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Abstract
Verification of the integrity of deep learning inference is crucial for

understanding whether a model is being applied correctly. How-

ever, such verification typically requires access to model weights

and (potentially sensitive or private) training data. So-called Zero-

knowledge Succinct Non-Interactive Arguments of Knowledge (ZK-

SNARKs) would appear to provide the capability to verify model

inference without access to such sensitive data. However, applying

ZK-SNARKs to modern neural networks, such as transformers and

large vision models, introduces significant computational overhead.

We present TeleSparse, a ZK-friendly post-processing mecha-

nisms to produce practical solutions to this problem. TeleSparse
tackles two fundamental challenges inherent in applying ZK-SNARKs

to modern neural networks: (1) Reducing circuit constraints: Over-

parameterizedmodels result in numerous constraints for ZK-SNARK

verification, driving up memory and proof generation costs. We

address this by applying sparsification to neural network models,

enhancing proof efficiency without compromising accuracy or secu-

rity. (2) Minimizing the size of lookup tables required for non-linear

functions, by optimizing activation ranges through neural teleporta-
tion, a novel adaptation for narrowing activation functions’ range.

TeleSparse reduces prover memory usage by 67% and proof gen-

eration time by 46% on the same model, with an accuracy trade-off

of approximately 1%.We implement our framework using the Halo2

proving system and demonstrate its effectiveness across multiple

architectures (Vision-transformer, ResNet, MobileNet) and datasets

(ImageNet,CIFAR-10,CIFAR-100). This work opens new directions

for ZK-friendly model design, moving toward scalable, resource-

efficient verifiable deep learning.
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1 Introduction
Deep learning models have had considerable success across various

machine learning (ML) tasks in recent years. The proliferation of

large-scale deep learning models, characterized by their parameter-

intensiveness (i.e. in the millions), has become commonplace. How-

ever, as the number of parameters in these models increases, several

challenges pertaining to trustworthiness in ML arise.
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(1) Due to the escalating number of parameters and compu-

tational demands for training or inferring the model, con-

sumers often opt to outsource these computations to service

providers, a practice known as ML-as-a-service (MLaaS).

Consequently, ensuring the integrity of predictions becomes

crucial, especially in cases where consumers lack trust in the

reliability of the model provider.

(2) Training large deep neural networks (DNN) often involves

vast amounts of privacy-sensitive or proprietary data, and

demands substantial computational resources. As a result,

the trained model becomes valuable intellectual property

for the trainer. Publishing model weights for auditing pur-

poses [78] is typically impractical. This creates a need for

methods to verify specific model properties, while keeping

the weights private from the verifier.

(3) Where client data is highly sensitive, model providers may

opt to send the model to client devices for local inference

(e.g., large language models). However, this introduces the

risk of intentional or unintentional deviations from correct

computations. Such deviations may result from attacks on

vulnerable client devices or malicious clients attempting to

benefit from producing incorrect model predictions.

Consequently, ensuring the correctness of model inference be-

comes paramount for model providers or any other third-party

seeking to trust the model’s output predictions. In all three above

scenarios, the integrity of model inference is critical, necessitating

the implementation of verifiable model inference mechanisms.

ZK-SNARK. Verifying the integrity of inference while preserving

privacy of model weight is a critical challenge, as previous research

has shown that revealing model weights can expose privacy of the

training data through attacks like membership inference [13, 51, 73].

Cryptographic primitives, particularly zero-knowledge succinct

non-interactive arguments of knowledge (ZK-SNARKs) [8, 38, 61],

have emerged as a solution to verifying inference outputs in a

privacy-preserving manner [7, 36, 50, 55, 75]. Most machine learn-

ing applications require succinctness in zero-knowledge proofs

(ZKP), especially when verifiers operate on resource-constrained

devices like edge or mobile platforms. While recent ZK construc-

tions, such as those proposed in [52], aim to reduce the high prover

costs associated with ZK-SNARKs, they often lack the compact

proof size essential for ML applications. The SNARK-based ap-

proach holds promise due to: i) its ability to generate succinct

proofs, typically verifiable in under 1 second; and ii) the verification

process can be conducted by any third party solely by accessing the

generated proof, demonstrating public verifiability and eliminating

the need for interaction despite methods based on interactive ZK

protocol [74]. While ZK-SNARK presents a promising avenue for

verifiable deep models, it necessitates significant computational re-

sources on the prover’s side, limiting its application primarily to toy
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example deep learning models. To mitigate this challenge, various

cryptographic techniques have been explored, including: i) quanti-

zation NN to low precision integers (8bit or 16bit) [23]; ii) utilization

of lookup tables for non-linear functions [36]; and iii) efficient rep-

resentation of relations for convolution equations [50, 55, 75] and

attention mechanism in transformer architecture [67]. However,

there has been limited exploration into post-processing deep ma-

chine learning models to make them ZK-friendly, in order to reduce

the required resources for proof verification.

Computational overheads. With the rise of parameter-intensive

neural networks, large-scale models are increasingly employed in

various ML applications, such as vision and language models. The

cryptographic optimizations mentioned can decrease memory us-

age and proof generation time for ensuring the integrity of model

inferences. However, with significant overheads to naively compos-

ing such proofs with such models still present, it is necessary to

develop innovative approaches beyond simply using ZK-SNARKs.

Inspired by the emerging trend of tiny ML [53, 81], compression

of models appears promising in this regard. However, such tech-

niques should possess specific properties. Firstly, they should be

lightweight, ensuring that model compression requires less compu-

tation than the reduction of resources needed for proof generation,

resulting from said compression. Secondly, compressing the model

weights and/or activation values should preserve its performance

as much as possible, in terms of maintaining its overall accuracy. If

compression compromises model performance, the proof genera-

tion step becomes futile. Finally, compression techniques should

be adaptable to zero-knowledge proving systems, reducing the re-

quired resources without compromising the security guarantees of

the proving system.

Our work. In this study, we investigate the root causes of proof

generation overhead in ZK-SNARK systems (both in terms of mem-

ory usage and computational time) when applied to modern deep

learning architectures, such as transformers [71]. We identify two

primary challenges. First, the growing complexity of modern ar-

chitectures like transformers, which contain significantly more

parameters than earlier models, results in a corresponding increase

in the number of constraints required by ZK-SNARK backends for

verification. Second, handling non-linear functions in DNNs poses

a challenge for ZK systems, as these functions cannot be directly

encoded in arithmetic circuits. In sum-check based proving systems,

this limitation is addressed by using bit decomposition and polyno-

mial approximations of non-linear functions [28, 55, 75]. However,

these methods introduce computational overhead and can reduce

model accuracy due to the inherent approximation of complex func-

tions [23, 67]. In particular, polynomial approximations are not fully

precise representations of the original functions. Recent advances

in verifiable machine learning models [36, 67] — utilizing lookup

tables to handle the non-linear activation functions used in DNNs —

still face significant challenges, due to the need for large lookup

tables to cover the broad input ranges of activations. These lookup

tables introduce considerable overhead, leading to slower proof

generation, increased memory demands for the prover, and larger

proof sizes. This challenge is particularly acute in transformer archi-

tectures, which are extensively employed in large language models

(LLMs) [63, 76] and modern vision models such as Vision Trans-

formers (ViTs) [18]. These models are known to produce outlier

activation values [3, 9, 68], exacerbating the issues associated with

lookup table size and efficiency.

