CenPush: Blocking-Resistant Control Channel Using Push
Notifications

Piyush Kumar Sharma

Diwen Xue

Aaron Ortwein

University of Michigan University of Michigan University of Michigan
piyushks@umich.edu diwenx@umich.edu aortwein@umich.edu
Cecylia Bocovich Harry Roya Ensafi
Tor Project Independent University of Michigan
cohosh@torproject.org ensafi@umich.edu
Abstract and dissent, which temporarily surges the usage of circumvention

The rapid increase in global censorship events has stimulated a
substantial growth in users relying on circumvention tools. Fight-
ing against censors requires tool maintainers to frequently update
client-side configurations and proxy IPs. However, existing methods
for doing so require clients to explicitly query for updates. Further,
this client-initiated communication relies mostly on ad-hoc and
out-of-band channels.

This work demonstrates the utility of push notification services
as an efficient and sustainable communication channel between
tool maintainers and their clients. A push notification channel al-
lows tool maintainers to update client configurations automatically
without the need for clients to initiate a query themselves. We de-
velop a general-purpose design for integrating push notifications as
a control channel in circumvention tools. We utilize the design to
integrate and implement push notifications for use in the popular
circumvention tool Tor and demonstrate their utility to push bridge
line updates to Tor clients.

1 Introduction

The past decade has witnessed a notable and concerning surge
in censorship and surveillance activities worldwide. Recent re-
ports [20, 43] show a dangerous precedent where censorship is
no longer limited to a small set of known censors, but has risen dra-
matically to now impact a large number of global regions [36, 54, 68].
Freedom House [33] reports a consistent decline in the number of
“free countries,” with only 17% of the world’s population having
uncensored access to the Internet.

Growing restrictions on access to information have in turn forced
citizens of censored nations to utilize circumvention technologies.
As a result, circumvention tool developers have reported high user
growth. For instance, the popular circumvention tool Tor had about
20k daily average concurrent users in 2016, while by the end of
2023, this number had increased to 200k.! Further, the conflict
between censors and their citizens often results in political unrest
Note that this is a conservative estimate as the number represents only the users
that rely on Tor bridges or pluggable transports (which are explicit methods for using
circumvention), with the actual number reaching as high as 3-4 million (including
users directly connecting via the public Tor relays).
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(4), 712-727

© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0153

This work is licensed under the Creative Commons Attribu-

712

tools. For example, just before the Russian invasion of Ukraine [11],
there was a notable increase in the number of circumvention tool
users in Russia, with Tor reporting a rise from 12.5k to over 40k [7].
An even more significant spike was observed during the protests
in September 2022 in Iran, with the number of users temporarily
increasing from 1k to around 180k [12].

Fundamental issues with a control channel in circumven-
tion systems. The cornerstone for circumvention tools’ long-term
and efficient functioning is a blocking-resistant communication
channel for conveying important control information between the
tool maintainers and their users. A client typically relies on such a
communication channel at various stages of the tool usage, ranging
from first contact (or bootstrapping) to continuous subsequent com-
munication for obtaining updates to the circumvention protocol
and configuration details such as proxy IP addresses or connec-
tion parameters (refer to Section 2.1 for details). While domain
fronting [32] has long served as one of the solutions for such a com-
munication channel, its support has been discontinued by many
major providers [9, 16]. Other channels for facilitating such com-
munication in popular tools are primarily ad-hoc and unorganized,
relying on out-of-band communication such as emails, querying
on forums, or visiting a website (refer to Table 1). Moreover, ex-
isting solutions for these control channels require the client to
initiate requests for proxy or configuration updates. This process
becomes highly challenging in environments with extensive cen-
sorship, where client requests are aggressively filtered. If tool devel-
opers could update clients’ configurations without needing client-
initiated connections, it would enable a more robust, sustainable
circumvention approach.

Novel use of push notifications for control communication.
We present the design and implementation of the first server-
initiated communication channel for automated updates of circum-
vention clients by leveraging push notification services. Application
servers traditionally use push notification services to deliver short,
time-sensitive messages to mobile and desktop client applications.
Push notification services use a separate connection for sending
notifications, which works independently of the direct client-to-
server connection. For example, when a client receives an email in
its mailbox, the mail server requests the push notification service to
send the user a notification informing them of the new email. The
service then delivers the notification to the client device on behalf of
the mail server application. The client then directly connects with

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0153

CenPush: Blocking-Resistant Control Channel Using Push Notifications

the email server to retrieve the email. Thus, even if the direct client-
to-server communication channel is blocked, the applications can
still receive push notifications. Moreover, push notification services
are highly centralized as individual applications mostly use the
same providers to send notifications—Android applications depend
on Google Firebase Cloud Messaging (FCM), while iOS applications
rely on Apple Push Notification Service (APNS). Therefore, block-
ing the notifications of individual applications would also require
blocking the push notification services themselves, preventing all
applications on the same platform from receiving any notifications.
Thorough assessment of push notification as control channel.
We evaluate the suitability of push notifications to serve as an effi-
cient control channel by testing it for multiple requisite properties.
These properties include high collateral for blocking, resistance
to fingerprinting, reliability, sufficient data-carrying capacity, ease
of integration, and low cost. To evaluate collateral, we first note
that push notifications have become a widely integrated feature in
mobile and desktop applications, with over 700 billion messages
sent to 660 million monthly active users by a single platform in a
year [10]. Further, there is currently no alternative mechanism that
offers a similar functionality. As a result, blocking push notification
services outright can cause significant collateral for the censors.
To affirm this further, we performed large-scale and longitudinal
measurements across regions and networks to test for potential cen-
sorship practices against push notification services. We used the re-
mote HTTPS censorship measurement technique Hyperquack [53]
to test the reachability of push notification domains across 188
countries. The technique relies on crafting and sending HTTP(s)
requests to the target network’s open web servers and observing
the response for any interference by network intermediaries (such
as middleboxes). Our analysis of over 3.6 million measurements
indicates that only a few ASes (< 0.01% measurements) occasion-
ally interfere with push notification domains, with no evidence of
blocking by well-known censoring countries such as China and
Russia during our year-long measurement period. We also evalu-
ated push notifications for other requisite properties (reliability,
ease of integration, cost, etc.) for an effective control channel and
found it to be a suitable channel for delivering control information
(refer to Section 4). We support our evaluation of these properties
by partnering with an ISP and leveraging real data to substantiate
claims about suitability. For instance, we measure the realistic noti-
fication sizes as observed by the ISP and compare them with the size
of the notification generated when we send control information,
finding that circumvention notifications are non-trivial to block.
Integration and deployment efforts in popular circumven-
tion tools. While the use of push notifications as a full-fledged cir-
cumvention channel has been preliminarily studied [67] and found
to be unrealistic for practical purposes, in this work, we establish
the efficacy of push notifications as a control channel and lay down
the design for integrating it as a transport for control information in
circumvention tools. We then demonstrate the practicality of such a
transport by integrating it for use with Tor. We modify the popular
and open-source Tor client application, Orbot [19], and provide
support for receiving and automatically updating bridge lines using
push notifications. We are working with the Tor anti-censorship
team and Orbot developers to deploy push notifications transport
as a control channel soon. We also highlight various challenges

713

Proceedings on Privacy Enhancing Technologies 2025(4)

encountered in the integration and realistic deployment consid-
erations (e.g. privacy implications) along with their solutions in
Section 5.1. Further, we collaborated with another popular circum-
vention tool CTZ,? which is currently in the advanced stages of
integrating push notification into their ecosystem.

Applicability and potential beyond popular circumvention
tools. Beyond direct contribution towards alleviating control chan-
nel challenges of popular and widely used circumvention tools, the
push notification transport has immense potential for mitigating
problems that cannot be addressed with existing client-initiated con-
trol channels and for catalyzing the latest circumvention strategies.
For example, emerging circumvention designs such as Proteus [64]
and WATER [29] can solve their major challenge of communicating
protocol updates using push notifications (see Section 6 for details).

Overall, the integration into popular circumvention tools clearly
demonstrates the potential and utility of a server-initiated commu-
nication channel built using push notifications.

2 Background
2.1 Circumvention Tool Life Cycle

In this work, we focus on circumvention tools that rely on infras-
tructure outside the censored region to provide access to blocked
content. In the typical life cycle of such a circumvention tool, the
client first performs a bootstrapping step, which we generalize here
as facilitated by a single configuration server. This bootstrapping
step can include distributing and exchanging proxy IP addresses,
encryption keys, or connection configuration parameters. The con-
nection to the configuration server occurs using one or several
highly censorship-resistant out-of-band channels, sometimes called
signaling channels [63]. The client then connects to the circum-
vention tool to access censored content until their connection fails
due to censorship or a service outage. At this point, the client
must repeat the bootstrapping step by contacting the configuration
server using the same out-of-band channels. This process repeats
indefinitely during the circumvention tool’s life cycle.

We give an example of the circumvention tool life cycle for a
proxy-based circumvention tool architecture in Figure 1. During
the bootstrapping step, the client receives connection information
for a proxy from the configuration server. When the proxy be-
comes blocked, the client contacts the configuration server again
to receive a new proxy. This life cycle generalizes to other archi-
tectures as well. For a circumvention tool like meek, which uses
domain fronting [32], the bootstrapping step requires sending the
front domain and destination URL of the proxy server to the client.
If the front domain becomes blocked by its TLS SNI or switches
cloud providers, the client’s connection will cease to work, and
the client will need to ask the configuration server for an updated
configuration.

Previous work shows that determined censors can detect and
block circumvention tools despite the measures taken by the tool
maintainers [1, 21, 27, 31, 35], effectively requiring continuous
innovation in the obfuscation methods, updated configurations, or
new proxies. The success of the existing tools greatly depends on

2 Actual name anonymized.
3We could not directly integrate push notification in CTZ as its source code is not
publicly accessible.

Proceedings on Privacy Enhancing Technologies 2025(4)

Circumvention Tool

Updated
Proxy

E:)

Destination
Server

GX els]c]

NEWS

Config
Server

o e 3

Bootstrapping
1

Client Censor Proxy

E:)

'
Access Censored Website
4B

'
Proxy Blocked

Request New Configuration
'

1
Access Censored Website

M\ g

Figure 1: Circumvention Tool life cycle: A tool undergoes
bootstrapping, accessing censored content, getting the proxy
blocked, and obtaining new configurations for subsequent
connections.

the effectiveness of the communication channel between the client
and the configuration server to convey such updates.

2.2 Push Notification

Push notifications enable application servers to deliver important or
time-sensitive messages (e.g., notification of a new email) to client
devices, even when the user is not actively accessing the client
application. Essentially, push notification services function through
a separate channel independent of direct client-to-application com-
munication. The push messages are sent through push notifica-
tion service providers such as Google Firebase Cloud Messaging
(FCM) [38], Apple Push Notification Service (APNS) [23], and Mi-
crosoft Push Notification Services (WNS) [46]. While many other
push notification service providers also exist, most utilize the same
underlying popular providers.

