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Abstract
Parallel mixing [32] is a common technique for efficiently unlinking
messages from their senders’ identity [6, 36–39, 44, 54]. It involves
multiple servers arranged in a stratified mix-network (mixnet),
each shuffling a fraction of the messages in parallel with others
and then relaying them to a subsequent server. By the end of the
route through the mixnet’s servers, after applying each server’s
local shuffle, all messages are mixed together, hiding the senders’
identities. Unfortunately, parallel mixing is bottlenecked by the
busiest server in each mixnet stratum and does not offer a way to
ensure load balancing across the servers. Thus, Sybil clients can
coordinate to route their messages through one victim server in
the middle of the mixnet and subsequent strata, stalling message
delivery for everyone and keeping their identities hidden since their
messages were already shuffled with those from other clients. This
paper presents BalancedMixnet, a new protocol for load balancing
clients across the servers in a parallel mix network while ensuring
sender anonymity. Our protocol relies on anonymous credentials
to ensure clients use a route through the mixnet that is selected
uniformly at random and, at the same time, let servers verify that
the message is from a valid client and prevent replay attacks. The
cost of issuing and validating credentials can be easily amortized
across multiple messages from the same client. We implement and
evaluate BalancedMixnet, illustrating that the cost of integrating it
into a parallel mixnet is modest and provides substantial benefits
against Sybil attacks.
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1 Introduction
In recent years, there has been a growing concern about the pri-
vacy of communication metadata. Namely, hiding who is sending
messages to whom. One of the common techniques for hiding
metadata is utilizing parallel mixing [24, 32] where clients send
onion-encrypted messages through a parallel network of mixing
servers (parallel mixnet). Inside the mixnet, servers are connected
in a stratified topology. Each server receives a portion of the mes-
sages and processes its share of the workload concurrently with
the other servers. The server decrypts messages, shuffles them, and
sends them to the next server on the route. In parallel mixnets,
each server appears at a different stratum on different routes to
maximize each server machine’s utilization. The clients choose a
path through the mixnet and onion-encrypt their messages for the
servers on the path. They select a server at each layer in a route that
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conforms with the network’s stratified topology. In this manner, all
mixnet servers work on parcels of the message batch but still mix all
messages together. Onion encryption ensures that each server only
knows a message’s predecessor and successor servers, and shuffling
ensures that, after several hops of mixing servers, messages are
unlinked from the user who sent them, even if some of the servers
were rogue.

Parallel mixing has proven very efficient; it lets the mixnet scale
to handle more users by adding a proportional number of servers. It
was, therefore, the basis for many recent designs for metadata pri-
vate communication, e.g., [6, 36–39, 54]. These systems can indeed
scale well to support a large user base, but they all assume their
users choose routes honestly. Namely, that clients choose routes
uniformly at random. This creates a key problem for systems that
rely on parallel mixing: to enjoy the technique’s scaling benefits
in practice, the system must deal with Sybil attacks where clients
dishonestly choose routes purposefully to degrade the mixnet’s
performance. If a subset of the clients were malicious, they could
all choose the same server to handle their messages in the middle
of the mixnet, causing that server to be particularly slow to fin-
ish processing its (disproportionate) workload. Since the mixnet is
synchronous, that is, a server must wait for all messages from the
servers in the previous layer to arrive before it can shuffle them
together and distribute them to the next layer, this attack slows
processing for the entire workload. Worse yet, anonymity makes
blocking the offending clients difficult; the attacker might target
a server at a later stratum in the mixnet so that its messages are
already shuffled with messages from honest users, and the rogue
senders are hard to trace. And, the attacker could then overload
a server in subsequent strata as well to keep slowing down the
whole mixnet.

By crippling performance, the attacker might drive users away
from the mixnet to non-private communication alternatives. For
privacy-enhancing systems, the size of the user base is crucial.
Users can only hide their messages in the crowd of other users [22].
Thus, the attacker achieves two benefits: First, they compromise
the privacy of users leaving the mixnet. Second, they reduce the
anonymity set for users who opt to keep using the mixnet despite its
poor performance while also letting them exchange fewer messages.

This work presents BalancedMixnet, a mechanism for mitigating
the parallel mixnet’s Sybil attack problem by issuing anonymous
credentials to clients sending messages. In BalancedMixnet, clients
interact with an identity provider(s) that issues them a credential.
Clients then deterministically derive the route from this creden-
tial and provide efficient proof that they have a valid credential
to the servers along the route. This proof hides the identity of the
client holding the credential and, at the same time, ensures that
clients choose honest routes and prevents them from using the
same credential multiple times. The identity providers implement
Sybil-resistant admission control of users to the mixnet, prevent-
ing an attacker from overloading BalancedMixnet with many fake
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users. The choice of admission control policy is independent of Bal-
ancedMixnet’s design, and we discuss examples of privacy-friendly
admission policies that keep user identities secret from the identity
provider to avoid impacting user anonymity.

We faced two significant challenges in simultaneously achiev-
ing privacy and performance with BalancedMixnet. First, while
clients should deterministically derive routes from their credentials,
servers (including the identity provider issuing the credentials)
must be unable to do so. Otherwise, those servers could follow the
message’s path through the mixnet and learn which client sent
what message. Yet, servers must also be able to dedup messages
derived from the same credential, or one rogue client using a legiti-
mate route could just flood them with many messages. The second
challenge we faced was maintaining the performance standard of
non-Sybil-resistant parallel mixnets. Servers should efficiently ver-
ify that messages are on the correct route. Moreover, when there is
an attack, the messages from malicious clients should be filtered
before reaching the target server, or they would have already slowed
down the network.

We address the first problem using blind signatures. This lets
BalancedMixnet issue a client credential without learning the cre-
dential itself. Clients then derive the route from this credential
along with a per-hop one-time ticket, which the servers then val-
idate using a non-interactive zero-knowledge (NIZK) proof. We
address the second issue, performance, by having upstream mixnet
servers check that the next hop is valid rather than having each
mixnet server check that they are the correct current hop; this
lets BalancedMixnet filter messages with invalid routes before they
reach the target server. Furthermore, we illustrate how circuit-based
routing allows for mitigating the computational cost of validating
tickets by amortizing it over many messages. We show that Bal-
ancedMixnet keeps users’ privacy while mitigating Sybil attacks
through analysis.

We implement BalancedMixnet in Rust and benchmark its per-
formance. Compared to a vanilla parallel mixnet, BalancedMixnet
induces an overhead only at circuit setup, which diminishes when
a Sybil attack is present. After circuits are set up, we show that
BalancedMixnet significantly outperforms the vanilla mixnet when
there is a Sybil attack (and that performance is comparable to the
vanilla when there is no attack). Sybil attacks should be expected
when deploying parallel mixnets in practice, and we believe Bal-
ancedMixnet provides a tangible path towards mitigating this class
of attacks and enabling real-world deployment of such systems.

2 Background
2.1 Parallel Mixing Topologies
State-of-the-art systems for metadata-private communication sys-
tems rely on different parallel mixing topologies, where the servers
in a mixnet are arranged in a stratified topology.

Figure 1 illustrates two example topologies used in recent sys-
tems. The servers’ topology structure allows reasoning about the
network’s message shuffling; e.g., certain topologies provide “per-
fect” shuffles, where each message submitted to the mixnet has an
equal chance of being any of the outputs [36]. In contrast, other
topologies use fewer strata and, therefore, achieve better perfor-
mance but allow for a small bias in message output distribution,

(a) Fully-connected servers [6, 38, 39, 44, 51]

(b) Bipartite graph of cascades [54]

Figure 1: Parallel mixing topologies with 𝑛 servers arranged
in 𝐿 layers.

which they bound to be very small [39, 54]. When a user writes a
message, her client onion-encrypts it for one server in each mixnet
layer. Each server decrypts the next layer in the onion, shuffles the
batch of messages it receives from its predecessors, and forwards
each message to the next hop on its route [18]. We architect Bal-
ancedMixnet to distribute the load of user messages independently
of the underlying mixing topology; that is, BalancedMixnet ensures
that at every layer, messages from each server are uniformly dis-
tributed across all of its outgoing edges to servers in the subsequent
layer. This lets users obtain the privacy guarantee of the underlying
mixnet while making it resilient to Sybil attacks.

2.2 Anonymous Credentials
In BalancedMixnet, an identity provider(s) admits a client into the
system by issuing the user an anonymous credential. The client later
uses this credential to create zero-knowledge proofs (informally,
proofs that reveal nothing about the client’s secrets beyond what is
revealed by the statement being proved). These proofs establish that
the client sends messages through a valid route. BalancedMixnet
builds on the BBS+ scheme [3, 4, 14], reviewed below.

