 0
and 1 in the leaf 𝑗 . Given that the total number of samples in the
leaf satisfies 𝑁 (0)

𝑗
+ 𝑁 (1)

𝑗
= 𝑁 𝑗 , we can write:

𝑁
(1)
𝑗

= 𝑁 𝑗 · 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 −𝐺 𝑗 , 𝑁
(0)
𝑗

= 𝑁 𝑗 − 𝑁 (1)
𝑗
, (9)

and, disposing of both 𝐺 for each leaf and the base score, the ad-
versary can solve the above equations to finally compute the label
distribution within a certain leaf.
Dataset Initialization.At this stage, the adversary knows both the
number of samples per leaf and their label distributions. Therefore,
they can generate the exact number of samples assigned from the
training set to that leaf, with the exact label distribution. Moreover,
in tree-based models, each sample reaches a leaf by following a path
dictated by its feature values. TimberStrike exploits this property to
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Figure 6: Decision Tree (DT) with its reconstructed dataset
initialized after the First-Tree Probing phase. In this example,
we use 𝜆 = 1, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.3, and 𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 = 0.5.

impose constraints on the range of features in a sample through the
observed leaf assignments. In summary, at this step, the adversary
can generate the first instance of the reconstructed dataset (an
example in Figure 6).
Compute per-sample Statistics. This final step is essential for ex-
ecuting the second phase and aims to complete each reconstructed
sample with three statistics used during training by gradient boost-
ing algorithms. In particular, for each generated sample 𝑖 , we com-
pute the gradient 𝑔𝑖 and the Hessian ℎ𝑖 according to Equation (3),
using the probability score 𝑝𝑖 computed as:

𝑝𝑖 = 𝜎 (𝜎−1 (𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒) +
𝑇∑︁
𝑡=1

𝑙𝑒𝑎𝑓 _𝑠𝑐𝑜𝑟𝑒 (𝑡 )
𝑖

) . (10)

where 𝜎−1 (𝑥) = log
(
𝑥

1−𝑥
)
, 𝑇 is the number of already analyzed

trees (in the first phase 𝑇 = 1), and 𝑙𝑒𝑎𝑓 _𝑠𝑐𝑜𝑟𝑒 (𝑡 )
𝑖

is the prediction
value assigned to the leaf of the tree 𝑡 in which the 𝑖-th sample falls.

5.2 Feature Range Inference
Once the initial feature ranges have been inferred, TimberStrike
refines the generated dataset by formulating a Mixed-Integer Linear
Programming (MILP) problem to determine the precise leaf assign-
ment for each sample in each subsequent tree. In other words, after

analyzing the first tree, TimberStrike analyzes and solves a MILP
problem for each other tree trained by the client under attack. Since
each sample follows a unique path through the tree, based on its fea-
ture values, we leverage the feature constraints accumulated so far
to restrict the possible set of leaves a sample can reach. This defines
a subset of all possible leaves, which we use as constraints in our
optimization problem, which minimizes the discrepancy between
reconstructed and original aggregated gradients and Hessians, pro-
gressively refining feature estimates.

Looking at a tree in the ensemble, for each sample, we define a
binary assignment variable 𝑥𝑖 𝑗 , which indicates whether sample 𝑖
is assigned to leaf 𝑗 . The constraints of the optimization problem
enforce that each sample is assigned to exactly one leaf and that
this leaf belongs to the set of reachable leaves based on previously
inferred feature ranges. As for any optimization problem, we need to
define the constants, the variables, the constraints, and the objective
function. Following the formalization of the designed problem.

Constants. We define the following constants:
• 𝐼 = {1, . . . , 𝑛}: set of training samples.
• 𝐽 = {1, . . . ,𝑚}: set of leaves.
• 𝐺 𝑗 : aggregated gradient of leaf 𝑗 .
• 𝐻 𝑗 : aggregated Hessian of leaf 𝑗 .
• 𝑝𝑖 : probability score of sample 𝑖 from previous trees.
• 𝑔𝑖 : gradient of sample 𝑖 , computed from 𝑝𝑖 and its label.
• ℎ𝑖 : Hessian of sample 𝑖 , computed from 𝑝𝑖 and its label.
• 𝐿𝑖 ⊆ 𝐽 : set of leaves that sample 𝑖 can reach, based on inferred
feature constraints.

Variables.We define the following variables:
• 𝑥𝑖 𝑗 ∈ {0, 1}: binary variable indicating whether sample 𝑖 is
assigned to leaf 𝑗 .

Constraints. Each sample must be assigned to exactly one leaf:∑︁
𝑗 ∈ 𝐽

𝑥𝑖 𝑗 = 1, ∀𝑖 ∈ 𝐼 . (11)

The leaf assignments must respect the inferred feature constraints:

𝑥𝑖 𝑗 = 0, ∀𝑖 ∈ 𝐼 , ∀ 𝑗 ∉ 𝐿𝑖 . (12)

Objective Function. The objective is to minimize the discrepancy be-
tween the reconstructed and original gradients and Hessians:

min
∑︁
𝑗 ∈ 𝐽

(
∑︁
𝑖∈𝐼

𝑥𝑖 𝑗 · 𝑔𝑖 −𝐺 𝑗 )2 + (
∑︁
𝑖∈𝐼

𝑥𝑖 𝑗 · ℎ𝑖 − 𝐻 𝑗 )2 . (13)

By iteratively solving the above optimization problem, we update
the feature ranges for each sample and the gradient and Hessian
values by re-executing the last step of the previous phase (Compute
per-sample Statistics). Following this process, we progressively
refine the estimated feature values of each sample. At the end of
the process, TimberStrike achieves a reconstruction of the training
data that is consistent with the observed model.

5.3 TimberStrike Details
We now present how our attack can be adapted to target each imple-
mentation discussed in Section 2.3 (Flower Bagging and Cyclic [4],
NVFlare histogram-based [48], FedXGBllr [39], and FedTree [33]).
In addition, we discuss how these implementations impact the re-
construction granularity. Specifically, while Flower Bagging, Cyclic,
and FedXGBllr allow for targeting and reconstructing local clients’
datasets, histogram-based systems such as NVFlare and FedTree
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Figure 7: Root node Hessian for 90 trees trained using the
Flower XGBoost Bagging implementation. Each client trains
30 trees, which are then identified under the same client by
minimizing the distance with the trees in the previous round.

only enable reconstruction of the aggregated global dataset—i.e., a
union of all clients’ datasets. We adapt TimberStrike accordingly,
detailing the differences in the attack implementation for each case.

5.3.1 Flower XGBoost Bagging and Cyclic. In these two implemen-
tations, the first tree in the model is not necessarily trained by the
client under attack. Indeed, the Parameter Server (PS) concatenates
the trees in arrival order. Furthermore, in both implementations,
each client trains local trees using models from previous rounds,
which incorporate trees trained by other clients. As a result, the
aggregated gradient and Hessian statistics at each round are com-
puted on samples that do not necessarily belong to the client under
attack. Therefore, at each round, we infer feature ranges for each
sample and perform a weighted average of the leaf values from trees
not trained by the client under attack, using the Hessian values
as weights. Consequently, we approximate the true leaf in which
the sample is likely to fall across the trees of other clients while
preserving the feature range constraints that are relevant only to
trees trained by the victim client. Finally, looking only at the trees
trained by the victim client, we proceed as usual by solving the
optimization problem.

