
Tracking Without Borders: Studying the Role of WebViews in
Bridging Mobile and Web Tracking

Nipuna Weerasekara

IMDEA Networks Institute /

Universidad Carlos III de Madrid

José Miguel Moreno

Universidad Carlos III de Madrid

Srdjan Matic

IMDEA Software Institute

Joel Reardon

University of Calgary / AppCensus

Juan Tapiador

Universidad Carlos III de Madrid

Narseo Vallina-Rodríguez

IMDEA Networks Institute /

AppCensus

Abstract
WebViews are a core component of today’s in-app browsing tech-

nologies on mobile platforms, playing a central role in rendering

web content like mobile advertisements. However, their use and

potential to bridge web and mobile tracking paradigms comes at a

significant privacy cost for users. Although prior work has high-

lighted privacy risks associated with WebViews, the real-world

scale and privacy impact of their misuse and abuse remain unex-

plored due to the hybrid nature of WebViews—combining Java,

native, and dynamically-loaded JavaScript (JS) code. In this paper,

we present the first large-scale empirical study of WebView abuse

in Android apps. We analyze how app developers and third-party

SDKs facilitate user tracking by configuring WebViews to bypass

default platform privacy protections and enable invasive tracking

through JavaScript code. Using a novel analysis pipeline that com-

bines static and dynamic analysis of Java/Kotlin code and JavaScript,

we reveal how numerous actors undermine users’ privacy and ex-

ploit WebViews in the wild. We show that harmful JavaScript code,

often distributed via unvetted Real-Time Bidding (RTB) processes,

exploits WebViews to perform advanced tracking techniques such

as cookie sync-ing, canvas fingerprinting, and misuse of the Java-JS

interface and permission-protected JavaScript APIs to silently leak

unique user identifiers and geolocation data without user awareness

for cross-platform tracking.

Keywords
Android WebViews, Cross-platform Tracking, Fingerprinting, Mo-

bile Platforms, Privacy

1 Introduction
In-app browsing refers to the process of rendering web content

within a mobile application (app) user interface instead of redi-

recting users to an external browser. This capability is typically

achieved using WebViews and Custom Tabs (CTs), but there are sig-

nificant differences between these two technologies. WebViews are

customizable embedded browser engines that allow apps to render

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(4), 745–762
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0155

external links, load dynamic web content, or integrate into apps’

web-based authentication flows. Instead, CTs allow integrating a

full browser on mobile apps (i.e., Chrome Custom Tabs on Android

or SFSafariViewController on iOS). However, while WebViews offer

greater customization and control over the web content, they lack

security, performance optimizations, and shared browser features

like autofill, navigation bar, and password management which are

available on CTs [42].

WebViews are the most common in-app browsing technology

in Android due to their versatility and customizability [58, 142].

For example, advertising SDKs leverage WebViews for rendering

advertisements distributed through Real-Time Bidding (RTB) pro-

cesses [96].
1
However, their customizability and architectural de-

sign pose significant privacy and security risks to users as reported

by prior research [91, 103, 115, 132, 139, 144, 158]. On the one hand,

the ability to run arbitrary JS programs on WebViews allows de-

velopers, third-party SDKs, and web services to track mobile app

users using well-known web tracking techniques like web finger-

printing [1, 63, 94] or cookie sync-ing [18, 64]. On the other hand,

WebViews enable communication channels between JS and the

apps’ code to exchange sensitive data between native and web

contexts [139]. Finally, discrepancies between the WebView and

Android permission models enable JS code in WebViews to silently
access permission-protected data such as GPS coordinates [57]. In

fact, JS code dynamically loaded in WebViews like advertisements

does not necessarily abide by the checks performed by vetting

processes deployed by app stores to limit abuse, like Google Play

Protect, which relies primarily on static analysis.

Many WebView privacy abuses, however, remained to date as a

theoretical possibility demonstrated by proofs-of-concept. No prior

study has organically explored the (ab)use of WebViews by mobile

apps, third-party SDKs and web services, nor gathered broad ev-

idence of privacy abuses in the wild. Recent work by Kuchhal et

al. [96] provides a large-scale static analysis of WebView and CT

usage in 146.5K Android apps, using app metadata for SDK attri-

bution. Complementing this, they use dynamic analysis to explore

WebViews’ behavior and security implications by injecting and

testing 100 popular desktop websites into the WebViews embedded

in a subset of 1K apps. However, this study does not analyze how

WebViews are abused in the wild by real-world advertising and

1
We consider CTs out of scope for this study, as they serve different purposes and

operate under distinct security constraints.

745

https://orcid.org/0000-0002-6129-5071
https://orcid.org/0009-0009-0849-204X
https://orcid.org/0000-0003-2822-3970
https://orcid.org/0000-0001-9702-775X
https://orcid.org/0000-0002-4573-3967
https://orcid.org/0000-0002-5420-6835
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0155

Proceedings on Privacy Enhancing Technologies 2025(4) Weerasekara et al.

tracking actors to silently track users and perform cross-platform

tracking. This paper fills this fundamental research gap by con-

ducting the first large-scale empirical study of privacy-intrusive

practices in Android WebViews, analyzing how online tracking ser-

vices abuse WebViews to bridge native and web tracking paradigms.

Specifically, we aim to answer the following research questions:

(1) To what extent are WebViews present in mobile apps, and how

do they allow other actors to distribute and execute privacy-

harmful JS code on them?

(2) How do WebViews facilitate user tracking by bridging web and

mobile tracking approaches?

To systematically answer these questions, we design for the first

time a comprehensive methodology that leverages static and dy-

namic analysis methods to automatically capture the execution of

both Java and JS code within WebViews across 13,045 apps and

analyze their privacy consequences. To account for potential geo-

graphical differences resulting from the probabilistic nature of RTB

and to maximize coverage, we use a geo-diverse farm of instru-

mented Android devices to run the apps from multiple world re-

gions. This approach allows us to identify the execution of harmful

JS code onWebViews across the majority of the analyzed apps (88%),

including WebViews from advertising SDKs like Google Mobile Ser-

vices [80], Facebook Ads [106], Applovin [15], ByteDance [25],

and Unity Ads [149] (§5). Our instrumentation allows us to em-

pirically demonstrate how WebViews facilitate privacy-intrusive

practices like device fingerprinting, cookie sync-ing, stealthy ac-

cess to permission-protected geolocation data, and cross-platform

tracking through ID bridging between web and native contexts.

Specifically:

• Nearly all (99%) of the inspected apps integrate at least one Web-

View. Out of these, the vast majority customize WebViews’ de-

fault configuration to allow arbitrary JS execution (98%), enable

DOM storage sharing (79%), or customize UA strings (88%), all

of which have security and privacy consequences. Third-party

SDKs are responsible for 84% of such customizations (§5.1).

• Through traffic analysis, we find that WebViews and unvetted

RTB processes amplify the number of actors that can potentially

track mobile app users (§5.2). We find 1,211 different Second-

Level Domains (SLDs) executing JS code in WebViews from SDKs

like Google Mobile Services (GMS), which load JS code from 119

SLDs, Applovin (104 SLDs), and Unity Ads (51 SLDs).

• We observe JS code setting at least one cookie or an impression

pixel in 39.3% of WebViews. We determine that 49% are potential

tracking cookies and 37% are associated with Advertising and

Tracking Services (ATSes) that exploit the default same-site se-

curity policy disabled by SDKs. Similarly, 60.4% of the captured

impression pixels are associated with known ATSes. We also find

instances of CNAME tracking attributable to organizations such

as Ensighten [10] or Adobe Experience Cloud [4] (§6.1).

• Wefind instances of JS code executed onWebViews using browser

fingerprinting methods. Three of the JS APIs commonly used for

fingerprinting are invoked by nearly all the hostnames that the

WebViews contact. We report instances of browser and canvas

fingerprinting supposedly used for anti-fraud [36, 125] but also

for secondary purposes like advertising (§6.2).

• Through dynamic analysis, we observe JS code trying to access

permission-restricted resources such as geolocation coordinates,

microphone and camera. Most of these attempts (54%) are suc-

cessful as the host app or SDK granted the associated permission

to the WebViews. This occurs without user awareness (§6.3).

• We detect a wide use of data-sharing channels between JS and

Java code to leak PII like the Android ID and the Android Adver-

tising ID (AAID). These practices facilitate ID bridging between

the web and native contexts for building rich cross-platform user

profiles (§6.4).

• We observe 1,190 SLDs performing cookie sync-ing and ID bridg-

ing, with 44% of the hostnames associated with ATSes.We find ev-

idence of cookie sync-ing and ID bridging practices in flows con-

taining the AAID, Android ID, hashed email addresses (HEMs),

and GPS coordinates (§6.5).

Our study highlights the lack of control over SDK WebView cus-

tomizations, the JS code they run—particularly when distributed

through ad networks—and the challenges in mitigating privacy

abuses in in-app browsing with existing platform vetting processes

(e.g., Google Play Protect) and privacy controls. As a result, Web-

Views facilitate silent cross-domain user tracking for post-cookie

identity graph solutions.

Research Artifacts. The dataset, Proofs-of-Concept (PoC), and
code artifacts from this paper are available and documented at

https://github.com/WebViews-2025/Artifacts.

Responsible Disclosure. We disclosed our results to the Android

Security Team through bug reports describing canvas fingerprint-

ing, silent permission piggybacking, and WebView hijacking and

customization by malicious SDKs. We were awarded a bug bounty

for our finding on canvas fingerprinting in Android WebViews. The

Android Security Team acknowledged the privacy risks of the other

reports but has considered them infeasible to fix so they remain

exploitable in Android 16. We reported our results to the European

Data Protection Supervisor (EDPS) and CNIL.

2 Background
In-app browsing is a hybrid mobile technology that allows app

developers to load and render web content within an app’s user

interface (UI). Android offers two technologies to perform in-app

browsing: WebViews [50] and CTs [53]. This section describes the

main usages of WebViews (§2.1), their security model (§2.2), and

discusses the privacy implications of allowing developers and third-

party SDKs to customize WebViews’ default privacy and security

properties (§2.3).

2.1 WebViews Introduction
WebViews [50] are an extension of the Android View class that acts

as an embeddable—and fairly customizable, as we will see in §2.2—

web engine to render web pages directly within the native app’s UI,

thus eliminating the need for navigating users to an external, fully-

fledged browser.WebViews allow developers to dynamically display

content generated on the server side without releasing a new app

version like showing terms of service pages and user guides to

registration forms, but mostly for rendering mobile ads [39, 84].

In fact, advertising SDKs prefer WebViews for delivering ads due

to their customizability, including banner and interstitial formats,

746

https://github.com/WebViews-2025/Artifacts

Tracking Without Borders Proceedings on Privacy Enhancing Technologies 2025(4)

as noted in the Google Ad Manager documentation [9]. Although

Android’s default web engine relies on Chromium, developers can

freely invoke or embed alternativeWebView implementations, such

as Mozilla’s GeckoView [56] or Facebook’s WebView [129].

2.2 WebView Security Model
The Android WebView security model implements a sandbox to

isolate web content from the native host app and limit data leakage.

This separation aims to ensure that bugs or exploits within the

renderer do not compromise the host app. However, as we describe

in §2.3, app developers—or embedded third-party SDKs—can pro-

grammatically customize the default security properties runtime

behavior of WebViews to enable arbitrary JS execution and data

sharing channels between the Java (native) and JS (web) execution

environments, thus breaking the sandbox boundaries.

One key security element of WebViews is their permission model

for controlling how JS code accesses sensitive data and resources.

This model is inherited from Chrome’s, establishing a direct map-

ping between WebView JS permissions and runtime Android per-

missions (e.g., GPS sensor, camera and microphone) as shown in

Table 11 (Appendix A). However, WebView’s access control mecha-

nisms are already known for presenting fundamental issues that

facilitate silent data access from JS code [57].

Through manual experimentation and code reviews, we confirm

that the WebView, Chrome, and Android permission models dif-

fer: while Android and Chrome prompt users when apps access

dangerous permissions,WebViews allow developers to programmat-

ically grant such permissions to JS code via the WebChromeClient
class [47, 88] without notifying users, provided the app has the

necessary permissions. In contrast, iOS displays visual warnings

when JS code in a WebView accesses such resources, e.g., the mi-

crophone. Android 12 introduced privacy indicators to show when

apps access permission-protected resources like GPS [46], but users

still cannot distinguish whether access comes from the host app

or arbitrary JS code loaded via RTB. This increases the number of

actors potentially tracking users [57], as discussed in §3.3.

2.3 WebView Customization
Android allows app developers to programmatically customize de-

fault WebView properties [115]. However, these capabilities can

expose users to privacy risks, as app developers may intentionally

or unknowingly modify WebViews’ default security guarantees

and capabilities. Such customizability allows tracking actors to

distribute and load harmful JS code or exfiltrate sensitive data:

• Shared Local Storage. By default, both DOM and local storage

are isolated among apps to prevent unauthorized access. However,

developers and third-party SDKs can invoke the setDomStorage
Enabled method provided by the Web Storage API [49] to allow

accessing local storage across apps if they originate from the

same domain, enabling cross-app tracking. We developed a PoC

to showcase this attack, reporting it to Google. To the best of our

knowledge, no prior work has reported this abuse vector.

• Web Cookie Management. It is well known that websites use

cookies to store and manage user and session information, but

also for tracking. WebViews allow developers to manage cook-

ies in two ways: (1) using JS APIs like document.cookie [116],

or (2) using the Java-native API CookieManager [40]. As in the

case of local storage, developers can programmatically enable

third-party cookie storage in apps’ data storage and control

how they are handled within WebViews using setAcceptThird
PartyCookies [41]. However, third-party SDKs can abuse these

APIs to gain access to cookies across apps without the app de-

veloper or user awareness. We built a PoC to demonstrate the

feasibility of this attack and its privacy implications, also re-

ported to Google. To the best of our knowledge, no prior work

has studied the potential for abuse of these methods.

• Java to JS Code Bridging. Android supports APIs for bidirec-

tional communication between Java code and JavaScript code [55],

bridging native and web contexts and facilitating cross-platform

tracking. Specifically, the addJavascriptInterface API allows

developers (or third-party SDKs embedded in them) to expose

Java Android methods to the web content, thus enabling JS run-

ning in a WebView to directly interact with native code [51] and

through the JNI interface too. Similarly, the evaluateJavascript
method allows developers to execute JS code within the Web-

View [52]. Additionally, developers can share sensitive informa-

tion accessed from Java code (e.g., AAID) with web elements

running on the WebViews by embedding it in the User-Agent

(UA) or as URL parameters [39], facilitating ID bridging between

web and native contexts. While prior work has proposed methods

to detect privacy leaks in JS-Java channels [135], we are the first

to empirically demonstrate their abuse at scale.

