
HyDia: FHE-based Facial Matching with Hybrid Approximations
and Diagonalization

Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

University of Notre Dame

{smarti39,nkoirala,hberens,trozgony,mbrody,tjung}@nd.edu

Abstract
Secure facial matching systems play a crucial role in privacy pre-

serving biometric authentication, particularly in domains such as

law enforcement, border control, and healthcare. Traditional facial

matching systems require direct access to biometric data, raising

significant privacy concerns. This paper presents HyDia, a novel

protocol for scalable FHE-based facial matching with high computa-

tion and communication efficiencies, enabling secure one-to-many

facial matching without exposing biometric data in plaintext. Our

protocol adapts diagonalized matrix multiplication techniques to

accommodate highly imbalanced matrix computations, enabling

our novel non-rotational inner product algorithm that substan-

tially reduces the homomorphic computation overhead compared

to prior works. We further propose a hybrid approximation method

for homomorphic thresholding, which achieves better approxima-

tion than the state-of-the-art approach (Chebyshev approximation)

at the same multiplicative depths. More importantly, our design

does not reveal exact similarity scores to the querier; instead, it pro-

vides only a threshold-based match decision or matching sources,

strengthening privacy by withholding granular database informa-

tion. We implement HyDia and competing approaches and provide

both formal security proof and extensive experimental validation.

Our results show that HyDia achieves practical query times at scale,

significantly outperforming existing HE-based solutions in both

computation and communication overhead. Notably, HyDia is the

only viable FHE-based approach in common bandwidth settings

(2Mbps & 1Gbps), outperforming the state-of-the-art approaches by

5.2×-227.4× in end-to-end latency under different settings. Finally,

our experiments on real-face datasets show that HyDia incurs neg-

ligible accuracy loss, by achieving the same 𝐹1 score of 0.9968 as

the corresponding plaintext facial matching baselines. This work

advances the feasibility of privacy-preserving biometric identifica-

tion, offering a scalable, bandwidth-efficient, and accurate solution

for real-world deployments.

Keywords
Facial Matching, Biometric Security, FHE, CKKS

1 Introduction
Facial matching technologies are becoming increasingly prevalent

across fields such as law enforcement, healthcare, and banking.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(4), 585–604
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0146

However, biometric identifiers like facial images used in these tech-

nologies are classified as personally identifiable information (PII)

and subject to strict regulations on their storage and dissemination

[49]. Moreover, facial matching systems that perform biometric

matching using unencrypted data render that data vulnerable to

attacks [51], highlighting the need for a facial matching system

that operates entirely on encrypted data [5, 16, 19, 29].

In one case, a party would use facial matching to learn whether

a subject is a member of, e.g., a watch list of known or suspected in-

dividuals [67], which we call theMembership scenario. For example,

the authorities at the border or airport customs checkpoint regu-

larly employ facial matching technologies to determine whether

passengers appear in any watchlist datasets [50]. In another case, a

party would use facial matching to determine the specific identity

of a subject for the purposes of verification or authentication, which

we call Identification scenario. For example, healthcare facilities of-

ten employ facial matching technologies to identify patients when

they leave the facility and to track whether specific patients have

taken their required medications in time [47]. In both scenarios,

due to privacy concerns and regulations [7, 22, 47, 68], facial data

must be protected so that they do not transmit the PII and/or vi-

olate individuals’ privacy. Thus, achieving such functionality of

facial matching technologies while abiding by regulations requires

a facial matching system that can compare a query containing en-

crypted facial data to a database of facial datasets without ever

revealing the plain facial information or identifiers. These examples

highlight the emerging need for a facial matching system in which

both subject and database biometrics remain encrypted throughout

the computation. In such cases, large databases with hundreds of

thousands of entries require one to efficiently verify a subject’s en-

rollment status or confirm their identity within the database. Hence,

in time-sensitive environments (e.g., borders, customs, healthcare),

fast facial matching is crucial for maintaining safety, making low-

latency query processing critical.

Fully Homomorphic Encryption (FHE) is widely used in privacy-

preserving facial recognition due to its low communication over-

head (single-round communication and lower communication sizes

compared to other interactive protocols) and strong security. This

work focuses on FHE-based secure facial matching for its non-

interactivity and robustness. Unlike multi-round protocols (e.g., se-

cure multiparty computation or oblivious transfer) that suffer from

high latency, recent FHE advancements enable efficient computa-

tions, making FHE-based facial matching practical while providing

provable security guarantees against quantum-capable attackers.

Our approach follows the standard FHE-based framework as

outlined in Figure 1 (the entities Client C, Enroller E, and Server S
are defined in Section 4.1). More formally, we define two different

scenarios of the one-to-many facial matching problem,Membership

585

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0146

Proceedings on Privacy Enhancing Technologies 2025(4) Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

Facial Image

Secure Facial Matching Protocol

Se
rv

er

E
nr

ol
le

r

Facial Images Vector Preprocessing
& Encryption

Encrypted Facial
Image Vectors

 Homomorphic
 Query Algorithm

Encrypted Database
Template Vectors

Sender
Database

C
lie

nt
Receiver Camera

Feature
Extractor

Template Vector

Encryption Algorithm
Encrypted

Query
Result

Decryption
Algorithm

Match Result

Figure 1: A high-level FHE-based facial matching protocol

scenario and Identification scenario. In the membership scenario,

a client possesses an image of a subject’s face and wants to learn

whether or not their subject matches any images held by a server.

The result of the membership scenario is a simple true or false

statement given to the client by the server. In the identification

scenario, a client still possesses an image of a subject’s face, but

now the client wishes to learn the exact indices of any matching

images in the server’s database. The result of the identification

scenario is a list of indices of matching sources given to the client

by the server, which the client can use to learn the identity of their

subject, e.g., with an independent mapping reference.

Existing biometric recognition systems follow a common frame-

work for one-to-many facial matching [5, 16, 19]. The client first

extracts a real-valued facial feature vector (embedding) from an im-

age, which the server then compares against all stored embeddings

using a similaritymetric, typically cosine similarity [5, 16, 17, 19, 29].

Existing FHE-based systems often perform a vector-preprocessing

step before computing this similarity metric, to make computation

more efficient [16, 19, 29]. The server then determines a match

by thresholding similarity scores and returns either a binary re-

sult or matching indices. However, existing approaches [5, 16, 29]

suffer from high computation overhead, making large-scale deploy-

ments where a single template must be matched against hundreds

or thousands of templates impractical. Many methods compute

homomorphic cosine similarity using rotation-based summation

after ciphertext multiplication [5]. Homomorphic multiplication

produces non-linear ciphertexts, preventing direct rotation, a cru-

cial step in existing protocols. To compensate, relinearization is

required, but its high computational cost severely impacts perfor-

mance. As database size increases, this overhead becomes prohibi-

tive; our experiments showed that querying 32,768 subjects resulted

in an impractical four-minute delay, highlighting the inefficiency

of these approaches in reducing latency.

Existing works, such as GROTE [29] and Blind-Match [16], re-

duce server overhead through various optimizations and reduce the

number of ciphertext rotations (detailed below and in Section 3).

However, these methods do not eliminate the primary bottleneck,

i.e., the costly relinearization operation, which remains a major

source of overhead. Recently, HERS [19] introduced a stacked en-

coding scheme, fully eliminating rotations in similarity computation

and achieving state-of-the-art per-query server efficiency. However,

its design still incurs unnecessary relinearization operations and

requires the client to transmit large amounts of encrypted data

for each query, making it impractical with network bandwidths

≤1Gbps. In conclusion, prior approaches exhibit efficiency in either

computation or communication, but not both. Both are important

for achieving low end-to-end overhead.

Moreover, in HERS and all other approaches except GROTE,

the server reveals the exact cosine similarity scores for each data-

base vector, allowing the client to gauge precisely how close non-

matching entries are to the threshold. Similarity scores of feature

descriptors or facial templates can be used to reconstruct images

[39, 70], and recent deep generative models can successfully in-

fer faces from face recognition systems [36]. Therefore, individual

privacy will be at risk if similarity scores are disclosed. GROTE

obscures similarity scores but assumes the server’s dataset contains

at most one match per query. By withholding exact cosine simi-

larity scores, our work prevents adversarial inferences about the

server’s database distribution and provides better privacy without

compromising accuracy or efficiency.

We propose a novel FHE-based facial matching protocol, HyDia,

for one-to-many face matching. All parties are assumed to be semi-

honest, and they operate on homomorphically encrypted data, thus

eliminating the need to store unencrypted biometric data on the

server. HyDia significantly improves both computation and com-

munication efficiencies of state-of-the-art FHE-based approaches

while improving their privacy guarantees. We adapt the diago-

nal matrix encoding for square matrices to our scenario, requiring

highly imbalanced matrix multiplications. This encoding eliminates

unnecessary rotations and relinearizations during cosine similarity

computation, removes computation dependencies enabling paral-

lel computing, and minimizes per-query communication overhead.

Furthermore, we use homomorphic thresholding to hide similar-

ity scores. This prevents the client from gauging a non-matching

template’s proximity to the threshold, ensuring stronger privacy

than methods that expose full or partial similarity scores [16, 19]

and thus risk the score-based face reconstruction attacks [39]. To

ensure the homomorphic thresholding incurs negligible accuracy

loss and additional overhead, we combine two distinct approxima-

tion methods to reduce approximation errors while maintaining

low multiplicative depths of FHE. As a result, our protocol scales to

databases with up to one million facial templates with the best com-

putation and communication overhead with negligible accuracy

loss. Notably, ours is the first to achieve FHE-based one-to-many

face matching with low end-to-end latencies in practical network

settings (<10s with 1Gbps and <100s with 2Mbps), whereas others

are 5.2×-227.4× slower.

The contributions of this work are summarized as follows:

586

HyDia : FHE-based Facial Matching with Hybrid Approximations and Diagonalization Proceedings on Privacy Enhancing Technologies 2025(4)

Table 1: List of Notations

Notation Description

𝑁 Scheme ring dimension, must be power of 2

Φ𝑀 (𝑋) = 𝑥𝑁 + 1 Cyclotomic polynomial of order𝑀 = 2𝑁

R = Z[𝑋]/⟨Φ𝑀 (𝑋)⟩ Polynomial ring

E The Enroller party

C The Client party

S The Server party

ℓ Dimension of template vectors, must be power of 2

𝐾 Number of database template vectors

𝐷 = { ®𝑑0, ..., ®𝑑𝐾−1} Set of database template vectors

®𝑞 Query template vector

𝜃 ∈ [−1, 1] Cosine similarity match threshold

𝜅 Multiplicative depth allotted to threshold function

𝜆 Computational security parameter

M Set of ciphertexts storing encrypted database vectors

q Ciphertext storing encrypted query vector

• We adapt the commonly-used diagonal square matrix encoding

[26] for the facial matching scenario requiring highly imbalanced

matrix multiplications. HyDia supports efficient parallel-friendly

protocols with single-ciphertext queries, achieving efficiency in

both computation and communication.

• We combine different approximation methods to achieve a hybrid

approximation with up to 3.17× speedup and better approxima-

tion fidelity compared to state-of-the-art approximation methods.

Consequently, HyDia introduces negligible accuracy loss even

with homomorphic thresholding that conceals similarity scores.

• We implement HyDia and other state-of-the-art approaches for

rigorous evaluation. The source codes are released for repro-

ducibility at https://github.com/n7koirala/image_matching/. Ex-

tensive experiments using real-world and synthetic datasets con-

firm HyDia outperforms state-of-the-art FHE-based approaches

with minimum overhead in both computation and communica-

tion with negligible accuracy loss.

2 Preliminaries
2.1 Notation
We use the notations specified in Table 1 throughout this paper. In

all algorithmic and protocol descriptions, an overhead arrow (e.g.,

®𝑎) denotes an unencrypted real-valued vector, an overline (e.g., 𝑎)

represents a unit-length normalized variable, and boldface (e.g., a)
denotes a homomorphically encrypted ciphertext.

2.2 Fully Homomorphic Encryption
Fully Homomorphic Encryption (FHE) is an encryption scheme

that allows computations to be performed directly on encrypted

data without access to the secret key. Since Gentry’s introduction

of the first practical FHE construction in 2009 [23], several FHE

schemes have emerged, including BGV [10], BFV [9, 21], CKKS

[12], and TFHE [15]. For improved performance, encryption param-

eters are typically set to support only circuits of a certain bounded

multiplicative depth (leveled FHE), which we use in our protocol.

The Cheon-Kim-Kim-Song (CKKS) scheme excels in real-number

arithmetic applications like privacy-preserving facial matching, as

it supports approximate arithmetic on encrypted floating-point val-

ues rather than only on finite-field operations. CKKS operates on

elements of polynomial ring R = Z[𝑋]/⟨Φ𝑀 (𝑋)⟩, where Φ𝑀 (𝑋) is

the cyclotomic polynomial (𝑥𝑁 + 1) of order𝑀 = 2𝑁 (cyclotomic

index) and degree 𝑁 ∈ Z is the ring dimension.

A CKKS scheme supporting public-key encryption consists of

a tuple of the following probabilistic polynomial-time algorithms

and operations on ciphertexts:

• KeyGen(𝜆, 𝑑, 𝑝𝑎𝑟𝑎𝑚𝑠) → (𝑝𝑘, 𝑒𝑣𝑘, 𝑠𝑘): Given the parameters

𝑝𝑎𝑟𝑎𝑚𝑠 , KeyGen produces a public key 𝑝𝑘 , a private key 𝑠𝑘 and

a public evaluation key 𝑒𝑣𝑘 for homomorphic evaluations.

• Encrypt(𝑝𝑡, 𝑝𝑘) → ct: Given a public key 𝑝𝑘 and plaintext 𝑝𝑡 ∈
R, encryption algorithm sample 𝑢 ← 𝜒enc and 𝑒0, 𝑒1 ← 𝜒err and

outputs ct = (𝑐0, 𝑐1) ← 𝑢 · 𝑝𝑘 + (𝑝𝑡 + 𝑒0, 𝑒1) mod 𝑞.

• Decrypt(ct, 𝑠𝑘) → 𝑝𝑡 : Given ciphertext ct = (𝑐0, 𝑐1) in 𝑅2

𝑞 and

secret key 𝑠𝑘 ∈ 𝑅𝑞 , the decryption algorithm computes, 𝑝𝑡∗ =[
𝑐0 + 𝑐1 · 𝑠𝑘

]
𝑞
.

• Add(ct(1) , ct(2)) → ct(3) : The addition operation returns a new

ciphertext ct(3) representing the element-wise sum of all slots

in ct(1) and ct(1) . This operation is computed as, [𝑐0, 𝑐1] (1) +
[𝑐0, 𝑐1] (2) = [(𝑐 (1)

0
+ 𝑐 (2)

0
), (𝑐 (1)

1
+ 𝑐 (2)

1
)]

• Multiply(ct(1) , ct(2)) → ct(3) : The multiplication operation

returns a ciphertext ct(3) representing the element-wise product

of all slots of the ciphertexts ct(1) and ct(1) . It is computed as,

[𝑐0, 𝑐1] (1) · [𝑐0, 𝑐1] (2) = [𝑐 (1)
0
𝑐
(2)
0
, 𝑐
(1)
0
𝑐
(2)
1
+ 𝑐 (1)

1
𝑐
(2)
0
, 𝑐
(1)
1
𝑐
(2)
1
].

However, this results in a ciphertext comprised of three polyno-

mials, in R3
instead of R2

, which can be decrypted using the key

𝑠𝑘2
. In order to prevent the number of polynomials from growing

during successive multiplications, and to allow for decryption

with 𝑠𝑘 , Relinearize operation is used.

• Relinearize(ct′) → ct: The relinearization operation, also known
as key switching, converts a ciphertext in R3

to an equivalent

ciphertext in R2
, allowing decryption using the original private

key 𝑠𝑘 [1].

• Rescale(ct′) → ct: This operation shortens the lower bits in the

plaintext after multiplication.

