
Meta-Learn to Unlearn: Enhanced Exact Machine Unlearning in
Recommendation Systems with Meta-Learning

Abdulla Alshabanah
aalshaba@usc.edu

University of Southern California
Los Angeles, California, USA

Keshav Balasubramanian
keshavba@usc.edu

University of Southern California
Los Angeles, California, USA

Murali Annavaram
annavara@usc.edu

University of Southern California
Los Angeles, California, USA

Abstract
Recommendation systems are used widely to recommend items
such as movies, products, or news to users. The performance of
a recommendation model depends on the quality of the embed-
dings that are associated with users and items, which are generally
learned by tracking user behavior, such as their click history. Recent
legislative requirements allow users to withdraw their consent to
learning from some of their behaviors, even if they have provided
such a consent initially. Once a user withdraws their consent, the
models are supposed to unlearn the user behavior. This require-
ment has led to the emergence of machine unlearning, a research
area that proposes a class of privacy policy-compliant techniques
aimed at maintaining good model utility after deleting user infor-
mation. Machine unlearning techniques are generally divided into
two categories: exact unlearning, which may be accomplished by
retraining the model from scratch after removing a data point from
the training data; and approximate unlearning, which approximates
the model parameters that would result from removing a specific
user data, without needing a complete retraining of the model to
minimize computational costs.

In this work, we propose an enhanced exact machine unlearning
(EEMU) strategy that leverages meta-learning to reduce the loss
of recommendation performance while ensuring efficient and ex-
act unlearnability. We demonstrate our results using four public
datasets and show a significant improvement in recommendation
performance over state-of-the-art baselines while preserving the
privacy guarantees of exact unlearning. The source code of EEMU
is available at: https://github.com/alshabae/EEMU.

Keywords
Recommendation Systems, Exact Machine Unlearning, User Privacy

1 Introduction
In today’s data-driven world, machine learning (ML) applications
rely heavily on sensitive user information. Recommendation mod-
els, for instance, track user behavior such as their click history,
to learn user and item embeddings which are part of ML models
that aim to improve recommendation performance. While behavior
tracking is usually done with explicit user consent, their consent
may be withdrawn at any time. In fact, regulatory bodies world-
wide have enacted policies that require supporting such privacy

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(4), 696–711
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0152

preservation, and other data retention restrictions in ML models
[4, 28, 31]. In particular, the "right to be forgotten" law requires
ML models to selectively forget or unlearn user information upon
request, which is known as the Machine Unlearning problem [3].

It is challenging to design an algorithm that allows an ML model
to selectively forget specific data subsets it was trained on. The dif-
ficulty lies in the non-linear interactions between different training
samples that is embedded into the model parameters. Unlearning
approaches can be categorized into exact unlearning and approxi-
mate unlearning. Exact unlearning typically involves retraining the
entire model from scratch after removing the desired data points,
guaranteeing the removal of their influence [3, 5]. However, it in-
curs significant computational overhead for large-scale models. On
the other hand, approximate unlearning methods aim to provide
guarantees within a margin of error, offering greater practicality
and lower computational overhead [11, 16, 17, 42]. However, the
guarantees are provided under specific data distribution assump-
tions, and such margin of errors can be difficult to prove for appli-
cations that require strict adherence to the right-to-be-forgotten
provisions in the European Union’s General Data Protection Reg-
ulation (GDPR) [28], United States’ California Consumer Privacy
Act (CCPA) [4] and Canada’s Personal Information Protection and
Electronic Documents Act (PIPEDA) [31].

Our research specifically focuses on the problem of exact unlearn-
ing in recommendation systems, which involve training models
based on user and item interaction histories.We focus on recommen-
dation systems constructed using Deep Neural Networks (DNNs)
[9, 29, 45, 46]. Although unlearning has been explored in various
ML domains, its application to recommendation systems poses sev-
eral challenges. Each user and item embedding is learned from a
wide range of user-item interactions that are recorded in the rec-
ommendation model training data. Effective unlearning techniques
require selectively removing some of the user-item interactions,
as dictated by the user, while maintaining model performance and
usability.

The primary challenge in achieving exact unlearning in any ML
domain is the computational overhead associated with retraining
the entire model. To mitigate this issue, the SISA (Sharded Isolated
Sliced and Aggregated) training method was introduced [3]. SISA
implements a sharded training scheme that divides the training
dataset uniformly at random into disjoint shards and trains replica
models using these shards. When a deletion request occurs, only the
shard containing the deleted data point needs to be retrained, sig-
nificantly reducing the overhead associated with retraining. During
inference, the final prediction is computed via a static, permutation
invariant function.

696

https://github.com/alshabae/EEMU
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0152

Meta-Learn to Unlearn: Enhanced Exact Machine Unlearning in Recommendation Systems with Meta-Learning Proceedings on Privacy Enhancing Technologies 2025(4)

In the context of recommendation models, user-item interac-
tions are the key inputs to recommendation models that capture
actions like clicks that indicate user interest. These interactions
serve as the foundation for learning user and item representations.
While user-user and item-item signals are not explicitly defined,
models implicitly learn these patterns through embeddings, cap-
turing relationships like similar users or frequently paired items.
These relationships help improve recommendation performance
by identifying complex patterns in user behavior and item rele-
vance. Applying the SISA strategy to such recommendation models
presents a challenge due to the potential loss of collaborative signal
caused by random sharding of user-item interactions [19]. When
data is split across multiple shards, each user’s interactions with
different items may be dispersed across different shards. Hence,
each shard has a narrow view of the user’s interactions from which
it has to learn. Sharding of user-item interactions leads to incom-
plete user profiles and fewer interactions per shard, reducing the
model’s ability to learn user and item representations and ultimately
hurting performance. To address this limitation, RecEraser [6] was
proposed as a variant of SISA tailored to DNN-based recommenda-
tion systems. RecEraser shards interactions based on user and item
similarity and uses a learnable attention-based aggregator during
inference. UltraRE [25] improves over RecEraser by proposing an
optimal balanced sharding algorithm and a more efficient learnable
aggregator.

While RecEraser and UltraRE adaptation of the SISA method to
recommendation systems has been successful, we have identified
the following drawbacks that affect their applicability to exact
machine unlearning:

(1) Partitioning the data based on the similarity of user and item
latent representations necessitates the availability of pre-
trained user and item embeddings. (RecEraser and UltraRE
use the model introduced in [21] to pretrain user and item
embeddings). Thus, the pretrained model determines the
similarity metric that is used in the sharding process. When
exact unlearning is necessary, the pre-trained model must
also be trained again from scratch in the event of a data point
deletion, which imposes significant burden, as discussed in
prior work [7]. If the pretrained model isn’t retrained and
the data isn’t repartitioned, the unlearning process cannot
be exact as the partitions themselves encode information
about data points that are deleted. Hence, the pretrained
model must be first trained without the sensitive data point,
and then use that pretrained model to identify the similarity
of users and items to reshard the data. Having to retrain a
pretraining model on the entire dataset and to repartition
the data again can detract from the benefit of sharding in
the first place.

(2) Using a learnable aggregator also presents a challenge.While
affording greater expressiveness and dynamic pooling across
shards during ranking, the learnable aggregator also needs
to be retrained on the entire dataset in the event of a data
point deletion. This overhead diminishes the advantages of
sharding in the first place. To reduce the retraining overhead,
UltraRE does not retrain the learnable aggregator, while Re-
cEraser proposes to retrain the learnable aggregator for a

small number of epochs using the entire dataset. While their
findings demonstrate promising empirical performance on
their test data, training the aggregator even for few epochs
on the entire dataset is expensive as reported in [6, 25]. The
alternative strategy of keeping the learnable aggregator un-
changed during unlearning would violate the exact unlearn-
ing guarantees [6, 7].

To address these challenges, we introduce a novel approach called
EEMU (Enhanced ExactMachineUnlearning). Unlike the approaches
in previous work, EEMU adopts random balanced data partitioning
and a static mean pooling aggregator, overcoming the identified
drawbacks. To mitigate potential model degradation resulting from
the loss of collaborative signal from random partitioning and static
aggregation, EEMU leverages meta-learning to enhance the training
process. To our knowledge, this is the first paper to explore meta-
learning in the context of exact machine unlearning.

The summary of the contributions of our work is as follows:
(1) We propose EEMU showcasing how meta-learning can be

effectively integrated with the SISA method to yield signifi-
cantly improved, exactly unlearnable, recommendation mod-
els. Unlike previous approaches that either use pretrained
embeddings or employ learnable aggregators, EEMU samples
several training data points from across shards for collabo-
rative signal recovery.

(2) Through extensive experimentation on four public datasets,
we demonstrate that EEMU outperforms several baselines in
terms of recommendation performance, while guaranteeing
exact unlearning.

(3) We leverage users’ task similarity in the context of meta-
learning to further enhance EEMU inference efficiency and
enable batch inferencing while maintaining good model util-
ity.

Outline. The remaining parts of the paper are structured as fol-
lows. In Section 2, we introduce the preliminaries. Then, in Section
3, we discuss the related work, and in Section 4, we present our
proposed model and its work flow. Section 5 presents our findings,
including ablation and sensitivity analysis results. We then, in Sec-
tion 6, showcase an enhancement to enable batch inferencing. We
conclude with a discussion of possible future directions in Section
7. In Table 1, we present the notations used in the paper.

Symbol Description

U Set of users
I Set of items
xu User representation
xi Item representation
𝑆 Number of shards

M𝑔𝑙𝑜𝑏𝑎𝑙
𝑠 Global model of shard 𝑠
𝑝𝑖 Sampling probability of item 𝑖 for adaptation set

M𝑠𝑝𝑒𝑐𝑖𝑎𝑙
𝑠,𝑢 Specialized model for user 𝑢 in shard 𝑠
𝐾 Number of clusters

M𝑠𝑝𝑒𝑐𝑖𝑎𝑙
𝑠,𝑐 Specialized model for cluster 𝑐 in shard 𝑠

Table 1: Summary of symbols and notations.

697

Proceedings on Privacy Enhancing Technologies 2025(4) Alshabanah et al.

2 Preliminaries
2.1 Exact Recommendation Unlearning
The objective of recommendation systems is to generate a list of
items that align with the user’s preferences. Recommendation sys-
tems are trained using datasets consisting of user-item interac-
tions that are gathered from users’ interaction histories. Concretely,
given users 𝑢 ∈ U, items 𝑖 ∈ I, we define the dataset D(V,E)
with V = U ∪ I and E = {(𝑢, 𝑖) | 𝑢 ∈ U, 𝑖 ∈ I}. In the case of
exact recommendation unlearning, if a user 𝑢 wishes to retract a
particular interaction (𝑢, 𝑖) from their history, then the recommen-
dation system must be retrained from scratch with the retracted
interaction removed from the dataset [43]. Hence, as introduced in
[3, 6, 7, 25], the objectives of exact recommendation unlearning are
as follows:

(1) The recommendation system should completely remove
the impact of the retracted record from the trained model,
thus, the record should be removed from both the training
and preprocessing phases [7].

(2) It must maintain high training efficiency and minimize the
need to be retrained using the whole dataset [3].

(3) It should have comparable quality of recommendations
to the ones provided by the original model [6, 25].