3 Privacy Attacks Using WebViews
This section describes the WebView privacy attacks that we empir-

ically study in this paper. While some of these attacks have been

theoretically hypothesized in prior work (See §8), our study is the

first to systematically analyze how real-world app developers, SDKs,

and RTB actors use WebViews and JS code for tracking purposes.

3.1 Fingerprinting
As in the case of web browsers [1, 13, 16, 23, 98, 111], WebViews

allow JS code to use fingerprinting techniques that exploit both

device-specific characteristics and metadata to track users without

consent. Canvas fingerprinting, for example, exploits the HTML5

Canvas API by analyzing how their HTML5 canvas elements are ren-

dered by a user’s browser—which is influenced by device-specific

differences in hardware, operating system, and graphic drivers—to

generate device identifiers. On mobile platforms, this is particularly

concerning: attackers can use JS APIs to produce user-unresettable

and cross-application identifiers using only the standard INTER-

NET permission and WebViews. For example, browser fingerprints

can be used to bridge resettable identifiers like the Android Ad-

vertising ID (AAID). In June 2021, we submitted a bug report to

the Android Security Team demonstrating the possibility of canvas

fingerprinting in Android WebViews and its privacy implications.

The report was acknowledged and we were awarded a bug bounty

in February 2022. In November 2024, this was not classified as a

security concern and that WebViews work as intended.

3.2 Cookie Sync-ing and ID Bridging
Cookie sync-ing is a common web-tracking technique to link user

IDs across domains that circumvents the Same-Origin Policy [1,

747

Proceedings on Privacy Enhancing Technologies 2025(4) Weerasekara et al.

Listing 1:WebChromeClient implementation for geolocation
permission.
webView.setWebChromeClient(new WebChromeClient () {

@Override
public void onGeolocationPermissionsShowPrompt(String origin ,

GeolocationPermissions.Callback callback) {
callback.invoke(origin , true , true);

}
});

120, 151]. It involves the exchange and mapping of cookies between

different tracking entities and clients to synchronize user profiles.

WebViews’ ability to bridge JS and Java execution environments

facilitate bridging web-based cookies and IDs with device-specific

PII obtained in Java code—including the AAID and Android ID—for

persistent cross-platform tracking. Cookie sync-ing and ID bridging

may occur alongside browser fingerprinting as WebViews facilitate

trackers to aggregate multiple tracking paradigms to link users’

online habits with Java IDs and sensitive data. In fact, cookie sync-

ing is closely connected with identity graph services and cookieless

tracking, like those offered by Adobe’s Experience Platform [6],

Lotame’s Panorama Identity [102], or ID5 [92], among others.

Allowing third-party SDK WebViews to load arbitrary JS dy-

namically creates a favorable tracking environment where cookie

sync-ing can occur without the user’s knowledge or consent. How-

ever, unlike traditional browsers, where users have more visibility

and control over cookie settings, WebViews often bypass such de-

fault protections by granting developers (and SDK operators) the

opportunity to customize cookie management controls and the JS

execution environment. This leads to a lack of transparency about

how cookies are handled in WebViews.

3.3 Permission Piggybacking
WebViews allow JS code to programmatically access privacy-sensi-

tive data like the GPS and microphone through the Navigator

API [117]. App developers and even third-party SDKs can explic-

itly grant these permissions—inadvertently or intentionally, and

potentially without the knowledge of host app developers—to JS

code running on WebViews (§2.2), increasing the attack surface.

Consequently, arbitrary organizations with the ability to load JS

code on customized WebViews (e.g., advertisers reaching eyeballs

through RTB) can opportunistically and silently collect sensitive

geolocation and microphone data through these APIs in apps where

such permissions are granted by the user [58]. The data obtained

via those APIs can be linked with data obtained by fingerprinting,

cookie sync-ing, or ID bridging methods to create rich user profiles.

Specifically, when developers implement WebViews with the

WebChromeClient class in their apps, they simply need to declare

the onPermissionRequest callback method to handle and grant

permission requests to JS code without displaying a user prompt or

notification. Although discouraged by Android’s developer docu-

mentation [44], this abuse vector remains exploitable as of Android

version 16 (Beta BP31.250502.008) and Android System WebView

version 136.0.7103.60. While we build on the seminal work by Dia-

mantaris [58], this study is the first to demonstrate this type of pri-

vacy abuse in real apps for tracking purposes, highlighting the lack

Figure 1: Overview of the methodology used in this study.

of user prompts caused by WebView customizations. We demon-

strated the ability to access PII without user awareness with a PoC.

Listing 1 exemplifies the case for accessing geolocation data.

4 Methodology
Figure 1 illustrates the research methodology that we designed

to answer the two research questions defined in the introduction.

We first use static analysis to identify the use of WebViews in

Android apps, attribute them to first-party code or third-party SDKs,

and identify WebView property customizations in §5. We then use

dynamic analysis to capture execution behaviors in both the JS

code embedded in WebViews and the app’s Java code, and the

communication channels enabled by developers between these

two programming paradigms. Dynamic analysis is essential for

detecting privacy-concerning behaviors such as access to sensitive

JS APIs, fingerprinting, PII exfiltration, and cookie sync-ing in §6.

Dataset.We apply our methodology to a dataset of 13,045 Android

apps downloaded from the Google Play Store between December

2023 and May 2024. We collected the apps using the google-play-
scraper tool [118] from Spain. Our dataset covers 35 app categories,

and 68% of the apps have at least 1M installs.

4.1 WebView Usage and Customization
We use static analysis to identify Java classes implementing Web-

Views, attribute them to the responsible actors (e.g., third-party

SDKs), and detect WebView property customizations that alter their

default privacy and security settings.

Finding WebView Implementations. The detection of Web-

View implementations across mobile apps is performed by looking

for manually-curated unique WebView code signatures (i.e., class

names and methods) extracted from popular open-source WebView

implementations. Specifically, we use APKTool v.2.9.3 [147] to ex-

tract the Smali code of the 13,045 apps and detect the presence of

the default Android WebView class Landroid/webkit/WebView,

748

Tracking Without Borders Proceedings on Privacy Enhancing Technologies 2025(4)

alongside four alternative implementations: GeckoView [56], Re-

act Native, Apache Cordova, and Facebook WebView. Yet, SDKs

often customize the Android default WebView, as reported in prior

work [96]. We also search for alternative WebView engines by

manually inspecting curated signatures and strings like “webview”

in class names—validated through open-source references—in the

Smali files. Yet, no other WebView implementations were identified

in our dataset through manual code inspection.

Attribution. Third-party SDKs often integrate a customized ver-

sion of the default WebView as §5.1 describes. We find the party

responsible for its inclusion, distinguishing between first- and third-

party WebViews by extracting the package name of the classes im-

plementing them. We follow well-established academic methods to

map code-level attribution signals to third-party SDKs [69, 96, 104]

Yet, we update and curate the attribution signals offered by SDK

detection tools like LibID [156], LibRadar [104], and Exodus [67],

complemented with manual tagging if there is no match. Specif-

ically, if the package name of the class implementing the Web-

View shares the prefix of the app package present in the Android

Manifest, we classify the WebView as first-party; otherwise, it is

classified as third-party and attributed to the relevant party by

matching its attribution signals with our curated SDK attribu-

tion signatures. For example, from the structure of the package

name of the AccuWeather app (com.accuweather.android) and
the WebViews it embeds, we can distinguish between first-party

(com.accuweather.android.ui.components.WebViewKt) and th-
ird-party ones (com.google.android.gms.ads.internal.zzs).
Then, using our attribution signals, we determine that the latter

belongs to Google’s GMS SDK.

DetectingWebViewCustomization.We statically study how app

and SDK developers customize WebView properties at the Smali

code level, focusing on cookie and DOM storage, JS runtime access

to permission-protected data (e.g., geolocation) and other default

parameters like User-Agent or Google’s Safe Browsing API. To

do this, we first create a list of APIs allowing WebView property

customization using Android’s official documentation [48] (Table 2),

so that we can statically detect their use across apps, including the

parameters set by app and SDK developers when invoking them.

4.2 Behavior Analysis Pipeline
We develop a dynamic analysis pipeline consisting of two elements:

(1) a farm of nine instrumented devices for automatic dynamic app

analysis using custom Frida scripts (§4.2.1); and (2) a JS dynamic

analysis pipeline built on the dynamic analysis tool Fakeium [110]

and the static analyzer Esprima [65] to detect the privacy risks of JS

code execution on WebViews (§4.2.2). We use instrumented devices

for our analysis instead of emulators to avoid anti-emulation, anti-

fraud or anti-root methods implemented by apps and SDKs [32], as

discussed in §4.3.

Due to the dynamic nature of JS code and the predominant role

of probabilistic RTB processes in distributing privacy-intrusive JS

code through WebViews, it is essential to follow a best-effort and

automatic approach to capture as many JS scripts and behaviors as

possible. For that, we use geographically distributed vantage points

and app automatization tools as described below.

Geographic Diversity.We use a geographically distributed device

farm to test the Android apps for 5minutes each in sixworld regions:

Europe, the US, India, Brazil, Japan, and Australia. The devices run

Android 13 and the default WebView version 125.0.6422.165. We

use Tinyproxy [143] to transparently route device traffic through

vantage points in these regions. Informed by prior work [119], we

opt for HTTP(S) proxies instead of VPNs, as they are harder for

anti-fraud tools to detect. Additionally, we use Frida [75] to mock

GPS geolocation data, injecting coordinates corresponding to each

region to mitigate potential inconsistencies in our execution envi-

ronment. The diversity and geographic relevance of ads loaded in

WebViews support the hypothesis of our approach being effective.

Automatization. We customized the DroidBot UI exerciser to

automate app execution [101] so that it supports Android 12 and

above (API Level 32+).
2
To automate the execution and increase

coverage, our monkey employs a depth-first strategy to explore

apps’ UIs and supports standard logins, including Single Sign-On

(SSO) screens like Google SSO, but not complex registration or login

forms requiring CAPTCHA or 2FA.

4.2.1 APK Analysis. We use Frida to dynamically analyze APKs

that integrate WebViews and to collect JS code loaded on them,

which is later analyzed with a JS-specific analysis pipeline (§4.2.2):

• We combine Frida hooks with traffic analysis techniques to iden-

tify in runtime loaded WebViews, attempts to access the PII data

types reported in Table 13 (see Appendix B), and their subsequent

dissemination to first- or third-party hostnames. During dynamic

analysis, we also identify loaded WebViews by hooking their ini-

tialization methods (e.g., init()) using Frida. This allows us to
attribute runtime observations to the actual WebView in runtime

and to the activity in which it is initialized.

• We capture app traffic using tcpdump [136] and a customized

fork of the friTap tool [72] to log TLS keys (SSLKEYLOGFILE) to

decrypt TLS flows [141]. For attribution, we compare the reverse

SLD name of the receiving hostnames with the organization

responsible for the WebViews based on the package name. We

detect hostnames associated with ATSes by comparing them

against anti-tracking lists like EasyList [60], EasyPrivacy [61],

and Fanboy [24], a technique validated in prior work [86, 99, 126,

131]. For instance, in the bwin Casino app (es.bwin.casino),
we identify the first-party hostname casino.bwin.es and Google’s

third-party hostname ad.doubleclick.net.
• We enable WebView remote debugging—disabled by default—to

monitor browser engine runtime events reported by Chromium

in real-time, capture loaded URLs, and extract web content, JS

code, and traffic generated from theWebViews.We use Frida to ac-

tivate it by setting the setWebContentsDebuggingEnabled flag

to true in the WebView settings and then enabling the Chrome

DevTools Protocol (CDP) [54]. We leverage the chrome-remote-
interface library [27] to communicate with WebViews and moni-

tor events generated while loading a URL and JS and their traffic,

including Page.navigate, Page.frameNavigated, Network.
requestWillBeSent, Debugger.scriptParsed. The analysis

of these events allows us to detect potential privacy risks and

monitor traffic, JS execution and failures in script loading, among

2
https://github.com/honeynet/droidbot/pull/152

749

https://github.com/honeynet/droidbot/pull/152

Proceedings on Privacy Enhancing Technologies 2025(4) Weerasekara et al.

others. Table 14 in Appendix C lists the most relevant instru-

mented methods and their purpose. Through this process, we

capture 10,788,450 different JS programs loaded across all apps.

We complement dynamic analysis methods with static ones to

detect (𝑖) hard-coded URLs in WebViews by detecting calls to the

loadUrl and loadDataWithBaseURL methods; and (𝑖𝑖) program-

matic permission granting to WebViews in WebChromeClient, as
explained in §4.2.2.

4.2.2 JS Analysis Pipeline. We complement our APK and WebView

instrumentation with the JS dynamic analysis tool Fakeium [110], a

lightweight open-source sandbox built on the V8 engine for dynam-

ically testing untrusted JS code. We use it to analyze JS execution

within WebViews, monitoring API calls and relevant arguments

(e.g., string literals) to study runtime behavior and potential privacy

risks. Because of the dynamic nature of Fakeium, we can detect

calls even in obfuscated scripts that would otherwise go unnoticed

by static methods. We complement our dynamic analysis pipeline

with the Esprima [65] static analyzer to increase coverage and find

JS API calls potentially missed by Fakeium: where Fakeium gives

us the lower-bound of the JS API calls in a JS script, Esprima gives

us the upper-bound. Specifically, we analyze:

• JS API Calls. We monitor runtime calls to sensitive JS APIs

for: (i) accessing permission-protected information, including

media devices, geolocation, and sensor data obtained using Nav-

igator APIs [117]; (ii) web tracking (e.g., cookie management);

and (iii) generating device and browser fingerprints. Our set of

targeted methods is informed by prior research in desktop web

browsers [1, 16, 23, 94, 98, 111]. To analyze and quantify the

extent to which JS code accesses permission-protected device

resources and data in WebViews, including media devices and

geolocation, we cross-reference the permissions declared and

granted to the host app in Java-land through the AndroidMan-

ifest file with the permissions explicitly enabled for the Web-

View executing the JS code. To avoid introducing false positives,

we determine whether the JS code directly invokes the relevant

NavigatorAPIs to access these protected resources and attribute
such behavior to organizations by analyzing the attribution sig-

nals at the hostname level.

• Detecting PII Leakage. We analyze WebView traffic to identify

leakage of PII (Table 13 in Appendix B), examining both cleartext

and hashed transmissions.

• Cookie Sync-ing. We inspect WebView traffic to identify the

use of advanced tracking techniques such as cookie sync-ing.