• Rotate(ct′, 𝑖) → ct : For an integer 𝑖 , the rotation operation

returns a new ciphertext ct representing the message encrypted

by ct′, shifted by 𝑖 amount of slots [1]. For example, if 𝑖 = 1 and

ct′ is an encryption of the message𝑚 = [𝑥0, 𝑥1, ...𝑥𝑁 /2−1], then
the resulting ciphertext ct will be an encryption of the rotated

message:𝑚 ≫ 1 = [𝑥𝑁 /2−1, 𝑥0, 𝑥1, ...𝑥𝑁 /2−2]
SIMD. A key feature of lattice-based FHE, including CKKS, is its

Single Instruction Multiple Data (SIMD) capability [61]. A plaintext

polynomial in the ring R = Z[𝑋]/⟨𝑋𝑁 + 1⟩ with 𝑁 -degree cyclo-

tomic polynomial encodes 𝑁 /2 complex values via the canonical

embedding. Thus, a single homomorphic operation acts element-

wise on all 𝑁 /2 values in parallel, efficiently batching multiple

entries into one ciphertext with 𝑁 /2 slots.

2.3 Facial Feature Extractors
Facial feature extractors are models based on Deep Convolutional

Neural Networks that map facial images to template vectors [17].

These feature extractors have been engineered to map facial images

to template vectors that possess high similarity for images of the

same subject, and low similarity for images of distinct subjects

[63]. Therefore, facial feature extractors are crucially employed

in the facial matching task to convert facial images into vectors

587

https://github.com/n7koirala/image_matching/

Proceedings on Privacy Enhancing Technologies 2025(4) Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

for comparison [5, 16, 29]. Among the state-of-the-art examples

of facial feature extractors are CosFace [69], SphereFace [45], and

ArcFace [17], all of which employ cosine similarity as the similarity

metric to be used in identity classification [16]. Cosine similarity

is often used in tasks involving vector matching, like facial recog-

nition and text embedding similarity, because it compares only

the direction of vectors, ignoring their magnitude. Note that, if

®𝑥 and ®𝑦 are vectors of dimension ℓ , their cosine similarity score

is cos(®𝑥, ®𝑦) = ∑ℓ
𝑖=0
(®𝑥 [𝑖] ®𝑦 [𝑖])/(| | ®𝑥 | | | | ®𝑦 | |) = ∑ℓ

𝑖=0
(𝑥 [𝑖]𝑦 [𝑖]) where

𝑥 = ®𝑥/| | ®𝑥 | | is the unit-length normalization of ®𝑥 . Therefore, when
both vectors are unit-length normalized, computing their cosine

similarity is equivalent to their inner product. To determinewhether

two facial images match or not, we compare their template vectors’

cosine similarity score and compare it against a match threshold

𝜃 ∈ [−1, 1]. Our system defines that two faces are matching if and

only if their template vectors ®𝑥 and ®𝑦 satisfy cos(®𝑥, ®𝑦) ≥ 𝜃 .

3 Related Work
3.1 Non-FHE Facial Matching Approaches
Facial recognition is a well-studied topic [17, 18, 63, 64, 69]. Tra-

ditional non-FHE approaches for secure facial matching include

template-protection and cancelable-biometric schemes that apply

non-invertible transforms [25, 60], but accuracy drops and trans-

form specific attacks remain a concern in such methods [41, 54].

Biometric cryptosystems couple templates with cryptographic keys

[34] yet are sensitive to intra-user variability. Partial HE schemes

(e.g., Paillier) support only limited encrypted operations [62], con-

fining protocols to linear scoring. SMPC and garbled circuits offer

general secure computation [20, 59] but incur high communication

and complexity for high-dimensional face embeddings.

FHE-based methods for secure-facial matching address critical

limitations by enabling arbitrary computations on encrypted data

under a single-party trust model. While non-FHE techniques often

sacrifice accuracy (e.g., template transformations) or functionality

(e.g., restrictedHE operations), FHE preserves the native accuracy of

facial matching algorithms without exposing raw templates. How-

ever, FHE also introduces significant computation overhead and

requires careful optimizations to mitigate latency, and challenges

less pronounced in SMPC or garbled circuits-based methods.

In the following sections, we present in-depth reviews of state-

of-the-art FHE-based methods for facial template matching.

3.2 Baseline FHE Approach
The task of securely matching facial template vectors using homo-

morphic encryption has been well-studied, and a naive approach to

computing template similarities is well-established in the literature.

This approach was first outlined by Boddeti et al. [5] to handle the

1:1 template matching task, and it utilized the BFV [21] scheme.

Their method utilizes packing (batching) to encrypt multiple

values into a single ciphertext, leveraging SIMD properties for

efficient element-wise operations. Given a query and a database

template vector, both are unit-length normalized and packed into

separate ciphertexts. A single multiplication computes element-

wise products, followed by log
2
(ℓ) rotations and additions to sum

the slots, yielding the cosine similarity score in the first slot of

Algorithm 1 Literature Baseline Inner Product Algorithm

1: procedure Naive-InnerProduct(d, q)
2: Denote output score ciphertext as s
3: s← Multiply(d, q)
4: Relinearize(s)
5: Rescale(s)
6: for 𝑖 = 0, 1, ..., log

2
(ℓ) do

7: s← Add(s, Rotate(s, 2𝑖))
8: return s

the output ciphertext [5]. This process is outlined in Algorithm 1,

where q and d hold the packed, normalized vectors.

Ibarrando et al. [29] extended the baseline approach to the 1 : 𝐾

matching task using CKKS [12] instead of BFV. Given that 𝑁 /2 > ℓ

and both are powers of two, their method efficiently packs 𝑁 /2ℓ
template vectors into a single ciphertext. By normalizing all vectors

and packing the database templates sequentially while replicating

the query vector in another ciphertext, cosine similarity scores can

be computed in a similar manner as before using Algorithm 1. A key

limitation of Algorithm 1 is that similarity scores appear at intervals

of ℓ slots, misaligned with database vector positions in d𝑖 , leaving
the remaining slots with meaningless values. Therefore, in order

to merge the similarity scores into the minimum required number

of ciphertexts, S must use plaintext masking multiplications, addi-

tions, and rotations [29]. This score-merge step requires significant

computational time and consumes at least one extra level of mul-

tiplicative depth. To complete the membership and identification

scenarios using the baseline approach, S first applies Algorithm 1

to compute and merge similarity scores. Then, it homomorphically

compares each score to a match threshold, setting values above the

threshold to 1 and others to 0. In the membership scenario, S sums

these values into a single ciphertext for C. In the identification

scenario, it directly returns the vector of thresholding results.

A major drawback of the baseline score computation algorithm

is its reliance on rotation-based summation, which requires re-

linearization and rescaling after every multiplication [56]. Since

each score ciphertext s holds only 𝑁 /2ℓ similarity scores, S must

perform ⌈2𝐾ℓ/𝑁 ⌉ relinearization and rescaling operations for a

query involving 𝐾 database vectors. By eliminating rotation-based

summation, our protocol reduces this overhead to just ⌈2𝐾/𝑁 ⌉
operations. We provide a thorough comparison of the complexity

of the baseline with our work in Section E.

3.3 GROTE
Ibarrando et al. [29] propose GROTE, a secure facial matching sys-

tem that enhances the baseline approach by incorporating homo-

morphic group testing. Instead of applying costly sign approxima-

tion functions to every cosine similarity score, GROTE approxi-

mates the maximum score within groups and compares only these

representative values against the match threshold, reducing com-

putation overhead. Their key contribution was a homomorphic

approximation of the maximum element of a vector. Using the 𝛼-

norm approximation, where max(z) ≈
(∑

𝑖 |z𝑖 |𝛼
)

1/𝛼
for a large 𝛼 ,

they simplified computation by omitting the root, instead approx-

imating max(z)𝛼 directly. One major drawback of GROTE is its

restrictive assumption that a query template vector can match at

588

HyDia : FHE-based Facial Matching with Hybrid Approximations and Diagonalization Proceedings on Privacy Enhancing Technologies 2025(4)

most one database template vector, which limits its applicability in

scenarios where multiple matches may exist [29]. This assumption

is not realistic in many real-world use cases, where S’s database
could contain multiple images of the same subject. Additionally,

GROTE inherits the inefficiencies of the baseline approach. By rely-

ing on the naive inner product computation from Algorithm 1, it

incurs excessive relinearization and requires a costly score-merge

operation, leading to higher computation latency for the server.

3.4 Blind-Match
Choi et al. [16] present Blind-Match, an FHE-based 1:𝐾 identi-

fication protocol. Each template vector is split into subvectors,

with each subvector packed into a separate ciphertext; a custom

cosine-similarity routine then computes scores using fewer addi-

tions and rotations than the baseline approach.

Blind-Match defines an encoding scheme that partitions each

database template vector into 𝑁𝑖𝑛 subvectors, each of length ℓ/𝑁𝑖𝑛 .
During enrollment, 𝑁𝑖𝑛 ciphertexts are created, and each subvector

is placed at the same position of a different ciphertext. With this

encoding scheme, (𝑁 · 𝑁𝑖𝑛)/2ℓ database template vectors can be

packed into each group of 𝑁𝑖𝑛 ciphertexts. To initiate a query, C
encrypts the query and transmits it to S. S then applies plaintext

masking multiplications to expand the ciphertext into 𝑁𝑖𝑛 cipher-

texts, each containing duplicate copies of the corresponding query.

For each group of 𝑁𝑖𝑛 ciphertexts, S initializes an output score

ciphertext c𝑜𝑢𝑡 and iteratively accumulates the rescaled product of

each ciphertext and its corresponding expanded query ciphertext.

S performs log
2
(ℓ/𝑁𝑖𝑛) rotations and additions to aggregate slot

values within the subvectors of c𝑜𝑢𝑡 . Consequently, the 𝑁𝑖𝑛 indices

store similarity scores, while other indices contain just noise [16].

S packs the similarity results with a score-merge algorithm and

returns the ciphertext to C, who decrypts and interprets the result.

Like prior work, Blind-Match relies on black-box multiplications,

requiring S to relinearize and rescale after each multiplication.

An algorithm that could eliminate these rotation operations dur-

ing score computation could significantly reduce relinearization

overhead and latency [65]. Blind-Match also relies on 𝑁𝑖𝑛 query

ciphertexts instead of a single ciphertext, increasing S’s compu-

tation due to a higher multiplicative depth, multiplications, and

rotations for query expansion. Finally, Blind-Match inherits the

baseline’s dependence on a score-merge algorithm, necessitating

an additional computationally expensive compression step due to

its inability to produce similarity scores in sequential order.

3.5 HERS
In [19], Engelsma et al. introduced HERS, a secure facial matching

system using the BFV scheme. They introduced a novel database

encoding technique that allows for efficient computation of co-

sine similarity scores in the encrypted domain. From a high-level

perspective, the encoding scheme and similarity computation al-

gorithm of HERS is analogous to that of Blind-Match with 𝑁𝑖𝑛 = ℓ .

HERS defines an encoding scheme that packs each dimension of the

database template vectors into a separate ciphertext. Therefore, a

single template vector would be encoded into ℓ plaintexts with the

𝑖-th slot of the vector placed into the first slot of the 𝑖-th plaintext.

Using SIMD, HERS can pack 𝑁 /2 template vectors into each group

of ℓ plaintexts, such that the 𝑖-th slot of the 𝑗-th template vector is

placed at the 𝑗-th slot of the 𝑖-th plaintext [19]. Once all database

template vectors have been encoded, each group of ℓ plaintexts can

be encrypted and transmitted to S.
Unlike Blind-Match, where S performs query expansion within

the encrypted domain, HERS requires C to preprocess, encrypt, and

transmit all ℓ expanded query ciphertexts. Since query and database

vectors are encrypted with their slots aligned across ciphertexts,

HERS can compute similarity scores, avoiding ciphertext rotation

operations. The similarity scores between the 𝑁 /2 database vectors

within the ℓ ciphertexts and the query vector can be computed as

s =
∑ℓ−1

𝑖=0
(q𝑖 · d𝑖), where similarity score between the query vector

and the 𝑖-th database vector is located at the 𝑖-th slot of s. This
score computation algorithm eliminates many rotation operations

and an expensive score-merge operation. While this approach re-

duces computation overhead on the server, it significantly increases

communication overhead for C, as a separate ciphertext must be

transmitted for each dimension of the query template (ℓ cipher-

texts/query) significantly increasing its end-to-end query latency

and making it impractical in bandwidth-constrained environments.

4 Definitions
4.1 System Model
To define the 1:𝐾 secure facial matching problem, we first introduce

the three involved parties: enroller E, server S, and client C.
E is a party responsible for setting up the encrypted facial match-

ing database, held by S. To add a subject to the secure facial match-

ing database, E acquires a photo of their face and uses a facial

feature extractor to generate a facial template vector, called a data-
base template vector. Once the database template vectors have been

collected and preprocessed, E will encrypt them using the public

key and provide the resulting ciphertexts to S for storage. E partici-

pates only in system setup and plays no role in per-query execution.

In prior work, E is sometimes called the "biometric provider" [29],

or merged with C into a single "client" entity [16, 19]. In prac-

tice, E could represent a law enforcement agency uploading facial

embeddings of wanted individuals to a secure centralized database.

S maintains a collection of encrypted facial templates called

database template ciphertexts that are supplied by E and homomor-

phically evaluates all queries over this dataset. In deployment, S
could be a central party or server that stores a list of suspected

individuals and their encrypted facial information.

Finally, C is a party possessing a facial image of a subject. C
generates a corresponding facial template vector, called the query
template vector, which they preprocess and encrypt using the public
key. The resulting ciphertext is called the query ciphertext. C wishes

to learn whether their subject matches with any of the subjects

stored in the database held by S. We define two different queries C
can perform on S’s database: theMembership scenario and the Iden-
tification scenario. In the membership setting, C learns a single bit

indicating whether the query vector matches any database template.

In the identification setting, C obtains the indices of all matching

templates, revealing the associated identities. In a real-world se-

cure facial matching system, C could be a TSA agent at an airport

security terminal, submitting a traveler’s photo for screening.

589

Proceedings on Privacy Enhancing Technologies 2025(4) Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

4.2 Adversary and Threat Model
We assume a semi-honest threat model where C and S are both ex-

pected to be honest and curious. They execute the protocol without

deviation but attempt to learn as much information as possible.

We distinguish the E from the S to reflect two deployment reali-

ties that arise in practice. First, it allows our protocol to decentralize

the enrollment process and centralize storage and computation. It

allows field offices or mobile agents (e.g., state Department of Mo-

tor Vehicles, individual DHS agents) to capture and preprocess

biometric samples, as these parties might lack the infrastructure

or resources to host millions of templates or perform large-scale

homomorphic evaluations. Second, regulatory frameworks such as

the GDPR and CCPA mandate encryption of personally identifiable

information (PII) during transmission and storage. Hence, confining

encryption to the E and delegating all subsequent storage and com-

putation to the S guarantee end-to-end ciphertext protection and

avoid redundant PII replication across devices, reducing the attack

surface. We therefore model E and S as distinct roles, even when

they are operated under the same institutional umbrella to capture

common real-world deployments and privacy requirements.

In order to satisfy the privacy concerns discussed in the exam-

ple use cases (see Section 1), we impose significant restrictions on

the information accessible to S and C. All facial template vectors

possessed by C and S must be encrypted using a public key FHE,

where only C possesses the private decryption key. With this re-

striction, we ensure that S cannot access the PII of C’s subject, or
the PII of any subjects in S’s database. Since C never has access

to the database template vectors, unencrypted or encrypted, we

ensure that C can never access the PII of S’s subjects. We also

require S to compute all queries in the encrypted domain, such

that only C can access the query results in their unencrypted form.

E is a trusted entity that views the database template vectors in

their unencrypted form, and C must be trusted to view its own

query template vector in its unencrypted form. We assume there is

no collusion between C, S, and E.
In the identification scenario, we require that C cannot learn

the exact cosine similarity scores between its query vector and all

database vectors. Instead, C is only given access to the indices of

the matching database template vectors within the database of S.
With these restrictions, our adversary/threat model closely re-

sembles some previous works [29], and slightly deviates from other

previous works [16, 19] since we do not leak exact similarity scores

to C and we separate the enroller and client parties. As mentioned

before, these protocols require C to perform the responsibilities

of E, but such a setting requires C to enroll and, therefore, have

plaintext access to every database template vector. Our protocol

has a much stronger threat model and does not allow such plaintext

access; instead, it entrusts E for encrypting the database vectors

separate from C.