2.2 Meta-Learning
Meta-learning, also known as learning-to-learn, aims to train mod-
els that quickly adapt to specific tasks with limited data by lever-
aging knowledge from previously learned tasks [30]. One effective
approach to achieve this task is the Model-Agnostic Meta-Learning
(MAML) algorithm [13], which is designed to optimize a model’s pa-
rameters for rapid adaptation across tasks. The algorithm involves
a training phase where the model is exposed to multiple tasks and
learns a shared initialization. For each task, MAML performs inner-
loop updates on task-specific data (called the support set), followed
by an outer-loop update on a generally smaller subset of the task-
specific data (called the query set) to optimize the initialization
across tasks. During the inner loop, the task-specific parameters 𝜃𝑖
are updated using the support set for that task as follows:

𝜃𝑖 = 𝜃 − 𝛼∇𝜃L𝑖 (𝜃) (1)

where L𝑖 (𝜃) is the task-specific loss.
In the outer loop, the shared initialization 𝜃 is updated by aggre-

gating gradients obtained from the query set for each task:

𝜃 ← 𝜃 − 𝛽∇𝜃
∑︁
𝑖

L𝑖 (𝜃𝑖) (2)

Inference in Meta-learning: The above approach generates a
global model that has learned from the data of multiple tasks.
During inference, before providing any task specific prediction,
few-shot examples are drawn from the task-specific data. These
examples are then used to fine-tune the global model to create a
transient model. The fine-tuned transient model is then queried
for the prediction. After the prediction is complete the transient
model may be optionally deleted or preserved for future use. This
approach enables the model to generalize effectively across tasks

by performing few-shot specialization on a small number of task-
specific samples, without requiring extensive fine-tuning during
inference.
Adapting Meta-learning: In our work, we adapt meta learning
by treating each task as the objective of learning to recommend
items to a specific user. Thus, if there are 𝑁 users in the system
then the meta learning framework has to process 𝑁 tasks, each
task 𝑢 is focused on recommending items to a specific user 𝑢. In
the context of a sharded training scheme, the task-specific data
(namely per-user interaction history) is split across multiple shards.
We train a global model on a per-shard basis using equations 1
and 2. For instance, each user interactions within a shard are first
split into support and query sets to enable the inner and outer loop
updates. Thus, the per-shard global model training does not deviate
from the meta-learning approach explained earlier.

As we discuss in detail in Section 4, however, we designed a
unique inference framework that is built on the meta-learning
approach explained earlier but is uniquely suited for a sharded
training scheme.

2.3 Recommendation Model Architecture
In this work we demonstrate our idea using the popular Two-Tower
Neural Network (TTNN) [1, 29, 45] as the fundamental recommen-
dation model. TTNNs consist of two Deep Neural Networks: the
user tower and the item tower. The user tower processes both dense
and sparse user features to generate a dense user representation
xu, while the item tower performs the same function for items,
producing a dense item representation yi. What constitutes a dense
or a sparse feature is generally defined by the model designer. For
instance, an item’s price or a user’s age may be considered a dense
feature since many of these values are usually non-zero, while the
item categorization information such as a shoe category, could be
considered as a sparse feature. In this work we assume that these
features are selected by the designer and the training dataset is
appropriately labeled. The final relevance score of item 𝑖 to user 𝑢
is computed using a scoring function 𝑆𝐹 : R𝑑 ×R𝑑 → R. 𝑆𝐹 can be
a simple inner product, such as a dot product, which is the method
we utilize, or a more complex function, such as a DNN.

More formally, the user network processes user feature represen-
tations, which are concatenated and passed through a multi-layer
perceptron (MLP) to produce a user representation:

xu =MLP𝑢 (ecat ⊕ fcont) (3)

where ecat represents embeddings of categorical features, fcont rep-
resents dense continuous features and ⊕ denotes the concatenation
operator.

Similarly, the item network processes item feature representa-
tions and generates item representations:

yi =MLP𝑖 (ecat ⊕ fcont) (4)

Then the relevance between a user 𝑢 and an item 𝑖 is calcu-
lated as the dot product of the user representation xu and the item
representation yi:

𝑆𝐹 (xu, yi) = xuyi⊤ (5)
698

Meta-Learn to Unlearn: Enhanced Exact Machine Unlearning in Recommendation Systems with Meta-Learning Proceedings on Privacy Enhancing Technologies 2025(4)

Details about the fundamental recommendation model architec-
ture are depicted in Figure 1.

0 1 0 …

C𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙	𝐹𝑒𝑎𝑡𝑢𝑟𝑒

Dense Vector0 0 1 ……

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑇𝑎𝑏𝑙𝑒 𝑀𝐿𝑃

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒

0 1 0 … Dense Vector0 0 1 ……

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒

𝑀𝐿𝑃

[𝑠𝑐𝑜𝑟𝑖𝑛𝑔	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛]

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒!,#

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑇𝑎𝑏𝑙𝑒

Continuous	𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠C𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙	𝐹𝑒𝑎𝑡𝑢𝑟𝑒

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑇𝑎𝑏𝑙𝑒 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑇𝑎𝑏𝑙𝑒 𝑀𝐿𝑃

C𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙	𝐹𝑒𝑎𝑡𝑢𝑟𝑒 Continuous	𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠C𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙	𝐹𝑒𝑎𝑡𝑢𝑟𝑒

𝑦𝑖

𝑀𝐿𝑃

𝑥𝑢

Figure 1: Fundamental RecommendationModel Architecture

3 Related Work
Recommendation System Unlearning:While research on ma-
chine unlearning in the context of recommendation systems is still
relatively new, there have been recent notable attempts to apply un-
learning techniques [6, 25, 38]. For instance, [38] presents a fast and
exact unlearning strategy applicable to neighborhood-based recom-
mendation systems using K-nearest neighbors indexing, where at
training time the model builds an index of the top-K similar users
per user. However, this approach is unsuitable for DNN-based rec-
ommendation models where the model uses non-linear functions to
learn from user-item interactions. Another approach, GraphEraser
proposed in [7], can be applied to recommendation model unlearn-
ing since interactions in a recommendation system form a bipartite
graph. However, similar to [6, 25] mentioned in Section 1, Gra-
phEraser also relies on pretraining to generate node embeddings
for partitioning nodes, resulting in similar drawbacks that affect
its applicability to exact machine unlearning. [26] groups similar
data together and trains a model sequentially on each subset using
curriculum learning, which is a training strategy that present data
to the model in an increasing order of complexity to help the model
learn more effectively. However, this approach provides two-fold
speedup over retraining from scratch, which is still a significant
retraining cost.
Meta-Learning in Recommendation Systems:Meta-learning
techniques have proven effective in enhancing various aspects of
recommendation systems [22, 24, 47]. One popular approach is
to adapt the Model-Agnostic Meta-Learning (MAML) algorithm
[13] to different use cases [10, 24]. The MAML algorithm, designed
to be model agnostic and enable few-shot specialization [10, 13],
serves as motivation for our work. We incorporate a MAML-style

meta-learning framework in EEMU. EEMU treats the objective of
learning to recommend items to a user within a shard as one task,
and thus multiple shards would have multiple views of that task
for the same user. The goal is to use meta-learning across these
multiple shards to re-acquire the degraded collaborative signal due
to sharding, as we describe in the next section.

There are several works in recommendation systems and other
domains that exploit task similarity to modify the meta-training
process, resulting in better model accuracy [44, 48, 49]. Task similar-
ity in meta-learning refers to the measurable relationship between
tasks, such as the similarity based on their shared feature repre-
sentations or how a model learns them. However, we pursue a
different goal: improving the inference efficiency. Therefore, we
take an orthogonal approach by clustering users based on their task
similarity in the learned representation space to enable batch in-
ferencing. In particular, we use the user representations generated
from the optimized models to measure how close users are to one
another, enabling model serving in batches of similar users.

4 EEMU
EEMU is an exact unlearning approach that is designed for the
scenario in which a user may request for deletion of a subset of
their interactions that the recommendation model was trained on.
At a high level, EEMU enables efficient exact unlearning by par-
titioning user-item interactions into isolated shards and training
separate models per shard. In particular, within each shard, we
consider the task of recommending an item to a given user 𝑢 as
a specific task. Thus, the user-item interactions in each shard are
first grouped by user then each user’s interactions are sliced into
support and query sets. After that, in each shard, the support and
query sets of all users are used to train a global model using the
MAML training as described in Section 2.2. However, EEMU relies
on a novel inference adapation where the few-shot examples for in-
ference are sampled from across the shards. Note that as described
earlier, MAML samples few-shots from a task-specific dataset. But
in EEMU since the task-specific dataset is no longer only available
in a single shard it samples these few-shot examples from across
the shards. The small adaptation set, sampled across the shards,
is used to fine-tune the model for each user, but these fine-tuned
models are never stored, preserving exact unlearnability. Finally,
predictions from all shards are aggregated using a simple mean,
helping recover lost collaborative signals while maintaining shard
isolation. In Figure 2, we illustrate EEMU’s work flow and describe
its steps below.

Sharding: In EEMU, which is a specialization of the SISA para-
digm, the first step is dataset sharding. Sharding enables efficient
exact unlearnability by creating a per-shard model rather than one
trained on the whole dataset. EEMU employ random balanced parti-
tioning of user’s interactions across all shards. This approach offers
the advantage of being computationally efficient as each user-item
interaction is randomly assigned to only one of the shards. Thus,
shards are mutually exclusive and do not share any user-item inter-
action. While computationally efficient, random balanced sharding
poses a challenge for recommendation systems since user-item in-
teractions contain valuable collaborative information that may be
lost when sharded randomly. Each shard has only a fraction of the

699

Proceedings on Privacy Enhancing Technologies 2025(4) Alshabanah et al.

SHARD SLICE TRAIN INFERENCE

Shard training
interactions into

Shard 1 and Shard 2

Slice training interactions into
Support Set and Query Set

for each user
Learn global model parameters

using sharded data
Use Adaptation Set to

specialize global models

Adaptation Data Query Request

INFERENCE

U
N
IVER

SAL

SPECIALIZED MODEL 1

Static
Aggregator

ADAPTATION STEP

U
N
IVER

SAL

SPECIALIZED MODEL 2

ADAPTATION STEP

Adaptation Data

INFERENCE

Query Request

GLOBAL MODEL 1

Query Set

TRAINING

SH
AR

D
 1SH

AR
D

 1

Support Set
Support Set

Support Set
Query Set

Query Set

GLOBAL MODEL 2

Query Set

TRAINING

SH
AR

D
 2SH

AR
D

 2

Support Set
Support Set

Support Set
Query Set

Query Set

Figure 2: EEMUWork Flow.

per-user interactions thereby potentially impacting the per-shard
model performance. However, EEMU addresses this concern by
deferring the mitigation of collaborative signal loss to a subsequent
step in the EEMU training flow.
Slicing: Recall that EEMU adapts the MAML algorithm by creating
multiple per-user recommendation tasks in each shard. Thus, the
per-shard model has to be trained using MAML’s two-stage opti-
mization process, where subsets of the user-specific data, known
as the support and query sets, are used for local (Equation 1) and
global (Equation 2) model updates. Hence, to train the model in each
shard, we first group the training samples per user and then slice
the per-user training samples in a shard into support and query
sets. To ensure balance, we allocate a fixed number of interactions
to the query set, ensuring that each user has an equal number of
interactions in their query sets across all shards. The remaining
interactions are used for the support set. In our current research,
we place interactions into support and query sets randomly. How-
ever, we acknowledge the potential for further enhancements by
intelligently selecting the the support and query sets in future work.