Groups and Pairings. Our scheme uses groups G1, G2 and G𝑇

with prime order 𝑝 and generators 𝑔1, 𝑙1, 𝑙2 ∈ G1, 𝑔2 ∈ G2, for which
there exists a type-3 bilinear pairing [28] 𝑒 : G1 × G2 → G𝑇 .

2.2.1 Computational Assumptions. Our work relies on the follow-
ing (generally accepted) assumptions.
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Generalized Decisional Diffie-Hellman [5]. The 𝑞-GDDH problem
in G is: on input a vector (𝑢1, 𝑢2, . . . , 𝑢𝑞, 𝑣1, 𝑣2, . . . , 𝑣𝑞) ∈ G2𝑞 where
the 𝑢𝑖 are sampled at random, distinguish between the case where
the 𝑣𝑖 are sampled at random and the case where there exists 𝑟 such
that ∀𝑖 ∈ {1, . . . , 𝑞}, 𝑣𝑖 = 𝑢𝑟𝑖 . The 𝑞-GDDH assumption holds in G
if no PPT algorithm is non-negligibly better than guessing when
solving the 𝑞-GDDH problem.

q-Strong Diffie-Hellman [11]. For a type-3 pairing as described
above, and given a 𝑞 + 3-tuple

(𝑔1, 𝑔𝑥1 , · · · , 𝑔𝑥
𝑞

1 , 𝑔2, 𝑔
𝑥
2 ) ∈ G

𝑞+1
1 × G2

2

the qSDH problem is to output a pair (𝑐, 𝑔
1

𝑥+𝑐
1 ) ∈ Z𝑝 \{−𝑥}×G1. The

qSDH assumption holds if no PPT algorithm has a non-negligible
advantage in solving the qSDH problem in (G1,G2).

BBS+ Signatures. We recall the BBS+ signature scheme [3, 4, 14]
for the special case of signing a single value𝑚 ∈ Z𝑝 .

Key Generation.

• Sample (ℎ0, ℎ1)
𝑅←− G2

1, 𝑥
𝑅←− Z𝑝

• Set𝑤 ← 𝑔𝑥2 and𝑤∗ ← 𝑔𝑥1 .
• Return secret key 𝑥 and public key 𝑝𝑘 = (𝑤,ℎ0, ℎ1), and
auxiliary data𝑤∗. Note that𝑤∗ must be published but is not
used except by the simulator algorithm [14, §4.5]; it can be
validated by checking that 𝑒 (𝑤∗, 𝑔2) = 𝑒 (𝑔1,𝑤).

Blind Signing. Given public key 𝑝𝑘 = (𝑤,ℎ0, ℎ1), message𝑚 ∈
Z𝑝 and secret key 𝑥 , the following interactive protocol allows a
signer holding a secret key to blindly sign a client’s message𝑚 ∈ Z𝑝 :
• The client computes a Pederson commitment [43] on the
message 𝑚 as 𝐶𝑚 = ℎ𝑠

′
0 ℎ

𝑚
1 ; this is a hiding and binding

commitment to𝑚 with opening 𝑠′. The client proves that
the commitment is well formed via a proof that 𝐶𝑚 = ℎ𝑠

′
0 ℎ

𝑚
1 ,

where 𝑠′,𝑚 are secrets and 𝐶𝑚, ℎ0, ℎ1 are public.
• The signer verifies the client’s proof, samples 𝑒, 𝑠′′

𝑅←− Z𝑝 ,
computes𝐴← (𝑔1ℎ𝑠

′′
0 𝐶𝑚)

1
𝑒+𝑥 = (𝑔1ℎ𝑠

′+𝑠′′
0 ℎ𝑚1 )

1
𝑒+𝑥 , and sends

(𝐴, 𝑒, 𝑠′′) to the client.
• The signature on𝑚 is (𝐴, 𝑒, 𝑠), where 𝑠 = 𝑠′ + 𝑠′′.

Verification. For a public key 𝑝𝑘 = (𝑤,ℎ0, ℎ1) ∈ G2 × G2
1 and

message𝑚 ∈ Z𝑝 , signature (𝐴, 𝑒, 𝑠) ∈ G1 × Z2
𝑝 is valid iff

𝑒 (𝐴,𝑤𝑔𝑒2) = 𝑒 (𝑔1ℎ𝑠0ℎ𝑚1 , 𝑔2)
The BBS+ signature scheme is existentially unforgeable under

the qSDH assumption [14]. The signer learns no information about
𝑚 and the client is bound to𝑚 except with negligible probability;
informally, the proof reveals only that 𝐶𝑚 is well formed, and is
sound if computing discrete logs is hard in G1 [47]. Looking ahead
(§4.3), we will use the fact that the BBS+ signature allows the client
to prove possession of a signature without revealing it.

3 Overview
This section gives an overview of our setting, threat model, and
security definitions. We describe BalancedMixnet’s design in Sec-
tion 4 and analyze its security in Section 5. Figure 2 illustrates the
actors in the system: the clients, the identity provider, and the mix
servers. In BalancedMixnet, clients deliver messages through layers

of mix servers. Before clients send messages, they register with
the identity provider, which issues them an anonymous credential.
(For simplicity, our descriptions assume a single identity provider;
in §4.5, we revisit this and show how the identity provider can be
distributed across multiple servers.)

As in a standard mixnet, clients onion-encrypt their messages
such that each server can decrypt one layer and determine where to
route the message next. In contrast to a standard mixnet, however,
clients in BalancedMixnet cannot arbitrarily choose the path their
message takes through the mixnet. Instead, each client uses its
anonymous credential to deterministically derive a sequence of
tickets, one per hop, that dictates the message’s path. In each layer
of the onion-encrypted message, the client includes both the ticket
and a non-interactive zero-knowledge proof establishing that the
client knows a valid credential and that the ticket was correctly
derived from it. This lets servers discard messages if the next hop
is inconsistent with the ticket or the ticket proof is invalid. This
means that malicious messages never reach any server that is not
actually on the message’s path: if rogue clients send messages
intended to overload a server in the mixnet, such messages are
effectively filtered in parallel by the predecessors of the victim
server. And since tickets are deterministically derived from the
credentials, servers can use them to deduplicate messages from a
given client, ensuring that a valid credential cannot be used to send
many messages at once.

3.1 Sybil resistant admission control
The identity provider implements Sybil-resistant admission control,
preventing an attacker from flooding the system with many rogue
clients. It is important to note that such admission control does not
inherently come at the cost of anonymity: the identity provider can
safely admit users without knowing their real-world identities. For
example, users may be required to make an anonymous payment
(say, using a cryptocurrency) when registering with the identity
provider, making a Sybil attack economically infeasible (this is
roughly similar to the approach used by Nym [51]). Alternatively,
the identity provider might require a privacy-preserving proof of
personhood [12], e.g., a zero-knowledge proof establishing owner-
ship of a valid passport [46, 50] that has not previously been used to
register with the system. Other possible approaches include proof
of work or using CAPTCHAs. The choice of admission control is a
policy decision that is orthogonal to BalancedMixnet’s design and
will likely differ across deployments. Crucially, BalancedMixnet’s
use of anonymous credentials ensures that the identity provider
does not learn which user is associated with an issued creden-
tial. The identity provider is trusted only to correctly enforce the
admission-control policy of its mixnet deployment.

3.2 Communication model
Like many other mixnets, BalancedMixnet mitigates timing attacks
by operating in synchronous rounds. Every round, each server col-
lects messages it received from all servers in the previous layer,
decrypts a layer of the onion, validates their tickets, shuffles the
messages, and forwards them to the next hop. The last server deliv-
ers the message to the destination.
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Figure 2: An overview of BalancedMixnet deployment. Users
first register with the identity provider to receive a creden-
tial (left). They can then send messages through the mixnet
via routes that are deterministic, yet uniformly distributed
(right). Themixnet servers can check that themessages travel
through a valid route, although they don’t learn anything
about non-adjacent hops.

Epochs and circuits. BalancedMixnet amortizes the cost of val-
idating NIZK proofs by keeping the clients’ routes fixed for an
epoch, which we envision to be on the order of minutes. Similarly
to Tor [23], every epoch clients send setup messages to establish ef-
ficient circuits for routing messages through the mixnet. The setup
messages include the tickets and NIZK proofs discussed above; they
also associate a fresh pseudonymous connection ID and symmetric
key at every hop. In the following messaging rounds, clients send
data messages efficiently encrypted using those symmetric keys.