Flower XGBoost Bagging differs from the Cyclic variant in that
client ordering is not fixed; instead, it depends on client arrival times
or follows a randomized schedule. Therefore, to recognize the trees
from the same client, we look at the Hessian and gradient statistics.
In particular, the idea is that, given the data on which a single client
trains a tree are always the same across rounds, it is possible to find
a relation between a tree at round 𝑟 and a tree trained by the same
client at round 𝑟−1 by searching for the minimum distance between
the hessian values in a tree at round 𝑟 and a tree at round 𝑟 − 1. Still,
this mechanism only affects the second phase. In case of issues in
reconstructing the chain of trees trained by the same client, the
adversary can still use the First-Tree Probing phase alone using only
the first received trees. In Figure 7 we plot the Hessian values of the
root nodes for an example using 3 clients. Moreover, an honest-but-
curious adversary lacks direct knowledge of the mapping between
tree ordering and client identities, but while it is not possible to
attribute reconstructed samples to specific clients, the adversary
can still infer that certain samples originate from the same client.

5.3.2 FedXGBllr. For such an implementation, the attack doesn’t
need to be adapted. We extract the victim client’s local trees and
apply the method described in Section 5. The first round of the pro-
tocol, where the trees contained in the XGBoost models are shared,
is enough to reconstruct the entire training set. The attack enables
user-level reconstruction, as the models are trained separately on
clients’ data, and the locally trained trees are shared with all other
clients (including the adversary) in the initialization phase.

5.3.3 NVFlare and FedTree. These two implementations aggregate
histograms to determine, at each round, the best splits that each
client should perform during the training of a single tree. As a
result, each client receives only aggregated gradient and Hessian
statistics derived from the combined histograms (i.e., the sum of
the clients’ histograms). The attack proceeds as described in the
general formalization. However, in this case, the adversary can only
reconstruct the global dataset (i.e., the union of all clients’ datasets),
since these systems expose only aggregated model updates rather
than individual local trees. Consequently, the attacker observes the
boosting of global trees.

6 Experimental Evaluation
Our experimental evaluation aims to test TimberStrike to address
the following research questions:
RQ1: Is our attack effective across all considered tree-based FL sys-
tems? Does the Feature Range Inference phase enhance effectiveness,
and what is the impact of the First-Tree Probing phase alone?
RQ2: How does tree depth influence the effectiveness of the attack
in the considered systems? Specifically, does increased depth and
potential overfitting help the dataset reconstruction?
RQ3: Can the attack’s effectiveness be mitigated by applying clas-
sical defenses such as DP during training?

6.1 Experimental Setup
We evaluate TimberStrike on five different federated systems—four
based on XGBoost and one on GBDT. In particular, we adapt and
evaluate our attack onXGBoost Bagging, Cyclic, and FedXGBllr [39],
all implemented in Flower [4]. Additionally, we apply Timber-
Strike to histogram-based implementations in NVFlare [48] and
FedTree [33]. We consider a general scenario with 3 clients collab-
oratively training a federated gradient boosting model composed
of 100 trees with a depth 𝑑 from 3 to 8 (we perform 6 runs for
each implementation by increasing 𝑑). To evaluate the scalability of
TimberStrike, in Section 6.2.4 we vary the number of clients up to
30. One client acts as an honest-but-curious adversary attempting
to extract sensitive information from the other clients performing
the TimberStrike attack. In the Flower implementations, where
TimberStrike can target a specific client, we designate one of the
two remaining clients as the victim. In histogram-based implemen-
tations, since the attack can only reconstruct the global dataset (i.e.,
the union of all clients’ datasets), we compare the reconstructed
dataset with the original dataset, which consists of the combined
datasets from all clients. From now on, we will refer to the recon-
struction targeting a specific client as local reconstruction, while the
reconstruction of the global dataset, as in the case of histogram-
based implementations, will be referred to as global reconstruction.
Finally, to limit the computational load of the Mixed-Integer Linear
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Table 1: F1-score, and Area Under the ROC Curve (AUC-ROC) on the test set for the binary classification task on the Stroke
Prediction and Pima Indians Diabetes datasets.

Dataset Implementation Depth 3 Depth 4 Depth 5 Depth 6 Depth 7 Depth 8
F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

Stroke

FedXGBllr 0.215 0.635 0.218 0.628 0.183 0.620 0.157 0.617 0.105 0.608 0.097 0.614
Flower XGBoost Bagging 0.213 0.755 0.215 0.750 0.185 0.750 0.176 0.746 0.138 0.731 0.160 0.751
Flower XGBoost Cyclic 0.237 0.748 0.157 0.738 0.158 0.731 0.162 0.760 0.176 0.734 0.158 0.709

NVFlare 0.165 0.767 0.203 0.774 0.203 0.767 0.164 0.775 0.103 0.744 0.128 0.761
FedTree 0.207 0.766 0.200 0.764 0.209 0.766 0.110 0.767 0.130 0.768 0.108 0.769

Pima

FedXGBllr 0.587 0.816 0.603 0.806 0.572 0.810 0.531 0.806 0.607 0.809 0.582 0.814
Flower XGBoost Bagging 0.638 0.769 0.587 0.743 0.577 0.716 0.506 0.689 0.537 0.703 0.585 0.718
Flower XGBoost Cyclic 0.573 0.753 0.506 0.669 0.490 0.669 0.591 0.755 0.549 0.719 0.529 0.679

NVFlare 0.643 0.817 0.676 0.834 0.639 0.821 0.636 0.831 0.627 0.832 0.660 0.825
FedTree 0.586 0.810 0.596 0.826 0.606 0.798 0.604 0.805 0.604 0.806 0.610 0.815

Table 2: Tolerance 𝜖 for the Reconstruction Accuracy (RA)
on the top 5 features of each of the datasets.

Top 5 Avg. Glucose Work Residence Heart disease Label
Stroke 17.03 cat* cat* cat* cat*
Top 5 BMI Diabetes pedigree Glucose Age Label
Pima 2.50 0.105 10.06 3.77 cat*

*categorical, the predicted feature needs to match perfectly with the original.

Programming problems in our Feature Range Inference phase (more
details in Section D), we impose a time constraint of 10 minutes for
each tree analyzed.
Hardware and Software Testing Environment.We conduct our
experiments on a machine equipped with an Intel 11th Gen Core i7-
1165G7 processor (8 cores, 16 threads, 2.80 GHz base clock, 4.70 GHz
max turbo) and 16 GB of RAM. The software environment includes
Python 3.10, XGBoost 2.1.0, and the latest version of Gurobi [22].
Datasets.We conduct our experiments using two publicly available
binary classification datasets from the healthcare domain, partic-
ularly renowned for the privacy of the training data: the Stroke
Prediction Dataset [24] and the Pima Indians Diabetes Dataset [14].
The Stroke Prediction Dataset consists of 5110 records, each repre-
senting an individual with attributes related to stroke risk factors.
It includes 11 features (including the stroke column), categorized
into demographic features (age, gender, marital status, residence
type), medical conditions (hypertension, heart disease), lifestyle fac-
tors (smoking status, work type), and clinical measurements (aver-
age glucose level, BMI ). In summary, it contains 3 numerical and 7
categorical features. This dataset is highly imbalanced, with only
4.87% of samples corresponding to stroke cases. Therefore, we apply
SMOTE-NC [9] to balance the classes. The Pima Indians Diabetes
Dataset contains 728 records and 9 features (including the outcome
column). The features include pregnancies, OGTT (Oral Glucose Tol-
erance Test), blood pressure, skin thickness, insulin, BMI, age, and
pedigree diabetes function. All these features are numerical.
Data Distribution. We focus on a scenario where the distribution
of data across clients is non-IID, as it better reflects real-world
conditions. As with any other work in the SotA, to simulate the
non-IID case, we use the Dirichlet distribution [50] (𝛼 = 0.3) to
partition the data across the clients.
EvaluationMetrics.We evaluate the effectiveness of our approach
using three main metrics: the Reconstruction Accuracy (RA) [54], the
F1-score, and the Area Under the ROC Curve (AUC-ROC). They are
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[94.59, children, Rural, 0, 0]

