
Making Web Applications GDPR Compliant: A Comparative
Evaluation of GDPR-Enforcement Frameworks

Felix Kalinowski
Ruhr University Bochum

felix.kalinowski@ruhr-uni-bochum.de

David Klein
Technische Universität Braunschweig
david.klein@tu-braunschweig.de

Martin Johns
Technische Universität Braunschweig

m.johns@tu-braunschweig.de

Veelasha Moonsamy
Ruhr University Bochum
email@veelasha.org

Abstract
The introduction of the General Data Protection Regulation (GDPR)
in 2018 marked a pivotal moment in the evolution of data protec-
tion within the European Union (EU). Consequently, companies
have since been legally obliged to respect users’ privacy, and, if
found to be in violation, risk incurring fines. While this regulatory
change greatly benefits users, software developers, on the other
hand, face a tremendous challenge to make their applications com-
pliant, creating a gap between legal requirements and effective
software development. Several solutions have been proposed to
bridge the gap for web application developers. However, it is un-
clear to what extent they fulfill the requirements laid out by the
GDPR. In this work, we look at three frameworks that aim to aid
compliance for web applications. To efficiently assess them, we
propose a methodology and several benchmarks to evaluate and
compare the frameworks. From the GDPR, we have derived a set
of requirements that do not entail institutional changes but have
technical implications for software. Leveraging these requirements,
we evaluate both the proposed solutions’ enforcement capabili-
ties and computational overhead. Our comparison shows that each
framework can, if configured correctly, enforce a different subset of
GDPR requirements. Finally, based on the insights gained, we pro-
vide recommendations for the community on how to make further
progress on operationalizing the GDPR.

Keywords
GDPR enforcement, privacy, web applications

1 Introduction
Digitalization is nowadays omnipresent in every aspect of people’s
lives: from sharing electronic health records across the EU [2] to
having a digital identity in addition to a physical identity card [3]
or online classes during a pandemic [11]. As a result, personal data
is often collected through web applications that provide users with
the mentioned services, including social networks, online shops,
and entertainment services. In turn, web applications collect and
process a wide range of personal data, building up detailed profiles

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(4), 777–794
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0157

of users to predict their behaviors. This leads to technology compa-
nies using personal data increasingly focusing on advertising [1],
making adverts more targeted to individual users to increase click-
through rates and, consequently, their revenue. A recent report
revealed the fine-grained categorization of users for targeted adver-
tising by data brokers who focus on monetizing the users’ personal
data [10]. In addition to advertising, personal data is also used to in-
fluence users’ choices, for example, during elections [22, 26]. Those
examples show that personal data is used to sway users’ purchasing
behaviours online and to actively influence democratic elections.

To protect the citizens’ data andminimize the influence of compa-
nies on users’ individual choices, the EU has passed a regulation, the
General Data Protection Regulation (GDPR) [6]. The GDPR is based
on seven principles: Lawfulness, fairness and transparency, Purpose
limitation, Data minimisation, Accuracy, Storage limitation, Integrity
and confidentiality, and Accountability (Art. 5 GDPR). Since the
GDPR applies to any entity processing personal data of individuals
in the EU, web application developers and operators are responsible
for ensuring that their systems comply with its requirements. This
task presents several challenges: Any web application, including
those developed before the introduction of GDPR, must be adapted
at every point in the codebase where personal data is processed.
Furthermore, developers need to fully understand the requirements
introduced by the GDPR to implement them correctly. This can
lead to issues, as they are usually not trained in the legal aspects of
such regulations. In addition, the GDPR requires specific function-
alities for user-based inputs such as data manipulation (deletion,
modification) or consent-based data processing. Subsequently, de-
velopers must ensure that these functionalities are represented in
the application. This leads to the questions: how to ensure that a
web application is GDPR-compliant? and how to aid developers in
enforcing the requirements? One way to address these issues is to
separate the application codebase from the GDPR requirements by
adding a dedicated layer for GDPR-compliant data processing. This
layer would act as an intermediary between the application and
the underlying data management systems, ensuring that all data
processing activities, such as consent management, data access, or
erasure requests, comply with the GDPR.

In this paper, we systematically compare and evaluate the afore-
mentioned layer in the form of frameworks [7, 15, 19] that allow
their integration into web applications. Based on a provided policy,
these frameworks monitor data processing functions and determine
whether a data processing operation is permitted and ultimately
suppress or allow it. In these frameworks, user data is tagged with

777

https://orcid.org/0009-0008-1010-9487
https://orcid.org/0000-0001-8468-8516
https://orcid.org/0000-0003-2574-5060
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0157

Proceedings on Privacy Enhancing Technologies 2025(4) Kalinowski et al.

unique identifiers to determine whether a particular user’s data can
be processed on a legal basis, such as the user’s consent. Such type
of data protection applies not only to data going in and out of the
web application but also to any access to the database where the
data is stored.

In this work, we make the following contributions:
(i) We propose a list of 16 technically enforceable requirements

derived from the GDPR with the help of a legal expert.
(ii) We propose a methodology and benchmarks to measure

the GDPR enforcement capabilities and performance of a
GDPR-enforcing framework for web applications.

(iii) We evaluate our benchmarks on three state-of-the-art frame-
works.

(iv) We derive recommendations for the community based on
our findings, to provide better tooling for operationalizing
GDPR.

(v) In the spirit of open science and to help with reproducibil-
ity, we plan to make our evaluation setup and source code
available upon paper acceptance.

Disclose of use of AI-based tools for writing assistance: we used the
services of DeepL and Grammarly for translations, spelling, and
grammar checks on text across the paper.

2 Background
In this section, we briefly introduce the relevant GDPR articles
about the processing of personal data and explain the concept of
personal data tainting for information flow tracking. Unless noted
otherwise, all references to articles (Art.) in this work refer to the
GDPR.

2.1 General Data Protection Regulation (GDPR)
& Personal Data

The GDPR is a comprehensive data protection law enacted by the
European Union to safeguard individuals’ privacy and personal
data and protect their fundamental rights. It establishes stringent
requirements for organizations that handle personal data, empha-
sizing transparency, security, and individuals’ rights. The GDPR
establishes the core principles and requirements for the lawful
processing of personal data; this includes principles such as trans-
parency, or data minimization (Art. 5). Additionally, it defines the
conditions under which personal data processing is considered
lawful (Art. 6, 9), outlining various legal bases such as consent or
legal obligation (Art. 6). These provisions ensure that data process-
ing activities are conducted responsibly and in accordance with
individuals’ rights. The GDPR also outlines different rights of data
subjects, ensuring individuals have control over their personal data,
such as access to their data, rectification of inaccuracies, erasure
(the right to be forgotten), or data portability (Art. 15, 18, 20, 21).
These rights empower individuals to manage their personal data
and ensure transparency and accountability from data controllers.
Additionally, Art. 30 mandates that data controllers and processors
maintain records of their processing activities. These records must
include information about the categories of personal data processed,
the purposes of processing, and the data’s recipients. While the

"Alice": {
"age": 25, "taint": "ef29755a",
"blood_pressure": 120, "taint": "e37311c3",
"weight": 70, "taint": "b83a7ba6T"

}

Listing 1: Example of Taints on Personal User Data.

GDPR sets out multiple provisions for data processing, it intention-
ally remains broad and does not provide detailed guidance on how
companies and developers should operationalize these provisions.
This flexibility ensures the regulation can be widely applied across
various contexts, but also creates a gap between legislation and
practical implementation.

2.2 Personal Data Tainting for Information
Flow Tracking

One approach to support GDPR compliance is to be able to track
data flowing through a web application. A common technique used
for such purpose is data tainting [25]. This allows metadata to be
attached to the original data. This means, for example, that data
can be marked as personal data belonging to a specific data subject
and a framework can enforce requirements on the data, like the
right to be forgotten or the right to access the data. For example,
consider a web application that processes personal user data, such
as health information, in a web form – as shown in Listing 1. The
data subject is Alice, and several health-related data items belong
to her. As per the GDPR, the data subject has the right to access this
data and the right to be forgotten. With data tainting, the data can
be marked as belonging to Alice, and the framework can enforce
these GDPR requirements on the data. The taint fields in Listing 1
contain unique identifiers for Alice’s personal data. Therefore, if
Alice requests her data to be deleted, the data processor can query
all the data tainted as belonging to Alice from the database and
delete it on her behalf. Additionally, the taints allow for tracking
data throughout the application.

3 GDPR-Enforcement Frameworks
In this section, we first outline the criteria used to select the three
frameworks, followed by a comprehensive description of each one.

3.1 Framework Selection
We used the following criteria to select the frameworks: 1) GDPR
Enforcement Capability: As our primary objective is to evaluate
GDPR compliance, the framework should provide a mechanism
for enforcing GDPR properties. 2) Open Source: The framework
should be open source and freely available, allowing us to evaluate
without restrictions. 3) Support for Web Application: The frame-
work should target web applications, as this is the focus of our
study. 4) State-of-the-Art Technology: The framework should be
built on commonly used technology (e.g., Spring Boot, Express.js,
Flask, etc.). This ensures the framework is current and can be used
for modern web applications. We searched the last 5 years of top
A/A* security and privacy conferences (S&P, NDSS, PETS, ESORICS,
EuroS&P) for GDPR enforcement tools. We found 5 tools, out of
which we discarded 2 not matching our criteria. This left us with

778

Making Web Applications GDPR Compliant Proceedings on Privacy Enhancing Technologies 2025(4)

Runtime Phase

Offline Phase

Developer

Static Analysis
Pipeline

GDPR Manifest Match?

Manager Service

GDPR ManifestAugmented Policy
DescriptorUser, Roles

and Consents

4

Hosted Web-
Application

HTTP Response

Middleware

Policy Enforcement based on rego-rules
5

HTTP Request

Users' Browser

GDPR Manifest
ready for runtime phase

Source Code

1

2

3

6 7

Figure 1: Overview of RuleKeeper’s Architecture [7].

3 frameworks for comparative evaluation. However, we acknowl-
edge that relevant work may also exist in other subfields, such as
software engineering, and this represents a potential limitation in
our selection process. Nonetheless, our goal was to evaluate ma-
ture, peer-reviewed frameworks within the privacy and security
research community, since venues like ICSE (software engineer-
ing) or VLDB (database systems) have less visibility in the targeted
community. These criteria led us to the selection of the following
state-of-the-art frameworks, which we describe in further detail
below: RuleKeeper [7], Fontus [19], and GDPR-MFOTL [15].

3.2 RuleKeeper [7]
The RuleKeeper framework by Ferreira et al. [7] is the sole frame-
work among the three that not only claims to enforce a set of GDPR
requirements but also assists developers in creating compliant ap-
plications. Its objective is to prevent developers from accidentally
introducing GDPR violations in the first place. As shown in Fig-
ure 1, RuleKeeper is split into two phases: The Offline Phase helps
developers to set up their web application inside RuleKeeper, while
the Runtime Phase enforces various aspects of the GDPR, like lawful
data processing or purpose limitation, on the hosted application.
As a running example, we consider a simple web application for
which users can register with a username, an email, and a pass-
word, choose from a set of interests, and receive blog posts for their
chosen interests.

To set up their web application in RuleKeeper, developers must
1○ create a developer’s manifest that categorizes all processed data
into personal and non-personal. The developer’s manifest also spec-
ifies allowed operations, their legal bases, and corresponding data
items permitted to be collected for each operation. In our example,
personal data includes user interests and email. For simplicity, we
treat the username and password as non-personal data, even though
they would typically be considered personal in real-world scenarios.
Operations like receiving blog posts and sending marketing emails
are mapped to endpoints, such as /blogposts for user interests and
/send-news-mails for the email. Developers must detail the pro-
cessed data and legal basis in the developer’s manifest, with the
legal basis represented as a string, e.g., contract or legal_obligation,

Sink
Processing

for
advertising

Source

Alice Register Legal
basis?