4.3 Protocol and Security Definitions
Definition 1 (Secure Facial Matching Protocol Π). Let Π =

(Setup, Enroll,Query,Compute, Extract) be a protocol between three
parties: Enroller E, Server S, and Client C.

• Setup(1𝜆, 𝑑) → (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑝𝑘, 𝑠𝑘, 𝑒𝑣𝑘): C initializes CKKS param-
eters for security level 𝜆 and depth 𝑑 [3], obtains 𝑠𝑘 , and distributes
𝑝𝑘 to E and 𝑒𝑣𝑘 to S.
• Enroll(𝑝𝑘, 𝐷) → M: Enroll is run by E. It takes as input a database
𝐷 and outputs the vectors in the correct encrypted formatM.
• Query(𝑝𝑘, 𝑞) → q: Query is run by C. It takes as input a query
vector 𝑞, then formats and encrypts it into an encrypted output q.
• Compute(𝑒𝑣𝑘,M, q) → ct: Compute is run by S, which outputs
the final encrypted result ct.
• Extract(𝑠𝑘, ct) → 𝑟𝑒𝑠 : Extract is executed by C to decrypt and
obtain the facial matching results 𝑟𝑒𝑠 in plaintext form.

We consider security against a semi-honest adversary A con-

trolling S. We assume no collusion between parties, meaning the

adversary A only controls S and cannot coordinate with other

parties to gain additional information. Due to this no-collusion

assumption, the adversarial S never receives decrypted data during

the protocol execution. Thus, we need only consider the IND-CPA

security model rather than IND-CPA with access to the decryption

oracle (IND-CPA
𝐷
[44]).

The real view VIEWreal consists of encrypted protocol values

(M, q, ct, 𝑟) where M represents the encyrpted database, q repre-

sents the encrypted query, and ct respresents the encrypted result.

The simulated view VIEWSIM of a probabilistic polynomial-time

simulator SIM consists of encryptions of randomly sampled values

(SIM.M, SIM.q, SIM.ct, 𝑟) where SIM.M = Encrypt(𝑅𝐷) for 𝑅𝐷
$←

Z𝑙×𝑑𝑞 , SIM.q = Encrypt(𝑟𝑞) for 𝑟𝑞
$← Z𝑑𝑞 , and SIM.ct = Encrypt(𝑟𝑠)

for 𝑟𝑠
$← Z𝑙𝑞 .

Definition 2 (Security of Protocol Π). Protocol Π is consid-
ered secure against semi-honest adversaries if for every PPT adversary
A controlling party S, there exists a PPT simulator SIM such that for
all PPT distinguishers D:

| Pr[D(VIEWreal) = 1] − Pr[D(VIEWSIM) = 1] | ≤ negl(𝜆)

where VIEWreal = (M, q, ct, 𝑟) represents the view of server S during
a real protocol execution with database 𝐷 , query 𝑞, and random coins
𝑟 , and VIEWSIM = SIM(1𝜆) represents the simulated view.

5 Protocol Description: HyDia
Our novel approach to the secure 1 : 𝐾 facial matching task re-

lies on a diagonal representation of database vectors in the en-

crypted domain, along with hybrid approximations that minimize

approximation errors without significant multiplicative depths. The

packed diagonal representation enables the extension of an opti-

mized matrix-vector multiplication algorithm to compute 𝐾 cosine

similarity scores with only ⌈2𝐾/𝑁 ⌉ relinearization and rescaling

operations, compared to ⌈2𝐾ℓ/𝑁 ⌉ − ⌈2𝐾/𝑁 ⌉ in the baseline ap-

proach. Our matrix-vector multiplication algorithm also requires a

constant ℓ − 1 rotations, as opposed to over ⌈2𝐾ℓ/𝑁 ⌉ · log
2
(ℓ) in

the baseline. A complete complexity comparison with the baseline

is given in Table 15 (E). Our computation algorithm also allows

for greater parallelism and reduced communication overhead com-

pared to existing state-of-the-art approaches [16, 19]. The hybrid

approximations allow homomorphic thresholding with lower er-

rors with comparable multiplicative depths compared to existing

590

HyDia : FHE-based Facial Matching with Hybrid Approximations and Diagonalization Proceedings on Privacy Enhancing Technologies 2025(4)

Algorithm 2 Database Vector Diagonal Encoding

1: procedure Diagonalize(𝑀 = { ®𝑀0, ..., ®𝑀ℓ−1})
2: Denote an unencrypted ℓ × ℓ matrix as 𝐷

3: for 𝑖 = 0, ..., ℓ − 1 do
4: for 𝑗 = 0, ..., ℓ − 1 do
5: 𝐷 [𝑖] [𝑗] ← 𝑀 [𝑗] [𝑖 + 𝑗 mod ℓ]
6: return 𝐷

algorithms. In sum, our novel HyDia minimizes end-to-end per-

query computation time and communication costs compared to

state-of-the-art methods while surpassing existing approximation

techniques in both accuracy and efficiency.

The high-level idea for our method begins by considering the

task of computing 1 : 𝐾 cosine similarity scores as a singular rect-

angular matrix-vector multiplication. Given a matrix of normalized

database vectors 𝐷 ∈ R𝐾×ℓ and a normalized query vector 𝑞 ∈ Rℓ ,
we can compute the scores ®𝑠 ∈ R𝐾 between the query and data-

base vectors as ®𝑠 = 𝐷𝑞. Halevi and Shoup [26] pointed out that, by

diagonalizing a square matrix, a square matrix-vector multiplica-

tion can be computed efficiently using the element-wise addition,

multiplication, and rotation operations supported by FHE schemes.

However, in many real-world 1 : 𝐾 facial matching scenarios,

𝐾 will be substantially larger than ℓ , requiring cosine similarity

scores to be computed via rectangular matrix-vector multiplication

rather than a square one. Therefore, we extend Halevi and Shoup’s

diagonal multiplication algorithm to the 1 : 𝐾 facial matching task

by developing an encoding technique which efficiently packs many

square diagonalized matrices of template vectors into ciphertexts,

allowing HyDia to efficiently perform rectangular matrix-vector

multiplication using Halevi and Shoup’s optimized algorithm. As

we will show, our packed diagonal encoding will allow us to elimi-

nate intermediate rotation operations during our score computation

algorithm, just as the stacked encoding of HERS eliminates inter-

mediate rotations. Crucially, our packed diagonal encoding will

only require a single ciphertext to be generated by the client per

query, as opposed to ℓ ciphertexts in HERS, greatly reducing client

overhead and communication costs.

5.1 Database Encryption with Diagonalization
Similar to other works utilizing novel encodings [16, 19], our pro-

tocol begins with E preprocessing and encrypting the database

template vectors as a one-time step.

During this diagonal encoding step, E considers ℓ template vec-

tors at a time, denoted as a matrix 𝑀 = { ®𝑀0, ..., ®𝑀ℓ−1} (if fewer
than ℓ vectors remain, we append dummy-zero-value vectors to𝑀).

More formally, Algorithm 2 defines how individual slots of𝑀 are

encoded into the diagonal matrix 𝐷 . Note that a mod operation is

applied to the column indices so that each diagonal vector wraps

around the columns of the matrix𝑀 . E defines an ℓ × ℓ matrix𝑀

such that the 𝑖-th row of 𝑀 stores the 𝑖-th diagonal vector of 𝐷 .

Figure 2 illustrates an example of this diagonal encoding for ℓ = 4,

with the rows of𝑀 being database template vectors, and the rows

of 𝐷 being diagonal vectors of𝑀 .

In order to perform the similarity score computation algorithm,

each row of 𝐷 must be encrypted into a separate ciphertext, re-

quiring ℓ mostly-unfilled ciphertexts. However, in the relevant case

M[i][j] = D[j][(j+i)(mod N)]

M =
0

1

2

3

5

4

6

87

10

9

11

15

12

13

14

D =

0 1 2 3

5 6

8

7

10 11

1512 13 14

4

9

 = 4
Figure 2: Example of diagonal matrix encoding

Ma =

Mb =

C =

0

1

2

3

5

4

6

87

10

9

11

15

12

13

14

16

17

18

19

21

20

22

2423

26

25

27

31

28

29

30

Ma Mb

0

1

2

3

5

4

6

87

10

9

11

15

12

13

14

16

17

18

19

21

20

22

2423

26

25

27

31

28

29

30

Figure 3: Example of side-by-side matrix packing via SIMD

where 𝐾 is larger than ℓ , we split the template vectors into ⌈𝐾/ℓ⌉
matrices, then diagonalize each into {𝑀0, 𝑀1, ...} before E can en-

code the template vectors. The rows of diagonal matrices can be

packed in a side-by-side manner in each of the ℓ ciphertexts. More

specifically, the 𝑖-th ciphertext in this scenario will include the 𝑖-th

row of 𝑀0, followed by the 𝑖-th row of𝑀1, until the ciphertext has

been completely filled. Figure 3 illustrates how multiple diagonal-

ized matrices can be packed side-by-side, such that every row of the

resulting concatenation 𝐶 is a plaintext that can then be encrypted

into a singular ciphertext.

5.2 Single-Ciphertext Query Generation
To begin an individual query, C preprocesses and encrypts the

template vector corresponding to the query subject. In our protocol,

C completes this step exactly as they would in the FHE baseline

approach (Section 3.2). Given a template vector of length ℓ , C first

unit-length normalizes the vector in the unencrypted domain. Then,

C packs a plaintext with (𝑁 /2)/ℓ copies of the query vector in a

sequential manner, where 𝑁 /2 is the number of elements that can

be encrypted/packed into a single ciphertext via SIMD capabilities

of the CKKS scheme. C then encrypts this packed plaintext using

the public key of the system, and transmits the single resulting

ciphertext to S as their query. A key advantage of HyDia is that it

requires only a single ciphertext to be encrypted and transmitted

per query, whereas other state-of-the-art methods [16, 19] require

multiple (up to 512) ciphertexts for a single query.

5.3 Optimized Similarity Computation
During the setup of the system, we ensure that C provides S with

the generated multiplication and rotation keys. Therefore, once C
has provided S with the encrypted query vector as described above,

S can proceed to compute the cosine similarity scores between

the query vector and each database template. S reuses the same

multiplication and rotation keys for each query C provides; C does

not need to transmit its keys more than once.

591

Proceedings on Privacy Enhancing Technologies 2025(4) Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

Algorithm 3 Diagonal Similarity Score Computation

1: procedure Diagonal-Scores(D,Q)
2: Denote vector of ℓ ciphertexts as S
3: for 𝑖 = 0, ..., ℓ − 1 do ⊲ Loop run in parallel

4: S𝑖 ← Multiply(D𝑖 ,Q𝑖)
5: for 𝑖 = 1, ..., ℓ − 1 do
6: S0 ← Add(S0, S𝑖)
7: Relinearize(S0)
8: Rescale(S0)
9: return S0

Algorithm 4 Secure Thresholding with Hybrid Approximation

1: procedure Homomorphic-Threshold(x, 𝜃, 𝜅) ⊲ x is an encrypted

score

2: x′ ← ChebyshevApprox(x, 𝜅 − 4) ⊲ Approximate 𝑐′ (𝑥)
3: x′′ ← 𝑓4 (x′) ⊲ Refine boundary errors via 𝑓4

4: ct← Add(x′′, 1) ⊲ Shift results along y-axis

5: return ct

S begins the similarity computation by performing and storing

all ℓ distinct rotations of the query ciphertext. In Halevi and Shoup’s

diagonal transform algorithm, the transformed vector needs to be

rotated ℓ times, such that each rotation can be used in a separate

product [26]. However, in the case where the database possesses

many batches of ℓ ciphertexts (i.e. 𝐾 > 𝑁 /2), we would need to

apply this algorithm several times. To prevent S from repeating

the same rotations of the query ciphertext, we compute and store

all ℓ distinct rotations immediately. While performing ℓ − 1 rota-

tion operations would typically be computationally expensive, we

can leverage the "hoisting" optimization [27] and also perform the

rotations in parallel to make this step efficient. Since we wish to

rotate the same vector by multiple different rotation factors, the

hoisting optimization allows us to precompute portions of the rota-

tion operation which would be identical for all different factors [33].

Therefore, we only need to perform those expensive portions once

as opposed to ℓ − 1 times. By using hoisted rotations, we are able to

reduce the server overhead by a constant amount, averaging over

6 seconds in both scenarios, with Table 11 in Section C displaying

the full comparison. We provide a more detailed explanation on

the working of hoisting optimization in Section D. In addition to

hoisting, we can perform all ℓ − 1 rotations in parallel, with each

thread being able to use the same common precomputed values.

S now possesses a vector of ciphertexts 𝑄 , where each 𝑄𝑖 is the

query ciphertext rotated left by 𝑖 . S then performs Algorithm 3 to

compute similarity scores between the query ciphertext and each

batch of ℓ database ciphertexts possessed by S. Algorithm 3 is an

FHE-based implementation of Halevi and Shoup’s diagonal matrix-

vector multiplication algorithm introduced earlier, extended in this

work to handle rectangularmatrices.We provide a correctness proof

of this extended algorithm in Section A. The result of Algorithm 3

is a ciphertext containing the encrypted similarity scores between

the query template and the database templates encrypted within

that specific batch.

One of our most important novel optimizations is not to use

black-box multiplications in our score computation algorithm, un-

like previous methods. Instead, our protocol multiplies the query

and database ciphertexts without immediately relinearizing or

rescaling them. Since we can add three-element ciphertexts with

larger scaling factors, we delay those operations until all ℓ product

ciphertexts have been summed into a single output score ciphertext.

Therefore, for a query involving 𝐾 database template vectors, our

score computation algorithm requires only ⌈2𝐾/𝑁 ⌉ relinearization
and rescaling operations.

Our approach efficiently leverages parallel computing during

the score computation step, as all ℓ ciphertext multiplications can

be done independently. Since these multiplications are the most

time-consuming operations in our protocol, this parallelization

significantly reduces per-query computation time.

5.4 Hybrid Approximation for Homomorphic
Thresholding

After cosine similarity scores are computed homomorphically, S
homomorphically compares them to a threshold 𝜃 ∈ [−1, 1] to
generate encrypted matching results. 𝜃 is a constant and a public

parameter that has been agreed upon by all parties during the setup

phase of the protocol.

The ideal behavior of the threshold function is that of a step

function that maps values below 𝜃 to 0 and values equal to or above

𝜃 to a constant. This way, in the membership scenario, the sum of

all compared scores will equal 0 if and only if there are no matches

between the query and database vectors. In the identification sce-

nario, applying this function to the encrypted scores prevents C
from learning the exact similarity scores, preventing potential re-

construction attacks (Section 1). Since directly computing a step

function is not supported by CKKS, it must be approximated using

some polynomial approximation techniques.

Chebyshev Approximation. The Chebyshev polynomial approxima-

tion method is a minimax-based polynomial method that approxi-

mates any (nonlinear) function with low polynomial degrees and

minimal approximation error [14, 35], and it is a state-of-the-art

approximation for FHE [28, 40, 42, 43, 58]. Since the domain of

cosine similarity scores falls under [-1, 1], our approximation of the

threshold function only needs to consider that domain.

We observed that while the Chebyshev approximation method

achieves low error near the discontinuity at 𝑥 = 𝜃 , it introduces

non-negligible errors near the domain boundaries [−1, 1]. In the

membership scenario with many database vectors, adding together

many non-matching scores with such errors would accumulate and

result in a value greater than 𝜃 , which would lead to a false positive.

To mitigate this, we designed a hybrid thresholding function that

refines the Chebyshev approximation by applying an additional

function with minimal errors near the domain boundaries [−1, 1].
Cheon et al. Approximation. Another suitable approximation for a

step function, given by Cheon et al. [13], is 𝑓4 (𝑥) = 35

128
𝑥9 − 180

128
𝑥7 +

378

128
𝑥5 − 420

128
𝑥3 + 315

128
𝑥 , defined over [−1, 1]. 𝑓4 (𝑥) is extremely close

to 1 when 𝑥 is close to 1 and extremely close to−1 when 𝑥 is near−1.

