
Uncovering the App Cloud Access Risks under Recommended
IAM Security Practices

Hengtong Lu

Institute of Information Engineering, Chinese Academy of

Sciences, Beijing, China,

luhengtong@iie.ac.cn

Yan Zhang

Institute of Information Engineering, Chinese Academy of

Sciences, Beijing, China,

zhangyan@iie.ac.cn

Qingfeng Tang

Macau University of Science and Technology, FIE

tangtsingfong@outlook.com

Pengwei Zhan

Institute of Information Engineering, Chinese Academy of

Sciences, Beijing, China,

zhanpengwei@iie.ac.cn

Abstract
The rapid development of mobile applications and cloud comput-

ing has led to the widespread adoption of cloud service platforms

for mobile backend services. However, improper use of cloud cre-

dentials has frequently resulted in the leakage of application data

on cloud servers. Despite security recommendations from cloud

service providers, vulnerabilities persist. To assess the effective-

ness of these measures, we propose a detection system to identify

cloud credential leaks in mobile applications, including hard-coded

credentials and those stored on servers. We analyzed 21,724 ap-

plications from Google Play and one Chinese market, revealing

new attacks triggered by stolen cloud credentials. Our findings

indicate that even temporary credentials recommended by cloud

providers may pose security risks. We identified 893 applications

using cloud credentials from the three major providers, with 945

credentials found. By analyzing these credentials, we uncovered

severe vulnerabilities in 356 apps, such as personally identifiable

information (PII) leakage, credential forgery, and remote code exe-

cution (RCE). These issues threaten user privacy and app security.

We also evaluated developer adherence to recommended IAM best

practices and provided suggestions for improving cloud credential

security, highlighting issues such as improper permissions, insuffi-

cient protection, outdated versions, and regional variants.

Keywords
Mobile Apps, Cloud Service, Security Risk

1 Introduction
Nowadays, mobile applications are integral to our daily lives, offer-

ing services that span social, medical, entertainment, and various

other fields. Cloud service platforms, due to their high scalability

and low cost, have become the preferred choice for constructing

the backend services of mobile apps. Mainstream cloud service

providers, such as Amazon AWS and Alibaba Cloud, offer pre-

packaged mobile cloud solutions, including specialized software

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(4), 763–776
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0156

development kits (SDKs) and application programming interfaces

(APIs), which developers can integrate into their apps with just a

few lines of code.

However, in recent years, security issues in cloud backend ser-

vice have led to numerous incidents of sensitive information leaks,

including PII and company data. For instance, a cloud configuration

error at Toyota led to the leak of personal information of 260,000

car owners in Japan[3]. Turkish low-cost airline Pegasus Airlines

leaked approximately 6.5 TB of data due to a configuration error in

an AWS S3 bucket[2].Despite the substantial efforts by cloud ser-

vice providers to secure their services, the clients of these services,

such as mobile apps, are often considered the weakest link.

Prior research has primarily focused on analyzing risks associ-

ated with long-term cloud credentials (such as hardcoded root keys

or overprivileged regular user credentials). For instance, Zhou[41]

et al. identified security vulnerabilities in AWS credentials within

Android systems, whileWen[38] et al. discovered similar issues with

persistent credentials in iOS environments. Zuo[42] et al. demon-

strated that root credential misuse constitutes one of the primary

causes of cloud data breaches. Additionally,Wang[37] et al. revealed

that regular user credentials with excessive permissions represent

another critical factor leading to cloud data leaks. However, these

studies largely overlooked temporary credentials, despite cloud ser-

vice providers recommending them as a security best practice. This

research gap leaves unanswered whether temporary credentials

genuinely mitigate risks or still suffer from permission configura-

tion issues.

Furthermore, previous analyses of cloud credential permissions

were limited in scope, typically concentrating on single services

(e.g., storage buckets) or static permission configurations. Chen[26]

et al. investigated six types of vulnerabilities in cloud storage buck-

ets, while Yadmani[32] et al. conducted extensive research on confi-

dential data leakage in cloud storage. Although Wang et al. inferred

credential permissions through dynamic probing, they failed to

systematically evaluate the relationship between temporary creden-

tials and cross-service permissions - a gap that could enable novel

attacks like log forgery or remote code execution (RCE). This study

pioneers fine-grained analysis of both long-term and temporary

credential permissions, and thoroughly examines how permission

combinations across cloud services amplify risks - a dimension that

prior research has insufficiently explored.

763

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0156


Proceedings on Privacy Enhancing Technologies 2025(4) Lu et al.

In response to the security risks associated with using cloud

services in mobile applications, cloud service providers have im-

plemented various security measures within their Identity and

Access Management (IAM) services[16][17][18]. In the field of IAM

services, cloud service providers offer numerous cloud identities

and intricate permission policy configurations, accompanied by de-

tailed documentation. Our comprehensive analysis of IAM-related

development documentation and practical case studies from Ama-

zon AWS[9], Alibaba Cloud[6], and Tencent Cloud[19] reveals that

these security measures primarily focus on two key aspects: (1)

Providers encourage developers to adopt safer credential mecha-

nisms. This includes using standard user cloud credentials instead

of root credentials with maximum permissions and distributing tem-

porary credentials to users via private servers; (2) They advocate for

granting customized permissions to standard users. This approach

emphasizes the principle of least privilege, ensuring appropriate

permission configurations.

Despite the implementation and recommendation of various

IAM-related security measures by cloud service providers, the ef-

fectiveness of these measures in the mobile app domain remains

uncertain. This uncertainty leads us to two research questions:

Q1. What is the current usage rate of these security measures

across various apps, and are they widely adopted and valued by

developers?

Q2. Do the existing security measures continue to pose potential

security risks, and do existing security measures cover all potential

security risks of cloud backend services in mobile app?

To address these questions, we propose Cloudet, a semi-automated

detection system for app cloud service security that aims to detect

potential risks of compromised cloud services used by mobile ap-

plications. We analyze IAM practices across a wide range of mobile

applications in the international app market, abstracting three com-

monly used cloud service access models. We then assess the effec-

tiveness of security measures provided by cloud service providers

within these models.

To evaluate the usage rate of these security measures, we con-

duct a large-scale analysis of cloud credential leakage in mobile

applications from Google Play and Chinese mobile app markets.

Additionally, we investigate the specific cloud services accessible

via these credentials. Our analysis extends beyond the commonly

known mobile back-end as a service (mBaaS) to include potential

security risks in Infrastructure as a Service (IaaS) Cloud services,

providing a comprehensive evaluation of the potential security

risks resulting from cloud credential leakage.

In summary, our contributions are as follows:

• We conducted the first large-scale empirical study on tem-

porary credentials in mobile applications, analyzing 21,724

apps from Google Play and 360 App Store. The results reveal

that only 47% of apps implemented the temporary creden-

tial mechanism recommended by cloud providers, indicat-

ing widespread non-compliance with security best practices.

Meanwhile, among apps using temporary credentials, 78.1%

exhibited exposure windows where credentials remained

vulnerable to short-term interception during their validity

period. Furthermore, 27% of exposed temporary credentials

were found to have excessive permissions, potentially lead-

ing to more severe consequences such as data breaches.

• Previous research on credential permissions has primarily

focused on common cloud services that directly store and

process personal information, such as cloud storage and push

notification services, attempting to exploit permissions to

access various types of sensitive data within these services.

In our current study, we innovatively extend this exploration

by utilizing obtained temporary or permanent credentials

to investigate their permission boundaries when used with

fundamental or auxiliary cloud services. This investigation

revealed that permission abuse in basic cloud services can

indirectly lead to severe personal information leakage vul-

nerabilities. We have identified two novel attack patterns:

cloud log spoofing and remote code execution, accompanied

by detailed case demonstrations.

• We established a multi-tiered response mechanism, imple-

menting responsible disclosure for 356 vulnerable apps through

channels like CERT and email notifications, while conduct-

ing root-cause investigations via developer surveys. This

approach achieved an 89% vulnerability remediation rate

and revealed fundamental causes such as time pressure (62%)

through the survey analysis.

2 Modeling App Access to Cloud Services
With the rapid development of cloud computing technology, tra-

ditional app development models are increasingly challenged by

scalability, flexibility, and cost-effectiveness demands. To meet the

growing demands of the mobile application market, major cloud ser-

vice providers have introduced mBaaS, providing mobile developers

with a convenient development environment and robust backend

support. mBaaS includes services such as data storage, user authen-

tication, and push notifications, allowing developers to focus more

on the front-end development without spending excessive effort on

building and maintaining the underlying backend infrastructure. In

addition to mBaaS, mobile developers also use foundational cloud

computing services such as cloud servers and cloud databases, to

provide higher levels of flexibility and scalability. However, this

also means that if the app’s cloud is attacked, it could lead to more

severe data breaches and financial losses.