[94.75, Private, Rural, 0, 0] [92.35, Private, Rural, 0, 0]
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[131.2, Govt_job, Rural, 0, 1]

[216.69, Govt_job, Urban, 1, 1]

[264.97, Govt_job, Urban, 1, 1]

Figure 8: Reconstruction assessment of a 4-sample dataset,
using the 5 most important features from Stroke. Each sam-
ple in the reconstructed dataset �̂� is compared with one in
the original dataset 𝐷 . In red, we highlight the wrong recon-
structed values. Here, we are able to fully reconstruct the
first and third samples (blue and red), the 60% of the second
sample (yellow), and the 80% of the last sample (green). This
leads to an RA of 85%.

used to assess the efficacy of the reconstruction attack (Reconstruc-
tion Accuracy) and the performance of the model on the trained
task (F1 and AUC-ROC). While the F1-score and the AUC-ROC are
well-known classification metrics, the Reconstruction Accuracy is a
metric introduced in TabLeak [54], as it is the first work on tabular
data leakage. The RA of a reconstructed dataset �̂� is computed by
averaging the reconstruction accuracy scores of all its samples. This
score 𝑟𝑎𝑥 for a single sample 𝑥 ∈ �̂� is defined as the proportion of
features for which the inferred value (or range) overlaps, within a
specified tolerance, with the corresponding ground-truth value in
a paired sample 𝑥 ∈ 𝐷 , where 𝐷 is the original dataset. Formally,
𝑟𝑎𝑥 is computed as follows:

𝑟𝑎�̂� (𝑥, 𝑥 ) =
1

𝐾 + 𝐿

(
𝐾∑︁
𝑖=1

1
(
𝑥
(𝑘 )
𝑖

= 𝑥
(𝑘 )
𝑖

)
+
𝐿∑︁
𝑖=1

1
(
𝑥
(𝑙 )
𝑖

∈
[
𝑥
(𝑙 )
𝑖

− 𝜖𝑖 , 𝑥 (𝑙 )𝑖 + 𝜖𝑖
] ))

(14)

where 𝐾 is the number of categorical features, 𝐿 is the number of
continuous features, and 𝜖𝑖 is the tolerance for the 𝑖-th continuous
feature. Each 𝜖𝑖 is computed by taking the standard deviation of the
𝑖-th continuous feature in the training dataset and multiplying it by
a constant. In our experiments, we follow the setup of TabLeak [54],
and set 𝜖𝑖 = 0.319 · 𝜎 (𝑙 )

𝑖
, obtaining the following error distribution:

𝑃

(
𝜇 − 0.319 · 𝜎 ≤ 𝑥 ≤ 𝜇 + 0.319 · 𝜎

)
= 2Φ(0.319) − 1 ≈ 25%, (15)

where Φ denotes the cumulative distribution function of the stan-
dard normal distribution. The reconstruction assessment requires
each reconstructed sample to be compared with its corresponding
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ground truth, giving equal weight to all features. To establish a
one-to-one correspondence between the reconstructed and original
datasets, we employ a bipartite matching algorithm—specifically,
the Hungarianmethod [28]—as done in TabLeak [54]. In Figure 8 we
show an example of reconstruction assessment. Finally, to visualize
the practical impact of high RAs, Table 2 presents the tolerance
required for a feature in the reconstructed sample to be considered
a match with its corresponding original sample.
BinaryClassification task performance. To observe the relation-
ship between overfitting/underfitting and RA, we show in Table 1
how the models perform for each considered dataset, federated gra-
dient boosting implementation, and tree depth. The results indicate
that, for the Stroke dataset, the model achieves its best F1-score and
AUC-ROC with lower tree depth. This suggests that increasing the
tree depth leads to overfitting. In contrast, this trend is not observed
for the Pima dataset, which is significantly smaller.
Defenses. We also evaluate TimberStrike in a scenario where
clients use Differential Privacy (DP) to protect their updates from
potential privacy leakage. As discussed in Section 3.1, to the best of
our knowledge, this is the only existing method that theoretically
mitigates our attack under the given threat model. The authors of
FedTree [33] introduce three layers of privacy protection (see Sec-
tion 2.3), which represent the current SotA in federated tree-based
systems. However, since our attack reconstructs a dataset from
the client side, neither secure aggregation nor HE (protection level
𝐿1) mitigates TimberStrike, as they only protect clients’ updates
from server-side privacy threats. Therefore, we evaluate their 𝐿2
protection, which incorporates DP, by varying different privacy
budget values (𝜖) (more details on 𝜖-DP and its implementation in
FedTree are provided in Section B). The experiments with DP per-
tain only to FedTree, as it is the only framework that implements it
for tree-based models across the considered frameworks, to the best
of our knowledge. However, since their current implementation
is complete only in the vertical FL scenario, we extend it to the
horizontal FL setting to the best of our ability.

6.2 TimberStrike Effectiveness (RQ1 & RQ2)
We aim to investigate the overall performance of TimberStrike, the
contribution of its two phases, and how hyperparameters such as
tree depth influence the reconstruction performed by our attack.
Following, we present the results using aggregated plots, while
more detailed tables with raw results are provided in Section C.
Note that, except for the plots used to show the impact of the client
size on TimberStrike and the impact of tree depth on TimberStrike,
all other plots comparing the different implementations in terms
of Reconstruction Accuracy distinguish between local and global
reconstruction, as discussed in Section 6.1. In particular, local recon-
struction refers to implementations that enable targeting a specific
client, while global reconstruction refers to those that allow only
the reconstruction of the global dataset.

6.2.1 Attack performance on different implementations. We present
the boxplots of the Reconstruction Accuracy (RA) (in percentage)
on both the Stroke (Figure 9a) and Pima (Figure 9b) datasets, corre-
sponding to the six runs performed on each system while varying
the depth of the trees. Note that the results account for all features
in the dataset—11 for the Stroke dataset and 9 for the Pima dataset.