To address the first problem, we carefully adopt a lightweight

pruning technique that suits the constraints and requirements of ZK-

SNARK verification, in a resource-efficient manner. This approach

reduces the number of constraints necessary for circuit verifica-

tion by sparsifying the model. In other words, allowing inference

verification on a pruned model that meets both computational and

memory efficiency demands essential for zero-knowledge proofs.

To address the second, we identify symmetric neural network

configurations that minimize the range of activation values, thereby

reducing the size of the necessary lookup tables. This approach

significantly decreases the computational and memory overhead as-

sociated with proof generation: a crucial step toward more efficient

and scalable ZK-SNARK verification for modern neural network

architectures. We achieve this symmetry discovery by formulating

an optimization problem over neural teleportation [2], a technique

initially developed to accelerate and study neural network training,

here adapted to optimize the activation input range. This novel

application of neural teleportation allows us to efficiently manage

activation ranges in models, maintaining both verification speed

and resource efficiency in zero-knowledge contexts.

To implement ZK-SNARKs under the outlined constraints, we

leverage Halo2 [82], a recent proving system that provides a highly

efficient and flexible backend for ZK applications. Halo2 is a ZK-

SNARK constructions that builds on the principle of recursive proof

composition and operates without a trusted setup [10], making it

particularly suitable for layer-wise DNNs. Moreover, its flexible

arithmetization with lookup argument capabilities [26] handles

non-linear DNN functions efficiently. Building on this framework,

TeleSparse achieves about 67% reduction in proof generation time

and a 46% reduction in prover memory usage, with a minimal 1%

performance loss on the CIFAR-100 [42] dataset. This carefully cho-

sen pruning strategy is post-processed, making it compatible with

any pre-trained transformer model without requiring modifications

to the training pipeline and adding less than 1% memory overhead.

Contributions. We present the following key contributions:

• We bridge the gap in adapting modern DNN architectures

like transformers to ZK-SNARKs, by post-processing pre-

trained models for scalability. This approach identifies two

key factors to reduce overheads: minimizing circuit con-

straints in ML models, and optimizing lookup table ranges.

• We introduce model sparsification to efficiently generate

ZK-SNARK proofs, specifically by devising a method that

leverages sparsity to reduce the number of circuit constraints.

This approach not only enhances proof efficiency but also

maintains the security of the underlying proving system,

which we formalize in our methodology.

• We present a novel application of neural teleportation to op-

timize activation ranges, reducing lookup table sizes. This ap-

proach, originally used for improving training convergence,

proves effective across a wide range of models, including

transformer-based architectures.
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• We implement TeleSparse on diverse architectures (Vision

Transformers, ResNet, MobileNet) and datasets (CIFAR-10,

CIFAR-100, ImageNet), demonstrating its efficiency, scalabil-

ity, and accuracy compared to state-of-the-art methods.

Overall, our contributions are orthogonal to existing ZK-SNARK

research that focuses on optimizing the arithmetization of DNN

layers (like CNNs and transformers) [55, 74] and parallelizing proof

generation using GPU resources [67]. Instead, our work explores

how to make DNN models themselves ZK-friendly—specifically

adapting models to be computationally efficient and aware of ZK

system requirements. This approach offering a synergistic pathway

toward scalable and ZK-efficient ML.

On top of our stated results, we believe that our work can open a

new path for designing DNN training or post-training, to make the

output model more ZK-friendly. The code is available at this link.

2 Related Works
2.1 Verifiable deep model inference
The field of secure inference in machine learning (ML) has seen

rapid growth in protecting various aspects: i) privacy of inputs, ii)

privacy of model parameters, and iii) integrity of model computa-

tion against potential malicious actors. Prior efforts to address these

critical issues have employed techniques such as multi-party com-

putation (MPC), homomorphic encryption (HE), or zero-knowledge

(ZK) proofs. MPC methods distribute computation across multi-

ple parties to prevent the exposure of inputs (e.g., model weights

and ML model’s input) [40, 43, 66, 83]. However, these approaches

require synchronous interaction among parties, which is often

impractical in many ML scenarios. Additionally, most MPC proto-

cols only consider semi-honest adversaries [40, 43, 66, 83], making

them susceptible to parties deviating from the protocol. Another

approach involves leveraging HE, which allows computation on

encrypted data. However, HE does not provide verification for the

integrity of ML computations. Moreover, HE entails high computa-

tional costs, rendering it impractical for deep models, particularly

parameter-intensivemodels [49, 57]. As the demand for publicly ver-

ifiable proof in ML computations rises in various scenarios, efforts

have pivoted towards generating ZK proof of ML computations.

Recent research has explored using ZK proving systems to intro-

duce verifiability in the inference of machine learning models. An

initial study [23] utilized Groth16 [30] for verifying neural network

inference. To mitigate the significant overhead of proof generation,

several studies have introduced novel computation representations,

such as Quadratic polynomial programs [41, 50]. These represen-

tations are tailored to model-specific architectures, particularly

Convolutional Neural Networks (CNNs) [6, 20, 50, 55] and Trans-

formers [67]. These approaches are constrained by their focus on

a specific model architecture, and most of them [6, 20, 23, 50, 55]

struggle with inefficiency in handling non-linear functions (e.g.,

common activation functions like ReLU), due to the limitations

imposed by the underlying constraint systems of their proving

systems. They introduce additional overhead because of the need

for bit-decomposition or approximating activation functions with

polynomial representations, both of which are ineffective for mod-

ern activation functions like Gaussian error linear unit (Gelu) [33].

To address the non-linearly functions challenge, [36] employed the

more recent proving system Halo2 [82] and adopted Plonk arithme-

tization [26] to utilize lookup tables for non-linear functions. Alter-

native lookup proofs [31, 58] reduce computational costs but differ

from PLONK arithmetization. Specifically, they do not ensure con-

stant proof size (succinctness) or maintain non-interactivity, which

would allow for minimal communication between the prover and

verifier. As noted, previous research efforts attempted to represent

neural network model computations efficiently based on the con-

straint systems provided by their proving mechanisms. Although

they have investigated efficient ZK proving by employing crypto-

graphic techniques, they overlooked making DNNs ZK-friendly. To

address this gap, we propose post-training on the deep model to

reduce both proving time and memory consumption significantly.