Advertising
Company

Data da
Tuple {da,Ma}

No data processing

Figure 2: Overview of Fontus Pipeline [19].

without validity checks. Next, 2○ developers run their web applica-
tion’s source code through a static analysis pipeline to generate a
static analysis manifest. The two manifests, the developer’s man-
ifest and the static analysis manifest, are then 3○ compared for
discrepancies. If they do not match, developers must update either
the source code or the developer’s manifest. The developer’s mani-
fest is ready for the Runtime Phase if they match. Data collection
occurs in the offline phase, where relevant data is identified and
linked to the corresponding endpoint via static analysis. This aspect
is implicitly assumed during the runtime phase, as the data to be
collected has already been predefined. The runtime phase starts
with theManager Service, which holds the developer’s manifest and
a database containing users, user roles, and consent choices. These
consent choices and the developer’s manifest are 4○ merged into
an Augmented Policy Descriptor (ADP) policy file using a Domain
Specific Language (DSL). RuleKeeper also features a 5○middleware
that enforces the ADP on the hosted web application. Therefore,
when a user sends a 6○ HTTP request to an endpoint of the hosted
web application, RuleKeeper processes the data according to the
current ADP and 7○ returns the HTTP response. For instance, if a
user queries the /blogposts endpoint and consents to the process-
ing of their interests, they receive the relevant posts, or an empty
response otherwise.

Implementation. RuleKeeper requires applications to use the MERN
stack: MongoDB, Express, React, and Node.js. This means that
the web application, which should be hosted in RuleKeeper, must
also use MongoDB as its database system and be written with the
Node.js framework Express. React must be used for the frontend.
However, we did not build a frontend for our evaluation. To enforce
the APD at runtime, RuleKeeper utilizes the open-source tool Open
Policy Agent (OPA) [17], which uses a DSL called Rego, which is
used to write policies. The authors of RuleKeeper provide multiple
Rego policies used to enforce different aspects of the GDPR, such as
purpose limitation or data minimization. To enforce those aspects
during runtime, RuleKeeper relies on the ADP, which contains
information such as the data allowed to be processed for each
endpoint, and combines it with runtime information. For example,
whenever a user queries an endpoint, RuleKeeper first invokes the
access control Rego policy to be sure that the user is allowed to
use the endpoint. Afterward, if the endpoint queries the MongoDB
collection holding personal user data, RuleKeeper invokes another
Rego policy to check whether the endpoint is allowed to process
the specific data items and if there is a valid legal basis to do so.

3.3 Fontus [19]
Fontus, depicted in Figure 2 and proposed by Klein et al. [19], is
based on a dynamic data-flow tracking approach. It comprises two

779

Proceedings on Privacy Enhancing Technologies 2025(4) Kalinowski et al.

main components: Sources and Sinks. Every part of the web appli-
cation where user data is introduced is called a source, and where
user data is processed or leaves the application is called a sink.
Continuing with the running example introduced in RuleKeeper
(Section 3.2), consider a user named Alice registering for the blog
application. She selects her interests and provides her email ad-
dress, corresponding to data items 𝑑𝑎 . As this information is en-
tered through the registration endpoint, that endpoint functions as
a source in the system. Fontus now appends metadata𝑀𝑎 to Alice’s
data, forming the tuple {𝑑𝑎, 𝑀𝑎}. This metadata𝑀 holds multiple
pieces of information as defined in

𝑀 = ⟨𝑄, 𝑓 , 𝑙, 𝑆, 𝑖, 𝑝, 𝑟 ⟩ (1)

where Q corresponds to a purpose-recipient pair, f describes the
time period during which processing is allowed, l is the required
protection level for data 𝑑 , S is a set of data subjects associated with
data 𝑑 , identifiable by a pseudonym or identifier, i defines a unique
identifier, p indicates whether data qualifies for portability with
𝑝 ∈ {0, 1} and r defines whether processing of data 𝑑 is restricted,
with 𝑟 ∈ {0, 1}. This metadata is attached to each personal data item
being processed within Fontus. Returning to our example, consider
an advertising company that wants to use Alice’s data for marketing
purposes. In this case, the point where personal data is transmitted
to the advertising company is considered a sink, marked with the
purpose and recipient pair 𝑄𝑥 . Before invoking the functionality,
i.e., transmitting Alice’s data to the company, Fontus checks if𝑀𝑎

contains 𝑄𝑥 . If not, Fontus suppresses the processing. However,
Fontus cannot assess whether there is a valid basis and relies on
the developer to label personal data correctly. With the 𝑄𝑥 pair,
Fontus can also determine which third party receives which data
for which purpose. However, this is only the case for server-side
third parties.

Implementation. The authors of Fontus implement it as a taint-
tracking engine to enforce GDPR compliance at runtime with mini-
mal changes to the hosted Java web application. It rewrites the byte
code of string-like classes, adding fields for the original class ref-
erence and associated metadata within “taint ranges” that identify
subsequences of strings with personal data. This ensures granular
tainting down to individual characters. When tainted data is stored
in the database, Fontus also stores the associated taint metadata.
This ensures that when the data is retrieved later, taint tracking
can continue correctly. Fontus’s taint metadata contains runtime
information, such as the logged-in user. Fontus relies on a so-called
Taint Handler to enhance the taint metadata with such application-
specific runtime data. The Taint Handler generates taint values for
new personal data entering the application (at a source) and checks
taint values for data about to be processed (at a sink). It retrieves
personal data and the current user’s context (e.g., the username or
user id) at a source, generates a metadata tuple, and attaches the
corresponding taint value. At a sink, the Taint Handler hooks into
the application, retrieves the personal data about to be processed
and its metadata tuple, and uses the metadata tuple to guide the
application on how to process the data. Developers must specify the
necessary information in an XML file, including the purpose and
recipient pairs. They must also map the methods through which
personal data enters the application to the Taint Handler methods

WebTTC+ Privacy Platform

review events
and execute rights

Users' Browser

Policy
Enforcement Point

retrieve
 events

user actions

Privacy Dashboard

store events
action decisions Policy

Decision
Point

Personal Data

2
3

1

45

6

7

8
9

Application

Unique Taints

A
pplication

D
atabase

Traces
events

Figure 3: Overview of GDPR-MFOTL Architecture [15].

for sources. Furthermore, they must map the functions that pro-
cess personal data (i.e., sink functions) to their corresponding Taint
Handler methods.

3.4 GDPR-MFOTL [15]
Hublet et al. [15] built their framework, similar to Fontus, based
on a data tainting approach. For each data item to be processed, a
unique identifier called unique taint is attached, allowing the data
item to be tracked throughout the application and influence further
processing. The general architecture of GDPR-MFOTL is shown in
Figure 3.

It is split into two main components, a Privacy Platform and
WebTTC+. The WebTTC+ component hosts the web application,
the corresponding database, and the Policy Enforcement Point. Con-
sider the previously introduced running example (see Section 3.2).
Whenever a user 1○ interacts with the hosted web application,
and personal data is processed, WebTTC+ 2○ invokes the policy
enforcement point. This component’s purpose is to deny or al-
low further processing of personal data. The policy enforcement
point then emits an event 3○, for example, the user wanting to
access blog posts based on their interest, to the Policy Decision
Point, which resides inside the Privacy Platform. Like RuleKeeper,
GDPR-MFOTL utilizes its DSL to translate (parts of) the GDPR
into a policy used for enforcement. The policy is written in Metric
First-Order Temporal Logic (MFOTL) [14] using an enforcement
tool called EnfPoly [14]. This policy is used in the policy decision
point to decide whether processing is allowed. After storing 4○ the
event in a separate traces database, the decision is then returned
5○ to the policy enforcement point, which enforces the decision
on the application 6○. Another component of the privacy platform
is the Privacy Dashboard, which users can access to review events
and exercise their rights 7○. The privacy dashboard displays 8○
previously emitted events that concerned the users’ personal data.
Whenever the user executes an action (e.g., providing consent for a
specific purpose), the action is provided 9○ to the policy decision
point to influence further processing.

Implementation. GDPR-MFOTL targets Python applications writ-
ten in Flask. Additionally, the authors introduce a programming
language called PythonTTC (a subset of Python), also developed
by the authors [16]. To run a web application in GDPR-MFOTL,
the developers must first translate it into PythonTTC. Addition-
ally, every time personal data is processed, developers have to

780

Making Web Applications GDPR Compliant Proceedings on Privacy Enhancing Technologies 2025(4)

invoke the built-in check functions to query WebTTC+ for the law-
fulness of processing. Besides that, data tainting and tracking are
automated by GDPR-MFOTL. To enforce GDPR requirements at
runtime, GDPR-MFOTL uses the aforementioned MFOTL, which
consists of multiple predicates logically combined into formulas.
Equation (2) shows the formula for purpose-based processing.

𝜑𝑃𝑢𝑟𝑝 = ∃ 𝑝𝑟𝑝, 𝑢𝑡, 𝑑𝑠, 𝑠𝑝.

Use(𝑝𝑟𝑝, 𝑢𝑡) ∧ ♦Collect(𝑑𝑠, 𝑢𝑡, 𝑠𝑝)
∧ ¬((¬DSRevoke(𝑑𝑠, 𝑝𝑟𝑝,𝑢𝑡) 𝑆 DSConsent(𝑑𝑠, 𝑝𝑟𝑝, 𝑢𝑡))
∨ (∃𝑔𝑟𝑑. ♦LegalGround(𝑔𝑟𝑑, 𝑢𝑡, 𝑠𝑝)))

(2)
The predicate Use indicates the application intends to utilize a

specific data item for a defined purpose. Collect refers to gathering
data with a unique taint. DSConsent signifies that the data subject
consents to the data item, while DSRevoke denotes the revocation
of that consent. Finally, LegalGround permits developers to process
data based on a legal basis other than consent. Combining the
predicates, the formula states that there exists a purpose prp, a
unique taint ut, a data subject ds, and a special-data-flag sp. The ut
is being used for prp and the ut has been collected from the ds with
sp and neither the ds has given consent to process ut for prp nor
revoked the consent since then nor has the application claimed a
legal ground grd for ut with sp. We refer to the original paper [15]
for the complete list of predicates and formulae. To make decisions
based on previous events, like retrieving consent in the past, the
policy decision point stored the events in a traces database, as
explained previously. The combination of prior traces and decision
making is stored in a decision log as shown in Listing 2. We also
found a discrepancy between the MFOTL formulae introduced
in the paper and the actual implementation. In addition to the
arguments defined in the paper, the implementation features the
application’s name in the different functions (e.g., BreezeBlogs for
our running example)

Following our running example, a user registers with the Breeze-
Blogs application, sets their interests, and wants to access the corre-
sponding blog posts. During the registration, the predicate Collect
is called (line 1), stating that the user’s interests have been collected
for the application BreezeBlogs with the unique taint 1234. This is
acknowledged by the policy decision point (line 2). Afterward, the
application BreezeBlogs wants to Use the data with unique taint 1234
for the purpose view_posts (line 3). This is suppressed by the policy
decision point (line 4) because the data subject neither provided
consent nor did the application claim a legal ground for processing.

1 @1715596172 Collect (1, "BreezeBlogs", "1234", "False") ; // taint

"1234" corresponds to the user's interests↩→
2 [Enforcer] OK.
3 @1715596172 Use ("BreezeBlogs", "view_posts", "1234") ;
4 [Enforcer] Suppress: Use("BreezeBlogs","view_posts","1234")
5 @1715596172 DSConsent (1, "BreezeBlogs", "view_posts", "1234") ;
6 [Enforcer] OK.
7 @1715596172 Use ("BreezeBlogs", "view_posts", "1234") ;
8 [Enforcer] OK.

Listing 2: EnfPoly Enforcement Example.

Afterwards, the data subject consents to the processing (line 5),
and the usage is no longer suppressed (line 8). Using this approach,
the framework can make decisions based on previous events and
enforce aspects of the GDPR at runtime.

4 Our Methodology
In this section, we describe the methodology used to conduct our
experiments and elaborate further on the test application we devel-
oped for our experimental evaluation.

4.1 Evaluation Criteria
We now detail our evaluation criteria to compare the three frame-
works. The evaluation is divided into three parts: GDPR coverage,
runtime overhead, and storage overhead.

