
Okay Google, Where’s My Tracker? Security, Privacy, and
Performance Evaluation of Google’s Find My Device Network

Leon Böttger
lboettger@seemoo.de

Secure Mobile Networking Lab
Technical University of Darmstadt

Alexander Matern
amatern@seemoo.de

Secure Mobile Networking Lab
Technical University of Darmstadt

Dennis Arndt
darndt@seemoo.de

Secure Mobile Networking Lab
Technical University of Darmstadt

Matthias Hollick
mhollick@seemoo.de

Secure Mobile Networking Lab
Technical University of Darmstadt

Abstract
In April 2024, Google launched the Find My Device Network
(FMDN), an Offline-Finding Network (OFN) that allows lost Blue-
tooth devices, such as trackers or headphones, to be located using
billions of Android devices as finders. Similarly to Apple’s Find My
network, it is activated by default on all modern Android devices.
Google promises end-to-end encryption for all location updates
and claims to protect the privacy of finder devices as well as own-
ers of lost devices and trackers. Although Android is open-source,
FMDN is part of Google Play Services and is only partially publicly
specified. We reverse-engineer the proprietary parts of the network,
document its behavior, and analyze its privacy, security, and per-
formance. We find several security and privacy issues, including
denial-of-service attacks and a potential linkage attack on Android.
We further implement a custom app, porting Google’s trackers from
Android to iOS while also extending the features of the FMDN.

Keywords
Bluetooth, Offline-Finding Networks, Tracker, Security, Privacy,
Find My Device

1 Introduction
Offline-Finding Networks (OFNs) allow people to track valuable
items by attaching small trackers to them. Trackers can be as small
as a coin, are available in several shapes, such as a credit card,
and usually have an independent battery life of up to one year.
These trackers are offline, have no means of connecting to the
internet, and do not use a Global Navigation Satellite System (GNSS)
sensor to determine their location. Hence, they use Bluetooth Low
Energy (BLE) advertisements to broadcast beacons, which so-called
finder devices can receive (see Figure 1). A finder device can be a
smartphone with an active internet connection and a GNSS sensor
or other means to determine its location.When a finder device scans
for BLE advertisements and finds a tracker, it fetches its location

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(4), 605–619
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0147

Figure 1: Offline-findingworkflow forGoogle FindMyDevice
Network (FMDN) trackers [61].

using GNSS and forwards its location to the tracker manufacturer.
As a result, the owner can now view the tracker’s location.

Apple was the first smartphone manufacturer to introduce an
OFN, using all its iPhones and other Apple devices to act as finder
devices. This created a massive worldwide network that can locate
trackers with high accuracy and deliver updates with an average
delay of only 15 minutes [33]. Apple reported that its network
consists of up to a billion finder devices [2]. Samsung followed
shortly after and implemented an OFN using Samsung smartphones
to locate devices and trackers. The main difference with Apple’s
network is that Samsung used an opt-in approach, while Apple’s
network is only opt-out. Therefore, the last reported number of
finder devices was 300 million [55]. A comparison between both
networks has shown a similar accuracy of 30m to 100m [35].

In any case, an OFN deals with highly sensitive location data. As
recent examples have confirmed, location data in the wrong hands
can be used to identify individuals, build social graphs, create pro-
files for targeted advertising, and facilitate Unwanted Tracking
(UT) [20, 33, 37, 69]. Existing OFNs have been found to be vulner-
able to a range of attacks: Tile’s network has been leaking email
addresses since 2019 [37, 69], an issue that still exists today. Fur-
thermore, their network was exploited in 2024, giving the attacker
access to location data of all users [20]. Although Apple’s OFN
employs end-to-end encryption, researchers were able to access
location data on macOS using an unprivileged macOS app that
could download and decrypt the user’s location [33].

Even if an adversary does not exploit the network, they may
still track individuals by hiding a tracker in their belongings. These

605

https://orcid.org/0000-0002-1150-1922
https://orcid.org/0000-0002-9163-5989
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0147


Proceedings on Privacy Enhancing Technologies 2025(4) Böttger et al.

UT and cyberstalking attacks have become a major issue in our
society [19, 39, 41]—especially since Apple and Samsung have cre-
ated OFNs that deliver accurate and timely information. Previous
research has analyzed these stalking incidents and found that vic-
tims are stalked through a plethora of methods, with unwanted
location tracking used in 44.28% of cases [34]. To inform victims
about potential stalking attacks, tracker manufacturers have started
implementing tracking detection methods. If a tracker follows a
user for a certain time, the smartphone will warn them by sending
a notification. Additionally, the research community has developed
several apps to detect trackers for iOS and Android [13, 31, 46].

In April 2024, Google launched the Find My Device Network
(FMDN), a new OFN for the largest mobile operating system An-
droid. The FMDN is now also known as the Find Hub network. Any
device running Android 9 or newer with Google’s Play Services
installed can now act as a finder device, creating a massive net-
work with billions of devices. Since its launch, several third-party
manufacturers have built trackers for the FMDN. Google has been
more open than other manufacturers. It documents the behavior of
trackers, including the applied end-to-end encryption methods [25].
Furthermore, it has learned from the mistakes of others – Google
implemented UT detection on Android and, in cooperation with Ap-
ple, on iOS [38]. Additionally, it claims to implement rate-limiting
to restrict stalkers’ ability to get real-time updates on their victim’s
location [11]. By default, the location of finder devices is further
protected by combining multiple location reports and only show-
ing an approximate location to the owner of a tracker. Users can
configure settings on the finder device to always report a precise
location instead of relying on combined reports.

Google’s network seemingly had a promising start in setting
higher security and privacy standards. Nevertheless, since the code
is not part of the Android open-source project, we asked the fol-
lowing research questions:

• RQ1: How is sensitive data protected against external access
in Google’s FMDN?

• RQ2: Is it possible to circumvent Google’s tracking detection
mechanisms?

• RQ3: How accurate are the locations reported by the net-
work?

To summarize our contributions:

(1) We reverse-engineer the closed-source parts of the FMDN.
(2) We publish and document the entire FMDN protocol, from

registration of a tracker to finder devices’ location reports.
(3) We identify several security issues, allowing us to take over

a previously shared tracker and perform a linkage attack
that could be executed by a Google-internal attacker.

(4) We discover four different methods to circumvent current
tracking detection mechanisms.

(5) We evaluate the network’s performance and compare it to
Apple’s Find My OFN.

2 Background & Related Work
OFNs use BLE advertisements to locate lost devices and minia-
turized trackers. In this section, we detail the basics of an OFN,
introduce Google’s FMDN, and summarize the related work.

2.1 Offline-Finding Networks
AnOFN consists of four parts: the tracking device, the finder devices,
the OFN provider cloud, and another owner device, which may be
used to access the location of the tracking device. In this example,
we explain the OFN based on a Bluetooth tracker, but it could just
as well be a lost smartphone, laptop, or any other device with BLE
capabilities. Figure 1 demonstrates this using the example of the
Google FMDN.

To set up the tracker, the owner pairs it with their smartphone
using the app provided for the OFN. The pairing process usually
exchanges keymaterial, ensuring that only the owner may access lo-
cation reports and perform privileged actions, like playing a sound.
The tracker can then broadcast BLE advertisements on known BLE
channels. Each advertisement may contain up to 31 bytes of data.
Extended advertisements in Bluetooth 5.0 even support up to 254
bytes of data. Data can be formatted as manufacturer-specific data,
starting with a company ID, followed by the actual data, or as
service data, indicating a publicly known service UUID [12] and
service-specific data. In any case, the data sent by the tracker is
used by the network to identify it.

Finder devices, usually other smartphones, scan for BLE adver-
tisements of trackers at regular intervals. If they find a tracker,
they fetch their own location information using GNSS and send
a location report for the tracker to the OFN provider cloud. The
owner can download the location reports using the app for the
OFN. Some OFNs use end-to-end encryption, which ensures that
only the owner of the device can decrypt the location, even if the
location database were breached.

2.2 Google Find My Device Network
Similar to previous OFNs, Google’s FMDN supports a number of
tracking devices: Bluetooth trackers, smartphones, and headphones.
Most of the tracking devices are built by third-party manufacturers
who collaborate with Google.

However, contrasting existing OFNs, Google’s FMDN operates in
multiple modes that can be switched by the user. The default setting
is called "With Network in High-Traffic Areas Only". If this setting
is enabled, location reports of multiple finder devices are required
and will be aggregated. In Section 4.3.1, we detail the properties of
such a "High Traffic" area. In the alternative network mode "With
Network in All Areas," reported locations of trackers are forwarded
to the owner of a tracker, even if no other finder device detected it.
This setting needs to be manually enabled.

2.3 Related Work
Research on OFN started in 2020, with the first publication an-
alyzing several tracking networks for their security and privacy
properties [69]. They found multiple data leaks, ranging from email
addresses to location data. Finally, they invented a new OFN using
end-to-end encryption. A similar research paper analyzed a differ-
ent set of tracking networks for defined security properties, such as
spoofing protection [22]. None of the analyzed networks adhered
to all properties.

Apple’s Find My network was also reverse-engineered and ana-
lyzed [33]. The network uses end-to-end encryption for all location
data, protecting the privacy of finder devices and owner devices.

606



Okay Google, Where’s My Tracker? Proceedings on Privacy Enhancing Technologies 2025(4)

Nevertheless, several oversights allowed researchers to access loca-
tion data from an unprivileged macOS app. Furthermore, custom
trackers based on Apple’s Find My network were developed by the
same team [32].

In 2024, the Samsung SmartThings Find network was scruti-
nized [70]. Researchers found several issues with the tracker hard-
ware itself, allowing them to identify trackers and rendering MAC
address randomization useless. Furthermore, they were able to
spoof fake location reports by relaying advertisements or extract-
ing a token from a legitimate finder device.

As every tracker may also be used for UT, detecting a malicious
tracker is important for potential victims. Three Android apps were
built by the research community to detect trackers [13, 31, 46].
The only research-community-developed app available on public
app marketplaces is AirGuard [31], which is also the only app for
tracking detection on iOS [16]. Additionally, Android and iOS offer
integrated tracking detection for Apple’s Find My network and
Google’s FMDN [2, 11]. Furthermore, commercial products exist
and are sold between USD 499 and USD 3500 [7, 8]. However, re-
searchers found existing tracking detection mechanisms provided
by manufacturers to be insufficient [68]. Tracking detection mech-
anisms were analyzed, and in all cases, an adversary who could
create a custom tracker would be able to bypass them [44]. Ap-
proaches to counter these malicious custom trackers have also been
proposed [43]. At the time of writing this paper, a standardization
process at the Internet Engineering Task Force (IETF) for detecting
unwanted location trackers is ongoing. It was initially proposed by
Apple and Google to create a unified protocol that location trackers
should use to be detectable if used for unwanted tracking [38].

In addition to UT, OFNs have been misused for other unintended
purposes. For example, using Apple’s Find My for data transfer has
been studied [6, 29, 66]. Depending on the protocol used, transfer
speeds of up to 12.5 bps were achieved. Recently, scientists also
found that it was possible to create BLE advertisements sent from
Windows, Linux, andAndroid, replicating theApple FindMy format
and allowing an adversary to track the affected device [17].

3 Methodology
A combination of investigative approaches was used to understand
the FMDN protocol. For starters, we used Google’s developer doc-
umentation, which already documents large parts of the tracker
firmware [25]. Then, we used dynamic [47, 52] and static [50, 60, 67]
application reverse engineering programs to study the inner work-
ings of various undocumented protocols involved in FMDN, ana-
lyzed various logs produced by Android and applications [21, 24],
and examined both BLE and network traffic between devices and
Google servers [40, 48? ]. We omit further details, as this methodol-
ogy is common for reverse engineering and vulnerability research.

Devices involved in the analysis include a laptop with macOS 15,
and a number of Android devices running Android versions 9–14,
rooted and unrooted. We list all the devices in Table 1. The rooted
devices ran Google Play Services 24.23.25, and the Find My Device
(FMD) app 3.1.148 (now called Find Hub). Unrooted devices were
frequently updated to use the latest version of the Play Services
app and the FMD app.