2.2 Sparse training/inference
Prior research [24, 35, 62] has shown that a small subset of a fully

trained DNN is sufficient to represent the learned function. This

property of DNNs allows for the development of efficient architec-

tures, reducing computational and memory requirements during

training (sparse training) [35, 48, 54, 64, 70, 84] or through post-

training techniques [45, 47, 59, 69]. Sparse training methods focus

on decreasing computational load and model footprint during train-

ing, requiring optimized algorithms from the early stages of the

training process. On the other hand, post-training pruning tech-

niques prune unnecessary weights from a well-optimized model

(dense model) using calibration data. These methods aim to re-

duce inference time and model size while preserving the model’s

performance.

Pruning techniques are typically classified into structured and

unstructured methods. Structured pruning [22, 59, 79] generally

removes entire neurons, channels, or filters, which can lead to a sig-

nificant drop in accuracy and often requires extensive fine-tuning to

recover performance. In contrast, unstructured pruning [5, 46, 77]

targets the removal of individual weights, better preserving the

model’s performance. However, unstructured pruning requires care-

ful hardware implementation to reduce inference delay effectively.

Although the benefits of sparsification for reducing model size

and improving hardware efficiency have been explored, sparse neu-

ral networks have not yet been utilized for efficient ZK-proof model

verification. In our work, we propose a method to leverage spar-

sification to reduce the overhead of ZK-SNARK proof generation.

Additionally, TeleSparse supports unstructured sparsification, cru-

cial for maintaining the model’s performance. To the best of our

knowledge, this is the first study to explore pruning methods that

specifically reduce memory consumption and CPU computation

while generation ZK-SNARK proofs for sparse DNN models.

2.3 Neural Network Teleportation
Continuous symmetries in neural networks refer to the invariance

in the parameter space, where certain transformations of the net-

work’s weights do not affect its output. These symmetries emerge

as a result of overparameterization, where multiple distinct weight

sets can represent the same model function [29]. Such symmetries

have been observed in networks with homogeneous activation func-

tions [4, 19], as well as in other architectural components, such as
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Figure 1: System diagram of ZK-SNARK DNN inference.

softmax and batch normalization [44]. Investigating these symme-

tries has contributed to improved training optimization and better

generalization.

Neural teleportation, explored through quiver representation

theory [1], exploits symmetries in the loss landscape. It moves

network parameters to a different point with the same objective

value, enabling faster convergence in gradient-based optimization.

This helps traverse the loss landscape efficiently bymoving between

different symmetric configurations of the model [2].

Several works have expanded on neural teleportation and contin-

uous symmetries. For example, [85] proposed a symmetry teleporta-

tion algorithm that not only searches for optimal teleportation des-

tinations but also leverages symmetries to maximize the gradient,

thereby accelerating gradient descent. Additionally, they developed

a general framework based on equivariance to analyze the loss

landscape and the dimensions of minima induced by symmetries.

In this work, we propose a novel application of neural teleporta-

tion to minimize the range of inputs to activation functions. This

approach effectively mitigates outlier activation inputs [9], which

leads to large lookup tables in ZK proof generation. Furthermore,

we extend the concept of neural teleportation to modern neural

networks that use non-scale-invariant activation functions, such as

GELU, which have been less explored in prior research.

3 System and Threat Model
Notation. The mathematical notations are listed in Appendix C.

The goal of our system, shown in Figure 1, is to ensure verifi-

able and privacy-preserving inference in DNN models. The system

involves two primary parties:

(1) Prover (𝑃 ): Owns a private deep learning model with param-

eters (𝑊 ). The prover computes the model’s output (𝑦) for a

given input (𝑋 ) and generates a proof (𝜋 ) to demonstrate the

correctness of the computation, i.e., 𝑦 = 𝑓 (𝑋 ;𝑊 ), securely
and privately.

(2) Verifier (𝑉 ): Receives the proof (𝜋 ) and verifies that 𝑦 =

𝑓 (𝑋 ;𝑊 ) without learning anything about𝑊 , ensuring the

integrity and confidentiality of the model.

The private deep learning model inference can be represented as

𝑦 = 𝑓 (𝑋 ;𝑊 ), where:
• 𝑋 : Public input to the ZK circuit, representing the input data

to the DNN.

• 𝑦: Public input to the ZK circuit, corresponding to the output

of the DNN computation.

• 𝑊 : Private input to the ZK circuit, representing the parame-

ters (weights) of the DNN.

In pursuit of this objective, we utilize ZK-SNARK [8], a crypto-

graphic protocol that enables Prover 𝑃 to generate a proof 𝜋 . This

proof enables a Verifier 𝑉 to ascertain, with only the knowledge

of 𝜋 , 𝑦, and 𝑋 , that the Prover possesses certain parameters𝑊

satisfying 𝑦 = 𝑓 (𝑋 ;𝑊 ). Following the Halo2 protocol, which is an

instantiation of a ZK-SNARK proving system, our system inher-

its all security properties of Halo2 [8, 36], including Knowledge

Soundness, Zero-knowledge detailed in Appendix A.

The proving system operates under the security assumption that

adversaries are computationally limited [11]. Even if adversaries

deviate from the proving protocol, they cannot generate a valid

proof for an incorrect computation. This ensures that malicious

adversaries cannot compromise privacy (zero-knowledge property)

or undermine the knowledge soundness of the ZK-proving system.

We discuss the potential threats arising within our system and

security model below in Section 3.1. Regardless, note that this

represents a stronger security assumption compared to the honest-

but-curious threat model commonly adopted in differential privacy

(DP) and multi-party computation (MPC) methodologies.

As in prior works [30, 36, 75], we assume that the model archi-

tecture is public (known to the verifier), while the model weights

remain private. This assumption aligns with the trend toward open-

source models [36]. Such an approach is particularly relevant for

practical applications where model providers aim to protect the in-

tellectual property of their weights while enabling the verification

of computations. Applications are detailed in Appendix B.

3.1 Potential Threats
The system addresses the following threats:

• Privacy Threats: Ensures that𝑊 (the model’s parameters)

remains private and that 𝑉 learns nothing beyond 𝑦. How-

ever, since the verifier observes the proof, an adversary could

attempt to extract information about𝑊 from it, posing a

potential privacy risk. We analyze this leakage and its impli-

cations in Section 7.

• Integrity Threats: Prevents adversaries from generating valid

proofs (accepted by 𝑉 ) for incorrect computations of 𝑓 or

tampering with 𝑋 or 𝑦.