Push notifications have seen significant growth in their usage
across the globe. Currently, FCM and APNS dominate the mobile
push notification landscape [14]. FCM also serves a vast majority
of browser push notifications, delivering notifications to Chrome
and other Chromium-based browsers and accounting for over 95%
of all web-based push notifications [8]. Regarding usage, a third-
party provider reported sending over 700 billion Android and iOS
push notifications to about 660 million monthly active users [10]. In
terms of revenue, a study projects a 4X increase from about 2 billion
to 8 billion USD by 2032 [15]. WNS and APNS are responsible for
push notifications to all Windows and macOS systems, respectively.

The implementation of push notifications generally conforms to
a publish-subscribe model. First, a newly installed application must
undergo an enrollment procedure by contacting a push notification
provider. Following this, the client device acquires a device and
app-specific registration token. Next, the client sends this token to
the application server. To send a notification, the app server sends
arequest to the push notification provider. This request includes a
custom payload and identifies the clients that should receive the

714

Piyush Kumar Sharma, Diwen Xue, Aaron Ortwein, Cecylia Bocovich, Harry, and Roya Ensafi

notification via their registration tokens. The push notification
provider then delivers the notification to the target devices.

3 Need For Effective Server to Client Channels

Censorship circumvention systems regularly face blocking attempts
by censors. When successful, these attacks disconnect tool clients
from their proxies and the tool back-end. Numerous studies [1,
21, 25] have exposed the different ways in which censors identify
the use of circumvention services, including attacking the boot-
strapping process [1], fingerprinting the usage of the tool by their
different implementations of standard TLS libraries [1, 6], and ac-
tively probing for the presence of a circumvention service [31]. Such
consistent efforts by censors force tool maintainers to come up with
workarounds and regular updates to their protocols and systems.
While part of the resolution is to develop systems that support on
the fly updates of parameters and protocols, the main challenge for
the tool maintainers is to disseminate these updates and associated
information to their end users. Solving this challenge requires the
presence and availability of an unblocked channel between the tool
developers and the tool users.

However, currently, users rely on temporary and mostly ad-hoc
methods of communicating with the back end. These methods
involve using the out-of-band channels to query for information
by visiting websites, sending emails, or inquiring around in online
forums and group chats [17, 18]. Not only is the current process
cumbersome, as users sometimes have to request updates out-of-
band and manually load the configurations into their software client,
but in some instances, it can also pose a risk when users have to
ask around in public online forums.

For a concrete understanding of the existing methods, we sur-
veyed popular circumvention tools and the techniques they employ
for such communication. Table 1 highlights the methods and en-
tities for initial and post-blocking communication of five popular
circumvention tools. For example, Snowflake users rely on built-in
configurations or a domain-fronted control channel called Moat
to learn how to configure their client and communicate with the
Snowflake broker. Users then repeatedly poll the Snowflake broker
and connect to the bridge over currently available Snowflake prox-
ies. When a censor blocks Snowflake by targeting the connection
to the broker or blocking access to STUN servers, the client must
obtain a new configuration to circumvent the block. Overall, we
observe that popular tools mostly rely on email or domain fronting
to contact and receive updates, with some of them relying on in-
stant messaging bots or sending steganographed web requests to a
supportive Internet service provider. While domain fronting has
been extensively used in the past decade, its usage has considerably
declined because of decommissioning by many fronting service
providers [9], leaving a void for effective control channels.

Another key observation from analyzing the communication
methods of existing tools is that the client has to initiate a query
to the server for all tasks. These tasks include obtaining new con-
figurations or proxy IPs as well as informing the tool maintainers
of the intent to use their service (registration). Initiating queries
can be difficult for the users, especially after large-scale blocking
events. Such events tend to leave the users stranded and clueless as
the default modes of communication are generally severed (refer

CenPush: Blocking-Resistant Control Channel Using Push Notifications

Proceedings on Privacy Enhancing Technologies 2025(4)

Circumvention Control Channel Circumvention Transport

Tool

Tor (obfs4) Email, Telegram bot, bridgedb, and Domain Fronting obfs4 server

Tor (Snowflake) Built-in configuration, or domain-fronted Moat request Broker rendezvous and WebRTC connection to proxie(s)
Lantern Domain Fronting obfuscated/unobfuscated proxies

Psiphon Email responder Simultaneous connections to different proxies

Conjure TLS requests to websites within an ISP hosting Conjure Phantom hosts (proxies within the ISP)

Table 1: Communication channels for various stages of the circumvention tool usage for five popular tools. The table lists the
methods for the first contact to obtain the initial configuration and the successive contacts post-blocking of the circumvention

tool along with the circumvention transports used by them.

to Section 5 for details). However, if there was a way that allowed
tool developers to (periodically) update the configuration of the
clients without the need for the clients to connect to them, a system-
atic and sustainable process of circumvention could be achieved.*
The presence of an uninterrupted server-to-client channel not only
helps solve existing problems, but can also provide tool maintainers
the flexibility of choosing the set of users and the kind of config-
urations they would want to send at select times. For instance, in
Conjure [34], the client does not receive any confirmation that its
registration was successful. With an independent server-to-client
channel, the client could be more reliably informed about the suc-
cess of its registration. In a nutshell, a server-to-client channel
effectively shifts the burden of ensuring sustainable connections
from normal users to tool maintainers, who are usually more ex-
perienced and technically capable of handling such situations and
taking appropriate actions.

3.1 Required Properties

For the success of a channel aimed at ensuring sustained one-way
communication, there are specific properties that it should satisfy:

3.1.1 High Collateral. The communication channel should not be
trivial for the censor to completely block. There should be pervasive
usage of the channel by benign and legitimate services, such that
blocking it carries high collateral damage for the censor.

3.1.2 Resistance to Detectability. It should be difficult for the censor
to detect the usage of the channel for providing circumvention-
related information by passively analyzing the traffic patterns or
actively probing for extracting out information.

3.1.3 Reliability. The channel should be able to deliver the required
information reliably to the receiver. In case of potential information
loss, there should be overlay mechanisms in place for ensuring
reliable delivery.

3.1.4 Data Carrying Capacity. The channel should be able to sup-
port sufficient data carrying capacity without leaving an observable
trace of using the channel for a purpose other than its intended
one. For example, if the channel supports an extremely low data
transfer capacity on the order of a few bytes, sending a complete
configuration may require transferring it in several segments—a
behavior that is prone to recognition by passive traffic analysis.

“Note that, while the analysis is performed on popular circumvention tools, the ob-
servations apply to any existing or future tool that requires communication between
users and tool maintainers.

715

3.1.5 Ease of Integration. Integrating the channel functionality
into a circumvention tool should not be very complex. This pro-
motes streamlined integration and wider adoption.

3.1.6 Low Cost. Using the channel should not be very expensive,
as it would then become difficult for the tool maintainers to provide
circumvention services to a large user base.

4 Push Notification for Aiding Circumvention

We now investigate the suitability of push notification as an effec-
tive control communication channel by testing it for the desirable
properties established in the previous section.

4.1 High Collateral

Push notifications have been widely adopted and integrated into
mobile, desktop, and web applications as the only means of commu-
nicating relevant information to users in a timely manner. Currently,
push notifications are not only an integral part of users’ daily inter-
actions with their laptops and mobile phones, but they also provide
a competitive business edge to app developers for delivering qual-
ity service. Importantly, no alternative mechanism offers similar
functionality, making push notifications hard to replace if blocked.
Further, some providers even use the same endpoints as the push
notification service to provide other services. Blocking a push no-
tification service can thus cause significant collateral damage and
directly impact the end-users and businesses that rely on it.

To strengthen this claim, we performed two concrete measure-
ments. The first examines the prevalence and pervasiveness of push
notifications among users by partnering with a regional ISP. The
second measurement quantifies the availability and reachability of
push notifications across regions and over time with active mea-
surements.

4.1.1 Push Notification Prevalence. Obtaining statistics around
push notification prevalence involved partnering with an ISP serv-
ing more than a million users. Traffic was mirrored from a major
ISP Point-of-Presence to a dedicated monitoring server (fully con-
trolled and supervised by the ISP), with volumes reaching up to
50Gbps.

All processing occurred directly on the ISP-maintained servers,
with strict privacy protocols in place. A Zeek cluster deployed
with custom plugins performed protocol parsing and feature ex-
traction, capturing only limited statistics, such as packet sizes and
timestamps. Our collection was limited to push notification data by
filtering for traffic on the standard ports used by FCM (5228, 5229,

Proceedings on Privacy Enhancing Technologies 2025(4)

5607 (GB) 43.13%
15169 (US)
5432 (BE)
1257 (SE)

Z 14754 (GT)
< 1221 (AU)
209 (US)
8151 (MX)
45903 (VN)
4837 (CN)

18.2%
18.17%
17.53%
13.28%
11.31%

8.95%

0.49%
0.34%
I T r T T
00 01 02 03 04
Proportion of Anomalous Responses

Figure 2: Hyperquack Results: Top 10 ASes (among 1,085 an-
alyzed) in decreasing order of the fraction of anomalies ob-
served. Anomalies fall below 1% starting with 9th ranked AS
(45903).

0.25

.@ —— Russia

T 0.20 —— China

£

o

£ 015

<

o

5010

£

o

§ 0.05

o

0.00 — — . . :
A o IS K\ o ® A
> N N N & N N
L O MO LA CORE (MO

Date

Figure 3: Hyperquack Results for Russia and China: Propor-
tion of anomalous Hyperquack measurements for Russia
and China from October 2023 through October 2024.

and 5230) and APNS (5223); we also ensured that the push notifica-
tion server IP address belonged to ranges published by Apple [22]
and Google [37]. Importantly, no packet payloads were recorded to
disk or inspected by humans at any point during the project. Access
to the extracted feature logs was restricted to select team members
on a least-privilege basis, ensuring both research effectiveness and
protection of user privacy throughout the process. We detail the
ethical guidelines followed while working with the ISP, including
obtaining requisite IRB approval, in Section 6.5.

Overall, we observed 1,970,031 unique push notification con-
nections over the course of a week. On average, 3,407,287 push
notification packets were received each day, with each endpoint
(unique four-tuple) receiving an average of 94 push notification
packets per day. This data showcases that push notifications are
integral to everyday users’ digital interaction and are widely used.

4.1.2 Push Notification Current Blockability. To effectively lever-
age push notification services to bypass censorship, it is essential
that they remain accessible and are not blocked, especially in re-
gions with strict censorship controls. Thus, we perform extensive
measurements to identify any potential censorship targeting push
notification services on a global scale. Our study specifically exam-
ines Google FCM, the world’s leading push notification provider,
and evaluates its accessibility across different regions.

Methodology To measure the blocking of push notification do-
mains, we rely on an efficient HTTPS blocking detection technique

716

Piyush Kumar Sharma, Diwen Xue, Aaron Ortwein, Cecylia Bocovich, Harry, and Roya Ensafi

termed Hyperquack [53]. The technique builds upon the original
Quack [62] system that remotely measures the blocking of URLs
by sending unsolicited HT TP requests with target URLs to Echo
servers and analyzing the corresponding response for blocking
behavior. Quack is limited to detecting only HTTP filtering and
relies on Echo servers, which can be scarce and difficult to find. Hy-
perquack goes beyond this limitation by crafting HTTP(s) requests
and sending them to actual open web servers in target networks.
The web requests are crafted to contain the domains under test
in either the TLS SNI field or the HTTP Host header. After send-
ing the requests, the Hyperquack system monitors the response.
A response from a middlebox enforcing URL or keyword blocking
would be anomalous and characterized by a TCP RST or FIN, censor
blockpage, etc.