3.3 Security properties
BalancedMixnet assumes a powerful adversary that canmonitor the
network, control some of the system’s servers, and introduce many
(but not infinitely many) rogue clients. BalancedMixnet has two
high-level goals: maintaining the mixnet’s privacy guarantee (i.e.,
unlinking the users’ identities from their messages) and efficiently
ensuring availability in the face of Sybil attacks.

To achieve these goals, BalancedMixnet leverages an anonymous
ticketing scheme, which we define immediately below.

3.3.1 Anonymous ticketing schemes. An anonymous ticketing scheme
comprises the following six randomized algorithms, all of which
have access to a set of public system parameters:

• IdPKeygen() → (skId, pkId) samples an identity-provider
key-pair.
• IdPSign(skId, reqId) → respId | ⊥ processes an identity-creation
request, returning a credential response or an error if the
request was malformed.
• CredReq() → (reqId, auxId) samples an identity-creation
request and auxiliary information.
• CredGen(respId, auxId) → cred processes an identity-creation
response and the auxiliary information from the correspond-
ing request, and outputs an anonymous credential.
• TicketGen(cred, LayerId, EpochId) → (𝑡, 𝜋) creates a ticket
and a proof that the ticket was correctly generated from a
valid credential.
• TicketVerify(pkId, 𝑡, 𝜋) → OK | ⊥ checks a ticket’s validity.

An anonymous ticketing scheme is correct if ∀LayerId, EpochId

Pr



(skId, pkId) ← IdPKeygen()
(reqId, auxId) ← CredReq()

respId← IdPSign(skId, reqId)
cred← CredGen(respId, auxId)
(𝑡, 𝜋) ← TicketGen(cred, LayerId, EpochId)
OK = TicketVerify(pkId, 𝑡, 𝜋)


≈ 1

where the probability is over the algorithms’ random choices.

3.3.2 Privacy. At a high level, we require BalancedMixnet to offer
the same privacy guarantee as a standard mixnet: an attacker who
does not control every server along a given user’s path cannot
discern which messages belong to that user. In BalancedMixnet, a
user’s messages include a ticket and proof output by TicketGen. We,
therefore, require the following two properties from the anonymous
ticketing scheme: anonymity and unlinkability.

Anonymity. Roughly speaking, we require that the ticket and
proof output by TicketGen reveal nothing about the user’s identity
except the correct next hop. This is formalized via a standard simu-
lation-based definition of zero knowledge with respect to the user’s
credential. Specifically, we say that an anonymous ticketing scheme
satisfies anonymity if there exists a PPT algorithm Sim such that for
any valid cred (i.e., one resulting from the correct sequence of in-
vocations of CredReq, IdPSign, and CredGen), ∀LayerId, EpochId,{

TicketGen(cred,LayerId, EpochId)
}

≈𝑐
{
Sim(LayerId, EpochId,NextHop)

}
That is, Sim induces a distribution (computationally) indistinguish-
able from TicketGen without access to cred, and thus a ticket and
proof reveal nothing about the user’s credential except NextHop.1

Unlinkability. Roughly speaking, we require that it is infeasible
to determine if any set of ticket-proof tuples corresponds to a single
user’s identity or to many different identities. This is formalized
via the following game between challenger C and adversary A,
in which A can make any (polynomial) number of queries in any
order.
• Initialize: C samples

𝑏
$← {0, 1}

(skId, pkId) ← IdPKeygen()
(reqId, auxId) ← CredReq()

cred← CredGen(IdPSign(skId, reqId), auxId)

C then sends pkId to A.

• Registration Query: A sends a query reqId, 𝑗 .
C responds with respId, 𝑗 ← IdPSign(skId, reqId, 𝑗 ).

• Ticket Query: A sends a query (LayerId𝑖 , EpochId𝑖 ).
When 𝑏 = 0, C computes

(𝑡𝑖 , 𝜋𝑖 ) ← TicketGen(cred, LayerId𝑖 , EpochId𝑖 )

1BalancedMixnet uses a non-interactive zero-knowledge proof in the random oracle
model. The zero-knowledge property requires Sim to program this random oracle; this
is standard in practical constructions of non-interactive zero knowledge [27, 56].
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When 𝑏 = 1, C computes

(reqId,𝑖 , auxId,𝑖 ) ← CredReq()
cred𝑖 ← CredGen(IdPSign(skId, reqId,𝑖 ), auxId,𝑖 )
(𝑡𝑖 , 𝜋𝑖 ) ← TicketGen(cred𝑖 , LayerId𝑖 , EpochId𝑖 )

C sends (𝑡𝑖 , 𝜋𝑖 ) to A.

• Output: A outputs 𝑏★ ∈ {0, 1}.
We say that an anonymous ticketing scheme satisfies unlinkability
if, for all PPT adversaries A,

�� Pr [
𝑏 = 𝑏★

]
− 1/2

�� is negligible, i.e.,
A does negligibly better than guessing.

3.3.3 Availability. To ensure availability, BalancedMixnet must en-
sure that messages are uniformly distributed across all first-layer
servers, and are then uniformly distributed across each mix server’s
outgoing links on all mixnet layers. (BalancedMixnet can also sup-
port essentially arbitrary nonuniform distributions; we discuss
briefly in §4.2.) These properties must hold even if the attacker
controls many clients and crafts messages without following the
protocol. We capture these requirements via unforgeability and
sybil resistance.

Unforgeability. We require that credentials and tickets in an
anonymous ticketing scheme can be created only by clients per-
mitted by the identity provider. More precisely, we say that an
anonymous ticketing scheme is unforgeable if two properties hold:
first, cred must be existentially unforgeable (i.e., EUF-CMA, the
standard notion of security for a digital signature scheme). Second,
there must exist a PPT algorithm Extract that outputs a valid creden-
tial cred (with high probability) when given oracle access to a client
capable of generating (𝑡, 𝜋) where TicketVerify(pkId, 𝑡, 𝜋) = OK.2
Intuitively, this ensures that only a client that holds a valid creden-
tial can create a convincing ticket and proof.

Sybil Resistance. To ensure that users cannot flood the network
with messages, we require three related properties, which together
comprise sybil resistance. First, it must be infeasible to generate
two distinct, valid tickets for a given cred, LayerId, and EpochId.
Second, any message that does not correspond to a valid ticket must
be rejected. And third, for every honest server in the mixnet, the
outgoing messages distribute uniformly (or according to a specified
distribution) across the server’s links to other mix servers.3

Intuitively, this property guarantees that no internal node in
the mixnet will handle a disproportionate number of clients. The
nodes in the first layer of the mixnet are a special case because
clients can always attempt to simply flood them with requests.
We note, however, that servers in the first layer can use standard
countermeasures (e.g., CAPTCHAs, IP reputation, etc.) when under
attack since clients connect directly to these servers.

2As is standard in practical constructions of proofs of knowledge, the Extractor is
assumed to have rewinding access to the prover, i.e., it can selectively restart the
prover’s execution at an earlier point in the computation.
3Note that in typical mixnets, all servers in each layer have the same number of
incoming and outgoing links (as in the topologies in Figure 1). In this case, the sybil
resistance property promises a uniform distribution of messages over all possible
mixnet routes.

4 Design
We describe BalancedMixnet following the illustration in Figure 2.
When users join the system, their clients interact with the identity
provider to receive anonymous credentials (§4.1). Then, they use
these credentials to derive the routes through the mixnet and set
up circuits (§4.2). Clients prove to mix servers the circuit’s route
is correct (§4.3). Finally, the clients send messages through those
circuits (§4.4). We conclude this section by discussing ways that
BalancedMixnet can take advantage of multiple providers (§4.5).

System parameters. We assume that each client knows the
mixnet’s topology, in particular, it knows𝑀 , the number of mixes,
as well as the public keys of its mix servers 𝑝𝑘1, · · · , 𝑝𝑘𝑀 so that
it can choose valid routes and onion-encrypt messages. Also, we
assume that everyone uses the same groups and generators for the
BBS+ signature scheme (§2.2), and cryptographic hash functions
𝐻 : {0, 1}∗ → Z𝑝 and 𝐻𝑏 : {0, 1}∗ → G1, which we model as
random oracles.

Instantiating the anonymous ticketing scheme. Balanced-
Mixnet’s anonymous ticketing scheme builds on BBS+ signatures
(§2.2.1). In particular, IdPKeygen is the BBS+ key-generation proce-
dure. The three steps in the BBS+ blind-signing procedure corre-
spond to CredReq, IdPSign, and CredGen, respectively. We detail
the TicketGen and TicketVerify constructions below.