GDPR Coverage. To identify which GDPR requirements to include
in our evaluation, we collaborated with a legal expert specialized in
data protection law. Rather than attempting to operationalize the
entire regulation, we followed a targeted selection process based
on clearly defined criteria. Specifically, we focused on requirements
that (i) can be measurable, verifiable technical controls or features
within software systems, (ii) can be assessed through observable
behavior - such as API outputs or data flows -, documentation,
or interfaces, and (iii) do not rely on subjective legal interpreta-
tion or organizational context. This process involved reviewing the
GDPR from a technical perspective, emphasizing actionable provi-
sions that are potentially suitable for automated or semi-automated
analysis. Requirements that depend heavily on contextual, legal or
organizational factors were excluded, as they cannot be reliably
evaluated without human judgment. The resulting list of require-
ments, albeit being a subset of the GDPR, covers a broad range of
obligations relevant to technical system design and behavior, and
serves as the basis for our framework evaluation. For each GDPR
requirement, we evaluate three stages, following a hierarchical
approach:
Stage 1: Supported? Does the paper claim to support the require-

ment?
Stage 2: Implemented? Is the requirement implemented?
Stage 3: Enforced? Can the framework enforce the requirement

for the test application?
In the first stage, we determine if the authors of the three frame-
works claim to support the different GDPR requirements. If not,
we do not need to evaluate the requirement further. If the authors
claim to support the requirement, we evaluate, in the second stage,
whether the requirement is implemented in the framework by in-
vestigating the framework’s source code. If the requirement is im-
plemented, we evaluate whether the framework enforces it on the
hosted application in the third stage by conducting tests. For ex-
ample, if one of the papers claims to support the right to erasure,
we look at the framework’s source code to determine if the right to
erasure is implemented. If so, we determine if the user can delete
their data from our test application. This way, we can determine
if the frameworks enforce the different GDPR requirements both
theoretically and in practice.

Runtime Overhead. In addition to GDPR coverage, we also want
to determine how much runtime overhead the three frameworks

781

Proceedings on Privacy Enhancing Technologies 2025(4) Kalinowski et al.

introduce on top of our test application. To measure the runtime
overhead, we use the Locust load evaluation tool [18]. With Lo-
cust, we run several benchmarks for our test application, either
standalone or hosted inside the frameworks. Afterwards, we com-
pare the response times of the different benchmarks to determine
the overhead added by the frameworks. Additionally, as web ap-
plications are typically used by multiple users simultaneously, we
also evaluate the overhead in a multi-user context. However, since
GDPR-MFOTL does not support multi-user execution at the time
of writing, we thus only evaluate the overhead in a single-user
context. Hence, our evaluation consists of the following two bench-
marks: (1) Single User: In this benchmark, we evaluate the overhead
added in a single-user context, where no concurrency is involved.
(2) Multi User: Here, we determine the overhead added when 50,
100, and 500 users access the application concurrently. Moreover, in
addition to evaluating the web application within the frameworks
with multiple users, we also vary the number of users who gave
consent ((i) no user gave consent, (ii) half of the users gave consent,
and (iii) every user gave consent) for the purposes of marketing and
viewing the blog posts. This way, we measure the baseline, the run-
time overhead added by the frameworks, and the impact of GDPR
enforcement on the overhead. For example, response times may
be reduced if the framework suppresses certain data processing
operations due to a lack of user consent. We give each framework
a budget of 3+10 minutes and execute the same task in a loop to
measure the average response time. The first three minutes are dis-
carded to allow the system to reach a steady state, as typically users
interact with a system once all the initialization routines have been
completed. We then measure the response times over the remaining
10 minutes. All benchmarks are executed in a virtual machine with
12 cores and 32 GB of RAM running Ubuntu 24.04. We monitor
the system’s resource utilization during the benchmarks to ensure
that excessive CPU usage does not affect the results. We refer to
Section B for additional runtime overhead measurements.

Storage Overhead. For this evaluation, we set up our test application
with and without the frameworks with varying numbers of users
(50, 100, 500). We then determine all places where the frameworks
demand additional storage (excluding the source code and log files)
and calculate the storage used by our test application with and with-
out the frameworks. For each of the storage backends (MongoDB
for RuleKeeper, MySQL for Fontus, and SQLite/QuestDB for GDPR-
MFOTL), we use the default configurations provided by the authors.
Additionally, we use the built-in tools of the storage backends to
release allocated storage from previous evaluation runs. Contrary
to Fontus and GDPR-MFOTL, as RuleKeeper does not rely on data
tainting, we set up the databases without running the framework
and then use MongoDB’s internal tools to calculate the data size.
After registering the desired number of users, we then calculate the
allocated size. We have to note here that both MySQL and QuestDB
allocate more storage than the required amount to hold the data,
and we did not find a reliable way to determine the exact amount,
leading to a higher overhead due to pre-allocation.

Original Evaluation & Comparability. In the original papers, all
of the three frameworks were evaluated differently: RuleKeeper
assessed server/client latency, throughput, and CPU/memory ef-
ficiency for up to 64 users; GDPR-MFOTL measured latency for

100 requests with one user; and Fontus evaluated latency up to 100
users and includes storage overhead. Notably, only Fontus evaluated
storage overhead, which we also consider. Beyond runtime/storage
overhead, the frameworks were evaluated initially for their ability
to enforce GDPR requirements on web applications. We also unify
this by evaluating the frameworks against the same web applica-
tion and using a more granular legal analysis. We argue that the
frameworks can be meaningfully compared because they all aim to
enforce GDPR compliance in web applications. Despite differences
in technologies and ecosystems, their core goal, privacy and data
protection under GDPR, remains the same. This comparison offers
insights into how each framework addresses the same challenge,
highlighting performance trade-offs and overheads.

4.2 Test Application: BreezeBlogs
To evaluate the three introduced frameworks, we have developed
BreezeBlogs, a simple web application that implements the idea of
a blog aggregator based on different interests. Users who register
for BreezeBlogs select their interests from various options (such as
travel, food, or technology). The user can then view blog posts based
on their chosen interests. BreezeBlogs needs at least one database
to store the user information and the blog posts. However, the size
and structure of the database vary from framework to framework.
In addition to the blog functionality, BreezeBlogs has a newsletter
feature that sends marketing emails to all registered users’ email
addresses to mock a marketing campaign. BreezeBlogs is designed
with different GDPR requirements in mind.With the user’s interests
and email address, we have two personal data items processed for
different use cases. The interests are used to fetch the blog posts for
the user, while the email address is used to send marketing emails.
This allows us to test GDPR compliance in different scenarios. With
the blog posts and marketing functionality, we can test for the
lawfulness of processing and purpose limitation. In addition, we
can test for requirements like data minimization and different data
subject rights by having independent types of personal data.

Since each framework targets a different programming language,
we developed BreezeBlogs in Python, Java, and JavaScript, respec-
tively. BreezeBlogs implements the following HTTP/API endpoints:
1) POST /register Registers the user in the database. 2) POST /lo-
gin Logs the user in. 3) GET /interests Fetches and returns the
current user’s interests. 4) GET /blog-posts Accesses the current
user’s interest, then, for the user’s interests, fetches 10 blog posts
with 1024 characters each and returns them. 5) POST /send-news–
mails Queries all users’ usernames and email addresses from the
database and joins them together into a single string.

We chose the endpoint functionality so that we have an endpoint
processing a lot of non-user-specific data (/blog-posts), an endpoint
processing user-specific data from multiple data subjects at once
(/send-news-mails), and an endpoint processing user-specific data
from a single data subject (/interests). This way, we can determine
the impact of the enforcement on different types of data processing.

5 Evaluation
In this section, we evaluate the frameworks’ GDPR coverage and
compare them based on the runtime and storage overheads they
introduce to BreezeBlogs.

782

Making Web Applications GDPR Compliant Proceedings on Privacy Enhancing Technologies 2025(4)

Table 1: GDPR Coverage per Framework.

GDPR Requirement RuleKeeper Fontus GDPR-MFOTL

Purpose Limitation Art. 5(1)(b) #

Data Minimization Art. 5(1)(c) # #

Storage Limitation Art. 5(1)(e) # G# #

Integrity and Confidentiality Art. 5(1)(f) * # #

Lawfulness of Processing† Art. 6(a-f)

Consent Handling Art. 7(1-4) G# G#

Special Data Art. 9 # G# G#

Transparency Art. 12 # #

Information to be provided Art. 13 1/12 2/12 1/12
(Total count = 12)

Data Subject Rights
- Right to Access Art. 15 # G# G#
- Right to Rectification Art. 16 # G#
- Right to Erasure Art. 17 # G# G#
- Right to Restriction of Processing Art. 18 # G# G#
- Right to Data Portability Art. 20 # G#
- Right to Object Art. 21 # G# G#

Records of processing activities Art. 30 0/7 2/7 1/7
(Total count = 7)

#: Not Supported, not implemented, not enforced;G#: Supported, not implemented, not enforced; :
Supported, implemented, enforced; *: Confidentiality is implemented in RuleKeeper as access control,
integrity is not supported; † : Although it is the only requirement enforced by each framework, correct
human assessment for the legal basis is still required.

5.1 GDPR Coverage
Table 1 provides a comparative evaluation of the GDPR coverage
for all three frameworks.

Purpose Limitation. Purpose limitation requires personal data to
be collected for specified, explicit, and legitimate purposes and not
further processed in a manner incompatible with those (Art. 5(1)(b)).
This principle is central to the GDPR: it anchors many other obliga-
tions, such as data minimization, lawful basis, and user consent. In
practice, purpose limitation ensures that personal data collected for
one use cannot be repurposed for unrelated uses (e.g., marketing)
without a legal basis. We assessed purpose limitation by defining
two different purposes in BreezeBlogs (view_blog for the /blog-
posts endpoint and marketing for the /send-news-mails endpoint)
and evaluated whether the frameworks enforce the limitation of
processing to our predefined purposes.

RuleKeeper enforces purpose limitation with the help of OPA
(see Listing 3 in Section A). For each application endpoint, the de-
velopers must specify a purpose in the application manifest. The
authors provide five Rego-based tests that verify whether data op-
erations comply with declared purposes; we confirmed all tests to
execute correctly. We further modified the manifest of BreezeBlogs
to simulate a purpose mismatch, accessing user interests undermar-
keting instead of the declared view blog, and confirmed RuleKeeper
blocked the operation, demonstrating effective enforcement.

Based on the developer-defined configuration, Fontus associates
each sink with a purpose-recipient pair, i.e., who is processing and
for what purpose. Incoming data is tainted with its allowed purpose
and recipient pairs at the configured sources. This way, Fontus en-
sures that processing at the sink is only allowed if the pair matches.
In our test, data tainted with marketing/BreezeBlogs was blocked

at a sink configured for view blog/BreezeBlogs, confirming enforce-
ment. This mechanism also controls third-party data sharing, since
marking them as a sink would require a valid purpose.

GDPR-MFOTL implements purpose limitation within its MFOTL
policy. Equation (2) from Section 3.4 shows the relevant rule. Un-
like RuleKeeper or Fontus, for GDPR-MFOTL the developers do not
have to define purposes centrally but embed them in the hosted
application’s code (see Listing 6 in Section A). We defined pur-
poses for BreezeBlogs endpoints and registered 10 users who either
consented to specific purposes or not. Only the consenting users’
interests and mail addresses were returned when querying purpose-
specific endpoints. Notably, only operations, not data, are mapped
to purposes. Upon collection, the data lacks associated purpose
metadata, making it impossible to determine the intended purpose.
This limitation is evident in the Collect MFOTL predicate from the
original paper, which takes only the data subject, data taint, and a
special data flag as input. The authors rely on their browser exten-
sion (see Figure 8 in Section A) to obtain consent from the users.
When users enter personal data via HTML forms, the extension
intercepts the submission, extracts the data, and uniformly assigns
consent for each toggled purpose to all fields. For example, if the
Marketing purpose is toggled, every data item in the form receives
consent for marketing, regardless of the data’s actual use. While the
extension technically allows per-field consent through a right-click
context menu (Figure 9 in Section A), this feature is undocumented
and does not resolve the core issue: data items are not purpose-
bound and may be processed for any purpose once consent for that
purpose is granted. Consequently, GDPR-MFOTL does not enforce
purpose limitation.