Figure 2 illustrates the sharding and slicing steps from the per-
spective of all users. In the sharding step, all the interactions are
placed into shard1 and shard2 (color coded in the figure). In the
slicing step, the data in each shard is grouped by user and their
interactions are sliced into support and query sets.
Training:Wemap the two-stage optimization process of theMAML
algorithm presented in Section 2.2 to the non-collaborative sharded
training. As shown in the training box in Figure 2, each shard trains
its own global model. As described earlier, a key concept of the
MAML algorithm is the notion of tasks. Specifically, the model is
trained on multiple tasks and then adapted to perform on a specific
task. In our framework, we refer to the objective of learning to
recommend items within a shard to a user as a task.

Algorithm 1 shows the detailed training procedure of EEMU.
First, the global model parameters 𝜃 for each shard’s modelM𝑔𝑙𝑜𝑏𝑎𝑙

𝑠

are randomly initialized (line 2). Next, a batch of users is sampled

from the training data of shard 𝑠 (line 4). For each user 𝑢 in the
batch, the model computes gradients based on the user’s support
set, then updates the user-specific parameters 𝜃𝑢 (lines 6-7). The
model then evaluates these updated parameters on the user’s query
set to compute gradients for the global update (line 8). Finally,
the global model parameters 𝜃 are updated using the aggregated
gradients from all users in the batch (line 10). EEMU’s training
process in Algorithm 1 is similar to MAML’s training process. The
difference between the two training methods is that EEMU uses
multiple shards where each shard is trained in isolation as shown
in the For loop in line 1.

Algorithm 1 Training Procedure of EEMU
Input: number of shards S; step size 𝛼 , 𝛽
1: for each shard 𝑠 in 𝑆 do
2: Randomly initialize global modelM𝑔𝑙𝑜𝑏𝑎𝑙

𝑠 parameters 𝜃
3: while not converged do
4: Sample batch of users 𝐵
5: for each user 𝑢 in 𝐵 do
6: Evaluate ∇𝜃𝐿(𝜃) with user 𝑢 support set
7: Update: 𝜃𝑢 = 𝜃 − 𝛼∇𝜃𝐿(𝜃)
8: Evaluate ∇𝜃𝑢𝐿(𝜃𝑢) with user 𝑢 query set
9: end for
10: Global update: 𝜃 ← 𝜃 − 𝛽∇𝜃𝑢𝐿(𝜃𝑢)
11: end while
12: end for

The parameters of the models are trained using a max-margin-
based ranking loss function. The objective is to maximize the score
of positive examples and at the same time minimize the score of
negative examples. Positive examples are items a user interacted
with, while negative examples are items the user did not interact
with. This is typically done by ensuring that the score of positives is
larger than the score of negatives by a fixed margin Δ. Thus, given
a positive example (𝑢, 𝑖+) and a negative example (𝑢, 𝑖−), with item

700

Meta-Learn to Unlearn: Enhanced Exact Machine Unlearning in Recommendation Systems with Meta-Learning Proceedings on Privacy Enhancing Technologies 2025(4)

representations yi+ and yi− , respectively, and user representation
xu, the loss function is computed as follows:

L(xu, yi+) =𝑚𝑎𝑥 (0, 𝑆𝐹 (xu, yi−) − 𝑆𝐹 (xu, yi+) + Δ) (6)

Once the per-shard global model is trained, EEMU can be de-
ployed in any recommendation pipeline. EEMU then uses a novel
inference framework to recapture the collaborative signal loss. We
describe the inference next.
EEMU Inference: The first step during inference is called the adap-
tation step in which the model achieves few-shot specialization on
a user-by-user basis. Specialization within a shard is achieved by
finetuningM𝑔𝑙𝑜𝑏𝑎𝑙

𝑠 using a small set of adaptation data. Specifically,
in EEMU, the adaptation set is constructed by sampling items from
the user interaction history from across all shards. Thus, while
the global model was trained using only the per-shard data, dur-
ing inference few shot examples are drawn randomly from across
shards. This random sampling from across the shards is one key
element of the EEMU inference deployment in a sharded training
setting. Since we prioritize efficiency, we sample very few items (a
hyperparameter of EEMU) and aim to choose them wisely to better
model user preferences.

One of the challenges in recommendation systems is the long-
tail distribution of interactions where some items have very few
interactions and hence they do not get recommended well. In our
prior work, we demonstrated that sampling interactions from the
long-tail items is beneficial for improving model utility [1]. Inspired
by this work, we create an adaptation set by sampling interactions
from across shards with a bias toward items that have received few
interactions, as they contain more information about user prefer-
ences. For user 𝑢, the sampling probability distribution over each
item 𝑖 in user 𝑢’s interaction history is given by the following
softmax distribution:

𝑝𝑖 ∼ 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
1
𝑑𝑖

)
(7)

where 𝑑𝑖 is the number of interactions received by item 𝑖 .
The adaptation set for each user contains significantly fewer

interactions than the support set used during their training. This is
why the adaptation process is referred to as the few-shot specializa-
tion. We denote the specialized model for a given user 𝑢 in a shard
𝑠 byM𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑠,𝑢 . A key thing to note here is that even though the
adaptation step producesM𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑠,𝑢 for each user 𝑢 in every shard 𝑠 ,
M𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑠,𝑢 is never required to be stored. This ensures that any model
trained using EEMU is indeed efficiently and exactly unlearnable.
EEMU employs a static aggregator to combine scores from each
shard during inference. Among various choices of static, permuta-
tion invariant functions, EEMU adopts a straightforward approach
of computing the mean across all shards to derive the final score.
The inference box in Figure 2 illustrates the process of performing
inference on a single incoming query request from a single user.

Algorithm 2 shows the inference procedure of EEMU. First, an
adaptation set is created for user 𝑢 by sampling a few interactions,
where the probability for each item 𝑖 appearing in the sample is
given by Equation 7 (line 1). Next, for each shard 𝑠 in 𝑆 , the global
modelM𝑔𝑙𝑜𝑏𝑎𝑙

𝑠 is specialized for user 𝑢 using their adaptation set to

produceM𝑠𝑝𝑒𝑐𝑖𝑎𝑙
𝑠,𝑢 (line 3). Using this specialized model, the scores

for an incoming query are computed for each shard (line 4). Finally,
the final score is calculated by averaging the scores from all shards
(lines 6). EEMU employs a two-stage optimization process similar
to MAML within each shard, enabling better generalization across
users without extensive fine-tuning during inference. However,
unlike MAML, EEMU selects samples for the adaptation set with a
probability inversely proportional to the item degree, as shown in
Equation 7. Additionally, EEMU computes scores within each shard
before aggregating them across all shards, with each shard having
access to samples from the whole dataset.

It is important to emphasize that few-shot specialization during
inference enables each shard 𝑠 to access data from all other shards
without compromising the isolation guarantees, as theM𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑠,𝑢 is
never required to be stored. As EEMU accesses user-item interac-
tions from multiple shards during inference, it recaptures some of
the lost collaborative signal, allowing for improved recommenda-
tion performance.

Algorithm 2 Inference Procedure of EEMU

Input: Global modelsM𝑔𝑙𝑜𝑏𝑎𝑙
𝑠 for each shard 𝑠 ; number of shards

𝑆 ; user 𝑢
1: 𝐴𝑑𝑎𝑝𝑡𝑆𝑒𝑡𝑢 ← sample few interactions 𝑝𝑖 ∼ 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (1𝑑𝑖)
2: for each shard 𝑠 in 𝑆 do
3: M𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑠,𝑢 ← SpecializeM𝑔𝑙𝑜𝑏𝑎𝑙
𝑠 using 𝐴𝑑𝑎𝑝𝑡𝑆𝑒𝑡𝑢

4: 𝑆𝐹𝑠,𝑢 ← compute scores for incoming query usingM𝑠𝑝𝑒𝑐𝑖𝑎𝑙
𝑠,𝑢

5: end for
6: 𝐹𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← 1

𝑆

∑𝑆
𝑠=1 𝑆𝐹𝑠,𝑢

7: Return: 𝐹𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒

Efficient Exact Unlearnability: To achieve efficient exact un-
learning in recommendation systems, minimizing the retraining
overhead is crucial. EEMU is structured to minimize the compo-
nents that require retraining when a deletion request is made. Only
the shard containing the deleted interaction needs to be retrained
due to the following reasons: 1) partitioning is performed at random
with no associated clustering, learnable parameters or pretrained
models, 2) aggregation is performed using a non-learnable static
function and 3) onlyM𝑔𝑙𝑜𝑏𝑎𝑙

𝑠 is part of the stored state in the EEMU
work flow. As mentioned in Section 1, this is unlike the frameworks
proposed in [6, 7, 25] which require the retraining of the pretrained
model used for partitioning and/or the learnable aggregator to en-
sure exact unlearnability. Moreover, to minimize the retraining
overhead, employing a balanced sharding scheme is also crucial.
EEMU employes a random balanced sharding scheme and have the
following lower bound on the expected retraining overhead:

E(𝑂𝐻) =
𝑆∑︁
𝑖=1

𝑡𝑖 · 𝑟𝑖 ≥
𝑇

𝑆
, (8)

where 𝑡𝑖 is the retraining overhead of shard 𝑠𝑖 , 𝑟𝑖 is the probability
of a retracted interaction being in shard 𝑠𝑖 and 𝑇 is the overhead of
retraining all 𝑆 shards. This lower bound is theoretically validated
in [25] assuming no prior knowledge about unlearning request
distribution [3]. Thus, EEMU is practically and theoretically a very

701

Proceedings on Privacy Enhancing Technologies 2025(4) Alshabanah et al.

efficient model of exact recommendation system unlearning. Adap-
tation is a crucial component of this framework (as we will show
in Section 5.5), and the fact that adapted model parameters are not
required to be stored makes EEMU an ideal choice for a system that
supports exact unlearning.

5 Experiments
Sharding effectively avoids the necessity to retrain a single central-
ized model on the entire dataset in response to a deletion request.
However, it introduces a critical challenge: the loss of collaborative
signal. This collaborative signal loss is an inherent consequence
of data fragmentation across shards. What further complicates the
matter is that the lost signal cannot be recovered during training
through information exchange between the shards. Attempting
such an exchange would require full retraining of all shards in
response to a single deletion request, rendering the process in-
efficient. Consequently, there is an anticipated decline in model
performance within the sharded training scheme. In this section,
we start with comparing the degradation experienced by different
sharded training strategies to that observed with EEMU. Following
that, we analyze the impact of each sharded training strategy on
both retraining and inference complexity. Then, we perform abla-
tion and sensitivity studies to understand the effect of some of the
key parameters in our strategy. We also present three case studies
in Appendix A to show how EEMU can generalize to another funda-
mental recommendation model, support user-wise exact unlearning
and perform while employing another meta-learning algorithm.