The general performance of TimberStrike shows a minimum of
73.05% RA on Stroke and 54.45% RA on Pima, both registered on
Flower XGBoost Cyclic, while achieving a maximum of 86.86% RA
on Stroke (NVFlare) and 73.37% RA on Pima (FedTree), demon-
strating that a significant amount of the original dataset can be
reconstructed within a tolerance in both datasets. These results are
in line with the SotA of RA on ANNs for tabular datasets [54]. How-
ever, the RA on the Pima dataset is worse than what TimberStrike
obtains on the Stroke one. This discrepancy is due to differences
in dataset sizes and the composition of the dataset, which contains
only numerical features. This result indicates that reconstructing
categorical features is easier than reconstructing numerical ones,
a finding also observed by the TabLeak authors. The two datasets
exhibit similar behavior when comparing different systems. In both
datasets, the implementations where TimberStrike achieves the
highest and least skewed RA are the two histogram-based systems
(NVFlare and FedTree) and FedXGBllr. The results obtained with
the histogram-based implementations demonstrate that, even if we
globally reconstruct the dataset, TimberStrike can still achieve high
performance. Additionally, FedXGBllr confirms what its implemen-
tation suggests: the plain exposure of trees significantly increases
the risk of privacy leakage. In contrast, both the Cyclic and Bagging
implementations in Flower prove to be more resistant to attacks.
This can be attributed to their interleaved nature, where each client
continuously trains a new tree based on the trees received from
other clients.

6.2.2 Impact of the feature importance on the RA. The results al-
ready presented demonstrate that TimberStrike can effectively re-
construct clients’ data with a high accuracy. However, we argue
that the importance of features in predictions significantly impacts
the RA. If this holds, it implies that an adversary may achieve even
better reconstruction performances on the most relevant features,
and may also identify which features they can “trust” more in the
reconstructed dataset. To validate this intuition, we evaluate the Re-
construction Accuracy on the top features (i.e., the most important
ones) and compare it to the RA achieved on the full dataset. Specif-
ically, we train a centralized XGBoost model, extract the feature
importance, and select the top five features (including the label) for
each dataset, visible in Table 2. In Figures 9c and 9d, we compare the
RA evaluated on all features with the one computed using only the
top five features. As the figure illustrates, feature importance sig-
nificantly impacts TimberStrike. Indeed, in the best-case scenario,
TimberStrike achieves an RA of over 95.63% for FedXGBllr on the
Stroke dataset. Furthermore, TimberStrike demonstrates that even
with models trained on small and numerical datasets like Pima,
on the most relevant (and therefore most impactful on the trees)
features, it can still reconstruct well the training data, as shown by
the substantial increase in RA.

6.2.3 Contribution of the Feature Range Inference phase. In Fig-
ures 9e and 9f, we show the RA achieved by TimberStrike after the
first phase (First-Tree Probing) and after the complete attack. As
the figure illustrates, the second phase (Feature Range Inference)
effectively improves the RA compared to the first phase alone. In
particular, the Feature Range Inference phase increases the average
RA across all systems by 7.19% on the Stroke dataset and by 1.97%
on the Pima dataset. However, there are two exceptions (Flower
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Figure 9: Experimental results on the Stroke Prediction Dataset (left) and the Pima Indians Diabetes Dataset (right).

Bagging and Cyclic on Pima), where the second phase decreases the
average results. Such an exception occurs because the interleaved
nature of these implementations, combined with the small dataset
size of the Pima dataset, prevents the correct identification of the
victim client’s tree chain (see Section 5.3). Interestingly, the RA
achieved using only the first phase demonstrates that the first tree
alone is sufficient to cause significant privacy leakage.

6.2.4 Impact of Client Size on Global Reconstruction. Wepreviously
discussed the difference between global and local reconstruction.

In the case of the two histogram-based methods, the reconstruction
targets the global dataset rather than any single client. Here, we
investigate whether increasing the number of participating clients
leads to a loss of detail in the aggregated information. To show the
impact of client scaling on global reconstruction, we present in Fig-
ure 10 the results of an experiment where we evaluate TimberStrike
against FedTree on the Stroke Dataset in five different scenarios (3,
5, 10, 20, and 30 clients). As the plot depicts, except for a small drop
from the scenario with 3 clients and the scenario with 5 clients, the
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Figure 10: RA on the Stroke dataset using FedTree, with vary-
ing numbers of clients involved in the training.

effect of client set size is negligible for the rest of the scenarios, as
no significant drop in RA is registered. Therefore, we can state that
the RA is poorly affected by the number of clients when performing
a global reconstruction on a histogram-based system. The theoret-
ical basis for this result derives from the histogram aggregation
mechanism. In horizontal FL, client-side histograms are aggregated
by summation. This preserves the characteristics of the individual
local histograms, making the resulting global histograms equivalent
to the statistics obtained by training a centralized model on the
entire dataset. However, as the authors of FedTree [33] point out,
when the splits proposed by different clients diverge, they merge
the local histograms by approximate summation. Considering that
increasing the number of clients leads to a finer partitioning of
the dataset, and consequently fewer samples per client, this ap-
proximation becomes the source of performance degradation for
TimberStrike. However, such degradation is negligible, as shown
in Figure 10.

Answer to RQ1. TimberStrike achieves a Reconstruction Accu-
racy comparable to the SotA of RA on ANNs for tabular datasets.
Additionally, its RA significantly improves, reaching a maximum
of 95.63%, on the most important features in the dataset. The Fea-
ture Range Inference phase increases the average RA across all
systems by 7.19% compared to First-Tree Probing on the Stroke
dataset and by 1.97% on the Pima dataset. Nonetheless, results
demonstrate that First-Tree Probing can achieve good perfor-
mance even on its own.

6.2.5 Impact of the tree depth. When training a gradient boosting
model, it is possible to set the tree depth. This hyperparameter
is crucial for training performance, and we expect that it also im-
pacts the RA of our attack. In Figures 9g and 9h, we show the
trend of Reconstruction Accuracy, averaged from the five different
implementations, as the tree depth used for training in the ensem-
ble varies. As the plots illustrate, the first phase is significantly
impacted by the tree depth. This result is expected: deeper trees
contain more splits, allowing us to extract more information from
the first tree. Furthermore, this result is in line with the SotA of
privacy attacks that demonstrate overfitting (demonstrated in Ta-
ble 1 for Stroke) helps privacy leakage [65]. In contrast, the overall
attack results do not exhibit a consistently increasing trend. This
can be attributed to the time constraint imposed on solving the
MILP problem in the Feature Range Inference phase. Higher tree
depth increases complexity and, eventually, performance saturates.

Table 3: Model Utility (F1-score and AUC-ROC), RA af-
ter First-Tree Probing (F-TP) and final RA under DP. Both
histogram-level and total 𝜖 are reported.

Features 𝜖histogram 𝜖total F1 AUC RA (F-TP) RA

All Features

No Defense – 0.601 ± 0.009 0.810 ± 0.010 65.54 ± 1.95 72.78 ± 0.60
1 200 0.536 ± 0.036 0.781 ± 0.033 60.65 ± 3.96 70.52 ± 1.77

0.25 50 0.481 ± 0.043 0.650 ± 0.037 59.97 ± 4.10 61.59 ± 3.22
0.125 25 0.448 ± 0.042 0.605 ± 0.055 60.26 ± 1.91 54.43 ± 4.63

Top 5 Features

No Defense – 0.601 ± 0.009 0.810 ± 0.010 82.65 ± 2.03 87.59 ± 0.81
1 200 0.536 ± 0.036 0.781 ± 0.033 75.95 ± 3.88 85.84 ± 1.17

0.25 50 0.481 ± 0.043 0.650 ± 0.037 73.26 ± 7.73 75.70 ± 4.17
0.125 25 0.448 ± 0.042 0.605 ± 0.055 74.18 ± 3.32 67.65 ± 5.54

Answer to RQ2. Increasing tree depth enhances the attack’s
effectiveness in the initial phase by providing more splits, which
allows for greater information extraction. This supports the in-
tuition that overfitting increases privacy leakage risks. However,
as depth increases further, the overall attack does not show a
consistently improving trend. This is due to the higher computa-
tional complexity in the Feature Range Inference phase and the
time constraint, which leads to performance saturation.