Data Minimization. Data minimization requires that personal
data is adequate, relevant, and limited to what is necessary for the
purposes for which they are processed (Art. 5(1)(c)). This should
take place not only while processing but also during the applica-
tion’s overall design. For example, a web application could imple-
ment an age check by having the user enter their age or through
a yes/no question. Both would fulfil the purpose, but the latter
collects less data (in case the web application does not need to ver-
ify the age). We cannot technically assess whether an application
is designed with data minimization in mind, but we can evaluate
whether this requirement is enforced within the application’s pro-
cessing. Neither Fontus nor GDPR-MFOTL claim to support data
minimization, so we only evaluated RuleKeeper, which has a data
minimization policy written in OPA’s Rego language. For the op-
eration to be performed, RuleKeeper receives the purpose of the
operation and the corresponding maximum allowed data, specified
by the developers in the manifest. It then verifies that the processed
data does not exceed the maximum data. The naming maximum
data is misleading because the maximum data may be more than
the data necessary for the given processing purpose, instead of
using the least amount of data required to fulfil the purpose. For
BreezeBlogs, we defined the maximum data for marketing as the
user’s email. We tested data minimization with an operation that
tries to fetch all the user’s data from the database (users.find())
and an operation that only fetches the email from the database
(users.find({ username: requestedUsername }, {email: 1})). Since email
is the only data allowed to be processed for marketing purposes,

783

Proceedings on Privacy Enhancing Technologies 2025(4) Kalinowski et al.

RuleKeeper blocked the database request trying to fetch all the
user’s data. Additionally, we tried to update the user’s interests and
found RuleKeeper blocking the database write. We conclude that
RuleKeeper supports, implements, and enforces data minimization.

Storage Limitation. Storage limitation requires controllers and
developers of a web application to only store data as long as it is
necessary to fulfill the purpose the data is needed for (Art. 5(1)(e)).
Fontus introduces the time period f in its metadata, which defines
how long processing - and therefore storage - is valid for a given
data item. However, the deletion of expired data is neither imple-
mented nor enforced. Additionally, the deletion is not applicable
for cases where it is not previously known how long it takes to
fulfill the purpose. Setting f also requires the developers to know
which data is needed for which amount of time. Neither of the other
frameworks covers this aspect at all.

Integrity and Confidentiality. Integrity and confidentiality de-
mand that personal data is processed with appropriate security to
be safe against several threats like unauthorized processing, destruc-
tion, or accidental loss (Art. 5(1)(f)). We emphasize that the GDPR
does not provide conclusive requirements for achieving integrity
and confidentiality. It is a case-by-case weighing of whether a mea-
sure is sufficient. None of the three frameworks supports integrity,
and only RuleKeeper claims to support confidentiality through a
Rego policy provided by the authors. Each application operation is
associated with a list of roles allowed to perform it. The user’s role,
stored in a database, is checked against this list, and if not permit-
ted, the operation is blocked. Testing with BreezeBlogs verified this
mechanism: the endpoint POST /send-news-mails, restricted to the
advertiser role in the manifest, was accessible only to a user with
that role, while a user with the user role was blocked. Additionally,
the authors of RuleKeeper provided tests for their access control
policy. For different roles, the tests try to access operations that
should either be executable for the role or not, and verify that OPA
[17] correctly blocks/allows executing the function for the given
role. We conclude that RuleKeeper only implements and enforces
confidentiality for use cases where access control is an adequate
measure.

Lawfulness of Processing. TheGDPR sets outmultiple legal bases
under which processing of personal data is allowed, including the
data subject consenting to the processing or a contract making the
processing necessary (Art. 6(1)). Despite allowing the developers to
process personal data by specifying a legal basis, the frameworks
do not make the basis transparent to the user to prove this. Addi-
tionally, developers may be unable to determine the legal basis for
each purpose and need help from legal experts. However, if they
can determine them correctly, the frameworks allow the developers
to connect each purpose to a specific legal basis.

RuleKeeper has implemented a Rego policy that checks if the
operation’s purpose has either consent or contract as a legal basis
(see Listing 5 in Section A). Misleadingly, it marks operations re-
quiring consent even when the legal basis is contract, which does
not necessitate user consent according to Art. 6(1)(b) as contract
is a sufficient legal basis itself. To test consent-based processing,
we set the purpose view blog in BreezeBlog’s manifest to require
consent. When requesting the endpoint /blog-posts, data processing

was blocked for users without consent, but allowed once consent
was provided. This would also be the case for operations that pro-
vide data to server-side third parties, since RuleKeeper would only
execute the third-party functionality if the user provided consent.
RuleKeeper demands setting a legal basis manually; otherwise, all
data processing is prohibited. For non-consent-based processing,
we adjusted the purpose view blog to have the legal basis legal
obligation. We found that data processing was permitted without
user consent in this case. For further details on RuleKeeper’s imple-
mentation of lawfulness of processing, see Listing 4 in Section A.
In summary, RuleKeeper enforces data processing based on a le-
gal basis in case developers can specify the correct basis for each
purpose.

Fontus allows developers to add purposes resulting from, for
example, the user entering into a contract with the website operator.
This allows the developer to realize use cases where data processing
is permitted for reasons beyond user consent, such as legitimate
interests or a contract. This, too, relies on developers correctly
setting up the framework. We tested consent-based processing,
like for RuleKeeper, and found that Fontus also blocks processing
without the user’s consent.

To implement lawfulness of processing in GDPR-MFOTL, the
authors introduced the formula LegalGround(grd, ut, sp) for devel-
opers to claim an arbitrary legal basis grd for a data item with the
taint ut. We tested this by accessing a data item before and after
declaring a legal basis. Processing was blocked initially but permit-
ted afterward. For consent-based processing, we set up BreezeBlogs
within GDPR-MFOTL, defined data processing based on consent,
and found that accessing /blog-posts was blocked for users without
consent. Once consent was given, access was allowed. Thus, GDPR-
MFOTL effectively supports and enforces lawfulness of processing.

Consent Handling. The GDPR sets out conditions that must be
met for consent to be valid, including that it must be “freely given,
specific, informed, and unambiguous” (Art. 4(11)). Additionally, sys-
tems must support mechanisms for consent collection, withdrawal,
and the ability to demonstrate that valid consent has been obtained
(Art. 7(1–4)) [5]. Consent is often obtained through a cookie banner,
with the frameworks not being an exception. For cookie banners to
be GDPR-compliant, several requirements have to be fulfilled [24].
Since assessing the compliance of a cookie banner is only partially
possible from a technical standpoint, we focus on Art. 7(1-3). To
obtain consent, RuleKeeper shows the user a cookie banner (Fig-
ure 6 in Section A) that explicitly asks for their consent when they
access an endpoint that processes personal data and no consent
has been provided yet. RuleKeeper does not implement a way for
users to view their consent choices, but since the consent choices
are stored and could be made available to the users, we state this
requirement as supported. While the authors claim that users may
withdraw their consent, this has not been implemented.

Like RuleKeeper, Fontus implements a consent dialogue (Figure 7
in Section A) that shows the recipient and a short description of
the use for each purpose. Fontus does not allow users to view or
change their past consent choices. However, since the user’s consent
choices are stored, we consider this as supported.

GDPR-MFOTL’s dedicated dashboard in their privacy platform
allows the data subject to explicitly set consent, to view consent

784

Making Web Applications GDPR Compliant Proceedings on Privacy Enhancing Technologies 2025(4)

for each piece of data individually through its taint, and to revoke
consent at any time. Besides that, GDPR-MFOTL also allows the
user to view and change their consent choices through the browser
extensions. We found all of the frameworks to be able to collect
consent, but only GDPR-MFOTL to also enable the users to view,
change, and withdraw their choices.

Special Data. The GDPR distinguishes between personal data and
special personal data, which shall have a higher level of protec-
tion and should only be processed on an exceptional basis (Art. 9).
RuleKeeper does not consider different types of personal data.

Fontus metadata introduces the required protection level l. With
this parameter, developers can define a higher level of protection
for special data. However, the GDPR does not explicitly require a
higher level of protection for special data, but limits the legal bases
under which the processing is allowed (Art. 9(2)(a–j)). Therefore,
we consider handling special data to be supported, but neither
implemented nor enforced.

The authors of GDPR-MFOTL introduce the concept of special
data in their paper and include a special data flag in their Collect
signature. However, we have not found any use of the flag in the
source code, nor do processing signatures such as Use or Share-
With include the special data flag. Therefore, we consider handling
special data to be supported, but neither implemented nor enforced.

Transparency. The controller must inform the data subject about
the processing of their personal data and the current state of the
execution of their rights as defined in Art. 12. RuleKeeper and
Fontus do not support providing information to the data subject
except when explicit consent is obtained. In addition, they do not
enforce user rights and, therefore, do not inform data subjects about
the current status of their rights’ execution.

GDPR-MFOTL, on the other hand, has a user-accessible dash-
board that shows the consent and processing of data at any time. In
addition, when users want to execute their rights, it states when a
request was received and when the right was executed. One weak-
ness is that it only shows the taint of the collected data, not the
actual values. Therefore, only GDPR-MFOTL supports, implements,
and enforces information provision and action information.

Information to be Provided. The GDPR mandates 12 pieces of
information that must be provided to the data subject when their
personal data is obtained or processed (Art. 13).

RuleKeeper presents the user with a cookie banner each time
personal data is processed or collected. It only shows the purpose
of the processing, resulting in an overall score of 1/12.

Of the 12 pieces of information that should be provided to the
data subject, Fontus only provides the purposes of the processing
and the data recipients, resulting in a score of 2/12.

The browser extension of GDPR-MFOTL informs the data subject
about the purposes of the processing, but nothing else. Therefore,
it only provides 1/12 of the information to the data subject.

Data Subject Rights. The GDPR grants 6 data subject rights (Art.
15–18, 20–21), and in this subsection, we check whether the three
frameworks support them. For each data subject right, the GDPR
sets forth different modalities for how these rights must be exercised
and fulfilled. As an example, the right of access defines which

information must be provided to the data subject (Art. 15(1)(a–h)).
There are also cases where the right of the data subject has to be
enacted without the data subject needing to act, for example, in
Art. 17(1)(b), where the withdrawal of consent must also result in
deleting the data if there is no other valid legal basis to process it
further. RuleKeeper does not support any of the data subject rights.

With the granular data tainting in Fontus, a data subject’s per-
sonal data can be made available through database queries with the
corresponding taints. However, the authors do not implement or
enforce this in their framework for any data subject rights.

GDPR-MFOTL claims to implement all the demanded data sub-
ject rights through their privacy dashboard. Their approach com-
bines the right of access and the right to data portability (Art. 15 and
20). For each tainted piece of data, the data subject may make an ac-
cess request to receive their data. However, this is inconvenient for
the data subject as the privacy dashboard only shows the taint, not
the actual data value. The request gets automatically executed by
GDPR-MFOTL, providing the data subject with their data, including
a downloadable JSON file holding the data. However, the data is
not combined in one JSON file; each data item has its own JSON
file. Art. 15 requires multiple pieces of information to be provided
to the data subject, for example, the purposes of processing and the
recipients. Not all of the necessary information is provided to the
data subject, and it is missing both the purpose and the recipient.
We therefore consider the right of access to be supported. Since the
data subject can export any of their data in a JSON file, arguably
regarded as “commonly used and machine-readable” (Art. 20(1)),
we consider the right to data portability as supported, implemented,
and enforced. Inside the privacy dashboard, the data subject can
arbitrarily change their personal data to any value. This allows the
data subject to rectify false or incomplete data, resulting in the right
to rectification being supported, implemented, and enforced.

For the right to erasure, GDPR-MFOTL allows the data subject
to erase any data provided to the application. However, the right to
erasure does not only cover the wishes of the data subject, but also,
for example, if the personal data is no longer required for the pro-
cessing purpose (Art. 17(1)(a)) or if the data subject withdrew their
consent (Art. 17(1)(b)). While GDPR-MFOTL does not address these
additional cases, the system primarily emphasizes the data subject’s
role in initiating erasure. This reflects one of the key individual
empowerment goals of the GDPR, as emphasized in Recital 7 GDPR
and Art. 1(2). We therefore consider this requirement as supported.
For the right to restriction, GDPR-MFOTL enables the data subject
to prevent processing of their data at any time. However, this also
does not cover implicit cases, such as the data subject not wanting
to have the data deleted, even if the purpose is fulfilled (Art. 18(1)(c)).
As for the right to erasure, since the article primarily focuses on
mechanisms that empower the data subject to restrict their data
from processing, we consider this requirement to be supported.
While GDPR-MFOTL claims to support the right to object, and
we did find an endpoint in the codebase, but no possibility for the
data subject to make use of this, we consider this as supported. We
executed each right through GDPR-MFOTL’s privacy dashboard to
test their execution and found them, besides the above points, to
execute correctly.