3.2 Design Goals
The primary objective of our approach is to make ZK-SNARKs prac-

tical and scalable for verifiable inference onmodern DNNs. As noted

in Section 2.1, ZK-SNARKs enable efficient verifiable computation

due to their ability to generate succinct proofs, which drastically

reduces the verifier’s computational load. This efficiency, however,

comes at the cost of substantial prover overhead in terms of re-

quired memory and proof generation time. For instance, proving

even a relatively small model, like the Tiny Vision Transformer

(Tiny-ViT) [18], requires over 10TB of memory, which exceed the

capacity of most practical systems.
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Figure 2: System overview: the neural network weight is fed
as the private input to the Halo2 circuit. Input and output of
the neural network is public input to the circuit.

To overcome the challenges associated with ZK-SNARKs for

DNNs, we have outlined several key objectives that collectively

enable practical and scalable verifiable inference on modern DNNs:

(1) Reducing the Number of Circuit Constraints (𝐺1): Modern

DNNs are typically parameter-intensive, resulting in an enor-

mous number of operations, often in the billions for mod-

els such as vision transformers. To construct a ZK-SNARK,

each operation within the neural network must be “arith-

metized,” or converted into circuit constraints, which the

prover must satisfy to generate a valid proof. However, as the

number of operations—and consequently, the number of con-

straints—increases, so do the memory usage and proof gen-

eration time required by the prover. Our approach addresses

this by leveraging neural network sparsification to reduce

the number of constraints associated with DNNs. Specifically,

we devise a way to efficiently prove statements about sparse

DNNs, preserving predictive performance while significantly

reducing prover memory and computation costs. Detailed

implementation of this approach is covered in Section 4.

(2) Reducing Lookup Table Argument Overhead (𝐺2): Non-linear

functions commonly used in DNNs, such as activation func-

tions, present a significant challenge in ZK proof generation.

These functions often need to be approximated through large

lookup tables to fit within a ZK circuit framework. As prior

work has shown, non-linear layers in models like ResNet-101

can consume up to 80% of the prover’s computational load

due to extensive lookup table operations [31, 74]. Although

Halo2 provides efficient support for lookup arguments, our

analysis reveals that non-linear functions still account for a

substantial portion of the prover’s computation and increase

proof size. To address this, we propose an optimized neural

network teleportation detailed in Section 5.

3.3 Methodology Overview
This section presents our methodology overview, outlining how

each design goal from Section 3.2 is addressed. Section 4 describes

our approach to reducing the number of circuit constraints by

applying sparsification techniques to DNNs (design goal 1). We

formalize the constraint-reduction process and its security anal-

ysis plus leverage two state-of-the-art post-pruning methods to

illustrate its effectiveness in our experiments. In Section 5, we use

Neural Network Teleportation to constrain the range of activation

functions, achieving design goal 2. The overview of the system is

shown in Figure 2, and the steps of the proposed TeleSparsemethod

for producing a ZK-friendly DNN are outlined in Algorithm 1.

Algorithm 1: Overview of Methodology for Efficient Zero-

Knowledge Proof Generation

Input: Neural network weights𝑊 , input 𝑋 , output 𝑦

Output: Valid zero-knowledge proof of computation

represented by 𝜋 aligning with design goals

(𝐺1,𝐺2)

Sparsification (Addressing 𝐺1):
Generate sparsified weights𝑊sparse by solving:

𝑊sparse ← argmin

𝑊

𝐿∑︁
𝑖=1




𝑓 (𝑥 ;𝑊 (𝑖 ) ) − 𝑓 (𝑥 ;𝑊 (𝑖 ) )



2

⊲ guided by pruning criteria (Eq. 8).

Teleportation (Addressing 𝐺2):
Optimize CoB 𝜏∗:

𝜏∗ ← argmin

𝜏
L(𝜏) ⊲ where L(𝜏) is defined in Eq. 14;

(Solved by Eq. 16, Eq. 17, Eq. 18).

Apply 𝜏∗ to𝑊sparse (Eq. 9, Eq. 10) to compute𝑊 𝑡
sparse

.

ZK-SNARK Proof Generation:
(1) Convert the model operations into Halo2 constraints (Eq. 2);

(2) Eliminate constraints for indices where𝑊 𝑡
sparse

= 0 to

reduce circuit size.

(3) Generate the zk-proof:

𝜋 ← Halo2.Prove(𝑊 𝑡
sparse

, 𝑋,𝑦)

4 Sparsification
As noted in 3.2, we aim to optimize the required resource of the

ZKP generation process by eliminating unnecessary constraints to

achieve design goal 1. In the context of Halo2, we provide an exam-

ple of one simple linear layer (fundamental layer in deep learning

models) which is matrix-vector multiplication to show how spar-

sification of the model (matrix in this example) could reduce the

number of required constraints without damaging security proper-

ties of ZK-SNARK. Specifically, we prove that omitting constraints

corresponding to zero entries in the matrix (deep model weights)

does not compromise the soundness of the proving system. We

then present the two post-pruning methods employed in our exper-

iments to complete the path towards reducing prover overhead by

sparsification without degrading the accuracy of the DNN model.

4.1 Preliminaries
Halo2 Proving System. Halo2 employs an extended form of

the PLONK arithmetization [26], referred to as the “PLONKish”,

which structures constraints in a polynomial format and introduces

custom gates, lookup arguments, and permutation constraints. This

framework is designed to operate over a matrix structure with

cells, rows, and columns, where the rows correspond to elements

in a multiplicative subgroup of a finite field 𝐹𝑞 , typically sized as a

power of two (𝑞 = 2
𝑘 ).

Each circuit in Halo2 is represented by a matrix, where columns

are categorized into:
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• Fixed Columns (Fixed): Columns with values fixed at

circuit synthesis time, same across all proofs. Commitments

to these columns are included in the verification key [82].

• Advice Columns (Advice): Columns where the prover as-

signs values during proof generation. These values are pri-

vate and known only to the prover.

• Instance Columns (Instance): Columns representing pub-

lic inputs to the circuit, provided by the verifier and fixed

at proof time. These columns facilitate the verification of

statements involving known values.

In addition to these columns, polynomial commitments are uti-

lized to secure the integrity of the data within these columns. A

commitment scheme, such as KZG commitments [37], is employed

to bind the polynomials that represent each column.

During proof creation, the prover sets up a matrix with advice,
instance, and fixed columns and populates each cell with field ele-

ments, denoted 𝐴𝑖, 𝑗 for advice or 𝐹𝑖, 𝑗 for fixed values in j-th row

and i-th column. To commit to these values, the prover constructs

Lagrange polynomials of degree 𝑛 − 1 for each column. For advice

and fixed columns, the Lagrange polynomials 𝑎𝑖 (𝑋 ) and 𝑞𝑖 (𝑋 ) are
interpolated over the evaluation domain of size 𝑛, where 𝜔 is the

𝑛-th primitive root of unity:

𝑎𝑖 (𝑋 ) such that 𝑎𝑖 (𝜔 𝑗 ) = 𝐴𝑖, 𝑗 ,

𝑞𝑖 (𝑋 ) such that 𝑞𝑖 (𝜔 𝑗 ) = 𝐹𝑖, 𝑗 .