For that, we build on prior work [1, 63, 64, 151] to identify ID
Cookies, which are unique identifiers shared between different

domains or subdomains. These cookies have long expiry times,

maintain stability across requests, exhibit constant length, and

contain high-entropy value strings sufficient to uniquely identify

users. Then, we generate network graphs to model the flow of

such cookies between online servers, WebViews, and apps.

Our JS analysis pipeline complements our Java-level WebView

instrumentation by revealing opportunistic attempts to access sen-

sitive JS APIs and their runtime behavior as discussed in §2.

4.3 Limitations
Any empirical measurement analysis of mobile apps cannot achieve

full coverage and completeness due to the need to rely on black-box

testing methods. These are exacerbated by the challenges intro-

duced by non-deterministic and dynamic processes like RTB, and

the use of anti-testing and obfuscation techniques by app developers

and SDKs. However, these aspects do not invalidate the main con-

tributions of this study: WebViews facilitate user tracking through

RTB and the collaboration of advertising SDKs due to inappropriate

system architectures and controls.

Anti-testing:We could successfully test 96% of the apps and dy-

namically analyze thousands of WebViews in the wild. Through

code inspection, we could identify the presence of the following

app hardening methods:

• Anti-testing: 2.6% of the tested apps leverage the Google Play

Integrity API [45] to detect rooted devices and Frida. The remain-

ing cases use custom anti-testing techniques based on native

code to detect instrumented devices [34].

• Code Obfuscation: Although 61% of the third-party WebViews

are obfuscated using tools like ProGuard [85], manual validation

shows that our attribution method accurately maps the WebView

implementation to their respective SDK in 94% of apps.

Harmful Apps: 24 apps were not analyzed as they were flagged

and blocked by Google Play Protect as potentially harmful apps at

the time of testing [43].

Code coverage: WebView analysis coverage is fundamentally in-

fluenced by the probabilistic nature of RTB processes or anti-testing

capabilities. As a result, not all embedded SDKs may be invoked in

runtime or only winning advertising SDKs may render advertise-

ments in their WebViews. In fact, manual inspection shows that

many WebViews detected statically are dead code introduced by

large SDKs offering multiple features to developers, as our Frida

instrumentation also confirms. Despite this, our methodology offers

a new perspective into privacy abuses in WebViews and also signif-

icant coverage advantages over prior work [96], where the authors

injected a set of popular desktop domains in WebViews, rather

than analyzing the URLs and JS code organically loaded on them in

the wild. To validate our dynamic analysis approach and assess its

coverage, we manually analyzed a sample of 50 apps, comparing

the total number of WebViews implemented by the apps—detected

using static analysis—with thoseWebViews triggered by our testing

monkey. On average, our instrumentation achieves 37% dynamic

coverage, with full coverage in certain cases, and at least 50% Web-

View coverage in 26% of the apps.

5 WebViews in the Wild
Our hybrid analysis instrumentation allows us to capture a wide

range of JS and privacy-intrusive practices across 1,724 WebViews

embedded in 10,971 apps as summarized in Table 1. The vast ma-

jority of apps (88%) implement at least one WebView. This includes

11,277 unique WebViews, out of which 9,283 are classified as third-

party ones. In fact, as Figure 2 shows, the average app implements

at least 6 WebViews, out of which 5 belong to advertising SDKs.

By correlating the presence of these SDKs with Google Play

metadata, we observe that certain app categories integrate more

third-party SDK WebViews, and some SDK providers have greater

750

Tracking Without Borders Proceedings on Privacy Enhancing Technologies 2025(4)

Figure 2: CDF of total WebViews per app (blue) and those
belonging to 3rd-party SDK (orange).

Table 1: Dataset summary.

Type # Total

Number of Apps Analyzed 10,971

Unique SDKs with WebViews 281

Unique WebViews Tested 1,724

Unique SLDs 4,129

Unique JS Code Samples 10,788,450

Table 2: Detected WebView customizations, reporting the
percentage of apps involved and third-party SDKs involved.

Customization % Apps % SDK # SDKs Examples

setJavaScriptEnabled 98% 83% 172 Fyber, MS Clarity

setUserAgentString 88% 16% 26 ByteDance, Mintegral

setDomStorageEnabled 79% 39% 81 Tealium, PubNative

setAcceptThirdPartyCookies 54% 13% 13 Taboola, KIDOZ

setSafeBrowsingEnabled 22% 1% 5 CellRebel, Mintegral

market presence [69, 126]. Specifically, GAME apps integrate a me-

dian of 9 third-party SDK WebViews, while most other categories

integrate only two. This aligns with the ad-driven business model of

game apps [87, 127]. Figure 5 in Appendix E shows the percentage

of apps integrating any of the top-10 SDKs per category. Google

Mobile Services (GMS) and Facebook Ads dominate with 69% and

40% market presence, while SDKs like Fyber, Unity Ads, IronSource,

and Inmobi are more common in games. While our findings align

with prevalence values reported by Kuchhal et al. [96], our method-

ology reveals greater diversity and usage of WebViews due to our

improved WebView detection and attribution techniques.

5.1 WebView Customization
As described in §2.3, developers can programmatically alter the

default privacy properties and runtime behavior of WebViews.

Through static analysis, we find that 99% of the tested apps cus-

tomize WebViews. As summarized in Table 2, most apps allow JS

execution (98%), enable DOM storage sharing (79%), or customize

UA strings (88%). Advertising and tracking SDKs like Smart In-

stream [93], Yandex Ad [154], and TopOn [146] are responsible for

84% of WebView customizations. Interestingly, Mintegral and Byte

Dance intentionally disable Google Safe Browsing features [82],

which unnecessarily exposes mobile users to web threats by remov-

ing Google’s capabilities to detect and block the execution of harm-

ful web content. These third-party practices raise concerns about

whether app developers integrating such SDKs are aware of the po-

tential security and privacy issues of WebView customizations. As

Figure 3: CDFs of the number of unique SLDs contacted per
WebView. The x-axis is truncated at 100 to improve clarity.

we study in §6, WebView customizations facilitate fingerprinting,

cookie sync-ing, and PII dissemination.

5.2 Beyond Third Parties
As discussed in §3, RTB increases users’ privacy risks by allowing

any arbitrary party (henceforth referred to as a fourth party) to
opportunistically execute JS code with tracking capabilities on

third-party SDK WebViews used for advertising. Consequently, it

is infeasible to determine which (and how many) hostnames could

potentially load harmful JS code across WebViews. Yet, our best-

effort and geo-diverse testing approach captures traffic between

WebViews and 7,999 fully qualified domain names (FQDNs).

By reasoning about the SLDs of the hostnames, and the package

names of both apps and SDKs as described in §4.2.1, we classify them

in four categories: first-party SLDs in first-party WebViews (same

organization), third-party SLDs in first-party WebViews, SLDs from

the same organization responsible for the third-party WebViews,

and third-party SLDs in third-party WebViews (i.e., fourth-party

SLDs). The process of classifying hostnames as first-, third-, or

fourth-parties is not always straightforward due to apps using code

obfuscation or techniques such as CNAME tracking (see §6.1) that

reduce the number of attribution signals in certain cases. In addi-

tion, 1% of the JS scripts are hosted in popular CDNs and cloud

services such as b-cdn.net, cloudfront.net, or akamaihd.net. In some

of these cases, we can manually identify the organization respon-

sible for them by inspecting their third-level domain as proposed

in prior work [108, 126]. For example mappls.b-cdn.net belongs to
mappls.com, a navigation service provider [105].

Figure 3 plots the CDF of the number of unique first-, third-

and fourth-party SLDs per WebView category (first- or third-party

WebViews). This figure confirms that both first- and third-party

SDK WebViews are more likely to load arbitrary exogenous third-

and fourth-party content: 90% of first-party and third-party Web-

Views load at least 7 and 12 exogenous domains, respectively. This

confirms the key role that third-party SDK WebViews play as JS

distribution channels. Notably, during our execution, advertising

SDK WebViews like GMS reaches 119 SLDs, Applovin 104, and

Unity Ads SDK 51 due to RTB processes. This finding supports our

initial hypothesis: WebViews significantly amplify the number of

parties with potential for tracking users opportunistically and at

scale through JS code executed within mobile apps, particularly

when associated with RTB processes.

ATSes on WebViews. A visual inspection of the cloud services

loading content on the WebViews suggests a prominent presence of

751

Proceedings on Privacy Enhancing Technologies 2025(4) Weerasekara et al.

Table 3: Top-10 ATSes observed across WebViews.

FQDN #Apps #WVs # SDKs Examples

googleads.g.doubleclick.net 5,601 67 14 GMS, Applovin

csi.gstatic.com 3,052 8 1 GMS

tpc.googlesyndication.com 2,666 31 9 GMS, ByteDance

cdn.iads.unity3d.com 842 11 1 IronSource

ae.iads.unity3d.com 690 10 1 IronSource

s0.2mdn.net 642 20 7 GMS, Applovin

imasdk.googleapis .com 630 13 1 GMS

www.googletagmanager.com 603 121 15 Fyber, ByteDance

ad.doubleclick.net 533 36 10 GMS, Taboola

www.google-analytics.com 484 96 13 SafeDK, Applovin

ATS organizations according to well-known ad-blocking and anti-

tracking blocklists [60, 61, 138]. In total, we find that 1,211 SLDs

(29% of all domains) are associated with ATSes. Table 3 lists the top-

10 ATS hostnames most frequently contacted byWebViews: Google

and Unity/IronSource are among the most prominent ones. The

wide presence of Referer headers allows analyzing the RTB chain

involved in these processes. ATS eyeball reach is also significant, as

24% of the ATS SLDs are found in at least two different third-party

WebViews despite the completeness limitations of our instrumen-

tation. For example, the Google-owned FQDNs csi.gstatic.com and

tpc.googlesyndication.com, which track the performance of advertis-

ing campaigns [89] and serve ad content [81], load their content on

WebViews implemented by SDKs like Applovin, ByteDance, and

Fyber, among many others.

Hardcoded Hostnames Loading on WebViews.We find 69 or-

ganizations hardcoding URLs to fetch JS code in 96 different Web-

Views. However, we observe noticeable differences in the use of

some of those URLs, as they are only accessed in specific world re-

gions. One frequent example is fundingchoicesmessages.google.com,

linked to Google’s Funding Choices Consent Management Plat-

form (CMP) [95], which helps publishers manage user consent for

GDPR [122] and CCPA [26] compliance [79]. Other hardcoded host-

names belong to SDKs providers like Fyber [148], Taboola [134],

Amazon Ads [12], Bigo Ads [22], Adivery [2], and Yandex Ads [154],

present in 16% of the total apps in our dataset. Table 15 in Appendix

D provides examples of these URLs alongwith their associated SDKs

and the regions where they were observed. This result corroborates

the importance of having geographically distributed vantage points

to capture a broader diversity of JS samples loaded on WebViews.

6 Tracking Behaviors on WebViews
In this section we study how WebViews’ execution model and

differences in Android’s privacy enforcement mechanisms between

Java and JS execution environments are abused in the wild for

user tracking purposes. Specifically, we provide empirical evidence

of WebView-based tracking using cookies and impression pixels

(§6.1); web fingerprinting techniques (§6.2); silent dissemination of

sensitive permission-protected data such as geolocation through

JS API methods in WebViews (§6.3); abuse of the JS-Java bridging

channels to leak unique identifiers and other PII (§6.4); and cookie

sync-ing and ID bridging activities across WebViews and endpoints

facilitating cross-platform user tracking (§6.5).

Table 4: RCs, SCs and impression pixels in WebViews.

Type Count % Apps WebViews SLDs

% Total % SDKs # Total % ATS

RCs 36,307 53.9% 31% 44 (42%) 1,044 40%

SCs 55,599 52.6% 35% 38 (37%) 1,206 29%

IPs 85,875 53.4% 23.3% 46 (44%) 346 61%

6.1 Web Cookies and Impression Pixels
By parsing the Set-Cookie header within response data to extract

relevant cookie details and identify the hostname associated with

them, we find that most web content loaded on WebViews perform

traditional web tracking methods like web cookies and impression

pixels, both for session management and user tracking. To better

characterize these behaviors, we define the following categories:

• Receiving Cookies (RCs) sent downstream from a server to the

client in the Set-Cookie HTTP response header.

• Sending Cookies (SCs) sent upstream by the client in the Cookie
HTTP request header.

• Impression Pixels (IPs) embedded in web pages for behavioral

tracking across domains without user’s explicit knowledge [18].

Additionally, we define a session cookie as one that does not

have an expiration attribute, following the criteria established in

Mozilla’s Developer forums [114], and we use the detection method-

ology outlined in previous work for detecting impression pixels

[18, 74]. We also cross-reference the domains that we find using

these tracking methods with the information in the Referer header
and the known ATS domain block lists listed §4.1 to distinguish

between first- and third-party tracking activities.

Table 4 provides an overview of the RCs, SCs and IPs found

loaded across WebView tests. Overall, 39.3% of WebViews run JS

code setting at least one cookie or an impression pixel. Out of the

81,340 cookies detected across 288 WebViews, 49% are potential

tracking cookies, and 37% are associated with ATSes. With respect

to impression pixels, we find their use in 172 WebViews, 60.4% of

which are associated with ATS hostnames.

By analyzing the hostnames responsible for these actions, we

find that they are well-known ATSes accessing third-party SDK

WebViews by Taboola, Applovin, Mintegral, Yandex Ad, Bigo Ads,

ChartBoost, AppNexus, PubMatic, and ByteDance. For example, 58%

of the RCs come from domains associated to identity graph solutions

like demdex.net (Adobe), id5-sync.com, and rubiconproject.com. We

further study these organizations in our cookie sync-ing analysis

(§6.5). Similarly, 29% of the SLDs involved in SCs belong to ATSes

such as doubleclick.net, pubmatic.com, and taboola.com, while 27%

of the impression pixels come from ATSes like google-analytics.com,

facebook.com, and tealiumiq.com.

Impact of WebView Behavior Customizations. The default

same-origin policy enforced by the WebView’s underlying web

engine restricts cookie access to matching hostnames, potentially

rendering third-party RCs ineffective unless developers program-

matically relax these restrictions through WebView customizations

(§5.1). To investigate this, we cross-reference the Network.response
752

Tracking Without Borders Proceedings on Privacy Enhancing Technologies 2025(4)

Table 5: Top fingerprinting-related API calls by origin.

JS API # FQDNs

navigator.userAgent.indexOf 6,897

navigator.userAgent.toLowerCase 6,753

OffscreenCanvas 4,877

navigator.userAgent.match 1,673

customElements.get 830

__core-js_shared__.state.has 660

__core-js_shared__.state.get 638

customElements.define 360

navigator.sendBeacon 294

HTMLElement 288

ReceivedExtraInfo CDP event log to determine which RCs are ac-

tively blocked by WebViews at runtime. Surprisingly, 99% of third-

party RCs are programmatically allowed by third-party SDKs in-

cluding GMS, Applovin, and Taboola.