6.3 DP Effectiveness against TimberStrike (RQ3)
We now want to assess if SotA defenses mitigate TimberStrike.
To do so, we test the use of Differential Privacy (DP) as a defense
against TimberStrike by using the FedTree implementation.

In this experiment, we use only the Pima dataset, as the Stroke
dataset already exhibits poor performance, making it difficult to
observe significant changes in model performance. We analyze
TimberStrike’s behavior by varying a fundamental parameter for
DP, i.e., the privacy budget 𝜖 . In 𝜖-DP (more details in Section B),
this parameter measures the “privacy loss,” meaning that the higher
the 𝜖 , the less privacy the update preserves.

Table 3 depicts the results obtained by evaluating TimberStrike
both without defense and with varying values of 𝜖 , selected accord-
ing to SotA settings. We report both the histogram-level 𝜖 (𝜖histogram)
and the corresponding total 𝜖 (𝜖total). Note that in FedTree, 𝜖-DP is
satisfied at the histogram level (details in Section B). Unlike ANN-
based federated protocols, here the updates that a client aims to
protect are the histograms containing the proposed splits rather
than the entire model. Thus, 𝜖histogram is the effective privacy param-
eter governing each shared update. 𝜖total depends on the number of
trees and is provided for completeness, but it does not represent
the privacy guarantee for any individual communication round.

Analyzing the model’s performance, we observe a significant
drop even under the least restrictive 𝜖 . This decline is particularly
evident in the F1-score and persists at lower values of 𝜖 . Overall,
compared to the “no defense” configuration, we observe a maxi-
mum average decrease of 0.153 in F1-score and 0.205 in AUC-ROC,
highlighting the impact of DP onmodel usability. On the other hand,
when examining RA, we find that the reduction in performance
between the “no defense” configuration and the least restrictive
privacy setting is less pronounced than the utility drop, with an aver-
age decrease of 2.26% when considering all features and 1.75% when
considering only the top five. Additionally, the First-Tree Probing
phase of our attack demonstrates to be less affected by DP than the
overall attack, even showing a higher RA when 𝜖histogram = 0.125.
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Overall, while DP reduces the effectiveness of our attack by sacri-
ficing model utility, it does not fully mitigate TimberStrike. Indeed,
even under the most aggressive privacy setting and considering the
entire feature space, TimberStrike can still achieve an RA > 50%.

Answer to RQ3. Differential Privacy reduces the attack’s effec-
tiveness but does not fully mitigate it. Indeed, while DP lowers
the Reconstruction Accuracy, it also significantly degrades model
utility, with average drops of 0.153 in F1-score and 0.205 in AUC
in the most aggressive scenario considered. Moreover, even un-
der the strictest privacy setting, the attack still achieves an RA >
50%, which means DP is insufficient as a standalone defense.

7 TimberStrike Mitigation Guidelines
Our evaluation shows that while DP reduces the effectiveness of
TimberStrike, it does not fully mitigate the attack and significantly
degrades model utility. Additionally, our SotA analysis suggests
that other existing defenses fail to address the threat model as-
sumed for TimberStrike. Among the implementations considered,
histogram-based methods appear to be the most promising direc-
tion for limiting information accessible to clients, as they only allow
the reconstruction of global rather than local datasets.

Motivated by our findings, we argue that a tree-based FL protocol
must be designed with a clear understanding of the unique attack
surfaces introduced by the federated setting and the model itself. In
light of this, we define guidelines for the future design of privacy-
preserving federated tree-based systems. Specifically, we describe
how histogram-based frameworks like FedTree can be modified
to limit client-side visibility of globally aggregated statistics while
theoretically preserving the functionality.

TimberStrike exploits FedTree’s sharing of first-order and second-
order gradients (𝐺 and 𝐻 ). While server-side threats can already be
mitigated by existing defenses such as HE and secure aggregation,
mitigating this vulnerability on the client side requires a different
approach. To this end, we propose a theoretical restriction on the in-
formation broadcast by the server. In particular, the protocol should
ensure that the server transmits only the final split decision (or leaf
value) to the clients, while keeping the underlying global gradient
(𝐺) and Hessian (𝐻 ) statistics confidential. The training of a node
can be refined as follows.
Client side. For each feature 𝑎, each client 𝑖 computes and sends
to the server a local histogram 𝐻

(𝑖 )
𝑎 , which contains the gradients

and Hessian values of the split points proposed by the client 𝑖 .
Server side. Upon receiving 𝐻 (𝑖 )

𝑎 from each client 𝑖 , the server
performs the following steps:

(1) Aggregates the statistics for each proposed split point by
summing the histograms (as proposed in FedTree [33]):

𝐻𝑎 =
∑︁
𝑖∈[𝐶 ]

𝐻
(𝑖 )
𝑎 .

(2) Computes the gain G(𝑠) for each candidate split using the
formula in Equation (2) and selects the optimal split:

𝑠∗ = argmax
𝑠

G(𝑠),

or, if it is a leaf node, compute the leaf value.
(3) Broadcasts only the selected split 𝑠∗ or leaf value.

While we believe that this approach effectively eliminates the
information leakage vector exploited by TimberStrike —specifically,
access to global gradients and Hessians—we leave a detailed em-
pirical evaluation of its impact on federated learning performance
to future work. Moreover, this design may reduce transparency
and explainability, as clients no longer have visibility into the ratio-
nale behind the split decisions. Investigating this trade-off between
privacy and interpretability is also left as future work.

8 Limitations and Future Work
The computational complexity of our attack, particularly during
the Feature Range Inference phase, is theoretically exponential in
the worst-case scenario (see Section D for further details). Although
in our experiments this complexity is limited by the imposed time
constraint on the optimizer, it still represents a limitation.

Furthermore, as previously discussed, histogram-based mecha-
nisms allow each attacker controlling a client to see only aggregated
statistics, thereby limiting TimberStrike. Indeed, with this specific
mechanism, TimberStrike can only reconstruct the global training
dataset (i.e., the union of all clients’ datasets) rather than enabling
user-level reconstruction. Additionally, the interleaved nature of
the Bagging and Cyclic implementations affects the precision of
our reconstruction, as demonstrated by the results.

Our current work represents a first attempt to demonstrate pri-
vacy leakage risks in tree-based horizontal FL systems. Looking
ahead, important research directions emerge from both our guide-
lines on a mitigation strategy and the current limitations of our
approach. Therefore, we plan to implement a novel tree-based FL
system, for which we gave an insight in Section 7.

In addition, future research will explore heuristics to reduce the
exponential worst-case complexity and empirically evaluate our
attack on tasks beyond binary classification (see Section E for a
formalization of the multiclass classification task). Finally, future
work could explore how incorporating prior model knowledge
affects the success and robustness of adversarial strategies.