Commitments to these polynomials are then made as:

𝐴 = [Commit(𝑎0 (𝑋 )), . . . ,Commit(𝑎𝑖 (𝑋 ))],

𝑄 = [Commit(𝑞0 (𝑋 )), . . . ,Commit(𝑞𝑖 (𝑋 ))], (1)

where 𝑄 is established during key generation, while 𝐴 is pro-

duced by the prover and sent to the verifier.

Halo2 enforces three primary types of constraints:

• Custom Gates: These define polynomial constraints within

rows, enabling expressions such as multiplication and addi-

tion to be enforced across specific rows. The generic form

of constraints in PLONK (and similarly used in Halo2) is

formulated as:

𝑎𝑖 (𝑋 ) · 𝑞𝐴 (𝑋 ) + 𝑏𝑖′ (𝑋 ) · 𝑞𝐵 (𝑋 )
+ 𝑎𝑖 (𝑋 ) · 𝑏𝑖′ (𝑋 ) · 𝑞𝑀 (𝑋 ) + 𝑐𝑖′′ (𝑋 ) · 𝑞𝐶 (𝑋 ) = 0, (2)

where 𝑎𝑖 (𝑋 ), 𝑏𝑖′ (𝑋 ), and 𝑐𝑖′′ (𝑋 ) represent the polynomial

assignments in advice columns 𝑖, 𝑖′, 𝑖′′ of the arithmetization

matrix, and 𝑞𝐴 (𝑋 ), 𝑞𝐵 (𝑋 ), 𝑞𝑀 (𝑋 ), and 𝑞𝐶 (𝑋 ) are the corre-
sponding polynomials which are stored in fixed columns.

• Permutation Arguments: These allow cell values to match

across different locations in the matrix, using randomized

polynomial constraints for multi-set equality checks. Per-

mutation arguments enable values to be "copied" within the

circuit.

• LookupArguments: Lookup arguments constrain a𝑘-tuple

of cells (𝐴1, 𝑗 , . . . , 𝐴𝑘,𝑗 ) in the same row 𝑗 such that for a

disjoint set of 𝑘 columns, these cells match the values in

some other row 𝑗 ′. We can enforce the following constraint:

(𝐴1, 𝑗 , . . . , 𝑑𝑘,𝑗 ) = (𝐴1
′, 𝑗 ′ , . . . , 𝐴𝑘′, 𝑗 ′ ),

ensuring (𝐴1, 𝑗 , . . . , 𝐴𝑘,𝑗 ) lies within the lookup table defined

by those 𝑘 columns [36, 82].

The formal ZK-SNARK properties guaranteed by Halo2 and the

commitment schema are detailed in Appendix D.

4.2 Matrix-Vector Multiplication in Halo2
In this section, we formulate circuit constraints for sparse model

weights, aiming to reduce the overall number of required con-

straints. Without loss of generality, we focus on a fully connected

(linear) layer in neural networks. In this setting, the model pa-

rameters (weights of the linear layer) are represented by a matrix

𝑊 ∈ R𝑑1×𝑑2
, and the input to the layer (the output from the pre-

vious layer) is represented by a vector 𝐼 ∈ R𝑑2
. The output of the

layer is denoted by vector 𝑂 ∈ R𝑑1
, calculated as:

𝑂 =𝑊 · 𝐼
Each component 𝑜𝑖 of the output vector 𝑜 is computed as:

𝑜𝑖 =

𝑑2∑︁
𝑗=1

𝑊𝑖, 𝑗 · 𝐼 𝑗 (3)

By leveraging the sparsity of 𝑊 , we can reduce the number

of constraints in the circuit, thereby decreasing the computations

required for verification. In the following we explore how it would

be possible for Halo2 to do that efficiently without compromising

the soundness of Halo2 mentioned in Equation [21].

Circuit Representation. To construct a ZKP over the matrix-

vector multiplication of Equation (3), we should describe the equa-

tion using Halo2 circuit constraints using the generic constraints

form presented in equation 2.

To provide proof generation on the Linear Layer, as shown in

figure 3, we put the model weights𝑊𝑖, 𝑗 in a fixed column of the

Halo2 table named 𝐹0 and input of the current layer (𝐼 𝑗 ) to an advice

column named 𝐴0. To provide the outputs we consider two advice

columns 𝐴1 and 𝐴2 such that for all rows 𝑖 ∈ 𝑑2 the following

equation should be kept for table cells:

𝐹0𝑖 ∗𝐴0𝑖 +𝐴1𝑖 = 𝐴2𝑖 (4)

Note that these constraints followed the form of plonkish con-

strained previously mentioned in 2. By interpolation of the polyno-

mial function, these constraints will be enforced by the following

polynomial equation which should be validated by the prover:

𝐴0 (𝑋 ) ·𝑄𝐹0 (𝑋 ) +𝐴1 (𝑋 ) −𝐴2 (𝑋 ) = 0 (5)

As illustrated in Figure 3, copy constraints are applied between

advice columns 𝐴1 and 𝐴2 . These constraints ensure that the accu-

mulated value in row 𝑖 of 𝐴2 is correctly propagated to row 𝑖 + 1
in 𝐴1 , preserving value integrity across the table. Furthermore,

commitments to the fixed column, Commit(𝑄𝐹0 (𝑋 )) , as well as
the advice columns, Commit(𝐴1 (𝑋 )) and Commit(𝐴2 (𝑋 )) , are in-
cluded in the verification key and proof, respectively.

So far, we have shown how a dense linear neural network layer

is represented using Halo2 constraints. Next, we explore reducing

constraints—and rows in the table—when model weights are sparse,

enhancing efficiency without compromising Halo2’s soundness.
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Figure 3: (A) represent a Halo2 circuit without removing
sparse weights constraints while (B) represents it after re-
moving zero-weight entries.

Handling Zero Entries. Based on equation 3, when𝑊𝑖, 𝑗 = 0, the

term𝑊𝑖, 𝑗 𝐼 𝑗 = 0 does not contribute to the corresponding output

𝑜𝑖 while preserving the correctness of the equation. Therefore,

we can eliminate constraints involving zero entries so as not to

include constraints for terms where𝑊𝑖, 𝑗 = 0. In particular, we could

eliminate the row 𝑡 of the table in equation 4 where 𝐹0𝑡 is equal

to zero. This reduction decreases the number of constraints and

computations required during proof generation. In the following,

we formalize this constraint reduction.