Table 1: Used Android devices for testing.

Device Android Rooted

Samsung Galaxy S5 Plus 9 ✓
Samsung Galaxy S5 12 ✓
Google Pixel 2 XL 11 ✓
Samsung Galaxy S21 Ultra 14 ×
Samsung Galaxy A55 14 ×
ASUS ROG Phone 3 12 ×
Samsung Galaxy S8 9 ×

Table 2: Evaluated trackers that support the FMDN.

Model Manufacturer Type

ONE Point Chipolo Tracker
CARD Point Chipolo Tracker
Moto Tag Motorola Tracker
Clip Pebblebee Tracker
WH-1000XM5 Sony Headphones

We evaluated the FMDN with all trackers that were available in
our region at the time of writing. The trackers and their tracker
manufacturers are listed in Table 2.

4 The Google Find My Device Network Protocol
In this section, we present the protocol’s registration process, Blue-
tooth advertisements, location reports, as well as retrieving network
locations by the owner. Some parts are publicly documented [25],
while other protocol details were obtained through reverse engi-
neering.

4.1 Firmware
As mentioned earlier, Google already described details of the
firmware of FMDN trackers meant for tracker manufacturers [25,
26]. We briefly summarize Google’s documentation in this section.

4.1.1 Fast Pair. FMDN trackers are initially paired with Google’s
Fast Pair protocol. The pairing process is handled by Google Play
Services, a system-level app installed on most Android devices.
The specification for Fast Pair is partly available; implementation
guidelines for Fast Pair-compatible peripherals are described in
Google’s developer documentation [25].

Fast Pair uses a pre-shared key to protect against Machine-in-the-
middle (MitM) attacks during pairing [26]. This key is a NIST-256
elliptic curve key pair, unique for every Fast Pair device model, and
generated when the manufacturer registers the Fast Pair model
with Google. The private part of this key is stored on the Fast Pair
device itself, while the public part is uploaded to Google’s server.
If an Android smartphone attempts to pair with a Fast Pair device,
both devices must prove that they possess the respective part of
the pre-shared key. Fast Pair accessories advertise the Fast Pair
service FE2C. Android devices read out the Fast Pair Model ID from
the advertisement and send it to Google. Google then returns the
public part of the pre-shared key. An elliptic curve Diffie-Hellman

607



Proceedings on Privacy Enhancing Technologies 2025(4) Böttger et al.

(ECDH) key exchange is performed, which is later used to encrypt
succeeding keys using AES-ECB [26]. The Fast Pair procedure ends
with the exchange of the Account Key, which is a 16-byte value
randomly generated on the Android device, starting with 0x04.
Further Bluetooth communication uses this key for authentication.

Figure 2: Keys derived during pairing.

4.1.2 Tracker Pairing and Key Exchange. After the Account Key
is exchanged using Fast Pair, the FMDN-specific pairing process
starts. This involves calculating and deriving the keys shown in
Figure 2. These keys are needed for the end-to-end encryption
of the network. The most important key is the 32-byte Ephemeral
Identity Key (EIK), functioning as amaster key. The key is unique for
every tracker, randomly generated on the phone, and not known to
Google. During the pairing procedure, the EIK is sent to the tracker
using an encrypted channel based on the Account Key [25].

Three keys are derived from the EIK using the 16-byte prefix
of the SHA-256 hash of the EIK appended with an identifier. The
identifier is 0x01 for the Recovery Key, 0x02 for the Ring Key, and
0x03 for the UT Key [25]. The Recovery Key can be used to recover
the EIK from the tracker. The Ring Key can be used to start a sound
on the tracker. The UT Key is used to enable UT mode. We discuss
UT mode in Section 4.1.6, and describe its activation in Section 4.2.3.
Those keys are stored in the cloud and accessible to Google.

4.1.3 Tracker Advertisement. If the pairing process is complete, the
FMDN tracker starts sending BLE advertisements using the BLE
Service 0xFEAA, allowing finder devices to discover it and report
its location. Table 3 shows the contents of the advertisement. The
Ephemeral Identifier (EID) is a public key allowing finder devices
to end-to-end encrypt location reports. The EID can either be 20 or
32 bytes long. The UT byte indicates whether this tracker is in UT
mode. The hashed flags store the battery status and the UT mode
status. They are encrypted using the EIK and can only be accessed
by the owner [25]. Trackers do not implement an activation lock,
and they can be forcibly reset. This procedure varies by manufac-
turer, but always requires physical interaction, such as pressing a
button.

4.1.4 EID Calculation. The EID is calculated on the tracker. It is
generated as follows [25]:

(1) A byte array, as defined in Table 4, is constructed.
(2) The data is then encrypted using AES-ECB-256 with the EIK.
(3) The result is interpreted as an unsigned integer 𝑟 ′ in Big

Endian.

Table 3: BLE advertisement data sent from Google FMDN
trackers (20-byte EID).

Bytes Content

0-4 BLE flags and payload length
5-6 0xFEAA (Service UUID)
7 UT byte: 0x40 = off; 0x41 = on
8-27 EID
28 Hashed flags

Table 4: Byte array used to create the EID. 𝐾 defines the rota-
tion period exponent, representing when the EID rotates.

Bytes Content

0-10 0xFF * 11
11 𝐾

12-15 ts_bytes
16-26 0x00 * 11
27 𝐾

28-31 ts_bytes

The default key rotation is set to 1024𝑠 = 2𝐾𝑠 = 210𝑠 . ts_bytes
represents the timestamp of the device, counting the seconds since
its initial provisioning, with the lowest 𝐾 bits set to 0.

(4) The unsigned integer 𝑟 ′ is mapped to the finite field 𝐹𝑝 of
SECP160R1 (20 bytes) or SECP256R1 (32 bytes) by perform-
ing a modulo operation with the order of the curve. The
result is 𝑟 .

(5) Finally, the point on the curve 𝑅 is calculated by multiplying
𝑟 by the generator of the curve, and the 𝑥-coordinate of the
point 𝑅 (𝑅𝑥 ) is returned as the EID.

The counter (ts_bytes) determines the current advertisement. For
this calculation, the lowest 𝐾 (= 10) bits are always set to 0, leading
to a change of the EID every 1024 seconds on average. A slight
randomization is implemented, which we describe in more detail
in Section 6.2.2.

4.1.5 End-to-End Encryption. The EID can be transformed to a pub-
lic key that is used to encrypt data using the following method [25]:

(1) The correct curve is chosen: SECP160R1 for 20-byte EIDs or
SECP256R1 for 32-byte EIDs.

(2) The finder device generates a random ephemeral key pair
on the respective curve, (𝑑𝑒 , 𝑃𝑒 ).

(3) The public key 𝑃𝑒𝑖𝑑 is extracted from the EID. The EID rep-
resents the x-value of 𝑃𝑒𝑖𝑑 , while the y-value is derived by
substitution in the curve equation.

(4) An ECDH key exchange 𝑠 = 𝑑𝑒 ∗ 𝑃𝑒𝑖𝑑 is performed.
(5) A 256-bit key is derived as 𝑘 = HKDF-SHA256(𝑠𝑥 ).
(6) The nonce is calculated by appending the lower 8 bytes of

the x-value of 𝑃𝑒𝑖𝑑 and the lower 8 bytes of the x-value of 𝑃𝑒 .
(7) The message is encrypted using AES-EAX-256 with the

nonce and 𝑘 as the key.
(8) The result is the encrypted message with a 16-byte tag.
(9) The final result is sent to Google alongside the x-value of 𝑃𝑒 .

608



Okay Google, Where’s My Tracker? Proceedings on Privacy Enhancing Technologies 2025(4)

4.1.6 Unwanted Tracking ProtectionMode. UT (Protection)Mode is
designed to mitigate the risk of trackers being misused for stalking.
During normal operation, a tracker’s BLEMAC address rotates with
the EID, ca. every 1024 seconds. If UT mode is enabled, the MAC
address rotation is reduced to one rotation every 24 hours. The
EID rotation behavior remains unchanged. As a result, the built-in
tracking detection mechanisms of Android and iOS can determine
if a FMDN tracker is following a user.

4.2 Finder Devices
In the following, we present the aspects of FMDN trackers that
are unrelated to their firmware. This information is not officially
documented and we obtained it through reverse engineering. We
describe web requests and data encoding strategies in the Appendix.

4.2.1 Client-Side Scanning and Delaying. All Android devices run-
ning Android 9 or later, with Google Play Services 24.12.14 or
newer [56], can act as finder devices. Google Play Services continu-
ously scans for FMDN-compatible trackers via Bluetooth, detecting
new trackers almost immediately. Even if Bluetooth is disabled,
Play Services can scan for trackers if the Android location services
setting Bluetooth Scanning is enabled. If a Bluetooth advertisement
from a FMDN-compatible tracker is detected, the finder device
queries its location, with a timeout of 150 seconds. If the device’s
current location is within 100m of the owner’s home location,
sightings of foreign trackers are discarded (see Section 7.4).

If a valid location was retrieved, non-discarded sightings are
passed to the SightingAggregator, which tracks both uploaded
sightings and those pending upload. Sightings are grouped by the
SightingKey, which corresponds to either the tracker’s EID or the
device ID of an owned tracker. Only one sighting per SightingKey
(based on time and accuracy) is uploaded, with a maximum of 100
sightings per upload. If a location has already been uploaded for
a SightingKey, a re-upload is allowed if the location changes by
at least 40m, the accuracy improves by at least 50%, or the time
difference is at least 300 seconds (foreign trackers) or 60 seconds
(owned trackers).

If the finder’s screen is off, location uploads for foreign trackers
are delayed by at least 5 minutes. In power-saving mode, this delay
extends to 15 minutes. If the Android device’s screen is on or an
owned tracker is detected, locations are uploaded immediately.

4.2.2 End-to-End Encryption of Location Data. If locations should
be uploaded, the location is encoded using Google’s Protobuf. Lati-
tude and longitude are stored as signed 32-bit integers. To convert
decimal coordinates to integers, a factor of 1.0 × 107 is applied.
After encoding the location in Protobuf format, it is serialized and
encrypted using the EID. In addition to the encrypted location and
the ephemeral public key 𝑃𝑒 , the Truncated EID is sent, representing
the 10-byte prefix of the EID a tracker advertises. A precomputed
list of future precomputed Truncated EIDs is regularly uploaded by
the tracker’s owner to Google’s server, allowing the server to iden-
tify which tracker and Google account a location report belongs to.
Location reports also contain further unencrypted metadata, such
as the UNIX timestamp when the tracker was found, the accuracy
of the location, and the status of the UT mode.

The end-to-end encrypted payload and the additional metadata
will then be encrypted again using a public key of Google and the
NIST P-256 curve. The encrypted payload is sent alongside the
so-called DroidGuard results, which attest to the integrity of the
Android device (see Section 6.2.5).

4.2.3 Final Report. To send the report to the server, the HTTPS re-
quest UploadScans is used. The so-called X-Goog-Spatula header
is used to authenticate the client (see Section 6.3.2)

The server’s response to this request contains an array of actions
the client should perform on the foreign devices reported to the
server. Each action object contains an array of Truncated EIDs
to identify the device the server is referring to. There are three
actions available: the first indicates whether the sighted tracker
was explicitly marked as lost by its owner. In this case, the Android
device evaluates the current Bluetooth signal strength of the tracker.
If the tracker is roughly 1 meter or less away, a notification will
be displayed, allowing the user to contact the owner. Second, the
Ring Key may be sent, instructing the finder device to play a sound
on the sighted tracker by connecting using Bluetooth and sending
the Bluetooth request detailed in [25]. Third, the UT key may be
sent. In this case, the finder device is instructed to enable UT mode
on the sighted device by using the Bluetooth request from [25].
The server will be implicitly notified if the write operation was
successful, since the next finder device location report contains
the status of UT mode for a reported tracker. Therefore, enabling
UT mode requires a nearby Android phone and an active internet
connection, which contrasts previous OFN implementations that
enable UT mode using a timer on the tracker [31, 70]. Disabling
UT mode requires the EIK and an Android device belonging to the
owner to be near the tracker.