CNAME Tracking. Certain first-party FQDNs exhibit behavioral

characteristics attributable to CNAME tracking. ATSes use this

sophisticated technique to bypass same-origin privacy protections

by masquerading themselves as first-party hostnames through

CNAME DNS records [59]. Consequently, when a WebView loads

content from what appears to be a first-party subdomain, it allows

the execution of code by a third-party tracker. To systematically

detect this behavior, we follow the methodology outlined in prior

research [33, 59], i.e., we derive the DNS CNAME chain to identify

CNAMEs that align with known tracking entities. Additionally, we

cross-reference the use of SCs and RCs with the domains found us-

ing CNAME tracking. We find that 90% of the hostnames involved

in CNAME tracking use both SCs and RCs. Behind these CNAMEs

we identify organizations like Ensighten, Adobe Experience Cloud,

LexisNexis [100], Pardot [121], or Utiq [150].

6.2 Fingerprinting
WebViews enable Java applications to perform browser fingerprint-

ing and generate unique, persistent device IDs without requesting

special Android permissions. These fingerprints combine data from

multiple JS APIs that reveal device-specific traits like hardware,

browser engine, OS, and graphics drivers. Table 5 lists the top JS

APIs used for fingerprinting, grouped by the number of FQDNs

where at least one invocation was observed within a WebView.

Three of these potentially sensitive APIs appear across nearly all

contacted FQDNs, while others are limited to a few hundred. We

present two illustrative case studies showing browser and canvas

fingerprinting in WebViews, including both legitimate and sec-

ondary usages such as anti-fraud and advertising, respectively.

Browser Fingerprinting. We manually search for evidence of

unique IDs generated and leaked from JS code. First, we look for

references to popular fingerprinting libraries like FingerprintJS [71]

in the collected JS samples, including library mentions and code

snippets. We then identify the corresponding app and WebView

that loaded the script, and extract all HTTP requests originating

from that WebView. Finally, we manually inspect URLs, headers,

and payloads for strings indicative of fingerprinting. We consider a

case plausible if it (i) contains at least 10 hexadecimal characters

and (ii) is specific to a WebView.

Table 6: Canvas fingerprinting captured in WebViews.

FQDN App

movil.bbva.es com.bbva.bbvacontigo

android-fanatics.frgapps.com com.fanatics

consumercenter.mysynchrony.com com.gpshopper.discounttire

www.synchrony.com com.gpshopper.discounttire

fcid.fidelitycharitable.org com.fidelity.android

www.fidelity.com com.fidelity.android

www.jcpenney.com com.jcp

www.michaels.com com.michaels.michaelsstores

Using this process we find examples such as the following: the

com.kiwi.westbound app [77] loads on a first-party WebView the

landing page https://popreach.com/privacy-policy/. The WebView

navigated from the initial URL to https://www.bamboohr.com, which

embeds an external script
3
that creates the fingerprint. Once cre-

ated, the ID is sent to three distinct FQDNs: a demand genera-

tion company [37], a tracking service [30], and a programmatic

ad platform [21]. We detect analogous behavior for the com.htwig.
luvmehair app, where the WebView accesses https://shop.luvmehair
.com, which embeds a fingerprinting script from https://tracking.ser
ver.bytecon.com/fp.js. After obtaining the fingerprint, the ID is sent

in the visitor_id query parameter to the tracking domain tracking.ser
ver.bytecon.com. Repeated testing on three devices shows that the

script generates a stable and distinct ID on each device.

Overall, each captured browser fingerprint script accesses over

20 JS APIs that are classified by FPMON [70] as either sensitive
(e.g., User Agent, CPU class) or aggressive (e.g., CPU concurrency),

based on their prevalence and entropy across users. We note that

our ability to capture fingerprint abuses varies across devices due

to factors such as the probabilistic nature of RTB, (geo)location-

dependent behavior, and differences in monkey interaction patterns.

Canvas Fingerprinting. Canvas fingerprinting is a special cat-

egory of fingerprinting that leverages rendering inconsistencies

in HTML5 Canvas elements to generate identifiers across differ-

ent web contexts. This section reports instances of canvas fin-

gerprinting observed in WebViews, as Table 6 summarizes. We

detect three uses of canvas fingerprinting across apps: fraud de-

tection (1 app), identification of bots (4 apps), and establishing

persistent cross-platform user tracking (1 app). For example, the

banking com.bbva.bbvacontigo app loads scripts from the FQDN

movil.bbva.es to perform canvas fingerprinting likely to minimize

fraud risks. This is evidenced by the integration of Akamai Bot

Manager [11], which employs canvas fingerprinting scripts loaded

from the /akam/ URL path. However, Table 6 also reports a case like
com.gpshopper.discounttire in which there is no direct correlation

between the app name and the FQDN loading the fingerprinting

script. This suggests its potential user tracking purpose.

6.3 Accessing to Sensitive JS APIs
We apply the methodology outlined in §4.2.2 to detect JS code

attempting access to permission-restricted geolocation and media

devices through the Navigator APIs. We remind the reader that

just calling Navigator APIs does not always guarantee access to
the protected resources as the following requirements must all

3
https://cdn.jsdelivr.net/npm/@fingerprintjs/fingerprintjs@3/dist/fp.min.js

753

Proceedings on Privacy Enhancing Technologies 2025(4) Weerasekara et al.

Table 7: JS code successfully accessing permission-protected
GPS data and media devices in WebViews.

Data Type # Scripts # 3rd-party SLDs Success Rate % Apps

Geolocation 290 74 57% 6%

Media 38 15 21% <1%

Table 8: Examples of SLDs collecting sensitive data. (*) de-
notes development framework WebViews like React Native.

SLD # Apps SDKs G
PS

M
ed

ia

A
A
ID

A
nd

.I
D

Em
ai
l

unity3d.com 34 Tapjoy ✓ ✓
taboola.com 26 Taboola ✓ ✓
forter.com 9 * ✓ ✓ ✓
rubiconproject.com 3 GMS ✓ ✓
aplicacionesyrecursos.com 1 * ✓ ✓ ✓
getwarmly.com 1 * ✓ ✓
borgataonline.com 1 * ✓ ✓ ✓

be met: (i) the host app must request the corresponding Android

permissions in its AndroidManifest.xml file to access geolocation or

media devices; (ii) the WebView must be configured to run JS, and

developers or SDK providers must grant access to the WebViews;

and (iii) users must grant the runtime permission to the host app.

Table 7 summarizes our findings, highlighting the number of

scripts opportunistically attempting access to these APIs and their

success rate. Despite the opportunistic nature of this type of attack,

the success rate is fairly high as most apps request access to these

permissions. As we can see, 290 distinct JS scripts from over 74

third-party SLDs invoke the navigator.geolocation API in WebViews.

These calls are successfully executed in 57% of cases across 6% of

the tested apps. This is possible due to the fact that 22% of the

apps in our dataset not only request access to the geolocation

permission in their manifest files, but also programmatically grant

their access to WebViews. As Table 8 exemplifies, ATS hostnames

associated with Unity, Taboola, and Forter successfully collect GPS

data from WebViews implemented by popular advertising SDKs

like TapJoy and Taboola across dozens of apps, or their own anti-

fraud solutions (e.g., Forter). Similarly, 38 scripts attempt to access

the microphone and camera capabilities through the navigator.
mediaDevices.getUserMediaAPI. The majority of these attempts

also come from 15 ATSes such as Applovin, Mintegral, and GMS.

Yet, as these permissions are more rarely requested by apps, they

are successfully accessed in only 21 of the cases.

Our results demonstrate that the feasibility and success rate of

opportunistic access to permission-protected resources through

Android WebViews is fairly high, particularly for geolocation data.

The dynamic nature of JS code execution in WebViews—often dis-

tributed through RTB without going through any vetting process—

coupled with the lack of privilege separation between WebViews

and their host apps, facilitates unauthorized and silent access to

protected data. Allowing arbitrary hostnames to collect sensitive

geolocation data along with user IDs—discussed in §6.4—facilitates

persistent geo-tracking for commercial, advertising and surveil-

lance purposes, including data brokerage. This risk is exacerbated

Table 9: Java methods to leak PII to WebViews. * indicates
that they are invoked in first-party WebViews only.

Method # Apps % SDKs Example SLDs

A
nd

.I
D

A
A
ID

G
PS

evaluateJavascript 1,556 17% IronSource 57 ✓ ✓ ✓
loadDataWithBaseURL 1,055 29% Applovin 58 ✓ ✓
loadUrl 190 17% Tapjoy 141 ✓ ✓ ✓
loadData 27 1% - 23 ✓
postUrl 3 * - 5 ✓
setUserAgentString 7 * - 55 ✓ ✓ ✓

by the fact that, unlike traditional web browsers, WebViews lack ex-

plicit user prompts to grant access to these permissions at runtime

to JS code, allowing these practices to occur without user awareness

as we show in §3.3.

Unsupported JS APIs. We found 75 JS scripts from 16 first-party

and 19 third-party SLDs attempting to invoke APIs not yet sup-

ported by the default Android WebView, some of which are experi-

mental APIs according to Mozilla Developer Guides [112]. The anti-

fraud service forter.com and a prominent Russian Internet corpora-

tion mail.ru load 11 distinct scripts that attempt to access the Web

Bluetooth API via navigator.bluetooth.getAvailability,
and, if successful, register event listeners using navigator.blueto
oth.addEventListener to monitor Bluetooth activity. This infor-

mation can be accessed by location services specialized in BLE

beacons like Estimote [66]. Furthermore, two other services at-

tempt to access APIs for GPU (navigator.gpu) and VR display

access (navigator.getVRDisplays), whose usage allows device
fingerprinting [97]. For reference, Table 12 in Appendix A reports

other unsupported APIs invoked by JS code executed on WebViews.

Although these JS APIs are not currently supported by WebViews

yet, they may eventually become accessible and new risks may

appear. In fact, as reported in the Chromium Issue Tracker [113],

the Chromium development team is planning to support Bluetooth

APIs for WebViews, which may facilitate user geo-tracking, cross-

device tracking and profiling [78].

6.4 Exploiting Java ⇒ JS Channels
OurWebView instrumentation allows us to detect the dissemination

of PII from Java code to WebViews, and from there to the cloud.

This PII includes IDs accessible only in Java code like the AAID

and Android ID, thus facilitating cross-platform tracking. Table 9

presents an overview of Java methods enabling these channels

along statistics of their use across apps, SDKs and the ultimate

endpoints receiving the PII:

• evaluateJavascript. 17% of the SDKs use this method to inject

PII into WebViews. This practice is observed across 1,556 apps,

resulting in the exfiltration of PII to 57 SLDs like tealiumiq.com
and appsflyer.com. At the SDK level, IronSource injects the AAID

into WebViews, which is then collected by subsidiary SLDs like

unity3d.com and supersonicads.com.

• Embedding PII on URLs and HTTP Headers. A common

technique used by SDKs to leak PII to WebViews is embedding

it in URLs and HTTP headers using loadDataWithBaseURL (29%

of SDKs) and loadUrl (17% of SDKs). We observe that sensitive

754

Tracking Without Borders Proceedings on Privacy Enhancing Technologies 2025(4)

Listing 2: Android ID concatenation with the User-Agent.
"User -Agent": "platform/vogo_sdk platformVersion /1 baseName/base_vogo_android

baseVersion /249 androidVersion /13 deviceBrand/google deviceId/
5b9ac306cb5afdbc deviceName/Google -Pixel 6a"

Table 10: PII shared with cookie sync-ing organizations.

PII % SLDs % SDKs # ATS SDKs Examples

AAID 50% 82% 16 Mintegral, TopOn

Andr. ID 15% 41% 7 Smart Instream, Applovin

EICD 9% 32% 5 Smart Instream, MS Clarity

Email 1% 14% 2 MS Clarity, ByteDance

GPS 8% 41% 7 Taboola, ByteDance

IDs sent using these methods are subsequently transmitted to

141 SLDs, including prominent ATSes like google-analytics.com
and demdex.net, the latter being associated with Adobe Expe-

rience Platform Identity Service. While less frequent, we also

observe the use of the loadData and postUrlmethods. For example,

the Applovin SDK shares the AAID with 32 organizations like

appsflyer.com and adjust.com by embedding it in URLs loaded in

WebViews using the loadUrl method in 411 apps in our dataset.

Another interesting case is JS code from unity3d.com loaded in

the Tapjoy SDK, gaining access to both geolocation data and the

AAID using the loadDataWithBaseURL method.

• User-Agent (UA) Leakage. The Indian car and scooter rental

app com.VoDrive leverages the Settings.Secure.getString
method to retrieve the device’s Android ID. This value is subse-

quently concatenated into the UA field by the app developers

(Vogo) [152] (see Listing 2). We observe the transmission of this

value to razorpay.com and loginwithamazon.com. This concerning

leak arises because, once a WebView user agent field is set either

intentionally or by mistake, it is automatically included in all
the HTTP requests generated by this WebView, regardless of the

destination. Similarly, forter.com, an identity graph provider [73],

successfully receives the AAID via the UA, then loads JS scripts

in 9 apps to attach it to users’ geolocation data.

Table 8 presents examples of SLDs and SDKs using thesemethods

to collect user IDs and attribute permission-protected geolocation

data to users. We note that we did not find any instances of IMEI

or MAC address leakage using these methods.

6.5 Cookie Sync-ing and ID Bridging
We capture evidence of cookie sync-ing between 1,190 SLDs—1,059

origin and 1,082 destinations—, and ID bridging. Figure 4 shows

cookie sync-ing events between SLDs with at least three occur-

rences. Around 44% of the SLDs involved in cookie sync-ing belong

to ATSes. These practices are observed across WebViews by 19

third-party advertising SDKs like ByteDance, Tappx, IronSource,

or Yandex. For example, we find 9 unique ID cookies synchro-

nized between Taboola (taboola.com) [134], an ad platform, and

Tealium iQ (tealiumiq.com) [137], a customer data management

platform, on WebViews implemented in Taboola’s SDK. We also

observe interactions between Adobe (adobe.com) and Expedia (ex-
pedia.com) [68] through Adobe’s Creative SDK [3] WebViews. Sim-

ilarly, Unity (unity3d.com) and Taboola synchronized 11 cookies

on IronSource’s ad SDK WebViews. Google also performs cookie

sync-ing across adservice.google.com, id.google.com, play.google.com,

and apis.google.com. In fact, GMS’ WebViews account for 31% of

the total cookie-syncing instances.