We conducted two extensive Hyperquack measurements: a short-
term global scan from October 18, 2024 to November 18, 2024,
and a longitudinal scan of China and Russia—both of which have
previously interfered with Google FCM but lifted blocking due
to the significant disruption caused [3, 67]—from October 1, 2023
to October 31, 2024. We selected Google FCM domains as target
domains for both scans. The full list of these domains can be found
in Table 2 in the appendix.

Results In our one-month global scan, we collected 2,818,901
measurements to public web servers distributed across 188 coun-
tries. We then aggregated results by AS. We consider and analyze
the anomaly results of the ASes where we were able to send and
successfully receive Hyperquack measurements to at least more
than 20 servers within the AS. In our analysis, we find negligible in-
terference of connections to the FCM endpoints, with the majority
of the ASes (> 99%) returning either no anomalies or anomalous
responses for less than 1% of all measurements within the AS. We
show the top 10 ASes with the highest anomalous response rates
in our measurements in Figure 2. Interestingly, the high anomaly
ASes (> 8%) all belonged to countries that lack pervasive censor-
ship, potentially due to transient network updates in those ASes.
These measurements indicate that push notifications are functional
worldwide (as of November 2024), with no existing nation-state
censor blocking it.

Our longitudinal analysis scan comprised 864,079 Hyperquack
measurements to China and Russia over one year. The anomaly
rates over the year for both countries are shown in Figure 3. Overall,
the results clearly show that Russia and China did not engage
in any large-scale blocking attempts over the year, with overall
anomalies staying close to 1-2% on average for China and < 1%
for Russia. Specifically, in China, only 5 ASes account for 72% of
all anomalies, while in Russia, 3 ASes account for over 95% of all
anomalies. Given that a small number of ASes are responsible for
most of the anomalies in these countries, we assume that there have
been no attempts to interfere with push notifications from Google
FCM.

These results corroborate those of Xue et al. [67], who similarly
did not find large evidence of censorship of FCM endpoints. There
was one exception though, where the blocking was observed to
coincide with a national Chinese event that has known to be a time
of extremely heightened censorship. However, our measurements
do not contradict those of Xue et al. as they do not coincide with

CenPush: Blocking-Resistant Control Channel Using Push Notifications

the same duration of these events. However, as reported by [67],
before and after the event, the blockability was again negligible,
highlighting the event likely to be a general precautionary measure
around politically sensitive times rather then a case of targeted
blocking.

4.1.3 Anecdote of Push Notification for Fighting Censors. While
the previous subsections present empirical evidence of the current
blockability and the potential collateral that may deter the censor on
completely blocking push notifications, we now present a real case
study where they were used to resist and fight a censor. On April
13, 2018, a Russian court ordered the blocking of Telegram, and on
April 16, over 1.8 million IP addresses associated with Telegram
were added to the national blocklist [58]. As a countermeasure,
Telegram began issuing push notifications to Russian users, which
included server IPs that the users could use to connect to Telegram
servers [50, 57-59]. Russia tried to enumerate and block the newly
distributed Telegram server IPs and in the process blocked nearly 19
million IP addresses belonging to various providers of Telegram’s
servers [5]. Struggling to keep up with Telegram’s IP rotation,
Russia began targeting Telegram’s ability to send push notifications
to its users. In the process, Russia ended up directly blocking IP
addresses used by various push notification services, including
the most widely used Google’s push notification service [3]. This
resulted in disruptions for businesses and users within Russia while
not drastically impacting the operation of Telegram itself [4]. The
government eventually unblocked push notification services shortly
after. This example demonstrates how push notifications can be
powerful and effective as a measure of resistance to censorship.

4.2 Resistance to Detectability

Clients receive push notification messages from a fixed set of cen-
tralized URLSs, irrespective of the application generating the request
(typically FCM for all Android-related and APNS for Apple-related).
A typical client, on average, receives 46 such push notifications per
day [52] (94 according to ISP data). This allows a small number of
push messages from the circumvention tool to easily blend in with
the existing set of push notifications received by the client—making
it hard for the censor to identify circumvention tool notifications
based on the number of notifications received by the client.

To assess the push notification detectability more concretely,
we performed additional analysis with the help of ISP data, where
we investigated if simple size and timing characteristics may help
the adversary in identifying the circumvention notifications. For
the traffic size, we determined that the average notification packet
size is 596 bytes, which is close to Tor’s bridge configuration lines
size of 510 bytes. We found that there were more than 150 packets
each day with a size of exactly 510 bytes. However, obtaining the
distribution of packet sizes from our analysis can help carefully
curate the notification sizes to minimize the adversary’s advan-
tage, where circumvention notifications can be broken down into
multiple messages or padded to blend in with the distribution of
notification sizes observed. From our data, we found that 48.8% of
packets are larger than Tor’s bridge configuration line. The most
common packet size was 1250 bytes, with over 225K occurrences
per day on average; tool maintainers can pad their notification to
this size to easily blend in. This approach coupled with the fact that

717

Proceedings on Privacy Enhancing Technologies 2025(4)

such notifications would mostly be sent only occasionally for each
user makes it difficult for the censor to identify them.

The second analysis revolves around the adversary’s capability
to identify push notification requests, if a bulk of them are sent at
once, in case of a large-scale censorship event. For this, we analyzed
ISP data and found that there are many bursts where a notification
is sent to a large number of users in a short duration. At any given
second, we observed an average of about 38 notifications received
by client endpoints. We also observed bursts of push notification
activity, with 51 events where more than 1,000 notifications were
received within a second. Developing a filter to drop all notification
packets above a certain threshold will thus carry collateral. How-
ever, the circumvention tools do not need to send all notifications
at once, as they can randomly delay notifications to spread them
out, making it extremely difficult for an adversary to identify and
drop circumvention notifications based on burst notifications.

Further, active probing [31, 35] is a class of attacks where the
censor proactively looks for potential circumvention servers by
pretending to be a legitimate client and then requesting circum-
vention service access. Push notifications are inherently immune
to such attacks because of server-side operation, where a client
can only receive information and updates, but can never use the
notification channel to send information to the server. Lastly, the
TLS-encrypted communication between the push service provider
and the client eliminates the possibility of keyword-based blocking
using DPL

4.3 Data Carrying Capacity & Reliability

Push notification services operate in real-time to deliver time-
sensitive information that requires the user’s attention. Both FCM
and APNS allow a single push message to carry up to 4 KiB of pay-
load, while WNS allows for 5 KiB. The average payload size of push
notification packets (as obtained from the ISP measurements) is 596
bytes, with the upper 50 percentile of packets having a size between
425 and 1460 bytes. A maximum of a few messages are sufficient to
deliver the required circumvention tool information. For instance,
Tor obfs4 would require about 510 bytes for sending a bridge line
with a transport name, IP, fingerprint, and connection parameters.
Additionally, push notifications as a transport automatically ensure
the delivery of content. Even if the client is not connected to the
Internet, the push notification message is stored for a default of
four weeks. Once the client regains Internet access, all the queued
messages are automatically delivered [13].

4.4 Cost & Ease of Integration

The first-party push notification services are offered at no additional
monetary cost, > a significant advantage over other high-availability
systems using cloud providers or blockchain [32, 39]. Moreover,
integrating and customizing the functionality of push notifications
is reasonably easy (as demonstrated in Section 5). The ability of the
client application to process push notification messages without
requiring visible prompts to users enables a seamless user experi-
ence.

5A developer subscription is needed for APNS

Proceedings on Privacy Enhancing Technologies 2025(4)

Circumvention Tool

Push Proxy

Server

] @ B

Config Destination

Server

Updated
Proxy

Xooa
E‘:) 0 NEWS

Client

a

Censor

'
Enroliment

'
Send Registration Token

v
Receive Configuration

Access Censored Website

Proxy Blocked
*’X
Receive Updated Configuration

0
Access Censored Website

Figure 4: Circumvention Tool Life Cycle with push notifica-
tion integration for tools with direct proxy connection.

5 Deployment & Case Studies

We now present the steps for integrating push notifications into
circumvention tools as a transport to facilitate sending control in-
formation. We update the original circumvention tool life cycle and
highlight the change in steps when using such a transport (Figure 4
depicts the modified version). The client first registers with a push
notification provider and obtains a device token for receiving push
notifications. Subsequently, in its initial contact with the configu-
ration server, the client sends the push notification token, which
the server can later use to send notifications via the push notifica-
tion service. Next, the configuration server sends the configuration
(proxy IP and other relevant details) to the client via a push notifica-
tion update. The client then connects to the proxy (directly or with
the help of multiple intermediaries, depending on the tool design)
and accesses the censored content. During this stage, the configura-
tion server can preemptively update the client’s configurations or
proxy via push notification updates as and when required. When
proxy connections are blocked by the censor, the configuration
server can automatically update the client’s configuration, which
is pushed via the push notification service.

Case Studies: Having laid down the foundations of using push
notifications to send updates to clients, we will now demonstrate
concrete instances of integrating and implementing them in cir-
cumvention tools. To that end, we collaborated with popular cir-
cumvention tool developers and explored the integration of push-
notification-based transport while highlighting the practical chal-
lenges associated with realistic deployments.

We start by detailing how we integrated push notifications for
use with Tor, one of the oldest and most popular circumvention
tools. Subsequently, as a collaborative effort, we present the case
study of a popular tool CTZ.> We describe how CTZ currently
handles out-of-band communication with clients and highlight the
challenges and motivations CTZ sees in integrating push notifica-
tions along with their integration efforts.

5.1 Tor Integration

Tor [30] is a volunteer-operated network of relays that provides
anonymity and anti-censorship. In regions with extensive censor-
ship, Tor users rely on the usage of bridges [17], which function

6 Anonymized for review.

718

Piyush Kumar Sharma, Diwen Xue, Aaron Ortwein, Cecylia Bocovich, Harry, and Roya Ensafi

as non-public entry relays to the Tor network. These bridges sup-
port one or more pluggable transports (PTs) [18], which wrap the
connection between the user and the bridge, as a means to evade
blocking.

Bridge and PT configurations are communicated to the user in
the form of bridge lines. Some PTs require the bridge lines to be kept
private from censors because knowledge of the information con-
tained in them would enable a censor to block access to that bridge.
For example, bridges that support the obfs4 PT [49] include the IP
address of the bridge in the bridge line, which may be easily added
to a block list if discovered. Other PTs leverage trade-offs rather
than secrecy to provide blocking resistance. Snowflake [27] and
meek [32] both use domain fronting as part of their anti-censorship
strategy, forcing the censor to make a choice between blocking
the popular, high-profile front domain in order to block access to
the tool. Snowflake additionally relies on the large and ephemeral
pool of temporary Snowflake proxies, which are not disclosed in
the bridge line but provided to the user as part of an interactive
protocol upon system use. As a result, Snowflake and meek bridge
lines may be public, but they still need to be distributed to the user.