To facilitate developers using cloud services, mainstream cloud

service providers offer SDKs that can be integrated into the apps.

These mobile SDKs contain multiple cloud service APIs (Cloud

APIs), allowing developers to access purchased cloud services by

calling these. When using cloud services, it is necessary to identify

the requester and verify their access permissions via IAM. Therefore,

developers must generate cloud credentials in the cloud manage-

ment console[31] and pass them to the app so that the cloud can

verify the app’s identity and allow access to specific resources.

As cloud service providers continuously introduce new security

measures in IAM, the methods through which mobile applications

obtain cloud credentials have also evolved. Through the analysis

of 21,724 applications, we abstracted three workflow models for

mobile applications accessing cloud services, as shown in Figure 1.

These applications were sourced from two major markets: Google

Play and the Chinese 360 Market. Specifically, we focused on the

764



Uncovering the App Cloud Access Risks under Recommended IAM Security Practices Proceedings on Privacy Enhancing Technologies 2025(4)

Figure 1: Models of App Access to Cloud

most downloaded applications within each category, collecting

13,806 applications from 32 categories in Google Play and 7,918

applications from 19 categories in the Chinese 360Market. These ap-

plications span a variety of types, including social media, shopping,

music, and financial applications. For more detailed information

regarding the sources and categories of the analyzed applications,

please refer to Section 4.1, which provides an in-depth breakdown

of the dataset.

Cloud credentials used in applications can be categorized into

long-term and temporary credentials. Long-term credentials include

root user credentials and regular user credentials. Root credentials

can be generated by the root user through accessing cloud ser-

vices and provide full control over the purchased cloud resources

under their account. Regular user credentials can be generated

by regular users, such as IAM users in AWS[12] or RAM users in

Alibaba Cloud[13], with permissions to access specific cloud re-

sources.Previous studies have demonstrated that the misuse of root

credentials[42] and improper permission settings of regular user

credentials[37] are major causes of cloud data breaches, correspond-

ing to the model in Figure 1(a). These applications are distributed

to users, attackers, and security analysts through various channels

(e.g., mobile app markets or developer websites). Developers first

generate root or regular user credentials through the IAM service

(Steps 1-2) and hard-code these credentials into the application’s

source code during development (Step 3). When the application

needs to use cloud services, it can use the cloud credentials to call

cloud APIs and access other cloud services purchased by the de-

veloper (Steps 4-5). However, this approach introduces potential

security risks and management challenges. Firstly, attackers or

security analysts can reverse-engineer hard-coded credentials to

perform unauthorized actions. Secondly, updating cloud credentials

requires recompiling and republishing the application, resulting in

management inconvenience and delays.

Recognizing the insecurity of hardcoding credentials, some mo-

bile app developers shift the long-term credentials to app private

server and distribute them securely to mobile app clients, as shown

in Figure 1(b). Developers generate root or regular user credentials

via access control cloud services and store them on app private

server (step 1-3). When the app needs to use cloud services, it re-

quests the stored credentials from the private server in real-time,

caching them in local storage such as memory or SharedPreferences

(step 4-5). The app then uses these credentials to call Cloud APIs

and access other cloud services (step 6). Although some app private

servers may not be cloud-based, our modeling covers the major-

ity of scenarios. This approach addresses the issues of hardcoding

cloud credentials but introduces new potential risks. During the

transmission of credentials from the private server to the client, at-

tackers could intercept the credentials through man-in-the-middle

attacks. Unencrypted transmissions and unverified clients can also

lead to successful attacks.

Given the potential risks of misuse associated with long-term

cloud credentials, cloud service providers have introduced a series

of security mechanisms for different app scenarios. Consequently,

using temporary credentials to access cloud services has become

a new trend, represented in Figure 1(c). In this model, developers

store long-term credentials on a private server (step 1-3). When the

app needs to access specific cloud services, it requests a temporary

credential from the private server, which generates this credential

in real-time via secure token cloud services (step 4-7). The tempo-

rary credential is then returned to the app client. These credentials

are time-limited, typically valid for no more than 36 hours, signifi-

cantly reducing the risk of credential exposure. To further control

access permissions, cloud service providers have introduced secu-

rity mechanisms such as AssumeRole[8] and Policy[7]. However,

the complexity of permission configuration can lead to developers

mistakenly granting excessive permissions to temporary creden-

tials.

Although private servers typically implement authentication

mechanisms to restrict access, attackers or security analysts might

still intercept the URL of the private server that issues temporary

765



Proceedings on Privacy Enhancing Technologies 2025(4) Lu et al.

Table 1: Commonly used cloud services for App

CSP cloud service Initialization APIs Parameter Type counts

AWS

S3(Simple Storage Service) com.amazonaws.auth.BasicSessionCredentials: void <init>(String, String)

Long-term credentials

6

com.amazonaws.auth.AWSAbstractCognitoDeveloperIdentityProvider: void <init>(String, String)

SNS(Simple Notification) com.amazonaws.auth.BasicAWSCredentials: void <init>(String, String, String)

com.amazonaws.auth.AWSAbstractCognitoDeveloperIdentityProvider : void <init>(String, String)

Temporary credentialsCloudWatch com.amazonaws.auth.CognitoCachingCredentialsProvider : void <init>(String, String)

com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserPool : void <init>(String, String)

Alibaba

OSS(Object Storage Service)

com.alibaba.sdk.android.oss.common.auth.OSSFederationToken: void <init>(String, String, String)

Temporary Credentials

6

com.alibaba.sdk.android.oss.common.auth.OSSStsTokenCredentialProvider: void <init>(String, String, String)

com.alibaba.sdk.android.common.auth.StsTokenCredentialProvider: void <init>(String, String, String)

com.alibaba.sdk.android.common.auth.OSSPlainTextAKSKCredentialProvider: void <init>(String, String)

Long-term Credentials

com.alibaba.sdk.android.oss.common.utils.OSSUtils: java.lang.String sign: (String, String, String)

com.alibaba.sdk.android.oss.common.auth.OSSAuthCredentialsProvider:(String) Auth URL

SLS(Simple Log Servic)

com.aliyun.sls.android.producer.resetSecurityToken: void <init>(String, String, String) Temporary Credentials

3com.aliyun.sls.android.producer.LogProducerConfig: void <init>(String,String)

Long-term Credentials

com.aliyun.sls.android.sdk.core.auth.PlainTextAKSKCredentialProvider: void <init>(String,String)

MNS(Message Servic) com.aliyun.mns.client.CloudAccount: void <init>(String, String, String) Long-term Credentials 1

Tencent

COS(Cloud Object Storage) com.tencent.qcloud.core.auth.ShortTimeCredentialProvider: void <init>(String, String) Long-term Credentials

3CLS(Cloud Log Service) com.tencent.qcloud.core.auth.SessionQCloudCredentials: void <init>(String, String, String)

Temporary Credentials

CMQ(Cloud Message Queue) com.qcloud.cos.auth.BasicCOSCredentials: void <init>(String, String, String)

credentials through reverse engineering and man-in-the-middle

(MITM) attacks. For instance, if the app client does not properly

validate server certificates or uses weak authentication methods,

attackers could impersonate the app and send requests to the private

server.

3 mBaaS Analysis
The mBaaS cloud services offered by Amazon AWS, Alibaba Cloud,

and Tencent Cloud share similar usage scenarios, which can be

categorized into three main types: cloud storage services, cloud

logging services, and cloud push notification services. Each of these

cloud services has different aliases, as shown in the second column

of Table 1. Each cloud service provides a series of Cloud APIs to

meet a wide range of functional requirements. Based on the process

of mobile apps accessing cloud services and the differences in Cloud

APIs, we further divide the APIs into initializationAPIs and resource

access APIs.