PII Dissemination and Cookie Sync-ing.We cross-reference the

SLDs receiving any of the PII types listed in Table 13—in addition to

Adobe’s Experience Cloud ID (EICD), a persistent ID that uniquely

identifies visitors in Adobe’s Experience Platform [7]—with those

entities involved in cookie sync-ing. Table 10 reports the observed

dissemination of PII to SLDs, and the SDKs facilitating it:

• AAID: 50% of cookie sync-ing SLDs also collect AAIDs, including

pangle.io—a TikTok subsidiary—the tracker tapad.com, and ru-
biconproject.com through WebViews from SDKs like IronSource,

Gadsme [76], and Bigo Ads [8].

• Android IDs:We find 15% of the SLDs receive the unresetable

Android ID, including doubleclick.net, tiktok.com, and omtrdc.net
(an Adobe service [5]) through WebViews from GMS, Taboola,

and ByteDance.

• EICD:We find 9% of SLDs involved in cookie sync-ing receive

Adobe’s EICD, including hostnames by The Trade Desk [38],

Google Analytics and Bing in WebViews belonging to SDKs like

MS Clarity [109], Smart AdServer [93], and ByteDance.

• Email: We observe that 1% of cookie sync-ing SLDs contain

hashed email addresses (HEMs). While this data type cannot be

accessed programmatically, these emails correspond to the ones

introduced by our monkey in registration forms while testing the

apps. Notably, the email hashes are appended to Meta Tracking

Pixels [107] sent to facebook.com/tr along with the Android ID,

AAID and EICD in the same HTTP query as Listing 3 shows.

However, hashing user data does not guarantee anonymity, as

noted by the FTC [62, 133].

• GPS: Finally, 8% of SLDs receive geolocation data with syn-

chronized cookies, AAID, Android ID, and EICD. This includes

snapchat.com (a first-party WebView), rubiconproject.com on Min-

tegral, Taboola, Appodeal, and GMS SDKs.

All these cookie sharing and ID bridging practices pose severe pri-

vacy risks by allowing these entities not only to perform cross-app

tracking but also to correlate individual users with their geolocation

data over time. Unfortunately, this data is available for purchase

(and misuse) through data brokers, as repeatedly demonstrated by

investigative journalism and regulatory efforts [31, 123, 130, 140].

7 Discussion
Our empirical findings confirm significant privacy risks associated

with the misuse of Android WebViews in the wild, particularly by

third-party advertising SDKs. Particularly concerning is the dis-

semination of sensitive geolocation data from WebViews linked

to unique user IDs, alongside widespread cookie sync-ing. These

risks are amplified by WebView’s relaxed permission model and the

ability of third-party SDKs to disable default security guarantees

programmatically, as discussed in §5. For instance, canvas finger-

printing can persist when combined with other device properties.

These practices facilitate cross-platform tracking and contribute

to identity graph construction, potentially undermining existing pri-

vacy controls and privacy regulations like GDPR, CCPA and COPPA,

especially in child-targeted apps that collect geolocation data [127].

755

Proceedings on Privacy Enhancing Technologies 2025(4) Weerasekara et al.

Figure 4: Cookie sync-ing between SLDs. Only pairs of SLDs exchanging at least 3 cookies are rendered for clarity.

Listing 3: Email hash (udff[em]) uploaded with Meta Track-
ing Pixels.
https ://www.facebook.com/tr/?id =1468083936810812& ev=CompleteRegistration&dl=

https%3A%2F%2 Fsecure.aarp.org%2 Fapplications %2Fuser%2 Flogin %3 Fclient_id %3
D0oagxm3qk9E4GdgAL2p7 %26 redirect_uri %3 Daarpst %3A%2F%2 Fauthenticate %26
response_type %3Dcode %26 scope%3 Doffline_access %2Bem%2Bbui%2Bbmi %26 promo%3
DCMTI %26 state%3D5d336375 -4704 -4cbf -9d01 -61492 cde8c27&rl=&if=false&ts
=1726177430240& cd[currency]=USD&cd[content_type]= product&cd[content_ids
]=%5B%22 login %22%5D&sw=412&sh =915&udff[em]=
658376e6824870dbf25b8f318843a5b88c114218c299683a19bd4325629c2&v=2.9.167&r=stable&ec
=3&o=6174& fbp=fb .1.1726177389993.626457883380397359& cs_est=true&
est_source =239921730312374& ler=empty&it =1726177388695& coo=false&es=
automatic&tm=3&rqm=GET

In fact, gaming apps show the highest incidence of web cookies,

impression pixels, PII leakage, cookie sync-ing, and browser finger-

printing, while canvas fingerprinting is more common in finance

and shopping apps, likely for anti-fraud purposes.

Yet, the implications of hybrid privacy abuses in WebViews vary

across stakeholders. Users face privacy loss and potential exploita-

tion of their data by brokers or authorities in jurisdictions with

weak human rights protections, unable to rely on existing con-

trols. Developers remain liable for integrating SDKs that engage

in such practices, often unknowingly. Ad networks’ customization

of default WebView privacy properties facilitates the execution of

privacy-harmful JS via RTB processes. Platform checks like Google

Play Protect, based on static analysis, may fail to detect or prevent

these covert flows due to their dynamic nature [153], thus failing

to safeguard users. Regulators also face difficulties capturing re-

producible evidence, as the dynamic execution of JS complicates

investigations into deceptive practices and enforcement of rules

like GDPR [122] and CCPA [26].

7.1 Mitigations
Addressing the issues reported in this paper requires coordinated

efforts across platforms, developers, ad networks, and regulators:

• Platform-Level Enhancements: Android’s WebView architecture

and permission model require a thorough redesign to better rec-

oncile Java and Web paradigms and restore user control. It is

essential to (i) restrict methods that allow WebView customiza-

tions weakening privacy defaults and enabling side-channels

between Java and JS code, and (ii) introduce fine-grained, user-

friendly controls to limit WebView tracking. Platforms could

mandate clear, standardized disclosures of WebView data prac-

tices and provide real-time notifications when WebViews access

sensitive data like geolocation, similar to AOSP permissions and

iOS’ approach. Unlike Android WebViews, iOS’ WKWebView

mitigates privacy issues like silent permission piggybacking by

prompting users when web scripts attempt to access geolocation

or media devices inside apps.

• App Store Policies: Platform operators should enforce stricter vet-

ting processes and platform policies to control the abuse of Web-

Views and the dissemination and execution of privacy-intrusive

JS code. Policies and industry standards could mandate justifica-

tion for WebView customizations and require adherence to basic

privacy principles and anti-tracking standards. Finally, enhanced

detection and blocking of harmful dynamic JS code loading on

WebViews at runtime could be introduced to limit abuse via Play

Protect. Apple’s stringent rules for WebView customization could

inspire similar policies for Android [14]. However, the probabilis-

tic nature of online ads makes abuse detection hard without the

collaboration of ad networks.

• Ad Network Accountability: Ad networks should be responsible

for vetting the JS code they distribute, limiting data collection,

and ensuring compliance with privacy regulations. Google Ad

Manager recommends CTs as an alternative for rendering ads,

despite their current beta status [83] as it enforces stricter se-

curity controls such as limiting JS injection, which may help

mitigate issues like permission piggybacking. While CTs may

offer stronger safeguards than WebViews in paper, their usage is

just recommended and further research is needed to assess their

properties and correct use in the wild.

• User-Centric Features: Borrowing from Chrome’s Privacy Sand-

box or settings to limit ad tracking at the platform-level, Web-

Views should include configurable anti-tracking settings to em-

power users. Allowing users to choose third-party WebViews

with certified anti-tracking features could provide additional safe-

guards to users while fostering competition, but at the risk of

increasing platform fragmentation [124].

• Regulatory Enforcement: Regulators should push for transparen-

cy requirements in in-app browsing technologies and encourage

accountability among all stakeholders and the RTB chain. En-

forcement mechanisms could be bolstered by collaborating with

756

Tracking Without Borders Proceedings on Privacy Enhancing Technologies 2025(4)

platforms and ad networks to detect and address covert data

harvesting through WebViews at scale, and to investigate how

data harvested through RTB processes is ultimately feeding into

data markets or identity graph solutions.

Due to the sensitivity of the data collected through WebViews

and the limitations in detecting these behaviors, we believe that de-

veloping mitigations to protect users’ privacy rights should prevail

over ensuring usability, legacy support, and compatibility.

8 Related Work
Several studies have explored the privacy-risks of in-app browsing

in Android and iOS. While we use some of these papers to inform

our analysis pipeline and our set of privacy threats, we are the first

ones to provide evidence of multiple privacy-intrusive practices

exploiting the hybrid nature of WebViews to bridge web and mobile

tracking, involving popular SDKs and third-party ATSes.

Vulnerabilities and Attacks. Prior studies performed vulnera-

bility analysis to detect security issues on in-app browsing. Luo et

al. [103] introduced Touchjacking attacks, which exploit UI-based

vulnerabilities in WebViews. Mutchler et al. [115] revealed that

28% of mobile apps have security vulnerabilities stemming from

improper WebView configurations, like mishandling SSL certifi-

cates. Further, Thomas et al. [139] highlighted the JS-to-Java inter-

face vulnerability in WebView, focusing on remote code execution.

Recently, studies like those by Beer et al. [19, 20] have explored

vulnerabilities in CTs, revealing how shared browser states can be

exploited to leak sensitive user data. Zhang et al. [158] demonstrate

how WebView APIs for local storage and cookie management can

be abused for web manipulation, building a static analysis tool to

detect their abuse in the wild. Choi et al. [29] analyzed phishing

detection failures in WebViews, showing that user-agent-specific

phishing sites evade blocking even after being reported to Google’s

Safe Browsing and built-in app reporting systems.

Privacy Concerns. Yue [155], Das et al. [35] and Zhang et al. [157]
explored howWebViews allow tracking as JS accesses tomotion sen-

sors can produce user fingerprints without explicit consent. Tang

et al. [135] proposed a dynamic tainting solution to detect privacy

leaks in JS-Java bridges. We build on their findings to detect their

abuse in thewild by real-world JS code byATSes distributed through

RTB on WebViews. Studies have also showed how sensitive data

could be exfiltrated through cross-zone and UXSS attacks [132] Dia-

mantaris et al. [57] hypothesize that ad networks can facilitate the

distribution of malicious JS code to harvest personal data, finding

issues on WebView’s app isolation and access control mechanisms

to sensors like GPS and Camera. However, they were unable to

demonstrate the actual abuse and dissemination of PII to the cloud.

Tiwari et al. [145] studied the risk of device fingerprinting in Web-

Views by combining cookie values, UAs and browser metadata. Our

analysis pipeline allows us detecting more advanced fingerprinting

techniques and their actual use. The most relevant paper is the

recent publication by Kuchhal et al. [96], which investigates the use

of WebViews and CTs across 146.5K popular Android apps through

static analysis, attributing them to their respective SDKs. Their

dynamic analysis focuses on security aspects of in-app browsing in

controlled lab settings. In fact, their methodology involves the arti-

ficial injection of popular desktop websites into WebViews across a

subset of 1K apps to study WebViews’ properties, rather than ana-

lyzing their organic behavior and risks in-the-wild. Our research

complements this work by investigating the content that developers,

SDKs and ATSes load in WebViews, providing real-world evidence

of intrusive practices—including fingerprinting, permission piggy-

backing, PII leakage, and cookie sync-ing—that originate from the

architectural shortcomings in hybrid in-app browsing and unvetted

RTB processes beyond the control of end-users, thereby presenting

a fundamentally different and less explored threat model.

Tooling. Several studies have proposed static and dynamic analysis

tools to detect privacy and security issues in WebViews. Bifocals,
by Chin and Wagner [28], is a method to detect security issues in

WebView implementations without executing JS code, like cross-

zone scripting. Rizzo et al. [128] introduced BabelView, a tool for
simulating code injection attacks to assess the impact of malicious

JS in WebViews. Bai et al. [17] proposed BridgeTaint, a taint analysis
technique to monitor real-time data flows between JS and native

code. Finally, Hu et al. [90] proposed a test generation tool for de-

tecting vulnerabilities in WebViews resulting from cross-language

interactions, applying it on 74 apps embedding WebViews.

9 Conclusions
This paper empirically demonstrated the widespread abuse of Web-

Views to track users and leak sensitive data for advertising and

cross-platform tracking, and the shortcomings of existing privacy

controls. Specifically, we showed how WebViews’ architecture and

SDK practices facilitate web-based tracking by arbitrary JS code dis-

tributed within WebViews through RTB processes by downgrading

their default privacy settings. We uncovered significant unreported

privacy-invasive practices like fingerprinting, cookie sync-ing, per-

mission piggybacking, and ID bridging in WebViews. Our findings

highlight critical gaps in existing app vetting processes like Google

Play Protect and the need for a redesigned WebView permission

model, platform privacy controls and sandboxing, stricter app store

policies, and enhanced accountability for advertising and tracking

networks to control the distribution of privacy harmful JS code.

Acknowledgments
This research was partially supported by the MICIU/AEI/10.13039/

501100011033/ through the grants PARASITE (PID2022-143304OB-

I00, EU ERDF), CYCAD (PID2022-140126OB-I00, EU ERDF), PRODI-

GY (PID2022-142290OB-I00, NextGenerationEU/ PRTR), and EMAC-

S (RED2024-154240-T), and Canada’s NSERC (RGPIN/04237-2018).

J. M. Moreno is funded by the MICIU with a FPI Predoctoral Grant

(PRE2020-094224). Prof. N. Vallina-Rodriguez was appointed as 2019

Ramon y Cajal fellow (RYC2020-030316-I), funded by by the MICI-

U/AEI/10.13039/501100011033/ and the EU ESF Investing in your

Future. S. Matic was partially funded by the Atracción de Talento

grant (Ref. 2020-T2/TIC-20184), funded by Madrid Regional Govern-

ment. We would like to thank P. Wijesekera, A. Feal and A. Girish

for early contributions in this paper, particularly demonstrating the

feasibility of user tracking on mobile apps throughWebViews using

canvas fingerprinting. We donated all our bug bounty rewards to

Doctors Without Borders. We used Chat-GPT for improving the

clarity of the abstract and §7.

757

Proceedings on Privacy Enhancing Technologies 2025(4) Weerasekara et al.

References
[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. TheWeb Never Forgets: Persistent Tracking

Mechanisms in the Wild. In Proc. of ACM CCS. ACM.

[2] Adivery. 2024. Adivery. https://www.adivery.com/en/. Accessed on November

30, 2024.

[3] Adobe. 2024. Adobe Creative SDK. https://creativesdk.github.io/ Accessed on

November 23, 2024.