785

Proceedings on Privacy Enhancing Technologies 2025(4) Kalinowski et al.

Fontus RuleKeeper GDPR-MFOTL
0
10
20
30
40
50
60
70
80
90
100
110
120

1916.2
23.9

Av
er
ag
e
Re

sp
on

se
Ti
m
e
(m

s)

/blog-posts
(baseline)

/send-news-mails
(baseline)

/interests
(baseline)

109.7

14.4

27.3

/blog-posts
(no_consent)

/send-news-mails
(no_consent)

/interests
(no_consent)

100

18.6

39.9

/blog-posts
(full_consent)

/send-news-mails
(full_consent)

/interests
(full_consent)

Figure 4:MeanResponse Time for a Single User per Endpoint.

Records of Processing Activities. The GDPR mandates that the
controller maintains a record of processing activities (Art. 30). How-
ever, this record does not have to be accessible to the end user, but
shall be made “available to the supervisory authority on request”
(Art. 30). Of the three frameworks, only Fontus and GDPR-MFOTL
claim to support this requirement. The record of processing activi-
ties should contain a total of 7 pieces of information (Art. 30).

Fontus partially covers this requirement with its configuration
file. Its configuration contains the purposes and recipients of the
data processed by the application. Therefore, Fontus provides 2/7
of the pieces of information. GDPR-MFOTL also claims to support
this requirement, but does not specify how this is implemented. We
assume that the authors consider the operation log (see Listing 2
in Section 3.4) as the record here, which shows the purpose of
processing, 1/7 of the pieces of information.

5.2 Runtime Overhead
In this section, we evaluate and compare the runtime overhead
introduced by the three frameworks. As described in Section 4.1,
we integrated BreezeBlogs into each GDPR enforcement frame-
work. We then measured the response times for each combination
of BreezeBlogs and GDPR enforcement framework, as well as a
baseline version of BreezeBlogs without GDPR enforcement, for 13
minutes using Locust.

In the single-user benchmark, we measured the response times
of the three endpoints for a single user for each framework. We did
this for the cases where the user has given consent for processing
their data, where the user has not given consent, and without any
GDPR enforcement in place to measure the impact of GDPR en-
forcement based on the user’s consent choices. Figure 4 shows the
average response times for the three endpoints stacked on top of
each other. The response times were measured in milliseconds, and
the overhead was calculated as the sum of the endpoint response
times of the framework and the standalone application. The mea-
surements show that RuleKeeper introduced the lowest overhead
for the single-user scenario, with even a negative overhead for the
benchmark without the user’s consent.

Zooming in on the individual endpoints for a single user who has
not given any consent, we see that the overhead for the /blog-posts
endpoint was negative for both RuleKeeper (-38.3%) and Fontus
(-33.92%). This is the case because, without consent, the blog posts
were not fetched and processed, so the response time was lower

than for BreezeBlogs running standalone. For GDPR-MFOTL, how-
ever, the overhead for this endpoint was high due to the consent
mechanism. Not fetching the blog posts was insufficient to com-
pensate for the overhead introduced by the framework. The overall
overhead for GDPR-MFOTL was higher than for the other two
frameworks, with a maximum overhead of 517.89% for the /interests
endpoint. While the other frameworks perform the enforcement
inside the backend, GDPR-MFOTL has to connect to its enforce-
ment backend via HTTP, which could lead to a higher latency. For
all three frameworks, the overhead of the /blog-posts endpoint was
lower than that of the /interests endpoint. The /blog-posts endpoint
had to do more computation for BreezeBlogs running standalone,
because when running within the frameworks, the blog posts were
not fetched and processed due to a lack of user consent. In this
case, GDPR-MFOTL was the only framework with a higher absolute
response time for the /interests endpoint than for the /blog-posts
endpoint. Our single-user benchmark showed significant differ-
ences between the three frameworks in terms of response times.
Besides using different programming languages and libraries, this
may be due to the different designs of the frameworks’ enforce-
ment mechanisms. Fontus leverages pre-function hooks to check if
processing is allowed/denied. RuleKeeper and GDPR-MFOTL on
the other hand, both leverage different services (see Figure 1 in
Section 3.2 and Figure 3 in Section 3.4) which are responsible for
the enforcement. RuleKeeper uses web sockets for the communi-
cation between its services, while GDPR-MFOTL relies on HTTP
requests. Additionally, GDPR-MFOTL stores all traces in a database.
To know if there was an event from a data subject who provided
consent, it has to search the whole trace database to be sure that this
event ever occurred. However, we did not measure the components
individually due to their close interaction inside the frameworks.

We also measured the response times for the multi-user bench-
marks for the three endpoints for each framework. We did this for
the case where users have given consent to process their data, the
case where users have not given consent, and the case where half of
the users have given consent. Due to the different execution times,
the total collected response times differ between the frameworks.
For example, this leads to 153 986 measurements for RuleKeeper
runningwith 100 concurrent users.While evaluating GDPR-MFOTL
with multiple users, we encountered race conditions that crash the
application. The authors of GDPR-MFOTL acknowledged this issue
but did not provide a fix in time for the evaluation. Figure 5 shows
the average response times for (a) Fontus and (b) RuleKeeper for
the multi-user benchmarks for the three different consent scenar-
ios. Our measurements show a higher discrepancy between the
application’s response times with the frameworks under the differ-
ent consent scenarios than when the application runs standalone.
We found differences, for 500 users, ranging from 2698.71ms to
3543.08ms for Fontus, while for RuleKeeper, the differences range
from 352.22ms to 1103.89ms. We also see from the measurements
that for Fontus, while the response times for the no_consent and
half_consent scenarios are close together, there is a gap between
these two and the full_consent scenario.

For RuleKeeper, the gaps between the response times of the
three scenarios are more evenly distributed. Table 2 shows the
percentage overheads for Fontus and RuleKeeper for the different
consent scenarios and user counts.

786

Making Web Applications GDPR Compliant Proceedings on Privacy Enhancing Technologies 2025(4)

50 100 500
0

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000

Number of Concurrent Users

Av
g.
Re

sp
on

se
Ti
m
e
(m

s)

Baseline no consent
half consent full consent

(a) Average Response Times per Consent Scenario for Fontus.

50 100 500
0

500
1,000
1,500
2,000
2,500
3,000

Number of Concurrent Users

Av
g.
Re

sp
on

se
Ti
m
e
(m

s)

Baseline no consent
half consent full consent

(b) Average Response Times per Consent Scenario for RuleKeeper.

Figure 5: Response Times for Fontus and RuleKeeper (Base-
line is BreezeBlogs without GDPR Enforcement Tool).

While both frameworks added overhead for the different scenar-
ios, Fontus introduced more overhead than RuleKeeper. Except for
the no consent scenario, Fontus at least doubled the computation
time for the application, while RuleKeeper added at most an over-
head of 85.6%. In addition, the overhead for Fontus increased with
the number of users, while for RuleKeeper it decreased.

Overall, our multi-user benchmarks shows that RuleKeeper in-
troduced less overhead than Fontus for the different scenarios and
user counts. In addition, the overhead for RuleKeeper decreased
with the number of users, while the overhead for Fontus increased.

Table 2: Runtime Overheads for Fontus and RuleKeeper per
Consent Scenario.

#Users Overhead in ms

Fontus RuleKeeper

full consent
50 36.4 (165.3%) 51.3 (77.2%)
100 137.2 (304.6%) 130.5 (85.6%)
500 3543.1 (1334.8%) 1103.8 (64.7%)

half consent
50 29.4 (133.5%) 36.6 (55%)
100 118.3 (262.6%) 83.2 (54.6%)
500 2768.9 (1043.2%) 667.3 (39.1%)

no consent
50 21.8 (98.9%) 24.3 (36.5%)
100 97.5 (216.3%) 72.8 (47.8%)
500 2698.7 (1016.7%) 352.2 (20.7%)

One reason for this is how RuleKeeper implements the consent
mechanism (for more details on this, we refer to Section B.1).

5.3 Storage Overhead
We also evaluated the storage overhead introduced by the frame-
works. To do this, we measured the amount of space required by
BreezeBlogs standalone and when integrated with each framework.

RuleKeeper. The storage layout of RuleKeeper relies on MongoDB
collections. We implemented BreezeBlogs with three collections,
namely advertisers, blogposts, and users. The advertisers collection
holds users allowed to access marketing-related endpoints (/send-
news-mails), while the users collection holds all user-specific data
(username, password, email, interests). Lastly, the blogposts col-
lection contains the blogpost entries. RuleKeeper adds three col-
lections: principals, entities, and consents. With the principals and
entities collections, RuleKeeper connects different types of function-
ality, like access control and distinguishing between data subjects
and the controller. RuleKeeper adds those three collections regard-
less of the hosted web application’s implementation. We measured
the total size of the collections used by BreezeBlogs and those intro-
duced by RuleKeeper, with the results shown in Table 3. Doubling
from 50 to 100 users increased the overhead by a factor of about
1.9, while going from 100 to 500 users only increased the overhead
by a factor of about 3.5.

Fontus. The database structure of BreezeBlogs is the same as de-
scribed previously for RuleKeeper, but implemented as MySQL
tables instead of MongoDB collections. Fontus does not add new
tables but alters the existing ones by adding a taint field for every
existing database field. We measured the overhead by registering
the users in Fontus to correctly set up the taint values, leading to
the results shown in Table 3. While we see that Fontus added more
overall overhead than RuleKeeper, it was also the case that after a
steep increase of overhead (50 to 100 users with a factor of 33), the
overhead decelerated (100 to 500 user with a factor of about 1.2).
While this may be due to MySQL optimizations, the growth did not
scale with the number of users registered within the application.

GDPR-MFOTL. While GDPR-MFOTL also follows a data tainting
approach, it alters the storage backend differently than Fontus by
combining SQLite andQuestDB. The SQLite table holds BreezeBlogs
data (with the same tables as for the other frameworks) and adds
additional tables to store taint values. This adds 27 tables to the
BreezeBlogs SQLite file. Due to the design of GDPR-MFOTL, it also
has a table for users to authenticate to GDPR-MFOTL, rather than
directly to BreezeBlogs, to access the privacy dashboard. Besides the
SQLite database, GDPR-MFOTL also stores the traces in a QuestDB
database to track specific events’ timings. The results of our storage
evaluation are shown in Table 3. We see that GDPR-MFOTL had
a higher storage overhead regarding BreezeBlogs. However, by
default, QuestDB pre-allocated a high amount of storage (2.4 GB),
resulting in distorted results. Additionally, the size of the QuestDB
database did not vary between 50 and 500 users. For the storage
overhead results without QuestDB, we refer to Section B.3.

787

Proceedings on Privacy Enhancing Technologies 2025(4) Kalinowski et al.

Table 3: Storage Overhead for all Frameworks.

#Users RuleKeeper Fontus GDPR-MFOTL

W (kB) W/o (kB) O (kB) O (%) W (kB) W/o (kB) O (kB) O (%) W (kB) W/o (kB) O (kB) O (%)

50 122 109 12 11.3 889 610 279 45.6 2524 k 164 2523 k 1 540 153.2
100 140 116 25 21.3 9933 610 9322 1527.5 2524 k 164 2523 k 1 540 180.7
500 290 166 124 74.4 12 030 643 11 387 1770.7 2524 k 229 2524 k 1 100 255.8

W: with framework, W/o: without framework, O: overhead

6 Discussion
In this section, we discuss the results of our evaluation and the
implications of our findings, including the GDPR coverage of the
frameworks and their runtime and storage overhead. Additionally,
we provide insights into the required efforts to set them up.