4.3 Server
Another unique aspect of the FMDN in comparison to other net-
works such as Apple’s Find My and Samsung’s SmartThings is the
implementation of certain privacy protection techniques on the
server, which are also advertised by Google [11, 28].

4.3.1 High-Traffic Areas Only. As mentioned before, the owner of
a finder device can configure how to participate in the FMDN. By
default, devices are configured in the “High Traffic” mode. Reports
that originated from finder devices that have this mode enabled are
not supposed to be shown to the user directly, but shall be aggre-
gated by averaging multiple locations. The server cannot aggregate
the locations directly due to end-to-end encryption. Therefore, ag-
gregation is performed locally on the owner device (see Section 4.4).
Most importantly, the server will only send these location reports if
at least two of them are available from at least two distinct devices.
In addition, we found that in most cases, the server will only cache
the four most recent “High Traffic” locations, i.e., it will purge older
locations.

4.3.2 In All Areas. Finder devices can also be manually set to the
“In All Areas” mode. Reports uploaded by such a device do not
require aggregation on the client. This is also how other networks,
such as Apple’s Find My [33] or Samsung’s SmartThings Find [70],
handle location reports. However, to receive “In All Areas” reports,
the owner also needs to enable the “In All Areas” contributor mode,

609



Proceedings on Privacy Enhancing Technologies 2025(4) Böttger et al.

otherwise those reports will appear as “High Traffic” reports. Also,
similar to the purging implemented for “High Traffic” locations,
retrieval of a new “In All Areas” location will remove previous,
older locations, including “High Traffic” reports.

4.3.3 Owner Reports. Similarly, if a self-report is sent from the
owner, all previous network locations are dropped from the server.
In addition, all “In All Areas” reports up to 10 minutes after the
last owner report will not be stored. “High Traffic” reports are kept
but remain unavailable until at least 10 minutes have passed. As
a result, the FMDN does not provide a location history as seen in
other OFNs.

4.3.4 Rate Limiting and Throttling. In addition to the contributor
mode and data purging, the server implements rate limiting and
throttling. Rate limiting restricts the number of times an Android
device can report a particular tracker. If an Android device sends
multiple location reports for a specific tracker, succeeding reports
can be discarded by the server. We found that only one location
report per tracker is permitted roughly every nine hours.

The FMDN also implements throttling, which limits how often
the owner can receive an update from any finder device. We ob-
served that throttling is initially disabled when a new tracker is
paired, and is enabled one hour after continuously retrieving new
location reports1. If disabled, locations can be queried without lim-
its. With throttling enabled, an “In All Areas” report blocks further
updates for 10 minutes, while “High Traffic” reports blocks them
for 5 minutes from the latest report timestamp.

4.4 Owner Smartphone
Similar to previous OFN implementations, the owner’s smartphone
interacts with the network in multiple ways: it reports the locations
of the owner’s trackers to Google in the background, and the user
may register new trackers or view the location of their trackers. We
describe additional details in the Appendix and publish open-source
code to fetch tracker locations [15].

4.4.1 Own Tracker Location Reports. Locations of nearby owned
trackers are uploaded by the Play Services app and the Google FMD
app. In either case, the location is encrypted symmetrically using
the EIK. This process is performed as follows:

(1) A random 12-byte IV is generated.
(2) The EIK is hashed using SHA-256 mode, producing a 32-byte

key.
(3) The Protobuf location data is encrypted with the hashed EIK

using AES-GCM, with a tag length of 128 bits.
After encryption, the API request UploadOwnerScans is used to
upload sightings for nearby owned devices. For identifying the
tracker, the device ID is included in the location report instead of
the Truncated EID.

In addition to the smartphone of the owner, Google Home devices
can report the location of trackers owned by the same user. We
detail related issues in Section 6.3.3.

4.4.2 Retrieving Location Reports. The retrieval of locations is im-
plemented in the Google FMD application. The FMD app uses the

1We tested this in a busy area, retrieving a new location every 30 seconds.

Nova API (see Section A) to retrieve location reports for track-
ers. This request contains the contributor type of the owner, used
to determine which locations the server sends (see Section 4.3.2).
Interestingly, the encrypted locations will not be included in the
response of the HTTPS request’s API call, but will be delivered us-
ing Google’s proprietary Firebase Cloud Messaging (FCM) protocol.
The FCM protocol has already been reversed in [63] and requires
client applications to register their installation. This process in-
volves generating and exchanging several public cryptographic
secrets with Google’s Firebase server, which will be used to encrypt
sent and received FCM messages later on. Finally, the device re-
ceives a registration ID, which FCM can use to identify this device
to send a notification to it. The registration ID is shared with the
server when requesting location updates.

4.4.3 Location Report Payload. FCM delivers the locations with the
same data as in Section 4.2.2, i.e., the end-to-end encrypted location
report, the accuracy, and the discovery time. In addition, the server
sends the tracker’s timestamp ts_bytes, which determines the
time in seconds since the tracker was first set up, rounded down
to the last multiple of 1024. Furthermore, the server sends a status
field indicating from which contributor type the location report
came. A “Last Known Location” is a report that was generated by
an owned device. A “Crowdsourced Location” report is a report
that was uploaded by a foreign device set to the “In All Areas”
contributor mode. “Aggregated Location” reports are sent from
“High Traffic” contributors (or “In All Areas”, see Section 4.3.2).

4.4.4 Decryption of Locations. If a “Crowdsourced Location” or
multiple “Aggregated Location” reports are received, the reverse
operation to the public key encryption process from Section 4.1.5
is applied to decrypt the location data. Encrypted location reports
uploaded by one of the owner devices are decrypted by reversing
the encryption operation described in Section 4.4.1. The result of
this procedure contains the location (Latitude, Longitude, Altitude)
represented as a Protobuf object.

4.4.5 Client-Side Location Aggregation. After decryption, received
reports are post-processed depending on their type. If a non-
aggregated report is sent from the network (“Last Known Location”
or “Crowdsourced Location”), this report is directly returned and
shown to the user in the app. In contrast, multiple “Aggregated
Locations” are filtered on-device and aggregated, requiring at least
4 locations in our evaluation. The minimum number of locations is
determined by the server.

In addition, all locations need to be within a certain radius vary-
ing between 324 and 644 meters. If locations with the minimum
size are found where the latest location is newer than the time of
the last report, and all locations are detected within 60 minutes,
the average location is calculated by taking the average of the loca-
tions’ latitude values and the average of the locations’ longitude
values. The timestamp of the final aggregated location is the time
of the most recent location report, rounded to the last 10 minutes.
Afterward, this location is encrypted symmetrically with the EIK
and re-uploaded by the FMD app.

610



Okay Google, Where’s My Tracker? Proceedings on Privacy Enhancing Technologies 2025(4)

(a) Devices List (b) Location Report
View

(c) Raw Location Data

Figure 3: Screenshots of the Spot app on iOS, allowing the use
of Google FMDN trackers with an Apple smartphone [61].

5 GoogleFindMyTools and the Spot App
To gain a better understanding of the FMDN and to verify our results
from the functionality analysis, we reimplemented the client side
of the network and also created an app we named Spot.

5.1 Design
Initially, we implemented the location retrieval and decryption
process using Python and open-sourced it in the GoogleFindMy-
Tools repository [15]. Our scripts enable a closer inspection of the
network since they are not bound to the client-side aggregation
from Section 4.4.5. All "High Traffic" location reports can be re-
trieved in their raw form as soon as two distinct finder devices
shared a location report for the same tracker (see Section 4.3.1). In
addition, we implemented the ability to register new FMDN track-
ers on Google’s server as described in Section 4.1.1 and released
firmware for ESP32-based devices that allows them to be used as
custom-built FMDN trackers [15].

Furthermore, we ported the Python code to Swift, making it
possible to use the FMDN with an iPhone. This also benefited
our network evaluation presented in Section 9, as our iOS app
Spot allows for continuous reception of location updates in the
background and stores the location history. Figure 3 shows three
screenshots of the app.

5.2 Implementation
The Python implementation uses the firebase-messaging [63]
library to set up the FCM endpoint required for receiving location
reports (see Section 4.4.2). Furthermore, we use gpsoauth [59] to
retrieve the OAuth2 tokens needed for interactions with the server.
We ported these libraries to Swift to use the same procedure for
our iOS app.

Custom Trackers. To make it possible to use custom trackers with
the FMDN, we chose a simple approach. We did not implement any
of the Fast Pair procedures described in Section 4.1.1. In addition,
we decided not to use the advertisement generation detailed in

Section 4.1.4. Instead, our firmware keeps a static advertisement
and MAC address. Our code generates a new random EIK and cal-
culates the first advertisement (time counter = 0) as described in
Section 4.1.4. This advertisement is then statically written to the
ESP32. In the registration process from Section 4.1.1, we duplicate
this advertisement for all announced Truncated EIDs. If we receive
a report, we always use the time counter of 0 to decrypt the loca-
tion report. As a result, we can now deploy fake trackers to receive
location reports. A drawback is that the Truncated EIDs must be
announced regularly to Google’s server to continue receiving loca-
tion reports. The server only allows 4 days of announced Truncated
EIDs in advance. Therefore, our code regularly announces new
Truncated EIDs, similar to Google’s FMD app.

6 Security & Privacy Analysis
For RQ1, we evaluated the security and privacy of the network. We
analyzed the network structure, focusing on the robustness of client-
side encryption, the handling of locations, metadata, anti-tracking
measures, as well as the robustness of the server-side interfaces.

6.1 Cryptography
The end-to-end location encryption uses the NIST P-160R1 curve
by default (see Section 4.1.5). We believe this curve was chosen due
to the limited size of Bluetooth advertisements. A larger 192-bit
curve would require at least 24 bytes, which is 4 bytes more than
for the NIST P-160R1 curve. However, the FMDN Bluetooth frame
format only permits 2 more bytes, making the 160-bit curve the
maximum that can be used for regular Bluetooth advertisements.
The use of NIST curves, such as the P-160R1 curve, is discouraged by
some researchers due to the lack of rigidity, i.e., due to its unknown
parameter origin [10]. In addition, this curve has a key length of
160 bits. Usually, key lengths of at least 250 bits for ECDH are
recommended [14], which makes P-160R1 a weak curve.

6.1.1 The Alternative NIST P-256R1 Curve. As mentioned in Sec-
tion 4.1.5, the NIST P-256R1 curve can be used alternatively. Due
to the larger key size, trackers using this curve must use Bluetooth
Extended Advertising, which is only supported in Bluetooth 5.0
or newer. Similar to the P-160R1 curve, the P-256R1 curve lacks
rigidity [10]. Alternative curves such as Curve25519, which have
the same key length, offer more transparency in their parameter
selection [9]. The security level of 128 bits is acceptable by today’s
standards [14] and significantly increases security compared to the
P-160R1 curve.

We did not find this curve implemented in any of the tested
trackers (see Table 2). The only device we found using P-256R1 was
Sony’s WH-1000XM5 headphones. The reason many tracker manu-
facturers may have decided not to use this curve is compatibility,
since not all FMDN-compatible Android devices support Extended
Advertising, such as the Galaxy S9+ [51].

6.1.2 End-to-End Encryption Process. The end-to-end location en-
cryption technique from Section 4.1.5 is an ECDH key exchange.
We did not find any structural problems with this cryptographic
process: The random ephemeral key pair 𝑑𝑒 is generated using a
secure random source (Java’s SecureRandom). A shared secret is
calculated using ECDH. As described above, this is secure if the

611



Proceedings on Privacy Enhancing Technologies 2025(4) Böttger et al.

elliptic curve’s Computational Diffie-Hellman assumption holds.
No practical attacks against ECDH key exchange targeting the NIST
P-160R1 or the NIST P-256R1 curve are publicly known.

The AES-EAX key 𝑘 is derived using HKDF-SHA256, which is
considered a secure hash algorithm [14]. AES-EAX is considered a
secure mode of encryption [5]. No attacks are known that would
compromise AES-EAX security. Furthermore, a 16-byte nonce is
used for AES-EAX, consisting of 8 bytes from 𝑃𝐸𝐼𝐷 ’s x-value and 8
bytes from 𝑃𝑒 ’s x-value. This is secure for AES-EAX, which supports
nonces of any length but typically uses 16 bytes [53]. Since the
same EID is reused for multiple encryptions, 8 bytes remain fixed.
However, the ephemeral public key changes with each encryption,
ensuring that the nonce remains unique.