[4] Adobe. 2024. Adobe Experience Cloud. https://business.adobe.com/. Accessed

on November 30, 2024.

[5] Adobe. 2024. Adobe Experience League. https://experienceleague.adobe.com/

en/docs/analytics/implementation/vars/config-vars/trackingserver Accessed

on November 23, 2024.

[6] Adobe. 2024. Adobe Experience Platform. Identity Service. https://business.

adobe.com/products/experience-platform/identity-service.html Accessed on

November 2, 2024.

[7] Adobe. 2024. Identity: Adobe Developer. https://developer.adobe.com/client-

sdks/home/base/mobile-core/identity/ Accessed on November 28, 2024.

[8] Bigo Ads. 2024. Bigo Ads. https://www.adsbigo.com/ Accessed on November

23, 2024.

[9] Google Ads. 2024. Integrate theWebView API for Ads. https://developers.google.

com/ad-manager/mobile-ads-sdk/android/browser/webview/api-for-ads. Ac-

cessed on February 13, 2025.

[10] Cheq AI. 2024. Ensighten. https://cheq.ai/ensighten/. Accessed on November

30, 2024.

[11] Akamai. 2024. Akamai Bot Manager. https://www.akamai.com/products/bot-

manager Accessed on November 23, 2024.

[12] Amazon. 2024. Amazon Ads. https://advertising.amazon.com/. Accessed on

November 30, 2024.

[13] Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre

Garel. 2021. A Large-scale Empirical Analysis of Browser Fingerprints Properties

for Web Authentication. ACM Trans. Web (2021).
[14] Apple. 2024. Using alternative browser engines in the European Union. https:

//developer.apple.com/support/alternative-browser-engines/. Accessed on

November 30, 2024.

[15] Applovin. 2024. Integration | AppLovin / MAX SDK. https://developers.

applovin.com/en/android/overview/integration/ Accessed on July 8, 2024.

[16] Pouneh Nikkhah Bahrami, Umar Iqbal, and Zubair Shafiq. 2022. FP-Radar:

Longitudinal Measurement and Early Detection of Browser Fingerprinting. In

Proc. of PETS. PETS.
[17] Junyang Bai, Weiping Wang, Yan Qin, Shigeng Zhang, Jianxin Wang, and Yi

Pan. 2019. BridgeTaint: A Bi-Directional Dynamic Taint Tracking Method for

JavaScript Bridges in Android Hybrid Applications. Proc. of IEEE Transactions
on Information Forensics and Security (2019).

[18] Muhammad Ahmad Bashir, Sajjad Arshad, William Robertson, and Christo Wil-

son. 2016. Tracing Information Flows Between Ad Exchanges Using Retargeted

Ads. In Proc. of USENIX Security. USENIX Association.

[19] Philipp Beer, Marco Squarcina, Lorenzo Veronese, and Martina Lindorfer. 2024.

Tabbed Out: Subverting the Android Custom Tab Security Model. In Proc. of
IEEE S&P. IEEE.

[20] Philipp Beer, Lorenzo Veronese, Marco Squarcina, Martina Lindorfer, and TU

Wien. 2022. The Bridge between Web Applications and Mobile Platforms is Still

Broken. In Workshop of Designing Security for the Web (SecWeb).
[21] Beeswax. 2024. Beeswax. https://www.beeswax.com/ Accessed on November

28, 2024.

[22] Bigo. 2024. BIGO Ads. https://www.adsbigo.com/. Accessed on November 30,

2024.

[23] Soumaya Boussaha, Lukas Hock, Miguel Bermejo, Ruben Cuevas Rumin, Angel

Cuevas Rumin, David Klein, Martin Johns, Luca Compagna, Daniele Antonioli,

and Thomas Barber. 2024. FP-tracer: Fine-grained Browser Fingerprinting

Detection via Taint-tracking and Entropy-based Thresholds. Proc. of PETS
(2024).

[24] Ryan Brown. 2024. Fanboy Adblock Homepage. https://fanboy.co.nz/ Accessed

on September 11, 2024.

[25] ByteDance. 2024. ByteDance - Inspire Creativity, Enrich Life. https://www.

bytedance.com/en/. Accessed on November 30, 2024.

[26] California State Legislature. 2018. California Consumer Privacy Act (CCPA).

https://oag.ca.gov/privacy/ccpa. Accessed on November 30, 2024.

[27] Andrea Cardaci. 2024. cyrus-and/chrome-remote-interface: Chrome Debugging

Protocol interface for Node.js. https://github.com/cyrus-and/chrome-remote-

interface Accessed on June 11, 2024.

[28] Erika Chin and David Wagner. 2014. Bifocals: Analyzing WebView Vulnera-

bilities in Android Applications. In Information Security Applications. Springer
International Publishing.

[29] Yoonjung Choi, Woonghee Lee, and Junbeom Hur. 2024. PhishinWebView:

Analysis of Anti-Phishing Entities in Mobile Apps with WebView Targeted

Phishing. In Proc. of WWW. ACM.

[30] Contanuity. 2024. Contanuity. https://contanuity.com/ Accessed on November

28, 2024.

[31] Joseph Cox. 2021. Location Data Firm Got GPS Data From Apps Even When People
Opted Out. https://www.vice.com/en/article/huq-location-data-opt-out-no-

consent/ Accessed on November 28, 2024.

[32] Jonathan Crussell, Ryan Stevens, and Hao Chen. 2014. MAdFraud: investigating

ad fraud in android applications. In Proc. of ACM MobiSys. ACM.

[33] Ha Dao, Johan Mazel, and Kensuke Fukuda. 2020. Characterizing CNAME

Cloaking-Based Tracking on the Web. IEEE/IFIP Network Traffic Measurement
and Analysis Conference (TMA) (2020).

[34] Darvin. 2021. DetectFrida: Detect Frida for Android. https://github.com/

darvincisec/DetectFrida. Accessed on February 17, 2025.

[35] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. 2018. The Web’s

Sixth Sense: A Study of Scripts Accessing Smartphone Sensors. In Proc. of ACM
CCS. ACM.

[36] DataDome. 2023. What is canvas fingerprinting? https://datadome.co/learning-

center/canvas-fingerprinting/. Accessed on May 20, 2025.

[37] Demandscience. 2024. Demandscience. https://demandscience.com/ Accessed

on November 28, 2024.

[38] The Trade Desk. 2024. The Trade Desk. https://www.thetradedesk.com/uk

Accessed on November 23, 2024.

[39] Android Developers. 2024. Build web apps in WebView. https://developer.

android.com/develop/ui/views/layout/webapps/webview Accessed on June 24,

2024.

[40] Android Developers. 2024. CookieManager. https://developer.android.com/

reference/android/webkit/CookieManager Accessed on November 28, 2024.

[41] Android Developers. 2024. CookieManager.setAcceptThirdPartyCookies.

https://developer.android.com/reference/android/webkit/CookieManager#

setAcceptThirdPartyCookies(android.webkit.WebView,%20boolean) Accessed

on September 1, 2024.

[42] Android Developers. 2024. In-app browsing using Embedded Web.

https://developer.android.com/develop/ui/views/layout/webapps/in-app-

browsing-embedded-web. Accessed on February 16, 2025.

[43] Android Developers. 2024. On-Device Protections. https://developers.google.

com/android/play-protect/client-protections Accessed on October 8, 2024.

[44] Android Developers. 2024. PermissionRequest. https://developer.android.com/

reference/android/webkit/PermissionRequest Accessed on June 10, 2024.

[45] Android Developers. 2024. Play Integrity API. https://developer.android.com/

google/play/integrity. Accessed on February 9, 2025.

[46] Android Developers. 2024. Privacy indicators. https://source.android.com/

docs/core/permissions/privacy-indicators Accessed on October 8, 2024.

[47] Android Developers. 2024. WebChromeClient. https://developer.android.com/

reference/android/webkit/WebChromeClient Accessed on June 10, 2024.

[48] Android Developers. 2024. WebSettings. https://developer.android.com/

reference/android/webkit/WebSettings Accessed on October 1, 2024.

[49] Android Developers. 2024. WebSettings.setDomStorageEnabled.

https://developer.android.com/reference/android/webkit/WebSettings#

setDomStorageEnabled(boolean) Accessed on November 17, 2024.

[50] Android Developers. 2024. WebView. https://developer.android.com/reference/

android/webkit/WebView. Accessed on October 8, 2024.

[51] Android Developers. 2024. WebView.addJavascriptInterface. https://developer.

android.com/reference/android/webkit/WebView#addJavascriptInterface(java.

lang.Object,%20java.lang.String) Accessed on November 28, 2024.

[52] Android Developers. 2024. WebView.evaluateJavascript. https://developer.

android.com/reference/android/webkit/WebView#evaluateJavascript(java.

lang.String,%20android.webkit.ValueCallback%3Cjava.lang.String%3E)

Accessed on November 28, 2024.

[53] Chromium Developers. 2024. Chrome custom tabs smooth the transition be-

tween apps and the web. https://blog.chromium.org/2015/09/chrome-custom-

tabs-smooth-transition_2.html Accessed on October 1, 2024.

[54] Chromium Developers. 2024. Chrome DevTools Protocol. https://

chromedevtools.github.io/devtools-protocol/ Accessed on August 23, 2024.

[55] Chromium Developers. 2024. WebView Java Bridge. https://chromium.

googlesource.com/chromium/src/+/master/android_webview/docs/java-

bridge.md Accessed on November 28, 2024.

[56] Mozilla Developers. 2024. Geckoview. https://mozilla.github.io/geckoview/

Accessed on July 8, 2024.

[57] Michalis Diamantaris, FrancescoMarcantoni, Sotiris Ioannidis, and Jason Polakis.

2020. The Seven Deadly Sins of the HTML5 WebAPI: A Large-scale Study on

the Risks of Mobile Sensor-based Attacks. ACM TOPS (2020).
[58] Michalis Diamantaris, Serafeim Moustakas, Lichao Sun, Sotiris Ioannidis, and

Jason Polakis. 2021. This Sneaky PiggyWent to the Android AdMarket:Misusing

Mobile Sensors for Stealthy Data Exfiltration. In Proc. of ACM CCS. ACM.

[59] Yana Dimova, Gunes Acar, Lukasz Olejnik, Wouter Joosen, and Tom

Van Goethem. 2021. The CNAME of the Game: Large-scale Analysis of DNS-

based Tracking Evasion. In Proc. of PETS. PETS.
[60] EasyList. 2024. EasyList. https://easylist.to/ Accessed on September 11, 2024.

758

https://www.adivery.com/en/
https://creativesdk.github.io/
https://business.adobe.com/
https://experienceleague.adobe.com/en/docs/analytics/implementation/vars/config-vars/trackingserver
https://experienceleague.adobe.com/en/docs/analytics/implementation/vars/config-vars/trackingserver
https://business.adobe.com/products/experience-platform/identity-service.html
https://business.adobe.com/products/experience-platform/identity-service.html
https://developer.adobe.com/client-sdks/home/base/mobile-core/identity/
https://developer.adobe.com/client-sdks/home/base/mobile-core/identity/
https://www.adsbigo.com/
https://developers.google.com/ad-manager/mobile-ads-sdk/android/browser/webview/api-for-ads
https://developers.google.com/ad-manager/mobile-ads-sdk/android/browser/webview/api-for-ads
https://cheq.ai/ensighten/
https://www.akamai.com/products/bot-manager
https://www.akamai.com/products/bot-manager
https://advertising.amazon.com/
https://developer.apple.com/support/alternative-browser-engines/
https://developer.apple.com/support/alternative-browser-engines/
https://developers.applovin.com/en/android/overview/integration/
https://developers.applovin.com/en/android/overview/integration/
https://www.beeswax.com/
https://www.adsbigo.com/
https://fanboy.co.nz/
https://www.bytedance.com/en/
https://www.bytedance.com/en/
https://oag.ca.gov/privacy/ccpa
https://github.com/cyrus-and/chrome-remote-interface
https://github.com/cyrus-and/chrome-remote-interface
https://contanuity.com/
https://www.vice.com/en/article/huq-location-data-opt-out-no-consent/
https://www.vice.com/en/article/huq-location-data-opt-out-no-consent/
https://github.com/darvincisec/DetectFrida
https://github.com/darvincisec/DetectFrida
https://datadome.co/learning-center/canvas-fingerprinting/
https://datadome.co/learning-center/canvas-fingerprinting/
https://demandscience.com/
https://www.thetradedesk.com/uk
https://developer.android.com/develop/ui/views/layout/webapps/webview
https://developer.android.com/develop/ui/views/layout/webapps/webview
https://developer.android.com/reference/android/webkit/CookieManager
https://developer.android.com/reference/android/webkit/CookieManager
https://developer.android.com/reference/android/webkit/CookieManager#setAcceptThirdPartyCookies(android.webkit.WebView,%20boolean)
https://developer.android.com/reference/android/webkit/CookieManager#setAcceptThirdPartyCookies(android.webkit.WebView,%20boolean)
https://developer.android.com/develop/ui/views/layout/webapps/in-app-browsing-embedded-web
https://developer.android.com/develop/ui/views/layout/webapps/in-app-browsing-embedded-web
https://developers.google.com/android/play-protect/client-protections
https://developers.google.com/android/play-protect/client-protections
https://developer.android.com/reference/android/webkit/PermissionRequest
https://developer.android.com/reference/android/webkit/PermissionRequest
https://developer.android.com/google/play/integrity
https://developer.android.com/google/play/integrity
https://source.android.com/docs/core/permissions/privacy-indicators
https://source.android.com/docs/core/permissions/privacy-indicators
https://developer.android.com/reference/android/webkit/WebChromeClient
https://developer.android.com/reference/android/webkit/WebChromeClient
https://developer.android.com/reference/android/webkit/WebSettings
https://developer.android.com/reference/android/webkit/WebSettings
https://developer.android.com/reference/android/webkit/WebSettings#setDomStorageEnabled(boolean)
https://developer.android.com/reference/android/webkit/WebSettings#setDomStorageEnabled(boolean)
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView#addJavascriptInterface(java.lang.Object,%20java.lang.String)
https://developer.android.com/reference/android/webkit/WebView#addJavascriptInterface(java.lang.Object,%20java.lang.String)
https://developer.android.com/reference/android/webkit/WebView#addJavascriptInterface(java.lang.Object,%20java.lang.String)
https://developer.android.com/reference/android/webkit/WebView#evaluateJavascript(java.lang.String,%20android.webkit.ValueCallback%3Cjava.lang.String%3E)
https://developer.android.com/reference/android/webkit/WebView#evaluateJavascript(java.lang.String,%20android.webkit.ValueCallback%3Cjava.lang.String%3E)
https://developer.android.com/reference/android/webkit/WebView#evaluateJavascript(java.lang.String,%20android.webkit.ValueCallback%3Cjava.lang.String%3E)
https://blog.chromium.org/2015/09/chrome-custom-tabs-smooth-transition_2.html
https://blog.chromium.org/2015/09/chrome-custom-tabs-smooth-transition_2.html
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://chromium.googlesource.com/chromium/src/+/master/android_webview/docs/java-bridge.md
https://chromium.googlesource.com/chromium/src/+/master/android_webview/docs/java-bridge.md
https://chromium.googlesource.com/chromium/src/+/master/android_webview/docs/java-bridge.md
https://mozilla.github.io/geckoview/
https://easylist.to/

Tracking Without Borders Proceedings on Privacy Enhancing Technologies 2025(4)

[61] EasyPrivacy. 2024. EasyPrivacy. https://easylist.to/easylist/easyprivacy.txt

Accessed on September 11, 2024.