GDPR Coverage. Our evaluation shows that Fontus, RuleKeeper,
and GDPR-MFOTL support GDPR compliance by intercepting data
processing functions and tracking personal data. However, while
they all address several of the GDPR’s requirements, we found that
some of the investigated GDPR articles lack support or have lim-
ited implementation. For example, RuleKeeper does not support
data subject rights, while Fontus’ introduced metadata tuple can
cover most of the evaluated GDPR requirements, but does not im-
plement them. While we found that GDPR-MFOTL offers the most
extensive coverage, both Fontus and GDPR-MFOTL utilize data
tainting to enforce GDPR requirements, suggesting that Fontus
could be developed further to support the same requirements as
GDPR-MFOTL. In addition, both Fontus and GDPR-MFOTL could
be extended to process and share data across different applications
and services while keeping the taints, and therefore the metadata
and consent choices, intact. This would be a significant advantage
over RuleKeeper, which is limited in tracking data flows throughout
one application. We have sent a draft of this work to the authors
of all three frameworks, allowing them to provide feedback and
to perform a sanity check on our findings and the description of
their systems. Their feedback helped validate the technical details
we reported. Additionally, the authors of GDPR-MFOTL acknowl-
edged certain limitations in their framework, specifically regarding
support for purpose limitation and the inability to handle multiple
users concurrently.
Recommendations: For some of the GDPR requirements examined,
the implementation and sometimes the interpretation of the frame-
work authors differ. Future work should focus on (1) enhancing
the frameworks, e.g., by adding support for missing requirements,
and (2) fostering more cross-disciplinary collaboration with legal
experts to promote shared interpretations and reduce ambiguity in
future technical implementations.

Runtime & Storage Overhead. Our evaluation showed that the
frameworks added significant runtime overhead to our test applica-
tion, BreezeBlogs. While this overhead is unavoidable due to the
frameworks’ nature as additional components, it is important to
consider when deploying them in a production environment. Rule-
Keeper supports the fewest GDPR requirements and introduced
the least overhead, even speeding up the application in some cases.
Due to the granular data-tainting approach, Fontus did not scale

well with the number of users. For GDPR-MFOTL, we found that it
introduces significant overheads, and, due to race conditions, we
were unable to evaluate it in a multi-user context, which is cru-
cial for a modern web application. However, it was also the most
comprehensive in terms of GDPR coverage. We found significant
differences in the introduced overheads, ranging from about 11%
to 1 540 180%. However, comparing them is challenging since each
framework relies on a different (but state-of-the-art) database sys-
tem with varying configurations for pre-allocation, programming
languages, or other system-introduced overheads. We can tell that
there was a noticeable difference between RuleKeeper and both
tainting approaches, with the latter introducing a higher overhead
in every case.
Recommendations: Since RuleKeeper introduces the least runtime
overhead, we recommend relying on existing technology as much
as possible, since mature software may already be optimized for
runtime and storage overhead. We do not want to argue against
certain technologies like tainting or relying on specific database
systems. The overhead from GDPR-MFOTL mostly comes from
their QuestDB backend. However, the database system is suitable
for the use case and should not be changed solely based on a higher
storage overhead.

Development Overhead. Since we deployed the frameworks our-
selves, we also want to provide some insights into the required
effort to set them up. All three frameworks required us to contact
their respective authors, primarily because documentation was
missing and the published code did not run without errors. This
is a significant barrier for developers who want to use any of the
frameworks for their applications. RuleKeeper’s deny-by-default
approach forces developers to specify every data processing func-
tionality inside the GDPR manifest; otherwise, the functionality is
not executed. While this can lead to frustration when setting up
RuleKeeper, it is ultimately the least error-prone approach, as it
ensures that no data processing functionality is overlooked and
executed by mistake. On the other hand, setting up Fontus and
GDPR-MFOTL is more error-prone, as they rely on the developers
to correctly tag all data and write the functionality to block or
allow processing themselves. This can lead to oversights, such as
forgetting to specify sinks or sources, resulting in incorrect data
processing or even GDPR violations. We believe this is a significant
drawback of Fontus and GDPR-MFOTL, since they do not guarantee
that data is processed only in a GDPR-compliant way. Besides the
effort required to set up the frameworks, the overhead is also intro-
duced by the necessity of human involvement. To achieve purpose
limitation, developers need to specify the correct purposes, includ-
ing the required data, and, in combination with the lawfulness of

788

Making Web Applications GDPR Compliant Proceedings on Privacy Enhancing Technologies 2025(4)

processing, the legal basis on which processing is allowed. For this,
the frameworks rely on strings like contract or legal_obligations,
which may not be sufficient to present the basis. This is also difficult
in the context of fast-moving development, pushing out features as
soon as possible to be ahead of the competition. As past research has
shown (e.g., 4, 12, 21, 23, 27), operators and developers struggle
to comply with the GDPR, making these questions a pressing issue.
Li et al. [20] found that developers see privacy compliance as costly
(i.e., having to adapt their applications to new regulations) while
providing little perceived benefits. Horstmann et al. [13] showed
that even with access to a privacy expert, developers struggle to
implement compliant software solutions.
Recommendations: Following our experience, we recommend that
researchers focus more on providing information on how to set
up their frameworks. This includes but is not limited to (1) pro-
viding a minimal working example in a standardized format (e.g.,
docker-compose) and (2) providing a step-by-step instruction for
integrating the framework into a web application.

Threats to Validity. Similar to the three frameworks, we, too,
worked with a legal expert to derive the list of requirements (Con-
tribution (i)). However, interpreting the law is not trivial and ul-
timately the judiciary’s responsibility; hence, our list might not
have captured all the nuances and implicit requirements of the
GDPR. Additionally, our application, BreezeBlogs, is simple and
has basic functionality. While this is advantageous because it al-
lows easy testing of different aspects due to its low complexity,
it is unsuitable for covering more advanced processing, including
implicit data flows and data combination. Moreover, the technolo-
gies used also play a crucial role: Both JavaScript (RuleKeeper) and
Java (Fontus) have optimizing runtimes, utilizing a Just-in-Time
compiler to improve performance, while PythonTTC does not. Con-
sequently, some of the additional overhead of GDPR-MFOTL might
be due to the choice of the PythonTTC programming language. The
same argument holds for choice of databases: Both MongoDB and
MySQL, used by RuleKeeper and Fontus respectively, are built for
high concurrent loads and have optimizing query planners, while
SQLite, used by GDPR-MFOTL, might negatively impact GDPR-
MFOTL’s relative performance. Moreover, none of the frameworks
evaluated are applicable in a scenario involving client-side third
parties. Finally, as mentioned in Section 3.1, our literature review
led to papers published in top-tier security and privacy venues.
However, focusing on top-tier security and privacy venues may
have excluded relevant GDPR enforcement papers published in
other research communities, such as software engineering.

7 Related Work
We now provide an overview of the current field of research on
privacy in the context of web applications, specifically in the scope
of the GDPR. To the best of our knowledge, there is no previous
work comparing GDPR enforcement frameworks. We focus on
two distinct approaches addressing different aspects of the GDPR.
First, we examine the concept of policy-based privacy management,
where machine-readable privacy policies, formal rules defining how
personal data should be handled, are used to control the behavior
of a web application. Second, we discuss how data subject rights
may be enforced since they are a central aspect of the GDPR.

Policy-based Privacy Management. Giffin et al. [9] proposed Hails,
a framework for policy-based data flows through multiple web
applications. Within Hails, developers define policies that restrict
the data flow between different web applications and enforce these
policies at runtime. This enables untrusted third-party applications
to access data from a trusted application, ensuring that only the data
allowed by the policy is shared. However, Hails does not provide
a way to enforce privacy policies in the applications themselves,
only on the shared data between them. Consequently, it does not
offer a way to enforce the GDPR requirements on the applications.
Another approach was taken by Wang et al. [29]. They proposed
Riverbed, a system that allows users to define their own privacy
policies for web applications, stating how their data can be shared
or stored by the application. Riverbed uses a proxy on the client side
and a trusted execution environment on the server side to enforce
these policies. While this covers the aspect of data minimization
and provides the data subject with control over their data, it does
not enforce different data subject rights demanded by the GDPR.

Enforcing Data Subject Rights. Truong et al. [28] proposed an ap-
proach, based on a blockchain, to enforce the right of access, restric-
tion, data portability, and erasure. They also claimed to support the
Right to be informed, which is not a specified data subject right in the
GDPR but appears to be a reference to Art. 13, demanding that the
data subject is informed about the processing of their data. Further-
more, they introduced a central platform between the blockchain,
the data subject, and the data controller. The platform, for example,
receives a consent request from the data controller, which is then
forwarded to the data subject, whose decision is then stored on the
blockchain. This category also includes the three GDPR compliance
enforcement frameworks discussed in this work: RuleKeeper [7],
GDPR-MFOTL [15], and Fontus [19].

8 Conclusion
In this work, we evaluated three recently published frameworks that
assist developers with GDPR compliance. We compared the frame-
works based on their GDPR coverage and both the computational
and development overhead. Our primary takeaway is that each
framework presents a unique balance of strengths and weaknesses.
While introducing the least computational overhead, RuleKeeper
supports the fewest GDPR requirements, including none of the data
subject rights. In contrast, Fontus and GDPR-MFOTL support more
of the requirements (despite needing more engineering to enforce
them), at the cost of increased overhead. With its data-tainting
approach, Fontus shows promise due to its comprehensiveness and
flexibility. However, it suffers from scalability issues with increasing
numbers of users. GDPR-MFOTL covers the most GDPR aspects but
introduces significant computational and development overhead,
even requiring developers to learn a new language, PythonTTC.
While highly promising, we conclude that none of the analyzed
frameworks are deployable in their current form. This offers inter-
esting opportunities for future research, both in terms of optimizing
such enforcement approaches to improve scalability and exploring
how to simplify the integration process and minimize the learning
curve for developers. Both factors are crucial for broader adoption,
ensuring robust GDPR compliance while maintaining performance
and ease of development.

789

Proceedings on Privacy Enhancing Technologies 2025(4) Kalinowski et al.

Acknowledgments
We are thankful for the valuable feedback and suggestions of our
anonymous shepherd and reviewers. We also thank Dr. Maxi Nebel
from the University of Kassel for helping us interpret the GDPR and
answering all our law-related questions.We gratefully acknowledge
funding by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – EXC
2092 CASA – 390781972.

References
[1] Tiago Bianchi. 2024. Advertising Revenue of Google from 2001 to 2024. https:

//www.statista.com/statistics/266249/advertising-revenue-of-google/ Accessed
on 2024-01-29.

[2] European Commission. 2023. Exchange of Electronic Health Records across the
EU | Shaping Europe’s Digital Future. https://digital-strategy.ec.europa.eu/en/
policies/electronic-health-records Accessed on 2024-01-29.

[3] European Commission. 2024. European Digital Identity - European Com-
mission. https://commission.europa.eu/strategy-and-policy/priorities-2019-
2024/europe-fit-digital-age/european-digital-identity_en Accessed on 2024-01-
29.

[4] Mariano Di Martino, Isaac Meers, Peter Quax, Ken Andries, and Wim Lamotte.
2022. Revisiting Identification Issues in GDPR ‘Right Of Access’ Policies: A Tech-
nical and Longitudinal Analysis. Proceedings on Privacy Enhancing Technologies
2022, 95–113. https://doi.org/10.2478/popets-2022-0037

[5] European Data Protection Board. 2020. Guidelines 05/2020 on consent under
Regulation 2016/679. https://www.edpb.europa.eu/sites/default/files/files/file1/
edpb_guidelines_202005_consent_en.pdf

[6] European Parliament and Council of the European Union. 2016. Regulation (EU)
2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General
Data Protection Regulation) (Text with EEA relevance). OJ L 119, 4.5.2016, pp.
1–88. https://data.europa.eu/eli/reg/2016/679/oj.

[7] Mafalda Ferreira, Tiago Brito, José Fragoso Santos, and Nuno Santos. 2023. Rule-
Keeper: GDPR-Aware Personal Data Compliance for Web Frameworks. In Pro-
ceesings of the 2023 IEEE Symposium on Security and Privacy (SP ’23). IEEE Com-
puter Society, USA, 2817–2834. https://doi.org/10.1109/SP46215.2023.10179395

[8] Mafalda Ferreira, Tiago Brito, José Fragoso Santos, and Nuno Santos. 2024. Rule-
keeper GitHub Repository. https://github.com/rulekeeper/rulekeeper Accessed
on 2024-05-22.