6.2 Privacy Protections
In this section, we detail how the privacy protection mechanisms
of Google’s FMDN work.

6.2.1 Key Diversification. During our investigation, we did not find
any structural issues with the EID calculation process as described
in Section 4.1.4. In essence, the advertisement is secured twice - by
1) encrypting the time-counter-based byte array with the EIK, inter-
preting the result as an elliptic curve private key, and 2) generating
the associated public key. Since the EIK is generated randomly, the
result of using AES-ECB as a pseudo-random function will also
produce a random value. After constructing the public key, the
result will still be random. Therefore, the advertisement is random
as well and cannot be used to retrieve the EIK, nor can it be used
to track the tracker for more than one key rotation cycle.

6.2.2 Device Tracking. Due to the time counter of the EID, both
the MAC and the EID change at the same time every 1024 sec-
onds on average. A slight randomization is implemented to avoid
tracking over long periods based on the key change interval. The
implementation of the randomization is up to the tracker manu-
facturer. Google does not enforce a specific implementation, but
recommends that the next rotation time should be set to a multiple
of the rotation period plus 1 to 204 seconds [25]. We found that all
tested trackers implement this randomization appropriately.

6.2.3 Restoring End-to-End Encrypted Keys. When Google’s FMD
app is set up on a new device, the end-to-end encrypted keys,
such as the EIK, are not directly available. Instead, they need to
be retrieved from Google’s server. We found that the key recovery
process is very similar to the process implemented for Android
backups researched by NCC Group [30]. The user is asked to enter
the unlock PIN code of a device that previously had access to the end-
to-end encryption keys. In our testing, we found that instead of SHA-
256 [30], Scrypt was used to hash the PIN/Lock Screen Knowledge
Factor (LSKF). The key retrieval procedure is implemented in a
way that Google cannot learn the plaintext LSKF, and brute-force
attacks are prevented.

6.2.4 Advertisement Collision. Requesting end-to-end encrypted
location data is only possible for previously announced Truncated
EIDs that are linked to trackers registered to a Google account.
Even though it is possible to announce arbitrary Truncated EIDs
to the server when registering a new tracker, it is not possible to

retrieve encrypted location reports from other accounts. In the case
of an advertisement collision, i.e., two or more Google accounts
register the same Truncated EID for a similar time period, neither
account will receive location reports.

6.2.5 Location Report Spoofing. As mentioned in Section 4.2.2,
DroidGuard data is required to send location reports for foreign
trackers. This data consists of a base64-encoded string generated
from the location report payload with DroidGuard. DroidGuard
evaluates whether a device is secure and has not been tampered
with, detecting modifications such as root access, an unlocked boot-
loader, or a Custom ROM [64]. DroidGuard checks certain sys-
tem parameters to generate an encrypted, obfuscated string. This
string is sent to Google’s server, which uses it to evaluate the se-
curity level of the device. We found that foreign location reports
sent from devices with an unlocked bootloader are discarded. We
were unsuccessful in sending location reports on rooted devices
using tools such as PlayIntegrityFix [18] and TrickyStore [1], which
spoof certain device parameters to circumvent DroidGuard’s root
detection. In addition, bypassing DroidGuard by sending empty
DroidGuard strings or sending foreign location reports to the
UploadOwnerScans API is not possible. We conclude that Google’s
safety measures to prevent spoofed location reports on-device are
adequate. However, note that spoofing location reports is still pos-
sible by duplicating a Bluetooth signal near an unmodified Android
phone. This could enable DoS attacks, as detailed in [33].

6.3 Privacy Issues
Although Google has implemented many privacy protection mea-
sures, we found several issues, which we detail in this section.

6.3.1 Tracker Sharing. When a tracker is shared, the EIK and the
Fast Pair Account Key are exchanged between the owner of the
tracker and the person with whom it is shared. After sharing is
completed, both parties possess the same EIK and Account Key. To
protect the privacy of tracker owners, location reports sent before
the sharing procedure are inaccessible to invitees. Invitees will only
be shown a location if the tracker is nearby, the network reports a
new location, or the owner or other invitees report a location for
the tracker. Similarly, if a person the tracker was shared with is
removed from sharing, location updates are no longer available. In
this case, the server also indicates that the EIK should be rotated
as soon as possible. The network requests for issuing a sharing
invitation are sufficiently safeguarded. Issuing a sharing request
can only be executed by the owner. If an invitee attempts to issue
an invitation in this way, the server responds with an error and
does not update its state.

The key exchange protocol is based on ECDH. As mentioned
above, this method is considered secure. However, again the NIST
P-256 curve is used, leading to the same rigidity problem detailed
in Section 6.1.1. Also, Google still has to be trusted to a certain
degree. Since the exchange of ECDH keys takes place via Google’s
server, Google could carry out a MitM attack by exchanging the
invitee’s public key with Google’s own public key. This would allow
Google to decrypt the EIK and thus gain access to the locations of
the tracker’s owner. In theory, MitM attacks such as this one should
be avoided by comparing the confirmation PIN, which is a hash

612



Okay Google, Where’s My Tracker? Proceedings on Privacy Enhancing Technologies 2025(4)

of the public keys and shared secret displayed on the owner’s and
invitee’s phones. However, in practice, comparing confirmation PIN
codes is usually not done by people due to lack of understanding,
automation, and low usability [57].

6.3.2 Linking Location Reports. Google claims that location reports
cannot be linked to the account they were sent from [11]. Although
we couldn’t fully verify this claim, it sounds plausible since authen-
tication for finder reports (X-Goog-Spatula authentication header)
differs from regular FMDN API requests (OAuth2 token). Never-
theless, we don’t know exactly how the X-Goog-Spatula header is
generated. However, owners of FMDN trackers could still be tar-
geted even if location reports cannot be directly linked to a user.
As mentioned in Section 4.2.2, only latitude, longitude, and altitude
are end-to-end encrypted. Further metadata, such as the frequency
of location uploads, the timestamp of location reports, and the ac-
curacy, can be read by Google. In addition, Google knows which
advertisements belong to which Google account. Information such
as accuracy (low, e.g., walking; high, e.g., driving) and frequency of
location reports (low, e.g., at home; high, e.g., in the city) and their
timestamps could be used to determine likely locations, especially
if an owner is specifically targeted.

Also, Google can still infer information through linking. If a user
uploads location reports for different trackers with only a minimal
time difference, Google knows which trackers have likely been
at the same location at the same time. Linking several reports is
possible because the X-Goog-Spatula header is reused for multiple
location reports. We verified this by inspecting the network calls
of the Galaxy S5 from Table 1. Since Google knows which report
belongs to which tracker, it can also identify the owner of the
tracker. If one can now deanonymize the location of one of the
trackers, e.g., by recording BLE advertisements at a demonstration,
multiple follow-up attacks are possible. A law enforcement agency
could send the EIDs to Google and request the names of the owners.
As Truncated EIDs are always uploaded to the Google cloud, Google
can identify the owner of the tracker. In addition, it can infer which
other people have been at or near the demonstration at the same
time by linking the reports made by the same finder device around
the same time. This attack must not only be linked to a specific
event like a demonstration. It also allows Google to build social
graphs of all users in the FMDN. Therefore, even with flight mode,
users could be deanonymized if they own a tracker or if their phone
is part of the Google FMDN and also sends FMDN advertisements.

6.3.3 Semantic Locations. In addition, smart home products can
leak location information. If products such as the Google Home
Mini are connected to the owner’s Google Account, location reports
may not include an encrypted location, but an unencrypted string
such as “Alice’s Home Mini” or “Alice’s Home”. This would enable
Google to knowwhen users are currently home or at other locations
equipped with Smart Home products, opposing Google’s claim that
locations are always end-to-end encrypted. We used a Google Nest
Audio with our Python application from Section 5.2 to verify that
Semantic Locations are stored without using end-to-end encryption.

6.4 Bypassing Server Restrictions
During our testing, we discovered that the server-side restrictions
from Section 4.3.4 (rate limiting, throttling) are implemented per
registered tracker. This makes it possible to circumvent those re-
strictions by registering a new tracker, and only sending the first
Truncated EID of the tracker to Google’s server. Afterward, register
another tracker, but only announce the second Truncated EID to
the server, and continue this process for every new advertisement
of the tracker. As a result, rate limiting and throttling are reset
whenever the tracker’s advertisement rotates and a new tracker is
registered, i.e., every 1024 seconds. This guarantees new location
updates, provided that finder devices are near the tracker. We suc-
cessfully implemented this approach using a modified version of
our Python program from Section 5.2.

6.5 Security Issues
In addition to the privacy issues, we also found some minor security
issues during our investigation.

6.5.1 Location Report Denial of Service. As mentioned in Sec-
tion 6.2.4, the server will handle advertisement collisions by drop-
ping location reports. This can be abused to effectively stop all
surrounding trackers from being able to be located by their own-
ers. This attack would be executed as follows: An adversary could
consistently monitor surrounding FMDN advertisements. If a new
advertisement is detected or changed, the adversary could register
a new (fake) tracker and spoof the request in such a way that the
detected advertisement is included in the announced Truncated
EIDs for the registered device. As Google’s server does not allow
duplicate EIDs, finder reports from surrounding Android devices
will be dropped. The location of those trackers will not be visible to
the owner. We implemented this approach using a modified version
of our Python program from Section 5.2. We queried a tracker on
a different Google account and verified that we would not receive
any location update for this tracker, even though FMDN Android
devices were nearby.

6.5.2 High Traffic Definition. As mentioned in Section 2.2, the
FMDN operates in the “High Traffic” mode by default. In the FMDN
settings, the feature’s description states that “location info from
your device is only used if others in the network also detect the
item”. We found that the description of the "High Traffic" setting is
misleading in two ways.

First, one could believe that locations are only uploaded if other
Android finder devices are also in proximity. However, locations
are uploaded all the time, regardless of whether other devices also
discovered the item. We verified this by inspecting the network
calls of the Galaxy S5 which was not nearby any other Android
device. By using the unencrypted timestamps and the contributor
type from the location reports, the server decides if location reports
should be forwarded to the owner of the tracker or if they should
be dropped. Even though sent locations are end-to-end encrypted,
certain attacks are still possible, such as the linkage attack men-
tioned in Section 6.3.2. As a result, the description of the "High
Traffic" mode may lead to a false sense of security among users.

Second, we observed that the network does not differentiate
between unique Google accounts when aggregating “High Traffic”

613



Proceedings on Privacy Enhancing Technologies 2025(4) Böttger et al.

reports. Such a location report can be generated by positioning
multiple devices near the tracker, all logged into the same Google
account. We tested this by positioning the four unrooted devices
with the same Google account near a tracker registered to a different
Google account. The unrooted devices were all set to the “High
Traffic” contributor mode. Afterward, we could retrieve a location
by the network. One could argue that this contradicts Google’s
claim in the settings that “others in the network also [have to]
detect the item”.

6.5.3 Re-Registering a Shared Tracker. As mentioned in Sec-
tion 6.3.1, the FMD app should rotate the EIK after sharing with
a person was stopped. However, we found that it often fails to do
so, e.g., because the tracker is not nearby, the Bluetooth connec-
tion timed out, etc. This allows an attacker who stored the EIK
and account key to execute Bluetooth actions on the tracker that
require those keys. Most critically, the attacker can change the EIK
itself. This operation requires the device that requested the EIK
change to be in possession of the old EIK and the current account
key [25]. Both keys are available to the attacker from the previ-
ous sharing operation. If the attacker proceeds to rewrite the EIK,
the advertisements also change. The attacker can then register a
new tracker in their account, announcing the new advertisements.
This makes it possible to continue receiving location reports, even
though the attacker is no longer invited. We were able to reproduce
this issue with a Samsung Galaxy S21 Ultra running Android 14
(Patch 2025.01) and the FMD app 3.1.205-1. We used the Python im-
plementation from Section 5.2 to re-register the tracker on Google’s
server.