4.1 User Registration
After registering with the system (e.g., paying a subscription fee),
the user’s client chooses a random user-ID𝑚

𝑅←− Z𝑝 and interacts
with the identity provider to receive a blind BBS+ signature on𝑚 to
be used as the anonymous credential for accessing the mixnet. To
enforce expiration dates on credentials, BalancedMixnet uses key
rollover. Once every several epochs (say, a fixed number matching
the subscription interval, e.g., a month), the identity provider rotates
its key, which invalidates old credentials.

To make sure that not all users refresh their credentials at once
when the key rotates, the identity provider creates a new key
halfway through the time limit on the current key. This lets users
ask for new credentials ahead of time (though they will still use
their old credentials until the epoch when the identity provider’s
matching key is retired).

4.2 Circuit Setup
At the start of every epoch, the client forms a circuit. It derives
the circuit’s route through the mixnet from their credential and
epoch ID, which is an ever-incrementing counter (stored as a 64-bit
integer that we assume will never wrap). For each hop on the route,
the client creates a ticket proving the correctness of the next link
traversal. The client also creates a ticket for “hop zero,” i.e., the
choice of which entry server it connects to, which lets that server
filter messages when it receives an unbalanced portion of the user
load.

Using its anonymous credential (𝐴, 𝑒, 𝑠) and blinded user id𝑚
(§2.2, §4.1), the client calculates tickets 𝑡𝑘 for all circuit LayerIds
𝑘 ∈ [𝐿]. First, it computes a basis for each layer:

𝑏𝑘 = 𝐻𝑏 (𝑘 | | EpochId)
643



Proceedings on Privacy Enhancing Technologies 2025(4) Kleinstein et al.

The client then sets the ticket to be 𝑡𝑘 = 𝑏𝑒+𝑚
𝑘

(an element in
G1). Notice that this ticket is derived deterministically from the
credential.

Assume that the current server has ℓ outgoing links to the next
layer; then the next hop hop𝑘+1 ∈ [ℓ] is selected uniformly at
random by computing hop𝑘+1 = 𝐻 (𝑡𝑘 ) mod ℓ . We note that it is
straightforward to sample from other distributions, e.g., in the case
that some servers can handle more traffic than others. As a simple
example, to give one server more weight, one might instead reduce
mod ℓ + 1 and assign to the weightier server when the result is ℓ .

The circuit setup message then includes for each layer 𝑘 :
• The ticket and proof (𝑡𝑘 , 𝜋𝑘 ); we describe the details of proof
generation and verification in §4.3 below.
• An ephemeral random connection ID 𝐶𝑜𝑛𝑛𝐼𝐷𝑘 .
• A symmetric key 𝑠𝑘 , which the client will later use to create
onion messages.

The setup message is onion-encrypted by the public keys of the
servers on the route through the mixnet in reverse order, such that
the server at layer 𝑘 can only read (𝑡𝑘 , 𝜋𝑘 ,𝐶𝑜𝑛𝑛𝐼𝐷𝑘 , 𝑠𝑘 ). That server
then verifies 𝜋𝑘 to ensure the ticket is correct and uses 𝑡𝑘 to derive
the next server, as described above. The server deduplicates circuit
setup messages using 𝑡𝑘 ; since all circuit setup messages with the
same credential will derive the same ticket, this prevents multiple
users from using the same credential. Lastly, the server stores a
mapping ⟨ConnID𝑘 : 𝑠𝑘 , next-hop⟩ for the rest of the epoch.

4.3 Proof Instantiation
We construct proof that shows that the sender knows a valid BBS+
blind signature credential (𝐴, 𝑒, 𝑠) signed on message𝑚 ∈ Z𝑝 as
described in 2.2, such that their ticket 𝑡 is valid with respect to a
known basis 𝑏 ∈ G1, i.e., 𝑡 = 𝑏𝑒+𝑚 . We use the same parameters
and notation as in Sections 2.2 and 4.

4.3.1 Proof generation. The client’s proof has two parts. First, it
proves that it owns a valid credential without revealing that creden-
tial. Second, it proves that it derived the ticket correctly from that
credential. Our approach extends the BBS+ proof of knowledge of
a signature [14, §4.5] to establish both statements in one proof.

To establish credential ownership, the client samples

𝑟1
𝑅←− Z∗𝑝 𝑟2

𝑅←− Z𝑝

and computes

𝐴′ ← 𝐴𝑟1 𝐴← (𝐴′)−𝑒 · (𝑔1ℎ𝑠0ℎ𝑚1 )𝑟1

𝑟3 ← 𝑟−11 𝑠′ ← 𝑠 − 𝑟2 · 𝑟3
𝑑 ← (𝑔1ℎ𝑠0ℎ𝑚1 )𝑟1 · ℎ

−𝑟2
0

Notice that, for a valid credential,𝐴 = (𝐴′)𝑥 , where 𝑥 is the identity
provider’s secret key.

To establish the correctness of the ticket, the client samples

𝜌1
𝑅←− Z𝑝 𝜌1

𝑅←− Z𝑝

and computes

𝛽1 ← 𝜌1 (𝑒 +𝑚) 𝛽2 ← 𝜌2 (𝑒 +𝑚) 𝐶 ← 𝑙
𝜌1
1 𝑙

𝜌2
2

Recall from §2.2 that 𝑙1, 𝑙2 are fixed public generators of G1.

Finally, the prover generates a zero-knowledge proof of knowl-
edge Π with secret inputs (𝑚, 𝑒, 𝑟2, 𝑟3, 𝑠

′, 𝜌1, 𝜌2, 𝛽1, 𝛽2) and public
inputs (𝐴′, 𝐴, 𝑑,𝐶, 𝑡, 𝑏, 𝑔1, ℎ0, ℎ1, 𝑙1, 𝑙2) establishing the relations

𝐴𝑑−1 = 𝐴′−𝑒 · ℎ𝑟20 𝑔1 = 𝑑𝑟3ℎ−𝑠
′

0 ℎ−𝑚1

𝐶 = 𝑙
𝜌1
1 𝑙

𝜌2
2 𝐶𝑒+𝑚 = 𝑙

𝛽1
1 𝑙

𝛽2
2

𝑏𝛽1 = 𝑡𝜌1

We note that the first two relations are inherited from the BBS+
signature; the others establish correctness of the ticket.

The client renders the proof Π non-interactive via the (strong)
Fiat-Shamir heuristic, i.e., the challenge computation includes all
system parameters:

ℎparams = 𝐻 (𝑀,𝑤, 𝑝𝑘1, . . . , 𝑝𝑘𝑚, 𝐸𝑝𝑜𝑐ℎ𝐼𝐷, 𝑘, 𝑏, 𝑔1, 𝑔2, ℎ0, ℎ1, 𝑙1, 𝑙2)

In more detail, the proof Π is computed as follows:

Commit. Sample 𝑟𝑚, 𝑟𝑒 , 𝑟𝑟2 , 𝑟𝑟3 , 𝑟𝑠′ , 𝑟𝜌1 , 𝑟𝜌2 , 𝑟𝛽1 , 𝑟𝛽2
𝑅←− Z∗𝑝 and

compute

𝑇1 ← 𝐴′−𝑟𝑒 · ℎ𝑟𝑟20 𝑇2 ← 𝑑𝑟𝑟3ℎ
−𝑟𝑠′
0

𝑇3 ← 𝑙
𝑟𝜌1
1 𝑙

𝑟𝜌2
2 𝑇4 ← 𝐶−(𝑟𝑒+𝑟𝑚 )𝑙

𝑟𝛽1
1 𝑙

𝑟𝛽2
2

𝑇5 ← 𝑏𝑟𝛽1 𝑡−𝑟𝜌1

Challenge. Invoke the random oracle on the system parame-
ters, public inputs, and commitments:

𝑐 ← 𝐻 (ℎparams, (𝐴′, 𝐴, 𝑑,𝐶, 𝑡), (𝑇1,𝑇2,𝑇3,𝑇4,𝑇5))

Response. Compute

𝑠𝑚 ← 𝑟𝑚 − 𝑐𝑚 𝑠𝑒 ← 𝑟𝑒 − 𝑐𝑒 𝑠𝑟2 ← 𝑟𝑟2 − 𝑐𝑟2
𝑠𝑟3 ← 𝑟𝑟3 − 𝑐𝑟3 𝑠𝜌1 ← 𝑟𝜌1 − 𝑐𝜌1 𝑠𝜌2 ← 𝑟𝜌2 − 𝑐𝜌2
𝑠𝛽1 ← 𝑟𝛽1 − 𝑐𝛽1 𝑠𝛽2 ← 𝑟𝛽2 − 𝑐𝛽2

Output. The proof Π is:

Π = (𝑐, 𝑠𝑚, 𝑠𝑒 , 𝑠𝑟2 , 𝑠𝑟3 , 𝑠𝜌1 , 𝑠𝜌2 , 𝑠𝛽1 , 𝑠𝛽2 )

4.3.2 Verification. To verify a proof Π that (𝐴′, 𝐴, 𝑑,𝐶, 𝑡) comprise
a valid credential and ticket for basis 𝑏, the verifier checks that
𝐴′ ≠ 1G1 and 𝑒 (𝐴′,𝑤) = 𝑒 (𝐴,𝑔2), then verifies Π as follows:

Compute.