Bridge lines are distributed through various methods, dependent
on the level of secrecy required by the PT, and the extent to which
Tor is censored. To obtain bridge lines for PTs that require secrecy,
users may request bridges from Tor’s bridge distribution system
through several channels. Both Orbot and Tor Browser have an
integrated interface for requesting bridges through Moat [60], a do-
main fronted connection to the distribution server. Users may also
request bridges from Tor’s Telegram bot,” through email, or directly
from the website https://bridges.torproject.org. The effectiveness of
the channel, resistance to enumeration, and user experience vary
and may depend on the censorship or support resources available
in the user’s region. Another method is to ship built-in bridge con-
figurations with the client software. Both Tor Browser and Orbot
use this method to provide anti-censorship defaults that are effec-
tive for many users. This distribution method, while simple, is best
suited for PTs who function well with public bridge lines. It is also
slow and costly to release a new software update if a censorship
event requires modifying the PT configuration.

Tor offers a circumvention settings® service to help guide users
in selecting distribution methods and PTs that work well in their
region. For PTs with public bridge lines, it also offers those bridges
lines directly to users. However, this control plane service itself
relies on a censorship-resistant channel. At the moment, both Orbot
and Tor Browser use domain fronting provided by Moat for this
channel, but several recent events concerning the configuration of
this channel have led to losses in connectivity from which users
struggled to recover. We show the impact of one such event using
publicly available Moat usage metrics published by CollecTor’ in
Figure 5. In September of 2023, cdn.sstatic.net, the front domain
used by both Orbot and Tor Browser for Moat at that time, switched

"https://gitlab.torproject.org/tpo/anti- censorship/rdsys/-/blob/main/doc/
telegram.md

8https://bridges.torproject.org/moat/circumvention/map
“https://metrics.torproject.org/collector.html#type-bridgedb-metrics

https://bridges.torproject.org
cdn.sstatic.net
https://gitlab.torproject.org/tpo/anti-censorship/rdsys/-/blob/main/doc/telegram.md
https://gitlab.torproject.org/tpo/anti-censorship/rdsys/-/blob/main/doc/telegram.md
https://bridges.torproject.org/moat/circumvention/map
https://metrics.torproject.org/collector.html#type-bridgedb-metrics

CenPush: Blocking-Resistant Control Channel Using Push Notifications

4000

w
o
o
o

2000

Moat requests

1000

Date

Figure 5: A drop and slow recovery of domain fronted Moat
requests from Iran in September 2023, after the domain
fronting configuration stopped working due to a provider
switch.

its cloud hosting provider from Fastly to Cloudflare.!” This immedi-
ately caused the channel to fail, and recovery required an updated
app installation.

Push notifications offer an alternative, cost-effective, and highly
censorship-resistant means for delivering updates to anti-censorship
configurations and settings in response to blocking events or config-
uration failures. They also provide a significant usability enhance-
ment, enabling the immediate notification of users in the event
of a required settings update. In this work, we focus on their use
for providing access to Tor’s circumvention settings service and
public bridge line updates, but they could also be a powerful tool
for the distribution of secret bridge lines. Secret bridge lines are
more easily blocked, and the bridges themselves are more prone
to churn as volunteer bridge operators join and leave the network.
Allowing users to subscribe to updates would facilitate a speedy
and effective recovery from bridge blockages and outages.

We are working with the Tor anti-censorship team and Orbot
developers to deploy push notification support.

5.1.1 Implementation Details. We implemented push notifications
as a censorship-resistant control plane channel for the distribution
of updates to Tor’s circumvention settings service. We have inte-
grated support for this channel in Orbot [19], a mobile application
that can function as a full-device Tor network VPN. The application
is open source and maintained by the Guardian Project, allowing
us to easily modify and present a prototype.!! Since Orbot is an
Android application, we use Google’s Firebase Cloud Messaging
(FCM) [38] as the push notification service for this work.

Orbot integration Users can opt-in to the use of push notifica-
tions in Orbot’s settings, shown in Figure 6a. Once the user has
enabled support the Orbot client registers with FCM, the Push No-
tification Provider, to get a unique device token. The client then
sends this token, along with an encryption key, to our push no-
tification distributor using the existing control plane channel for

Ohttps://archive.torproject.org/websites/lists.torproject.org/pipermail/anti-
censorship-team/2023-September/000314.html

The distribution server and Orbot integration are available from our companion
page https://people.torproject.org/~cohosh/push-notifications.html.

719

Proceedings on Privacy Enhancing Technologies 2025(4)

the circumvention settings service. This is a one-time step—after
registration, the user is effectively subscribed to updates and will
be able to receive these updates via push notifications even if this
control plane channel fails.

If the user has granted the notifications permission to Orbot, they
will receive a notification when new circumvention settings are
available, shown in Figure 6b, if the available circumvention settings
for a user’s location have changed. Users can tap this notification
to apply the suggested settings. This will open up the settings
configuration view, with the suggested settings displayed, shown
in Figure 6c. The user can then connect to the Tor network using
these settings, which will be saved in the application Prefs for
future use.

From the user’s perspective, the added push notification service
should be transparent, but require informed consent. Our imple-
mentation requires users to opt-in to the use of push notifications
but ensures that user interaction is not required after this step
for the service to function. As Orbot already requests the permis-
sion to post notifications, users will not need to grant the app any
additional permissions beyond its default settings.

Push notification settings distributor The push notification
settings distributor is responsible for managing user subscriptions
and pushing updates to users via FCM, the push notification service.
The distributor listens for user registrations and stores the provided
FCM token and key in a database. The distributor does not store
any additional identifying information about registered users. We
implemented the distributor modularly in Go as an rdsys distrib-
utor,'? so that it may be easily deployed along with the existing
distributors, and easily adapted to distribute secret bridge lines
later.

The distributor periodically fetches up-to-date circumvention
settings in the form of a JSON file exported by the circumvention
settings service.!® It then calculates a diff of the previous and up-
dated settings. If any settings have changed, the distributor sends
the updated settings in a push notification via FCM to the user.

All push notifications sent by the distributor to the user are
signed and end-to-end encrypted. We ship the distributor’s public
key with the Orbot integration, to be used to check the authentic-
ity of received circumvention settings and prevent malicious third
parties, including the push notification service, from modifying
provided bridge lines and configurations in an effort to influence a
user’s entry-point to the Tor network. Although these circumven-
tion settings are already public, we encrypt the contents of our push
notification messages to reduce the information available to third
parties and to easily enable future use of this channel to distribute
secret bridge lines.

5.1.2 Privacy Analysis. While third party services like push no-
tifications offer highly censorship-resistant communication chan-
nels, they also come with privacy risks. This is not unique to push
notifications—domain fronting through a centralized cloud provider
also poses risks to user anonymity and privacy. In this section, we
fully explore the privacy risks in our use of push notifications for

2https://gitlab.torproject.org/tpo/anti-censorship/rdsys/-
/blob/main/doc/distributors.md
Bhttps://bridges.torproject.org/moat/circumvention/map

https://archive.torproject.org/websites/lists.torproject.org/pipermail/anti-censorship-team/2023-September/000314.html
https://archive.torproject.org/websites/lists.torproject.org/pipermail/anti-censorship-team/2023-September/000314.html
https://people.torproject.org/~cohosh/push-notifications.html

Proceedings on Privacy Enhancing Technologies 2025(4)

26 &
1:12 Thu, Nov 28

< Orbot

Censorship Circumvention Settings
|
Enable Push Notifications

Receive updates to suggested settings through push

notification:

Silent
o Orbot
o m

Node Configuration
These are advanced settings that can reduce your

anonymity

Entrance Nodes
Fingerprints, nicks, countries and addresses for the first hop

Exit Nodes
Fingerprints,

your location
s, countries and addresses for the last hop

Apply

Exclude Nodes

Fingerprints, nicks, countries and addre to exclude

Strict Nodes
Treat Exclude Node
building all circui

ettings as a requirement for
This may break functionality ifno (J

generated with your Exclude Manage

Relays

Relaying
Enable your device to be a non-exit relay

Relay Port
Listening port for your Tor relay

(2)

¥ Internet > 3 Bluetooth

New connection settings available

Updated connection settings are available for

o Connected to the Tor Network - 7m
404KiB/s | / 12KiB/s t

(b)

© Do Not Disturb

Piyush Kumar Sharma, Diwen Xue, Aaron Ortwein, Cecylia Bocovich, Harry, and Roya Ensafi

e ¥4 d100%

Choose How To Connect

Some may k better than

Not sure? ASK TOR

_) Direct Connection to Tor

__ Snowflake (Original)
Connects through Tor volunteers. Gets around some Tor
blocking.

*) Bridge from Tor (Obfs4)

Custom Bridge

CONNECT

(©)

Figure 6: Orbot Integration — (a) The user opts in to receive push notifications updates for circumvention settings. (b) When
updates are available, the user will receive a notification that can be tapped to apply the new settings. (c) Settings are saved and

can be applied from the connection configuration view.

sending Tor users updates to circumvention settings and bridge
lines, and how we mitigate these risks in our design.

Push notifications require a constant background connection
between the user’s device and the push notification service in order
to function. When the service receives a message bound for a user’s
token, it can then immediately send that message to the user’s
device through this connection. This connection persists and recon-
nects as users change networks, giving the push notification service
the ability to track users across different networks and monitor
whether or not a user is online. This privacy risk is not specific to
our use of push notifications, and this background connection will
exist for all users with Google services enabled. Below, we focus
on the additional privacy risks of using push notifications with Tor
applications.

Preventing the leak of usage patterns One of our primary
concerns is to not leak the Tor usage patterns of users to either
the push notification service or our distributor. To this purpose,
messages sent through push notifications are never triggered as a
result of user behavior. They are only sent in response to censorship
configuration updates that affect all users in a sufficiently large
anonymity set equally. In our current implementation, updates are
triggered by censorship events, changes to the implementation of
circumvention tools, or service outages only, and can not be tied to
individual users.

720

Preventing guard/bridge discovery Tor relays that act as entry
points to the Tor network are sensitive, as they often see direct
connections from users. A guard discovery attack is any attack
that allows an adversary to determine the entry point of a particu-
lar Tor client. This information can be used to target entry point
relays for coercion or collect analytics data that can be used for
de-anonymization.! For anti-censorship users of Tor, bridges serve
as their entry points to the Tor network.

While our current use of push notifications distributes only pub-
lic settings, additional care should be used if this channel is adapted
to provide secret bridge lines to specific users. We already encrypt
the contents of the push notification messages as a forward looking
measure to prevent the push notification provider from seeing a
user’s bridge information. However, even with encryption, push-
ing immediate updates in response to bridge outages or blockages
may also leak a user’s previous bridge configuration to the push
notification service via metadata. An adversarial service could note
when a user receives an update and cross-reference it with public
metrics on Tor bridge availability. This can be further mitigated by
batching updates in a sufficiently large anonymity set of bridges
and users.

Yhttps://spec.torproject.org/vanguards-spec/index.html#introduction-and-
motivation

https://spec.torproject.org/vanguards-spec/index.html#introduction-and-motivation
https://spec.torproject.org/vanguards-spec/index.html#introduction-and-motivation

CenPush: Blocking-Resistant Control Channel Using Push Notifications

Authentication of circumvention settings Not only do we
wish to keep a user’s bridge configuration private, we also aim to
protect it from modification by a malicious third party. An adversary
with the ability to send configuration settings to a user at will could
successfully manipulate a user into creating a Tor circuit using an
entry relay that they control. This would pose a significant threat to
the user’s anonymity. We mitigate this attack by cryptographically
signing all messages from our push notification service. Our public
key is shipped with the Android application and used to verify the
authenticity of the settings. We additionally include a timestamp
to prevent possible replay attacks.