6.6 Transforming Any Device Into a Tracker
Chen et al. [17] demonstrated that they have been able to transform
a Linux computer, a Windows computer, and an Android smart-
phone into an Apple Find My tracker, allowing them to accurately
locate the device and potentially track the owner of this device.
This attack is based on the notion that a benign-looking app has
code-execution rights on the system and access to BLE. Then, the
app starts sending BLE advertisements following Apple’s Find My
protocol [33]. As Apple’s Find My protocol also uses the MAC ad-
dress, they must find a matching public key for the current device’s
MAC address.

However, Google’s FMDN only uses the content of the advertise-
ment to send the EID, which is then used by nearby finder devices
to encrypt location reports. Therefore, a similar attack as presented
by [17] can be launched with Google’s FMDN. Here, the adversary
registers a new tracker on their own account. Then, they configure
the app on the victim’s machine to send BLE advertisements with a
EID belonging to the tracker. The adversary can keep MAC address
randomization enabled and can set UT mode in the advertisement
to off. Now, the adversary can track the victim based on the mali-
cious app installed on one of their systems. This attack could work
on any modern operating system (OS) with Bluetooth support. We
successfully implemented the attack with a normal Android app
(Android 15) and a Linux program (Ubuntu 25.04). macOS, iOS, and
Windows do not allow sending BLE advertisements containing ser-
vice data without root-level access [3, 45, 65]. Similar to the work of
Chen et al., a limitation of this attack is that some OS use advanced

permission systems that require the user to give consent if an app
tries to access BLE for the first time.

7 Unwanted Tracking Protection
In this section, we present Google’s protection mechanisms against
UT. To answer RQ2, we also show several methods that we found
to circumvent them. For all of the following attacks, the adversary
would hide a tracker that they own in the belongings of their victim.
Through the OFN, the adversary receives regular updates on where
their victim is residing.

7.1 Unwanted Tracking Protection Mode
The most obvious measure against UT is the UT mode. As men-
tioned before, UT mode slightly changes the behavior of the tracker:
the tracker will rotate its MAC address only every 24 hours, not
every 1024 seconds and the tracker advertises a byte indicating
that UT mode is enabled. Tracking detection implementations in
Android, iOS, and the AirGuard app [31] can then detect that the
same tracker is following the user and warn them. A unique aspect
of UT mode in the FMDN is that the determination of whether UT
mode should be enabled is decided on the server, not on trackers
(see Section 4.1.6). This approach makes it possible to update the
behavior of UT mode without needing firmware updates for track-
ers. However, this approach also comes with several drawbacks,
which we will present in the following.

7.1.1 Adversary Models. We define two adversary models for the
next attacks. Both adversaries share the same goal: they want to
ensure that their tracker may not be detected by current tracking
detection methods [4, 27, 31]. This will allow them to continue
tracking their victim and reduce the risk that the tracker will be
found by the victim.
A1: This adversary has the capability to program simple soft-
ware. They purchase an off-the-shelf tracker and try to modify
the tracker’s behavior through their programming skills. They do
not know about hardware development and cannot build custom
tracker devices.
A2: This adversary also has the capability to program Bluetooth
hardware, such as an ESP32 or an nRF5 microcontroller. These
microcontrollers have a similar size to a tracker, and many of these
trackers are based on an nRF5 chip [54]. They use their capabilities
to build custom trackers that do not have to adhere to Google’s
specifications for the FMDN [25].

7.1.2 Keeping Unwanted Tracking Mode Disabled. Attacker A1
may keep UT mode disabled, even when they are not near their
tracker. As mentioned in Section 4.1.6, UT mode is initiated by
the server if the tracker has been separated from its owner for at
least 30 minutes, and a finder device has reported its location. The
determination of how long the tracker has been separated from
its owner is based on the last owner report. If the owner sends an
owner report with any location to Google’s server every 30minutes
or less, UT mode is never activated. The attacker must not need to
be nearby the tracker to send these arbitrary location updates. We
successfully tested this procedure for more than 48 hours with a
modified version of our Python implementation and a Pebblebee
Clip tracker. The phone of the owner was turned off, and other

614



Okay Google, Where’s My Tracker? Proceedings on Privacy Enhancing Technologies 2025(4)

FMDN-registered Android devices were nearby. In this scenario,A1
continues to receive location updates from finder devices for their
tracker. If they hide the tracker in a victim’s belongings, the victim
will never receive a notification from one of the known tracking
detection systems.

The best solution to mitigate this issue would be a firmware
update for FMDN trackers. This update would need to implement
a timer that activates UT mode automatically without requiring a
finder device to activate it, as implemented by Apple’s Find My net-
work [33]. Another possibility would be that the server randomly
tries to enable UT mode on any tracker. If the owner is actually
nearby, the owner’s Android device would immediately notice that
UT mode is enabled and disable it. However, if the owner’s report
was spoofed, UT mode stays enabled.

7.1.3 Spoofing the Unwanted Tracking Key. An even more robust
way for adversary A1 to avoid the UT mode is by modifying the
tracker registration process. When the tracker is registered on the
server, the UT key is sent, as detailed in Section 4.1.2. If this value
is set to a random, invalid value, the tracker will never transition
to UT mode, even if finder devices try to enable it with a Bluetooth
request. As detailed in [25], the tracker only accepts the request and
enables UT mode if the correct key is provided. Similar to the pre-
vious attack, A1 continues to receive location updates, while their
victim will never receive a notification for the malicious tracker.
We verified this attack using a modified version of our Python im-
plementation, a Pebblebee Clip, and the same setup described for
the last attack.

7.1.4 Keeping the MAC Address Rotating. The two approaches
listed above can be performed with an off-the-shelf, unmodified
FMDN tracker. However, adversary A2 has stronger capabilities
and can build custom trackers that do not adhere to Google’s specifi-
cation [25]. Tracking protection mechanisms, such as Google’s and
Apple’s implementations, detect trackers by their MAC addresses.
If the MAC address does not stay static but keeps rotating when UT
mode is enabled, those algorithms cannot identify the tracker over
longer periods. The default MAC address rotation interval is 1024
seconds, which is too short to trigger a tracking notification in any
of the anti-tracking algorithms [4, 27, 31]. Therefore, implementing
a custom tracker that continuously rotates its MAC address would
be undetectable. We successfully tested this attack by moving with
an ESP32 running a modified version of our firmware from Sec-
tion 5.2 and a Galaxy S21 Ultra with Android 14 (Patch 2025.02)
and an iPhone Xs running iOS 18.3.

7.1.5 Spoofing the Unwanted TrackingMode Bit. Another approach
for A2 is to always advertise with UT mode disabled. This works
since tracking detection algorithms on Android and iOS will only
trigger a notification if the tracker has UT mode enabled. If the
mode is constantly disabled in the advertisement, the tracker will
never be considered for delivering a notification. We validated this
attack also by moving with an ESP32 running a modified version
of our firmware from Section 5.2 and the devices from the previous
attack.

7.2 Detecting Unwanted Location Trackers
Detecting Unwanted Location Trackers (DULT) is a proposed IETF
standard with the collaboration of Apple and Google [38]. The
standard defines specific BLE advertisements that trackers should
send to be identifiable by nearby smartphones. Trackers of any
OFN should follow the same specification. To allow detection of
UT, the tracker should implement UTmode and certain BLE actions,
like playing a sound, must be possible while the tracker is in UT
mode. For Google’s FMDN, implementing the DULT standard is
mandatory [25]. We found that the actions demanded by DULT,
such as looking up more information about the owner of a tracker,
are implemented and also work on an iPhone.

7.2.1 Unwanted Tracking Sound Playback. The DULT paper [38]
also mandates that trackers should play a sound if they are in UT
mode for several hours to warn potential stalking victims. Similar
to UT mode, we observed that the implementation of this feature
is server-dependent. As described in Listing 4.2.3, the response of a
location report upload may also contain the Ring Key. If the field is
present, the finder device will try to connect to the tracker to play
a sound. Therefore, this server-side implementation is also prone
to the issues discussed in Section 7.1. Additionally, since alerts by
the sound maker require reporting by an Android device, iPhone
users are never alerted if no Android device is nearby.

7.3 Server-Side Measures Against Unwanted
Tracking

In addition to UT mode, Google’s FMDN also uses a variety of
additional server-side measures to mitigate the risk of abuse. What
we consider positive is rate limiting, explained in Section 4.3.4.
Rate limiting prevents the Android device of a stalked individual
from continuously sending reports for the tracker the individual is
being tracked with. As mentioned in Section 4.3.4, a single Android
device can only report every few hours. This limits the network
reports available for an attacker to those of non-victim devices,
making abuse of the network harder. In addition to rate limiting,
we also believe that throttling, detailed in Section 4.3.4, is positive
for anti-abuse. Since this feature restricts the location history and
frequency at which an attacker can request a new location from
the network, it makes using Google’s network less attractive for
stalkers. However, note that more sophisticated A1 attackers can
still easily circumvent all of these protection features, as mentioned
in Section 6.4.

7.4 Notable Locations
As mentioned in Section 4.2, Android devices will not upload finder
reports if they are currently near the user’s home location. This
feature should prevent leaking home locations of stalking victims.
Even if the intention behind this feature is good, it has a few weak
points. First, the home location needs to be manually added to the
Google Account, limiting the users who benefit from this feature.
Second, the radius of 100m is rather small. If the victim’s Android
device sends a report when moving in/out of the radius of the
home location, an attacker could go to the last known location and
use the Bluetooth signal to precisely find the home location of the
victim later. We therefore demand a larger radius of at least 500m.

615



Proceedings on Privacy Enhancing Technologies 2025(4) Böttger et al.

Furthermore, it is unlikely that the victim’s phone is the only device
near the victim’s home. Neighbors or passing cars are also able to
pick up the signal and report to the attacker. Therefore, the feature
may create a false sense of security and privacy.

8 Responsible Disclosure
We responsibly disclosed all issues described in Section 6 and 7 to
Google. According to the procedure used by Google’s Project Zero
team, we allowed Google 90 days to implement fixes for the issues
before publishing. We reported issues through the official Google
Bug Hunters platform [? ]. Each vulnerability report contained a
detailed technical description, an assessment of the impact, repro-
ducible steps, and a proof of concept with code (where applicable).

Despite acknowledgment, most of the problems remain unre-
solved as of mid June 2025. Some reports were accepted but have yet
to be addressed. The issue Transforming Any Device Into a Tracker
was accepted on 06.05.25, but is still pending a fix. Similarly, Keeping
Unwanted Tracking Mode Disabled was acknowledged on 02.04.25,
yet no mitigation has been implemented. In the case of Spoofing
the Unwanted Tracking Key, Google closed the bug report without
providing a fix, stating that they are already aware of the issue.

Other issues were closed after being classified as either intended
behavior or infeasible to address. The report on High Traffic Def-
inition was initially accepted by Google, but was then closed on
25.01.25. Google stated that it is infeasible to fix since they claim
that location reports cannot be tied to individual Google accounts.
Likewise, the Re-Registering a Shared Tracker report was closed on
06.03.25 as "infeasible". Google claims that the issue closely resem-
bles factory resetting a tracker. However, we believe that this attack
is more applicable than a tracker reset, as it only requires a BLE con-
nection instead of physical access, and execution of the attack does
not alert the victim, unlike a tracker reset which triggers a sound
on the device. Reports about firmware-based attacks, such as Keep-
ing the MAC Address Rotating and Spoofing the Unwanted Tracking
Mode Bit, were also marked “infeasible” on 03.04.25. These issues
were described by Google as "known risks". However, they told
us that they might introduce additional ways based on server-side
signals for preventing malicious use of the FMDN.

Several additional reports were acknowledged by Google as
abuse risks but are still under investigation. This includes Link-
ing Location Reports, which was last updated on 02.05.25 without
a fix. Similarly, the issue of Section Semantic Locations was also
last updated on 02.05.25, and no fix has been implemented yet. The
issue Bypassing Server Restrictions received its most recent update
on 02.05.25, where it was also recognized as an abuse risk, but is still
unresolved. The Location Report DoS was last updated on 05.05.25,
again recognized as an abuse risk, but not fixed yet.