Initialization APIs are used for authentication and authorization

when interacting with cloud services, verifying user identities, and

checking the permissions for accessing resources. Therefore, mobile

apps must first call initialization APIs before invoking resource ac-

cess APIs to operate on cloud resources. These Cloud APIs include

parameters such as cloud credentials and other critical resource

information (e.g., Region and EndPoint), making them essential for

analyzing cloud credential leaks in mobile apps. Specifically, we

examine 6 initialization APIs included in AWS, 9 in Alibaba Cloud,

and 7 in Tencent Cloud. For instance, AWS’s S3 cloud service com-

monly uses the BasicSessionCredentials initialization API to pass

temporary credentials and the BasicAWSCredentials initialization

API for long-term cloud credentials. Similarly, Alibaba Cloud uses

the OSSFederationToken initialization API for temporary creden-

tials, while Tencent Cloud employs the SessionQCloudCredentials

API for similar operations. Furthermore, Alibaba Cloud embeds

the corresponding initialization APIs directly into the SDKs for

different cloud services, whereas AWS and Tencent Cloud provide

dedicated SDKs for initialization APIs.

Resource access APIs are responsible for operations on cloud

resources, including creating, deleting, updating, and querying re-

sources to meet application-specific requirements and adapt to

various business scenarios. For example, AWS provides cloud stor-

age services through its Simple Storage Service (S3) with an SDK

named AWS S3. This service allows users to use buckets as contain-

ers to store data objects and provides a series of Cloud APIs for data

manipulation, including create, delete, update, and query opera-

tions, as well as supporting data synchronization and offline access

functions. These APIs include operations such as listing buckets

(s3:ListAllMyBuckets), downloading objects (s3:GetObject), and up-

loading objects (s3:PutObject), among 99 others[14]. Some of these

APIs can perform sensitive operations, and improper permission

settings may cause serious harm, which we analyze in detail in

Section 4.3.

Although users cannot directly call the Cloud APIs to access

these cloud services, the developer’s unsafe operation make it

possible for the users to obtain resources on the cloud server via

app client. Improper use of root credentials, excessive permissions

granted to regular user and temporary credentials can allow attack-

ers to exploit leaked cloud credentials to access cloud resources,

posing severe security threats. Attackers might use these permis-

sions to perform various malicious operations, such as accessing

multiple cloud server instances and launching RCE attacks.

4 Design and Implemention
This chapter presents the design and implementation of Cloudet, a

detection system designed to evaluate the effectiveness of security

measures implemented by major cloud service providers for mobile

apps and to assess the potential severity of harm when these mea-

sures are bypassed. Cloudet semi-automates the detection of cloud

data leakage risks in mobile apps, enhancing the understanding of

cloud credential vulnerabilities. As depicted in Figure 2, Cloudet

comprises four primary components: App dataset acquisition, static

analysis, dynamic analysis, and vulnerability analysis. Each compo-

nent plays a crucial role in identifying and analyzing the security

766



Uncovering the App Cloud Access Risks under Recommended IAM Security Practices Proceedings on Privacy Enhancing Technologies 2025(4)

Figure 2: Overview of Cloudet

threats present in mobile cloud environments, thereby facilitating

a comprehensive assessment of cloud data protection strategies.

4.1 App Dataset Collection
To achieve large-scale APK detection, we developed a web crawler

using Scrapy[15] to collect a dataset of 21,724 apps between De-

cember 2022 and July 2024. Specifically, we focused on the most

downloaded applications within each category, collecting 13,806

applications across 32 categories from Google Play[11] and 7,918

applications across 19 categories from the Chinese 360 Market[5].

To further enhance the depth and breadth of our dataset, we ad-

ditionally gathered 600 applications: 200 historical versions, 200

applications from the same developers, and 200 regional variants

of the same applications.

Specifically, for applications that use cloud APIs but have not

been identified as vulnerable, we expanded the dataset in two di-

mensions: horizontally, by including additional applications from

the same developer and various regional variants, and vertically,

by gathering different historical versions of the same application.

Horizontally, we collected additional applications from the same

developer as well as various regional variants of the same applica-

tion. Typically, for ease of management, a developer’s applications

share the same cloud resources. Developers can also create cloud

credentials with specific permissions for each application, ensuring

access is limited to authorized cloud resources. However, if a de-

veloper assigns excessive permissions to the cloud credentials, an

attacker might exploit the leaked credentials to perform unautho-

rized operations, potentially compromising the security of multiple

applications and their users. Vertically, we collected the earliest ver-

sion of the APK and intermediate versions up to the latest release

for analysis. Since early and updated versions of an application

may share similar functionalities, earlier versions may have weaker

security measures. For instance, WeChat has over 200 versions[4],

some of which may exhibit weaker security, such as hardcoding

sensitive information within the APK file.

4.2 Identification of Cloud Initialization APIs
and Cloud Credentials

To systematically detect whether an app uses cloud credentials,

the types of cloud credentials used, and the specific patterns of

their usage, we initially focus on automated recognition and anal-

ysis of cloud-related initialization APIs and the cloud credentials

they employ within the app. As discussed in the previous section,

initialization APIs are used to configure the environment and pa-

rameters necessary for mobile applications to access cloud services.

These APIs use either long-term cloud credentials or temporary

credentials as parameters to engage in unidirectional or bidirec-

tional authentication interactions with the cloud service. Based on

the above observations, we utilize Soot[1] to transform the mobile

app into a Jimple Intermediate Representation (IR) suitable for anal-

ysis. We further analyze the Soot Methods to identify the presence

of cloud-related initialization APIs. Subsequently, we construct a

global call graph of the mobile app and perform backward data

flow analysis to identify cloud credentials and parameters related

to cloud services.

In cases where cloud credentials are stored on the server side,

retrieving them directly from the code using the aforementioned

steps becomes infeasible. Instead, analyzing HTTP/HTTPS requests

is required to extract relevant credentials or configuration informa-

tion. Specifically, we investigate how network APIs, such as Http-

Client.execute() and HttpURLConnection.connect(), are invoked to

track the data flow dependencies between HTTP requests and their

corresponding responses. In backward data flow analysis, HTTP

response objects are treated as taint sources, aiding in identifying

request parameters such as the URI, HTTP method (e.g., GET or

POST), query strings, headers, and body. The detailed process is

illustrated in Algorithm 1.

In this project, we addressed the following three challenges:

Firstly, addressing the analysis barriers posed by code obfuscation

techniques used in some apps. These techniques often obfuscate

class names and method names of third-party SDK libraries, con-

verting them into meaningless characters, rendering API name

recognition ineffective for detecting obfuscated Cloud APIs. To

tackle the challenge of code obfuscation, we employed API signa-

ture methods.

Secondly, precisely analyzing the asynchronous callback func-

tion relationships when constructing the global call graph. Some

apps, when initiating network requests to cloud backend services

to retrieve cloud credential values in real-time, use asynchronous

callback mechanisms to avoid thread blocking. FlowDroid[22] does

not include control flows related to asynchronous callbacks due to

the incomplete handling of callback mechanisms. Therefore, we

utilized the results of Edgeminer[24], which addresses issues with

asynchronous and implicit events and identified 19,647 additional

callbacks, whereas FlowDroid only identified 181 callbacks. By in-

corporating Edgeminer’s results into FlowDroid’s configuration

files, we generated an extended call graph of the mobile apps. When

intra-procedural data flow analysis failed to identify specific cloud

credential values, inter-procedural data flow analysis was employed,

utilizing an extended call graph to compute the corresponding data

767



Proceedings on Privacy Enhancing Technologies 2025(4) Lu et al.

Algorithm 1 Cloud Credential Identification

Input: 𝑓𝑐 : Initialize cloud API; 𝑓𝑏 : Android Callback API; 𝐴𝑑 : apps

using cloud services;

Output: 𝐴𝑘 : Cloud Credential String Value; 𝐻𝑟 : HTTP request

related strings

Function Process(𝑀𝑠 , 𝑠):

1: for apps ∈ 𝐴𝑑 do
2: 𝐶𝑔 ← BuildCFG(𝑎𝑝𝑝𝑠, 𝑓𝑏 )
3: for 𝐶𝑎 ∈ 𝑓𝑐 do
4: 𝑓𝑠 ← gensig(𝐶𝑎)
5: if 𝑓𝑠 ∈ 𝐶𝑔 then
6: 𝑑𝑔 ← BuildDDG(𝑓𝑠 ,𝐶𝑔)
7: end if
8: if HttpResponse ∈ 𝑑𝑔 then
9: Type, url, args← ComputeHttpRequest(𝑑𝑔)
10: 𝐻𝑟 ← Type

11: 𝐻𝑟 ← url

12: 𝐻𝑟 ← args

13: return 𝐻𝑟

14: else
15: 𝐴𝑘 ← ComputeStringValue(𝑑𝑔)
16: return 𝐴𝑘

17: end if
18: end for
19: end for

dependency graph. By tracing the instructions in the data depen-

dency graph, we ultimately obtained the cloud credential string

values or the HTTP/HTTPS request-related string values.