5.1 Datasets
We evaluate the performance of EEMU on four benchmark datasets:
MovieLens-1M (ML1M)[?], BookCrossing (BX)[?], Gowalla[?]
and Epinions[?]. Because we’re interested in the top k recommen-
dation task, we use a common pre-processing method to convert
these datasets into implicit feedback. As in [1, 19, 47], we divide all
the datasets into training, validation and test datasets according
to the leave-one-out setting. In the presence of interaction time
stamps, we use the latest interaction for each user for testing, the
penultimate interaction for validation and the rest for training. The
original crawled BookCrossing dataset is extremely noisy, thus, we
follow [51] recommendations in processing the dataset to obtain
more meaningful results. The same applies to Gowalla and Epinions
dataset, therefore we process them using a 20-core setting to get
close to the number of interactions in [37]. In MovieLens-1M, the
available user features include ID, age, gender and occupation, while
item features include ID, genre, year and title. In BookCrossing, user
features consist of ID, location and age, and item features include
ID, author, publisher, year and title. In Gowalla, there is only one
feature for each user and each item which is ID. Finally, in Epinions,
users have only IDs as their features, while item features are ID and
category. For all users across each dataset, a random training inter-
action is selected for the query set, while the remaining training
interactions are used for the support set. Detailed statistics about
the datasets used in our experiments can be found in Table 2.

ML1M BX Gowalla Epinions

Users 6040 2297 5992 3666
Items 3883 4717 5639 3369

Interactions 1000209 160560 287404 151096
Sparsity 99.957% 99.985% 99.991% 99.988%

Avg User Degree 163.598 67.900 45.965 39.215
Avg Item Degree 254.476 33.065 48.842 42.673
User Features 4 features 3 features 1 feature 1 feature
Item Features 4 features 5 features 1 feature 2 features

Table 2: Statistics of the datasets used in the experiments.

5.2 Baselines
We compare EEMU against a number of sharded training strategies
that support exact machine unlearning which can have static or
trainable aggregationmethods. EEMU and all baselines use the same
fundamental recommendation model architecture specifications.
The baselines are outlined below:
• RETRAIN - An unsharded centralized implementation of
the recommendation system. To perform exact unlearning
on this model, the model has to be retrained on the entire
dataset after the deletion of a datapoint.

Static Aggregation

• MEAN - Mean aggregation across the shards is utilized by
this baseline to calculate the final score for each item.
• MRA - A sharded training strategy that uses Median rank
aggregation (MRA) [12] across the shards to get the final rank
for all items . MRA is shown to be effective in aggregating
item ranks from different recommenders in [32].
• ItemC - The final score for each item in this baseline is
computed by taking the weighted mean of the item scores
across shards, with the weights being proportional to the
number of items each shard has for a user.
• JS_Div - This baseline uses weighted mean aggregation
across the shards to compute the final score for each item.
The weights are proportional to the similarity between the
probability distribution of the unsharded data and the data
in each shard. The probability distribution similarity is mea-
sured using Jensen–Shannon divergence.

Trainable Aggregation

• GraphEraser [7] - Utilizes an aggregation layer trained
with data from all shards to obtain a set of fixed weights
for aggregating the final item scores across all users. The
aggregation layer, however, must be retrained following a
deletion request.
• RecEraser [6] - Implements an attention aggregation layer
to compute the final score for each item, with weights that
vary across users and items. As with GraphEraser, retraining
the aggregation layer is necessary after a deletion request.
• UltraRE [25] - Employs a logistic regression-based aggrega-
tor to compute the final score for each item, using weights ob-
tained from training data across all shards. Like GraphEraser,
the weights of the aggregation layer remains fixed for all
users and requires retraining after a deletion request.

702

Meta-Learn to Unlearn: Enhanced Exact Machine Unlearning in Recommendation Systems with Meta-Learning Proceedings on Privacy Enhancing Technologies 2025(4)

MovieLens-1M BookCrossing Gowalla Epinions

Baseline HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

RETRAIN 0.07235 0.03555 0.03135 0.01446 0.05391 0.02531 0.03219 0.01518

MRA 0.05927 (18%) 0.02837 (20%) 0.02003 (36%) 0.00988 (32%) 0.01218 (77%) 0.00609 (76%) 0.01937 (40%) 0.00909 (40%)
ItemC 0.05977 (17%) 0.02934 (17%) 0.02481 (21%) 0.01230 (15%) 0.01736 (68%) 0.00874 (65%) 0.01991 (38%) 0.00904 (40%)
JS_Div 0.06026 (17%) 0.02876 (19%) 0.02525 (19%) 0.01204 (17%) 0.01636 (70%) 0.00756 (70%) 0.01882 (42%) 0.00915 (40%)
Mean 0.05993 (17%) 0.02908 (18%) 0.02537 (19%) 0.01317 (9%) 0.01643 (70%) 0.00761 (70%) 0.01964 (39%) 0.00906 (40%)

GraphEraser 0.06093 (16%) 0.02930 (18%) 0.02569 (18%) 0.01236 (15%) 0.01752 (68%) 0.00841 (67%) 0.01909 (41%) 0.00886 (42%)
RecEraser 0.05613 (22%) 0.02684 (25%) 0.01872 (40%) 0.00871 (40%) 0.02170 (60%) 0.01103 (56%) 0.02182 (32%) 0.00953 (37%)
UltraRE 0.05894 (19%) 0.02863 (19%) 0.02481 (21%) 0.01294 (11%) 0.01652 (70%) 0.00789 (69%) 0.01909 (41%) 0.00896 (41%)

EEMU 0.06589 (9%) 0.03299 (7%) 0.03962 (0%) 0.01985(0%) 0.05674 (0%) 0.02691 (0%) 0.02591 (20%) 0.01218 (20%)

Table 3: Comparison against baselines by HR@10 and NDCG@10.

MovieLens-1M BookCrossing Gowalla Epinions

Baseline HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

RETRAIN 0.11738 0.04738 0.05877 0.02067 0.09162 0.03713 0.05728 0.02220

MRA 0.10050 (14%) 0.03900 (18%) 0.03222 (45%) 0.01218 (41%) 0.02086 (77%) 0.00746 (80%) 0.03573 (38%) 0.01291 (42%)
ItemC 0.10695 (9%) 0.04092 (14%) 0.03891 (33%) 0.01581 (24%) 0.02954 (68%) 0.01174 (68%) 0.03328 (42%) 0.01185 (47%)
JS_Div 0.10629 (9%) 0.04038 (15%) 0.03962 (33%) 0.01668 (19%) 0.02804 (69%) 0.01004 (73%) 0.03464 (40%) 0.01211 (45%)
Mean 0.10679 (9%) 0.04041 (15%) 0.04052 (31%) 0.01693 (18%) 0.02870 (69%) 0.01070 (71%) 0.03544 (39%) 0.01261 (43%)

GraphEraser 0.10695 (9%) 0.04031 (15%) 0.04049 (31%) 0.01643 (21%) 0.02887 (68%) 0.01104 (70%) 0.03519 (39%) 0.01210 (45%)
RecEraser 0.09586 (18%) 0.03702 (22%) 0.03439 (41%) 0.01138 (45%) 0.03471 (62%) 0.01298 (65%) 0.03710 (35%) 0.01308 (41%)
UltraRE 0.10232 (13%) 0.03938 (17%) 0.04179 (29%) 0.01762 (15%) 0.02837 (69%) 0.01089 (71%) 0.03519 (39%) 0.01217 (45%)

EEMU 0.11474 (2%) 0.04539 (4%) 0.05529 (6%) 0.02350 (0%) 0.07977 (13%) 0.03287 (11%) 0.04092 (29%) 0.01594 (28%)

Table 4: Comparison against baselines by HR@20 and NDCG@20.

4 Shards 8 Shards 12 Shards 16 Shards
0

500

1,000

1,500

84
5

42
2

28
2

21
1

1,
01
4

59
1

45
1

38
0

1,
33
4

91
2

77
1

70
1

1,
01
4

59
1

45
1

38
0

85
2

43
2

29
1

22
1

Number of Shards

G
FL

O
PS

Static GraphEraser RecEraser UltraRE EEMU

(a)

4 Shards 8 Shards 12 Shards 16 Shards
0

100

200

300

12
7

64

42 32

15
3

89

68 57

20
3

14
0

11
9

10
8

15
3

89

68 57

13
0

67

46 36

Number of Shards

G
FL

O
PS

Static GraphEraser RecEraser UltraRE EEMU

(b)

4 Shards 8 Shards 12 Shards 16 Shards
0

100

200

300

12
8

64

43 32

15
4

90

68 58

24
3

17
9

15
8

14
715
4

90

68 58

13
2

69

48 38

Number of Shards

G
FL

O
PS

Static GraphEraser RecEraser UltraRE EEMU

(c)

4 Shards 8 Shards 12 Shards 16 Shards
0

50

100

150

200

72

36

24 18

87

51

39 32

13
3

97

85 7987

51

39 32

75

40

27 22

Number of Shards

G
FL

O
PS

Static GraphEraser RecEraser UltraRE EEMU

(d)

Figure 3: Floating point operations (GFLOPs) for one epoch of retraining for: (a) MovieLens-1M (b) BookCrossing (c) Gowalla
(d) Epinions. Retraining without sharding (RETRAIN) takes 3378.92, 508.72, 512.52, and 288.72 GFLOPS for MovieLens-1M,
BookCrossing, Gowalla, and Epinions, respectively, and these values are omitted from the figure for clarity.

Dataset / Baseline Static GraphEraser RecEraser UltraRE EEMU

MovieLens-1M 0.5817 0.5818 2.6816 0.5818 0.5823
BookCrossing 0.8224 0.8225 3.3733 0.8225 0.8231
Gowalla 0.4286 0.4287 3.4780 0.4287 0.4290
Epinions 0.3390 0.3391 2.1610 0.3391 0.3394

Table 5: Floating point operations (GFLOPs) for one inference
request.

With exception of RETRAIN, all the included baselines use a stan-
dard sharded implementation of the recommendation system, sim-
ilar to the one used in SISA [3] that employs random balanced
sharding to target exact machine unlearning. Also, we are not sug-
gesting the use of trainable aggregators in an exact unlearning
setting; in fact, this goes against the motivation we laid out in the
introduction. However, we are including GraphEraser, RecEraser
and UltraRE as baselines to have a fair comparison against a variety
of state-of-the-art recommendation unlearning methods.

703

Proceedings on Privacy Enhancing Technologies 2025(4) Alshabanah et al.

5.3 Evaluation Criteria
Ranking. To evaluate the ranking performance of each model we
employ two metrics: Hit Rate @ k (HR@k) and Normalized Dis-
counted Cumulative Gain @ k (NDCG@k). The former determines
if a candidate item is among the top k recommendations, while the
latter measures how closely the recommended item is placed to
the top of the list. Since retraining a centralized model serves as
the gold standard in terms of model performance, we also include
the percentage degradation in parentheses for each baseline com-
pared to RETRAIN as the objective of enhanced sharded training
is to minimize this degradation despite sharding. A value of 0% in
parentheses indicates no degradation (including when the baseline
outperforms RETRAIN).
Retraining Complexity. The complexity of training a model dic-
tates the overhead incurred to retrain in the event of a deletion
request. Thus, we compare the number of GFLOPS required on
average per epoch to retrain a shard of EEMU to baselines. The
choice of using GFLOPS to report the complexity is made following
the recommendation of [39].
Inference Complexity. Inference complexity is a crucial factor
as it affects serving latency. In a sharded setup, in addition to the
computations needed to perform inference in each shard, there is
an additional overhead incurred by aggregation across all shards.
Thus, we compare EEMU to all baselines in inference complexity
for a single request (also in GFLOPS).