[9] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C.
Mitchell, and Alejandro Russo. 2012. Hails: Protecting Data Privacy in Untrusted
Web Applications. In 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12). USENIX Association, Hollywood, CA, 47–60. https:
//www.usenix.org/conference/osdi12/technical-sessions/presentation/giffin

[10] Johannes Gille, SebastianMeineck, and Ingo Dachwitz. 2023. EU country compari-
son: How data brokers are screening us. https://netzpolitik.org/2023/eu-country-
comparison-how-data-brokers-are-screening-us/ Accessed on 2024-01-29.

[11] Daniel Hamlin and Paul E. Peterson. 2022. Homeschooling Sky-
rocketed during the Pandemic, but What Does the Future Hold?
https://www.educationnext.org/homeschooling-skyrocketed-during-
pandemic-what-does-future-hold-online-neighborhood-pods-cooperatives/
Accessed on 2024-01-29.

[12] Stefan Albert Horstmann, Samuel Dominiks, Marco Gutfleisch, Mindy Tran,
Yasemin Acar, Veelasha Moonsamy, and Alena Naiakshina. 2024. “Those things
are written by lawyers, and programmers are reading that.” Mapping the Commu-
nication Gap Between Software Developers and Privacy Experts. Proceedings on
Privacy Enhancing Technologies 2024, 151–170. https://doi.org/10.56553/popets-
2024-0010

[13] Stefan Albert Horstmann, Sandy Hong, David Klein, Raphael Serafini, Martin
Degeling, Martin Johns, VeelashaMoonsamy, and Alena Naiakshina. 2025. “Sorry
for bugging you so much.” Exploring Developers’ Behavior Towards Privacy-
Compliant Implementation . In 2025 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, Los Alamitos, CA, USA, 1159–1177. https://doi.
org/10.1109/SP61157.2025.00146

[14] François Hublet, David Basin, and Srđan Krstić. 2022. Real-Time Policy Enforce-
ment with Metric First-Order Temporal Logic. In Computer Security – ESORICS
2022: 27th European Symposium on Research in Computer Security, Copenhagen,
Denmark, September 26–30, 2022, Proceedings, Part II (Copenhagen, Denmark).
Springer-Verlag, Berlin, Heidelberg, 211–232. https://doi.org/10.1007/978-3-031-
17146-8_11

[15] François Hublet, David Basin, and Srđan Krstić. 2024. Enforcing the GDPR. In
Computer Security – ESORICS 2023: 28th European Symposium on Research in

Computer Security, The Hague, The Netherlands, September 25–29, 2023, Proceed-
ings, Part II (The Hague, The Netherlands). Springer-Verlag, Berlin, Heidelberg,
400–422. https://doi.org/10.1007/978-3-031-51476-0_20

[16] François Hublet, David Basin, and Srđan Krstić. 2024. User-Controlled Privacy:
Taint, Track, and Control. Proceedings on Privacy Enhancing Technologies 2024,
1, 597 – 616. https://doi.org/10.3929/ethz-b-000641987 24th Privacy Enhanc-
ing Technologies Symposium (PETS 2024); Conference Location: Bristol, UK;
Conference Date: July 15-20, 2024.

[17] Styra Inc. 2024. Open Policy Agent. https://www.openpolicyagent.org/ Accessed:
2024-05-22.

[18] Joakim Hamrén Jonatan Heyman, Carl Byström and Hugo Heyman. 2024. Lo-
cust.io. https://locust.io/ Accessed: 2024-11-29.

[19] David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns. 2023.
General Data Protection Runtime: Enforcing Transparent GDPR Compliance
for Existing Applications. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security (Copenhagen, Denmark) (CCS ’23).
Association for Computing Machinery, New York, NY, USA, 3343–3357. https:
//doi.org/10.1145/3576915.3616604

[20] Tianshi Li, Elizabeth Louie, Laura Dabbish, and Jason I. Hong. 2021. How De-
velopers Talk About Personal Data and What It Means for User Privacy: A Case
Study of a Developer Forum on Reddit. Proc. ACM Hum.-Comput. Interact. 4,
CSCW3, Article 220, 28 pages. https://doi.org/10.1145/3432919

[21] Mariano Di Martino, Pieter Robyns, Winnie Weyts, Peter Quax, Wim Lamotte,
and Ken Andries. 2019. Personal Information Leakage by Abusing the GDPR
’Right of Access’. In Fifteenth Symposium on Usable Privacy and Security (SOUPS
2019). USENIX Association, Santa Clara, CA, 371–385. https://www.usenix.org/
conference/soups2019/presentation/dimartino

[22] Matthew Rosenberg, Nicholas Confessore, and Carole Cadwalladr. 2018.
How Trump Consultants Exploited the Facebook Data of Millions.
https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-
trump-campaign.html Accessed on 2024-07-27.

[23] Marlene Saemann, Daniel Theis, Tobias Urban, and Martin Degeling. 2022. Inves-
tigating GDPR Fines in the Light of Data Flows. Proceedings on Privacy Enhancing
Technologies 2022, 314–331. https://doi.org/10.56553/popets-2022-0111

[24] Cristiana Santos, Nataliia Bielova, and Célestin Matte. 2020. Are cookie banners
indeed compliant with the law? : Deciphering EU legal requirements on consent
and technical means to verify compliance of cookie banners. Technology and
Regulation 2020 (Dec. 2020), 91–135. https://doi.org/10.71265/g317tv72

[25] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You
Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In Proceedings of the 2010 IEEE
Symposium on Security and Privacy (SP ’10). IEEE Computer Society, USA, 317–331.
https://doi.org/10.1109/SP.2010.26

[26] Frances Stead Sellers. 2015. Cruz Campaign Paid $750,000 to ‘Psychographic
Profiling’ Company. https://www.washingtonpost.com/politics/cruz-campaign-
paid-750000-to-psychographic-profiling-company/2015/10/19/6c83e508-743f-
11e5-9cbb-790369643cf9_story.html Accessed on 2024-07-27.

[27] Emmanuel Syrmoudis, Stefan Mager, Sophie Kuebler-Wachendorff, Paul Pizzinini,
Jens Grossklags, and Johann Kranz. 2021. Data Portability between Online
Services: An Empirical Analysis on the Effectiveness of GDPR Art. 20. Proceedings
on Privacy Enhancing Technologies 2021, 351–372. https://doi.org/10.2478/popets-
2021-0051

[28] Nguyen Binh Truong, Kai Sun, Gyu Myoung Lee, and Yike Guo. 2020. GDPR-
Compliant Personal Data Management: A Blockchain-Based Solution. IEEE
Transactions on Information Forensics and Security 15 (2020), 1746–1761. https:
//doi.org/10.1109/TIFS.2019.2948287

[29] Frank Wang, Ronny Ko, and James Mickens. 2019. Riverbed: Enforcing User-
defined Privacy Constraints in Distributed Web Services. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19). USENIX
Association, Boston, MA, 615–630. https://www.usenix.org/conference/nsdi19/
presentation/wang-frank

A Framework Details
In this section, we present additional details of the frameworks.

A.1 RuleKeeper
Figure 6 shows the consent banner generated by RuleKeeper for an
endpoint that wants to process the personal data “user interests”
for the purpose “view interests”. Although the banner informs users
about the intended data processing, it raises concerns about GDPR
compliance. Specifically, the banner does not appear to offer a clear
option to deny consent, and the use of the label “Submit” may not

790

https://www.statista.com/statistics/266249/advertising-revenue-of-google/
https://www.statista.com/statistics/266249/advertising-revenue-of-google/
https://digital-strategy.ec.europa.eu/en/policies/electronic-health-records
https://digital-strategy.ec.europa.eu/en/policies/electronic-health-records
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://doi.org/10.2478/popets-2022-0037
https://www.edpb.europa.eu/sites/default/files/files/file1/edpb_guidelines_202005_consent_en.pdf
https://www.edpb.europa.eu/sites/default/files/files/file1/edpb_guidelines_202005_consent_en.pdf
https://data.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1109/SP46215.2023.10179395
https://github.com/rulekeeper/rulekeeper
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/giffin
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/giffin
https://netzpolitik.org/2023/eu-country-comparison-how-data-brokers-are-screening-us/
https://netzpolitik.org/2023/eu-country-comparison-how-data-brokers-are-screening-us/
https://www.educationnext.org/homeschooling-skyrocketed-during-pandemic-what-does-future-hold-online-neighborhood-pods-cooperatives/
https://www.educationnext.org/homeschooling-skyrocketed-during-pandemic-what-does-future-hold-online-neighborhood-pods-cooperatives/
https://doi.org/10.56553/popets-2024-0010
https://doi.org/10.56553/popets-2024-0010
https://doi.org/10.1109/SP61157.2025.00146
https://doi.org/10.1109/SP61157.2025.00146
https://doi.org/10.1007/978-3-031-17146-8_11
https://doi.org/10.1007/978-3-031-17146-8_11
https://doi.org/10.1007/978-3-031-51476-0_20
https://doi.org/10.3929/ethz-b-000641987
https://www.openpolicyagent.org/
https://locust.io/
https://doi.org/10.1145/3576915.3616604
https://doi.org/10.1145/3576915.3616604
https://doi.org/10.1145/3432919
https://www.usenix.org/conference/soups2019/presentation/dimartino
https://www.usenix.org/conference/soups2019/presentation/dimartino
https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-trump-campaign.html
https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-trump-campaign.html
https://doi.org/10.56553/popets-2022-0111
https://doi.org/10.71265/g317tv72
https://doi.org/10.1109/SP.2010.26
https://www.washingtonpost.com/politics/cruz-campaign-paid-750000-to-psychographic-profiling-company/2015/10/19/6c83e508-743f-11e5-9cbb-790369643cf9_story.html
https://www.washingtonpost.com/politics/cruz-campaign-paid-750000-to-psychographic-profiling-company/2015/10/19/6c83e508-743f-11e5-9cbb-790369643cf9_story.html
https://www.washingtonpost.com/politics/cruz-campaign-paid-750000-to-psychographic-profiling-company/2015/10/19/6c83e508-743f-11e5-9cbb-790369643cf9_story.html
https://doi.org/10.2478/popets-2021-0051
https://doi.org/10.2478/popets-2021-0051
https://doi.org/10.1109/TIFS.2019.2948287
https://doi.org/10.1109/TIFS.2019.2948287
https://www.usenix.org/conference/nsdi19/presentation/wang-frank
https://www.usenix.org/conference/nsdi19/presentation/wang-frank

Making Web Applications GDPR Compliant Proceedings on Privacy Enhancing Technologies 2025(4)

provide sufficiently unambiguous communication regarding the
user’s choice.

RuleKeeper Manager Service

BreezeBlogs Cookie Consent
This operation requires your consent.

This operation requires you to share your data: user interests for the purpose of view interests.

To find out more, read our Privacy Policy.

Submit

Figure 6: RuleKeeper Consent Banner.

Listing 3 shows the purpose limitation policy of RuleKeeper. For
each operation called, RuleKeeper checks whether the purpose of
the processed personal data matches the purpose of the operation.

1 package rulekeeper
2
3 #default allowPurposeLimitation = false
4
5 # We want to allow the query if the purposes of the data being

processed include the purpose of the operation↩→
6 allowPurposeLimitation(personalData) {
7 # Get operation
8 operation := getOperation(input.operation)
9 # Check purpose of the invoked operation
10 purpose := getOperationPurpose(operation)
11 count(purpose) >= 1
12 # Get collected purposes of the personal data (union)
13 data_purposes := {p | p = data.data_purposes[_]; p.data ==

personalData[_]}↩→
14 # Check if processed all data purposes contain the purpose

of the operation↩→
15 res := {x | x = data_purposes[_]; x.purposes[_] == purpose}
16 count(res) == count(personalData)
17 }

Listing 3: RuleKeeper Purpose Limitation Rego Policy.

Listing 4 shows the Rego policy used by Rulekeeper to enforce
lawfulness of processing. The Rego policy allows processing under
three circumstances, which are all checked in order of appearance
in the policy: (1) the operation does not require consent and there
is a legal base defined for the operation in the applications mani-
fest, (2) the principal is a data subject for which the policy checks
whether the data subject has given consent for the data processing
purpose or not, (3) the principal is not a data subject and RuleKeeper
checks if all data subjects of the data involved have provided con-
sent.