𝑇 ′1 ← (𝐴′)
−𝑠𝑒 · ℎ𝑠𝑟20 ·

(
𝐴𝑑−1

)𝑐
𝑇 ′2 ← 𝑑𝑠𝑟3ℎ

−𝑠𝑠′
0 ℎ

𝑠𝑚
1 · 𝑔

𝑐
1

𝑇 ′3 ← 𝑙
𝑠𝜌1
1 𝑙

𝑠𝜌2
2 𝐶𝑐 𝑇 ′4 ← 𝐶−(𝑠𝑒+𝑠𝑚 )𝑙

𝑠𝛽1
1 𝑙

𝑠𝛽2
2

𝑇 ′5 ← 𝑏𝑠𝛽1 𝑡−𝑠𝜌1

Output. Compute

𝑐′ = 𝐻 (ℎparams, (𝐴′, 𝐴, 𝑑,𝐶, 𝑡), (𝑇 ′1 ,𝑇 ′2 ,𝑇 ′3 ,𝑇 ′4 ,𝑇 ′5 ))

Return OK if 𝑐′ = 𝑐 , else ⊥.
As in [14], this construction does not work for 𝐴 = 1G; this

happens with negligible probability for an honest signer.
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4.4 Sending Messages
After circuit setup, clients send data messages on the circuits they
have established. Since at circuit setup the client registered at every
mix server along the route an ephemeral connection ID, it can now
use this ID to reference a secret key and the next hop server. In
every message, the client includes its data, prepended with the
ephemeral IDs for each hop in reverse order, and onion encrypted
with its installed symmetric keys. This lets communication rounds
be very efficient, since they rely on symmetric cryptography.

Every circuit can carry one message per round. When a server
receives messages from the servers connected to it at the previous
hop, it deduplicates them according to the connection ID. It then
fetches the matching symmetric key and next hop server for that
message, and decrypts its layer of the (symmetric) onion. Once
it receives all messages from its predecesors in the topology, the
server shuffles the messages and sends each message to its next
hop.

4.5 Multiple Identity Providers
Thus far, we have described BalancedMixnet with just one identity
provider. However, a single such provider would be a single point of
failure. If that server is down, then users cannot receive credentials.
Moreover, if that identity provider is malicious, it could selectively
deny service from some users (forcing them to use another, e.g.,
non-private, communication method) or only issue credentials to a
few users (to minimize the user base and, therefore, the admitted
users’ anonymity set). On the other hand, a rogue malicious identity
provider can just create as many credentials as the attacker may
want, without asking to authenticate or pay a fee for using the
system, which allows a Sybil attack.

We address this challenge in BalancedMixnet using a recent
threshold version of the BBS+ anonymous credential scheme [25].
Using threshold BBS+, we split the identity provider into 𝑛 servers
and require that 𝑡 + 1 of them must consent to issuing a client’s
certificate. On setup, the 𝑛 servers jointly create a new public key,
and each of the servers obtains a share of the secret key (without
ever learning the secret). Key generation is performed through a
distributed protocol, such that no server sees or learns informa-
tion about more than a single shard of the secret key (see [25, §9]
for a full description of such a protocol). Although the threshold
version of BBS+ distributes trust in the identity provider across
multiple servers, there is still a single BBS+ signing key (distributed
across the servers) that governs the certificate issuance. To improve
security against the risk of exposure of its shards over time, the
signing keymay be rotated periodically, which involves running the
distributed key generation protocol per rotation. The distributed
key generation protocol for BBS+ is efficient, with the most recent
proposals illustrating that the protocol run-time is on the order of
tens of milliseconds to several seconds for 10-20 servers [26, 57] (de-
pending on whether robustness against corrupt servers is required).
We expect that changes to the server set or key rotation would
happen much less frequently than the protocol’s run-time interval
(under either configuration), making distributed key generation
practical.

In the threshold signing protocol, a client requests a credential
from all 𝑛 identity servers. The servers then exchange two mes-
sages between themselves and provide a response to the client. If
the client receives a response from 𝑡 + 1 servers, it can reconstruct
a valid credential. The threshold BBS+ variant supports any 𝑡 < 𝑛,
and a deployment’s choice of 𝑡 should balance security against
both types of attacks above. Namely, no minority of malicious (or
faulty) identity servers can prevent a legitimate client from obtain-
ing a credential, nor can they issue certificates without properly
authenticating the users.

4.5.1 Deployment tradeoffs. BalancedMixnet’s design is agnostic
to the identity providers’ deployment, as long as it satisfies the
threshold BBS+ security assumption (at most 𝑡 dishonest servers).
This gives a spectrum of decentralization vs. performance tradeoff
points. On one end of the spectrum, the mix servers themselves
run the identity servers and jointly act as the distributed identity
provider. This option allows tuning the threshold BBS+ security pa-
rameter to match the number of assumed dishonest mixnet servers,
thereby avoiding the introduction of further security assumptions
on the honesty of identity providers. Another benefit of this choice
is that the identity provider’s availability is linked to that of the
mixnet. Namely, if many of the identity providers’ servers are down,
then many mix servers are also down, so users might not be able to
use the mixnet anyways (put differently, the reliance of Balanced-
Mixnet on an identity provider wouldn’t impact the overall mixnet
availability). If there are many servers in the mixnet, the above
deployment choice would slow down credential generation since
there would be many participant in the threshold BBS+ signing pro-
tocol, but we only run once per user; for moderate-size deployments
(e.g., tens of servers), we believe this deployment choice provides
a good trade-off. Large deployments could sample a subset of the
mix servers to run the distributed identity provider, limiting the
overhead of the threshold protocol. Consider the simple strategy
where the mix servers operating the identity provider are selected
independently at random out of all mixnet servers. In this case, the
chance that the sampled set has a significant deviation in the rate
of malicious servers from their rate in the overall mixnet quickly di-
minishes with the sample size and deviation size (Chernoff bound).
Therefore, the sampling approach is particularly suitable for such
large deployments, as it allows for tightly setting the threshold
BBS+ security parameter while limiting the number of participants
in the signing protocol for performance.

On the other end of the spectrum are deployments where servers
in the mixnet frequently changes, like in Nym [51] or Tor [23],
making the mix servers unsuitable to double as identity servers.
For example, a deployment may permissively allow organizations
to contribute servers to the mixnet, but such servers may have
a relatively high churn rate or illustrate malicious behavior (like
corrupting user messages), and be removed from the network (e.g.,
Tor monitors its servers’ uptime and checks that they don’t corrupt
the content they relay [30]). If the set of servers changes with the
admission or removal of each mix server, the identity providers’ dis-
tributed key generation for the threshold BBS+ signature key may
need to run often, which incurs communication and computation
costs for the servers. Moreover, users would need to reissue their
credentials for the new BBS+ key, which may burden adoption. For
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such mixnet deployments, using a fixed set of dedicated identity
provider servers is more suitable.

5 Analysis
In this section we show that BalancedMixnet achieves its privacy
and availability goals as defined in §3.3.

5.1 Proof Protocol Properties
The proof protocol detailed in Section 4.3 is the result of applying
the Fiat-Shamir heuristic to a complete, zero-knowledge interactive
proof of knowledge. In particular, that interactive proof extends the
BBS+ proof of knowledge of signature protocol [14, §4.5] by adding
three additional relations (§4.3.1). The protocol is a generalized
Schnorr proof [15]; its simulator and extractor are standard.

At a high level, the simulator for the interactive version of a gen-
eralized Schnorr proof works by sampling random proof elements,
then computing the prover’s initial messages in a way that ensures
consistency with the proof elements (i.e., by solving the verification
equations). The extractor works by running the prover to produce
an accepting transcript; rewinding the prover and re-running with
the same commitments and a different challenge; and then solving
the system of linear equations induced by the two transcripts. The
conversion from an interactive to a noninteractive proof using the
Fiat-Shamir heuristic preserves simulation and extractability.