9 Evaluation
For RQ3, we performed a quantitative evaluation of Google’s
FMDN, comparing it to Apple’s Find My. This has two goals: first,
from an attacker’s perspective, it helps us understand how well
Google’s FMDN could be abused for stalking. Second, from a user’s
perspective, it provides evidence of how reliable the location reports
are for finding lost devices.

9.1 Methodology
For this evaluation, we compare the number of reports and their
accuracy with a recorded GNSS trace. We use two ESP32-based
microcontrollers of the same model. One uses OpenHaystack [32],
software that makes it possible to use custom devices such as an
ESP32 with Apple’s Find My. The other ESP32 uses our custom
firmware from Section 5.2, which advertises FMDN frames. To
avoid bias, we performed the experiments with both ESP32’s with
the same BLE advertisement parameters. We set both devices to the
highest possible TX Power (9 dBm) and an advertisement frequency
of 20 ms. These settings are different from normal trackers but allow
us to compare the network performance under identical conditions.

9.1.1 Tracker Data Collection. As mentioned in Section 4.3,
Google’s FMDN discards network reports if newer ones are avail-
able. Therefore, we use a simple polling-based approach imple-
mented in our Spot app, querying location data for the ESP32 device
every 30 seconds. The app logs when it receives a new location
report (the publish timestamp) and logs the location report itself.
Note that due to this polling-based approach, the publish timestamp
might not be precise to the second. Unlike Apple’s server, Google’s
server does not indicate when the finder device found the tracker.
In addition to Spot, we used the iOS app “Open GPX Tracker” [36]
on an iPhone Xs to record the route we traveled during our mea-
surements. The app records the GPS location, including timestamps,
which we used to determine the accuracy of the network. We used
linear, second-based interpolation with a rolling mean with a win-
dow size of 10 to smooth out the GPS Exchange Format (GPX) track.
We disabled Apple’s Find My and Google’s FMDN on our personal
devices to avoid self-reporting during the experiment.

To test the performance of the networks, we traveled with our
testing setup to examine how well the respective network can
reconstruct the route. The first route was a 50-minute trip using
public transportation. The route included a 5-minute ride with a
tram through a medium-sized city (>100,000 inhabitants), and a
45-minute ride with regional trains. The second route was a 1-hour
walk through a large city (>500,000 inhabitants). We performed the
evaluation for both networks at the same time. Both routes were
recorded during midday.

9.1.2 Parameters. To compare our datasets, we calculate the fol-
lowing parameters: (1) Number of reports (2) Distance to actual
location (3) Advertised accuracy (4) Time between availability and
timestamp of location report. For the number of reports, we only
consider reports received within the timespan during which the
GPX recording was performed. Note that due to the polling-based
approach for FMDN, certain reports may be dropped by the server
(see Section 4.3). The distance from the actual location compares
the GPX location data with the reports received from both net-
works. The distance is compared to the GPS location with the same
timestamp (precise to the second). The advertised accuracy is the
accuracy sent with the location report. In theory, this should align
with the previous metric. The time between availability and the
timestamp of the report measures the delay of the network. Pre-
vious research has shown that Apple’s Find My network delays
network reports [33, 58].

616



Okay Google, Where’s My Tracker? Proceedings on Privacy Enhancing Technologies 2025(4)

Table 5: Comparison of the FMDN and Apple’s network for
Route 1 (Public Transport).

Metric Google Apple

Number of Locations 166 906
Average Accuracy (actual) 1215.45 m 713.53 m
Median Accuracy (actual) 121.79 m 57.45 m
Average Accuracy (advertised) 187.20 m 132.22 m
Median Accuracy (advertised) 148.07 m 119.00 m
Average LocationDate to Retrieval Date 72.95 s 1246.75 s
Max Time Without Location 273.00 s 134.00 s

Table 6: Comparison of the FMDN and Apple’s network for
Route 2 (Walking).

Metric Google Apple

Number of Locations 242 1218
Average Accuracy (actual) 130.74 m 63.02 m
Median Accuracy (actual) 49.08 m 33.13 m
Average Accuracy (advertised) 122.04 m 98.97 m
Median Accuracy (advertised) 93.97 m 96.00 m
Average Location Date to Retrieval Date 78.05 s 1244.05 s
Max Time Without Location 429.00 s 95.00 s

9.2 Results
In the following, we present the evaluated data for the two routes.

9.2.1 Route 1 (Public Transport). The results of this measurement
are depicted in Table 5. With over 906 locations, Apple’s Find
My network provided a significantly higher number compared
to Google, while also providing more accurate locations. In both
networks, the actual accuracy is worse than the advertised accuracy.
The delay for the FMDN is significantly lower compared to Apple’s
Find My.

9.2.2 Route 2 (Walking). The results of this measurement are de-
picted in Table 6. Again, Apple’s FindMy network provided a higher
number of reports compared to Google, while also providing more
accurate locations. The accuracy for both networks is better than in
the public transport route. Compared to the public transport route,
the delay is similar for both networks, and Google’s network again
has a significantly lower delay than Apple’s Find My.

9.3 Discussion
Our evaluation shows that Apple’s Find My network delivers 5–6
times more locations than FMDN, regardless of the route. In ad-
dition, the locations of Apple’s network were consistently more
accurate. However, Google’s network is significantly quicker at
delivering up-to-date locations. In comparison, Apple’s location re-
ports are on average significantly more delayed. This aligns with the
findings of Heinrich et al. [33], who discovered that Apple devices
often accumulate reports instead of sending them directly. Since
Android devices send finder reports immediately when the screen
of the Android device is turned on, this gives Google’s network an
advantage in this metric.

9.3.1 Device vs. Data Distribution. In the evaluated region, An-
droid devices have a market share of 66%, whereas Apple devices
account for 33.5% [62]. This proportion is not reflected in our test
data. One reason for this could be the polling-based approach to
querying locations of Google’s FMDN. If many locations were de-
tected between two location query requests, some may have been
dropped by the server, as mentioned in Section 9.1. In addition,
rate limiting and throttling (see Section 4.3) reduce the network’s
quality. Finally, we believe that FMDN is not yet activated on every
supported Android device. We observed that the network was often
not enabled when setting up new Android devices.

10 Conclusions
To the best of our knowledge, we performed the first public in-
depth evaluation of Google’s new FMDN. We analyzed the security
and privacy properties of the network. The network has a solid
foundation and uses end-to-end encryption for all location reports
from finder devices (RQ1). Furthermore, Google implemented rate
limiting and throttling, which actively weaken their network’s
performance but also result in a weaker incentive for misuse. Nev-
ertheless, we found several issues that range from a linking attack
that allows Google to create social graphs of network users to
transforming any Bluetooth device into a Google FMDN tracker,
potentially allowing an adversary to track them. We also analyzed
the protection mechanisms against unwanted tracking and found
four different approaches to hiding a tracker from current tracking
detection implementations (RQ2).

At last, we compared the performance of the new FMD network
with Apple’s Find My network in a small-scale study. The first
results show that Google’s network achieves a median accuracy
between 49.08m and 121.79m. However, Apple’s network has been
more accurate and has also exhibited more location reports (RQ3).

We believe that Google has taken a promising approach by focus-
ing on privacy and implementing UT protection measures from the
beginning. As Google has more insights on the server than Apple,
they may hopefully improve their measures even further in the
future.

Acknowledgments
We thank the anonymous reviewers and the editor for their con-
structive feedback, which has improved the final version of this
paper. This work has been funded by the German Federal Min-
istry of Education and Research and the Hessian State Ministry
for Higher Education, Research, and the Arts within their joint
support of the National Research Center for Applied Cybersecurity
ATHENE. We used AI-based text tools, such as Grammarly and
GPT-4o, throughout this paper to enhance writing by correcting
grammar errors and typographical errors.

References
[1] 5ec1cff. 2024. TrickyStore. https://github.com/5ec1cff/TrickyStore
[2] Apple. 2021. Apple introduces AirTag. https://www.apple.com/newsroom/2021/

04/apple-introduces-airtag/
[3] Apple Inc. 2025. Apple CoreBluetooth - startAdvertising(_:). https:

//developer.apple.com/documentation/corebluetooth/cbperipheralmanager/
startadvertising(_:)

[4] Apple Inc. 2025. Detecting Unwanted Trackers. https://support.apple.com/
guide/personal-safety/detecting-unwanted-trackers-ips139b15fd9/web

617

https://github.com/5ec1cff/TrickyStore
https://www.apple.com/newsroom/2021/04/apple-introduces-airtag/
https://www.apple.com/newsroom/2021/04/apple-introduces-airtag/
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/startadvertising(_:)
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/startadvertising(_:)
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/startadvertising(_:)
https://support.apple.com/guide/personal-safety/detecting-unwanted-trackers-ips139b15fd9/web
https://support.apple.com/guide/personal-safety/detecting-unwanted-trackers-ips139b15fd9/web


Proceedings on Privacy Enhancing Technologies 2025(4) Böttger et al.

[5] Mihir Bellare, Phillip Rogaway, and David Wagner. 2004. The EAX mode of
operation. In International Workshop on Fast Software Encryption. Springer, 389–
407.

[6] Alex Bellon, Alex Yen, and Pat Pannuto. 2023. TagAlong: Free, Wide-Area
Data-Muling and Services. In Proceedings of the 24th International Workshop
on Mobile Computing Systems and Applications (HotMobile ’23). Association for
Computing Machinery, New York, NY, USA, 103–109. https://doi.org/10.1145/
3572864.3580342

[7] Berkeley Varitronics Systems, Inc. 2025. BlueSleuth-Lite BLE Tag Detector.
https://www.bvsystems.com/product/bluesleuth-lite-ble-tag-detector/

[8] Berkeley Varitronics Systems, Inc. 2025. BlueSleuth-Pro Bluetooth and BLE
Device Locator. https://www.bvsystems.com/product/bluesleuth-pro-bluetooth-
and-ble-device-locator/

[9] Daniel J Bernstein. 2006. Curve25519: newDiffie-Hellman speed records. In Public
Key Cryptography-PKC 2006: 9th International Conference on Theory and Practice
in Public-Key Cryptography, New York, NY, USA, April 24-26, 2006. Proceedings 9.
Springer, 207–228.

[10] Daniel J. Bernstein and Tanja Lange. 2017. SafeCurves: Choosing Safe Curves
for Elliptic-Curve Cryptography. https://safecurves.cr.yp.to.

[11] Google Security Blog. 2024. How we built the new Find My Device network with
user security and privacy in mind. https://security.googleblog.com/2024/04/find-
my-device-network-security-privacy-protections.html

[12] Bluetooth SIG. 2025. Assigned Numbers. https://www.bluetooth.com/wp-
content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/
Assigned_Numbers.pdf

[13] Jimmy Briggs and Christine Geeng. 2022. BLE-doubt: Smartphone-based Detec-
tion of Malicious Bluetooth Trackers. In 2022 IEEE Security and PrivacyWorkshops
(SPW). 208–214. https://doi.org/10.1109/SPW54247.2022.9833870

[14] Cryptographic Mechanisms Bsi. 2020. Cryptographic Mechanisms: Recommen-
dations and Key Lengths. BSI—Technical Guideline (2020).

[15] Leon Böttger. 2024. GoogleFindMyTools. https://github.com/leonboe1/
GoogleFindMyTools

[16] Leon Böttger, Alexander Heinrich, and Matthias Hollick. 2024. AirGuard for iOS:
Tracking Protection. https://github.com/seemoo-lab/AirGuard-iOS

[17] Junming Chen, Xiaoyue Ma, Qiang Zeng, and Lannan Luo. 2025. Tracking You
from a Thousand Miles Away! https://cs.gmu.edu/~zeng/papers/2025-security-
nrootgag.pdf

[18] chiteroman. 2024. PlayIntegrityFix. https://github.com/chiteroman/
PlayIntegrityFix

[19] Samantha Cole. 2022. Police Records Show Women Are Being Stalked With Apple
AirTags Across the Country. https://www.vice.com/en/article/y3vj3y/apple-
airtags-police-reports-stalking-harassment

[20] Joseph Cox. 2024. Hacker Accesses Internal ‘Tile’ Tool That Provides Location
Data to Cops. 404 Media (June 2024). https://www.404media.co/hacker-accesses-
internal-tile-tool-that-provides-location-data-to-cops/

[21] Android Developers. 2025. Android Studio. https://developer.android.com/studio
Accessed: 2025-02-28.