9 Conclusion
This work demonstrated that tree-based horizontal FL systems are
vulnerable to privacy leakage attacks by introducing TimberStrike,
a dataset reconstruction attack. Our attack exploits aggregated sta-
tistics and tree splits to recover sensitive data from other clients’
training sets. Our evaluation across five different SotA deployed
approaches and two tabular datasets from the healthcare domain
showed that TimberStrike achieves a Reconstruction Accuracy (RA)
comparable to SotA dataset reconstruction methods for ANNs on
tabular datasets. Moreover, while applying Differential Privacy dur-
ing training reduced the RA, it failed to fully neutralize our attack
while significantly compromising model utility. The results under-
score that federating standard XGBoost implementations inherently
expose privacy vulnerabilities. We suggest that future protocols
should retain the benefits of histogram aggregation while avoiding
the transmission of aggregated statistics to clients. Although our
approach provided critical insights, its limitations in computational
complexity and reconstruction granularity in certain implementa-
tions also highlighted opportunities for future research.
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Table 4: Reconstruction Accuracy (RA) after the First-Tree Probing phase (F-TP) [%], RA after the complete attack[%], F1-score,
and Area Under the ROC Curve (AUC-ROC) on the test set for the binary classification task on the Stroke Prediction Dataset.
Each result corresponds to the tree depth 𝑑 used during training.

Local Reconstruction Global Reconstruction

Depth FedXGBllr Flower XGBoost Bagging Flower XGBoost Cyclic NVFlare FedTree
RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC

3 74.54 84.28 0.215 0.635 72.01 76.00 0.213 0.755 69.74 73.05 0.237 0.748 74.28 85.93 0.165 0.767 74.53 84.91 0.207 0.766
4 75.93 85.90 0.218 0.628 74.78 80.33 0.215 0.750 72.48 79.90 0.157 0.738 75.90 86.86 0.203 0.774 75.79 86.47 0.200 0.764
5 76.41 87.47 0.183 0.620 75.89 77.02 0.185 0.750 75.22 80.57 0.158 0.731 76.35 85.90 0.203 0.767 77.27 85.99 0.209 0.766
6 77.54 85.85 0.157 0.617 76.13 80.97 0.176 0.746 76.21 79.51 0.162 0.760 76.85 83.66 0.164 0.775 77.29 87.63 0.110 0.767
7 78.40 86.53 0.105 0.608 76.99 82.24 0.138 0.731 76.55 83.33 0.176 0.734 77.06 82.07 0.103 0.744 78.59 85.85 0.130 0.768
8 79.19 85.64 0.097 0.614 78.70 82.63 0.160 0.751 77.74 82.98 0.158 0.709 76.80 82.80 0.128 0.761 79.03 87.56 0.108 0.769

Table 5: Reconstruction Accuracy (RA) (top 50% important columns) after the First-Tree Probing phase (F-TP) [%], RA (top
50% important columns) after the complete attack [%] for the binary classification task on the Stroke Prediction Dataset. Each
result corresponds to the tree depth 𝑑 used during training.

Local Reconstruction Global Reconstruction

Depth FedXGBllr Flower XGBoost Bagging Flower XGBoost Cyclic NVFlare FedTree
RA (F-TP) RA RA (F-TP) RA RA (F-TP) RA RA (F-TP) RA RA (F-TP) RA

3 76.50 88.89 75.95 85.74 76.02 83.55 75.90 94.10 77.15 92.23
4 79.10 91.34 78.65 83.83 76.63 87.13 78.29 91.55 78.71 92.33
5 78.52 95.63 80.42 84.00 77.79 88.40 79.11 93.05 80.42 93.84
6 79.59 91.95 78.82 86.92 77.46 86.66 80.20 89.42 81.99 94.71
7 82.64 95.15 81.25 87.59 78.98 89.63 78.80 86.79 83.38 92.49
8 82.72 91.34 82.95 91.05 79.45 89.38 75.70 86.57 83.74 94.80

Table 6: Reconstruction Accuracy (RA) after the First-Tree Probing phase (F-TP) [%], RA after the complete attack [%], F1-score,
and Area Under the ROC Curve (AUC-ROC) on the test set for the binary classification task on the Pima Indians Diabetes
Dataset. Each result corresponds to the tree depth 𝑑 used during training.

Local Reconstruction Global Reconstruction

Depth FedXGBllr Flower XGBoost Bagging Flower XGBoost Cyclic NVFlare FedTree
RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC

3 63.82 68.20 0.587 0.816 59.85 57.56 0.638 0.769 57.07 54.45 0.573 0.753 60.57 65.81 0.643 0.817 63.08 71.74 0.586 0.810
4 60.57 66.36 0.603 0.806 62.34 58.02 0.587 0.743 64.20 59.74 0.506 0.669 60.20 66.01 0.676 0.834 63.21 72.74 0.596 0.826
5 63.00 66.61 0.572 0.810 61.55 62.05 0.577 0.716 61.93 59.82 0.490 0.669 61.97 67.38 0.639 0.821 65.98 72.51 0.606 0.798
6 64.70 67.42 0.531 0.806 62.71 64.81 0.506 0.689 62.83 58.29 0.591 0.755 63.79 67.87 0.636 0.831 66.16 73.27 0.604 0.805
7 64.52 65.94 0.607 0.809 63.32 64.03 0.537 0.703 63.85 60.35 0.549 0.719 63.26 64.41 0.627 0.832 67.35 73.03 0.604 0.806
8 64.24 67.14 0.582 0.814 63.32 56.61 0.585 0.718 64.38 62.70 0.529 0.679 63.84 65.94 0.660 0.825 67.46 73.37 0.610 0.815

Table 7: Reconstruction Accuracy (RA) (top 50% important columns) after the First-Tree Probing phase (F-TP) [%], RA (top 50%
important columns) after the complete attack [%] for the binary classification task on the Pima Indians Diabetes Dataset. Each
result corresponds to the tree depth 𝑑 used during training.

Local Reconstruction Global Reconstruction

Depth FedXGBllr Flower XGBoost Bagging Flower XGBoost Cyclic NVFlare FedTree
RA (F-TP) RA RA (F-TP) RA RA (F-TP) RA RA (F-TP) RA RA (F-TP) RA

3 78.39 82.57 78.26 72.67 71.55 71.69 75.62 84.20 79.67 87.87
4 77.44 79.21 79.37 74.91 78.56 75.86 78.04 83.82 80.67 86.32
5 80.39 80.74 79.68 77.97 80.36 75.44 79.10 83.03 83.71 87.57
6 79.68 79.98 79.80 76.62 79.09 74.04 80.62 84.07 82.95 88.17
7 79.74 79.15 80.33 77.09 80.33 75.97 81.13 83.58 84.07 87.02
8 79.27 80.27 81.18 72.26 80.39 79.69 83.14 84.45 84.80 88.57
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Table 8: FedTree with Differential Privacy (DP) on different values of privacy budget 𝜖 (Both histogram-level and total 𝜖 are
reported). Reconstruction Accuracy (RA) after the First-Tree Probing phase (F-TP) [%], RA after the complete attack [%], F1-score,
and Area Under the ROC Curve (AUC-ROC) on the test set for the binary classification task on the Pima Indians Diabetes
Dataset. Each result corresponds to the tree depth 𝑑 used during training.