[62] Federal Trade Commission Ed Felten. 2012. Does Hashing Make Data “Anony-

mous”? https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2012/04/

does-hashing-make-data-anonymous. Accessed on May 20, 2025.

[63] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-

site Measurement and Analysis. In Proc. of ACM CCS. ACM.

[64] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman,

Jonathan Mayer, Arvind Narayanan, and Edward W. Felten. 2015. Cookies

That Give You Away: The Surveillance Implications of Web Tracking. In Proc.
of WWW. ACM.

[65] Esprima. 2024. Esprima. https://esprima.org/ Accessed on November 17, 2024.

[66] Estimote. 2024. Estimote UWB Tags. https://estimote.com/. Accessed on

November 30, 2024.

[67] Exodus. 2024. Exodus Privacy. Trackers. https://reports.exodus-privacy.eu.org/

en/trackers/ Accessed on November 2, 2024.

[68] Expedia. 2024. TExpedia. https://www.expedia.com/ Accessed on November

23, 2024.

[69] Álvaro Feal, Julien Gamba, Juan Tapiador, Primal Wijesekera, Joel Reardon,

Serge Egelman, and Narseo Vallina-Rodriguez. 2021. Don’t accept candy from

strangers: An analysis of third-party mobile SDKs. Data Protection and Privacy:
Data Protection and Artificial Intelligence (2021).

[70] Julian Fietkau, Kashyap Thimmaraju, Felix Kybranz, Sebastian Neef, and Jean-

Pierre Seifert. 2021. The Elephant in the Background: AQuantitative Approachto

Empower Users Against Web Browser Fingerprinting. In WPES ’21: Proceedings
of the 20th Workshop on Workshop on Privacy in the Electronic Society. ACM.

[71] FingerprintJS. 2024. FingerprintJS. https://github.com/fingerprintjs/fingerprintjs

Accessed on November 28, 2024.

[72] FKIE-CAD. 2024. fkie-cad/friTap. https://github.com/fkie-cad/friTap Accessed

on June 11, 2024.

[73] Forter. 2024. Forter: Identity Intelligence Platform. https://www.forter.com/

Accessed on November 23, 2024.

[74] Imane Fouad, Nataliia Bielova, Arnaud Legout, and Natasa Sarafijanovic-Djukic.

2020. Missed by Filter Lists: Detecting Unknown Third-Party Trackers with

Invisible Pixels. In Proc. of PETS. PETS.
[75] Frida. 2024. Frida. https://frida.re/docs/home/. Accessed on February 17, 2025.

[76] Gadsme. 2024. Gadsme. https://www.gadsme.com/ Accessed on November 23,

2024.

[77] Garden City Games. 2024. Westbound:Perils Ranch. https://play.google.com/

store/apps/details?id=com.kiwi.westbound Accessed on November 28, 2024.

[78] Aniketh Girish, Joel Reardon, Juan Tapiador, Srdjan Matic, and Narseo Vallina-

Rodriguez. 2025. Your Signal, Their Data: An Empirical Privacy Analysis of

Wireless-scanning SDKs in Android. In Proc. of PETS. PETS.
[79] Google. 2020. Helping publishers manage consent with Funding

Choices. https://blog.google/products/admanager/helping-publishers-manage-

consent-funding-choices/ Accessed on July 3, 2024.

[80] Google. 2024. Android - Google Mobile Services. https://www.android.com/

gms/ Accessed on August 11, 2024.

[81] Google. 2024. Google Analytics Help. https://support.google.com/analytics/

answer/1011829 Accessed on November 28, 2024.

[82] Google. 2024. Google Safe Browsing. https://safebrowsing.google.com Accessed

on October 1, 2024.

[83] Google. 2024. Optimize Custom Tabs (Beta). https://developers.google.com/ad-

manager/mobile-ads-sdk/android/browser/custom-tabs. Accessed on April 3,

2025.

[84] W3C Community Group. 2024. WebView: Usage Scenarios and Challenges.

https://webview-cg.github.io/usage-and-challenges/ Accessed on June 24, 2024.

[85] GuardSquare. 2024. Java Obfuscator and Android App Optimizer | ProGuard.

https://www.guardsquare.com/proguard. Accessed on February 11, 2025.

[86] Kaspar Hageman, Álvaro Feal, Julien Gamba, Aniketh Girish, Jakob Bleier,

Martina Lindorfer, Juan Tapiador, and Narseo Vallina-Rodriguez. 2023. Mixed

signals: Analyzing software attribution challenges in the android ecosystem.

IEEE Transactions on Software Engineering (2023).

[87] Catherine Han, Irwin Reyes, Álvaro Feal, Joel Reardon, Primal Wijesekera,

Narseo Vallina-Rodriguez, Amit Elazari, Kenneth A Bamberger, and Serge Egel-

man. 2020. The price is (not) right: Comparing privacy in free and paid apps. In

Proc. of PETS. PETS.
[88] Dominique Hazaël-Massieux. 2022. Making WebViews work for the Web. https:

//www.w3.org/blog/2022/making-webviews-work-for-the-web/ Accessed on

June 24, 2024.

[89] Hemant. 2021. What is gstatic.com used for? All you need to know! https://www.

thewindowsclub.com/what-is-gstatic-com-used-for-all-you-need-to-know Ac-

cessed on November 28, 2024.

[90] Jiajun Hu, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2023. 𝜔Test: WebView-

Oriented Testing for Android Applications. In Proc. of ACM ISSTA. ACM.

[91] Jiajun Hu, Lili Wei, Yepang Liu, Shing-Chi Cheung, and Huaxun Huang. 2018. A

tale of two cities: how WebView induces bugs to Android applications. In Proc.

of ACM ASE. ACM.

[92] ID5. 2024. ID5. https://id5.io Accessed on November 2, 2024.

[93] Smart Instream. 2024. Smart - Instream SDK Documentation. https://

documentation.smartadserver.com/instreamSDK/. Accessed on November

30, 2024.

[94] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the

Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. In Proc.
of IEEE S&P. IEEE.

[95] Vegard Johnsen. 2020. Helping publishers manage consent with Funding

Choices. https://blog.google/products/admanager/helping-publishers-manage-

consent-funding-choices/. Accessed on November 30, 2024.

[96] Dhruv Kuchhal, Karthik Ramakrishnan, and Frank Li. 2024. Whatcha Lookin’

At: Investigating Third-Party Web Content in Popular Android Apps. In Proc. of
ACM IMC. ACM.

[97] Tomer Laor, Naif Mehanna, Antonin Durey, Vitaly Dyadyuk, Pierre Laperdrix,

Clémentine Maurice, Yossi Oren, Romain Rouvoy, Walter Rudametkin, and

Yuval Yarom. 2022. DRAWNAPART: A Device Identification Technique based

on Remote GPU Fingerprinting. In Proc. of NDSS.
[98] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. 2020.

Browser Fingerprinting: A Survey. ACM Transactions on the Web (2020).
[99] Kiho Lee, Chaejin Lim, Beomjin Jin, Taeyoung Kim, and Hyoungshick Kim. 2024.

AdFlush: A Real-World Deployable Machine Learning Solution for Effective

Advertisement and Web Tracker Prevention. In Proc. of WWW. ACM.

[100] LexisNexis. 2024. LexisNexis Risk Solutions. https://risk.lexisnexis.com/global/

en. Accessed on February 16, 2025.

[101] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a

lightweight UI-guided test input generator for Android. In Prof. of ICSE. IEEE.
[102] Lotame. 2024. Lotame Panorama Identity. https://www.lotame.com/panorama-

identity/ Accessed on November 2, 2024.

[103] Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du. 2013. Touch-

jacking Attacks on Web in Android, iOS, and Windows Phone. In Foundations
and Practice of Security. Springer Berlin Heidelberg.

[104] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: fast

and accurate detection of third-party libraries in Android apps. In Prof. of ICSE.
IEEE.

[105] Mappls. 2024. Mappls. https://www.mappls.com/ Accessed on November 28,

2024.

[106] Meta. 2024. Meta Ads. https://www.facebook.com/business/ads. Accessed on

November 30, 2024.

[107] Meta. 2024. Meta Pixel. https://www.facebook.com/business/tools/meta-pixel

Accessed on November 23, 2024.

[108] Foivos Michclinakis, Hossein Doroud, Abbas Razaghpanah, Andra Lutu, Narseo

Vallina-Rodriguez, Phillipa Gill, and Joerg Widmer. 2018. The cloud that runs

the mobile internet: A measurement study of mobile cloud services. In Proc. of
INFOCOM. IEEE.

[109] Microsoft. 2024. Microsoft Clarity. https://clarity.microsoft.com/. Accessed on

February 16, 2025.

[110] José Miguel Moreno. 2024. Fakeium - Lightweight Chromium Sandbox. https:

//github.com/josemmo/fakeium Accessed on October 22, 2024.

[111] Keaton Mowery and Hovav Shacham. 2012. Pixel Perfect: Fingerprinting Canvas

in HTML5. (2012).

[112] Mozilla. 2024. Navigator: gpu property. https://developer.mozilla.org/en-

US/docs/Web/API/Navigator/gpu Accessed on November 23, 2024.

[113] Mozilla. 2024. Support Web Bluetooth API in Android Webview. https:

//issues.chromium.org/issues/40703318 Accessed on November 23, 2024.

[114] Mozilla. 2024. Using HTTP Cookies - HTTP | MDN. https://developer.mozilla.

org/en-US/docs/Web/HTTP/Cookies Accessed on November 14, 2024.

[115] Patrick Mutchler, Adam Doupé, John Mitchell, Chris Kruegel, and Giovanni

Vigna. 2015. A large-scale study of mobile web app security. In Proc. of MoST.
ACM.

[116] Mozilla Developer Network. 2024. Document Cookie. https://developer.mozilla.

org/en-US/docs/Web/API/Document/cookie Accessed on November 28, 2024.

[117] Mozilla Developer Network. 2024. Navigator - Web APIs | MDN. https:

//developer.mozilla.org/en-US/docs/Web/API/Navigator Accessed on July 4,

2024.

[118] Facundo Olano. 2024. facundoolano/google-play-scraper. https://github.com/

facundoolano/google-play-scraper Accessed on June 27, 2024.

[119] Mandeep Pannu, Bob Gill, Robert Bird, Kai Yang, and Ben Farrel. 2016. Exploring

proxy detection methodology. In Proc. of ICCCF. IEEE.
[120] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos Markatos. 2019.

Cookie Synchronization: Everything You Always Wanted to Know But Were

Afraid to Ask. In Proc. of WWW. ACM.

[121] Pardot. 2024. Pardot. https://pi.pardot.com/. Accessed on February 16, 2025.

[122] European Parliament and Council of the European Union. 2016. General Data

Protection Regulation (GDPR). https://gdpr-info.eu/. Accessed on November

30, 2024.

759

https://easylist.to/easylist/easyprivacy.txt
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2012/04/does-hashing-make-data-anonymous
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2012/04/does-hashing-make-data-anonymous
https://esprima.org/
https://estimote.com/
https://reports.exodus-privacy.eu.org/en/trackers/
https://reports.exodus-privacy.eu.org/en/trackers/
https://www.expedia.com/
https://github.com/fingerprintjs/fingerprintjs
https://github.com/fkie-cad/friTap
https://www.forter.com/
https://frida.re/docs/home/
https://www.gadsme.com/
https://play.google.com/store/apps/details?id=com.kiwi.westbound
https://play.google.com/store/apps/details?id=com.kiwi.westbound
https://blog.google/products/admanager/helping-publishers-manage-consent-funding-choices/
https://blog.google/products/admanager/helping-publishers-manage-consent-funding-choices/
https://www.android.com/gms/
https://www.android.com/gms/
https://support.google.com/analytics/answer/1011829
https://support.google.com/analytics/answer/1011829
https://safebrowsing.google.com
https://developers.google.com/ad-manager/mobile-ads-sdk/android/browser/custom-tabs
https://developers.google.com/ad-manager/mobile-ads-sdk/android/browser/custom-tabs
https://webview-cg.github.io/usage-and-challenges/
https://www.guardsquare.com/proguard
https://www.w3.org/blog/2022/making-webviews-work-for-the-web/
https://www.w3.org/blog/2022/making-webviews-work-for-the-web/
https://www.thewindowsclub.com/what-is-gstatic-com-used-for-all-you-need-to-know
https://www.thewindowsclub.com/what-is-gstatic-com-used-for-all-you-need-to-know
https://id5.io
https://documentation.smartadserver.com/instreamSDK/
https://documentation.smartadserver.com/instreamSDK/
https://blog.google/products/admanager/helping-publishers-manage-consent-funding-choices/
https://blog.google/products/admanager/helping-publishers-manage-consent-funding-choices/
https://risk.lexisnexis.com/global/en
https://risk.lexisnexis.com/global/en
https://www.lotame.com/panorama-identity/
https://www.lotame.com/panorama-identity/
https://www.mappls.com/
https://www.facebook.com/business/ads
https://www.facebook.com/business/tools/meta-pixel
https://clarity.microsoft.com/
https://github.com/josemmo/fakeium
https://github.com/josemmo/fakeium
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/gpu
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/gpu
https://issues.chromium.org/issues/40703318
https://issues.chromium.org/issues/40703318
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
https://developer.mozilla.org/en-US/docs/Web/API/Navigator
https://developer.mozilla.org/en-US/docs/Web/API/Navigator
https://github.com/facundoolano/google-play-scraper
https://github.com/facundoolano/google-play-scraper
https://pi.pardot.com/
https://gdpr-info.eu/

Proceedings on Privacy Enhancing Technologies 2025(4) Weerasekara et al.

[123] Lisandro Perez-Rey. 2024. We Tracked Every Visitor to Epstein Island. https:

//www.wired.com/video/watch/we-tracked-every-visitor-to-epstein-island Ac-

cessed on November 28, 2024.