5.4 Results
In this section, we summarize our key findings from our main
experiments in alignment with our evaluation criteria.
Ranking: Our primary ranking results for Top-k recommendation
are presented in Tables 3 and 4 for k=10 and k=20, respectively.
The biggest takeaway from both tables is that EEMU significantly
outperforms other sharded strategies in an exact unlearning setting,
including those based on learnable aggregators trained using data
from all shards. We postulate that this superiority stems from the
localized parameterization of each shard within different subspaces,
facilitated by optimization on distinct tasks — a phenomenon akin
to Mixture-of-Experts models [40]. These findings serve to validate
the efficacy of meta-learning in addressing the loss of collaborative
signal resulting from random interaction sharding. What is more
interesting, however, is that EEMU also outperforms RETRAIN in
some situations. While we leave the detailed understanding of this
phenomenon to follow-up work, we hypothesize that this is due
to the power of meta-learning to effectively learn in a few-shot
setting [15, 41], in conjunction with the specialization afforded by
the adaptation step.
Training Complexity: So far, we have established the improved
model performance with EEMU over other baseline methods and
showcased the effectiveness of meta-learning within a sharded
system. Nevertheless, the practicality of this solution hinges on
ensuring that the added complexity stemming from meta-learning
does not outweigh the advantages gained in reducing the retraining
complexity, which is a core benefit of sharding. Encouragingly, the
data presented in Figure 3 illustrate that EEMU is almost as efficient
as baselines that employ the standard sharding scheme with static
aggregation (Static) in terms of the average number of floating-point

operations necessary to retrain a single shard. What is even more
promising is that this number can be further diminished by scaling
up the number of shards, rendering EEMU an even more efficient
retraining option. It is also evident from the figure that employing
trainable aggregation layers (GraphEraser, UltraRE and UltraRE)
hurts the retraining efficiency, as the aggregation layers will also
be retrained. It is important to note that augmenting the number
of shards does introduce the risk of increased loss of collaborative
signal. However, as we will demonstrate in Section 5.5, EEMU
exhibits remarkable resilience to the expansion of shard count,
suffering only from minor additional performance degradation.
Inference Complexity: To further reinforce the computational
efficiency of EEMU, Table 5 presents the number of floating-point
operations necessary, on average, to fulfill a single inference request.
Here, a single inference request entails generating a Top-K recom-
mendation list for a single user. Notably, despite the additional
complexity introduced by the adaptation step during inference,
EEMU demonstrates a minimal increase in the number of floating-
point operations required to serve a single inference request in
comparison to the baselines that do not involve an adaptation step.
This efficiency is partly attributed to the fact that the number of
items used to adapt each user during inference can be just one, as
we will examine in Section 5.5. This makes EEMU highly scalable
for inference.

5.5 Ablation and Sensitivity Analysis
In this section, we present abltation studies on some key parameters
and components of our proposed strategy. Particularly, we would
like to answer the following questions: (i) How significant is the
adaptation step during inference to the overall performance of
EEMU? (ii) Can adaptation benefit other sharded models that do
not employmeta-learning during training? (iii) Does biasing toward
unpopular items during adaptation set creation positively improve
EEMU’s ranking performance (iv) If adaptation is crucial, how large
should the adaptation set be for each user? (v) What is the effect of
increasing the number of shards onmodel performance? And finally,
(vi) Given that meta-learning performs well in few-shot learning
settings, is one shard of data sufficient to achieve good performance,
or is aggregating predictions from all shards necessary?
Importance of adaptation: To comprehend the significance of the
adaptation step during inference, we conduct a comparative analy-
sis of the outcomes produced by a trained EEMU model with and
without the inclusion of an adaptation step prior to ranking. The re-
sults are visualized in Figure 4. It is evident that, across all datasets,
the incorporation of the adaptation step significantly enhances the
recommender’s performance. To provide a deeper analysis of the
results in Figure 4 and to further confirm the importance of adap-
tation to EEMU, we report EEMU’s shard-level recommendation
performance (HR@10) with and without adaptation in Table 6. It
is clear that adaptation plays a vital role in EEMU, as it enhances
recommendation performance compared to EEMU without adap-
tation across all shards and datasets included in the experiment.
Interestingly, however, the impact of adaptation on a model not
initially trained with meta-learning (Standard Sharded Training) is
more nuanced, resulting in a less effective recommender on half of
the datasets and a slightly improved one on the remaining half. This

704

Meta-Learn to Unlearn: Enhanced Exact Machine Unlearning in Recommendation Systems with Meta-Learning Proceedings on Privacy Enhancing Technologies 2025(4)

Standard Sharded
Training

EEMU

0.06

0.065

0.06
0.06

0.058

0.066

H
R@

10

Without Adaptation With Adaptation

(a)

Standard Sharded
Training

EEMU

0.025

0.03

0.035

0.04

0.045

0.025

0.029
0.027

0.04

H
R@

10

Without Adaptation With Adaptation

(b)

Standard Sharded
Training

EEMU

0.02

0.04

0.06

0.016

0.04

0.021

0.057

H
R@

10

Without Adaptation With Adaptation

(c)

Standard Sharded
Training

EEMU
0.015

0.02

0.025

0.03

0.02

0.022

0.017

0.026

H
R@

10

Without Adaptation With Adaptation

(d)

Figure 4: Ablation on adaptation step importance showing HR@10 for: (a) MovieLens-1M. (b) BookCrossing. (c) Gowalla. (d)
Epinions.

1 3 5 7

0.02

0.04

0.06

0.08

Adaptation Set Size

H
R@

10

ML1M BX Gowalla Epinions

(a)

1 3 5 7

0.01

0.02

0.03

0.04

Adaptation Set Size

N
D
CG

@
10

ML1M BX Gowalla Epinions

(b)

4 8 12 16

0.02

0.04

0.06

0.08

Number of shards

H
R@

10

ML1M BX Gowalla Epinions

(c)

4 8 12 16

0.01

0.02

0.03

0.04

Number of shards

N
D
CG

@
10

ML1M BX Gowalla Epinions

(d)

Figure 5: (a) Ablation on adaptation set size showing HR@10 for all datesets. (b) Ablation on adaptation set size showing
NDCG@10 for all datesets. (c) Ablation on number of shards showing HR@10 for all datesets. (d) Ablation on number of shards
showing NDCG@10 for all datesets.

A
ll
Sh

ar
ds

Sh
ar
d
1

Sh
ar
d
2

Sh
ar
d
3

Sh
ar
d
4

Sh
ar
d
5

Sh
ar
d
6

Sh
ar
d
7

Sh
ar
d
8

0

0.02

0.04

0.06

0.066

0.036
0.038

0.035 0.035
0.039

0.037 0.037

0.032

H
R@

10

(a)

A
ll
Sh

ar
ds

Sh
ar
d
1

Sh
ar
d
2

Sh
ar
d
3

Sh
ar
d
4

Sh
ar
d
5

Sh
ar
d
6

Sh
ar
d
7

Sh
ar
d
8

0

0.01

0.02

0.03

0.04 0.04

0.01
0.008

0.012
0.009 0.01

0.005
0.003

0.008

H
R@

10

(b)

A
ll
Sh

ar
ds

Sh
ar
d
1

Sh
ar
d
2

Sh
ar
d
3

Sh
ar
d
4

Sh
ar
d
5

Sh
ar
d
6

Sh
ar
d
7

Sh
ar
d
8

0

0.02

0.04

0.06 0.057

0.016 0.017
0.02

0.03

0.015
0.018

0.013
0.017

H
R@

10

(c)

A
ll
Sh

ar
ds

Sh
ar
d
1

Sh
ar
d
2

Sh
ar
d
3

Sh
ar
d
4

Sh
ar
d
5

Sh
ar
d
6

Sh
ar
d
7

Sh
ar
d
8

0

0.01

0.02

0.026

0.013
0.012

0.01
0.011

0.013

0.009
0.008 0.008

H
R@

10

(d)

Figure 6: Ablation on aggregation importance showing HR@10 for: (a) MovieLens-1M. (b) BookCrossing. (c) Gowalla. (d)
Epinions.

variability in recommendation performance suggests that models
not trained with meta-learning might not be inherently optimized
for generalization to user preferences with limited data, in contrast
to the performance seen in EEMU. To understand the reason for
this variability, we analyzed the entropy of user degrees in the four
datasets. MovieLens-1M and Epinions have larger entropy values
than BookCrossing and Gowalla, indicating more diverse user inter-
actions. Adaptation degraded performance in high-entropy datasets
(MovieLens-1M and Epinions), potentially because user preferences
are spread across many items, making small updates destabilizing.
In contrast, lower-entropy datasets (BookCrossing and Gowalla)

benefited from adaptation, as users interact with a more concen-
trated set of items, likely making their preferences more predictable.
This observation underscores the interdependency between the ef-
fectiveness of inference-time adaptation and a training procedure
based on meta-learning.
Importance of bias during adaptation set creation: Unpopu-
lar items have been theoretically proven in [1] to provide more
information about user preferences than other items. Therefore, in
EEMU, the adaptation set is constructed with a bias toward these
unpopular items. We expect EEMU to perform better when the
adaptation set is constructed using biased sampling rather than

705

Proceedings on Privacy Enhancing Technologies 2025(4) Alshabanah et al.

MovieLens-1M BookCrossing Gowalla Epinions

EEMU w/o Adapt w/ Adapt w/o Adapt w/ Adapt w/o Adapt w/ Adapt w/o Adapt w/ Adapt

Shard 1 0.03477 0.0368 0.01001 0.01027 0.01469 0.01647 0.01146 0.01366
Shard 2 0.03626 0.03818 0.00871 0.009 0.01769 0.01793 0.00955 0.0125
Shard 3 0.03079 0.03546 0.01045 0.01288 0.02019 0.021 0.00682 0.01054
Shard 4 0.03146 0.03515 0.0064 0.00947 0.03037 0.031 0.00873 0.01135
Shard 5 0.03642 0.03966 0.00653 0.0109 0.01235 0.0155 0.01037 0.01396
Shard 6 0.03775 0.03792 0.00479 0.00581 0.01669 0.01897 0.00655 0.00919
Shard 7 0.03526 0.03788 0.00218 0.00361 0.01285 0.01315 0.00791 0.00888
Shard 8 0.03013 0.03241 0.00784 0.00899 0.01469 0.0176 0.00846 0.00885

Table 6: Ablation on adaptation step importance at the shard level showing HR@10.

Dataset Random Sample Biased Sample Improv.

ML1M 0.06324 0.06589 +%4.9
BX 0.03657 0.03962 +%8.3
Gowalla 0.05491 0.05674 +%3.3
Epinions 0.02282 0.02591 +%13.5

Table 7: Ablation on sampling bias importance during adap-
tation set creation showing HR@10 for all datasets. Improv.
highlights the percentage improvement of biased sampling
over random sampling.

random sampling. To evaluate the effect of biased sampling, we
conducted two EEMU experiments differing in how the adaptation
set was created: one used a random sample of items, while the
other used a sample biased toward unpopular items. The results of
these experiments across all datasets are reported in Table 7. From
the results, we can conclude that biasing toward unpopular items
during adaptation set creation positively improve EEMU’s ranking
performance.
Size of adaption set: Intuitively, one might expect that a larger
adaptation set for each user would lead to improved recommender
performance. However, the drawback of having a larger adaptation
set is the increased demand for floating-point operations during
inference. Fortunately, as demonstrated in Figure 5(a), even with
an adaptation set of just one edge, the performance remains quite
robust. Therefore, depending on the available computational re-
sources for inference, utilizing a single edge for user adaptation
during inference can yield significant improvements. Naturally,
when there is a more generous computational budget, expanding
the size of the adaptation set becomes advantageous.
Effect of shard count: Once more, intuition might suggest that
an increase in shard count would correspond to a decline in model
performance, primarily due to the heightened loss of collaborative
signal. Interestingly, as observed in Figure 5(c), while the expected
trend is present, the actual magnitude of performance degradation
stemming from an increased shard count is remarkably minimal.
Therefore, there is a compelling argument to be made for employing
a larger number of shards, especially when the primary objective
is to minimize retraining time.