Depth No Defense 𝜖histogram = 1 | 𝜖total = 200 𝜖histogram = 0.25 | 𝜖total = 50 𝜖histogram = 0.125 | 𝜖total = 25

RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC RA (F-TP) RA F1 AUC

3 63.08 71.74 0.586 0.810 54.32 67.48 0.500 0.811 53.88 57.43 0.471 0.645 56.47 48.31 0.495 0.694
4 63.21 72.74 0.596 0.826 58.84 69.41 0.589 0.819 57.02 61.89 0.415 0.614 60.75 50.75 0.481 0.641
5 65.98 72.51 0.606 0.798 59.92 71.14 0.568 0.798 60.37 58.53 0.547 0.708 60.54 55.94 0.472 0.599
6 66.16 73.27 0.604 0.805 62.39 71.38 0.531 0.739 59.90 61.64 0.468 0.681 61.56 52.82 0.386 0.589
7 67.35 73.03 0.604 0.806 62.43 71.29 0.529 0.769 63.94 64.12 0.496 0.626 61.55 58.18 0.417 0.555
8 67.46 73.37 0.610 0.815 65.99 72.39 0.500 0.751 64.69 65.93 0.487 0.624 60.70 60.55 0.435 0.550

Table 9: FedTree with Differential Privacy (DP) on different values of privacy budget 𝜖 (Both histogram-level and total 𝜖 are
reported). Reconstruction Accuracy (RA) (top 50% important columns) after the First-Tree Probing phase (F-TP) [%], RA (top
50% important columns) after the complete attack [%] for the binary classification task on the Pima Indians Diabetes Dataset.
Each result corresponds to the tree depth 𝑑 used during training.

Depth No Defense 𝜖histogram = 1 | 𝜖total = 200 𝜖histogram = 0.25 | 𝜖total = 50 𝜖histogram = 0.125 | 𝜖total = 25

RA (F-TP) RA RA (F-TP) RA RA (F-TP) RA RA (F-TP) RA

3 79.67 87.87 72.01 84.77 59.69 72.37 68.05 60.21
4 80.67 86.32 71.55 84.12 69.73 75.95 74.00 65.93
5 83.71 87.57 74.62 86.24 74.59 70.30 74.02 70.30
6 82.95 88.17 78.20 87.02 75.43 75.05 77.74 63.22
7 84.07 87.02 77.93 85.97 78.77 78.75 76.17 70.98
8 84.80 88.57 81.38 86.92 81.35 81.76 75.08 75.24

privacy and other defenses, which may not be as effective as users
assume. This approach ensures that users can take informed secu-
rity measures. Responsible disclosure of threats, paired with the
provision of practical countermeasures, helps prevent adversaries
from gaining an asymmetric advantage. Our work follows this prin-
ciple by equipping the community with both an understanding of
potential risks and the means to mitigate them.

B Background
In this section, we complete the background by providing details
about Differential Privacy (DP).

B.1 Differential Privacy
Differential Privacy (DP) [17, 27] is a privacy definition that ensures
that the output of a computation does not reveal too much infor-
mation about any individual in the dataset. The idea is to add noise
to the output of the computation in such a way that the privacy of
the individuals is preserved. Formally, a randomized algorithm M
satisfies 𝜖-differential privacy if for all datasets 𝐷 and 𝐷 ′ that differ
in one element, and for all subsets of the output space 𝑆 :

Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 Pr[M(𝐷 ′) ∈ 𝑆] . (16)

The parameter 𝜖 , also called privacy budget, is a measure of the
privacy loss; the smaller the value of 𝜖 , the more privacy is pre-
served. The Laplace mechanism is a simple way to achieve DP by
adding Laplace noise to the output of the computation. The Laplace
mechanism is defined as:

M(𝐷) = 𝑓 (𝐷) + Lap(Δ𝑓
𝜖

), (17)

where 𝑓 (𝐷) is the output of the computation on the dataset 𝐷 ,
Δ𝑓 is the sensitivity of the function 𝑓 , and Lap(𝜆) is the Laplace
distribution with scale 𝜆.

B.1.1 FedTree 𝜖-DP implementation. The FedTree [33] protocol
implies the sharing of histograms at each round. Therefore, it imple-
ments 𝜖-DP at the level of histogram sharing. Unlike FL protocols
based on Artificial Neural Networks, where the gradients or model
weights are the objects of protection, in FedTree, the sensitive in-
formation resides in the histograms, which contain the aggregated
gradient and Hessian statistics used to construct tree nodes.

To satisfy 𝜖-DP for each shared histogram, FedTree follows the
procedure we explain below.
Gradient Clipping. First-order gradients and the second-order
ones are clipped with a threshold of 𝑅 and 2𝑅 respectively, to ensure
bounded sensitivity.
Laplace Noise Addition. Laplace noise is added to each element of
the histogram. Specifically, the noise is drawn from the Laplace dis-
tribution with mean 0 and scale 2𝑅

𝜖
, i.e., Lap(0, 2𝑅

𝜖
). This guarantees

that each shared histogram satisfies 𝜖-DP.
Histogram-Level Privacy. DP is applied per histogram, meaning
that the privacy budget 𝜖histogram governs the noise added to each
update (i.e., histograms), rather than to the entire model.
Total Privacy Budget. In their implementation2, FedTree allows
setting an aggregated privacy budget 𝜖total, which represents the
upper bound on the cumulative privacy loss across all trees. As
a result, this budget depends on the number of trees. Specifically,

2https://github.com/Xtra-Computing/FedTree
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given a value for 𝜖total, the privacy budget allocated to each leaf
node histogram, 𝜖histogram, is computed using the following formula:

𝜖histogram =
𝜖total

2𝑇
(18)

where 𝑇 denotes the number of trees in the model.

C Detailed Results
In this section, we provide the raw results of experiments in Sec-
tions 6.2 and 6.3. Specifically, the results regarding Section 6.2 for
the Stroke Dataset are presented in Tables 4 and 5, while the results
for the Diabetes Dataset are shown in Tables 6 and 7. Finally, the
results regarding Section 6.3 are presented in Tables 8 and 9.

D Attack Computational Complexity
In this section, we analyze the computational complexity of our
proposed reconstruction attack. As shown in Section 5, our attack
consists of two phases: First-Tree Probing and Feature Range Infer-
ence. In the following, we theoretically analyze the complexity of
each phase.
First-Tree Probing. In this phase, intermediate values are com-
puted for each leaf, requiring O(𝐿) operations, where 𝐿 denotes
the number of leaves in the DT and 𝑑 its depth. Additionally, for
each leaf, the DT is traversed to aggregate the corresponding fea-
ture range information. Since each traversal requires O(log𝑑) time,
processing all 𝐿 leaves results in an additional cost of O(𝐿 · log𝑑).
Therefore, the overall computational complexity of the First-Tree
Probing phase is O(𝐿 · log𝑑).
Feature Range Inference. This phase involves solving a series
of Mixed-Integer Linear Programming (MILP) problems for binary
decision-making. In general, MILP is NP-hard and has a worst-
case computational complexity that is exponential in the number
of binary decision variables. In our formulation, each variable 𝑥𝑖 𝑗
indicates whether sample 𝑖 is assigned to leaf 𝑗 . If every sample
between the 𝑛 samples in the dataset could be assigned to any
of the𝑚 leaves, the search space would contain O(𝑛 ·𝑚) binary
variables, leading to exponential complexity in the worst case. How-
ever, our model introduces constraints of the form 𝑥𝑖 𝑗 = 0 for all
𝑗 ∉ 𝐿𝑖 , where 𝐿𝑖 ⊆ 𝐽 denotes the subset of leaves that sample 𝑖 can
reach, based on inferred feature ranges. As the attack progresses
through successive trees, these feature ranges become increasingly
constrained, reducing the size of 𝐿𝑖 for each sample. This prunes
the effective search space, significantly mitigating the theoretical
worst-case complexity in practical scenarios. To further control
optimization time, during our experimental evaluation, we impose
a 10-minute time constraint on the MILP solver for each tree. This
ensures that the optimization phase remains computationally fea-
sible, even when the worst-case complexity is prohibitive, while
having a minimal impact on the overall reconstruction quality.