Limiting collected information The only information collected
by the tool developers is the FCM token needed to direct the push
notification message to the subscribed user and the user’s encryp-
tion key. While the push notification service itself could ostensibly
map these tokens to users, these tokens are distinct across different
apps, and we do not collect or store any additional information
that could be used to uniquely identify users. We specifically avoid
collecting or logging user IP addresses, timing information about
when the user registered, or even a user’s country code. This last
measure may be over-cautious, as the set of users for each country
is sufficiently large, but while we roll this out, we have opted to
send circumvention settings updates to all users and perform the
country check locally on the user’s device to further protect this
information.

Again, additional care should be taken to protect users if this dis-
tributor is adapted for subscriptions to specific bridges. A database
that stores a bridge line with a user’s registration token in order
to push updates if that bridge goes offline or becomes blocked is a
potential target for an adversary who, knowing a user’s registration
token, wishes to perform a guard discovery attack, or get a list of
user identities associated with a specific entry relay.

5.2 Tool CTZ Case Study

We now provide the real-world experience of a popular circum-
vention tool, CTZ,'®> which has millions of monthly active users
worldwide. The organization behind CTZ is primarily focused on
defeating censorship with over a decade of experience in censor-
ship circumvention. CTZ operates in some of the most repressive
regimes in the world.

Users interact with CTZ like a VPN: once the tool is installed and
enabled, browser traffic is directed through the tool as necessary
to circumvent censorship in the user’s region. Behind the scenes,
CTZ operates a global network of proxy servers. Each CTZ client is
assigned a small number of proxy servers and periodically receives
new assignments as individual servers are blocked.

5.2.1 The Control Plane and the Challenges. At times, a CTZ client
can become disconnected from all of its assigned proxy servers.
As a special case, all CTZ clients experience this state when start-
ing up for the first time—a process referred to in this context as
bootstrapping. This disconnected state can occur again if a client
has been turned off for a sustained period of time and all of the
clients’ assigned proxy servers have been rotated. A client might
also become disconnected if a censor blocks all of a client’s assigned

5The tool name is anonymized.

721

Proceedings on Privacy Enhancing Technologies 2025(4)

proxy servers. This is a common phenomenon for users living in
highly censored countries, and the CTZ team has observed numer-
ous instances when a censor blocks hundreds or even thousands
of IP addresses at once, leaving a large share of users disconnected
instantly.

To ensure that the CTZ back-end is able to communicate with
clients in disconnected states, CTZ relies on alternative commu-
nication mechanisms. These alternative channels are unsuitable
for proxying complete user traffic, due to bandwidth and cost limi-
tations. However, these channels are generally more reliable and
harder to recklessly block for the censor in comparison to the direct
client-to-proxy communication. This set of alternative communica-
tion channels becomes what we call the control plane of CTZ.

Currently, the cornerstone of CTZ ’s control plane is domain
fronting. It was introduced in 2015 [32] as a method of sending
traffic to a blocked domain (or the proxy server) via an unblocked
domain. All the cleartext fields in the connection point to the un-
blocked domain, while facilitating a mechanism to contact the
blocked domain inside the encrypted communication. However, do-
main fronting requires support of different platforms with high col-
lateral to host such a service. But over time, many major providers
have discontinued support for fronting services. This leaves a void
for channels that could be considered for the control plane. We
corroborate this impact with data which clearly demonstrates high
error rates with domain fronting requests in censored regions. Fig-
ure 7 depicts two such recent periods where domain fronting could
not be reliably used in censored regions due to errors in connection.
These anomalies occurred in regimes known for extreme Internet
censorship and affected millions of CTZ users. CTZ has not deter-
mined whether these events reflected deliberate attacks on CTZ
’s use of domain fronting. Regardless, during this time, the CTZ
control plane was crippled.

Even outside of such anomalous periods, the error rate for do-
main fronting requests can be significant. CTZ ’s user facing team
sees significant messages on a daily basis from new users who re-
port a failure of the client to connect to any proxies. This failure
to bootstrap is primarily due to a failure to connect to the domain
fronting service. This phenomenon is so common that in some
regions, the CTZ team has observed users posting instructions on
how to bootstrap CTZ using alternative VPNs.

Fundamentally, domain fronting (and other such channels) is
limited as a control plane transport because it is client-initiated. If
CTZ needs to send messages to clients via domain fronting, the
back end must queue these messages until the client connects. If the
client is disconnected from its proxy servers and domain fronting
requests are not functioning, these messages will never be picked
up and displayed to the user. Other components of CTZ ’s control
plane (e.g., telemetry services or one-time emailers) suffer from the
same problem or only support one-way communication (client to
server).

This limitation impacts CTZ users most during times of elevated
blocking. It is during these times that CTZ clients are most likely to
be completely disconnected from the proxy network. During such
times, CTZ ’s team tends to be overrun with support requests (which
they receive through multiple media, including Telegram, Twitter,
GitHub, and even domain fronting). Figure 8 depicts spikes of such
support tickets in a region during elevated blocking. The fact that

Proceedings on Privacy Enhancing Technologies 2025(4)

o o Iy
o © =}

I
S

o
[N}

Domain Fronting Success Rate

o
=}

1 3 5 7 9 11
Day Number

13 15 17

Piyush Kumar Sharma, Diwen Xue, Aaron Ortwein, Cecylia Bocovich, Harry, and Roya Ensafi

g
o

L add
2
©
x 0.8
a
GJ
i 3
5
206
o
£
€
S 0.4
s
£
g20.2
o
a

0.0

1 3 5 7 9 11 13 15 17
Day Number

Figure 7: Two recent periods of elevated blocking in two different regions. The success rate of domain fronting significantly
dropped during blocking events. The exact dates and regions of these events have been anonymized.

Support Tickets (in thousands)
N

‘1 11 21 31 41 51 61 71 81 91

Day Number
Figure 8: Support requests received by CTZ during elevated
blocking in a censored region.

there are thousands of users desperately inquiring and waiting for
updates highlights the need for some information channels from the
control plane to the users. Such an ability to reliably communicate
awareness of an issue to users would be instrumental in helping
mitigate these spikes and ensure the smooth functioning of CTZ.

5.2.2 Utility of a Push Notification Transport. The addition of a
push notification transport to CTZ ’s control plane improves the
ability for the CTZ back-end to serve new proxy configurations
to disconnected clients. This helps keep CTZ clients connected to
the proxy network and in turn, helps keep CTZ users connected
to the open Internet. The addition of a push notification transport
also helps CTZ clients connect to the network when bootstrapping,
improving the experience for new users. For users who experience
high error rates with domain fronting, this improvement could be
substantial.

A push notification transport also adds a new server-initiated
communication channel to the CTZ control plane. This allows the
CTZ team to send messages to users who are experiencing blocking,
along with the flexibility of sending messages tailored to users expe-
riencing specific issues. Server-initiated communication could also
allow the CTZ back-end to distribute software updates—a critical
tool in times of elevated censorship. Though mobile applications
cannot overwrite their compiled software, new tools are being
developed to allow circumvention tools to load new protocol imple-
mentations at runtime [29, 64]. Moreover, server-side control can

722

also help manage and implement a robust load management and
proxy rotation policy, which is not possible with existing transports.

One challenge in using a push-notification-based transport is
that it is a one-way communication channel. While this is limiting,
the server-to-client direction of this channel is unique compared
with other channels in CTZ’s control plane. Existing channels, such
as email, instant messaging, and domain fronting, already provide
client-to-server communication. However, none of these channels
allow communication initiated by the server and directed to the
client. Thus, a reliable, unblocked, and indirect channel from server
to client fills an essential gap in the context of CTZ’s control plane.

Overall, CTZ team places high value for new control plane trans-
ports. The unique capabilities that a push-notifications transport
brings in had catalyzed the CTZ team to integrate PN transport
into their system. Right now, CTZ has already developed client and
backend-server libraries and is in the final stages of review and
approval for deployment.

6 Discussion

6.1 Near real-time Obfuscation Protocols

The evolving censorship strategies adopted by censors have led to
the development of various new circumvention technologies. One
of the recent designs for circumvention aims to provide an adaptive
capability to the circumvention client apps such that they can be
updated to change their circumvention strategy on the fly. This
design diverges from the traditional methods of building circum-
vention systems that aim to design a single technique that is robust
toward blocking. However, these techniques become unusable once
an adversary finds ways to block the system. The new adaptive
designs are helpful in these situations, as once a particular tech-
nique is blocked, the client app can be updated to another advanced
strategy. In contrast, the traditional method requires recreating and
resending a new client app. Two such adaptive approaches aim to
facilitate modifying the client app without needing to download
a new separate app. The first is Proteus [64], which provides a
programmable way of changing the obfuscation methods of the
client traffic. The change requires specifying the obfuscation in the
language’s syntax and sending only a few programmable lines to
the client app. The second design is WATER [29], which utilizes
WebAssembly to allow for modifications to the client app. Each
modification requires sending a small-sized binary to the client

CenPush: Blocking-Resistant Control Channel Using Push Notifications

that can be processed by the WebAssembly-based client app. A
third work on similar principles for anonymous communication
networks is FAN [55].

However, one fundamental challenge for such designs to succeed
is having a channel to transfer the modification information to
the client. While currently these designs assume some existing
client-initiated or out-of-band channel to do this, the PN-based
channel is the perfect solution for this requirement. With a PN
channel, these designs can push updates (either small binaries or
protocol specifications) directly to the client app in response to any
advancement of the censor methodology. We leave the integration
of PN to such designs as part of future work.

6.2 Collusion Defense

A nation-state adversary attempting to restrict PN transport can
try to coerce the push notification providers to identify and block
notifications. This would require the platform to comply with and
block push notifications for apps used for circumvention. However,
a crucial aspect for this approach to succeed is identifying the app
to block the push notifications for. It may be straightforward to
download the circumvention client app and block the notifications
corresponding to it. However, it will be very difficult to block the
notifications for apps that are not used for circumvention but pro-
vide benign functionalities. For example, if the circumvention app
could read push notifications of any benign app, the only option
for the adversary would be to then block notifications for all apps.
While this approach sounds promising to resist collusion based
blocking, it requires the circumvention app to have the capability
to read the notifications of all apps on the device. While this is
possible on a rooted or jailbroken phone, such a requirement would
not work for non-technical users and would hinder practicality.

To overcome this, we find that there is a class of services known
as accessibility services that can facilitate reading notifications
of all apps without needing to root the phone. Accessibility ser-
vices are used for facilitating access for people with disabilities
and allow apps to monitor and interact with system notification
events. To use this service it needs to be declared as a permission
in the AndroidManifest.xml file with a service component that
extends AccessibilityService (it specifies the event types the
app is allowed to monitor and ensures the app only accesses rel-
evant data like notifications). The new XML file that defines this
service component, specifying the exact event type, is the TYPE_-
NOTIFICATION_STATE_CHANGED. Further, one needs to define the
logic for detecting and processing the notifications once a notifi-
cation event has been generated. Once a notification is detected,
one can log the package name (to identify the app sending the
notification) and extract notification text content, enabling the app
to process this information.