Third, we examine the protection mechanisms employed by

applications for Web APIs, with the goal of obtaining temporary

credentials. To effectively prevent malicious users from accessing

Web APIs, applications implement multiple protection methods.

The most common methods[29][34][30] include: authentication

and authorization, encrypted communication, and request integrity

verification. As shown in Figure 3(a), authentication, typically im-

plemented using OAuth or API keys, ensures that only legitimate

users can access the API. As depicted in Figure 3(b), for encrypted

communication, besides using the HTTPS/TLS protocol, some apps

implement additional encryption (e.g., AES) on the data. As illus-

trated in Figure 3(c), for request integrity verification, some apps

incorporate digital signatures or random numbers into the requests

to resist man-in-the-middle and replay attacks. To overcome these

challenges, we employ dynamic analysis to obtain temporary cre-

dentials. Specifically, we manually register for user credentials,

using methods such as phone number registration or third-party

OAuth. To manage encrypted communication and integrity veri-

fication, we install BurpSuite certificate files and Frida on a Pixel

device running Android 9.0. By hooking into the Web APIs that

generate encryption or integrity verification parameters, we gain

access to these APIs to obtain temporary credentials.

Figure 3: Protection Methods for Web APIs

4.3 Analysis of Cloud Access Vulnerabilities
Having discussed how to obtain and identify cloud credentials, this

Section addresses ways to detect data leakage and cloud resource

attacks leveraging obtained cloud credentials.

In terms of data breach attacks, we focus on the leakage of PII

and user credential information. Various types of data are stored

across different cloud services. For instance, cloud storage often

holds user-uploaded media and crucial operational files, which may

also include data from web apps and backup files. Credentials with

excessive permissions can thus facilitate broader data exposure.

Additionally, cloud logs, which store vital system operation and

user activity details, if compromised, can provide attackers with

access to user browsing records and more. Notably, we identified

a new risk of unauthorized user logins stemming from cloud log

data leaks, where user tokens could be misused by attackers to

impersonate others. This scenario is further explained in Section

5.4.2.

Regarding cloud resource attacks, we focus on operations that

could disrupt the normal functioning of cloud services, such as data

pollution, RCE. Specifically, we check whether the cloud credentials

can use APIs related to cloud resource operations, including the

management of cloud storage buckets and server instances.

768



Uncovering the App Cloud Access Risks under Recommended IAM Security Practices Proceedings on Privacy Enhancing Technologies 2025(4)

To detect these attacks, we assess the potential risks by analyzing

the cloud credentials’ access to resource APIs. Solely examining the

called APIs might overlook sensitive ones, thus underestimating

the threat level. Hence, we initially identify powerful List-type APIs

in various cloud services, such as Alibaba Cloud’s oss:ListBuckets

and oss:ListObjects, which list all buckets and their contents, re-

spectively. Due to their potency, these APIs are typically restricted

to specific operations. Then, we further analyze APIs involved in

reading, writing, and deleting operations, along with other sensitive

resource access APIs.

To identify the presence of vulnerabilities, we propose a novel

privilege detection method to assess the extent of data and resource

exposure resulting from cloud credential leaks. It is worth noting

that this method does not actually attack the cloud service. Initially,

we use identity authentication APIs provided by CSPs, such as the

GetCallerIdentity API, to determine if the identified credentials

are root, regular, or another type. Subsequently, we execute user

permission policy query APIs within IAM services to ascertain

the actual permissions of the identified credentials, analyzing the

potential extent of leaks and attacks based on the query results.

In cases where regular user credentials or temporary access

credentials cannot invoke IAM-related APIs, we indirectly detect

cloud credential permissions through dynamic testing. Since ex-

ecuting sensitive resource access APIs successfully could lead to

data contamination or leakage within the cloud services, we ver-

ify the permissions without successful execution. Specifically, we

employ the technique of inducing errors[37] to test whether these

APIs can be executed. Cloud services typically follow a specific

sequence to determine if a resource access API can be executed. By

providing incorrect cloud resource IDs at certain stages to induce

errors, we can infer whether the cloud credentials can execute the

corresponding API.

Using these methods, Cloudet conducts vulnerability attack anal-

ysis on identified cloud credentials and their associated cloud ser-

vices. Principally, once a cloud credential is identified, the app is

considered at risk. However, in this study, we classify an app as

vulnerable (Vul App) only if Cloudet confirms that they can be

attacked by means such as data pollution, PII leakage, RCE, and

fake user login.

5 Results
In this section, we address the research questions related to the

data collected in our study. All the applications analyzed in our

research were executed on a dedicated PC equipped with an AMD

Ryzen 7 5800H @ 3.20 GHz processor and 32 GB of memory. To

answer our research questions, we utilized Cloudet to analyze the

cloud credentials of all 21,724 applications. The detection time was

proportional to the size of the APK files, which ranged from 195 KB

to 272 MB. The runtime varied from three minutes for smaller ap-

plications to a maximum of two hours for larger ones. We manually

analyzed 453 Web API instances used to obtain cloud credentials.

To acquire cloud credentials, we registered user accounts for 232

applications. For the applications withWeb API protection, we used

Frida to hook 73 applications, successfully obtaining 69 temporary

credentials and 4 long-term credentials from the server.

5.1 The Usage and Security of Temporary
Credentials

Using Cloudet to identify cloud credentials for each application,

we analyzed the security of cloud credentials across 21,724 apps,

with the results summarized in Table 2. Our analysis revealed that

893 apps interacted with at least one of the three evaluated cloud

services. From these apps, we extracted 945 distinct cloud creden-

tials—comprising 79 root, 463 standard, and 403 temporary cre-

dentials from 860 apps. Some apps contained multiple credentials,

particularly those with different access levels, which explains why

the total number of credentials exceeded the number of apps in-

volved. For an additional 53 apps, we detected cloud API calls but

were unable to obtain the corresponding cloud credentials. This

was due to various reasons, including the failure of the app’s Web

API interface, the inability of regular app users to access the corre-

sponding Web API, and cloud credentials being stored in .so files.

Further categorization analysis of apps revealed that Shopping,

Social, and Music & Audio apps were the largest users of cloud

services (Figure 7), likely due to their reliance on realtime data

exchange and extensive data storage. Conversely, Finance apps

were least likely to utilize cloud services, possibly due to stringent

data security and privacy regulations, favoring private over public

cloud solutions.

Column 4 of Table 2 shows the proportion of temporary access

credentials among all cloud credentials, with temporary credentials

accounting for 42.6%, nearly half. Among the 860 apps analyzed,

approximately 53% used hard-coded cloud credentials, 4% obtained

long-term credentials via private app servers, and 43% acquired

temporary credentials through private servers. Figure 4 illustrates

the distribution of different types of cloud credentials. Notably,

3(0.3%) root and 21(2.2%) regular user credentials and all temporary

credentials were sourced from the apps’ private server.

Following the method outlined in Section 4.2, we manually re-

constructed the Web API information for 453 applications to obtain

cloud credentials, including 403 temporary credentials and 24 long-

term credentials. This process was based on the HTTP/HTTPS

request information identified by Cloudet. As shown in Figure 5,

we found that 354 (78.1%) applications lacked sufficient protection

for their Web APIs. Among these, 52 Web APIs could be accessed

via a simple GET request without any additional parameters, while

92 Web APIs had specific parameter format requirements but did

not strictly verify the authenticity of these parameters. These vul-

nerabilities pose significant security risks, as developers cannot

perform trace analysis even if attackers obtain the cloud credentials.

Additionally, 210 applications implemented user authentication for

their Web APIs, but any registered app user could still access and

obtain temporary credentials.

The remaining 99 applications (21.9%) provided better protec-

tion for their temporary credentials. Among these, 26 applications

required registration via high-privilege accounts (e.g., VIP users),

preventing us from obtaining the cloud credentials for this subset of

apps. In addition, 73 applications performed integrity verification

or encryption of HTTP/HTTPS responses. Specifically, 44 appli-

cations added extra parameter verification to ensure the integrity

of HTTP/HTTPS requests initiated by the client, while 12 applica-

tions performed symmetric encryption (e.g., AES or DES) on both

769



Proceedings on Privacy Enhancing Technologies 2025(4) Lu et al.