Theorem 4.1. In a matrix-vector multiplication circuit in Halo2,
where the matrix𝑊 is stored in fixed columns, eliminating constraints
corresponding to zero entries𝑊𝑖, 𝑗 = 0 does not compromise the sound-
ness of the proving system.

The proof of Theorem 4.1 can be found in Appendix E.

4.3 DNN Sparsification
The goal of model sparsification, given a dense model with param-

eters𝑊 ∈ R𝑑
, is to identify a subset of weights that can be zeroed

out while still maintaining the model’s overall performance. We

focus on post-training sparsification methods, meaning the model

has already been trained, and pruning is applied afterwards. This

allows us to preserve the original training process while optimizing

the model for ZKP generation. Model pruning is performed offline

before zkSNARK proving, independently of the ZK circuit inputs.

By reusing a single pruned model for multiple proofs, per-run CPU

benchmarks are not a bottleneck, so we exclude their costs. We

leverage two state-of-the-art pruning methods, RD_PRUNE [77]

and CAP [46]. These methods offer efficient execution even on

CPUs, enabling the sparsification of large models in a matter of

seconds, without significant loss of model accuracy.

Pruning techniques typically compute an importance score for

each weight and then remove the least important weights based on

this score. The pruning objective can be summarized as:

min

W

𝐿∑︁
𝑖=1

L(𝑓 (W(𝑖 ) )) + 𝜆∥W(𝑖 ) ∥0 (6)

whereW(𝑖 ) represents the weights of layer 𝑖 , L is the loss function,

and ∥W(𝑖 ) ∥0 imposes a sparsity constraint by penalizing the number

of non-zero weights. The loss function L(𝑓 (W(𝑖 ) )) measures the

error or deviation of the model’s predictions 𝑓 (W(𝑖 ) ) from the true

outputs, quantifying the model’s performance while excluding the

pruned weights. By minimizing this loss, the model seeks to retain

performance even after pruning. Several metrics have been explored

to measure weight importance in prior works. Weight magnitude

is one of the most commonly used criteria [27, 86] where in each

iteration, weights with the lowest magnitude are pruned. Recent

approaches have utilized second-order information about the loss

to determine the importance of each weight, resulting in better

preservation of the model’s performance especially in transformer-

based architectures [17, 46, 72, 80].

Building on these ideas, RD_PRUNE and CAP introduce further

refinements by treating the model as a sequence of blocks, thereby

making the pruning process layer-wise and computationally effi-

cient. CAP, in particular, uses an approximation of second-order

information as its pruning metric, allowing it to maintain model

accuracy more effectively. In contrast, RD_PRUNE leverages output

distortion as its pruning metric, focusing on the reconstruction of

the network’s output behaviour rather than relying on the weight

magnitudes or approximated second-order information.

The first method introduces the concept of distortion, which
quantifies the impact of pruning on themodel’s output. The pruning

problem is framed as an optimization problem, where the objective

is to minimize the overall distortion across layers. This can be

expressed as:

min

𝐿∑︁
𝑖=1




𝑓 (𝑥 ;𝑊 (𝑖 ) ) − 𝑓 (𝑥 ;𝑊 (𝑖 ) )



2 s.t.

𝐿∑︁
𝑖=1

∥𝑊 (𝑖 ) ∥0
∥𝑊 (𝑖 ) ∥0

≤ 𝑅 (7)

where𝑊 and




𝑓 (𝑥 ;𝑊 (𝑖 ) ) − 𝑓 (𝑥 ;𝑊 (𝑖 ) )



2 represent the prunedmodel

weights and the distortion at layer 𝑖 after pruning respectively. 𝑅 is

the sparsity ratio of the entire network. RD_PRUNE uses dynamic
programming to solve this optimization problem, determining the

optimal pruning for each layer. The method follows a one-shot
pruning setting to fine-tune the pruned model by small calibration

samplesDcalib (e.g., 1024 samples) to retain the model performance.

CAP (Correlation-Aware Pruning). The second method takes

a more sophisticated pruning criterion based on weight correla-
tions. This method uses a block-wise Hessian update, which makes

it computationally efficient, as it approximates the Hessian matrix

in a block-diagonal form, significantly reducing the computational

complexity of the pruning process. CAP can prune models in a zero-
shot setting, meaning no additional training data is required after

pruning, further enhancing its efficiency, especially in large models

like ViT. In particular, CAP minimizes the following objective:

min

𝑊

1

2

𝐿∑︁
𝑖=1

(
𝑊𝑇

𝑖 𝐻−1𝑖 𝑊𝑖

)
whereH𝑖 is the Hessianmatrix for block 𝑖 . By using a block-diagonal

approximation of the Hessian, CAP iteratively updates the pruning

scores for each block, ensuring fast computation while maintaining
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high accuracy. Within each block, CAP calculates the importance

of the 𝑖-th weight as:

𝜌𝑖 =
𝑤2

𝑖

2

[
𝐻−1
𝐿
(𝑤,Dcalib)

]
𝑖𝑖

(8)

Weights with the smallest importance scores 𝜌𝑖 are pruned iter-

atively. To mitigate the impact of pruning, the optimal update for

the remaining weights in the block is computed using:

𝛿𝑤 = − 𝑤𝑖[
𝐻−1
𝐿
(𝑤)

]
𝑖𝑖

𝐻−1𝐿 (𝑤,Dcalib)𝑒𝑖

This iterative pruning process repeats across all blocks, progres-

sively pruning the least important weights. By using this block-wise

approach, CAP effectively balances computational efficiency with

model accuracy, making it well-suited for large-scale model pruning

without requiring retraining epochs or additional data.

5 Teleportation
Deep neural networks (DNNs), especially architectures like modern

ViTs that utilize Layer Normalization, often produce outlier values

in the inputs to activation functions due to the normalization pro-

cess [3, 16, 56]. In most of the recently utilized ZK-proving systems

for DNNs, constraints on activation functions are typically repre-

sented using lookup tables [36, 67, 82, 87]. Outlier values broaden

the input range of activation functions, necessitating larger lookup

tables. This expansion increases proving time, memory usage, and

proof size as shown in experiment section. Ourmethodology aims to

mitigate these outlier values and optimize the activation input range

by leveraging neural teleportation, thus enhancing the efficiency

of the verification process. Neural teleportation is a mathematical

framework that transforms network parameters while preserving

the network’s function, thereby reducing the range of activation

inputs without affecting the network’s outputs.