While this approach is beneficial for resisting collusion, it can put
the user at some privacy risk as the app can read notifications for
all apps. We can minimize the privacy concern by applying filters
to access only the relevant notifications. However, this approach
should strictly be used in severe censorship environments when ev-
idence of collusion is apparent. This is why we do not implement it
by default, but present it as an effective measure against a colluding
adversary.

723

Proceedings on Privacy Enhancing Technologies 2025(4)

6.3 Platform Censorship and Geo-restriction

Push notification providers that consciously support censorship cir-
cumvention may face pressure from the censor, who can threaten to
block or take legal action. The censor may demand that the provider
disable push notifications for circumvention apps or reduce the
bandwidth by lowering the rate limit, rendering push notifications
less useful as a transport. A broader adoption of push notifications
for circumvention purposes will likely motivate censors to impose
stricter technical and policy controls over such communication
channels. However, we note that despite the majority of Google ser-
vices being blocked in China since 2014, push notifications powered
by FCM remain accessible as of November 2024. This observation
hints at the economic and societal repercussions that would arise
from blocking such a service, possibly creating a backlash that
outweighs the benefits of censorship.

Notably, there are some regions where the popular notification
providers such as Google FCM and APNS are not present by de-
fault (e.g. in Iran). Note that the push notification provider takes
this decision and not the censor (e.g., due to sanctions and other
regulations), presenting a special case of blocking where external
factors lead to an unavailability of certain providers in some regions.
However, our solution is not tied to a single provider and will work
as long as any push notification supporting provider is available in
the region.

6.4 Circumvention Settings Distribution

In Section 5.1, we describe our push notification implementation for
the distribution of public bridge configurations with Tor’s circum-
vention settings service. Circumvention tool configurations and
bridge information frequently require updates due to censorship
events, infrastructure changes, and new circumvention features
or technologies. We show a select timeline of recent critical up-
dates to circumvention settings in Figure 9. For each event, we
show the cause of the update. Censorship events are changes to
recommended settings in response to observed changes in censor
behavior in that region. There was a brief 3-4 month blocking of
Tor in the United Arab Emirates (UAE) from November 2022 to
February 2023 during which recommended circumvention tool set-
tings were added, and then removed when the block was lifted.
Infrastructure events are changes in the deployment, hosting, or
provider support for circumvention tools. Of particular note is the
front domain provider change for cdn.sstatic.net that caused the
massive drop in users starting on September 20th, 2023, shown
in Figure 5. There were also several updates due to the deploy-
ment of new features, bridges, or tools. For example, settings with
the new SQS rendezvous channel for Snowflake [51] were rolled
out in China once it was stable enough in December 2024 to be
a fallback setting for the less blocking-resistant domain fronting
configuration.

Although these settings are public, a difficult challenge contin-
ues to be getting updates and changes into the hands of users in
regions that censor access to Tor. Tor Browser and Orbot clients
currently only provide a prompt to fetch new settings over a domain
fronted connection when a user configures their connection or their
current saved settings fail. We face a potential chicken-and-egg
problem by delaying updates to circumvention tool settings until

cdn.sstatic.net

Proceedings on Privacy Enhancing Technologies 2025(4)

Piyush Kumar Sharma, Diwen Xue, Aaron Ortwein, Cecylia Bocovich, Harry, and Roya Ensafi

- Prioritize snowflake in EG (*)

New censorship in UAE (*)

1

Censorship removed in UAE (*)

1

Dec 2022 Sep 2023

- Change Fastly front domains (})

New censorship in MM (*)

Apr 2024 Dec 2024

Nov 2022 Feb 2023
- Prioritize obfs4 use Russia (*)
- Update Snowflake STUN server list (})

- New censorship in EG (¥)

Feb 2024

- Prioritize Snowflake in China (*/+)
- Change Fastly front domain (1)

- Change domain front in IR (*)

Jun 2024

v

New meek bridge for TM (+)

v

- Replace Fastly fronting with CDN77 (})
- Update Snowflake STUN server list (})
- WebTunnel in RU and BY (*/+)

- SQS Snowflake rendezvous in China (+)
- Stop using MS Azure for fronting ()

Figure 9: A timeline of circumvention tool events that required configuration updates. Censorship events are marked with (*),
hosting or infrastructure events with (1), and new technologies with (+).

after all saved Tor configurations have already failed. The reliance
on domain fronting for the receipt these updates, a channel that has
increasingly required frequent configuration changes itself, further
exacerbates this problem. Tor has had to change domain fronting
providers and fronts due to the increased withdrawal of support
and the blocking or discontinuation of front domains. Many of
the events in our timeline are updates to domain fronting config-
urations. Our push notification channel does not have as many
moving parts or the reliance on unaffiliated third-party websites
that would require frequent updates to remain usable. Furthermore,
push notifications allow us to maintain up-to-date and redundant
configurations by pushing recommended settings to users as soon
as they are available.

6.5 Ethics

Research work on censorship and circumvention involves ethical
challenges, and appropriate care is required to ensure minimization
of any harm to the end user. Since our work also involves collab-
oration with an ISP, we took numerous steps to ensure we follow
the ethical guidelines in accordance with the Menlo report [24].
For this, we took approval from the university Institutional Review
Board (IRB). Our research work was evaluated to be "Not Regulated"
by the IRB. However, we still exercise extra care and precaution to
minimize any potential risks from our study.

Specifically, the monitor we use for obtaining statistics is over-
seen and completely controlled by the ISP. Further, the ISP already
has extensive experience working on such projects with third par-
ties and thus has well-established guidelines for ethics and privacy.
The monitor only receives a copy of each packet and thus in no way
affects the normal functioning of the ISP. Further, a Zeek parser is
run on the ISP-controlled monitor and logs only extracted features,
consisting of packet sizes and timing, without including any packet
payloads, essentially not recording any raw traffic. The obtained
logs are further stored on a separate ISP-controlled server where
they are locally processed by a single team member who has re-
stricted access. We would like to stress that no packet payloads are
stored or are accessed in any way by any human.

Push notification services inherently track devices to ensure de-
livery. This tracking introduces a privacy risk as providers could
theoretically monitor or log user activity. We considered such pri-
vacy risks in our Tor integration efforts (Section 5.1.2) to ensure
no harm is brought to the end users. We additionally note that our
work does not introduce any new risk (from the PN provider or

724

individual app maintainer) for the users, other than what is already
present. In fact, having control of the notifications backend, we
take steps not to store any user-related tracking information in the
database.

Lastly, we took appropriate care when performing measurements
to detect the reachability of push notification services using Hy-
perQuack. Our measurements were evenly spread out to ensure no
servers were overloaded because of our measurements. For that,
we choose a maximum of 2 servers per subnet, and we send web
requests every 2 minutes to the same server to avoid overloading.
Further, each scan IP hosted a webserver explaining the purpose of
the measurements with a means to opt out. When opt-out requests
are received, IPs are permanently removed from the scan list.

7 Related Work

Blocking-resistant communication channels have mostly been ex-
plored in the context of mimicry and tunneling-based circumven-
tion systems. Mimicry-based systems such as SkypeMorph [47]
and Censorspoofer [65] were aimed at disguising and mimicking
censored content to look like standard applications’ protocol traffic
(such as Skype calls). However, such systems were shown to be easy
for the adversary to detect and block due to the inherent difficulty
in mimicking all the features of the underlying protocol [40]. Tun-
neling systems [2, 26, 28, 41, 42, 44, 56] are an improvement over
such systems as they do not mimic protocol messages, rather they
use the underlying protocol as-is to transfer covert content. This
ensures that all the features of the underlying protocol (e.g., packet
size) remain unaltered, making the job of the adversary much more
difficult. Raceboat [63] formalizes the usage of tunneling systems
as signaling channels with the help of a conceptual framework.

The channel that has been specifically used for conveying con-
trol information in highly censored regions over the past years
has been domain fronting [32]. It has been integrated in Psiphon,
Lantern, Tor pluggable transports such as Snowflake, and even in
tools such as Massbrowser [48]. However, almost all major organi-
zations have stopped support for domain fronting [9, 16]. Another
interesting one-way communication channel was proposed in Tap-
dance [66] and is currently being used in Conjure [34]. The channel
steganographically hides information in the TLS payload.

Despite being highly efficient, both of these channels (and other
mimicry and tunnelling-based channels) are client-initiated, with
the TLS-based channel in Conjure completely bypassing server-
to-client communication. However, the push-notification-based

CenPush: Blocking-Resistant Control Channel Using Push Notifications

channel, as proposed in this work, is the first server-to-client chan-
nel that is implemented in popular circumvention tools. Note that
push notification in the context of circumvention has been initially
explored [67]. The previous work discussed and presented the fea-
sibility of a full-fledged two-way circumvention channel, where the
server to client communication was done using push notification,
but the client to server communication required a separate channel.
However, the one-way characteristic of push notifications makes
any full-fledged circumvention tool design impractical, essentially
requiring another asynchronous channel to support two-way com-
munication. Our work uses PN as a control channel and attempts to
solve long-standing issues for the ecosystem with close collabora-
tions among active CTs and uses real ISP collaboration to strengthen
claims around detection, which is valuable for the community and
end-users. In a nutshell, our work advances previous work on push
notification by designing and working out deployment challenges,
and also provides an alternative for the critical control communica-
tion in circumvention tools.

8 Conclusion

The sustainable way of fighting censorship is to continuously evolve
circumvention technology. However, the core challenge in achiev-
ing such sustainability is for the tool maintainers to be able to
continuously communicate protocol or proxy IP updates to end
users.

Thus, in this paper, we explored the use of push notification
services to maintain a stable channel of communication between
circumvention tool servers and their clients. Our measurements
suggest that adversaries are wary of censoring push notification
services due to the potential for high collateral damage. We demon-
strate the utility of push notifications by studying various popular
circumvention tools and show real-world cases where integrating
push notifications is useful. We successfully integrated push noti-
fications for use in Tor to automatically push bridge line updates
and are in the advanced stages of integration and deployment in
another popular circumvention tool.

Acknowledgments

The authors are thankful to the anonymous reviewers for their con-
structive feedback. We also thank the Tor Project and the Guardian
Project for feedback on our implementation, Mike Perry for his
assistance in the threat modelling and privacy analysis of push
notification use with Tor, Eric Wustrow and Amir Houmansadr
for their insightful feedback on the paper, Armin Huremagic for
helping with the Hyperquack measurements, and Ye Shu for help-
ing with the initial Orbot Integration efforts. This material is based
upon work supported by the National Science Foundation under
Grant Numbers CNS-2237552 and CNS-2141512.

References

[1] 2015. Timeline of Tor censorship. https://www1.icsi.berkeley.edu/~sadia/tor_
timeline.pdf.

2018. DNS tunnel over DNS over HTTPS (DoH) or DNS over TLS (DoT) resolvers.
https://www.bamsoftware.com/software/dnstt/.

2018. Google confirms some of its own services are now getting blocked
in Russia over the Telegram ban. https://techcrunch.com/2018/04/22/
google-confirms- some-of-its-own- services-are-now- getting-blocked-in-
russia-over-the-telegram-ban/.