Table 2: Overall results

Cloud Root Vul Regular Vul Temporary Credentials Vul AllServices Credentials Apps Credentials Apps No Protection Authentication C & I Apps
S3 12(3.8%) 12 201(64.6%) 65 31(9.9%) 45(14.4%) 22(7.0%) 17 311

ClousWatch 0(0%) 0 6(50%) 1 3(25%) 3(25%) 0(0%) 1 12

SNS 2(4.7%) 1 31(73.8%) 3 4(9.5%) 4(9.5%) 1(2.3%) 1 42

OSS 42(10.6%) 42 156(39.4%) 77 71(17.9%) 105(26.5%) 21(5.3%) 61 395

SLS 2(6.8%) 2 13(44.8%) 7 6(20.6%) 5(17.2%) 3(10.3%) 7 29

MNS 0(0%) 0 1(100%) 0 0(0%) 0(0%) 0(0%) 0 1

COS 21(15.4%) 21 46(33.8%) 23 25(36.2%) 32(46.3%) 22(31.8%) 22 146

CLS 0(0%) 0 3(100%) 1 0(0%) 0(0%) 0(0%) 0 3

CMQ 0(0%) 0 6(100%) 2 0(0%) 0(0%) 0(0%) 0 6

Overall 79(8.4%) 75 463(49.0%) 169 140(14.8%) 194(20.5%) 69(7.3%) 109 945

HTTP/HTTPS requests and responses. Although these protective

measures partially safeguarded cloud credentials from malicious

users, our manual analysis using Frida allowed us to retrieve all

cloud credentials by extracting encrypted symmetric keys or by-

passing integrity verification.

These findings address Q1, indicating that currently, less than
half of the developers employ the recommended security strategies

for temporary credentials. Most applications utilizing cloud services

still rely on the primitive method of hardcoding cloud credentials.

Additionally, only a minority of developers have implemented ade-

quate protection for theirWeb APIs. Malicious users can use reverse

engineering techniques to obtain cloud credentials stored on the

server, thereby facilitating further attacks.

5.2 Cloud Service Vulnerability Identification
For the acquired cloud credentials, we conducted dynamic analysis

of their permissions and found that 872 out of 945 credentials were

valid, while the remaining 73 had been rectified by the developers

prior to our testing. All temporary credentials dynamically dis-

tributed by cloud services proved to be valid. Using the method

described in Section 4.3, we evaluated the permissions of the cloud

credentials without accessing users’ sensitive data. Figure 6 illus-

trates the proportion of different types of cloud credentials that were

found to be vulnerable. An application is considered vulnerable if

it exhibits any of the four security risks described in Section 4.C.

Among all credentials, 41% of regular user credentials were found

to be vulnerable, whereas the proportion for temporary creden-

tials was 27%. Additionally, we did not find any cases of temporary

credentials with access to cloud servers or databases, while such

issues were frequently observed with long-term credentials. This is

attributed to developers failing to distinguish between the use of

cloud credentials in mobile applications and other types of applica-

tions. These findings suggest that the use of temporary credentials

effectively reduces the occurrence of vulnerabilities.

Although these credentials are temporary, they can still pose

significant security risks if granted excessive permissions. Our anal-

ysis indicates that a substantial portion of temporary credentials

(27%) were granted full administrative control over their respective

services, allowing operations such as listing and reading all files

across multiple cloud storage buckets or reading and writing all

files within a single bucket. The remaining 73% of credentials were

assigned more appropriate permissions. However, malicious users

who successfully obtain these temporary credentials may still be

able to perform write operations, leading to issues such as data

pollution. These findings underscore the importance of proper cre-

dential configuration by developers, who may mistakenly assume

that using temporary credentials alone is sufficient for security,

thereby neglecting critical permission settings.

These issues affect a wide range of cloud services, with the identi-

fied vulnerabilities impacting 356 applications. The affected services

are categorized as follows: cloud servers in 34 applications, cloud

storage in 321 applications, cloud databases in 29 applications, cloud

logging in 19 applications, and cloud push notification services in

21 applications, as shown in figure 8. To address potential security

risks, we analyzed whether these applications were susceptible to

the specific types of attacks outlined in Section 4.3, and used case

studies to provide more detailed insights into the security flaws.

The above analysis addresses Q2, indicating that the temporary

credentials recommended by major cloud service providers can

only partially mitigate security issues. If developers do not assign

appropriate permissions or adequately protect cloud credentials,

data leakage and other risks may still occur. Furthermore, leaked

cloud credentials from mobile applications can lead to security

vulnerabilities in cloud servers and cloud databases, resulting in

more severe consequences.

5.3 Extended dataset analysis
This study enhances the depth and breadth of the analysis by verti-

cally expanding the dataset to include historical versions, regional

variants, and associated applications. However, this extension intro-

duces potential threats to the validity of the study. First, applications

in historical versions may contain more security vulnerabilities be-

cause developers’ security awareness may have increased over

time. Second, regional variants may exhibit differences in security

practices due to localization requirements or varying regulatory de-

mands. Finally, associated applications, which share the same cloud

credentials, may experience security vulnerabilities in one applica-

tion affecting others. These factors may impact the generalizability

of the findings.

To assess the impact of the vertical dataset extension on the re-

search results, we compared the distribution of poor practices and

vulnerabilities between the non-expanded and expanded datasets.

770



Uncovering the App Cloud Access Risks under Recommended IAM Security Practices Proceedings on Privacy Enhancing Technologies 2025(4)

Figure 4: Proportion of cloud creden-
tials fromhardcoding or private server

Figure 5: WEB API security analysis
for obtaining cloud credentials

Figure 6: Proportion of cloud creden-
tials permission configuration

Figure 7: Distribution of Cloud Service Usage by Dif-
ferent Types of Applications

Figure 8: Proportion of Applications with Vulnerabilities Using Spe-
cific Cloud Services

Table 3 presents the distribution of hardcoded credentials, tem-

porary credential usage, and improper permission configurations

across both datasets. The results show that applications in histor-

ical versions are more likely to use hardcoded credentials (65%),

while this percentage drops to 47% in the latest versions. Addition-

ally, applications in regional variants exhibit significant differences

in improper permission configurations. In some regions, applica-

tions place more emphasis on privacy protection due to localization

requirements, resulting in a lower proportion (12%) of improper

permission configurations.

Distribution of PII leakage, fake login, and remote code execution

(RCE) vulnerabilities in the unexpanded and expanded datasets. The

proportion of PII leakage and RCE vulnerabilities is significantly

higher for historical versions of the application than for the latest

version, while the proportion of fake login vulnerabilities is higher

for regional variants. These results show that vertical expansion

of the dataset does affect the distribution of research results, but it

also provides a more comprehensive view of the evolution of bad

practices and vulnerabilities.

5.4 Case Studies
5.4.1 Exposure of PII. Many apps on smartphone keep track

of personal sensitive data Our analysis found a video app, com.

Anonymized1, which utilizes Alibaba Cloud storage services to

collect user-uploaded images and other data. It was noticed that de-

velopers had hardcoded AWS standard user credentials within the

app with excessively high permissions, such as s3:ListBuckets. This

permission enabled anyone possessing these credentials to access

and list all files within the storage buckets. Our examination of 121

bucket names and filenames in com.Anonymized1 revealedmultiple

instances of exposure to PII. Despite the app uploading files to only

three buckets, other buckets contained data from additional apps

or sensitive data like system backups. We have informed the devel-

opers of these findings via email and provided repair suggestions

on the restoration.

5.4.2 Fake User Login. An increasing number of apps are in-

clined to use cloud logging services to collect in-app information.

However, our research reveals that many apps neglect data secu-

rity and privacy protections during the logging process, leading to

potential serious security risks. Figure 9 illustrates a typical unau-

thorized user login caused by cloud log data leakage. The APK first

calls the initialization API using cloud credentials (Line 5). Subse-

quently, in the onEvent method, it logs information such as device

model and IP address (Lines 12-19). If the app user is already logged

in, it further uploads user information to the log (Lines 21-24).

For instance, in our evaluation of a social media app, com. Anonymized2,

the app utilized temporary credentials to upload application exe-

cution and user actions data to Alibaba Cloud’s logging database.

Crucially, the app stored unfiltered HTTP request messages in the

logs, exposing sensitive user information and JWT tokens used for

771



Proceedings on Privacy Enhancing Technologies 2025(4) Lu et al.

Table 3: Expanded dataset distribution

Category Non-Expanded Dataset Historical Versions) Regional Variants
Hardcoded Credentials 47% 65% 52%

Temporary Credentials 53% 35% 48%

Improper Permission Configurations 40% 55% 12%

Figure 9: Cloud Log Data Breach

authentication. Such exposure allows malicious actors to forge iden-

tities and gain control over user accounts, significantly heightening

the risk of data breaches. Additionally, the real-time data collection

and automatic upload mechanisms of cloud log services exacerbate

the potential for data breaches, particularly in social apps where

impersonation could lead to serious personal and relational damage.