Neural teleportation assigns positive scaling factors, or Change
of Basis (CoB) scalars 𝜏 (𝑖 )

𝑗
> 0, to each layer 𝑖 and neuron 𝑗 in that

layer, where 𝑖 ∈ {1, . . . , 𝐿} and 𝐿 is the total number of layers. The

weights 𝑤
(𝑖 )
𝑗,𝑘

connecting neuron 𝑗 in layer 𝑖 to neuron 𝑘 in layer

𝑖 + 1 are transformed as [2, 85]:

𝑣
(𝑖 )
𝑗,𝑘

=
©­«
𝜏
(𝑖+1)
𝑘

𝜏
(𝑖 )
𝑗

ª®¬𝑤 (𝑖 )𝑗,𝑘 (9)

The activation functions 𝑓
(𝑖 )
𝑗

at each neuron are adjusted to:

𝑔
(𝑖 )
𝑗
(𝑥) = 𝜏

(𝑖 )
𝑗

𝑓
(𝑖 )
𝑗

©­« 𝑥

𝜏
(𝑖 )
𝑗

ª®¬ (10)

An activation function 𝑓 is positive scale-invariant if:

𝑓 (𝑐𝑥) = 𝑐 𝑓 (𝑥), ∀𝑥 ∈ R, ∀𝑐 > 0 (11)

This property ensures that scaling the input by a positive factor

𝑐 scales the output by the same factor, which is critical for main-

taining consistency in neural transformations. A common example

is the ReLU function, 𝑓 (𝑥) = max(0, 𝑥), widely used due to its

simplicity and effectiveness in DNNs. For such functions 𝑓 , any

transformed activation simplifies back to the original, preserving

the output of the network:

𝑔
(𝑖 )
𝑗
(𝑥) = 𝜏

(𝑖 )
𝑗

𝑓
(𝑖 )
𝑗

©­« 𝑥

𝜏
(𝑖 )
𝑗

ª®¬ = 𝑓
(𝑖 )
𝑗
(𝑥) (12)

Ensuring the network’s output stays the same after transformation.

Our goal is to optimize the CoB scalars {𝜏 (𝑖 )
𝑗
} to minimize the range

of scaled pre-activation inputs

𝑧
(𝑖 )
𝑗

𝜏
(𝑖 )
𝑗

across all activation functions

in different layers. Specifically, we aim to minimize the difference

between the maximum and minimum scaled pre-activation inputs

within each layer (or block) 𝑖:

min

𝜏>0

𝐿∑︁
𝑖=1

©­«max

𝑗

©­«
𝑧
(𝑖 )
𝑗

𝜏
(𝑖 )
𝑗

ª®¬ −min

𝑗

©­«
𝑧
(𝑖 )
𝑗

𝜏
(𝑖 )
𝑗

ª®¬ª®¬ (13)

which 𝑧
(𝑖 )
𝑗

representing input of 𝑗-th neuron in the layer 𝑖 .

The CoB constraints, derived from Theorem 2.1 in previous

work [2], are applied as follows:

(1) Input, Output, and Bias Layers: Cob scalars {𝜏 (𝑖 )
𝑗
} are

assigned if layer 𝑖 corresponds to input, output, or bias layers.

(2) Residual Connections: For layers 𝑖 and 𝑗 connected by

residual paths, {𝜏 (𝑖 )
𝑗
} are assigned.

(3) Convolutional Layers: Neurons within the same feature

map share the same 𝜏𝑖 .

(4) Batch Normalization Layers: CoB scalars are applied to

parameters 𝛾 and 𝛽 , but not to the running mean and vari-

ance.

To achieve a reduced range of activation function inputs, We

define the objective function 𝑙 (𝜏) as:

𝑙 (𝜏) =
𝐿∑︁
𝑖=1

©­«max

𝑗

©­«
𝑧
(𝑖 )
𝑗

𝜏
(𝑖 )
𝑗

ª®¬ −min

𝑗

©­«
𝑧
(𝑖 )
𝑗

𝜏
(𝑖 )
𝑗

ª®¬ª®¬ (14)

Then our optimization problem summarized as:

min

𝜏>0
𝑙 (𝜏) (15)

Optimizing the CoB scalars reduces the range of activation inputs

within each layer, thereby minimizing the impact of outlier values

and reducing the ZK lookup table overhead. Despite the significant

reduction in parameters 𝜏
(𝑖 )
𝑗

to optimize compared tomodel weights

(e.g., 10K vs. 5 million in Tiny ViT), the optimization process in

Equation (13) presents two key challenges:

• Non-Differentiable Objective: Themax andmin functions

introduce discontinuities in the gradient with respect to 𝜏 .

As a result, traditional gradient-based optimization meth-

ods are ineffective at such points, necessitating alternative

approaches.

• Interdependent Scaling Factors: The interconnected na-

ture of neural networks means that adjusting one scaling

factor 𝜏
(𝑖 )
𝑗

influences other activations. This interdependence

causes the indices 𝑗 for max𝑗 and min𝑗 to vary dynamically,

depending on 𝜏 , the input data, and the network weights.
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Such variations further complicate optimization, as the max-

ima and minima are not fixed during the process.

To overcome these challenges, we use Coordinate Gradient Esti-

mation (CGE) [12], a zero-order optimization method. Zero-order

methods approximate gradients using function evaluations, avoid-

ing explicit gradient computations. The general form of CGE is:

ˆ∇𝜏 ℓ (𝜏) =
𝑑∑︁
𝑖=1

[
ℓ (𝜏 + 𝜇e𝑖 ) − ℓ (𝜏)

𝜇
e𝑖

]
(16)

where 𝜇 > 0 is a small perturbation scalar. e𝑖 is the i-th standard

basis vector in R𝑑
. Applying this to our optimization problem, we

approximate the gradient with respect to each 𝜏
(𝑖 )
𝑗

as:

𝑔 𝑗 =
ℓ (𝜏 + 𝜇e𝑗 ) − ℓ (𝜏)

𝜇
(17)

Using this estimated gradient, we perform gradient descent up-

dates on the CoB scalars:

𝜏
(𝑖 )
𝑗
← 𝜏

(𝑖 )
𝑗
− 𝜂𝑔 𝑗 (18)

where 𝜂 > 0 is the learning rate, and 𝑔 𝑗 is the 𝑗-th component of

ˆ∇𝜏 ℓ (𝜏). Since 𝜏 (𝑖 )𝑗 > 0, after each update, We project 𝜏
(𝑖 )
𝑗

onto the

positive orthant.

5.1 Advantages of Zero-Order Methods
Zero-order methods offer several advantages that make them par-

ticularly well-suited for the defined optimization task:

• NoNeed for Backpropagation: Zero-order methods do not

require gradient computations via backpropagation, which

can be memory and computationally intensive for large mod-

els.

• HandlingNon-Differentiable Functions: Zero-ordermeth-

ods are suitable for optimizing non-differentiable functions,

making them appropriate for our problem.

• Parallelization: The gradient estimation procedure can be

parallelized since each coordinate perturbation is indepen-

dent. This enables teleportation optimization to be completed

in a reasonable time frame compared to the proof generation,

as explained in the experimental section.