Importance of aggregation: Previous studies [15, 41] have demon-
strated that meta-learning models excel in few-shot learning set-
tings. Building on this, EEMU has shown strong performance in
adapting the sharded model to mitigate the loss of collaboration
caused by sharding. However, an important question remains: is
one shard of data sufficient to achieve good performance, or is
aggregating predictions from all shards necessary? To investigate
this, we evaluated the ranking performance of each shard in EEMU
using the same adaptation set for all shards and compared it to the
performance achieved by aggregating predictions from all shards,
which is the normal operation of EEMU. The results are presented
in Figure 6. The results clearly show that, despite meta-learning’s
effectiveness in few-shot settings, aggregating predictions from
all shards is necessary, as it significantly improves ranking perfor-
mance across all datasets compared to adapting a single shard.

6 Batch Inferencing
In Section 5.4, we demonstrated the efficiency of EEMU in fulfilling
single-user inference requests. We are also interested in making
EEMU more efficient in fulfilling multiple user inference requests
using the same computing fabric. As explained earlier, EEMU fine-
tunes a global model M𝑔𝑙𝑜𝑏𝑎𝑙

𝑠 for a given user 𝑢 in a shard 𝑠 to
getM𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑠,𝑢 before it can generate a recommendation list for that
user. Thus, to generate recommendation lists for multiple users,
EEMU can either adapt users serially using one computing node
or in parallel using multiple nodes. We are interested, however, in
making EEMUmore efficient and enabling it to adapt multiple users
in parallel on the same node. We accomplish this by clustering users
based on their task similarity into 𝐾 clusters and then performing
an adaptation step onM𝑔𝑙𝑜𝑏𝑎𝑙

𝑠 for all users that fall in the same
cluster within a shard. This adaption step would generateM𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑠,𝑐

for each cluster 𝑐 ∈ 𝐾 in shard 𝑠 ∈ 𝑆 , which would be used to
fulfill inference requests for all users in the cluster. It is important
to note that we cluster users usingM𝑔𝑙𝑜𝑏𝑎𝑙

𝑠 which is stored within
each shard. Next, we will explain our clustering methodology and
discuss our findings.

6.1 Clustering based on task similarity
We use the dense user representation xu, which is generated by
the user tower in the optimizedM𝑔𝑙𝑜𝑏𝑎𝑙

𝑠 , as a proxy to assess users’
706

Meta-Learn to Unlearn: Enhanced Exact Machine Unlearning in Recommendation Systems with Meta-Learning Proceedings on Privacy Enhancing Technologies 2025(4)

25 50 100 250 No

0.02

0.04

0.06

0.08

Number of Clusters

H
R@

10

ML1M BX Gowalla Epinions

(a)

25 50 100 250 No

0.01

0.02

0.03

0.04

Number of Clusters

N
D
CG

@
10

ML1M BX Gowalla Epinions

(b)

25 50 100 250
0

100

200

300

24
3

12
3

61

26

92

48

24

11

24
2

12
2

61

24

14
9

74

39

16

Number of Clusters

Sp
ee
du

p

ML1M BX Gowalla Epinions

(c)

ML1M BX Gowalla Epinions
0

5

10

15

20

25

3.
5

1.
9 2.
6

1.
2

3.
5

1.
9 2.
6

1.
2

16
.2

7.
7

20
.8

7.
9

3.
5

1.
9 2.
6

1.
2

4.
2

2.
2 3

1.
5

Dataset

TF
LO

PS

Static GraphEraser RecEraser UltraRE EEMU

(d)

Figure 7: (a) HR@10 of EEMU in batch inferencing mode for all datesets. (b) NDCG@10 of EEMU in batch inferencing mode for
all datesets. (c) Speedup of EEMU in batch inferencing mode compared to single inference mode for all datesets. (d) Floating
point operations (TFLOPs) required for serving all users of EEMU and baselines in batch inferencing mode. (For (a) and (b) "No"
represents EEMU in single inference mode)

GLOBAL MODEL 2GLOBAL MODEL 1

k-means

Cluster	Aggregation	Function

k-means

Co-association
Matrix

𝐶()*+,

𝐶! 𝐶"

𝑥# 𝑥#

Figure 8: Clustering based on task similarity

task similarities and feed it to the chosen clustering algorithm.
Considering user representations as input to the clustering algo-
rithm will lead to having multiple cluster labels for the same user,
each one belonging to a shard, thereby creating a cluster ensem-
ble problem [2, 14]. Thus, we use the simple yet effective k-means
clustering algorithm [27] to cluster users within a shard. Then, we
aggregate the user cluster labels from each shard by generating a
co-association matrix and feeding it to a cluster ensemble aggre-
gation function. This procedure is depicted in Figure 8. Each entry
in the co-association matrix represents the similarity between two
users, calculated as the frequency of their co-assignment to clusters
divided by the total number of shards, which is defined as follows:

CO[𝑢𝑖 , 𝑢 𝑗] =
1
𝑆

𝑆∑︁
𝑠=1

I(Cs [𝑢𝑖] == Cs [𝑢 𝑗]), (9)

where 𝐶𝑠 is the cluster labels for shard 𝑠 and 𝑢𝑖 , 𝑢 𝑗 ∈ U.
Algorithm 3 shows the clustering procedure based on task simi-

larity. First, for each shard 𝑠 , user representations x𝑢 are extracted

from the corresponding global modelM𝑔𝑙𝑜𝑏𝑎𝑙
𝑠 (line 2). These rep-

resentations are then clustered into 𝐾 clusters using the k-means
algorithm, producing shard-specific cluster labels 𝐶𝑠 (line 3). Next,
a co-association matrix CO is initialized to aggregate clustering
results from all shards (line 5). For each pair of users (𝑢𝑖 , 𝑢 𝑗), the
matrix is updated by counting the number of shards where the
users are assigned to the same cluster (lines 6-7). Finally, the ag-
gregated cluster labels 𝐶final are determined by applying a cluster
aggregation function to the co-association matrix CO (line 9).

While one could simply avoid generating the co-association ma-
trix in favor of efficiency and aggregate the cluster labels based
on majority voting, we have chosen to generate the co-association
matrix and use k-means as an aggregation function due to its effec-
tiveness, based on our initial results. The aggregated cluster labels
will then be used by each shard to perform the adaptation step
and generateM𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑠,𝑐 . Upon receiving a data deletion request, it’s
noteworthy that we only need to execute the clustering algorithm
on the retrained shard and the cluster ensemble aggregation func-
tion. This efficient process is possible because we run the k-means
clustering algorithm on each shard independently, without needing
to involve other shards.

Algorithm 3 Clustering based on task similarity

Input: Global optimized modelsM𝑔𝑙𝑜𝑏𝑎𝑙
𝑠 ; number of clusters 𝐾 ;

number of shards S
Output: Aggregated cluster labels C𝑓 𝑖𝑛𝑎𝑙

1: for each shard 𝑠 in 𝑆 do
2: xu ← user representations fromM𝑔𝑙𝑜𝑏𝑎𝑙

𝑠

3: Cs ← shard labels by running k-means(𝐾, xu)
4: end for
5: Initialize co-association matrix CO← 0
6: for each pair of users (𝑢𝑖 , 𝑢 𝑗) do
7: CO[𝑢𝑖 , 𝑢 𝑗] ←

∑
𝑠 I(Cs [𝑢𝑖] == Cs [𝑢 𝑗])/𝑆

8: end for
9: C𝑓 𝑖𝑛𝑎𝑙 ← cluster_aggregation_function(CO)
10: return C𝑓 𝑖𝑛𝑎𝑙

707

Proceedings on Privacy Enhancing Technologies 2025(4) Alshabanah et al.

6.2 Effect on ranking performance and
efficiency

We ran EEMU in batch inferencing mode with a varying number
of clusters and reported the results in Figure 7. It is reasonable to
expect that a reduction in the number of clusters could result in
a significant decline in recommender performance, as more users
would share the sameM𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑠,𝑐 . However, as shown in Figure 7(a)
and Figure 7(b), even with just 25 clusters, the performance remains
quite stable. We hypothesize that this occurs because clustering
enables EEMU to finetune M𝑔𝑙𝑜𝑏𝑎𝑙

𝑠 using the adaptation sets of
similar users within a cluster.

This has meaningful practical implications as can be inferred
from the serving time speedup and the floating points required to
serve all users in the datasets, reported in Figure 7(c) and Figure
7(d), respectively. Moreover, a drawback of MAML and therefore
EEMU, is that the adaptation step adds inference latency if requests
are served serially. On the other hand, fully parallelizing inference
requests can lead to a blow-up of memory as each user would
concurrently require an M𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑠,𝑢 . For instance, inference batch
sizes in large scale recommendation systems can exceed 64k [29], in
which case naive parallelization of inference will result in over 64k
copies of the model, which is intractable. However, our approach
only requires as many specialized models as there are clusters.
Thus, our scheme not only represents a much more efficient way to
perform inference in EEMU but also meaningfully moves the needle
in making MAML more practical for recommendation systems.

Hence, depending on the number of computing nodes available
for inference, using EEMU in batch inferencing mode can be a vi-
able option to increase the efficiency of inference requests for users
that fall in the same cluster. Nonetheless, it would be valuable to
explore various clustering algorithms or alternative cluster ensem-
ble aggregation functions; however, we defer this exploration to
future research work.

7 Future Work and Conclusion
In this work, we explore the utilization of meta-learning for exact
machine unlearning in the context of deep learning-based recom-
mendation systems. To render exact unlearning feasible, a central
dataset is typically split into multiple shards, each containing a
replica of the model. In this setup, only a single shard necessitates
retraining in response to a data deletion request. However, this
sharding approach, while effective in this regard, introduces a chal-
lenge by causing a loss of collaborative signal in recommendation
systems, consequently leading to reduced recommendation quality.

To address this issue, we introduce EEMU, a meta-learning ap-
proach designed to alleviate the adverse effects of collaborative
signal loss resulting from sharding. EEMU excels in situations in-
volving random sharding and does not rely on complex sharding
strategies, which are common in prior work within this domain.
Our results affirm that EEMU significantly outperforms various
sharded models, even those incorporating trainable parameters
during aggregation, all while maintaining computational efficiency.
Consequently, our work provides an accessible pathway for inte-
grating meta-learning into the realm of machine unlearning.

However, despite the strength of our findings, we identify two
unanswered questions that merit attention in future research. The
first question revolves around understanding the effect of the choice
of the clustering algorithm and the cluster ensemble aggregation
function on recommendation performance in the batch inferenc-
ing setting. The second question focuses on determining the most
suitable choices for the support and query sets within the meta-
learning algorithm in the sharded setting to optimize the quality of
the recommendation system. These questions represent areas that
warrant further exploration and investigation, some of which we
are actively pursuing.