Putting it all together: the protocol of Section 4.3 is complete by
inspection, and its simulator and extractor are the standard ones
described immediately above.

5.2 Privacy
We first show that BalancedMixnet’s anonymous ticketing scheme
provides Anonymity (§3.3.2). In particular, the anonymous ticketing
scheme has a PPT algorithm Sim that, on input LayerId, EpochId,
and NextHop, outputs a corresponding ticket and convincing proof.
Sim closely follows the one from BBS+ [14, §4.5]: it computes 𝑏 ←
𝐻𝑏 (LayerId | | EpochId) and samples

𝜌
𝑅←− Z∗𝑝 (𝑑,𝐶) 𝑅←− G2

1

Next, the simulator samples 𝑡
𝑅←− G1 until 𝐻 (𝑡) ≡ NextHop mod ℓ ,

where ℓ is the number of servers in the successor to LayerId. (Since
𝐻 is a random oracle, the probability of success in each trial is 1/ℓ;
by a Chernoff bound, the simulator succeeds with overwhelming
probability after, say, 100ℓ samples.) It then computes

𝐴′ ← 𝑔
𝜌

1 𝐴← (𝑤∗)𝜌

where𝑤∗ is the auxiliary data output by the identity provider’s key
generation algorithm. Finally, it runs the proof protocol’s simulator
for the public inputs (𝐴′, 𝐴, 𝑑,𝐶, 𝑡, 𝑏), yielding a simulated proof Π.
We note that Sim can also simulate a proof for a specified ticket 𝑡 ;
we will use this fact below.

A simulated ticket and proof is computationally indistinguishable
from a real one: first, as in the BBS+ simulator, the distribution of
(𝐴′, 𝐴, 𝑑) is perfectly simulated. Likewise, the distribution of 𝐶 is
perfectly simulated (it is uniformly random in both cases). For the
distribution of 𝑡 , we have by construction that it corresponds to
the correct next hop. Our remaining obligation is to show that a
real ticket 𝑡 is indistinguishable from uniformly random. To see

why this holds, notice that the proof elements in a real proof are
uniformly random and independent of 𝑒 +𝑚; for random 𝑡 , the
distribution of 𝑒 +𝑚 = dlog𝑏𝑡 in the simulated proof is likewise.

We now show that BalancedMixnet’s anonymous ticketing scheme
provides unlinkability (§3.3.2) by showing that A breaking unlink-
ability breaks the 𝑞-GDDH assumption on G1 (§2.2.1) in the pro-
grammable random-oracle model. The reduction R is constructed
as follows. (Note that becauseR is constructed in the programmable
ROM, it must answer queries to the random oracles 𝐻 and 𝐻𝑏 in
addition to A’s queries in the unlinkability game [27].)

• Initialize: R receives a 𝑞-GDDH instance

(𝑢1, 𝑢2, . . . , 𝑢𝑞, 𝑣1, 𝑣2, . . . , 𝑣𝑞) ∈ G2𝑞
1

sets (skId, pkId) ← IdPKeygen(), and sends pkId to A.

• 𝐻 Query: R forwards this query to Sim, which handles pro-
grammability for 𝐻 .

• 𝐻𝑏 Query: on receiving query𝑖 , R checks if it has previously
recorded a query-answer pair for this point and sends the
same answer if so. Otherwise, R computes

𝑤𝑖 = (𝑤𝑖,1,𝑤𝑖,2, . . . ,𝑤𝑖,𝑞)
$← Z𝑞𝑝

𝑏𝑖 ←
∏
𝑗

𝑢
𝑤𝑖,𝑗

𝑗
∈ G1

R records the mapping from query𝑖 to 𝑏𝑖 along with auxil-
iary data𝑤𝑖 , then returns 𝑏𝑖 to A.

• Registration Query: handled as in the unlinkability game.

• Ticket Query: on receiving (LayerId𝑖 , EpochId𝑖 ), R queries
𝐻𝑏 on query𝑖 = LayerId𝑖 | | EpochId𝑖 , then retrieves the aux-
iliary data𝑤𝑖 associated with query𝑖 and computes

𝑡𝑖 ←
∏
𝑗

𝑣
𝑤𝑖,𝑗

𝑗
∈ G1

R invokes Sim on LayerId, EpochId, and ticket 𝑡𝑖 to obtain 𝜋𝑖
(recall from above that Sim is able to simulate for a specified
ticket in place of a specified NextHop). Finally, R returns
(𝑡𝑖 , 𝜋𝑖 ) to A.

• Output: R sends A’s output 𝑏★ to the 𝑞-GDDH challenger.

R succeeds with essentially the same probability as A. To see
why, first notice that both 𝐻 and 𝐻𝑏 behave (statistically) indistin-
guishably from random oracles. 𝐻𝑏 is immediate: 𝑏𝑖 is a random
linear combination of G1 elements and is thus uniformly random
in G1. For 𝐻 , observe that the points that Sim programs depend on
its (secret) random choices, so even with a polynomial number of
credentials A queries a colliding point with negligible probability.
Absent such a collision, 𝐻 ’s behavior is perfectly simulated.

Next, consider R’s responses to queries. Its responses to regis-
tration queries are identical to C’s. For ticket queries, first consider
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the case that the 𝑞-GDDH instance satisfies ∀𝑗 .𝑣 𝑗 = 𝑢𝑟𝑗 ; then

𝑡𝑖 =
∏
𝑗

𝑣
𝑤𝑖,𝑗

𝑗
=

∏
𝑗

(
𝑢𝑟𝑗

)𝑤𝑖,𝑗

=

(∏
𝑗

𝑢
𝑤𝑖,𝑗

𝑗

)𝑟
= 𝑏𝑖

𝑟

Since 𝑏𝑖 is the basis 𝐻𝑏 (LayerId | | EpochId) and 𝑡𝑖 is the ticket, all
tickets have discrete log 𝑟 to their basis, which matches the 𝑏 =

0 case in the unlinkability game (where 𝑟 = 𝑒 +𝑚). Otherwise,
when the 𝑣𝑖 in the 𝑞-GDDH instance are random group elements,
all tickets have a uniformly random discrete-log relation to the
corresponding basis. Thismatches the𝑏 = 1 case in the unlinkability
game because each fresh credential C samples when answering
ticket queries induces a random discrete-log relation between ticket
and basis.

The above establishes that 𝑞-GDDH implies unlinkability. We
note that the converse also holds: a set of ticket queries and corre-
sponding 𝐻𝑏 evaluations induces a 𝑞-GDDH instance whose solu-
tion distinguishes 𝑏 = 0 from 𝑏 = 1 in the unlinkability game.

5.3 Availability
We now show that BalancedMixnet provides unforgeability as de-
fined in Section 3.3.2. This property has two components: first,
credentials cannot be forged, which holds by the existential un-
forgeability of the BBS+ signature (§2.2.1). Second, a client can only
generate a valid ticket and proof if it holds a valid credential, which
holds by the extractability of the proof protocol of Section 4.3.

Finally, we show that BalancedMixnet meets the definition of
Sybil Resistance (§3.3.2). First, since tickets are a deterministic
function of cred, LayerId, and EpochId, valid tickets are unique
and therefore it is not feasible to create multiple valid tickets for a
given (cred, LayerId, EpochId) triple. Second, honest servers reject
connections during circuit setup if they do not include valid tickets,
and messages that do not correspond to valid circuits are dropped.
Third, messages are indeed uniformly distributed among a server’s
outgoing links: for an honest server in the mixnet with ℓ outgoing
connections, a message corresponding to ticket 𝑡 will be sent on
connection 𝑗 = 𝐻 (𝑡) mod ℓ , where 𝐻 is a random oracle with
codomain Z𝑝 = {0, 1, . . . , 𝑝 − 1}. For security, 𝑝 ≫ 2200; meanwhile,
ℓ ≪ 240 (a mixnet with a trillion nodes is ludicrous). 𝐻 (𝑡) mod ℓ

thus has statistical distance from uniform at most 2−160, which is
negligible. (Intuitively: every element in {0, . . . , ℓ − 1} is produced
by either ⌈𝑝/ℓ⌉ or ⌊𝑝/ℓ⌋ values in the codomain of 𝐻 (𝑟 ); these are
negligibly different since 𝑝/ℓ ≫ 2160.)4

6 Evaluation
We implemented a prototype of BalancedMixnet in Rust with 9k
lines of code. This includes an implementation of a parallel mixnet
and the BalancedMixnet credential and ticketing mechanisms. Our
implementation is open-source [35]. It forks the bbs-crate library.
It extends the validation of the blind signature to also include the
NIZK proof for validating BalancedMixnet’s tickets (§4.3). Our im-
plementation instantiates the BBS+ signatures over the curve BLS12-
381. We use Blake2B to construct the hash functions 𝐻 and 𝐻𝑏 [55],
Ed25519 [9] for public-key encryption in the setup-circuit mes-
sages, and ChaCha20-Poly1305 [8] for symmetric encryption in the
4If we wanted to sample from a distribution other than uniform, it would suffice to
derive a PRG key from 𝑡 and then use the PRG to run the sampling procedure.

communication rounds. We use our implementation to evaluate
BalancedMixnet and its performance impact on parallel mixing. We
begin our evaluation by measuring the cryptographic computations
BalancedMixnet adds to a mixnet (§6.1). Next, we run system-wide
experiments to evaluate BalancedMixnet’s end-to-end performance
with and without a Sybil attack (§6.2). We compare the impact of
integrating BalancedMixnet’s load balancing on the performance of
two base deployments: a vanilla parallel mixnet [31] and the Yodel
mixnet [39].