E Extension to Multiclass Classification
In Section 5, we provided a formalization of our attack against
federated gradient boosting binary classifiers. In this section, we
extend the theoretical formalization to multiclass classification by
highlighting the differences with the binary case.

Gradient Boosting Decision Trees (GBDT) [20] and XGBoost [10]
approach the multiclass classification task using a One-vs-Rest
(OvR) strategy [45]. In this approach, each boosting iteration trains
𝐾 trees—one for each of the 𝐾 classes—where each tree is trained to
distinguish one class from all the others. Unlike the binary classifi-
cation case, which typically uses the log loss function, the multiclass
setting employs a softmax loss function. This allows each class-
specific tree to be optimized by considering the predictions from
all 𝐾 class-specific trees from the previous boosting iteration.

Regarding federated implementations of multiclass algorithms,
their mechanisms are equivalent to those used for binary classifica-
tion. Therefore, the information available on the client side remains
the same as discussed in the binary case.

We now describe the two phases of TimberStrike (First-Tree Prob-
ing and Feature Range Inference) adapted to the multiclass setting.

E.1 First-Tree Probing
As in the binary classification case, the controlled client targets a
specific client and analyzes the first trees trained by that client. In
the multiclass scenario, this corresponds to analyzing the first 𝐾
trees, one for each of the𝐾 classes. Each of these trees distinguishes
between class 1 (the class 𝑐 for which the tree is trained) and class
0 (all other classes).

The base score in the multiclass case differs from that in the
binary case. Indeed, while in binary classification it is directly in-
terpreted as a probability, in the multiclass setting the base score
acts as a logit and is the same for all 𝐾 classes. Therefore, the initial
probability for each class is:

𝑝
(𝑐 )
𝑖

=
1
𝐾
, ∀𝑐 ∈ {1, . . . , 𝐾}.

As discussed in Section 5.1, the First-Tree Probing phase consists
of four steps, which we now describe in the multiclass context.
Inferring the Number of Samples per Leaf. After clients receive
the aggregated trees from the PS, the adversary can infer the number
of samples assigned to each leaf by analyzing the first𝐾 trees trained
by the victim client. In the multiclass setting, the loss function is
the softmax cross-entropy, and we use its derivatives [11, 21] to
compute the per-sample gradient and Hessian statistics.

For a sample 𝑖 and class 𝑐 , the gradient and Hessian value are:

𝑔
(𝑐 )
𝑖

= 𝑝
(𝑐 )
𝑖

− 1[𝑦𝑖 = 𝑐], ℎ
(𝑐 )
𝑖

= 2 · 𝑝 (𝑐 )
𝑖

· (1 − 𝑝 (𝑐 )
𝑖

), (19)

where 𝑝 (𝑐 )
𝑖

is the softmax probability for class 𝑐 . The total Hessian
𝐻

(𝑐 )
𝑗

in a leaf 𝑗 of the first tree for class 𝑐 can then be expressed as:

𝐻
(𝑐 )
𝑗

=

𝑁 𝑗∑︁
𝑖=1

ℎ
(𝑐 )
𝑖 𝑗

= 𝑁 𝑗 · 2 · 𝑝 (𝑐 )
𝑖

· (1 − 𝑝 (𝑐 )
𝑖

), (20)

and solving for 𝑁 𝑗 (the number of samples in the leaf) we get:

𝑁 𝑗 =
𝐻

(𝑐 )
𝑗

2 · 𝑝 (𝑐 )
𝑖

· (1 − 𝑝 (𝑐 )
𝑖

)
. (21)

Inferring the Label Distribution in the Leaves. After infer-
ring the number of samples 𝑁 𝑗 in a leaf 𝑗 , we recover the label
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distribution using the gradient for each leaf 𝑗 and class 𝑐:

𝐺
(𝑐 )
𝑗

= −
𝑙𝑒𝑎𝑓 _𝑣𝑎𝑙𝑢𝑒 (𝑐 )

𝑗

𝜂
· (𝐻 (𝑐 )

𝑗
+ 𝜆), (22)

where 𝜂 is the learning rate and 𝜆 is the regularization parameter.
Using the per-class aggregated gradient expression, we compute

the number of samples 𝑁 (𝑐 )
𝑗

for class 𝑐 in the leaf 𝑗 as:

𝑁
(𝑐 )
𝑗

= 𝑁 𝑗 · 𝑝 (𝑐 )
𝑖

−𝐺 (𝑐 )
𝑗
. (23)

Computing this for all 𝐾 classes (i.e., 𝐾 trees), we obtain the label
distribution in each leaf, where 1 represents the class 𝑐 for which
the tree has been trained, while 0 represents each other class.
Dataset Initialization. At this point, the adversary knows the
number of samples per leaf and their class distribution. As in the
binary case, they can initialize a dataset by placing the appropriate
number of samples with the inferred class labels into each leaf. Tree
paths are again used to constrain feature ranges, and samples are
initialized uniformly within those ranges.

However, in the multiclass setting, the “path traversal” used to
initialize feature ranges is not performed for every sample in the
first 𝐾 trees. Instead, for each client-specific tree corresponding to
class 𝑐 , only the samples with inferred label 𝑦𝑖 = 𝑐 are initialized
and assigned feature constraints.
Compute per-sample Statistics. Finally, for each inferred sample
and class, the adversary computes the probability score 𝑝 (𝑐 )

𝑖
with

the softmax function:

𝑝
(𝑐 )
𝑖

= softmax

(
𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 +

𝑇∑︁
𝑡=1

𝑙𝑒𝑎𝑓 _𝑣𝑎𝑙𝑢𝑒 (𝑐,𝑡 )
𝑖

)
, (24)

where leaf_value(𝑐,𝑡 )
𝑖

is the value of the leaf reached by sample 𝑖 in
the 𝑡-th tree for class 𝑐 , and 𝑇 is the number of boosting rounds.

The gradients and Hessian values are then computed using Equa-
tions (19), and are used in the second phase of the attack.

E.2 Feature Range Inference
In the multiclass setting, the second phase of TimberStrike pro-
ceeds similarly to the binary case. Since each boosting iteration
generates 𝐾 class-specific trees (one per class), the adversary solves
one optimization problem for each of these trees. However, thanks
to the OvR strategy, each tree can be treated as a binary classifier
that distinguishes class 𝑐 from the rest. Therefore, the same Mixed-
Integer Linear Programming (MILP) formalization described for the
binary case can be applied directly, provided that the appropriate
values of 𝑝 (𝑐 )

𝑖
, 𝑔 (𝑐 )
𝑖

, and ℎ (𝑐 )
𝑖

are used for each client-specific tree
corresponding to class 𝑐 . In addition, since the client-specific trees
are built in parallel during training, the per-sample statistics can be
updated only after both the optimization problem and the feature
range update have been completed for each of the 𝐾 trees in the
same boosting iteration.

As in the binary case, this iterative refinement improves the
accuracy of the reconstructed dataset by refining the feature ranges
based on the per-tree leaf assignments.
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