Acknowledgments
We sincerely thank all the reviewers for their time and constructive
comments. This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under Contract Nos.
HR001120C0088, NSF award number 2224319, REAL@USC-Meta
center, and VMware gift. The views, opinions, and/or findings ex-
pressed are those of the author(s) and should not be interpreted
as representing the official views or policies of the Department of
Defense or the U.S. Government. The authors used ChatGPT4o to
revise the text in the paper to correct typos and grammatical errors.

References
[1] Keshav Balasubramanian, Abdulla Alshabanah, Elan Markowitz, Greg Ver Steeg,

and Murali Annavaram. 2024. Biased User History Synthesis for Personalized
Long-Tail Item Recommendation. In Proceedings of the 18th ACM Conference on
Recommender Systems (Bari, Italy) (RecSys ’24). Association for Computing Ma-
chinery, New York, NY, USA, 189–199. https://doi.org/10.1145/3640457.3688141

[2] Tossapon Boongoen and Natthakan Iam-On. 2018. Cluster ensembles: A survey
of approaches with recent extensions and applications. Computer Science Review
28 (2018), 1–25.

[3] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
141–159.

[4] California State Legislature. 2018. California Consumer Privacy Act (CCPA).
California Civil Code. https://leginfo.legislature.ca.gov/faces/billTextClient.
xhtml?bill_id=201720180AB375 Assembly Bill No. 375, Title 1.81.5, §§ 1798.100-
1798.199.

[5] Yinzhi Cao and Junfeng Yang. 2015. Towards Making Systems Forget with
Machine Unlearning. In 2015 IEEE Symposium on Security and Privacy. 463–480.
https://doi.org/10.1109/SP.2015.35

[6] Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. 2022. Recommendation
unlearning. In Proceedings of the ACM Web Conference 2022. 2768–2777.

[7] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2022. Graph unlearning. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 499–513.

[50]]Gowalla-DS Eunjoon Cho, Seth A. Myers, and Jure Leskovec. [n. d.]. Gowalla
Dataset. https://snap.stanford.edu/data/loc-gowalla.html

[9] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. New York, NY, USA.

[10] Manqing Dong, Feng Yuan, Lina Yao, Xiwei Xu, and Liming Zhu. 2020. Mamo:
Memory-augmented meta-optimization for cold-start recommendation. In Pro-
ceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining. 688–697.

[11] Thorsten Eisenhofer, Doreen Riepel, Varun Chandrasekaran, Esha Ghosh, Olga
Ohrimenko, and Nicolas Papernot. 2023. Verifiable and Provably Secure Machine
Unlearning. arXiv:2210.09126 [cs.LG]

[12] Ronald Fagin, Ravi Kumar, and Dandapani Sivakumar. 2003. Efficient similarity
search and classification via rank aggregation. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data. 301–312.

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning. PMLR, 1126–1135.

[14] Ana LN Fred andAnil K Jain. 2005. Combiningmultiple clusterings using evidence
accumulation. IEEE transactions on pattern analysis and machine intelligence 27,

708

https://doi.org/10.1145/3640457.3688141
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://doi.org/10.1109/SP.2015.35
https://snap.stanford.edu/data/loc-gowalla.html
https://arxiv.org/abs/2210.09126

Meta-Learn to Unlearn: Enhanced Exact Machine Unlearning in Recommendation Systems with Meta-Learning Proceedings on Privacy Enhancing Technologies 2025(4)

6 (2005), 835–850.
[15] Hassan Gharoun, Fereshteh Momenifar, Fang Chen, and Amir H. Gandomi. 2023.

Meta-learning approaches for few-shot learning: A survey of recent advances.
arXiv:2303.07502 [cs.LG]

[16] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. 2021. Amnesiac machine
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
11516–11524.

[17] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. 2020.
Certified data removal from machine learning models. In Proceedings of the 37th
International Conference on Machine Learning (ICML’20). JMLR.org, Article 359,
11 pages.

[18] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction.
CoRR abs/1703.04247 (2017). arXiv:1703.04247 http://arxiv.org/abs/1703.04247

[19] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[20] Dan Hendrycks and Kevin Gimpel. 2016. Bridging Nonlinearities and Stochastic
Regularizers with Gaussian Error Linear Units. CoRR abs/1606.08415 (2016).
arXiv:1606.08415 http://arxiv.org/abs/1606.08415

[21] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In 2008 Eighth IEEE International Conference on Data
Mining. 263–272. https://doi.org/10.1109/ICDM.2008.22

[22] Minseok Kim, Hwanjun Song, Yooju Shin, Dongmin Park, Kijung Shin, and Jae-
Gil Lee. 2022. Meta-learning for online update of recommender systems. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 4065–4074.

[23] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.).

[24] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.
Melu: Meta-learned user preference estimator for cold-start recommendation.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1073–1082.

[25] Yuyuan Li, Chaochao Chen, Yizhao Zhang, Weiming Liu, Lingjuan Lyu, Xiaolin
Zheng, Dan Meng, and Jun Wang. 2024. Ultrare: Enhancing receraser for recom-
mendation unlearning via error decomposition. Advances in Neural Information
Processing Systems 36 (2024).

[26] Yuyuan Li, Chaochao Chen, Xiaolin Zheng, Junlin Liu, and Jun Wang. 2024.
Making recommender systems forget: Learning and unlearning for erasable
recommendation. Knowledge-Based Systems 283 (2024), 111124. https://doi.org/
10.1016/j.knosys.2023.111124

[27] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[28] Alessandro Mantelero. 2013. The EU Proposal for a General Data Protection
Regulation and the roots of the ‘right to be forgotten’. Computer Law & Security
Review 29, 3 (2013), 229–235. https://doi.org/10.1016/j.clsr.2013.03.010

[29] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).
arXiv:1906.00091 http://arxiv.org/abs/1906.00091

[30] A Nichol. 2018. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999 (2018).

[31] Office of the Privacy Commissioner of Canada. 2018. Announcement: Pri-
vacy commissioner seeks Federal Court determination on key issue for Cana-
dians’ online reputation. https://www.priv.gc.ca/en/opc-news/news-and-
announcements/2018/an_181010/

[32] Samuel E. L. Oliveira, Victor Diniz, Anisio Lacerda, Luiz Merschmanm, and
Gisele L. Pappa. 2020. Is Rank Aggregation Effective in Recommender Systems?
An Experimental Analysis. ACM Trans. Intell. Syst. Technol. 11, 2, Article 16 (jan
2020), 26 pages. https://doi.org/10.1145/3365375

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[34] Steffen Rendle. 2010. Factorization Machines. In 2010 IEEE International Confer-
ence on Data Mining. 995–1000. https://doi.org/10.1109/ICDM.2010.127

[50]]ml1m-DS GroupLens Research. [n. d.]. MovieLens 1M Dataset. https://grouplens.
org/datasets/movielens/1m/

[50]]Epinions-DSMatthew Richardson, Rakesh Agrawal, and Pedro Domingos. [n. d.].
Epinions Social Network Dataset. https://snap.stanford.edu/data/soc-Epinions1.
html

[37] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. 2003. Trust Man-
agement for the Semantic Web. In The Semantic Web - ISWC 2003, Dieter Fensel,

Katia Sycara, and John Mylopoulos (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 351–368.

[38] Sebastian Schelter, Mozhdeh Ariannezhad, and Maarten de Rijke. 2023. Forget
Me Now: Fast and Exact Unlearning in Neighborhood-based Recommendation.
In Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’23). Association for Computing
Machinery, New York, NY, USA, 2011–2015. https://doi.org/10.1145/3539618.
3591989

[39] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020. Green AI.
Commun. ACM 63, 12 (nov 2020), 54–63. https://doi.org/10.1145/3381831

[40] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously Large Neural Networks: The
Sparsely-Gated Mixture-of-Experts Layer. In International Conference on Learning
Representations.

[41] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. 2019. Meta-transfer
learning for few-shot learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 403–412.

[42] Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. 2022.
Unrolling SGD: Understanding factors influencing machine unlearning. In 2022
IEEE 7th European Symposium on Security and Privacy (EuroS&P). IEEE, 303–319.

[43] Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. 2022. On the
necessity of auditable algorithmic definitions for machine unlearning. In 31st
USENIX Security Symposium (USENIX Security 22). 4007–4022.

[44] Jieyu Yang, Zhaoxin Huan, Yong He, Ke Ding, Liang Zhang, Xiaolu Zhang,
Jun Zhou, and Linjian Mo. 2022. Task Similarity Aware Meta Learning for
Cold-Start Recommendation. In Proceedings of the 31st ACM International Con-
ference on Information & Knowledge Management (Atlanta, GA, USA) (CIKM
’22). Association for Computing Machinery, New York, NY, USA, 4630–4634.
https://doi.org/10.1145/3511808.3557709

[45] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee
Kumthekar, Zhe Zhao, Li Wei, and Ed Chi. 2019. Sampling-bias-corrected neural
modeling for large corpus item recommendations. In Proceedings of the 13th ACM
Conference on Recommender Systems. 269–277.

[46] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[47] Yin Zhang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong,
and Ed H Chi. 2021. A model of two tales: Dual transfer learning framework for
improved long-tail item recommendation. In Proceedings of the web conference
2021. 2220–2231.

[48] Pan Zhou, Yingtian Zou, Xiao-Tong Yuan, Jiashi Feng, Caiming Xiong, and Steven
Hoi. 2021. Task similarity aware meta learning: theory-inspired improvement
on MAML. In Proceedings of the Thirty-Seventh Conference on Uncertainty in
Artificial Intelligence (Proceedings of Machine Learning Research, Vol. 161), Cassio
de Campos and Marloes H. Maathuis (Eds.). PMLR, 23–33. https://proceedings.
mlr.press/v161/zhou21a.html

[49] Zhipeng Zhou, Wei Gong, and Haoquan Zhou. 2023. Target-oriented Few-shot
Transferring via Measuring Task Similarity. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management (<conf-
loc>, <city>Birmingham</city>, <country>United Kingdom</country>, </conf-
loc>) (CIKM ’23). Association for Computing Machinery, New York, NY, USA,
4465–4469. https://doi.org/10.1145/3583780.3615149

[50]]BX-DS Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg
Lausen. [n. d.]. Book-Crossing Dataset. http://www.informatik.uni-freiburg.de/
~cziegler/BX/

[51] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005.
Improving recommendation lists through topic diversification. In Proceedings of
the 14th international conference on World Wide Web. 22–32.

A Case Studies
In this section, we present three case studies to show how EEMU
can generalize to another fundamental recommendation model,
support user-wise exact unlearning and perform while employing
another meta-learning algorithm.