Yodel is a mixnet-based communication system. In Yodel, each
user creates two circuits through a mixnet for communication: a pri-
mary circuit, whose address they share with their communication
partner so they can connect and read their messages, and a backup
circuit, which the user connects to if they fail to communicate their
primary circuit’s address to their partner. Although Yodel gives a
strong privacy guarantee to its users and leverages a circuit-based
routing technique to allow low-latency communication, it is sus-
ceptible to malicious users who dishonestly select routes, as we
show in our evaluation. In Yodel, users are supposed to choose their
circuit routes uniformly at random from the full-mesh mixnet topol-
ogy the system offers (Figure 1a), and message routing over these
circuits is synchronous, meaning the slowest server becomes the
bottleneck. Extending Yodel with BalancedMixnet’s load balancing
on top of its already circuit-based communication was simple and
required only the addition of calling BalancedMixnet’s function
for deriving and attaching a ticket when generating circuit setup
messages at the client side, and calling BalancedMixnet’s ticket
verification function when processing them at the mixnet server
side.

6.1 Micro-Benchmarks
We benchmark the time it takes to run BalancedMixnet’s cryp-
tographic computations. For our experiments, we used a Lenovo
ThinkPad P16s GEN2 laptop with an Intel I7 1360P core CPU. All
the timings reported below are averaged over 100 runs.

Credential issuance time. On registration, the identity provider
produces a BBS+ signature used as the client’s credential. Each
signature takes 352𝜇𝑠 to create. Since registration is not a frequent
operation (we envision happening on the order of a month), we
believe this would not create a significant performance bottleneck.

Public Key Decryption. At circuit setup, BalancedMixnet mix
servers decrypt the public-key-encrypted onion setupmessages.We
benchmark this decryption to take 120𝜇𝑠 . The cost of this decryption
is amortized over multiple communication rounds through the
lifetime of the circuit.

Ticket validation. At circuit setup, each mix server validates a
ticket for every message. This constitutes verifying a NIZK proof
(§4.3), which we benchmark taking 4.01𝑚𝑠 . Though this is over
an order of magnitude more than the standard onion decryption
a mix server has to do (using public key cryptography), the ticket
validation cost, similarly to the public key decryption, is amortized
over multiple communication rounds through the lifetime of the
circuit.
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(a) Circuit setup (b) Communication rounds

Figure 3: Latency as a function of the user base. None of the clients is malicious. Applying BalancedMixnet’s mechanisms
adds overhead during circuit setup but not during communication rounds. The overhead impacts similarly when integrating
BalancedMixnet on a vanilla mixnet and Yodel.

(a) Circuit setup (b) Communication rounds

Figure 4: Latency as a function of the user base. Here, 25% of the clients are malicious and target one middle-layer mix server.
BalancedMixnet’s communication rounds performmuch better than the base vanilla / Yodel mixnets since the load is distributed
across all mix servers.

Communication overhead. At circuit setup, BalancedMixnet adds
information per mixnet layer. Specifically, it includes a 48B ticket, a
820B NIZK proof the ticket is correct, an 8B ephemeral pseudonym
circuit ID, and a 32B symmetric key to onion-encrypt future com-
munication. In total, BalancedMixnet adds 908B per mixnet layer to
the circuit setup message. After circuit setup, the communication
is very efficient, the data is symmetrically encrypted, and the client
only specifies the pseudonym circuit ID for each layer.

6.2 System Performance
We now turn to evaluate how BalancedMixnet impacts performance
in the context of a parallel mixnet. Our testbed consists of 80 mix
servers deployed in a full mesh topology (Figure 1a) with four
layers. Each mix server has four AMD EPYC 7662 2𝐺𝐻𝑧 cores.We
consider different scenarios of Sybil attacks and compare against
the same mixnet deployments, with and without BalancedMixnet’s
load balancing mechanism. We evaluate two deployments, a vanilla
mixnet [31] (solid lines) and the Yodel mixnet [39] (dashed lines).

Our attacker performs a Sybil attack by directing all its clients
to route through one mix in each layer. Honest clients, of course,
choose routes uniformly for their messages. Therefore, when in-
tegrating BalancedMixnet’s load balancing, the attacker’s circuit
setup messages get dropped before the overloaded mix server, while
without it, they manage to overload the server. Our evaluation, il-
lustrated in Figures 3 – 5, measures the mixnets’ end-to-end latency
as a function of the number of clients.

In Figure 3 there is no attack. We observe that BalancedMixnet
introduces an overhead in circuit setup, which roughly matches the
ratio between doing BalancedMixnet’s validation vs. just a public
key decryption for the onion message overhead from our micro-
benchmarks; see Figure 3a. However, circuit setup is an infrequent
procedure, which can be performed in the background (i.e., set up
the next epoch’s circuits before the current epoch is finished, while
users communicate over their current circuits). Most of the time
is spent sending data messages, and we observe in Figure 3b that
there is no performance overhead between the base mixnets and
when they integrate BalancedMixnet’s load balancing mechanisms.
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(a) Circuit setup (b) Communication rounds

Figure 5: Latency as a function of the user base. Here, 50% of the clients are malicious and target one middle-layer mix server.
BalancedMixnet’s overhead during circuit setup becomes very small compared to the vanilla/Yodel mixnets, since it filters the
(substantial portion of) malicious clients’ messages before a mix server is overloaded. During the communication rounds, the
vanilla/Yodel mixnets’ performance degrades substantially with the user base, while BalancedMixnet mitigates the attack’s
impact.

Next, we observe what happens under attack. Consider now
an attacker controlling 25% of the clients (Figure 4). In this case,
we still see that BalancedMixnet’s circuit setup takes longer than
the base mixnets, due to the cost of validating the clients’ tickets.
However, BalancedMixnet effectively mitigates the impact of the
Sybil attacker when users start communicating over the mixnet. We
observe that the latency of the base mixnets increases substantially
with the user base. As the number of rogue clients grows, so does
the load on the target mix server and, therefore, the slower the
base mixnets become. When the mixnets integrate BalancedMixnet,
on the other hand, they are not impacted by the attacker. In this
case, the communication latency grows slowly with the number of
clients, which is to be expected, since the processing load increases
proportionally on all mixes (as intended by the parallel mixnet
design).

Lastly, we consider an attacker controlling 50% of the clients. In
this scenario, we observe that BalancedMixnet’s overhead during
circuit setup is small compared to the base mixnets. This is because
in the base mixnets, one server becomes the bottleneck of decrypt-
ing the circuit setup messages, while BalancedMixnet filters those
roguemessages across all mixes in the preceding layer, which avoids
the bottleneck and counters the impact of the computational ex-
pense of validating tickets. The impact of BalancedMixnet’s defense
against Sybil attacks is apparent during the communication rounds
since, in the base mixnets, one of the layers includes a server over-
loaded by handling most of the traffic, which slows down the whole
synchronous system. In contrast, the user load when integrating
BalancedMixnet is uniformly distributed across all servers, which
mitigates the attack in both the vanilla and Yodel deployments.

7 Related Work
This is the first work, to our knowledge, to ensure proper load bal-
ancing of a mixnet’s user load while maintaining user anonymity.
There has been significant work studying and mitigating Sybil
attacks in other contexts, mostly where Sybil attacks directly com-
promise security. For example, addressing such attacks is at the core

of blockchain security [48], where a consensus protocol requires an
honest majority. It was also studied extensively in the context of ad
hoc networks where Sybil participants can mislead network-wide
decisions [17, 34].