As described in [13], 𝑓4 can be composed with itself several times

to achieve an approximation of the sign function. However, several

such compositions will incur a large level of multiplicative depth

for an inaccurate sign approximation, compared to the Chebyshev

approximation method. Despite this, a single application of 𝑓4 can

592

HyDia : FHE-based Facial Matching with Hybrid Approximations and Diagonalization Proceedings on Privacy Enhancing Technologies 2025(4)

Figure 4: Comparison of our hybrid approximation against Cheby-
shev (𝜃 = 0.44,𝜅 = 10) and Cheon et al.’s 𝑓4+1. Note that ours overlaps
with the x-axis in the zoomed figure.

be useful in minimizing the errors of the Chebyshev approxima-

tion at the edges of [-1,1], at the acceptable cost of four levels of

multiplicative depth and an overhead of 0.389s.

Novel Hybrid Approximation. Our novel idea is to compose the

Chebyshev approximationwith 𝑓4 (𝑥).We use the Chebyshevmethod

to approximate the step function 𝑐′ (𝑥), which is defined to equal −1

when −1 ≤ 𝑥 < 𝜃 and to equal 1 when 𝜃 ≤ 𝑥 ≤ 1. We approximate

𝑐′ (𝑥) specifically so that the range of the resulting values aligns

with the domain of 𝑓4 (𝑥), being [-1, 1]. Instead of allotting𝜅 levels of
multiplicative depth to the Chebyshev polynomial approximation,

our hybrid approach will instead allot 𝜅 − 4 level to the Chebyshev

approximation and the remaining 4 levels to the computation of

𝑓4. Therefore, we use a Chebyshev polynomial with 𝜅 − 4 levels of

depth to approximate 𝑐′ (𝑐), then pass those results through 𝑓4 (𝑥).
Finally, we adjust the resulting value by adding 1, ensuring that

non-matching scores are mapped to 0 and the matching ones are

mapped to 2. Algorithm 4 shows the algorithm.

Figure 4 shows our hybrid approximation technique evaluated

over the domain [−1, 1] with a threshold 𝜃 = 0.44 and depth 𝜅 =

10 (𝜃 is optimized with experiments in Section 7.1). Our hybrid

technique (green curve) clearly maintains a lower approximation

error than the pure Chebyshev method (orange) across most of the

domain, as highlighted in the zoomed region on the left. While a

small error remains near 𝑥 = 𝜃 due to the inherent challenge of

approximating the step’s discontinuity, our approach overall stays

close to the ideal step function for values away from 𝜃 .

Moreover, our hybrid approach offers better computation over-

head compared to the Chebyshev polynomial approximation at

the same depth. The highest-degree Chebyshev polynomial that

can be computed using 𝜅 = 10 levels of multiplicative depth is a

1007-degree polynomial, which incurs a 3.79s overhead. In contrast,

our hybrid approximation uses a 59-degree Chebyshev polynomial

consuming 6 levels of multiplicative depth, followed by 𝑓4 consum-

ing 4 levels of depth, for a combined overhead of 1.19s. Our hybrid

approach not only reduces the errors of the Chebyshev approxi-

mation polynomial away from the discontinuity but also incurs

significantly lower computation overhead than the most accurate

Chebyshev polynomial at the same depth.

5.5 The Complete HyDia Protocol
By integrating all aforementioned optimizations, we present the

complete protocol of HyDia for the 1 : 𝐾 matching task for both

membership and identification scenarios (Figure 5).

If C wishes to perform the membership scenario with their en-

crypted query ciphertext, then S performs Algorithm 5 through

the membership scenario branch, whereupon they sum all com-

parison ciphertexts into ct0, sum all the slots of ct0, then return

Algorithm 5 Server Query Computation

1: procedure Compute-Query(M, q)
2: Denote vector of ℓ rotated query ciphertexts as Q
3: for 𝑖 = 0, ..., ℓ − 1 do ⊲ Parallel

4: Q𝑖 ← Rotate(q, 𝑖) ⊲ Using hoisted rotations

5: Denote vector of ⌈2𝐾/𝑁 ⌉ score ciphertexts as S
6: Denote vector of ⌈2𝐾/𝑁 ⌉ comparison ciphertexts as ct
7: for each group of ℓ ciphertexts M𝑖 ∈ M do ⊲ Parallel

8: S𝑖 ← Diagonal-Scores(M𝑖 ,Q)
9: ct𝑖 ← Homomorphic-Threshold(S𝑖 , 𝜃, 𝜅)
10: if handling Identification scenario then
11: return ct
12: else if handling Membership scenario then
13: for 𝑖 = 1, ..., (2𝐾/𝑁) − 1 do
14: ct0 ← Add(ct0, ct𝑖)
15: for 𝑖 = 0, ..., log

2
(𝑁 /2) − 1 do

16: temp← Rotate(ct0, 𝑖)
17: ct0 ← Add(ct0, temp)
18: return ct0

that single ciphertext to C. After obtaining this ciphertext, C can

decrypt it using the secret key 𝑠𝑘 of the FHE scheme. Every slot of

this ciphertext will contain the same value, with a value less than

1 indicating that no facial matches were found between the query

template vector and all of the database template vectors. A value

greater than or equal to 1 indicates to C that at least one facial

match exists between their query and S’s database.
If C wishes to perform the identification with their query ci-

phertext, then S performs Algorithm 5 through the identification

scenario branch, whereupon they return the entire vector of com-

parison ciphertexts ct to C. C can then decrypt each ciphertext

in the vector using the secret key and examine the values at each

index. Similar to the membership scenario, a value <1 at the 𝑖-th

index indicates no facial match between the query template vector

and the 𝑖-th database template vector. Furthermore, a value greater

than or equal to 1 at the 𝑖-th index indicates a facial match between

the query template vector and the 𝑖-th database template vector.

5.6 Correctness and Security of HyDia
Theorem 1 (Correctness of HyDia). Let 𝐷 = 𝑑1, 𝑑2, ..., 𝑑𝑘 be a

database of 𝐾 facial template vectors, each of dimension ℓ , and 𝑞 be a
query template vector of the same dimension. Let 𝜃 be the designated
matching cosine similarity threshold. Then HyDia correctly achieves
the following in two different scenarios:

(1) Membership scenario: Returns a value > 0 if and only if there
exists at least one vector 𝑑𝑖 ∈ 𝐷 such that cos(𝑑𝑖 , 𝑞) ≥ 𝜃 .

(2) Identification scenario: For each index 𝑖 , returns a value ≥ if and
only if cos(𝑑𝑖 , 𝑞) ≥ 𝜃 .

To prove the correctness of HyDia, we show that it accurately

identifies facial matches based on cosine similarity. The proof fol-

lows the flow of the protocol’s execution. First, we establish that

normalizing both database and query vectors ensures their dot prod-

ucts directly represent cosine similarities. Next, we apply Lemma 2

(Section A) to show that the diagonalization process and subsequent

homomorphic operations correctly compute these dot products de-

spite the encrypted domain constraints. For the aggregation phase,

593

Proceedings on Privacy Enhancing Technologies 2025(4) Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

Parameters: ℓ is the dimension of each facial template vector. We assume ℓ is a power of 2. 𝐷 is the ordered set of database template vectors of size 𝐾

and ®𝑞 is the query template vector initially held by E and C respectively. 𝜃 and 𝜅 are the matching cosine similarity threshold and multiplicative depth

allotted to the approximation function. 𝜅 + 1, 𝑁 , and 𝜆 are the total multiplicative depth, ring dimension, and the computational security parameter of

the CKKS scheme, respectively.

1. System Setup
a. System parameters: Parties agree upon parameters (𝜃 , 𝑐) for the facial matching system and (𝑁, 𝜆) for the CKKS scheme.

b. Key generation: C executes the Setup and KeyGen CKKS algorithms, obtaining the public key pk, the private key sk, and the evaluation

key evk. This evaluation key is comprised of the multiplication key and the rotation keys. C then provides pk to E and evk to S.
2. Database Enrollment

a. Normalization: For every database vector 𝑑𝑖 ∈ 𝐷 , E computes its unit-length normalization 𝑑𝑖 = (𝑑𝑖/| |𝑑𝑖 | |) .
b. Diagonalization: E partitions the ordered database templates into groups of ℓ , forming ⌈2𝐾/𝑁 ⌉ matrices, each denoted as𝑀𝑎𝑡𝑟𝑖𝑥𝑖 . If ℓ

does not evenly divide 𝐾 , zero-filled dummy vectors are appended. Each matrix is then diagonalized as 𝐷𝑖𝑎𝑔𝑖 = Diagonalize(𝑀𝑎𝑡𝑟𝑖𝑥𝑖) .
c. Matrix packing: For every 𝑁 /2ℓ diagonalized matrices, E will define a group of ℓ plaintexts. S then packs the first row of each of the

𝑁 /2ℓ diagonalized matrices sequentially into the first plaintext. E repeats this step for all ℓ rows. If there are more than 𝑁 /2ℓ diagonalized
matrices, E defines another group of ℓ plaintexts and repeats the packing process.

d. Encryption: Using pk, E encrypts plaintexts into ⌈2𝐾/𝑁 ⌉ groups of ℓ ciphertexts, denoted asM𝑖 ∈ M, and provides M to S.
3. Client Query Generation

a. Normalization: C computes the unit-length normalization 𝑞 = (®𝑞/| | ®𝑞 | |) of the query template vector.

b. Plaintext packing: C fully packs a single plaintext up to the batchsize 𝑁 /2 with the normalized query vector 𝑞 in sequential order.

c. Encryption: Using pk, C encrypts its plaintext into the query ciphertext q and provides it to S.
4. Server Query Computation

a. Query ciphertext expansion: Using hoisted rotations, S rotates the query ciphertext by all factors from 0 to ℓ − 1, storing the results in a

vector of ciphertexts denoted Q. All rotations can be performed in parallel.

b. Similarity score computation: For each group of ℓ database ciphertexts, denoted as M𝑖 , S computes S𝑖 = Diagonal-Scores(M𝑖 ,Q)
c. Threshold comparison: For each score ciphertext S𝑖 , S computes the hybrid approximation function using 𝜅 levels of multiplicative depth

to obtain the comparison ciphertext ct𝑖 = Homomorphic-Threshold(S𝑖 , 𝜃, 𝜅) .
d. Query result computation:

i. For Membership scenario: S homomorphically adds all other comparison ciphertexts to the first ciphertext ct0. Then, S uses log
2
(ℓ)

rotations and additions to summate all the slots of ct0. S returns ct0 to C as the query result.

ii. For Identification scenario: S returns the entire vector of comparison ciphertexts ct to C as the query result.

5. Client Result Extraction
a. Decryption:

i. For Membership scenario: Using sk, C decrypts the query result ciphertext into a result vector.

ii. For Identification scenario: Using sk, C decrypts all ciphertexts in the vector of ciphertexts they obtained from S. C packs all of the

plaintext values into a single result vector, preserving their order.

b. Conclusion:
i. Membership scenario: The result vector contains identical values across all slots. A value of 𝜈 = 0 indicates the C about no match

between the query template ®𝑞 and any database template 𝑑𝑖 ∈ 𝐷 , while a value of 𝜈 > 0 confirms at least one match.

ii. Identification scenario: C iterates over the result vector, where each value corresponds to a database template. A value 𝜈𝑖 ≥ 1 at index 𝑖
indicates a match with the 𝑖-th database template.

Figure 5: Complete HyDia query protocol for Membership and Identification scenarios

we verify that our rotation and summation operations preserve

the comparison results while efficiently formatting them for client

interpretation. Finally, we show that after decryption, HyDia pro-

duces positive values for matches in the Membership scenario, and

values 𝜈𝑖 ≥ 1 at corresponding indices in the Identification scenario.

We defer a more detailed formal proof to Section A.

Theorem 2 (Security of HyDia Protocol). Assuming CKKS
is IND-CPA secure, HyDia is secure against semi-honest adversaries
with security parameter 𝜆.

Again, we provide an informal proof sketch here and defer our

formal proof of the protocol’s security to Section B.

To prove Theorem 2, we construct a simulator that can generate

a view indistinguishable from the real protocol execution, demon-

strating that a semi-honest server learns nothing beyond what is

intended. We establish security through a hybrid argument with

four distributions: 𝐻0: the real-world protocol execution, 𝐻1: first

hybrid with simulated database matrix,𝐻2: second hybrid with sim-

ulated query vector, and 𝐻3: complete simulation (our target). We

can gradually replace each real protocol component with randomly

generated encrypted values without losing the indistinguishabil-

ity due to the IND-CPA of the CKKS scheme. For each transition

between hybrids (𝐻0 to 𝐻1, 𝐻1 to 𝐻2, 𝐻2 to 𝐻3), we prove that any

distinguisher with non-negligible advantage would break the CKKS

scheme. Finally, by applying the triangle inequality, we show that

the total distinguishing advantage between the real protocol (𝐻0)

and the simulation (𝐻3) is negligible, completing our proof that the

protocol reveals nothing beyond the intended computation results.

6 Discussions
6.1 Multi-Client Considerations
To accommodate multiple clients C𝑖 querying an encrypted data-

base, HyDia can adopt a (𝑡, 𝑛)-threshold FHE [6]. We note that em-

ploying threshold FHE requires at least 𝑛≥3 non-colluding servers

S𝑗 that collectively hold shares of the decryption key. One of the

servers would store the encrypted database, perform all homomor-

phic evaluations, and provide the encrypted result to the decrypting

servers. Any 𝑡 > ⌊𝑛/2⌋ shares from the servers holding decryption

shares (including the computing server) would then suffice for the

clients to complete the decryption by combining them locally. Such

additions make the protocol susceptible to IND-CPA
D
attack, which

has been shown to be mitigated using noise-flooding techniques

[11]. Alternatively, one could also use proxy re-encryption (PRE)

594

HyDia : FHE-based Facial Matching with Hybrid Approximations and Diagonalization Proceedings on Privacy Enhancing Technologies 2025(4)

[52, 57] to support a multi-client setting. Under PRE, S stores a

distinct re-encryption key 𝑟𝑘𝑒𝑐 for every client public key 𝑝𝑘𝑐 . Af-

ter computing the score under the key 𝑝𝑘𝑒 of E, S applies 𝑟𝑘𝑒𝑐
to convert that ciphertext into one decryptable by 𝑝𝑘𝑐 , and then

returns the re-encrypted result to the client.

Threshold-FHE performs a one-time distributed key-generation

that gives each decrypting server a secret-key share and publishes

a common public key; re-keying is needed only when server mem-

bership changes, eliminating any single point of compromise but

adding 𝑡 partial decryptions per query and assuming an honest,

available server majority. PRE, in contrast, stores a distinct re en-

cryption key 𝑟𝑘𝑒𝑐 for every client public key at the computing server,

avoiding partial-decryption overhead yet imposing key-management

that grows linearly with the client set and requiring clients to fully

trust S to protect those keys and re-encrypt results correctly. We

leave such extensions for multi-client support to future work.

6.2 Reducing False Positives
Approximating the threshold function with a Chebyshev polyno-

mial introduces a small positive bias such that encrypted similarity

scores strictly below 𝜃 are mapped to 𝜖 > 0 rather than 0. In a mem-

bership query over a large corpus containing no true matches, these

𝜖-values can accumulate and yield a non-zero aggregate, producing

a false positive that the plaintext protocol would avoid. This risk can

be reduced by increasing the FHE depth 𝜅, thereby using a higher

degree approximation with lower residual error. However, a larger

𝜅 increases the CKKS depth and the server’s computation overhead.

Hence, practical deployments must trade off the probability of such

false positives against the added computational cost.

6.3 Increasing Throughput
We can increase the throughput of our protocol in two ways. First,

the ciphertext slot count can be increased by increasing the FHE

ring dimension, which can pack more vectors per ciphertext. How-

ever, it will increase the ciphertext size and force higher FHE pa-

rameters to preserve the target security level, thereby increasing

communication and computation costs. One can also reduce the

feature-vector dimension below 512 for templates, lowering the

per-query workload. However, this risks accuracy loss and deviates

from the 512-D convention established by current feature extractors

[17]. We therefore retain 512-D embeddings and leave a systematic

dimension-accuracy study to future work.