[22] Chinmay Garg, Aravind Machiry, Andrea Continella, Christopher Kruegel, and
Giovanni Vigna. 2021. Toward a Secure Crowdsourced Location Tracking System.
In Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec ’21). Association for Computing Machinery, New York,
NY, USA, 311–322. https://doi.org/10.1145/3448300.3467821 arXiv:2106.00217

[42] ]googlebughunters Google. [n. d.]. Google Bug Hunters. https://bughunters.
google.com/. Accessed: 2025-05-06.

[24] Google. 2025. Google Chrome. https://www.google.com/chrome/
[25] Google Developers. 2023. Find My Device Network Accessory Specification v1.3.

https://developers.google.com/nearby/fast-pair/specifications/extensions/fmdn
[26] Google Developers. 2024. Fast Pair Procedure. https://developers.google.com/

nearby/fast-pair/specifications/service/gatt
[27] Google LLC. 2025. Find Unknown Trackers - Android Help. https://support.

google.com/android/answer/13658562?hl=en
[28] Google LLC. 2025. How Find My Device Protects Your Data - Help. https:

//support.google.com/product-documentation/answer/14796936?hl=en
[29] Max Granzow, Alexander Heinrich, Matthias Hollick, and Marco Zimmerling.

2024. Poster: Leveraging Apple’s Find My Network for Large-Scale Distributed
Sensing. In Proceedings of the 22nd Annual International Conference on Mobile
Systems, Applications and Services (MOBISYS ’24). Association for Computing Ma-
chinery, New York, NY, USA, 666–667. https://doi.org/10.1145/3643832.3661412

[30] NCC Group. 2018. Android Cloud Backup/Restore. Technical Report.
https://web.archive.org/web/20221013203959/https://research.nccgroup.com/
wp-content/uploads/2022/04/NCC_Group_Google_EncryptedBackup_2018-10-
10_v1.0.pdf Archived version.

[31] Alexander Heinrich, Niklas Bittner, and Matthias Hollick. 2022. AirGuard–
Protecting Android Users From Stalking Attacks By Apple Find My Devices.
arXiv preprint arXiv:2202.11813 (2022).

[32] Alexander Heinrich, Milan Stute, and Matthias Hollick. 2021. OpenHaystack: A
Framework for Tracking Personal Bluetooth Devices via Apple’s Massive Find
My Network. In Proceedings of the 14th ACM Conference on Security and Privacy in

Wireless and Mobile Networks (WiSec ’21). Association for Computing Machinery,
New York, NY, USA, 374–376. https://doi.org/10.1145/3448300.3468251

[33] Alexander Heinrich, Milan Stute, Tim Kornhuber, and Matthias Hollick. 2021.
Who Can Find My Devices? Security and Privacy of Apple’s Crowd-Sourced Blue-
tooth Location Tracking System. Proceedings on Privacy Enhancing Technologies
2021, 3 (July 2021), 227–245. https://doi.org/10.2478/popets-2021-0045

[34] Alexander Heinrich, Leon Würsching, and Matthias Hollick. 2024. Please Unstalk
Me: Understanding Stalking with Bluetooth Trackers and Democratizing Anti-
Stalking Protection. Proceedings on Privacy Enhancing Technologies (2024). https:
//doi.org/10.56553/popets-2024-0082

[35] HyunSeok Daniel Jang, Hazem Ibrahim, Rohail Asim, Matteo Varvello, and Yasir
Zaki. 2025. A Tale of Three Location Trackers: AirTag, SmartTag, and Tile.
https://doi.org/10.48550/arXiv.2501.17452 arXiv:2501.17452

[36] Juan Manuel Merlos. 2023. Open GPX Tracker. https://apps.apple.com/de/app/
open-gpx-tracker/id984503772

[37] Simon Kurz. 2024. Simon Kurz’ Blog. https://blog.simonkurz.de/posts/
[38] Brent Ledvina, David Lazarov, Ben Detwiler, and Siddika Parlak Polatkan. 2024.

Detecting Unwanted Location Trackers Accessory Protocol. Internet-Draft draft-ietf-
dult-accessory-protocol-00. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/draft-ietf-dult-accessory-protocol/00/ Work in Progress.

[39] Ben Lovejoy. 2022. AirTags with deactivated speakers being sold on eBay and
Etsy; seller claims not for stalking. https://9to5mac.com/2022/02/03/airtags-with-
deactivated-speakers-being-sold/

[40] PortSwigger Ltd. 2025. Burp Suite. https://portswigger.net/burp
[41] Ryan Mac and Kashmir Hill. 2021. Are Apple AirTags Being Used to Track People

and Steal Cars? https://www.nytimes.com/2021/12/30/technology/apple-airtags-
tracking-stalking.html

[42] ]FridaUnpinning masbog. [n. d.]. frida-android-unpinning-ssl. https://codeshare.
frida.re/@masbog/frida-android-unpinning-ssl/

[43] Travis Mayberry, Erik-Oliver Blass, and Ellis Fenske. 2023. Blind My - An Im-
proved Cryptographic Protocol to Prevent Stalking in Apple’s Find My Net-
work. Proceedings on Privacy Enhancing Technologies 2023, 1 (Jan. 2023), 85–97.
https://doi.org/10.56553/popets-2023-0006

[44] Travis Mayberry, Ellis Fenske, Dane Brown, Jeremy Martin, Christine Fossaceca,
Erik C. Rye, Sam Teplov, and Lucas Foppe. 2021. Who Tracks the Trackers?
Circumventing Apple’s Anti-Tracking Alerts in the Find My Network. In Pro-
ceedings of the 20th Workshop on Workshop on Privacy in the Electronic Society
(WPES ’21). Association for Computing Machinery, New York, NY, USA, 181–186.
https://doi.org/10.1145/3463676.3485616

[45] Microsoft. 2025. BluetoothLEAdvertisementPublisher Class (Win-
dows.Devices.Bluetooth.Advertisement) - Windows Apps. https://learn.
microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.
bluetoothleadvertisementpublisher?view=winrt-26100

[46] Katharina O. E. Müller, Louis Bienz, Bruno Rodrigues, Chao Feng, and Burkhard
Stiller. 2023. HomeScout: Anti-Stalking Mobile App for Bluetooth Low Energy
Devices. In 2023 IEEE 48th Conference on Local Computer Networks (LCN). 1–9.
https://doi.org/10.1109/LCN58197.2023.10223406

[47] Youssef Noser. 2025. MagiskHluda. https://github.com/Exo1i/MagiskHluda
[48] NVISOsecurity. 2020. MagiskTrustUserCerts. https://github.com/NVISOsecurity/

MagiskTrustUserCerts
[49] OpenMapTiles and OpenStreetMap. 2024. Basic GL Style using OpenMapTiles.

https://openmaptiles.org/, https://www.openstreetmap.org/. Licensed under CC
BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Changes were made.

[50] Bob Pan and contributors. 2023. Dex2Jar. https://github.com/pxb1988/dex2jar
[51] Jack Price. 2019. Not all Bluetooth 5-enabled smartphones are created equally,

here’s why. https://www.xda-developers.com/check-bluetooth-5-all-features-
supported/

[52] Frida Project. 2025. Frida. https://frida.re
[53] PyCryptodome. 2025. AES. https://pycryptodome.readthedocs.io/en/latest/src/

cipher/aes.html Accessed: 2025-03-01.
[54] Thomas Roth, Fabian Freyer, Matthias Hollick, and Jiska Classen. 2022. AirTag

of the Clones: Shenanigans with Liberated Item Finders. In 2022 IEEE Security
and Privacy Workshops (SPW). 301–311. https://doi.org/10.1109/SPW54247.2022.
9833881

[55] Samsung Electronics Co., Ltd. 2023. Samsung SmartThings Find Rapidly Expands
With Over 300 Million Nodes Helping to Locate Devices – Samsung Mobile Press.
https://www.samsungmobilepress.com/press-releases/samsung-smartthings-
find-rapidly-expands-with-over-300-million-nodes-helping-to-locate-devices

[56] Ben Schoon. 2024. Android’s Find My Device network settings start going live
for some users. https://9to5google.com/2024/04/03/android-find-my-device-
network-live-early/

[57] Svenja Schröder, Markus Huber, David Wind, and Christoph Rottermanner. 2016.
When SIGNAL hits the fan: On the usability and security of state-of-the-art
secure mobile messaging. In European Workshop on Usable Security. IEEE. 1–7.

[58] Narmeen Shafqat, Nicole Gerzon,Maggie VanNortwick, Victor Sun, AlanMislove,
and Aanjhan Ranganathan. 2023. Track You: A Deep Dive into Safety Alerts for
Apple AirTags. Proceedings on Privacy Enhancing Technologies 2023, 4 (Oct. 2023),
132–148. https://doi.org/10.56553/popets-2023-0102

618

https://doi.org/10.1145/3572864.3580342
https://doi.org/10.1145/3572864.3580342
https://www.bvsystems.com/product/bluesleuth-lite-ble-tag-detector/
https://www.bvsystems.com/product/bluesleuth-pro-bluetooth-and-ble-device-locator/
https://www.bvsystems.com/product/bluesleuth-pro-bluetooth-and-ble-device-locator/
https://safecurves.cr.yp.to
https://security.googleblog.com/2024/04/find-my-device-network-security-privacy-protections.html
https://security.googleblog.com/2024/04/find-my-device-network-security-privacy-protections.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.pdf
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.pdf
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.pdf
https://doi.org/10.1109/SPW54247.2022.9833870
https://github.com/leonboe1/GoogleFindMyTools
https://github.com/leonboe1/GoogleFindMyTools
https://github.com/seemoo-lab/AirGuard-iOS
https://cs.gmu.edu/~zeng/papers/2025-security-nrootgag.pdf
https://cs.gmu.edu/~zeng/papers/2025-security-nrootgag.pdf
https://github.com/chiteroman/PlayIntegrityFix
https://github.com/chiteroman/PlayIntegrityFix
https://www.vice.com/en/article/y3vj3y/apple-airtags-police-reports-stalking-harassment
https://www.vice.com/en/article/y3vj3y/apple-airtags-police-reports-stalking-harassment
https://www.404media.co/hacker-accesses-internal-tile-tool-that-provides-location-data-to-cops/
https://www.404media.co/hacker-accesses-internal-tile-tool-that-provides-location-data-to-cops/
https://developer.android.com/studio
https://doi.org/10.1145/3448300.3467821
https://arxiv.org/abs/2106.00217
https://bughunters.google.com/
https://bughunters.google.com/
https://www.google.com/chrome/
https://developers.google.com/nearby/fast-pair/specifications/extensions/fmdn
https://developers.google.com/nearby/fast-pair/specifications/service/gatt
https://developers.google.com/nearby/fast-pair/specifications/service/gatt
https://support.google.com/android/answer/13658562?hl=en
https://support.google.com/android/answer/13658562?hl=en
https://support.google.com/product-documentation/answer/14796936?hl=en
https://support.google.com/product-documentation/answer/14796936?hl=en
https://doi.org/10.1145/3643832.3661412
https://web.archive.org/web/20221013203959/https://research.nccgroup.com/wp-content/uploads/2022/04/NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://web.archive.org/web/20221013203959/https://research.nccgroup.com/wp-content/uploads/2022/04/NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://web.archive.org/web/20221013203959/https://research.nccgroup.com/wp-content/uploads/2022/04/NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://doi.org/10.1145/3448300.3468251
https://doi.org/10.2478/popets-2021-0045
https://doi.org/10.56553/popets-2024-0082
https://doi.org/10.56553/popets-2024-0082
https://doi.org/10.48550/arXiv.2501.17452
https://arxiv.org/abs/2501.17452
https://apps.apple.com/de/app/open-gpx-tracker/id984503772
https://apps.apple.com/de/app/open-gpx-tracker/id984503772
https://blog.simonkurz.de/posts/
https://datatracker.ietf.org/doc/draft-ietf-dult-accessory-protocol/00/
https://datatracker.ietf.org/doc/draft-ietf-dult-accessory-protocol/00/
https://9to5mac.com/2022/02/03/airtags-with-deactivated-speakers-being-sold/
https://9to5mac.com/2022/02/03/airtags-with-deactivated-speakers-being-sold/
https://portswigger.net/burp
https://www.nytimes.com/2021/12/30/technology/apple-airtags-tracking-stalking.html
https://www.nytimes.com/2021/12/30/technology/apple-airtags-tracking-stalking.html
https://codeshare.frida.re/@masbog/frida-android-unpinning-ssl/
https://codeshare.frida.re/@masbog/frida-android-unpinning-ssl/
https://doi.org/10.56553/popets-2023-0006
https://doi.org/10.1145/3463676.3485616
https://learn.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisementpublisher?view=winrt-26100
https://learn.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisementpublisher?view=winrt-26100
https://learn.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisementpublisher?view=winrt-26100
https://doi.org/10.1109/LCN58197.2023.10223406
https://github.com/Exo1i/MagiskHluda
https://github.com/NVISOsecurity/MagiskTrustUserCerts
https://github.com/NVISOsecurity/MagiskTrustUserCerts
https://openmaptiles.org/
https://www.openstreetmap.org/
https://github.com/pxb1988/dex2jar
https://www.xda-developers.com/check-bluetooth-5-all-features-supported/
https://www.xda-developers.com/check-bluetooth-5-all-features-supported/
https://frida.re
https://pycryptodome.readthedocs.io/en/latest/src/cipher/aes.html
https://pycryptodome.readthedocs.io/en/latest/src/cipher/aes.html
https://doi.org/10.1109/SPW54247.2022.9833881
https://doi.org/10.1109/SPW54247.2022.9833881
https://www.samsungmobilepress.com/press-releases/samsung-smartthings-find-rapidly-expands-with-over-300-million-nodes-helping-to-locate-devices
https://www.samsungmobilepress.com/press-releases/samsung-smartthings-find-rapidly-expands-with-over-300-million-nodes-helping-to-locate-devices
https://9to5google.com/2024/04/03/android-find-my-device-network-live-early/
https://9to5google.com/2024/04/03/android-find-my-device-network-live-early/
https://doi.org/10.56553/popets-2023-0102