[124] Amogh Pradeep, Alvaro Feal, Julien Gamba, Ashwin Rao, Martina Lindorfer,

Narseo Vallina-Rodriguez, and David Choffnes. 2023. Not your average app: A

large-scale privacy analysis of android browsers. In Proc. of PETS. PETS.
[125] Philip Raschke and Axel Küpper. 2018. Uncovering Canvas Fingerprinting

in Real-Time and Analyzing ist Usage for Web-Tracking. In Workshops der
INFORMATIK 2018 - Architekturen, Prozesse, Sicherheit und Nachhaltigkeit. Köllen
Druck+Verlag GmbH.

[126] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth

Sundaresan, Mark Allman, Christian Kreibich, and Phillipa Gill. 2018. Apps,

Trackers, Privacy, and Regulators: A Global Study of theMobile Tracking Ecosys-

tem. In Proc. of NDSS.
[127] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas

Razaghpanah, Narseo Vallina-Rodriguez, and Serge Egelman. 2018. “Won’t

Somebody Think of the Children?” Examining COPPA Compliance at Scale. In

Proc. of PETS. PETS.
[128] Claudio Rizzo, Lorenzo Cavallaro, and Johannes Kinder. 2018. BabelView:

Evaluating the Impact of Code Injection Attacks inMobileWebviews. In Research
in Attacks, Intrusions, and Defenses. Springer International Publishing.

[129] Nate Schloss. 2022. Launching a new Chromium-based WebView for An-

droid. https://engineering.fb.com/2022/09/30/android/launching-a-new-

chromium-based-webview-for-android/ Accessed on July 8, 2024.

[130] Justin Sherman. 2023. The Location Data Market, Data Brokers, and Threats to

Americans’ Freedoms, Privacy, and Safety. (2023).

[131] Alexander Sjösten, Peter Snyder, Antonio Pastor, Panagiotis Papadopoulos, and

Benjamin Livshits. 2020. Filter List Generation for Underserved Regions. In

Proc. of WWW. ACM.

[132] Wei Song, Qingqing Huang, and Jeff Huang. 2020. Understanding JavaScript

Vulnerabilities in Large Real-World Android Applications. IEEE Transactions on
Dependable and Secure Computing (2020).

[133] Federal Trade Commission Staff in the Office of Technology. 2024. No, hashing

still doesn’t make your data anonymous. https://www.ftc.gov/policy/advocacy-

research/tech-at-ftc/2024/07/no-hashing-still-doesnt-make-your-data-

anonymous. Accessed on May 20, 2025.

[134] Taboola. 2024. Taboola. https://www.taboola.com/ Accessed on November 23,

2024.

[135] Junwei Tang, Ruixuan Li, Zhiqiang Xiong, Hongmu Han, and Xiwu Gu. 2021.

Detecting Privacy Leaks in Android Hybrid Applications Based on Dynamic

Taint Tracking. In Proc. of EUC. IEEE.
[136] TCPDump. 2024. TCPDUMP. https://www.tcpdump.org/ Accessed on June 11,

2024.

[137] Tealium. 2024. Tealium iQ. https://tealium.com/resource/datasheet/tealium-iq/

Accessed on November 23, 2024.

[138] Adguard Team. 2024. Adguard Filters. https://github.com/AdguardTeam/

AdguardFilters Accessed on September 11, 2024.

[139] Daniel R. Thomas, Alastair R. Beresford, Thomas Coudray, Tom Sutcliffe, and

Adrian Taylor. 2015. The Lifetime of Android API Vulnerabilities: Case Study

on the JavaScript-to-Java Interface. In Security Protocols XXIII. Springer Interna-
tional Publishing.

[140] Stuart A. Thompson and Charlie Warzel. 2019. Twelve Million Phones, One
Dataset, Zero Privacy. https://www.nytimes.com/interactive/2019/12/19/

opinion/location-tracking-cell-phone.html Accessed on November 28, 2024.

[141] Martin Thomson. 2022. The SSLKEYLOGFILE Format for TLS. Internet Draft draft-
thomson-tls-keylogfile-00. Internet Engineering Task Force. https://datatracker.

ietf.org/doc/draft-thomson-tls-keylogfile-00 Accessed on June 11, 2024.

[142] Deyu Tian, Yun Ma, Aruna Balasubramanian, Yunxin Liu, Gang Huang, and

Xuanzhe Liu. 2021. Characterizing embedded web browsing in mobile apps.

IEEE Transactions on Mobile Computing (2021).

[143] Tinyproxy. 2024. Tinyproxy. https://tinyproxy.github.io/ Accessed on June 11,

2024.

[144] Abhishek Tiwari, Jyoti Prakash, Sascha Groß, and Christian Hammer. 2019.

LUDroid: A Large Scale Analysis of Android – Web Hybridization. In Proc. of
IEEE SCAM. IEEE.

[145] Abhishek Tiwari, Jyoti Prakash, Alimerdan Rahimov, and Christian Hammer.

2022. Our fingerprints don’t fade from the Apps we touch: Fingerprinting the

Android WebView. ArXiv e-prints (2022).
[146] TopOn. 2024. TopOn. https://www.toponad.com/en. Accessed on November

30, 2024.

[147] Connor Tumbleson. 2024. https://apktool.org/ Accessed on November 2, 2024.

[148] Digital Turbine. 2024. Digital Turbine — digitalturbine.com. https://www.

digitalturbine.com/. Accessed on November 30, 2024.

[149] Unity3d. 2024. Unity Ads: Mobile Game Ad Network Platform & Analytics.

https://unity.com/products/unity-ads. Accessed on November 30, 2024.

[150] Utiq. 2024. Utiq enables responsible digital marketing. https://utiq.com/. Ac-

cessed on February 16, 2025.

[151] Pelayo Vallina, Álvaro Feal, Julien Gamba, Narseo Vallina-Rodriguez, and An-

tonio Fernández Anta. 2019. Tales from the Porn: A Comprehensive Privacy

Analysis of the Web Porn Ecosystem. In Proc. of ACM IMC. ACM.

[152] Vogo. 2024. Vogo. https://app.vogo.in/ Accessed on November 23, 2024.

[153] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li

Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. 2018. Beyond Google Play: A

Large-Scale Comparative Study of Chinese Android App Markets. In Proc. of
ACM IMC. ACM.

[154] Yandex. 2024. Yandex. https://ads.yandex.com/welcome. Accessed on November

30, 2024.

[155] Chuan Yue. 2016. Sensor-Based Mobile Web Fingerprinting and Cross-Site Input

Inference Attacks. In Proc. of SPW. IEEE.

[156] Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. 2019. LibID:

reliable identification of obfuscated third-party Android libraries. In Proc. of
ISSTA. ACM.

[157] Jiexin Zhang, Alastair R. Beresford, and Ian Sheret. 2019. SensorID: Sensor

Calibration Fingerprinting for Smartphones. In Proc. of IEEE S&P. IEEE.
[158] Xiaohan Zhang, Yuan Zhang, Qianqian Mo, Hao Xia, Zhemin Yang, Min Yang,

Xiaofeng Wang, Long Lu, and Haixin Duan. 2018. An Empirical Study of Web

Resource Manipulation in Real-world Mobile Applications. In Proc. of USENIX
Security. USENIX Association.

760

https://www.wired.com/video/watch/we-tracked-every-visitor-to-epstein-island
https://www.wired.com/video/watch/we-tracked-every-visitor-to-epstein-island
https://engineering.fb.com/2022/09/30/android/launching-a-new-chromium-based-webview-for-android/
https://engineering.fb.com/2022/09/30/android/launching-a-new-chromium-based-webview-for-android/
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2024/07/no-hashing-still-doesnt-make-your-data-anonymous
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2024/07/no-hashing-still-doesnt-make-your-data-anonymous
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2024/07/no-hashing-still-doesnt-make-your-data-anonymous
https://www.taboola.com/
https://www.tcpdump.org/
https://tealium.com/resource/datasheet/tealium-iq/
https://github.com/AdguardTeam/AdguardFilters
https://github.com/AdguardTeam/AdguardFilters
https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
https://datatracker.ietf.org/doc/draft-thomson-tls-keylogfile-00
https://datatracker.ietf.org/doc/draft-thomson-tls-keylogfile-00
https://tinyproxy.github.io/
https://www.toponad.com/en
https://apktool.org/
https://www.digitalturbine.com/
https://www.digitalturbine.com/
https://unity.com/products/unity-ads
https://utiq.com/
https://app.vogo.in/
https://ads.yandex.com/welcome

Tracking Without Borders Proceedings on Privacy Enhancing Technologies 2025(4)

A JavaScript Web Permissions
Table 11 provides details on JavaScript permissions, their APIs and

the corresponding Android Permissions. Table 12 provides details

about the unsupported JS APIs in WebViews.

Table 11: JS permissions, their relevant JS APIs and the cor-
responding Android permissions.

JavaScript Permission JavaScript API Android Permission

navigator.permissions.

query({ name: “geoloca-

tion" })

navigator.geolocation ACCESS_FINE_LOCATION,

ACCESS_COARSE_LOCATION

navigator.permissions.

query({ name: “camera" })

navigator.media

Devices.getUserMedia({

video: true })

CAMERA

navigator.permissions.

query({ name: “micro-

phone" })

navigator.media

Devices.getUserMedia({

audio: true })

RECORD_AUDIO

Table 12: JS permissions and their relevant APIs that are
unsupported in Android WebViews.

JavaScript Permission JavaScript API

Background Synchronization API

(background-sync)

navigator.serviceWorker

Compute Pressure API (compute-

pressure)

PressureObserver

Local Font Access API (local-fonts) window.queryLocalFonts

Notifications API (notifications) Notification

Payment Handler API (payment-

handler)

PaymentRequest

Push API (push) PushManager

Sensor APIs (magnetometer,

ambient-light-sensor)

Magnetometer, AmbientLightSensor

Storage Access API (storage-access,

top-level-storage-access)

document.requestStorageAccess

Web Bluetooth API (bluetooth) navigator.bluetooth

B Detecting PII Leaks
Table 13 provides the details about the PII types considered in our

PII leakage analysis.

Table 13: Description of PII types considered.

PII Type Description

AAID/GID The Android Advertising ID (AAID) or Google Ad-

vertising ID (GID) is a globally unique and reset-

table ID for advertising provided by Google Play

services. Can be reset throughAndroid’s limit track-

ing settings.

Android ID A globally unique and resettable ID tied to the com-

bination of app-signing keys, users, and devices.

Can be reset through factory resets.

IMEI The IMEI (International Mobile Equipment Iden-

tity) is a unique 15-digit serial number that uniquely

identifying any device with a SIM card.

Email Email addresses are closely related to user identities.

Emails are often collected after hashing them with

MD5, SHA1, or SHA256 hash functions.

Geolocation Geographical coordinates, either lat/long pairs or

geohashes.

MAC Address Local Bluetooth Low-Energy (BLE) and Wifi MAC

addresses.

C WebView Instrumentation
Table 14 lists the WebView methods instrumented with Frida and

their purpose.

Table 14: List of WebView instrumented methods with Frida.

WebView Method Purpose

WebChromeClient.
onPermissionRequest

Tracks access to sensitive permissions.

navigator.geolocation.
getCurrentPosition

Access to geolocation data.

GeolocationPermissions.allow Access to geolocation data.

HTMLCanvasElement.prototype.
toDataURL

Fingerprinting techniques.

CanvasRenderingContext2D.
prototype.fillText

Fingerprinting techniques.

WebView.evaluateJavascript Log JS API calls, including arguments

passed and returned values.

WebView.loadUrl,
WebView.loadData

Tracks URL loading events.

WebView.
addJavascriptInterface

Tracks interactions between JS and Java

code.

CookieManager.setCookie Tracks cookie storage events.

D Hardcoded Hostnames Loading on WebViews
Table 15 presents instances of hardcoded hostnames along with

their associated SDKs and the regions where they were observed.

E SDKs Across App Categories
Figure 5 shows the distribution of top-10 SDKs across app cate-

gories.

761

Proceedings on Privacy Enhancing Technologies 2025(4) Weerasekara et al.

Table 15: Examples of hardcoded hostnames accessed by WebViews in various apps, along with their associated SDKs and the
regions from which they were accessed.

Hostname EU IN US BR JP AU # Apps SDK Organization

fundingchoicesmessages.google.com ✓ ✓ ✓ ✓ ✓ ✓ 1035 GMS SDK Google

sf16-static.i18n-pglstatp.com ✓ ✓ ✓ 36 ByteDance SDK ByteDance

c.amazon-adsystem.com ✓ ✓ ✓ ✓ ✓ ✓ 24 Amazon Ads Amazon

cdn.taboola.com ✓ ✓ ✓ ✓ ✓ ✓ 11 Taboola SDK Taboola

trc.taboola.com ✓ ✓ ✓ ✓ ✓ ✓ 11 Taboola SDK Taboola

yandex.ru ✓ ✓ ✓ ✓ ✓ ✓ 9 Yandex Ads SDK Yandex

mraid.bigo.sg ✓ ✓ ✓ ✓ 8 Bigo Ads Guangzhou HuanGuo

cdn2.inner-active.mobi ✓ 3 Fyber Fyber

www.dailymotion.com ✓ 1 Dailymotion SDK Dailymotion

api.adivery.com ✓ 1 Adivery Imazh Rayvar, Inc.

static-web.likeevideo.com ✓ 1 Bigo Ads Guangzhou HuanGuo

Figure 5: Market share of the top-10 SDKs per app category. Horizontal bars represent the fraction of apps per category.

762

	Abstract
	1 Introduction
	2 Background
	2.1 WebViews Introduction
	2.2 WebView Security Model
	2.3 WebView Customization

	3 Privacy Attacks Using WebViews
	3.1 Fingerprinting
	3.2 Cookie Sync-ing and ID Bridging
	3.3 Permission Piggybacking

	4 Methodology
	4.1 WebView Usage and Customization
	4.2 Behavior Analysis Pipeline
	4.3 Limitations

	5 WebViews in the Wild
	5.1 WebView Customization
	5.2 Beyond Third Parties

	6 Tracking Behaviors on WebViews
	6.1 Web Cookies and Impression Pixels
	6.2 Fingerprinting
	6.3 Accessing to Sensitive JS APIs
	6.4 Exploiting Java JS Channels
	6.5 Cookie Sync-ing and ID Bridging

	7 Discussion
	7.1 Mitigations

	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A JavaScript Web Permissions
	B Detecting PII Leaks
	C WebView Instrumentation
	D Hardcoded Hostnames Loading on WebViews
	E SDKs Across App Categories