It highlights the necessity of adhering to data protection regula-

tions like GDPR or CCPA during personal information collection

through cloud logs.

5.4.3 Data Pollution Attacks. Even cloud credentials with lim-

ited permissions can cause severe damage if they allow write op-

erations. In our study of a children’s app, com.Anonymized3, the

developer used Tencent Cloud storage services to manage multime-

dia content required for app functionality and uploaded personal

information using temporary credentials. Although permissions

were minimally assigned, the lack of proper bucket segmentation

allowed malicious files to overwrite necessary app data. This vul-

nerability poses significant risks to children’s mental health, as

exposure to inappropriate or harmful content can adversely affect

their psychological development and behavior.

5.4.4 Remote Code Execution on Cloud Servers. As mobile

apps increasingly rely on cloud servers, new security vulnerabilities

emerge, particularly with exposed cloud credentials. In the case of

com.Anonymized4, a utility app for managing phone files and clean-

ing photos, it hardcoded root user cloud credentials in its resources,

granting complete access to cloud resources. This misconfiguration

exposed cloud server APIs to potential misuse, including malicious

activities or data breaches. The app used Alibaba Cloud APIs for

managing photos and backups, with dangerous permissions like

ecs:StopInstance and ecs:DeleteInstance, allowing attackers to shut

down or delete cloud instances. Data leakage risks were linked to

ecs:RunCommand, enabling remote code execution (RCE). Ethically,

we did not attempt these actions on live servers.

5.5 Lessons
We distributed questionnaires to 16 mobile application developers

contacted through public channels and received 15 valid responses.

These developers primarily came from companies or teams engaged

in mobile application development. As the purpose of this survey

was to gather developers’ awareness of cloud credential security

practices and was constrained by the principles of voluntary par-

ticipation and anonymity requirements, we did not collect specific

demographic data about the developers (e.g., age, geographic lo-

cation, specific company names, etc.) to ensure their privacy and

encourage candid responses.

This survey aimed to explore developers’ awareness, practices,

and challenges regarding cloud service credential management.

The questionnaire covered the following 11 questions:Which cloud

service provider do you use? Are you aware of and have you used

temporary credentials (STS tokens)? Do you use long-term creden-

tials or temporary credentials in your mobile applications? Do you

store cloud credentials in the client-side app or on the server-side?

Are you aware of and have you implemented permission policies

for cloud credentials? Do you check whether cloud credentials have

been over-permissioned? Are you aware of how to handle leaked

cloud credentials? Do you regularly check and update your cloud

credentials? Have you provided training or guidance on cloud cre-

dential security for your development team? Do you have strategies

to manage cloud credential differences across regions? Do you con-

figure different levels of cloud credential permissions for different

roles or departments?

Through these questions, we sought to understand the current

state of cloud credential management from the developers’ perspec-

tive to supplement our findings from system detection.

5.5.1 Root Causes Behind Developer Practices. The survey
results show that among the 15 interviewed developers, 60% (9)

admitted to reducing security measures due to project time con-

straints, with 46.7% (7) engaging in high-risk practices such as

772



Uncovering the App Cloud Access Risks under Recommended IAM Security Practices Proceedings on Privacy Enhancing Technologies 2025(4)

hardcoding credentials. Additionally, only 40% (6) accurately un-

derstood the security advantages of temporary credentials, with

adoption rates varying by cloud provider (Alibaba Cloud 53.3%,

AWS 33.3%). Regarding permission management, 66.7% (10) con-

sidered IAM configuration overly complex, with key challenges

including ambiguous permission boundaries (53.3%), difficulties

in debugging policy syntax (46.7%), and cross-service permission

conflicts (40%).

According to our findings, the main challenges developers face

can be summarized as follows:

Time and Resource Constraints: Developers often face tight de-

velopment cycles and limited resources, especially in the early

stages of mobile app development. To release the app as quickly

as possible, developers tend to overlook necessary security mea-

sures. For example, hardcoding cloud credentials or simplifying

IAM permission configurations have become choices to speed up

the development process. While these practices help enhance de-

velopment efficiency, they significantly increase the risk of security

vulnerabilities.

Lack of Awareness of Security Measures: Many developers do

not fully understand the security advantages of temporary creden-

tials. Although temporary credentials effectively reduce the risk of

credential leakage, many developers still do not commonly adopt

this mechanism. One reason for this is that the configuration of

temporary credentials is relatively complex, and developers lack

sufficient guidance and tools to correctly implement them. Some

developers prefer to use long-term credentials or directly hardcode

credentials, as this approach, though insecure, is more convenient

for debugging and testing, especially in the early stages of develop-

ment.

Complexity of IAM Permission Configuration: Developers often

find configuring IAM permissions confusing, especially when it

comes to fine-grained permission management in cloud platforms.

Despite the cloud service providers offering detailed documentation

and guidelines, the complexity of permission configurations makes

it difficult for developers to ensure that each permission setting

adheres to the principle of least privilege.

5.5.2 Mitigation Strategies. To help developers overcome these

challenges and improve their security practices, we propose the

following mitigation strategies:

Fine-grained permission division: Developers should implement

fine-grained permission partitioning for each user or role, adhering

to the principle of least privilege. For instance, different permis-

sion sets should be assigned to distinct user groups, ensuring team

members only receive necessary access rights based on their spe-

cific functions.Concurrently, cloud platforms should provide clear

documentation on granular permissions, including interactive per-

mission matrices and policy simulators, along with detailed configu-

ration examples—such as risk-level annotations for permissions and

comparative explanations of commonly confused permissions—to

help developers accurately understand the scope and risks of each

permission item.Furthermore, both parties should collaborate to

establish a dynamic feedback mechanism, enabling continuous op-

timization of the permission management system.

Simplify Cloud Service Configuration Processes: To ease the

burden on developers when configuring temporary credentials and

IAM permissions, cloud service providers should offer more user-

friendly tools and SDKs that automate the process of generating

temporary credentials and configuring permissions. By simplifying

the IAM permission configuration process, developers can more

intuitively understand and apply best security practices, reducing

the likelihood of human errors.

Enhance Security Awareness Training: Regular training and

security guidance should be provided to enhance developers’ un-

derstanding of cloud credential security, the advantages of tem-

porary credentials, and IAM permission configuration. This can

be achieved through online learning platforms, case studies, and

practical demonstrations, helping developers master the basics of

secure configurations and placing greater emphasis on credential

protection.

Conduct Developer Research and Collaboration: To address the

specific difficulties developers encounter when configuring IAM

permissions, further user research, including interviews and sur-

veys, is recommended to gather more detailed feedback. Based on

this feedback, cloud service providers can design more user-friendly

permission configuration wizards or automation tools to help de-

velopers configure cloud services more efficiently and securely.

These mitigation strategies will not only help developers reduce

security risks encountered during the use of cloud services but also

raise their awareness of cloud security issues, enabling them to

better tackle new challenges that may arise in the future.

5.6 Vulnerability Disclosure
Our vulnerability disclosure process utilized a multi-channel and

phased approach to maximize the coverage and rectification of

vulnerabilities. We initially engaged developers directly using the

contact details provided on application marketplaces. For those who

did not respond, we escalated our outreach to organizations such as

CERT[10], the China National Vulnerability Database (CNVD)[27],

and the China Application Vulnerability Disclosure Platform (CAP-

PVD) [25].

Adhering to responsible disclosure protocols, we will refrain

from publicly releasing any details about unresolved vulnerabili-

ties until they are adequately addressed by the developers. We are

encouraged by the response from some developers who have ac-

knowledged the vulnerabilities we reported and have commenced

remedial actions. Updates on these developments, along with devel-

oper feedback and letters of appreciation, are regularly posted on

our blog, fostering an ongoing dialogue on improving app security.

6 DISCUSSION
In this study, we introduce Cloudet, a semi-automated detection

system designed to identify cloud credential leakage risks in mo-

bile applications. To validate Cloudet’s effectiveness and perfor-

mance, we conducted a comprehensive evaluation and compared it

with existing state-of-the-art methods. The evaluation covered key

performance indicators, including detection accuracy, operational

efficiency, and system stability.

6.1 Operational Efficiency Comparison
To assess Cloudet’s operational efficiency, we benchmarked it against

two representative existing tools: PrivRuler[37] and LeakScope[42].