A.1 Case Study 1: EEMU on another
fundamental recommendation model

EEMU is a model-agnostic framework that can be applied to var-
ious fundamental recommendation models. To demonstrate this,
we extended our approach to another popular recommendation

709

https://arxiv.org/abs/2303.07502
https://arxiv.org/abs/1703.04247
http://arxiv.org/abs/1703.04247
https://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1016/j.knosys.2023.111124
https://doi.org/10.1016/j.knosys.2023.111124
https://doi.org/10.1016/j.clsr.2013.03.010
https://arxiv.org/abs/1906.00091
http://arxiv.org/abs/1906.00091
https://www.priv.gc.ca/en/opc-news/news-and-announcements/2018/an_181010/
https://www.priv.gc.ca/en/opc-news/news-and-announcements/2018/an_181010/
https://doi.org/10.1145/3365375
https://doi.org/10.1109/ICDM.2010.127
https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/1m/
https://snap.stanford.edu/data/soc-Epinions1.html
https://snap.stanford.edu/data/soc-Epinions1.html
https://doi.org/10.1145/3539618.3591989
https://doi.org/10.1145/3539618.3591989
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3511808.3557709
https://proceedings.mlr.press/v161/zhou21a.html
https://proceedings.mlr.press/v161/zhou21a.html
https://doi.org/10.1145/3583780.3615149
http://www.informatik.uni-freiburg.de/~cziegler/BX/
http://www.informatik.uni-freiburg.de/~cziegler/BX/

Proceedings on Privacy Enhancing Technologies 2025(4) Alshabanah et al.

model, DeepFM [18]. DeepFM combines the strengths of Factoriza-
tion Machines [34] for efficiently capturing second-order feature
interactions and Deep Neural Networks for learning complex, non-
linear, high-order feature interactions. We conducted experiments
using all four datasets studied in this paper and reported the results
in Table 8. The results show that EEMU significantly outperforms
all baselines, maintaining the trends observed in the main results
of the paper (reported in Table 3). The consistent improvement
across datasets highlights the generalizability of EEMU, not only to
diverse data distributions but also to complex models like DeepFM.
This case study reinforces EEMU’s ability to adapt to different
fundamental recommendation models while preserving excellent
performance, further demonstrating its practical applicability to a
wide range of recommendation scenarios.

A.2 Case Study 2: User-wise exact unlearning
Although EEMU is designed for scenarios where deletion requests
occur at the interaction level, we believe that a robust machine
unlearning framework should also support user-wise deletion re-
quests, allowing users to request the removal of all their data. To
asses how EEMU generalizes to such scenarios, we followed [25] by
running experiments where 5% and 10% of the users were randomly
chosen for deletion to mimic user-wise unlearning requests. The
results of the user-wise unlearning are reported in Table 9, where
HR@10 results are presented while varying the 𝑞% of users deleted
at random. The percentages in parentheses represent the degra-
dation for each baseline compared to RETRAIN. We observe that
EEMU still outperforms the baselines and that the same conclusions
for interaction level unlearning still hold.

A.3 Case Study 3: Reptile
To further demonstrate the effectiveness of meta-learning in our set-
ting, we conducted additional experiments using Reptile [30] as the
meta-learning algorithm. Reptile updates the model by performing
multiple gradient steps on sampled tasks and taking a first-order
approximation of the model update. Our results show that Reptile
achieves performance comparable to MAML across all datasets that
it outperforms all baselines, as reported in Table 10. This similarity
suggests that the core advantage of meta-learning in our setting
stems from the ability to quickly adapt to new tasks rather than
the specific optimization strategy used.

B Implementation Details
Our model is implemented entirely in PyTorch [33] and all experi-
ments are conducted on a server consisting of eight Nvidia RTX 5000
GPU and an AMD EPYC 7502 32-Core CPU. For a fair comparison
we use the same fundamental recommendation model architecture
specifications for EEMU and all baselines, and use the GeLU acti-
vation function [20] and layernorms between layers. Specifically,
we adopt a common tower structure, wherein higher-layer hidden
dimensions contain half the number of neurons compared to their
lower layers. The Adaptive Moment Estimation (Adam) [23] is cho-
sen as the optimizer. Learning rate and batch size are determined
via grid search within the ranges of {0.2, 0.02, 0.002, 0.0002, 0.00002}
and {32, 64, 128, 512, 1024}, respectively. The number of shards used
for all experiments in this paper is set to 8 shards except for the

experiments conducted to produce the results shown in Figure 3,
Figure 5(c) and Figure 5(d), where we vary the number of shards
to study its effect on efficiency and recommendation performance
degradation. Similarly, an adaption set of size 7 is used for all ex-
periments in this paper except for the experiments conducted to
produce the results shown in Figure 5(a) and Figure 5(b), where we
vary the size of the adaptation set to study its effect on the recom-
mendation performance degradation. For the results in Figure 7(d),
we set the number of clusters 𝐾 to 25.

710

Meta-Learn to Unlearn: Enhanced Exact Machine Unlearning in Recommendation Systems with Meta-Learning Proceedings on Privacy Enhancing Technologies 2025(4)

MovieLens-1M BookCrossing Gowalla Epinions

Baseline HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

RETRAIN 0.06970 0.03360 0.02873 0.01340 0.05090 0.02348 0.03082 0.01480

MRA 0.06076 (12%) 0.02967 (11%) 0.01698 (41%) 0.00755 (43%) 0.00918 (81%) 0.00408 (82%) 0.01964 (36%) 0.00899 (39%)
ItemC 0.06192 (11%) 0.02950 (12%) 0.01741 (39%) 0.00825 (38%) 0.01202 (76%) 0.00542 (76%) 0.01855 (39%) 0.00908 (38%)
JS_Div 0.06242 (10%) 0.02988 (11%) 0.01829 (36%) 0.00913 (31%) 0.01218 (76%) 0.00573 (75%) 0.01964 (36%) 0.00953 (35%)
Mean 0.06258 (10%) 0.02966 (11%) 0.01785 (37%) 0.00876 (34%) 0.01235 (75%) 0.00587 (74%) 0.02046 (33%) 0.00947 (36%)

GraphEraser 0.06325 (9%) 0.02972 (11%) 0.01741 (39%) 0.00902 (32%) 0.01218 (76%) 0.00569 (75%) 0.02019 (34%) 0.00946 (36%)
RecEraser 0.05795 (16%) 0.02819 (16%) 0.01959 (31%) 0.00965 (27%) 0.01986 (60%) 0.00897 (61%) 0.01882 (38%) 0.00875 (40%)
UltraRE 0.06341 (9%) 0.02984 (11%) 0.01872 (34%) 0.00920 (31%) 0.01152 (77%) 0.00498 (78%) 0.01855 (39%) 0.00922 (37%)

EEMU 0.06490 (6%) 0.03199 (4%) 0.03396 (0%) 0.01756 (0%) 0.05189 (0%) 0.02426 (0%) 0.02319 (24%) 0.01236 (16%)

Table 8: Comparison against baselines by HR@10 and NDCG@10 for DeepFM as a fundamental recommendation model.

MovieLens-1M BookCrossing Gowalla Epinions

Baseline 𝑞 = 5% 𝑞 = 10% 𝑞 = 5% 𝑞 = 10% 𝑞 = 5% 𝑞 = 10% 𝑞 = 5% 𝑞 = 10%

RETRAIN 0.07235 0.07114 0.03108 0.03103 0.05371 0.05334 0.03209 0.03163

MRA 0.05877 (19%) 0.05856 (18%) 0.01989 (36%) 0.01980 (36%) 0.01216 (77%) 0.01194 (78%) 0.01929 (40%) 0.01906 (40%)
ItemC 0.05966 (17%) 0.05862 (18%) 0.02466 (21%) 0.02452 (21%) 0.01723 (68%) 0.01710 (68%) 0.01975 (38%) 0.01963 (38%)
JS_Div 0.05985 (17%) 0.05934 (17%) 0.02524 (19%) 0.02492 (20%) 0.01636 (70%) 0.01606 (70%) 0.01879 (41%) 0.01860 (41%)
Mean 0.05950 (18%) 0.05884 (17%) 0.02531 (19%) 0.02487 (20%) 0.01636 (70%) 0.01612 (70%) 0.01945 (39%) 0.01925 (39%)

GraphEraser 0.06074 (16%) 0.06013 (15%) 0.02561 (18%) 0.02520 (19%) 0.01745 (68%) 0.01724 (68%) 0.01899 (41%) 0.01872 (41%)
RecEraser 0.05578 (23%) 0.05539 (22%) 0.01868 (40%) 0.01844 (41%) 0.02170 (60%) 0.02139 (60%) 0.02177 (32%) 0.02153 (32%)
UltraRE 0.05851 (19%) 0.05811 (18%) 0.02458 (21%) 0.02449 (21%) 0.01639 (69%) 0.01620 (70%) 0.01908 (41%) 0.01884 (40%)

EEMU 0.06557 (9%) 0.06466 (9%) 0.03949 (0%) 0.03917 (0%) 0.05653 (0%) 0.05564 (0%) 0.02578 (20%) 0.02560 (20%)

Table 9: Comparison against baselines by HR@10 after randomly removing 𝑞% of users.

MovieLens-1M BookCrossing Gowalla Epinions

Baseline HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

RETRAIN 0.07235 0.03555 0.03135 0.01446 0.05391 0.02531 0.03219 0.01518

MRA 0.05927 (18%) 0.02837 (20%) 0.02003 (36%) 0.00988 (32%) 0.01218 (77%) 0.00609 (76%) 0.01937 (40%) 0.00909 (40%)
ItemC 0.05977 (17%) 0.02934 (17%) 0.02481 (21%) 0.01230 (15%) 0.01736 (68%) 0.00874 (65%) 0.01991 (38%) 0.00904 (40%)
JS_Div 0.06026 (17%) 0.02876 (19%) 0.02525 (19%) 0.01204 (17%) 0.01636 (70%) 0.00756 (70%) 0.01882 (42%) 0.00915 (40%)
Mean 0.05993 (17%) 0.02908 (18%) 0.02537 (19%) 0.01317 (9%) 0.01643 (70%) 0.00761 (70%) 0.01964 (39%) 0.00906 (40%)

GraphEraser 0.06093 (16%) 0.02930 (18%) 0.02569 (18%) 0.01236 (15%) 0.01752 (68%) 0.00841 (67%) 0.01909 (41%) 0.00886 (42%)
RecEraser 0.05613 (22%) 0.02684 (25%) 0.01872 (40%) 0.00871 (40%) 0.02170 (60%) 0.01103 (56%) 0.02182 (32%) 0.00953 (37%)
UltraRE 0.05894 (19%) 0.02863 (19%) 0.02481 (21%) 0.01294 (11%) 0.01652 (70%) 0.00789 (69%) 0.01909 (41%) 0.00896 (41%)

EEMU (Reptile) 0.06581 (9%) 0.03256 (8%) 0.03528 (0%) 0.01644 (0%) 0.05624 (0%) 0.02661 (0%) 0.02557 (21%) 0.01205 (21%)
EEMU (MAML) 0.06589 (9%) 0.03299 (7%) 0.03962 (0%) 0.01985(0%) 0.05674 (0%) 0.02691 (0%) 0.02591 (20%) 0.01218 (20%)

Table 10: Comparison against baselines by HR@10 and NDCG@10 showing EEMU that employs Reptile as meta-learning
algorithm.

711

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Exact Recommendation Unlearning
	2.2 Meta-Learning
	2.3 Recommendation Model Architecture

	3 Related Work
	4 EEMU
	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation Criteria
	5.4 Results
	5.5 Ablation and Sensitivity Analysis

	6 Batch Inferencing
	6.1 Clustering based on task similarity
	6.2 Effect on ranking performance and efficiency

	7 Future Work and Conclusion
	Acknowledgments
	References
	A Case Studies
	A.1 Case Study 1: EEMU on another fundamental recommendation model
	A.2 Case Study 2: User-wise exact unlearning
	A.3 Case Study 3: Reptile

	B Implementation Details