In the context of privacy, anonymizing user messages by mixing
them in fixed-size batches is known to be sensitive to Sybil attacks
if the attacker can infiltrate many of their own messages into such
a batch. This was pointed out specifically for parallel mixnets [13],
as well as other contexts like mixing anonymous payments [10, 45].
The solution is typically to avoid fixed-size mixing and instead
shuffle all messages arriving in a time interval. In the context of
parallel mixnets, this allows the attacker to launch the class of Sybil
attacks tackled by this work (namely, disproportionally overloading
a particular mix server).

Most prior work dealing with mixnet Sybil attacks focused on
handling colluding mix servers [21, 40]. That is, a case where it is
challenging for clients to select a route with enough honest servers
to anonymize their messages. BalancedMixnet, in contrast, focuses
on resisting Sybil clients and ensuring uniform random load dis-
tribution across servers while keeping user privacy. Using random
assignment for load balancing was also used in other contexts per-
taining to privacy, for example, Chow et al. [19] use it to ensure a
sustainability property in systems that require users to keep cre-
ating new pseudonyms (e.g., wallet addresses/unspent transaction
outputs in anonymous payment systems).

Using anonymous credentials. Restricting credential transfer was
one of the design goals of anonymous credentials. The original
design bounded the credential given to the user to their private key,
so transferring it from one user to another required revealing this
secret, which served to discourage such transfers [16]. Techniques
for ensuring that anonymous credentials cannot be used more than
once were later presented [7], and framed anonymous credentials
as means for mitigating Sybil attacks [41].

BLAC [53], like BalancedMixnet, uses BBS+ signature-based
anonymous credentials, but in a different context. It shows how to
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implement a blacklist of users although they have an anonymous
credential. In particular, clients derive access tickets from their
credential like in BalancedMixnet, and they include for each of
their past tickets a zero knowledge proof that it wasn’t put on
the blacklist. While the anonymous credential technique is similar,
using BLAC’s method for leveraging anonymous credentials to
block misbehaving users is not suitable for our parallel mixnet use
case, since it would not scale well with the number of users (which is
the primary goal of using parallel mixing). In particular, even if the
attacking clients were blocked, BLAC requires everyone, including
all honest clients, to sync with the blacklist from some server and
produce long proofs (linear in the size of the blacklist) showing that
their current tickets are not blacklisted. The verification time for
those proofs is also linear in the blacklist size, which would lead to
continuous degradation in performance even after the attack stops.
Lastly, the BBS+ signatures used in BLAC [3, 4] don’t work with
type 3 pairings, in contrast to the scheme used in this work [14];
this forces differences in the protocol for generating tickets and
results in BalancedMixnet’s proofs for validating tickets being more
efficient.5

Chow formalized an alternative approach to BalancedMixnet
for issuing privacy-preserving credentials to users admitted to a
system [20]. Under this approach, the identity provider is split into
two entities (that are assumed to be non-colluding), one that issues
a user a commitment to their real identity and another that issues
the credential based on this commitment, without seeing the users’
identities. This approach may allow implementing a wide range of
Sybil-resistant admission control policies since users reveal their
identity to the first server (extending the privacy-friendly examples
we bring up in §3.1). BalancedMixnet can integrate it by replacing
its admission approach, which avoids this revelation; however, this
approach may be less appealing to privacy-caring users who wish
to keep their identities completely hidden.

Achieving Sybil-resistance through trusted randomness as an al-
ternative approach. An alternative baseline design to Balanced-
Mixnet’s reliance on credentials may be using beacons that provide
a trusted form of randomness [49]. Under this approach, clients
register a public key with the system, and the beacon publishes a
(trusted) random value every epoch. The clients then derive the
route by computing a verifiable random function using their secret
key and the beacon’s random value. To avoid linking their public
key to the route they use, clients would need to attach a NIZK proof
per hop proving that the route they derived is valid while hiding
their key. This design is certainly possible, but we believe that for
a mixnet system, BalancedMixnet’s design is simpler and more
self-contained since it does not rely on an external beacon (often
implemented through a complex system, like a blockchain [29]
or hierarchical publicly verifiable secret sharing [49]), which may
rely on additional assumptions for liveness and security; e.g., re-
quiring that a majority of a cryptocurrency’s tokens are in honest
hands [29].

5We acknowledge that modifying BLAC to use type-3 pairings is likely possible, and
we expect some of the differences in the ticket-generating protocol would carry over.
However, evaluating such a change is beyond the scope of this comparison.

Another variant of a trusted randomness approach is having
servers shuffle messages and assign them to the next server accord-
ing to the trusted randomness (and the server’s secret key) and
provide a NIZK proof of correct shuffle to the other servers, extend-
ing standard verifiable shuffle proofs [33, 42]. Under this design,
the mixnet uses in-network routing rather than the standard source
routing technique. This departure introduces significant challenges.
First, a server’s proof must be checked by other servers (e.g., other
mix servers), or the corrupt server could just choose to relay Al-
ice’s message to another corrupt server, which introduces overhead
(e.g., the verifiers must have information about the messages a mix
receives and outputs to verify the shuffle, and this holds for ev-
ery mix server, limiting scalability). Furthermore, since an attacker
may have some control over a corrupt mix server’s input message
batch, it may manipulate it such that Alice’s message gets routed
to another corrupt server (even if the shuffle is verified).

Systems where admission control is undesired or can be centralized.
BalancedMixnet mitigates Sybil attacks by introducing admission
control, but some systems may be unable to introduce such a mech-
anism because of the nature of the problem they solve. For example,
the Algorand blockchain [29] is designed to be permissionless (with-
out admission control), yet for security, it requires running a lottery
across its users where the winner remains anonymous for some
time span. For such systems, implementing a trusted source of
randomness (as mentioned above) may be a better approach. In
the particular example above, Algorand exploits its blockchain ap-
plication to implement a trusted source of randomness by having
block proposers perturb the current random seed using a verifiable
random function. Each user computes their priority for proposing
the next block using their public key and the current random seed
in a process termed cryptographic sortition. When honest users
win the lottery (have the highest priority) and propose a block,
they are, in essence, randomizing the seed to make it unpredictable,
and the blockchain consensus ensures everyone knows that seed.
This method is very resilient to churn, since even if many users are
offline, some user would win the lottery, randomize the seed, and
allow the system to make progress. To ensure that honest users win
the lottery often enough and that the consensus protocol is sound,
Algorand must make an assumption about the distribution of cur-
rency honest users hold, an extra assumption that BalancedMixnet
does not need.

Other types of systems where privacy is crucial may require ad-
mission control but can rely on simpler mechanisms than Balanced-
Mixnet’s anonymous credential-based mechanism. For example,
PIR-based systems let users read data from a server without reveal-
ing to the server which piece of information they were reading. PIR
was also used in the context of metadata-private communication,
where users write messages to the server and send PIR queries to
the server to read a message from their friends [1, 2, 52]. For PIR-
based systems, the server-side cost for processing users’ queries is
much higher than processing their messages in a mixnet. However,
despite the high processing costs, such systems do not face the same
Sybil attack challenge for dealing with rogue users as mixnet-based
systems. The reason is that users typically contact a centralized PIR
server directly to read messages since the server processing the
query anyway learns nothing about which data they were reading
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(PIR’s threat model assumes that servers might be completely mali-
cious, whereas mixnets require that there are some honest servers).
Therefore, if a user floods the server with many queries, the PIR
server can just block them. For such systems, a simple mechanism
for user credentials, such as access tokens that clients attach to
messages and queries they submit, may be sufficient.

8 Conclusion
We presented BalancedMixnet, a Sybil resistance mechanism that
ensures clients arewell-distributed across a parallel mixnet’s servers
while maintaining their anonymity. BalancedMixnet achieves load
balancing across servers by introducing admission control to the
mixnet, which issues clients anonymous credentials. The admission
policy should preserve user privacy while simultaneously resisting
Sybil attacks; we outline several examples for such policies. Clients
then use their credentials to create tickets that prove they route
their messages correctly, which also ensures their messages are
distributed uniformly across the mixnet’s servers. An evaluation
of a prototype implementation shows that the cost of adopting
BalancedMixnet is small, and its benefit against Sybil attacks is
substantial. We believe this makes BalancedMixnet an important
component in deploying parallel mixnets in practice, where clients
canmisbehave and attackersmay try to exploit this to cripple perfor-
mance and cause users to leave the system in favor of a non-private
communication medium.
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