773



Proceedings on Privacy Enhancing Technologies 2025(4) Lu et al.

Our experiment involved 100 randomly selected APK files contain-

ing cloud SDKs, with installation package sizes ranging from a few

hundred KB to over 100 MB, simulating real-world applications of

varying scales.

The results show that Cloudet processed each application in an

average of 28 minutes, while PrivRuler and LeakScope took an aver-

age of 18 minutes and 20 minutes, respectively. Further analysis by

application size revealed that for apps smaller than 10MB, Cloudet’s

average processing time was 8 minutes, compared to 5 minutes for

PrivRuler and 6 minutes for LeakScope. For larger applications ex-

ceeding 50 MB, Cloudet averaged about 65 minutes, while PrivRuler

took 45 minutes and LeakScope reached 51 minutes. This difference

is primarily due to Cloudet’s integration of an additional server-

side parameter identification mechanism during analysis, which

enhances detection depth and breadth. Therefore, Cloudet achieves

more comprehensive risk coverage while maintaining efficiency.

6.2 Comparison with State-of-the-Art Methods
In terms of credential detection, both PrivRuler and LeakScope

primarily focus on long-term credentials directly embedded in ap-

plication code. PrivRuler supports AWS, Google Cloud, and Azure,

while LeakScope targets AWS, Azure, and Alibaba Cloud.

In contrast, Cloudet’s design is broader, covering not only the

identification of long-term credentials but also specifically strength-

ening its ability to detect temporary credentials. Using the same

100 application samples:PrivRuler detected 12 root credentials and

35 standard credentials. LeakScope detected 14 root credentials

and 32 standard credentials. Cloudet identified a total of 13 root

credentials, 33 standard credentials, and 23 temporary credentials.

It’s noteworthy that PrivRuler and LeakScope, due to the limita-

tions of their static analysis strategies, failed to effectively identify

any temporary credentials. This demonstrates Cloudet’s advantage

in the range of credential types covered.

6.3 False Positive and False Negative Rates
To evaluate system accuracy, we engaged two experienced security

researchers to independently manually verify the detection results

using a standardized verification process and toolchain.

Out of a total of 945 detected cloud credentials, 912 were con-

firmed as valid after manual review (accounting for 96.5%), while

the remaining 33 were identified as false positives (a false positive

rate of 3.5%).

Additionally, through an in-depth audit of 100 randomly se-

lected APK files, we discovered 15 real credentials that were not de-

tected, corresponding to a false negative rate of approximately 1.8%.

Further analysis revealed that false positives primarily stemmed

from:12 instances of strings stored using non-standard encryption

methods. 9 instances of obfuscated data within .so files. The remain-

ing false positives were composed of pseudo-credentials found in

resource files or log information.

7 Related Works
7.1 App Cloud and Other Vulnerabilities

Detection
Previous research has extensively studied the issue of cloud cre-

dential leakage in mobile applications. Zuo et al.[42] analyzed and

found that the misuse of root credentials is a major cause of data

leakage in the cloud. Wang et al. focused on the excessive misuse

of cloud credentials, revealing that regular user credentials with

excessive permissions are another factor contributing to data leak-

age in the cloud. Furthermore, Wang et al.[37] , in their study of

11,891 applications using cloud services, discovered that 2,474 ap-

plications (20.8%) failed to extract cloud credentials, indicating that

these applications might employ dynamic credential acquisition

methods, such as temporary access credentials. Our study firstly

conduct a large-scale investigation into the accessibility and secu-

rity of temporary credentials in the context of dynamic credential

acquisition.

Additionally, mobile applications have been widely exposed to

the issue of different kinds of hardcoded credentials. Zhou et al.[41]

successfully extracted and analyzed credential leakage problems

in mobile applications using the data flow analysis tool CredMiner.

Wen et al.[38] summarized credential misuse patterns in apps, par-

ticularly focusing on SDK credential abuse issues. These patterns

include embedding credentials directly into application code, stor-

ing credentials using outdated or insecure methods, and insufficient

verification and access control mechanisms. Shi et al.[36] examined

credential leakage issues in mobile payment applications and how

leaked payment credentials can be exploited.

As mobile backends have evolved, the focus of many large-scale

studies has shifted towards mobile apps. In 2019, Zuo et al.[20]

conducted a thorough survey of mobile backend systems, identi-

fying 983 N-day and 655 0-day vulnerabilities across the top 5,000

free apps in the Google Play Store. This research underscored a

general lack of clarity among developers and cloud providers re-

garding their responsibilities for securing mobile backends, leading

to numerous security gaps. Shangcheng Shi’s[35] work on insecure

Single Sign-On (SSO) implementations found that 72% of over 500

apps reviewed had incorrect SSO implementations. Yue Zhang and

colleagues[40] further explored how early APK versions can serve

as attack vectors, compromising the security of later app versions,

with about 34% of 1,500 apps showing vulnerabilities, including

high-profile apps like Facebook.

7.2 Cloud Security Vulnerabilities Detection
Cloud security remains a critical area of focus within the IT field,

gaining prominence with the rapid advancement and adoption of

cloud computing technologies.

Xiao et al.[39] systematically reviewed the major security and

privacy challenges in cloud computing, analyzing existing solutions

and their limitations. Armbrust et al.[21] discussed in detail the

technological driving factors, potential security issues, and chal-

lenges faced by cloud computing. Kaufman et al.[33] analyzed the

application of encryption technology, access control, and data in-

tegrity verification in protecting cloud data security, and pointed

out the limitations of these technologies in terms of performance

774



Uncovering the App Cloud Access Risks under Recommended IAM Security Practices Proceedings on Privacy Enhancing Technologies 2025(4)

and scalability. Continella et al.[28] investigated the use of Amazon

S3 by generating and analyzing 240,461 bucket names, identifying

191 websites vulnerable to attacks. This study highlighted the in-

herent risks associated with cloud storage buckets. Jack Cable et

al.[23] conducted an extensive study on the naming conventions of

storage buckets and performed a detailed analysis of the types of

sensitive information stored therein. The above work also helps us

analyze security vulnerabilities in the cloud.

8 Conclusion and Discussion
We propose Cloudet, a semi-automated system for comprehensively

identifying various cloud credentials in mobile applications and

detecting cloud vulnerability risks. Through Cloudet, we conducted

extensive analyses of applications using nine types of mBaaS cloud

services and cloud infrastructure services, including cloud servers

and databases, from three major cloud providers. This enabled us

to address two critical security concerns.

For Q1, What is the current usage rate of these security measures

across various apps, and are they widely adopted and valued by

developers?we found that more than half of the cloud credentials

are insecurely hard-coded. Furthermore, non-hardcoded temporary

credentials often fail to adhere to the principle of least privilege.

This indicates that the usage rate of IAM security services by cloud

service providers in current mobile applications needs significant

improvement.

For Q2, Do the existing security measures continue to pose po-

tential security risks, and do existing security measures cover all

potential security risks of cloud backend services in mobile app?

we demonstrated the ability to bypass and attack the recommended

temporary access credential mechanism, verifying that it can lead

to severe cloud access vulnerabilities. This shows that the recom-

mended mechanism still poses significant security risks.

In summary, our findings suggest substantial room for improve-

ment in the current security services of cloud IAM. More secure

methods for obtaining cloud credentials and more robust, user-

friendlymechanisms for formulating cloud credential policies should

be carefully designed and implemented.

References
[1] 2014. Soot. https://github.com/soot-oss/soot.

[2] 2022. Turkish Based Airline’s Sensitive EFB Data Leaked. https://www.

safetydetectives.com/news/pegasus-leak-report/#review-1.

[3] 2023. Customer information leakage caused by incorrect cloud environment

settings. https://global.toyota/jp/newsroom/corporate/39174380.html.

[4] 2023. Wechat historical versions. https://wechat.cn.uptodown.com/android/

versions.

[5] 2024. 360 market. https://m.app.so.com/.

[6] 2024. Alibaba Cloud. https://www.alibabacloud.com.

[7] 2024. Alibaba Cloud. Ram policy. https://help.aliyun.com/zh/oss/user-guide/ram-

policy-overview.

[8] 2024. Assumerole in AWS. https://docs.aws.amazon.com/IAM/latest/UserGuide/

id_credentials_temp_control-access_assumerole.html.

[9] 2024. AWS. https://aws.amazon.com.

[10] 2024. CERT. https://www.kb.cert.org/.

[11] 2024. Google Play. http://googleplay.com/.

[12] 2024. Overview of IAM users. https://docs.aws.amazon.com/IAM/latest/

UserGuide/introduction.html.