7 Experiments
We implemented HyDia and all other approaches (literature base-

line [5, 29], GROTE [29], Blind-Match [16], and HERS [19]) using

C++17 and OpenFHE v1.2.3 [4]. The source code is available at

https://github.com/n7koirala/image_matching/. We used the CKKS

scheme [12] for each approach and employed the default FHE pa-

rameters provided in OpenFHE [2], which give 128-bit security.

Our experiments were run on a server with an Intel Xeon Gold

5412U processor (128GB RAM, 48 logical cores) running Ubuntu

20.04. Due to space limitations, we only present the most relevant

results. The complete set of results is provided in Section C. In all

applicable tables, the best or most optimal results are highlighted

in bold.

Table 2: Accuracy Testing Results

Protocol

True

Positive

False

Negative

True

Negative

False

Positive

Precision Recall 𝐹1-Score

InsightFace 6,921 42 2,204,435 2 0.9997 0.9940 0.9968
HyDia 6,920 43 2,204,436 1 0.9999 0.9938 0.9968

7.1 Accuracy Experiments
Our accuracy experiments were performed over a subset of the

FRGC 2.0 RGB dataset [55]. Our testing subset consists of 44,278

RGB images from 568 identities. To obtain 512-dimensional feature

embeddings, we use the publicly available pre-trained InsightFace

model [30], which is based on the ResNet-50 architecture. This

model is trained on the WebFace dataset [72] and employs the Ar-

cFace loss function [17]. To evaluate our protocol’s accuracy, we

partitioned the face dataset into 50 query subjects and 44,228 data-

base subjects, simulating 50 unique identification queries. Among

the 2,211,400 total query-database pairs, 6,963 were matching iden-

tities (positives) and 2,204,437 were distinct identities (negatives).

To determine the optimal match parameter 𝜃 , we computed co-

sine similarity scores between InsightFace feature embeddings for

all query-database pairs in the plaintext domain. The score distri-

butions revealed a clear separation between matching and distinct

pairs, allowing us to systematically evaluate precision and recall

across match thresholds ranging from 0 to 1 in 0.01 increments (Fig-

ure 7 in Section C). To balance precision and recall, we selected the

match threshold that maximized the unencrypted model’s 𝐹1-score.

This approach yielded an optimal threshold of 𝜃 = 0.44. Across 50

unique identification scenario queries using this threshold, the plain

InsightFace model produced 2 false positives and 42 false negatives,

for an 𝐹1-score of 0.9968, and HyDia applied on top of InsightFace

produced 1 false positive and 43 false negatives, maintaining the

same 𝐹1-score of 0.9968. Table 2 details our accuracy results. Our

results demonstrate that our homomorphic thresholding has negli-

gible influence on the face matching accuracies. We could not find

larger datasets of real human subjects for larger-scale experiments,

but our hybrid approximation yields extremely high fidelity (Fig-

ure 4), so we hypothesize HyDia will have negligible accuracy loss

in larger-scale scenarios as well.

We focus on evaluating the accuracy of HyDia rather than com-

paring accuracies across all other literature approaches for two key

reasons. First, baseline, Blind-Match, and HERS do not employ any

homomorphic thresholding method; instead, they leak the exact

similarity scores to the client in the identification scenario. Conse-

quently, these approaches do not suffer the accuracy impact of an

approximation scheme, aside from minimal quantization/encoding

errors inherent to the CKKS scheme itself. Second, while GROTE in-

troduces a homomorphic comparison, it requires the facial datasets

at the server to have at most one match per query, making it incom-

patible with our multi-match real-world face dataset. Therefore,

we omit accuracy comparisons for these approaches, as their de-

signs do not rely on secure score comparisons that could affect

performance or accuracy.

7.2 Scalability Experiments
Our scalability experiments were performed over large-scale syn-

thetic datasets, with random noise vectors of dimension ℓ = 512

serving as the template vectors. The number of database template

vectors ranged from 2
10
to 2

20
.

595

https://github.com/n7koirala/image_matching/

Proceedings on Privacy Enhancing Technologies 2025(4) Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

210 211 212 213 214 215 216 217 218 219 220

Database Size

101

102

Se
rv

er
 C

om
pu

ta
tio

n
Ti

m
e

(s
ec

on
ds

) Membership Scenario
Server Overhead

Baseline
GROTE
Blind-Match
HERS
Ours

210 211 212 213 214 215 216 217 218 219 220

Database Size

101

102

Se
rv

er
 C

om
pu

ta
tio

n
Ti

m
e

(s
ec

on
ds

) Identification Scenario
Server Overhead

Baseline
GROTE
Blind-Match
HERS
Ours

(a) (b)

64Kbps 2Mbps 1Gbps 20Gbps
Network Bandwidth

101

102

103

104

105

En
d-

To
-E

nd
 Q

ue
ry

 T
im

e
(s

ec
on

ds
)

Membership Scenario End-to-End Overhead
over 215 Database Subjects

Baseline
GROTE
Blind-Match
HERS
Ours

64Kbps 2Mbps 1Gbps 20Gbps
Network Bandwidth

101

102

103

104

105

En
d-

To
-E

nd
 Q

ue
ry

 T
im

e
(s

ec
on

ds
)

Identification Scenario End-to-End Overhead
over 215 Database Subjects

Baseline
GROTE
Blind-Match
HERS
Ours

(c) (d)

Figure 6: (a, b) Server overhead across approaches by database size; (c, d) End-to-End overhead on various network bandwidths.
** Figures are drawn on a log scale. Tables 6 and 7 in Section C present the exact numbers data behind these charts.

Table 3: Parameters for Each Protocol’s Approach

Approach 𝑁
End-to-end

Depth

Ciphertext Size

Ciphertexts Sent

per Membership

Ciphertexts Sent

per Identification

Baseline 2
16

13 14.00MB 2 2

GROTE 2
16

18 19.00MB 2 3

Blind-Match 2
16

12 13.00MB 𝑁𝑖𝑛 + 1 𝑁𝑖𝑛 + 1

HERS 2
15

11 6.00MB ℓ + 1 ℓ + 2

HyDia (Ours) 2
15

11 6.00MB 2 3

We conducted scalability experiments on our implemented pro-

tocol by performing ten membership scenario queries and ten iden-

tification scenario queries per dataset, and recording the average

computational time consumed by the client and the server in each

scenario.We also recorded the number of ciphertexts communicated

between the client and the server. We applied the same procedure

to implement and evaluate the four state-of-the-art protocols from

the literature. We note that we could only evaluate the baseline,

GROTE, and Blind-Match on datasets up to 2
15

vectors, as their

excessive memory usage exceeded the available memory in our

system. Consequently, for these approaches, we limited our data

collection to the six smallest dataset sizes. For each execution of

the protocols, we ensured 𝜆 = 128-bit computational security, as

well as protocol parameters 𝜃 = 0.44 and 𝜅 = 10. Table 3 includes

all relevant parameters used in each execution.

7.2.1 Client Computation Overhead. All approaches except HERS
incur negligible client overhead (less than 0.2s) for generating and

encrypting query ciphertext(s). HERS requires the client to encode

and encrypt ℓ = 512 ciphertexts in each query, resulting in 2.54s of

overhead. Raw data are available in Table 5 in Section C.

7.2.2 Server Computation Overhead. We evaluate baseline, GROTE,
Blind-Match, HERS, and HyDia by executing 10 trial runs per data-

base size on a 48-core system and taking the average. Figure 6(a)

and Figure 6(b) present the average computation time during the

membership scenario and the identification scenario.

HyDia is faster than all four state-of-the-art approaches, demon-

strating significant performance improvements over the baseline,

GROTE, and Blind-Match approaches in both the membership and

identification scenarios across all database sizes. In comparison to

the HERS, the prior fastest approach, HyDia showed an improve-

ment of almost 15%: HyDia’s average membership computation

time is 102.41s and average identification computation time is 96.52s

for the 2
20
database, while the HERS approach resulted in average

times of 115.54s and 110.91s respectively (full data available in

Table 6 in Section C). HERS significantly reduces the server’s over-

head by requiring clients to generate and transmit ℓ ciphertexts

(ℓ = 512 for face template vectors of 512 dimensions) for each query.

Even though HyDia has a slightly better computation overhead

compared to the prior fastest approach HERS, its query contains

one ciphertext only, resulting in significant benefits in end-to-end

overhead, including communication overhead.

7.2.3 Parallelism Experiments. We also evaluate the combined

client and server overheads of each approach for various num-

bers of maximum cores allotted, from 2 to 48, each averaged over

three trials. We display the server-side runtimes for a 2
15
-subject

database in Figure 8 and Figure 9 of Section C, and report the full

results in Table 12. HyDia has the lowest latency at every point:

membership (identification) latency falls from 26.8s (24.9s) on 2

cores to 6.6s (6.1s) on 48 cores, a 4.1× speed-up. All others either
show marginal speedups or increased run time (due to the cost of

thread management). Baseline and GROTE achieve similar relative

scaling (≈4.4–4.5×) but remain 1–2 orders of magnitude slower,

while Blind-Match gains virtually no benefit and sometimes re-

gresses. HERS enjoys relatively higher speed-up (≈6.5 ×) yet still
596

HyDia : FHE-based Facial Matching with Hybrid Approximations and Diagonalization Proceedings on Privacy Enhancing Technologies 2025(4)

lags behind HyDia by 60–150%. Thus, HyDia uniquely combines

the lowest absolute latency with solid multicore scalability; we ex-

pect additional gains beyond 48 cores because its dominant kernel

evaluates 512 fully parallel homomorphic multiplications per batch.

7.2.4 End-to-End Overhead including Communication. We define

the end-to-end overhead of a facial matching system to be the sum

of the client computation, sender computation, and total communi-

cation overhead. It is the total time it takes for the client to obtain

the decrypted results after initiating the protocol. For a given pro-

tocol, the total communication overhead is the time it takes for

the client and server to transmit all necessary ciphertexts over the

network. Since we performed our experiments on a single machine,

we recorded the amount and sizes of ciphertexts that needed to

be transmitted, allowing us to compute the total communication

overhead for a given network bandwidth.

Using the parameters in Table 3, we can calculate the total trans-

mission size of different protocols for each scenario when querying

a database with 2
15
encrypted templates. We used a 2

15
size because

the first three approaches do not scale to larger databases. The

baseline approach has a total transmission size of 28.01MB for both

the membership and identification scenarios, whereas GROTE’s
transmission sizes are 38.01MB and 57.01MB, respectively. Using

𝑁𝑖𝑛 = 4, as identified by Choi et al. as the optimal number of sub-

vectors, Blind-Match produced an overhead of 65.02MB in both

scenarios. For ℓ = 512, as utilized in all our experiments, HERS
incurs transmission overheads of 3079.45 MB (Membership) and

3085.48 MB (Identification). With 2Mbps/1Gbps bandwidths, HERS
incurs 12317.9s/24.1s (Membership scenario) and 12341.9s/24.1s

(Identification scenario) communication overhead. HyDia achieves

significant improvement over all other approaches by incurring

transmission sizes of only 12.01MB in the membership scenario

and 18.01MB in the identification scenario because HyDia’s query

contains only one ciphertext and it has lower multiplicative depths,

resulting in smaller ciphertexts. With 2Mbps/1Gbps bandwidths,

HyDia incurs only 48s/0.10s (Membership scenario) and 72s/0.10s

(Identification scenario) communication overhead. Figure 6(c) and

Figure 6(d) show the end-to-end overhead of all five approaches

across different possible network bandwidths, when querying an

encrypted database with 2
15
template vectors. The complete data

on communication/end-to-end overhead are provided in Section C.

7.3 Memory Cost Experiments
7.3.1 Server Disk Costs. In order for S to hold 𝐾 encrypted data-

base templates, as prescribed by HyDia, S must store ℓ · ⌈2𝐾/𝑁 ⌉
ciphertexts. Using the experimental parameters for HyDia in Ta-

ble 3, we can calculate the total memory overhead required for S as

approximately 3 · ⌈𝐾/214⌉ GB. We then experimentally measured

the memory overhead ofS for all database sizes from 2
10
to 2

20
. The

complete data on calculated and experimental memory overhead

can be found in Table 13 of Section C.

For purposes of comparison, holding 𝐾 unencrypted database

templates would require S to store 𝐾 · ℓ floating-point values. Us-
ing the same parameters from Table 3, this would incur a memory

overhead of 𝐾 · 2 KB for S. Therefore, storing database templates in

their encrypted form rather than unencrypted increases the mem-

ory overhead of S by approximately 100x, assuming 𝐾 exceeds 2
14
.

Table 4: Comparing Differences between non-FHE-based Se-
cure Face-matching Schemes and HyDia.

Method Leakage† TAR loss (%) Storage/template

IronMask [37] Probe & Scores ≤4 1MB

Sig.-bit Hash [48] Auxiliary data 1–6 220B

Talreja et al. [66] Intermediate binary codes ≤4 64B
Zhang et al. [71] Template ID, Hash digest <4 560B

SecureFace [46] Randomized template ≲6 10.5KB

∗
Biohash/LSH [31, 32, 41] Template ID, Auxiliary data 2-5 128–2048B

HyDia (ours) None <0.1 192KB

†
Information revealed to the server beyond ciphertexts (e.g., probe embeddings,

similarity scores, or auxiliary data).

∗
These methods have been broken via linkage and inversion attacks [24, 53].

While this cost is nonnegligible, it should be highlighted that the

memory overhead for storing 2
20
encrypted templates is approxi-

mately 192 GB, which can be handled without issue assuming S
is a large organizational datacenter, as would be the case in many

real-world applications of HyDia.

7.3.2 Server RAM Costs. We also performed experiments to record

the peak RAM usage incurred by S in each approach, for all data-

base sizes. We observe that HyDia and HERS both peaks, which

remain constant across all database sizes, unlike the first three ap-

proaches, which could not be scaled to all database sizes due to RAM

constraints. We include the full experimental results in Table 14

within Section C. Note that the values in Table 14 represent the

maximum RAM usage at any point between both the membership

and identification scenarios for a given approach.

7.4 Comparison to non-FHE-based works
Recent non-FHE-based methods for secure face-matching fall into

broadly two categories: secure sketch template protection and lo-

cality sensitive hashing (LSH), and they exhibit various limitations.

Secure-sketch methods such as IronMask [37] and its variants [38]

store a hashed codeword plus a user-specific linear transform but re-

veal every probe and intermediate score to the server. Significant-bit

hashing-based methods [48] reduce bandwidth but sacrifice 1–6%

TAR (true acceptance rate). Other schemes like [66, 71] support

only 1:1 verification and for identification scales linearly in terms

of the number of embeddings in the gallery, incurring further ac-

curacy loss from quantisation. In contrast, HyDia does not reveal

any data to the server and completes a million-entry encrypted

identification in under 100s with an amortized 192 KB for each

template. We describe the major qualitative differences of these

works compared to HyDia in Table 4.

8 Conclusion
We present HyDia, a novel FHE-based protocol for privacy preserv-

ing one-to-many facial matching. Our design addresses key ineffi-

ciencies in existing approaches by (1) diagonalizing database vectors

to eliminate rotation overhead and introducing a non-rotational

inner product algorithm to significantly reduce server-side com-

putation, and (2) employing a hybrid polynomial approximation

for secure thresholding to conceal precise similarity scores. We

implemented and evaluated HyDia on real-world face embeddings,

and HyDia outperforms all state-of-the-art approaches in both com-

putation and communication. Notably, ours remains the only viable

option with typical low network bandwidths.

597

Proceedings on Privacy Enhancing Technologies 2025(4) Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

Acknowledgments
This research was supported by the U.S. DHS under Grant 17STQAC

00001-06-00 and NSF under Award No. 2337321. The views and

conclusions contained in this document are those of the authors

and should not be interpreted as necessarily representing the official

policies, either expressed or implied, of the U.S. DHS or NSF.

We would like to thank Mr. Rasel Ahmed Bhuiyan and Dr. Adam

Czajka from the University of Notre Dame for their support in

providing real-world datasets for the accuracy experiments. Ad-

ditionally, we are grateful to Mr. Seunghun Paik from Hanyang

University for his insights into non-FHE-based secure face match-

ing works. Finally, we thank the anonymous reviewers for their

helpful comments and suggestions.

References
[1] Rashmi Agrawal and Ajay Joshi. 2023. On Architecting Fully Homomorphic

Encryption-based Computing Systems. Springer Nature Switzerland AG.