(2]
(3]

725

[4]

[5]

(11]

=
o

=
&2

[21]

[22

[23

[24

[25

[27

(28]

[29

(30]

[31

[32

[33

[34

Proceedings on Privacy Enhancing Technologies 2025(4)

2018. Russia asks Apple to remove Telegram from the App Store.
https://www.theverge.com/2018/5/29/17406178/russia- telegram-apple-app-
store- censorship.

2018. Russia’s game of Telegram whack-a-mole grows to 19M blocked
IPs, hitting Twitch, Spotify and more. https://techcrunch.com/2018/04/19/
russias- game- of-telegram-whack-a-mole-grows-to- 19m-blocked-ips- hitting-
twitch-spotify-and-more/.

2021. Cyberoam firewall blocks meek by TLS signature. https://groups.google.
com/forum/#!topic/traffic-obf/BpFSCVgi5rs/.

2022. Increase of Tor users in Russia. https://metrics.torproject.org/userstats-
bridge-combined.html?start=2021-12-01&end=2022-03-10&country=ru.

2023. 15 Must-Know Web Push Notification Statistics. https://gravitec.net/blog/
15-must-know-web-push-notification-statistics/.

2023. Amazon follows Google to block domain fronting. https://
www.bleepingcomputer.com/news/cloud/amazon-follows-google-in-banning-
domain-fronting/.

2023. The Great Push Notifications Benchmark 2024. https://batch.com/
ressources/etudes/benchmark-notifications- push-crm-mobile.

2023. How the Russian Government Silences Wartime Dissent.
https://www.nytimes.com/interactive/2023/12/29/world/europe/russia-
ukraine-war-censorship.html.

2023. Increase of Tor users in Iran during Mahsa Amini protests.
https://metrics.torproject.org/userstats-bridge-country.html?start=2022-
08-01&end=2023-01-02&country=ir.

2023. Lifespan of a Push Notification message in Google FCM. https://firebase.
google.com/docs/cloud-messaging/concept-options#ttl.

2023. Operating System Market Share Worldwide. https://gs.statcounter.com/
os-market-share/.

2023. Push Notifications Service Market Size, Share, Growth, and Industry Analy-
sis, By Type (Mobile Push, Web Push, In-App Push & Others), By Application (Edu-
cation, Consumer, Government, Entertainment, News Information & Others), and
Regional Insights and Forecast to 2032. https://www.businessresearchinsights.
com/market-reports/push-notifications- service-market-116554.

2024. Fastly to block domain fronting in 2024. https://riskybiznews.substack.com/
p/fastly-to-block-domain-fronting-in-2024.

2024. Getting bridges from Tor. https://tb-manual.torproject.org/bridges/.
2024. Obtaining bridges from Tor. https://tb-manual.torproject.org/
circumvention/.

2024. Orbot: Proxy with Tor. https://guardianproject.info/apps/org.torproject.
android/.

Accessnowcensorship 2023. AccessNow Censorship Archives.
https://www.accessnow.org/tag/censorship/.

Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr. 2020. How China Detects
and Blocks Shadowsocks. In ACM Internet Measurement Conference (IMC).
Apple. . If your Apple devices aren’t getting Apple push notifications. https://
support.apple.com/en-us/102266.

Apple. 2023. User Notifications. https://developer.apple.com/documentation/
usernotifications.

Michael Bailey, David Dittrich, Erin Kenneally, and Doug Maughan. 2012. The
menlo report. IEEE Security & Privacy 10, 2 (2012), 71-75.

Diogo Barradas, Nuno Santos, and Luis Rodrigues. 2018. Effective detection of
multimedia protocol tunneling using machine learning. In 27th USENIX Security
Symposium (USENIX Security 18).

Diogo Barradas, Nuno Santos, Luis Rodrigues, and Vitor Nunes. 2020. Poking
a hole in the wall: Efficient censorship-resistant Internet communications by
parasitizing on WebRTC. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security.

Cecylia Bocovich, Arlo Breault, David Fifield, Serene, and Xiaokang Wang. 2024.
Snowflake, a censorship circumvention system using temporary WebRTC proxies.
In USENIX Security Symposium. USENIX. https://www.usenix.org/system/files/
sec24fall-prepub-1998-bocovich.pdf

Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. 2014. CloudTransport:
Using Cloud Storage for Censorship-Resistant Networking.

Erik Chi, Gaukas Wang, J Alex Halderman, Eric Wustrow, and Jack Wampler.
2023. Just add WATER: WebAssembly-based Circumvention Transports. arXiv
preprint arXiv:2312.00163 (2023).

Roger Dingledine, Nick Mathewson, Paul F Syverson, et al. 2004. Tor: The
second-generation onion router.. In USENIX security symposium.

Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and
Vern Paxson. 2015. Examining how the great firewall discovers hidden circum-
vention servers. In Proceedings of the 2015 Internet Measurement Conference.
David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-Resistant Communication through Domain Fronting. Proceedings on
Privacy Enhancing Technologies (2015).

freedomh 2020. Freedom House Report Internet Freedom Status.
freedomhouse.org/explore-the-map?type=fotn&year=2020.

Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex Halderman, Nikita Borisov,
and Eric Wustrow. 2019. Conjure: Summoning Proxies from Unused Address

https://

 https://www1.icsi.berkeley.edu/~sadia/tor_timeline.pdf
 https://www1.icsi.berkeley.edu/~sadia/tor_timeline.pdf
https://www.bamsoftware.com/software/dnstt/
https://techcrunch.com/2018/04/22/google-confirms-some-of-its-own-services-are-now-getting-blocked-in-russia-over-the-telegram-ban/
https://techcrunch.com/2018/04/22/google-confirms-some-of-its-own-services-are-now-getting-blocked-in-russia-over-the-telegram-ban/
https://techcrunch.com/2018/04/22/google-confirms-some-of-its-own-services-are-now-getting-blocked-in-russia-over-the-telegram-ban/
https://www.theverge.com/2018/5/29/17406178/russia-telegram-apple-app-store-censorship
https://www.theverge.com/2018/5/29/17406178/russia-telegram-apple-app-store-censorship
https://techcrunch.com/2018/04/19/russias-game-of-telegram-whack-a-mole-grows-to-19m-blocked-ips-hitting-twitch-spotify-and-more/
https://techcrunch.com/2018/04/19/russias-game-of-telegram-whack-a-mole-grows-to-19m-blocked-ips-hitting-twitch-spotify-and-more/
https://techcrunch.com/2018/04/19/russias-game-of-telegram-whack-a-mole-grows-to-19m-blocked-ips-hitting-twitch-spotify-and-more/
 https:// groups.google.com/forum/#!topic/traffic-obf/BpFSCVgi5rs/
 https:// groups.google.com/forum/#!topic/traffic-obf/BpFSCVgi5rs/
https://metrics.torproject.org/userstats-bridge-combined.html?start=2021-12-01&end=2022-03-10&country=ru
https://metrics.torproject.org/userstats-bridge-combined.html?start=2021-12-01&end=2022-03-10&country=ru
https://gravitec.net/blog/15-must-know-web-push-notification-statistics/
https://gravitec.net/blog/15-must-know-web-push-notification-statistics/
https://www.bleepingcomputer.com/news/cloud/amazon-follows-google-in-banning-domain-fronting/
https://www.bleepingcomputer.com/news/cloud/amazon-follows-google-in-banning-domain-fronting/
https://www.bleepingcomputer.com/news/cloud/amazon-follows-google-in-banning-domain-fronting/
https://batch.com/ressources/etudes/benchmark-notifications-push-crm-mobile
https://batch.com/ressources/etudes/benchmark-notifications-push-crm-mobile
https://www.nytimes.com/interactive/2023/12/29/world/europe/russia-ukraine-war-censorship.html
https://www.nytimes.com/interactive/2023/12/29/world/europe/russia-ukraine-war-censorship.html
https://metrics.torproject.org/userstats-bridge-country.html?start=2022-08-01&end=2023-01-02&country=ir
https://metrics.torproject.org/userstats-bridge-country.html?start=2022-08-01&end=2023-01-02&country=ir
https://firebase.google.com/docs/cloud-messaging/concept-options#ttl
https://firebase.google.com/docs/cloud-messaging/concept-options#ttl
https://gs.statcounter.com/os-market-share/
https://gs.statcounter.com/os-market-share/
https://www.businessresearchinsights.com/market-reports/push-notifications-service-market-116554
https://www.businessresearchinsights.com/market-reports/push-notifications-service-market-116554
https://riskybiznews.substack.com/p/fastly-to-block-domain-fronting-in-2024
https://riskybiznews.substack.com/p/fastly-to-block-domain-fronting-in-2024
https://tb-manual.torproject.org/bridges/
https://tb-manual.torproject.org/circumvention/
https://tb-manual.torproject.org/circumvention/
https://guardianproject.info/apps/org.torproject.android/
https://guardianproject.info/apps/org.torproject.android/
https://www.accessnow.org/tag/censorship/
https://support.apple.com/en-us/102266
https://support.apple.com/en-us/102266
https://developer.apple.com/documentation/usernotifications
https://developer.apple.com/documentation/usernotifications
https://www.usenix.org/system/files/sec24fall-prepub-1998-bocovich.pdf
https://www.usenix.org/system/files/sec24fall-prepub-1998-bocovich.pdf
https://freedomhouse.org/explore-the-map?type=fotn&year=2020
https://freedomhouse.org/explore-the-map?type=fotn&year=2020

Proceedings on Privacy Enhancing Technologies 2025(4)

[35]

[36

[37

[38

[39]

[40]

[41]

[42]

[43

[44]

[45]

[46

[47]

[48]

[49

[50]
[51]

[52]

[53]

[54

[55]

Space. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security.

Sergey Frolov, Jack Wampler, and Eric Wustrow. 2020. Detecting Probe-resistant
Proxies.. In NDSS.

Genevieve Gebhart and Tadayoshi Kohno. 2017. Internet censorship in Thailand:
User practices and potential threats. In 2017 IEEE European symposium on security
and privacy (EuroS&P). IEEE.

Google. . Obtain Google IP address ranges. https://support.google.com/a/answer/
100263227hl=en.

Google. 2023. Firebase Cloud Messaging. https://firebase.google.com/docs/cloud-
messaging.

Yang Han, Dawei Xu, Jiaqi Gao, and Liehuang Zhu. 2022. Using Blockchains for
Censorship-Resistant Bootstrapping in Anonymity Networks. In Information and
Communications Security.

Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. 2013. The parrot is
dead: Observing unobservable network communications. In 2013 IEEE Symposium
on Security and Privacy.

Amir Houmansadr, Thomas J. Riedl, Nikita Borisov, and Andrew C. Singer. 2013.
I want my voice to be heard: IP over Voice-over-IP for unobservable censorship
circumvention. In Network and Distributed System Security Symposium.

Amir Houmansadr, Wenxuan Zhou, Matthew Caesar, and Nikita Borisov. 2017.
SWEET: Serving the Web by Exploiting Email Tunnels. IEEE/ACM Transactions
on Networking (2017).

Freedom House. 2023. Freedom on the net report 2023 by freedom
house. https://freedomhouse.org/sites/default/files/2023-10/Freedom-on-the-
net-2023-DigitalBooklet.pdf.