Okay Google, Where’s My Tracker? Proceedings on Privacy Enhancing Technologies 2025(4)

[59] Simon Weber. 2024. gpsoauth. https://github.com/simon-weber/gpsoauth
[60] Skylot and contributors. 2025. JADX. https://github.com/skylot/jadx
[61] Skymakers. 2025. MockUPhone. https://mockuphone.com/model/iphone-15-pro-

max/. Licensed under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/).
Changes were made..

[62] Statista. 2024. Android vs iOS market share in smartphone sales in Ger-
many. https://www.statista.com/statistics/461900/android-vs-ios-market-share-
in-smartphone-sales-germany/

[63] Steven B. 2024. firebase-messaging. https://github.com/sdb9696/firebase-
messaging

[64] Romain Thomas. 2022. DroidGuard: A deep dive into SafetyNet. In Symposium
sur la sécurité des technologies de l’information et des communications (SSTIC).

[65] Davide Toldo, Jiska Classen, and Matthias Hollick. 2020. Attaching InternalBlue
to the proprietary macOS IOBluetooth framework. In Proceedings of the 13th
ACM Conference on Security and Privacy in Wireless and Mobile Networks (Linz,
Austria) (WiSec ’20). Association for Computing Machinery, New York, NY, USA,
328–330. https://doi.org/10.1145/3395351.3401697

[66] Leonardo Tonetto, Andrea Carrara, Aaron Yi Ding, and Jörg Ott. 2022. Where
Is My Tag? Unveiling Alternative Uses of the Apple FindMy Service. In 2022
IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM). 396–405. https://doi.org/10.1109/WoWMoM54355.2022.
00059

[67] Connor Tumbleson and contributors. 2025. Apktool. https://github.com/
iBotPeaches/Apktool

[68] K. Turk, Alice Hutchings, and A. Beresford. 2023. Can’t Keep Them Away: The
Failures of Anti-Stalking Protocols in Personal Item Tracking Devices. In Security
Protocols Workshop 2023. https://www.semanticscholar.org/paper/Can%E2%80%
99t-Keep-Them-Away%3A-The-Failures-of-Anti-Stalking-Turk-Hutchings/
0756ebf656d4ca6d980d6c3943d6050f6c29863d?utm_source=alert_email&utm_
content=AuthorCitation&utm_campaign=AlertEmails_DAILY&utm_term=
LibraryFolder+AuthorCitation&email_index=0-0-0&utm_medium=22345888

[69] Mira Weller, Jiska Classen, Fabian Ullrich, Denis Waßmann, and Erik Tews. 2020.
Lost and found: stopping Bluetooth finders from leaking private information. In
Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. 184–194.

[70] Tingfeng Yu, James Henderson, Alwen Tiu, and Thomas Haines. 2024. Security
and Privacy Analysis of Samsung’s Crowd-Sourced Bluetooth Location Track-
ing System. In 33rd USENIX Security Symposium (USENIX Security 24). USENIX
Association, Philadelphia, PA, 5449–5466. https://www.usenix.org/conference/
usenixsecurity24/presentation/yu-tingfeng

A API Requests and Endpoints
Spot API. The Spot API is used for managing owned trackers.
The endpoint is spot-pa.googleapis.com/google.internal.spot.v1.
SpotService, and it requires authenticationwith the Google Account
using an OAuth2 Token with scope googleapis.com/auth/spot.

After registration, Android devices periodically (every 24 hours)
send a request to UploadPrecomputedPublicKeyIds of the Spot
API to upload the next 72 hours of precalculated Truncated EIDs
to the server to pre-announce future advertisements of the tracker.
Since the EIK is stored on-device, the smartphone does not need to
have a connection to the tracker to refresh the Truncated EIDs.

Spot Report API. The endpoint for the Spot Report API is spot-pa.
googleapis.com/google.internal.spot.v1.SpotReportingService. The
UploadScans request of the Spot Report API is used to upload
locations structured in the following Protobuf format:

message Lo c a t i on {
s f i x e d 3 2 l a t i t u d e = 1 ;
s f i x e d 3 2 l o n g i t u d e = 2 ;
i n t 3 2 a l t i t u d e = 3 ;

}

The Spot Report API is also used for the UploadOwnerScans API
call, which does not require DroidGuard.

Nova API. The Nova API is used to access location reports with the
FMD app. It uses the URL android.googleapis.com/nova. Similar

to the Spot API, the Nova API requires an OAuth2 Token with the
android_device_manager scope.

For querying what devices are paired with the user’s Google
account, the API request nbe_list_devices is used. The response
will contain metadata for every tracker, such as the device ID (so-
called Canonic Device ID) and the encrypted user secrets (such as
the EIK). If the user wants to query location data for a tracker, the
nbe_execute_action API call to the Nova API will be performed.
This request contains the device ID, the last time the network mode
was switched to "High Traffic", and the contributor type ("High
Traffic" or "In All Areas"). The contributor type determines what
locations are available; see Section 4.3. The timestamp is used to
filter out all locations that were received by the server before the
FMDN was enabled on the phone.

B Evaluation Maps

Figure 4: Route 1 (Public Transport) [49].

Figure 5: Route 2 (Walking) [49].

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
619

https://github.com/simon-weber/gpsoauth
https://github.com/skylot/jadx
https://mockuphone.com/model/iphone-15-pro-max/
https://mockuphone.com/model/iphone-15-pro-max/
https://www.statista.com/statistics/461900/android-vs-ios-market-share-in-smartphone-sales-germany/
https://www.statista.com/statistics/461900/android-vs-ios-market-share-in-smartphone-sales-germany/
https://github.com/sdb9696/firebase-messaging
https://github.com/sdb9696/firebase-messaging
https://doi.org/10.1145/3395351.3401697
https://doi.org/10.1109/WoWMoM54355.2022.00059
https://doi.org/10.1109/WoWMoM54355.2022.00059
https://github.com/iBotPeaches/Apktool
https://github.com/iBotPeaches/Apktool
https://www.semanticscholar.org/paper/Can%E2%80%99t-Keep-Them-Away%3A-The-Failures-of-Anti-Stalking-Turk-Hutchings/0756ebf656d4ca6d980d6c3943d6050f6c29863d?utm_source=alert_email&utm_content=AuthorCitation&utm_campaign=AlertEmails_DAILY&utm_term=LibraryFolder+AuthorCitation&email_index=0-0-0&utm_medium=22345888
https://www.semanticscholar.org/paper/Can%E2%80%99t-Keep-Them-Away%3A-The-Failures-of-Anti-Stalking-Turk-Hutchings/0756ebf656d4ca6d980d6c3943d6050f6c29863d?utm_source=alert_email&utm_content=AuthorCitation&utm_campaign=AlertEmails_DAILY&utm_term=LibraryFolder+AuthorCitation&email_index=0-0-0&utm_medium=22345888
https://www.semanticscholar.org/paper/Can%E2%80%99t-Keep-Them-Away%3A-The-Failures-of-Anti-Stalking-Turk-Hutchings/0756ebf656d4ca6d980d6c3943d6050f6c29863d?utm_source=alert_email&utm_content=AuthorCitation&utm_campaign=AlertEmails_DAILY&utm_term=LibraryFolder+AuthorCitation&email_index=0-0-0&utm_medium=22345888
https://www.semanticscholar.org/paper/Can%E2%80%99t-Keep-Them-Away%3A-The-Failures-of-Anti-Stalking-Turk-Hutchings/0756ebf656d4ca6d980d6c3943d6050f6c29863d?utm_source=alert_email&utm_content=AuthorCitation&utm_campaign=AlertEmails_DAILY&utm_term=LibraryFolder+AuthorCitation&email_index=0-0-0&utm_medium=22345888
https://www.semanticscholar.org/paper/Can%E2%80%99t-Keep-Them-Away%3A-The-Failures-of-Anti-Stalking-Turk-Hutchings/0756ebf656d4ca6d980d6c3943d6050f6c29863d?utm_source=alert_email&utm_content=AuthorCitation&utm_campaign=AlertEmails_DAILY&utm_term=LibraryFolder+AuthorCitation&email_index=0-0-0&utm_medium=22345888
https://www.usenix.org/conference/usenixsecurity24/presentation/yu-tingfeng
https://www.usenix.org/conference/usenixsecurity24/presentation/yu-tingfeng
spot-pa.googleapis.com/google.internal.spot.v1.SpotService
spot-pa.googleapis.com/google.internal.spot.v1.SpotService
spot-pa.googleapis.com/google.internal.spot.v1.SpotReportingService
spot-pa.googleapis.com/google.internal.spot.v1.SpotReportingService
android.googleapis.com/nova

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Offline-Finding Networks
	2.2 Google Find My Device Network
	2.3 Related Work

	3 Methodology
	4 The Google Find My Device Network Protocol
	4.1 Firmware
	4.2 Finder Devices
	4.3 Server
	4.4 Owner Smartphone

	5 GoogleFindMyTools and the Spot App
	5.1 Design
	5.2 Implementation

	6 Security & Privacy Analysis
	6.1 Cryptography
	6.2 Privacy Protections
	6.3 Privacy Issues
	6.4 Bypassing Server Restrictions
	6.5 Security Issues
	6.6 Transforming Any Device Into a Tracker

	7 Unwanted Tracking Protection
	7.1 Unwanted Tracking Protection Mode
	7.2 Detecting Unwanted Location Trackers
	7.3 Server-Side Measures Against Unwanted Tracking
	7.4 Notable Locations

	8 Responsible Disclosure
	9 Evaluation
	9.1 Methodology
	9.2 Results
	9.3 Discussion

	10 Conclusions
	Acknowledgments
	References
	A API Requests and Endpoints
	B Evaluation Maps