[2] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey

Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, et al. 2021.

Homomorphic encryption standard. Protecting privacy through homomorphic
encryption (2021), 31–62.

[3] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey

Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,

Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod

Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org, Toronto, Canada.

[4] Ahmad Al Badawi, Andreea Alexandru, Jack Bates, Flavio Bergamaschi,

David Bruce Cousins, Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish

Hunt, Andrey Kim, Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Carlo Pas-

coe, Yuriy Polyakov, Ian Quah, Saraswathy R.V., Kurt Rohloff, Jonathan Say-

lor, Dmitriy Suponitsky, Matthew Triplett, Vinod Vaikuntanathan, and Vincent

Zucca. 2022. OpenFHE: Open-Source Fully Homomorphic Encryption Library.

Cryptology ePrint Archive, Paper 2022/915. https://eprint.iacr.org/2022/915

https://eprint.iacr.org/2022/915.

[5] Vishnu Naresh Boddeti. 2018. Secure Face Matching Using Fully Homomorphic

Encryption. arXiv:1805.00577 [cs.CV] https://arxiv.org/abs/1805.00577

[6] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter MR

Rasmussen, and Amit Sahai. 2018. Threshold cryptosystems from threshold fully

homomorphic encryption. In Advances in Cryptology–CRYPTO 2018: 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part I 38. Springer, 565–596.

[7] Rob Bonta. 2022. California consumer privacy act (CCPA). Retrieved from State
of California Department of Justice: https://oag. ca. gov/privacy/ccpa (2022).

[8] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-

Pierre Hubaux. 2020. Efficient Bootstrapping for Approximate Homomorphic

Encryption with Non-Sparse Keys. Cryptology ePrint Archive, Paper 2020/1203.

https://eprint.iacr.org/2020/1203

[9] Zvika Brakerski. 2012. Fully homomorphic encryption without modulus switch-

ing from classical GapSVP. In Advances in Cryptology–CRYPTO 2012: 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings.
Springer, 868–886.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)

fully homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT) 6, 3 (2014), 1–36.

[11] Jung Hee Cheon, Hyeongmin Choe, Alain Passelègue, Damien Stehlé, and Elias

Suvanto. 2024. Attacks against the IND-CPAD security of exact FHE schemes. In

Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communi-
cations Security. 2505–2519.

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic encryption for arithmetic of approximate numbers. In Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I 23. Springer, 409–437.

[13] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. 2019. Efficient Homomor-

phic Comparison Methods with Optimal Complexity. Cryptology ePrint Archive,

Paper 2019/1234. https://eprint.iacr.org/2019/1234

[14] Jung Hee Cheon, Wootae Kim, and Jai Hyun Park. 2022. Efficient Homomorphic

Evaluation on Large Intervals. IEEE Transactions on Information Forensics and
Security 17 (2022), 2553–2568.

[15] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.

TFHE: fast fully homomorphic encryption over the torus. Journal of Cryptology
33, 1 (2020), 34–91.

[16] Hyunmin Choi, Jiwon Kim, Chiyoung Song, Simon SWoo, and Hyoungshick Kim.

2024. Blind-Match: Efficient Homomorphic Encryption-Based 1: N Matching

for Privacy-Preserving Biometric Identification. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management. 4423–4430.

[17] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. 2019. Arcface:

Additive angular margin loss for deep face recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 4690–4699.

[18] Jiankang Deng, Jia Guo, Yuxiang Zhou, Jinke Yu, Irene Kotsia, and Stefanos

Zafeiriou. 2019. RetinaFace: Single-stage Dense Face Localisation in the Wild.

arXiv:1905.00641 [cs.CV] https://arxiv.org/abs/1905.00641

[19] Joshua J. Engelsma, Anil K. Jain, and Vishnu Naresh Boddeti. 2022. HERS:

Homomorphically Encrypted Representation Search. arXiv:2003.12197 [cs.CV]

https://arxiv.org/abs/2003.12197

[20] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald La-

gendijk, and Tomas Toft. 2009. Privacy-preserving face recognition. In Privacy
Enhancing Technologies: 9th International Symposium, PETS 2009, Seattle, WA,
USA, August 5-7, 2009. Proceedings 9. Springer, 235–253.

[21] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomor-

phic encryption. Cryptology ePrint Archive (2012).
[22] Federal Privacy Council. 2025. Fair Information Practice Principles (FIPPs).

https://www.fpc.gov/resources/fipps/ Accessed: 2025-02-25.

[23] Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph. D. Dissertation.
Stanford University. crypto.stanford.edu/craig.

[24] Loubna Ghammam, Koray Karabina, Patrick Lacharme, and Kevin Thiry-

Atighehchi. 2020. A cryptanalysis of two cancelable biometric schemes based on

index-of-max hashing. IEEE Transactions on Information Forensics and Security
15 (2020), 2869–2880.

[25] Vedrana Krivokuća Hahn and Sébastien Marcel. 2022. Biometric template protec-

tion for neural-network-based face recognition systems: A survey of methods and

evaluation techniques. IEEE Transactions on Information Forensics and Security
18 (2022), 639–666.

[26] Shai Halevi and Victor Shoup. 2014. Algorithms in HElib. Cryptology ePrint

Archive, Paper 2014/106. https://eprint.iacr.org/2014/106

[27] Shai Halevi and Victor Shoup. 2018. Faster Homomorphic Linear Transformations

in HElib. Cryptology ePrint Archive, Paper 2018/244. https://eprint.iacr.org/

2018/244

[28] Kyoohyung Han and Dohyeong Ki. 2020. Better bootstrapping for approxi-

mate homomorphic encryption. In Cryptographers’ Track at the RSA Conference.
Springer, 364–390.

[29] Alberto Ibarrondo, Hervé Chabanne, Vincent Despiegel, and Melek Önen. 2023.

Grote: Group testing for privacy-preserving face identification. In Proceedings
of the Thirteenth ACM Conference on Data and Application Security and Privacy.
117–128.

[30] InsightFace. 2022. 2D and 3D Face Analysis Project. https://github.com/

deepinsight/insightface.

[31] Andrew Teoh Beng Jin, David Ngo Chek Ling, and Alwyn Goh. 2004. Biohash-

ing: two factor authentication featuring fingerprint data and tokenised random

number. Pattern recognition 37, 11 (2004), 2245–2255.

[32] Zhe Jin, Jung Yeon Hwang, Yen-Lung Lai, Soohyung Kim, and Andrew Beng Jin

Teoh. 2017. Ranking-based locality sensitive hashing-enabled cancelable bio-

metrics: Index-of-max hashing. IEEE Transactions on Information Forensics and
Security 13, 2 (2017), 393–407.

[33] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In

27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Bal-

timore, MD, 1651–1669. https://www.usenix.org/conference/usenixsecurity18/

presentation/juvekar

[34] Prabhjot Kaur, Nitin Kumar, and Maheep Singh. 2023. Biometric cryptosystems:

a comprehensive survey. Multimedia Tools and Applications 82, 11 (2023), 16635–
16690.

[35] Tanveer Khan, Alexandros Bakas, and Antonis Michalas. 2021. Blind faith:

Privacy-preserving machine learning using function approximation. In 2021 IEEE
Symposium on Computers and Communications (ISCC). IEEE, 1–7.

[36] Mahdi Khosravy, Kazuaki Nakamura, Yuki Hirose, Naoko Nitta, and Noboru

Babaguchi. 2022. Model inversion attack by integration of deep generative

models: Privacy-sensitive face generation from a face recognition system. IEEE
Transactions on Information Forensics and Security 17 (2022), 357–372.

[37] Sunpill Kim, Yunseong Jeong, Jinsu Kim, Jungkon Kim, Hyung Tae Lee, and

Jae Hong Seo. 2021. IronMask: Modular architecture for protecting deep face

template. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 16125–16134.

[38] Sunpill Kim, Hoyong Shin, and Jae Hong Seo. 2025. Deep face template protection

in the wild. Pattern Recognition 162 (2025), 111336.

[39] Sunpill Kim, Yong Kiam Tan, Bora Jeong, Soumik Mondal, Khin Mi Mi Aung,

and Jae Hong Seo. 2024. Scores Tell Everything about Bob: Non-adaptive Face

Reconstruction on Face Recognition Systems. In 2024 IEEE Symposium on Security
and Privacy (SP). IEEE, 1684–1702.

598

https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://arxiv.org/abs/1805.00577
https://arxiv.org/abs/1805.00577
https://eprint.iacr.org/2020/1203
https://eprint.iacr.org/2019/1234
https://arxiv.org/abs/1905.00641
https://arxiv.org/abs/1905.00641
https://arxiv.org/abs/2003.12197
https://arxiv.org/abs/2003.12197
https://www.fpc.gov/resources/fipps/
crypto.stanford.edu/craig
https://eprint.iacr.org/2014/106
https://eprint.iacr.org/2018/244
https://eprint.iacr.org/2018/244
https://github.com/deepinsight/insightface
https://github.com/deepinsight/insightface
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar

HyDia : FHE-based Facial Matching with Hybrid Approximations and Diagonalization Proceedings on Privacy Enhancing Technologies 2025(4)

[40] Nirajan Koirala, Jonathan Takeshita, Jeremy Stevens, and Taeho Jung. 2024.

Summation-based Private Segmented Membership Test from Threshold-Fully

Homomorphic Encryption. In 24th Privacy Enhancing Technologies Symposium
(PETS 2024). Bristol, UK.

[41] Yenlung Lai, Zhe Jin, KokSheik Wong, and Massimo Tistarelli. 2021. Efficient

known-sample attack for distance-preserving hashing biometric template protec-

tion schemes. IEEE Transactions on Information Forensics and Security 16 (2021),

3170–3185.

[42] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim

Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al.

2022. Privacy-preserving machine learning with fully homomorphic encryption

for deep neural network. iEEE Access 10 (2022), 30039–30054.
[43] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, and Jong-Seon No. 2020. Near-

optimal polynomial for modulus reduction using l2-norm for approximate homo-

morphic encryption. IEEE Access 8 (2020), 144321–144330.
[44] Baiyu Li and Daniele Micciancio. 2021. On the security of homomorphic encryp-

tion on approximate numbers. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 648–677.

[45] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le

Song. 2018. SphereFace: Deep Hypersphere Embedding for Face Recognition.

arXiv:1704.08063 [cs.CV] https://arxiv.org/abs/1704.08063

[46] Guangcan Mai, Kai Cao, Xiangyuan Lan, and Pong C Yuen. 2020. Secureface:

Face template protection. IEEE Transactions on Information Forensics and security
16 (2020), 262–277.

[47] Nicole Martinez-Martin. 2019. What Are Important Ethical Implications of Using

Facial Recognition Technology in Health Care? AMA Journal of Ethics 21 (2019),
180–187.

[48] Deen Dayal Mohan, Nishant Sankaran, Sergey Tulyakov, Srirangaraj Setlur, and

Venu Govindaraju. 2019. Significant feature based representation for template

protection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW). IEEE, 2389–2396.

[49] Department of Homeland Security. 2017. Handbook for Safeguarding Sen-

sitive PII. https://www.dhs.gov/sites/default/files/2024-03/17_1204_priv_

handbooksafeguardingsensitivepii_rev3_047-01-007.pdf

[50] Department of Homeland Security. 2021. Office of Biometric Identity Man-

agement Identification Services. https://www.dhs.gov/obim-biometric-

identification-services

[51] Department of Homeland Security. 2022. DHS Use Cases of Privacy Enhancing

Technologies. https://pets4hse.org/PETS4HSEUseCases.pdf

[52] OpenFHE . 2024. UnitTestCKKSrns.cpp – Re-Encryption Test in OpenFHE.

https://github.com/openfheorg/openfhe-development/blob/main/src/pke/

unittest/utckksrns/UnitTestCKKSrns.cpp. Accessed: 2025-05-24.

[53] Seunghun Paik, Sunpill Kim, and Jae Hong Seo. 2023. Security Analysis on

Locality-Sensitive Hashing-based Biometric Template Protection Schemes.. In

BMVC. 535–537.
[54] Vishal M Patel, Nalini K Ratha, and Rama Chellappa. 2015. Cancelable biometrics:

A review. IEEE signal processing magazine 32, 5 (2015), 54–65.
[55] P Jonathon Phillips, Patrick J Flynn, Todd Scruggs, Kevin W Bowyer, Jin Chang,

Kevin Hoffman, Joe Marques, Jaesik Min, and William Worek. 2005. Overview of

the face recognition grand challenge. In 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1. IEEE, 947–954.

[56] Yuriy Polyakov. 2024. Which Operations can be followed Multiplication w/o

Relinearization? https://openfhe.discourse.group/t/which-operations-can-be-

followed-multiplication-w-o-relinearization/1148

[57] Yuriy Polyakov, Kurt Rohloff, Gyana Sahu, and Vinod Vaikuntanathan. 2017. Fast

proxy re-encryption for publish/subscribe systems. ACM Transactions on Privacy
and Security (TOPS) 20, 4 (2017), 1–31.

[58] Lorenzo Rovida and Alberto Leporati. 2024. Encrypted image classification with

low memory footprint using fully homomorphic encryption. Cryptology ePrint
Archive (2024).

[59] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. 2009. Efficient

privacy-preserving face recognition. In International conference on information
security and cryptology. Springer, 229–244.

[60] Alamgir Sardar, Saiyed Umer, Ranjeet Kumar Rout, and Muhammad Khurram

Khan. 2022. A secure and efficient biometric template protection scheme for

palmprint recognition system. IEEE Transactions on Artificial Intelligence 4, 5
(2022), 1051–1063.

[61] Nigel P Smart and Frederik Vercauteren. 2014. Fully homomorphic SIMD opera-

tions. Designs, codes and cryptography 71 (2014), 57–81.

[62] Zhigang Song, Gong Wang, Wenqin Yang, Yunliang Li, Yinsheng Yu, Zeli Wang,

Xianghan Zheng, and Yang Yang. 2025. Privacy-preserving method for face

recognition based on homomorphic encryption. PloS one 20, 2 (2025), e0314656.
[63] Yi Sun, Xiaogang Wang, and Xiaoou Tang. 2014. Deep Learning Face Repre-

sentation by Joint Identification-Verification. arXiv:1406.4773 [cs.CV] https:

//arxiv.org/abs/1406.4773

[64] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. DeepFace:

Closing the Gap to Human-Level Performance in Face Verification. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition. 1701–1708. https://doi.

org/10.1109/CVPR.2014.220

[65] Jonathan Takeshita, Colin McKechney, Justin Pajak, Antonis Papadimitriou, Ryan

Karl, and Taeho Jung. 2021. Gps: Integration of graphene, palisade, and sgx for

large-scale aggregations of distributed data. Cryptology ePrint Archive (2021).
[66] Veeru Talreja, Matthew C Valenti, and Nasser M Nasrabadi. 2019. Zero-shot deep

hashing and neural network based error correction for face template protection.

In 2019 IEEE 10th International Conference on Biometrics Theory, Applications and
Systems (BTAS). IEEE, 1–10.

[67] U.S. Department of Homeland Security. 2025. 2024 Update on DHS’s Use of Face

Recognition and Face Capture Technologies. https://www.dhs.gov/archive/news/

2025/01/16/2024-update-dhss-use-face-recognition-face-capture-technologies.

Accessed: 2025-02-24.

[68] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection

regulation (gdpr). A practical guide, 1st ed., Cham: Springer International Publishing
10, 3152676 (2017), 10–5555.

[69] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,

Zhifeng Li, and Wei Liu. 2018. CosFace: Large Margin Cosine Loss for Deep Face

Recognition. arXiv:1801.09414 [cs.CV] https://arxiv.org/abs/1801.09414

[70] Philippe Weinzaepfel, Hervé Jégou, and Patrick Pérez. 2011. Reconstructing an

image from its local descriptors. In CVPR 2011. IEEE, 337–344.
[71] Kaiyi Zhang, Hongrui Cui, and Yu Yu. 2021. Facial template protection via

lattice-based fuzzy extractors. Cryptology ePrint Archive (2021).
[72] Zheng Zhu, Guan Huang, Jiankang Deng, Yun Ye, Junjie Huang, Xinze Chen,

Jiagang Zhu, Tian Yang, Jiwen Lu, Dalong Du, et al. 2021. Webface260m: A

benchmark unveiling the power of million-scale deep face recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10492–10502.