Shengtuo Hu, Xiaobo Ma, Muhui Jiang, Xiapu Luo, and Man Ho Au. 2017. Aut-
oflowleaker: Circumventing web censorship through automation services. In
2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS).

Patrick Tser Jern Kon, Sina Kamali, Jinyu Pei, Diogo Barradas, Ang Chen, Micah
Sherr, and Moti Yung. 2024. SpotProxy: Rediscovering the Cloud for Censorship
Circumvention. In USENIX Security Symposium. USENIX. https://www.cs-pk.
com/sec24-spotproxy-final.pdf

Microsoft. 2023. Windows Push Notification Services (WNS) overview.
https://learn.microsoft.com/en-us/windows/apps/design/shell/tiles-and-
notifications/windows-push-notification-services--wns--overview.

Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian
Goldberg. 2012. Skypemorph: Protocol obfuscation for tor bridges. In Proceedings
of the 2012 ACM conference on Computer and communications security.

Milad Nasr, Hadi Zolfaghari, Amir Houmansadr, and Amirhossein Ghafari. 2020.
MassBrowser: Unblocking the Censored Web for the Masses, by the Masses.. In
NDSS.

obfs4 2023. Learning more about the GFW’s active probing system. https://
blog.torproject.org/learning-more-about-gfws-active- probing- system.

Pavel Durov. 2019. https://vk.com/durov?w=walll_2285269.

Michael Pu, Andrew Wang, Anthony Chang, Kieran Quan, and Yi Wei Zhou. 2024.
Exploring Amazon Simple Queue Service (SQS) for Censorship Circumvention. In
Free and Open Communications on the Internet. https://www.petsymposium.org/
foci/2024/foci-2024-0009.pdf

pushstats 2023. Push Notification Statistics (2023). https://www.businessofapps.
com/marketplace/push-notifications/research/push-notifications- statistics/.
Ram Sundara Raman, Prerana Shenoy, Katharina Kohls, and Roya Ensafi. 2020.
Censored Planet: An Internet-wide, Longitudinal Censorship Observatory. In
Computer and Communications Security. https://www.ramakrishnansr.com/
assets/censoredplanet.pdf

Reethika Ramesh, Ram Sundara Raman, Matthew Bernhard, Victor Ongkowijaya,
Leonid Evdokimov, Anne Edmundson, Steven Sprecher, Muhammad Ikram, and
Roya Ensafi. 2020. Decentralized control: A case study of russia. In Network and
Distributed Systems Security (NDSS) Symposium 2020.

Florentin Rochet, Jules Dejaeghere, and Tariq Elahi. 2023. Towards flexible
anonymous networks. In Proceedings of the 23rd Workshop on Privacy in the
Electronic Society. 1-16.

Piyush Kumar Sharma, Devashish Gosain, and Sambuddho Chakravarty. 2021.
Camoufler: Accessing The Censored Web By Utilizing Instant Messaging Chan-
nels. In Proceedings of the 2021 ACM Asia Conference on Computer and Communi-
cations Security.

Telegram. 2019. https://t.me/AlterTG/1107.

tgbypass 2019. Telegram embedded a tool for bypassing locks in messenger
applications. https://www.iguides.ru/main/os/telegram_vstroil v_prilozheniya_
messendzhera_instrument_dlya_obkhoda_blokirovok/.

TGStat. 2019. https://tgstat.ru/channel/@radchenko_s/77.

The Tor Project. 2023. Moat | Tor Project |
https://support.torproject.org/glossary/moat/.

Lindsey Tulloch and Ian Goldberg. 2023. Lox: Protecting the Social Graph in
Bridge Distribution. Proceedings on Privacy Enhancing Technologies (2023).
Benjamin VanderSloot, Allison McDonald, Will Scott, J Alex Halderman, and
Roya Ensafi. 2018. Quack: Scalable Remote Measurement of { Application-Layer }
Censorship. In 27th USENIX Security Symposium (USENIX Security 18). 187-202.

Support.

726

Piyush Kumar Sharma, Diwen Xue, Aaron Ortwein, Cecylia Bocovich, Harry, and Roya Ensafi

FCM endpoints used in Hyperquack measurement

mtalk.google.com
mtalk4.google.com
mtalk-staging.google.com
mtalk-dev.google.com
alt1-mtalk.google.com
alt2-mtalk.google.com
alt3-mtalk.google.com
alt4-mtalk.google.com
alt5-mtalk.google.com
alt6-mtalk.google.com
alt7-mtalk.google.com
alt8-mtalk.google.com

Table 2: FCM Endpoints used in Hyperquack measurement.
The set of endpoints were collected from the FCM documen-
tation.

[63

Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy. 2024. Commu-
nication Breakdown: Modularizing Application Tunneling for Signaling Around
Censorship. Proceedings on Privacy Enhancing Technologies (2024).

Ryan Wails, Rob Jansen, Aaron Johnson, and Micah Sherr. 2023. Proteus: Pro-
grammable protocols for censorship circumvention. Free and Open Communica-
tions on the Internet (2023).

Qiyan Wang, Xun Gong, Giang TK Nguyen, Amir Houmansadr, and Nikita
Borisov. 2012. Censorspoofer: asymmetric communication using ip spoofing for
censorship-resistant web browsing. In Proceedings of the 2012 ACM conference on
Computer and communications security.

Eric Wustrow, Colleen M Swanson, and J Alex Halderman. 2014. TapDance:
End-to-Middle Anticensorship without Flow Blocking. In 23rd USENIX Security
Symposium (USENIX Security 14).

Diwen Xue and Roya Ensafi. 2023. The Use of Push Notification in Censorship
Circumvention. Free and Open Communications on the Internet (2023).

Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain, Piyush Kumar Sharma,
and Sambuddho Chakravarty. 2018. Where the light gets in: Analyzing web
censorship mechanisms in india. In Proceedings of the Internet Measurement
Conference 2018.

(64

[65

=
2

[67]

[68]

A Appendix

The Table 2 lists the FCM push notification service URLs that were
checked for reachability in various countries (including the most
censored ones) across the globe for a duration of seven months.

B Push Notification and Proxy Distribution

We discussed in detail the use of push notifications to distribute
bridges and proxies for popular circumvention tools in Section 5.1.1.
While we do not focus on proxy distribution strategies, or what
proxies should be distributed to which user when, we posit that the
server-initiated nature of push notifications as a control channel
would augment several recent proposals for proxy distribution.

Lox [61] is a reputation-based proxy distribution system that uses
blinded anonymous credentials to limit the rate at which censors
discover new proxies and reward users who receive proxies that
remain unblocked. While Lox does not store client information at
the server, and Lox protocols are interactive and require a two-way
channel between the client and server-side components, the table
of encrypted proxies and reachability tokens must be distributed to
users out-of-band and updated each day.

https://support.google.com/a/answer/10026322?hl=en
https://support.google.com/a/answer/10026322?hl=en
https://freedomhouse.org/sites/default/files/2023-10/Freedom-on-the-net-2023-DigitalBooklet.pdf
https://freedomhouse.org/sites/default/files/2023-10/Freedom-on-the-net-2023-DigitalBooklet.pdf
https://www.cs-pk.com/sec24-spotproxy-final.pdf
https://www.cs-pk.com/sec24-spotproxy-final.pdf
https://learn.microsoft.com/en-us/windows/apps/design/shell/tiles-and-notifications/windows-push-notification-services--wns--overview
https://learn.microsoft.com/en-us/windows/apps/design/shell/tiles-and-notifications/windows-push-notification-services--wns--overview
https://blog.torproject.org/learning-more-about-gfws-active-probing-system
https://blog.torproject.org/learning-more-about-gfws-active-probing-system
https://vk.com/durov?w=wall1_2285269
https://www.petsymposium.org/foci/2024/foci-2024-0009.pdf
https://www.petsymposium.org/foci/2024/foci-2024-0009.pdf
https://www.businessofapps.com/marketplace/push-notifications/research/push-notifications-statistics/
https://www.businessofapps.com/marketplace/push-notifications/research/push-notifications-statistics/
https://www.ramakrishnansr.com/assets/censoredplanet.pdf
https://www.ramakrishnansr.com/assets/censoredplanet.pdf
https://t.me/AlterTG/1107
https://www.iguides.ru/main/os/telegram_vstroil_v_prilozheniya_messendzhera_instrument_dlya_obkhoda_blokirovok/
https://www.iguides.ru/main/os/telegram_vstroil_v_prilozheniya_messendzhera_instrument_dlya_obkhoda_blokirovok/
https://tgstat.ru/channel/@radchenko_s/77

CenPush: Blocking-Resistant Control Channel Using Push Notifications

The Lox Authority (LA) groups available proxies into buckets
and maintains a public list of encrypted buckets and their corre-
sponding reachability credentials. Clients download this encrypted
proxy list out-of-band and receive a bucket id and decryption key
with their credential from the LA. When proxies go offline due
to network churn our service outages, the LA swaps out the old
proxy information with new, functioning proxies and updates the
public encrypted bucket. Each day, the LA creates a new bridge
reachability credential for each bucket, using the latest information
on whether or not the proxies in that bucket have been blocked by
a censor. These reachability credentials are used by clients in Lox’s
interactive protocols to prove knowledge of unblocked proxies.

It is critical for clients to fetch these new encrypted buckets and
reachability credentials as soon as they become available. Proxies
that have gone offline should be updated quickly to prevent a user’s
entire bucket from becoming unreachable, and clients that attempt
to use out-of-date reachability credentials will fail the interactive
Lox protocols. Push notifications can be used to push these updates
to users in near real-time, saving several back-and-forth connec-
tions to the Lox Authority, and reducing error rates and connection
failures. Because these updates apply to all users of Lox equally,
they will not break the anonymity provided by the system.

SpotProxy [45] is another recent proposal that uses Spot VMs to
create a high-churn proxy pool that evades blocking with a constant
influx of new proxy IP addresses. The relocator component of Spot-
Proxy actively migrates clients to new proxies when client proxy
assignments change due to induced churn or Spot VM reclamation.
When a proxy assignment to a client has changed, the relocator
must send the updated proxy connection information to the client
over a control channel in the notification phase. Because this update
is server-initiated, the original design requires the client to have an
active connection to its current proxy. If client’s connection is not
migrated before the connection fails, the client needs to re-register
with the system. Push notifications offer a potential solution for
this failure case, allowing the relocator to push new proxy details
to the client even if the active connection has failed.

727

Proceedings on Privacy Enhancing Technologies 2025(4)

	Abstract
	1 Introduction
	2 Background
	2.1 Circumvention Tool Life Cycle
	2.2 Push Notification

	3 Need For Effective Server to Client Channels
	3.1 Required Properties

	4 Push Notification for Aiding Circumvention
	4.1 High Collateral
	4.2 Resistance to Detectability
	4.3 Data Carrying Capacity & Reliability
	4.4 Cost & Ease of Integration

	5 Deployment & Case Studies
	5.1 Tor Integration
	5.2 Tool CTZ Case Study

	6 Discussion
	6.1 Near real-time Obfuscation Protocols
	6.2 Collusion Defense
	6.3 Platform Censorship and Geo-restriction
	6.4 Circumvention Settings Distribution
	6.5 Ethics

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	B Push Notification and Proxy Distribution