[13] 2024. Overview of ram users. https://help.aliyun.com/zh/ram/user-guide/

overview-of-ram-users.

[14] 2024. S3 API. https://docs.aws.amazon.com/AmazonS3/latest/API/API_

Operations_Amazon_Simple_Storage_Service.html.

[15] 2024. scrapy. https://github.com/scrapy/scrapy.

[16] 2024. Security best practices in CAM. https://cloud.tencent.com/document/

product/598/10592.

[17] 2024. Security best practices in IAM. https://docs.aws.amazon.com/IAM/latest/

UserGuide/best-practices.html.

[18] 2024. Security best practices in RAM. https://help.aliyun.com/zh/openapi/

accesskey-security-solution.

[19] 2024. Tencent Cloud. https://cloud.tencent.com.

[20] Omar Alrawi, Chaoshun Zuo, Ruian Duan, Ranjita Pai Kasturi, Zhiqiang Lin, and

Brendan Saltaformaggio. 2019. The betrayal at cloud city: An empirical analysis

of Cloud-Based mobile backends. In 28th USENIX Security Symposium (USENIX
Security 19). 551–566.

[21] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H

Katz, Andrew Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Stoica,

et al. 2009. Above the Clouds: A Berkeley View of Cloud Computing. Technical
Report UCB/EECS-2009-28, EECS Department, University of California (2009).

[22] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for android apps. ACM sigplan notices 49, 6 (2014), 259–269.
[23] Jack Cable, Drew Gregory, Liz Izhikevich, and Zakir Durumeric. 2021. Strato-

sphere: Finding Vulnerable Cloud Storage Buckets. In Proceedings of the 24th
International Symposium on Research in Attacks, Intrusions and Defenses. 399–411.

[24] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher

Kruegel, Giovanni Vigna, and Yan Chen. 2015. EdgeMiner: Automatically De-

tecting Implicit Control Flow Transitions through the Android Framework.. In

NDSS.
[25] CAPPVD. 2024. CAPPVD. https://www.cappvd.org.cn/.

[26] Yuanchao Chen, Yuwei Li, Yuliang Lu, Zulie Pan, Yuan Chen Shouling Ji, Yu Chen,

Yang Li, and Yi Shen. 2025. Understanding the Security Risks of Websites Using

Cloud Storage for Direct User File Uploads. IEEE Transactions on Information
Forensics and Security (2025).

[27] CNVD. 2024. CNVD. https://www.cnvd.org.cn.

[28] Andrea Continella, Mario Polino, Marcello Pogliani, and Stefano Zanero. 2018.

There’s a Hole in That Bucket! A Large-Scale Analysis of Misconfigured S3 Buck-

ets. In Proceedings of the 34th Annual Computer Security Applications Conference.
702–711.

[29] Murilo Góes de Almeida and Edna Dias Canedo. 2022. Authentication and autho-

rization in microservices architecture: A systematic literature review. Applied
Sciences 12, 6 (2022), 3023.

[30] Josué Alejandro Díaz-Rojas, Jorge Octavio Ocharán-Hernández, Juan Carlos

Pérez-Arriaga, and Xavier Limón. 2021. Web API Security Vulnerabilities and

Mitigation Mechanisms: A Systematic Mapping Study. In 2021 9th International
Conference in Software Engineering Research and Innovation (CONISOFT). IEEE,
207–218.

[31] AWSDocumentation. 2024. AWSManagement Console. https://docs.aws.amazon.

com/awsconsolehelpdocs/latest/gsg/learn-whats-new.html.

[32] Soufian El Yadmani, Olga Gadyatskaya, and Yury Zhauniarovich. 2024. The File

That Contained the Keys Has Been Removed: An Empirical Analysis of Secret

Leaks in Cloud Buckets and Responsible Disclosure Outcomes. In 2025 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, 9–9.

[33] Lori M Kaufman. 2009. Data Security in the World of Cloud Computing. IEEE
Security & Privacy 7, 4 (2009), 61–64.

[34] A Kanchana Rajaram, B Chitra Babu, et al. 2013. API Based Security Solutions

for Communication Among Web Services. In 2013 Fifth International Conference
on Advanced Computing (ICoAC). IEEE, 571–575.

[35] Shangcheng Shi, Xianbo Wang, and Wing Cheong Lau. 2019. MoSSOT: An auto-

mated blackbox tester for single sign-on vulnerabilities in mobile applications. In

Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security. 269–282.

[36] Shangcheng Shi, Xianbo Wang, Kyle Zeng, Ronghai Yang, and Wing Cheong Lau.

2021. An Empirical Study on Mobile Payment Credential Leaks and Their Ex-

ploits. In Security and Privacy in Communication Networks: 17th EAI International
Conference, SecureComm 2021, Virtual Event, September 6–9, 2021, Proceedings,
Part II 17. Springer, 79–98.

[37] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng Wang. 2023. Credit

Karma: Understanding Security Implications of Exposed Cloud Services Through

Automated Capability Inference. In 32nd USENIX Security Symposium (USENIX
Security 23). 6007–6024.

[38] Haohuang Wen, Juanru Li, Yuanyuan Zhang, and Dawu Gu. 2018. An Empirical

Study of SDK Credential Misuse in iOS Apps. In 2018 25th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 258–267.

[39] Zhifeng Xiao and Yang Xiao. 2012. Security and Privacy in Cloud Computing.

IEEE Communications Surveys & Tutorials 15, 2 (2012), 843–859.
[40] Yue Zhang, Jian Weng, Jiasi Weng, Lin Hou, Anjia Yang, Ming Li, Yang Xiang,

and Robert H Deng. 2019. Looking back! using early versions of android apps

as attack vectors. IEEE Transactions on Dependable and Secure Computing 18, 2

(2019), 652–666.

775

https://github.com/soot-oss/soot
https://www.safetydetectives.com/news/pegasus-leak-report/#review-1
https://www.safetydetectives.com/news/pegasus-leak-report/#review-1
https://global.toyota/jp/newsroom/corporate/39174380.html
https://wechat.cn.uptodown.com/android/versions
https://wechat.cn.uptodown.com/android/versions
https://m.app.so.com/
https://www.alibabacloud.com
https://help.aliyun.com/zh/oss/user-guide/ram-policy-overview
https://help.aliyun.com/zh/oss/user-guide/ram-policy-overview
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_assumerole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_assumerole.html
https://aws.amazon.com
https://www.kb.cert.org/
http://googleplay.com/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://help.aliyun.com/zh/ram/user-guide/overview-of-ram-users
https://help.aliyun.com/zh/ram/user-guide/overview-of-ram-users
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Service.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Service.html
https://github.com/scrapy/scrapy
https://cloud.tencent.com/document/product/598/10592
https://cloud.tencent.com/document/product/598/10592
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://help.aliyun.com/zh/openapi/accesskey-security-solution
https://help.aliyun.com/zh/openapi/accesskey-security-solution
https://cloud.tencent.com
https://www.cappvd.org.cn/
https://www.cnvd.org.cn
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/learn-whats-new.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/learn-whats-new.html


Proceedings on Privacy Enhancing Technologies 2025(4) Lu et al.

[41] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. 2015. Harvesting Developer

Credentials in Android Apps. In Proceedings of the 8th ACM Conference on Security
& Privacy in Wireless and Mobile Networks. 1–12.

[42] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. 2019. Why Does Your Data

Leak? Uncovering the Data Leakage in Cloud from Mobile Apps. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 1296–1310.

9 Acknowledgments
This work was supported by the National key R&D projects(Project

No.E3500921L6).

776


	Abstract
	1 Introduction
	2 Modeling App Access to Cloud Services
	3 mBaaS Analysis
	4 Design and Implemention
	4.1 App Dataset Collection
	4.2 Identification of Cloud Initialization APIs and Cloud Credentials
	4.3 Analysis of Cloud Access Vulnerabilities

	5 Results
	5.1 The Usage and Security of Temporary Credentials
	5.2 Cloud Service Vulnerability Identification
	5.3 Extended dataset analysis
	5.4 Case Studies
	5.5 Lessons
	5.6 Vulnerability Disclosure

	6 DISCUSSION
	6.1 Operational Efficiency Comparison
	6.2 Comparison with State-of-the-Art Methods
	6.3 False Positive and False Negative Rates

	7 Related Works
	7.1 App Cloud and Other Vulnerabilities Detection
	7.2 Cloud Security Vulnerabilities Detection

	8 Conclusion and Discussion
	References
	9 Acknowledgments