A Correctness Proofs
Lemma 1 (DiagonalMatrix-VectorMultiplication For Sqare

Matrices, Halevi and Shoup [26]). Let 𝐴 ∈ R𝑛×𝑛 be a square
matrix represented in diagonal order by vectors 𝑑0, . . . , 𝑑𝑛−1, where
𝑑𝑖 [𝑗] = 𝐴[𝑗] [𝑗 + 𝑖 mod 𝑛] for all 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑛−1}. Then for any
vector 𝑣 ∈ R𝑛 , the matrix-vector product𝑤 = 𝐴𝑣 can be computed as:

𝑤 =

𝑛−1∑︁
𝑖=0

𝑑𝑖 ⊙ (𝑣 ≪ 𝑖) (1)

where ⊙ denotes element-wise multiplication and (𝑣 ≪ 𝑖) denotes 𝑣
rotated left by 𝑖 positions.

To show𝑤 = 𝐴𝑣 , it is equivalent to prove𝑤 ← ∑𝑛−1

𝑖=0
𝑑𝑖 ⊙ (𝑣 ≪

𝑖). We can prove it as follows:

𝑤 [𝑗] =
𝑛−1∑︁
𝑖=0

𝑑𝑖 [𝑗] · (𝑣 ≪ 𝑖) [𝑗]

=

𝑛−1∑︁
𝑖=0

𝐴[𝑗] [𝑗 + 𝑖 mod 𝑛] · 𝑣 [𝑗 + 𝑖 mod 𝑛]

=

𝑛−1∑︁
𝑘=0

𝐴[𝑗] [𝑘] · 𝑣 [𝑘]

= 𝐴𝑣.

A more detailed proof of the diagonal matrix-vector multipli-

cation (DMVM) for square matrices (Lemma 1) can be found in

Section 4.3 of [26]. We extend Lemma 1 for the rectangular variant

used in HyDia in 𝐿𝑒𝑚𝑚𝑎 2 below.

Lemma 2 (DiagonalMatrix-VectorMultiplication For Rect-

angular Matrices). Let 𝐴 ∈ R𝑛×𝑙 be a rectangular matrix where 𝑙
divides 𝑛, and 𝐷 be a diagonalization of 𝐴 via Algorithm 2. Then for
any 𝑣 ∈ R𝑙 , the output of Algorithm 3 on inputs 𝐷 and 𝑣 is equal to
𝐴𝑣 .

599

https://arxiv.org/abs/1704.08063
https://arxiv.org/abs/1704.08063
https://www.dhs.gov/sites/default/files/2024-03/17_1204_priv_handbooksafeguardingsensitivepii_rev3_047-01-007.pdf
https://www.dhs.gov/sites/default/files/2024-03/17_1204_priv_handbooksafeguardingsensitivepii_rev3_047-01-007.pdf
https://www.dhs.gov/obim-biometric-identification-services
https://www.dhs.gov/obim-biometric-identification-services
https://pets4hse.org/PETS4HSEUseCases.pdf
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/unittest/utckksrns/UnitTestCKKSrns.cpp
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/unittest/utckksrns/UnitTestCKKSrns.cpp
https://openfhe.discourse.group/t/which-operations-can-be-followed-multiplication-w-o-relinearization/1148
https://openfhe.discourse.group/t/which-operations-can-be-followed-multiplication-w-o-relinearization/1148
https://arxiv.org/abs/1406.4773
https://arxiv.org/abs/1406.4773
https://arxiv.org/abs/1406.4773
https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1109/CVPR.2014.220
https://www.dhs.gov/archive/news/2025/01/16/2024-update-dhss-use-face-recognition-face-capture-technologies
https://www.dhs.gov/archive/news/2025/01/16/2024-update-dhss-use-face-recognition-face-capture-technologies
https://arxiv.org/abs/1801.09414
https://arxiv.org/abs/1801.09414

Proceedings on Privacy Enhancing Technologies 2025(4) Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

Proof. First, we show for all 𝑗 = 0, . . . , 𝑛 − 1,(
ℓ−1∑︁
𝑖=0

𝐷 [𝑖] ⊙ (𝑣 ′ ≪ 𝑖)
)
[𝑗] = (𝐴𝑣) [𝑗] . (2)

This can be seen as follows:(
ℓ−1∑︁
𝑖=0

𝐷 [𝑖] ⊙ (𝑣 ′ ≪ 𝑖)
)
[𝑗] (3)

=

ℓ−1∑︁
𝑖=0

𝐷 [𝑖] [𝑗] · (𝑣 ′ ≪ 𝑖) [𝑗] (4)

=

ℓ−1∑︁
𝑖=0

𝐴[𝑗] [𝑖 + 𝑗 mod ℓ] · (𝑣 ′ ≪ 𝑖) [𝑗] (5)

=

ℓ−1∑︁
𝑖=0

𝐴[𝑗] [𝑖 + 𝑗 mod ℓ] · 𝑣 ′ [𝑖 + 𝑗 mod 𝑛] (6)

=

ℓ−1∑︁
𝑖=0

𝐴[𝑗] [𝑖 + 𝑗 mod ℓ] · 𝑣 [(𝑖 + 𝑗 mod 𝑛) mod ℓ] (7)

=

ℓ−1∑︁
𝑖=0

𝐴[𝑗] [𝑖 + 𝑗 mod ℓ] · 𝑣 [𝑖 + 𝑗 mod ℓ] (8)

=

ℓ−1∑︁
𝑚=0

𝐴[𝑗] [𝑚] · 𝑣 [𝑚] (9)

= (𝐴𝑣) [𝑗] . (10)

Therefore,𝑤 ← 𝐴𝑣 , proving the correctness of the expression.

□

Proof of Theorem 1. To prove the correctness of HyDia, we

analyze each step and show that the final output correctly identifies

matches based on the cosine similarity threshold 𝜃 .

For any non-zero vector ®𝑣 , the normalized vector 𝑣 = ®𝑣/| |®𝑣 | |
has unit length. Consequently, for any two normalized vectors

¯𝑑𝑖
(database vector) and 𝑞 (query vector), their dot product ¯𝑑𝑖 ·𝑞 equals
the similarity score 𝑐𝑜𝑠 (®𝑑𝑖 , ®𝑞).

In Lemma 2, we have shown that q and a diagonalization 𝐷 of

database vectors 𝐴 (computed via Algorithm 2) will subsequently

produce the correct similarity scores S0 = 𝐴q via Algorithm 3.

Algorithm 4 correctly identifies similarity scores S0 exceeding
a given threshold 𝜃 within the allotted multiplicative depth 𝜅 as

demonstrated in Figure 4. This ensures the comparison results

correctly reflect whether cos(®𝑑𝑖 , ®𝑞) ≥ 𝜃 for each database vector.

Finally, the aggregation operations preserve these comparison

results while correctly formatting them for each scenario. For the

Membership scenario, the server homomorphically adds all compar-

ison ciphertexts to the first ciphertext. Since our hybrid approxima-

tion function outputs positive values only for similarities exceeding

the threshold 𝜃 , the sum 𝜈 = 0 if and only if no matches occur.

For the Identification scenario, by returning the entire vector of

comparison ciphertexts without summation, the protocol preserves

the individual match status of each database entry. Thus, after

decryption, the client can directly observe which specific indices

have values 𝜈𝑖 ≥ 1, thus correctly identifying all database vectors

in which the similarity exceeds the given threshold.

Therefore, in both scenarios, the decrypted values correctly re-

flect the matching criteria defined by the cosine similarity threshold

𝜃 . □

B Security Proofs
We prove Theorem 2 by constructing a series of hybrid distribu-

tions and showing their indistinguishability through a sequence

of lemmas. Then, we gradually replace real protocol components

with simulated ones, demonstrating that each transition preserves

the computational indistinguishability.

Consider the following hybrid distributions:

𝐻0 = (M, q, ct) // Real world

𝐻1 = (SIM.M, q, ct) // First hybrid

𝐻2 = (SIM.M, SIM.q, ct) // Second hybrid

𝐻3 = (SIM.M, SIM.q, SIM.ct) // Final simulation

To simulate the view of a semi-honest server, we define the simula-

tor in Algorithm 6.

It is important to note that SIM runs in polynomial time in 𝜆. This

follows from the fact that sampling 𝑅𝐷 , 𝑟𝑞, 𝑟𝑠 requires O(𝑙𝑑) random
bits, and the Encrypt operation runs in poly(𝜆) time. Consequently,

the total runtime of the simulator is bounded by O(𝑙𝑑 · poly(𝜆)),
which is polynomial in the security parameter.

Lemma 3 (Indistinguishability of 𝐻0 and 𝐻1). If there exists
a PPT distinguisher D that can distinguish between 𝐻0 and 𝐻1 with
non-negligible advantage 𝜖 , then there exists an adversary B1 that
breaks the IND-CPA security of CKKS with advantage 𝜖 .

Proof. We construct adversary B1 as follows. First, B1 initiates

a CKKS security challenge by choosing messages𝑚0 = 𝐷 and𝑚1 =

𝑅𝐷 , receiving a challenge ciphertext 𝑐
∗
from the CKKS challenger.

Then, B1 constructs a view for D by settingM = 𝑐∗ and honestly

generating q and ct. Finally, B1 runs D on this view and outputs

whatever D outputs.

For the analysis, observe that if 𝑐∗ encrypts𝑚0, D sees distribu-

tion 𝐻0, and if 𝑐∗ encrypts𝑚1, D sees distribution 𝐻1. Therefore,

B1’s advantage in breaking CKKS is exactly D’s advantage. □

Lemma 4 (Indistinguishability of 𝐻1 and 𝐻2). If there exists
a PPT distinguisher D that can distinguish between 𝐻1 and 𝐻2 with
non-negligible advantage 𝜖 , then there exists an adversary B2 that
breaks the IND-CPA security of CKKS with advantage 𝜖 .

Proof. We construct adversary B2 as follows. B2 initiates a

CKKS security challenge by choosing messages𝑚0 = 𝑞 and𝑚1 =

Algorithm 6 SIM(1𝜆, aux)
1: Input: Security parameter 𝜆, auxiliary information aux
2: Output: Simulated view VIEWSIM

3: Sample 𝑅𝐷
$← Z𝑙×𝑑𝑞 ⊲ 𝑙 database size, 𝑑 vector dimension

4: Sample 𝑟𝑞
$← Z𝑑𝑞

5: Sample 𝑟𝑠
$← Z𝑙𝑞

6: SIM.M← Encrypt(𝑝𝑘, 𝑅𝐷)
7: SIM.q← Encrypt(𝑝𝑘, 𝑟𝑞)
8: SIM.ct← Encrypt(𝑝𝑘, 𝑟𝑠)
9: return VIEWSIM = (SIM.M, SIM.q, SIM.ct)

600

HyDia : FHE-based Facial Matching with Hybrid Approximations and Diagonalization Proceedings on Privacy Enhancing Technologies 2025(4)

𝑟𝑞 , receiving a challenge ciphertext 𝑐
∗
from the CKKS challenger.

Then, B2 constructs a view for D by first generating a random 𝑅𝐷
and setting SIM.M = Encrypt(𝑅𝐷), setting q = 𝑐∗, and honestly

generating ct. Finally,B2 runsD on this view and outputs whatever

D outputs.

For the analysis, observe that if 𝑐∗ encrypts𝑚0, D sees distribu-

tion 𝐻1, and if 𝑐∗ encrypts𝑚1, D sees distribution 𝐻2. Therefore,

B2’s advantage in breaking CKKS is exactly D’s advantage. □

Lemma 5 (Indistinguishability of 𝐻2 and 𝐻3). If there exists
a PPT distinguisher D that can distinguish between 𝐻2 and 𝐻3 with
non-negligible advantage 𝜖 , then there exists an adversary B3 that
breaks the IND-CPA security of CKKS with advantage 𝜖 .

Proof. We construct adversary B3 as follows. B3 initiates a

CKKS security challenge by choosing messages 𝑚0 = cos(𝐷,𝑞)
and𝑚1 = 𝑟𝑠 , receiving a challenge ciphertext 𝑐∗ from the CKKS

challenger. Then, B3 constructs a view for D by first generating

a random 𝑅𝐷 and setting SIM.M = Encrypt(𝑅𝐷), generating a

random 𝑟𝑞 and setting SIM.q = Encrypt(𝑟𝑞), and setting ct = 𝑐∗.
Finally, B3 runs D on this view and outputs whatever D outputs.

For the analysis, observe that if 𝑐∗ encrypts𝑚0, D sees distribu-

tion 𝐻2, and if 𝑐∗ encrypts𝑚1, D sees distribution 𝐻3. Therefore,

B3’s advantage in breaking CKKS is exactly D’s advantage. □

Proof of Theorem 1. Wehave shown through Lemmas 1-3 that

each consecutive pair of hybrids is computationally indistinguish-

able under the IND-CPA security of CKKS. By the triangle inequal-

ity:

| Pr[D (𝐻0) = 1] − Pr[D (𝐻3) = 1] | ≤ | Pr[D (𝐻0) = 1] − Pr[D (𝐻1) = 1] |+
| Pr[D (𝐻1) = 1] − Pr[D (𝐻2) = 1] |+
| Pr[D (𝐻2) = 1] − Pr[D (𝐻3) = 1] |
≤ negl

1
(𝜆) + negl

2
(𝜆) + negl

3
(𝜆)

= negl(𝜆)

Since 𝐻0 represents the real protocol execution and 𝐻3 is exactly

the output of our simulator SIM, we have shown that:

|Pr[D(VIEWreal) = 1] − Pr[D(VIEWSIM) = 1] | ≤ negl(𝜆)

Therefore, the real protocol execution is computationally indis-

tinguishable from the simulated view, completing our security

proof. □

C Complete Experimental Data
Figure 7 shows the similarity score distribution of all pairs of query

and database vectors generated by partitioning our dataset. As

described in Section 7, we partitioned our dataset randomly into 50

query vectors and 44,228 database vectors, resulting in 2,211,400

unique query-database pairs. The score distribution of pairs, which

were labeled as matching identities, are shown in green, and their

frequencies correspond to the right axis ticks. The score distribution

of pairs, which were labeled as distinct identities, are shown in red,

and their frequencies correspond to the left axis ticks.

Table 5 includes the experimental client overhead values for each

approach. Note that 𝑁𝑖𝑛 = 4 was chosen to be the optimal subvector

parameter by Choi et al. [16].

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity Score

0

100000

200000

300000

400000

500000

600000

Fr
eq

ue
nc

y
(D

ist
in

ct
)

Dataset Sample Labeled Pairs Distribution
Distinct

0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y
(M

at
ch

in
g)

Matching

Figure 7: Cosine Similarity Distribution of Labeled Pairs in
Random Dataset Partition

Table 5: Client Overhead for All Approaches (seconds)
Approach Client Overhead

Baseline 0.083

GROTE 0.099

Blind-Match (𝑁𝑖𝑛 = 4) 0.165

HERS (ℓ = 512) 2.540

HyDia 0.033

Table 6: Server Overhead for Membership and Identification
Scenarios across Database Sizes (seconds)

DB

Baseline GROTE Blind-Match HERS HyDia

Memb. Id. Memb. Id. Memb. Id. Memb. Id. Memb. Id.

2
10

11.5 11.3 17.5 20.6 8.5 8.1 4.3 3.5 5.9 4.7

2
11

17.1 16.8 25.2 28.3 13.0 12.8 4.2 3.5 4.5 4.2

2
12

35.9 35.6 48.7 50.7 22.0 21.0 4.1 3.5 4.5 4.2

2
13

64.6 64.2 89.6 92.1 40.1 39.5 4.2 3.3 4.5 4.4

2
14

133.8 135.8 175.2 176.0 79.7 80.0 4.2 3.5 4.5 4.2

2
15

264.7 265.5 338.4 336.7 161.1 161.2 6.2 5.4 6.2 5.9

2
16 − − − − − − 9.8 9.1 9.6 9.0

2
17 − − − − − − 17.0 15.8 16.0 15.5

2
18 − − − − − − 31.0 28.8 28.7 27.6

2
19 − − − − − − 58.2 54.0 53.2 49.7

2
20 − − − − − − 115.5 110.9 102.4 96.5

Table 7: End-to-End Overhead for All Approaches over 2
15

Database Subjects (seconds)
Network

Bandwidth

Baseline GROTE Blind-Match HERS HyDia

Memb. Id. Memb. Id. Memb. Id. Memb. Id. Memb. Id.