Listing 5 shows the Rego function that determines whether an
operation requires consent or not. It first gets the operation and
the purpose and afterwards determines the legal basis for which
processing is allowed. If the base equals “consent” or “contract”,
RuleKeeper marks the operation as requiring consent, which is
misleading as these are two different legal bases and we do not
know why RuleKeeper is implemented this way.

1 package rulekeeper
2
3 default allowLawfulnessOfProcessing = false
4
5 # Allow if the lawfulness base is valid, and if it is, if the data

subject gave consent, if needed↩→
6 # exists p in purposes(o) and requires-consent(p) then, for all d

in dataset(o), granted-consent(owner(d), d, p)↩→
7
8 # Allow if the lawfulness base is valid and does not require

consent verification↩→
9 allowLawfulnessOfProcessing {
10 not operationRequiresConsent
11 }
12 # Allow if the lawfulness base is valid and the data subject

consented↩→
13 allowLawfulnessOfProcessing {
14 # If the principal is a data subject - check its consent
15 principalIsDataSubject
16 # Get operation
17 operation := getOperation(input.operation)
18 # Check purpose of the invoked operation
19 purpose := getOperationPurpose(operation)
20 # Check consent of the entity associated with the principal
21 subjectConsent := getConsent(input.principal)
22 # Check if subject has a valid lawfulness base for the

purpose of the operation↩→
23 purpose == subjectConsent[_]
24 }
25
26 # Allow if the lawfulness base is valid and all the data subject

consented↩→
27 allowLawfulnessOfProcessing {
28 # If the principal is not the data subject - check consent

of all subjects involved↩→
29 principalIsControllerProcessor
30 # Get operation
31 operation := getOperation(input.operation)
32 # Check purpose of the invoked operation
33 purpose := getOperationPurpose(operation)
34 # Get consent of the subjects
35 subjectConsents := getSubjectsConsent
36 # Check if all subjects have a valid lawfulness base for

the purposes of the operation↩→
37 numberConsented := [consent | consent = subjectConsents[_];

purpose == consent[_]]↩→
38 # Check if all subjects have a valid lawfulness base for

the purposes of the operation↩→
39 count(numberConsented) == count(input.subjects.list)
40 }

Listing 4: RuleKeeper Lawfulness of Processing Rego Policy.

1 # Check if operation requires consent
2 operationRequiresConsent {
3 # Get operation purpose
4 operation := getOperation(input.operation)
5 purpose := getOperationPurpose(operation)
6 # Get purpose lawfulness base
7 base := getPurposeLawfulnessBase(purpose)
8 base == ["consent", "contract"][_]
9 }

Listing 5: RuleKeeper Operation Requires Consent Rego Pol-
icy.

A.2 Fontus
Figure 7 displays the consent dialog for Fontus that asks the data
subject to provide consent for each of the consent-based purposes.

791

Proceedings on Privacy Enhancing Technologies 2025(4) Kalinowski et al.

While the dialog allows users to individually consent to different
purposes, it remains open to question whether the way consent is
collected fully satisfies GDPR standards.

Consent Dialog
Marketing:

BreezeBlogs:
We use your personal data in order to be able to provide you with marketing information

View Blogs:
BreezeBlogs:

We use your personal data to show you blog posts for your interests

Confirm

Explore our developer-friendly HTML to PDF API Printed using PDFCrowd HTML to PDF

Figure 7: Fontus Consent Dialog.

A.3 GDPR-MFOTL
Figure 8 shows the browser extension used in GDPR-MFOTL in
order for the data subject to provide/change their data choices.

Purpose BreezeBlogs Default

Marketing

View Blogs

 Special data

Some fields have custom consent. Reset

 Enforcing the GDPR

Token Token

Owners Owners

Firefox http://127.0.0.1:3002/cookie_banner.html

1 of 1 2/25/25, 10:56

Figure 8: GDPR-MFOTL Browser Extension.

In order to only process data for a specific purpose a legal basis
applies to, GDPR-MFOTL implements a check_all function which
gets the data to be processed and filters out the data for which
processing is not allowed, shown in Listing 6.

GDPR-MFOTL provides the user with the ability to set individual
consent for the form keys, which refer to input fields in a web form
(e.g., name, email, address). However, this feature is undocumented
and requires the user to right-click on the field for an additional
context menu as shown in Figure 9.

1 def filter_check_marketing(messages): # sp
2 messages2 = []
3 checks = mockapp.check_all("marketing", messages)
4 i = 0
5 while i < len(messages):
6 if checks[i]:
7 append(messages2, messages[i])
8 i += 1
9 return messages2

Listing 6: GDPR-MFOTL Purpose Filter.

Figure 9: GDPR-MFOTL Browser Extension Context Menu.

B Additional Experiments
In this section we present additional experiments that we have
carried out.

B.1 RuleKeeper Measurements per Endpoint
To investigate further on the endpoints response time overheads,
we looked at /blog-posts and /send-news-mails individually for the
different scenarios and user counts, with the results shown in Ta-
ble 4.

The table shows the response time overhead for each endpoint,
each consent scenario, and each number of concurrent users. The
overhead is calculated between the average response time of the
endpoint and the response time without RuleKeeper. In addition,
the last three rows show the average content size sent by Breeze-
Blogs running standalone. For the /blog-posts endpoint and the full
consent scenario, the same number of bytes is returned as from
BreezeBlogs running standalone (except for the 500 users scenario).
For the other scenarios, the lower the number of users with con-
sent, the lower the amount of data returned, as the blog posts are
not fetched from the database and processed. Here the difference
between the two endpoints is noticeable. For the /send-news-mails
endpoint, if and only if each individual user has consented to the
processing, the amount of data returned will be the same as the
amount of data returned by BreezeBlogs running standalone. This
is due to the way RuleKeeper implements the consent mechanism

792

Making Web Applications GDPR Compliant Proceedings on Privacy Enhancing Technologies 2025(4)

Table 4: Endpoint Measurements for RuleKeeper.

Scenario #Users /blog-posts /send-news-mails

RTO (%) ACS (byte) RTO (%) ACS (byte)

full consent 50 82.91 103 115 73.92 1229
100 86.48 103 115 88.54 2479
500 45.94 102 884 62.35 13 279

half consent 50 35.24 48 904 64.73 41
100 32.53 48 268 68.13 41
500 −4.79 46 642 55.75 41

no consent 50 −7.44 41 61.79 41
100 −11.46 41 90.00 41
500 −23.50 41 25.92 41

without framework 50 103 115 1229
100 103 115 2479
500 103 115 13 279

RTO: Response Time Overhead, ACS: Average Content Size

when data from multiple data subjects is fetched from the database
at once. Listing 7 shows the code snippet from the enforcement pol-
icy where RuleKeeper checks whether the processing of the data is
lawful. The code snippet shows that the processing is only allowed
if all the data subjects have consented to the processing. Since the
endpoint implementation fetches all user email addresses at once,
the processing is only allowed if all users have given consent.

Check if all subjects have a valid lawfulness base for the purposes

of the operation↩→
numberConsented := [consent | consent = subjectConsents[_]; purpose

== consent[_]]↩→
Check if all subjects have a valid lawfulness base for the purposes

of the operation↩→
count(numberConsented) == count(input.subjects.list)

Listing 7: RuleKeeper Verify Lawfulness of Processing for
Multiple Data Subjects [8].

B.2 Registration Phase
In addition to the runtime benchmarks, we also measured the time
taken to set up a new user for the application. To do this, we first
identified which functions/endpoints to call and in what specific
order to register a new user, both for the standalone application
and then for the application hosted within each framework. We
then repeatedly measured the time it took to register new users
for each framework and the standalone application for a total of
13 minutes. The first 3 minutes are the warm-up phase and are not
included in the results. For RuleKeeper, we did not find a way to add
a new user to the application. However, we found the functionality
to insert a transient user (users for whom only a cookie is stored
in a database) and used this functionality to mimic the registration
of a new user. Figure 10 shows the time taken to set up a new user
for each framework compared to the corresponding standalone
application. For this graph, we took the average response time for
each endpoint and summed them to estimate the total duration of
the registration phase. The results show that the registration phase
of the standalone application is faster than the registration phase

Fontus RuleKeeper GDPR-MFOTL
0

200

400

600

37.93 24.42 39.3257.42 84.77

670.29

Re
sp
on

se
Ti
m
e
(m

s)

Baseline
Framework

Figure 10: Response Time and Overhead of the Registration
Phase for the Three Frameworks.

of the frameworks, with Fontus introducing the least amount of
overhead and GDPR-MFOTL introducing the most.

Table 5 shows the response times for the registration phase
for each framework and each endpoint that is called during the
registration phase. Fontus is the only framework that calls a single
endpoint to set up a new user, while RuleKeeper and GDPR-MFOTL
need to call multiple endpoints. This is because we defined the
/register endpoint for Fontus as a source and sent the user’s consent
choice with a cookie. For both RuleKeeper and GDPR-MFOTL, we
need to make additional calls to set the consent choice for the
new user. Additionally, the registration phase for GDPR-MFOTL
is the most time-consuming, with the /record endpoint taking the
most time to process. The issue with GDPR-MFOTL is that it was
impossible to retrieve the taint value from the enforcement backend
directly within the call to /register. Consequently, we had to query
the privacy dashboard to retrieve the taint-value for the user’s
personal data. GDPR-MFOTL also requires each user to have two
accounts. We need to log in to (/login) GDPR-MFOTL before logging
in to the application (/1/login). We did not find a way to insert
a new user into the framework’s database other than manually
modifying the SQLite database. Therefore, we only measured the
registration phase for GDPR-MFOTL starting from the moment the
user was already registered with the framework. Overall, each of the
frameworks adds a certain amount of overhead to the registration
phase of BreezeBlogs: 51.39% for Fontus, 247.11% for RuleKeeper,
and 1604.72% for GDPR-MFOTL.

50 100 500

200

250

Number of Users

D
at
a
O
ve
rh
ea
d
(%
)

Data Overhead (%)

Figure 11: DataOverheadAnalysis in Percentage forDifferent
User Counts (GDPR-MFOTL without QuestDB).

793

Proceedings on Privacy Enhancing Technologies 2025(4) Kalinowski et al.

Table 5: Endpoint Measurements for
the Registration Phase.

Endpoint Response Time (ms)

Fontus (baseline: 37.93 ms)
/register 57.42

Total Response Time 57.42

RuleKeeper (baseline: 24.42 ms)
/register 16.68
/consent/set-consent 68.09

Total Response Time 84.77

GDPR-MFOTL(baseline: 39.32)
/1/login 32.31
/1/register 76.31
/login 14.57
/record 522.17
/record/add_consent 24.93

Total Response Time 670.2

Table 6: Storage Overhead Analysis for GDPR-MFOTL (with-
out QuestDB).

#Users W (kB) W/o (kB) O (kB) O (%)

50 451 163 287 175.00
100 496 163 332 202.50
500 852 229 623 271.43

W: with framework, W/o: without framework, O: overhead

B.3 GDPR-MFOTL Overhead Without QuestDB
Table 6 and Figure 11 show the storage overhead without QuestDB,
to get a better overview of the impact of different numbers of users.
In this evaluation, we see a similar behaviour as for RuleKeeper,
with the overhead accelerating more quickly for a larger number
of users.

794

	Abstract
	1 Introduction
	2 Background
	2.1 General Data Protection Regulation (GDPR) & Personal Data
	2.2 Personal Data Tainting for Information Flow Tracking

	3 GDPR-Enforcement Frameworks
	3.1 Framework Selection
	3.2 RuleKeeper ferreiraRuleKeeperGDPRAwarePersonal2023
	3.3 Fontus kleinGeneralDataProtection2023
	3.4 GDPR-MFOTL FhubletEnforcingGDPR2023

	4 Our Methodology
	4.1 Evaluation Criteria
	4.2 Test Application: BreezeBlogs

	5 Evaluation
	5.1 GDPR Coverage
	5.2 Runtime Overhead
	5.3 Storage Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Framework Details
	A.1 RuleKeeper
	A.2 Fontus
	A.3 GDPR-MFOTL

	B Additional Experiments
	B.1 RuleKeeper Measurements per Endpoint
	B.2 Registration Phase
	B.3 GDPR-MFOTL Overhead Without QuestDB