64Kbps 3849.613 3850.5 5203.517 7634.3 8483.286 8483.3 394181.932 394949.5 1542.931 2311.0
2Mbps 376.8 377.6 490.5 564.9 421.4 421.4 12326.7 12349.8 54.2 77.9
1Gbps 265.0 265.8 338.8 337.3 161.8 161.9 32.8 32.0 6.3 6.0
20Gbps 264.8 265.6 338.5 336.9 161.3 161.4 10.0 9.1 6.2 5.9

Table 6 presents the server overhead computational times for

both the Membership and Indentification scenarios, which are plot-

ted in Figure 6(a) and Figure 6(b). We computed this data by av-

eraging 10 trial runs for each approach on each database size. As

described in Section 7, three of the approaches could not scale be-

yond a database size of 2
15
, and therefore we omit the results for

these approaches.

Table 7 displays the end-to-end query times of different ap-

proaches over different network bandwidth values, which are plot-

ted in Figure 6(c) and Figure 6(d) in Section 7. Table 8 addition-

ally shows the end-to-end query times of HERS and HyDia when

601

Proceedings on Privacy Enhancing Technologies 2025(4) Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

Table 8: End-to-EndOverhead of State-of-the-Art Approaches
over 2

20 Database Subjects (seconds)
Network

Bandwidth

HERS HyDia

Membership Identification Membership Identification

64Kbps 394291.306 442694.141 1639.188 50040.730
2Mbps 12436.037 13944.365 150.474 1657.508
1Gbps 142.183 140.740 102.544 99.808
20Gbps 119.328 115.078 102.455 96.912

Table 9: Transmission Size of All Approaches over 2
15 Data-

base Subjects (MBs)
Scenario Baseline GROTE Blind-Match HERS HyDia

Membership 28.007 38.008 65.015 3079.478 12.006
Identification 28.007 57.012 65.015 3085.481 18.009

Table 10: Communication Overhead of All Approaches over
2

15 Database Subjects (seconds)
Network

Bandwidth

Baseline GROTE Blind-Match HERS HyDia

Memb. Id. Memb. Id. Memb. Id. Memb. Id. Memb. Id.

64Kbs 3584.8 3584.8 4865.0 7297.5 8322.0 8322.0 394173.2 394941.5 1536.7 2305.1
2Mbps 112.0 112.0 152.0 228.0 260.1 260.1 12317.9 12341.9 48.0 72.0
1Gbps 0.2 0.2 0.3 0.4 0.5 0.5 24.1 24.1 0.1 0.1
20Gbps 0.01 0.01 0.01 0.02 0.03 0.03 1.20 1.21 0.00 0.01

Table 11: Server Overhead Comparison Between HyDia with-
out Hoisting Optimization and With (seconds)

DB

Non-Hoisted

Memb.

Hoisted

Memb.

Memb.

Diff.

Non-Hoisted

Id.

Hoisted

Id.

Id.

Diff.

2
10

11.1 5.9 5.2 9.7 4.7 5.0

2
11

10.7 4.5 6.2 9.9 4.2 5.7

2
12

10.8 4.5 6.2 9.9 4.2 5.7

2
13

10.6 4.5 6.1 9.9 4.4 5.6

2
14

10.7 4.5 6.2 10.0 4.2 5.8

2
15

12.1 6.2 5.9 11.4 5.9 5.5

2
16

14.9 9.6 5.4 14.2 9.0 5.2

2
17

21.0 16.0 5.0 20.3 15.5 4.8

2
18

32.8 28.7 4.1 32.1 27.6 4.5

2
19

56.7 53.2 3.5 55.8 49.7 6.1

2
20

119.1 102.4 16.7 109.8 96.5 13.3

there are 2
20

database subjects. As described in Section 7, other

approaches could not be scaled to these many subjects and are thus

omitted in the comparison. Finally, Table 9 shows the ciphertext

communication size in the membership and identification scenario

for all methods, and Table 10 shows the communication latency for

transmitting these query ciphertexts over various network band-

widths.

D Hoisting Optimization for Homomorphic
Rotations

The "hoisting" optimization, introduced by Halevi and Shoup [27],

is applied in Section 5 to reduce the computational overhead of

rotating the same ciphertext by multiple different factors. At a high

level, Halevi and Shoup identified that multiple rotations upon the

same ciphertext would each begin with a common sub-operation,

independent of the specific rotation factor. Therefore, that sub-

operation could be precomputed exactly once, and each separate

rotation could use that precomputed result without needing to in-

dividually compute it. In practice, this significantly reduces the

number of operations required across all rotations [33]. The opti-

mization is referred to as "hoisting" since, if many rotations upon

0 10 20 30 40 50
Number of Cores

101

102

103

Se
rv

er
 C

om
pu

ta
tio

n
Ti

m
e

(s
ec

on
ds

)

Baseline
GROTE
Blind-Match
HERS
HyDia

Figure 8:Membership Scenario ServerOverhead over 2
15 Data-

base Subjects using Varying Cores

0 10 20 30 40 50
Number of Cores

101

102

103

Se
rv

er
 C

om
pu

ta
tio

n
Ti

m
e

(s
ec

on
ds

)

Baseline
GROTE
Blind-Match
HERS
HyDia

Figure 9: Identification Scenario Server Overhead over 2
15

Database Subjects using Varying Cores

Table 12: Server Overhead of eachApproach over 2
15 Database

Subjects across Different Numbers of Cores (seconds)
Baseline GROTE Blind-Match HERS HyDia

Cores Memb. Id. Memb. Id. Memb. Id. Memb. Id. Memb. Id.

2 1035.4 1007.2 1577.5 1543.2 140.7 140.2 67.3 66.8 26.8 24.9
4 606.3 576.7 900.7 904.7 138.0 137.3 37.2 36.9 16.2 14.5
8 384.5 378.4 569.4 567.1 137.8 137.5 21.8 22.3 11.9 11.5
16 279.5 277.6 407.1 405.1 140.5 140.5 14.6 14.5 8.4 8.0
24 239.0 239.7 343.3 344.1 140.8 142.9 11.3 10.8 7.5 6.9
32 237.4 238.5 344.9 347.7 145.2 145.4 11.4 10.7 7.5 6.8
48 234.8 235.5 347.3 348.6 161.0 158.2 11.0 9.6 6.6 6.1

the same ciphertext were to be performed in a loop, this optimiza-

tion would hoist all common sub-operations out of that loop [27].

From a technical perspective, the hoisting optimization works

because the rotation operation in CKKS is an automorphism 𝜙𝑘 ,

where 𝑘 is the rotation factor. By definition, this automorphism

distributes over addition and multiplication, and also commutes

with the RNS decomposition of a CKKS ciphertext [8].

When this automorphism is applied to a ciphertext ct′ ← 𝜙𝑘 (ct),
it can only be properly decrypted by 𝜙𝑘 (𝑠𝑘), and key-switching

must be performed so that ct′ can be decrypted by the original

private key 𝑠𝑘 . Therefore, a typical rotation operation in CKKS

involves three main sub-operations [27]:

(1) The automorphism is applied to the ciphertext.

602

HyDia : FHE-based Facial Matching with Hybrid Approximations and Diagonalization Proceedings on Privacy Enhancing Technologies 2025(4)

Table 13: Server Memory Costs for Storing Databases in En-
crypted HyDia Form versus Unencrypted Form (GB)

DB

HyDia

(Experimental)

HyDia

(Calculated)

Unencrypted

(Calculated)

2
10

3.001 3.000 0.002

2
11

3.001 3.000 0.004

2
12

3.001 3.000 0.008

2
13

3.001 3.000 0.016

2
14

3.001 3.000 0.031

2
15

6.003 6.000 0.063

2
16

12.006 12.000 0.125

2
17

24.012 24.000 0.250

2
18

48.023 48.000 0.500

2
19

96.047 96.000 1.000

2
20

192.093 192.000 2.000

Table 14: Server Peak RAM Costs for Membership and Index
Scenarios (GB)

DB Baseline GROTE Blind-Match HERS HyDia

2
10

58.2 80.7 53.3 31.8 33.3

2
11

60.2 83.3 53.3 31.8 33.3

2
12

62.3 86.4 53.5 31.8 33.3

2
13

62.7 87.1 53.9 31.8 33.3

2
14

64.5 89.2 54.4 31.8 33.3

2
15

67.2 93.3 54.8 31.9 33.3

2
16 − − − 31.9 33.3

2
17 − − − 31.9 33.3

2
18 − − − 31.9 33.3

2
19 − − − 31.9 33.3

2
20 − − − 31.9 33.3

(2) RNS decomposition is performed upon the ciphertext. This

is the most expensive sub-operation [26].

(3) Key-switching is performed upon the decomposed cipher-

text.

Halevi and Shoup noted that the RNS decomposition of a ci-

phertext is fully independent of the factor it is being rotated by.

Furthermore, since𝜙𝑘 is an automorphism, it can be applied directly

upon the RNS decomposition of a ciphertext, and the rotation pro-

cedure would remain correct. Therefore, the hoisting optimization

involves switching the order of steps (1) and (2) from above [27].

Now that the RNS decomposition is the first step in the rotation

procedure, that decomposition can be precomputed for a cipher-

text exactly once and reused by all subsequent rotations of that

ciphertext, even if those rotations are by different factors.

It should be noted that the hoisting optimization is only appli-

cable when the same ciphertext needs to be rotated by multiple

different rotation factors. This is because the RNS decomposition

for one ciphertext cannot be used in the rotation procedure of an-

other ciphertext. As such, this optimization is only applicable to

HyDia at the beginning of the score computation step performed

by S, where the same query ciphertext must be rotated ℓ − 1 times.

E Complexity Analysis
We present the algorithmic complexities required by S to compute

cosine similarity scores in the baseline approach, and in HyDia.

These complexities are given with respect to the number of database

template vectors 𝐾 , and involve constant system parameters 𝑁 and

ℓ . Wewill demonstrate that, due to its diagonal encoding of database

template vectors, HyDia is able to compute cosine similarity scores

with far fewer expensive homomorphic operations, particularly

relinearizations, rescalings, and rotations. Furthermore, regarding

all other homomorphic operations, the complexity of HyDia is

either less than or equal to the baseline approach.

It should be noted that we only discuss the complexities of the

score-computation step, which is equivalent to matrix-vector multi-

plication, in this section. The score-comparison step, as well as the

operations of C, have equivalent complexities between the baseline

approach and HyDia, and therefore are not included here.

E.1 Complexity of Baseline Approach
Recall that in the baseline approach, database template vectors are

not encoded diagonally, but instead packed sequentially into cipher-

texts. As such, the baseline approach stores 𝐾 database template

vectors within ⌈2𝐾ℓ/𝑁 ⌉ ciphertexts. To compute cosine similarity

scores, S must perform Algorithm 1 upon each database ciphertext.

In sum, S must perform ⌈2𝐾ℓ/𝑁 ⌉ ciphertext-ciphertext multiplica-

tions, and ⌈2𝐾ℓ/𝑁 ⌉ · log
2
(ℓ) of both ciphertext-ciphertext additions

and rotations.

Additionally, recall that Algorithm 1 returns sparsely-packed

ciphertexts, with scores positioned at intervals of ℓ . Therefore,

the baseline approach requires a score-merge operation to remove

non-score values and rearrange valid scores into a dense packing.

This operation requires a ciphertext-plaintext multiplication for

each of the ⌈2𝐾ℓ/𝑁 ⌉ ciphertexts, to mask non-score values. After

masking, additions and rotations are used to combine ℓ sparsely-

packed ciphertexts into one densely-packed ciphertext. Therefore,

this score-merge operation also requires ⌈2𝐾ℓ/𝑁 ⌉ − ⌈2𝐾/𝑁 ⌉ rota-
tions and ciphertext-ciphertext additions. After all scores have been

densely packed, those resulting ciphertexts must be relinearized

and rescaled, involving ⌈2𝐾/𝑁 ⌉ operations each.

E.2 Complexity of HyDia
In HyDia, before S can begin computing cosine similarity scores

using Algorithm 3, it must compute and store all ℓ unique rotations

of the query ciphertext, as defined by Algorithm 5. Since it is given

the unrotated query ciphertext by C, it must perform ℓ −1 rotations

to obtain the rest.

In order for S to compute 𝐾 similarity scores following Hy-

Dia, it must perform Algorithm 3 upon each grouping of ℓ cipher-

texts. Since our diagonal encoding can pack up to 𝑁 /2 templates

into each grouping of ℓ ciphertexts, S must perform Algorithm 3

⌈2𝐾/𝑁 ⌉ times. Each execution of Algorithm 3 requires ℓ ciphertext-

ciphertext multiplications, followed by ℓ − 1 ciphertext-ciphertext

additions, one relinearization, and one rescaling.

Recall that Algorithm 3 outputs a vector of cosine similarity

scores, which are fully packed in sequential order. Therefore, un-

like the baseline approach, HyDia does not require a score-merge

operation to rearrange the scores into packed, sequential order.

603

Proceedings on Privacy Enhancing Technologies 2025(4) Samuel Martin, Nirajan Koirala, Helena Berens, Thomas Rozgonyi, Micah Brody, Taeho Jung

Table 15: Algorithmic Complexity for Cosine Similarity Score Computation

Approach

Cipher-Cipher

Addition

Cipher-Cipher

Mult.

Cipher-Plain

Mult.

Relin. Rescale

Standard

Rotation

Hoisted

Rotation

Baseline

(Inner Product)

⌈2𝐾ℓ/𝑁 ⌉ · log
2
(ℓ) ⌈2𝐾ℓ/𝑁 ⌉ 0 ⌈2𝐾ℓ/𝑁 ⌉ ⌈2𝐾ℓ/𝑁 ⌉ ⌈2𝐾ℓ/𝑁 ⌉ · log

2
(ℓ) 0

Baseline

(Score-Merge)

⌈2𝐾ℓ/𝑁 ⌉ − ⌈2𝐾/𝑁 ⌉ 0 ⌈2𝐾ℓ/𝑁 ⌉ ⌈2𝐾/𝑁 ⌉ ⌈2𝐾/𝑁 ⌉ ⌈2𝐾ℓ/𝑁 ⌉ − ⌈2𝐾/𝑁 ⌉ 0

HyDia ⌈2𝐾/𝑁 ⌉ · (ℓ − 1) ⌈2𝐾/𝑁 ⌉ · ℓ 0 ⌈2𝐾/𝑁 ⌉ ⌈2𝐾/𝑁 ⌉ 0 ℓ − 1

604

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Fully Homomorphic Encryption
	2.3 Facial Feature Extractors

	3 Related Work
	3.1 Non-FHE Facial Matching Approaches
	3.2 Baseline FHE Approach
	3.3 GROTE
	3.4 Blind-Match
	3.5 HERS

	4 Definitions
	4.1 System Model
	4.2 Adversary and Threat Model
	4.3 Protocol and Security Definitions

	5 Protocol Description: HyDia
	5.1 Database Encryption with Diagonalization
	5.2 Single-Ciphertext Query Generation
	5.3 Optimized Similarity Computation
	5.4 Hybrid Approximation for Homomorphic Thresholding
	5.5 The Complete HyDia Protocol
	5.6 Correctness and Security of HyDia

	6 Discussions
	6.1 Multi-Client Considerations
	6.2 Reducing False Positives
	6.3 Increasing Throughput

	7 Experiments
	7.1 Accuracy Experiments
	7.2 Scalability Experiments
	7.3 Memory Cost Experiments
	7.4 Comparison to non-FHE-based works

	8 Conclusion
	Acknowledgments
	References
	A Correctness Proofs
	B Security Proofs
	C Complete Experimental Data
	D Hoisting Optimization for Homomorphic Rotations
	E Complexity Analysis
	E.1 Complexity of Baseline Approach
	E.2 Complexity of HyDia