5.2 Extension to Non-Scale-Invariant Activation
In Equation (12), we assumed that the activation functions used

in the DNN are positive scale-invariant. However, many mod-

ern DNNs employ activation functions that are not strictly scale-

invariant, such as the Gaussian Error Linear Unit (GELU). The GELU

activation function is defined as:

GELU(𝑥) = 𝑥 · Φ(𝑥) = 𝑥 · 1
2

(
1 + erf

(
𝑥
√
2

))
(19)

where Φ(𝑥) is the cumulative distribution function of the standard

normal distribution, and erf is the error function.

Assuming that such non-scale-invariant activation functions

are scale-invariant can lead to changes in the function that the

neural network represents, thus altering its function. To address

this challenge, we consider two important aspects:

1. Approximate Scale-Invariance at Extremes: Non-scale-
invariant activation functions like GELU become approximately

scale-invariant for large positive or negative inputs. Specifically, as

𝑥 → ∞ or 𝑥 → −∞, the GELU function behaves similarly to the

ReLU or linear functions, respectively, which are scale-invariant.

2. Minimizing Approximation Error: To reduce the effect of

the approximation error introduced by assuming scale invariance,

we add a reconstruction term to the optimization problem in Equa-

tion (13). This term penalizes the difference between the outputs

of the original model and the teleported model, ensuring that the

teleported model remains close in function space to the original.

Incorporating these considerations, we update our optimization

problem to include the reconstruction term:

min

𝜏>0

𝐿∑︁
𝑖=1

©­«max

𝑗

©­«
𝑧
(𝑖 )
𝑗

𝜏
(𝑖 )
𝑗

ª®¬ −min

𝑗

©­«
𝑧
(𝑖 )
𝑗

𝜏
(𝑖 )
𝑗

ª®¬ª®¬+𝜆 |𝑓 (𝜽 , 1) − 𝑓 (𝜽 , 𝜏) |2 (20)

• 𝑓 (𝜽 , 1) represents the original neural network function eval-

uated with scaling factors 𝜏 = 1 (i.e., no scaling applied).

• 𝑓 (𝜽 , 𝜏) represents the teleported neural network function

evaluated with the optimized scaling factors 𝜏 .

• 𝜆 > 0 is a regularization hyperparameter that balances the

trade-off between minimizing the activation input range and

preserving the original network function.

The reconstruction term |𝑓 (𝜽 , 1) − 𝑓 (𝜽 , 𝜏) |2 quantifies the dif-
ference between the outputs of the original and teleported models,

thereby controlling the approximation error due to the non-scale-

invariant activation functions.

The algorithm outlined in Algorithm 2 guides the optimization

process towards convergence on CoB scalers, effectively reducing

the activation input ranges. This reduces the impact of large lookup

tables, enhancing resource efficiency as shown in the experiments.

6 Experiments
6.1 Implementation
To demonstrate the efficiency of TeleSparse in reducing resource

consumption for ZKP generation, we conducted experiments on

both dense and sparse versions of DNN models. Our focus is on as-

sessing the resource usage of the prover and verifier under each con-

figuration, specifically observing how the proposed post-processing

of TeleSparse impacts computation time and memory demands. To

measure that, we employed the EZKL toolkit [87], a state-of-the-art

tool for generating ZK-SNARK proofs for DNN models, which is

based on Halo2. This toolkit utilizes fixed-point quantization, akin

to previous methods exploring ZK-SNARKs of DNNs [36].

6.2 Relevance of Selected state-of-the-art
In order to benchmark TeleSparse against previous State-of-the-art
works considering verifiable inference by ZK-SNARK, we selected

the zero-knowledge proving system outlined in [36] as a reference.

This system, based on Halo2, supports a more diverse range of mod-

ern DNN architectures rather than previous works, which aligns

with our goal of evaluating scalability across various architectures.

We chose not to include CNN-specific methods such as [50, 55]

in our evaluation, as they do not generalize to the types of DNNs
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Algorithm 2: Optimization teleportation parameters via

CGE

Input: Initial scaling factors 𝜏 = {𝜏 (𝑖 )
𝑗
}, learning rate 𝜂,

perturbation size 𝜇, max iterations 𝑁

Output: Optimized scaling factors 𝜏∗

for 𝑛 = 1 to 𝑁 do
Evaluate objective function 𝑙 (𝜏) using Eq. (20).;

foreach coordinate 𝜏 (𝑖 )
𝑗

(parallelizable) do
Compute gradient estimate:

Evaluate 𝑙 (𝜏 + 𝜇e𝑗 )

𝑔 𝑗 =
𝑙 (𝜏 + 𝜇e𝑗 ) − 𝑙 (𝜏)

𝜇

Update scaling factors:

𝜏
(𝑖 )
𝑗
← 𝜏

(𝑖 )
𝑗
− 𝜂𝑔 𝑗

Apply constraints:

𝜏
(𝑖 )
𝑗
← max(𝜏 (𝑖 )

𝑗
, 𝜖)

Enforce CoB constraints (see Section 3).;

if Convergence criteria met (e.g., ∥ ˆ∇𝜏𝑙 (𝜏)∥ < 𝛿) then
break;

return Optimized scaling factors 𝜏∗ = 𝜏 ;

considered in our study. Since our experiments were conducted

in a CPU-only environment, we did not include GPU-dependent

frameworks, such as the system proposed in [67], as they would

not provide a directly comparable assessment of CPU performance.

Additionally, as discussed in Section 1, TeleSparse is designed to

be complementary to previously proposed ZKP systems that are

tailored ZKP for specific architectures. TeleSparse can be applied

on top of existing specialized frameworks to achieve even more

optimized performance.

6.3 Results
For consistency, all experiments were conducted on a virtual ma-

chine running Linux (kernel 4.18.0), equipped with 32 virtual CPU

cores, 1 TB of memory, and 2 GB of swap space. The fixed-point

quantization scale was set at 2
12

to balance performance and mem-

ory usage. Increasing this scale would enhance model accuracy but

also increase memory usage during proof generation due to the

increasing the required number of field values and larger lookup ta-

bles required for non-linear functions in the proving system [36, 87].

To evaluate the effectiveness of TeleSparse, we conducted exper-
iments on three distinct setups: MobileNetV1 [34] on the CIFAR-10

dataset [42] and ResNet-20 [32] on the CIFAR-100 dataset, as de-

tailed in Table 1, and the ViTmodel [18] on the large-scale ImageNet

dataset [14], as presented in Table 2. This selection includes varied

architectures and datasets, providing a comprehensive evaluation

of our method’s adaptability and efficiency.

As shown in Table 1, we present the proving time, peak memory

usage of the prover, and proof size for both MobileNetv1 on CIFAR-

10 and ResNet-20 on CIFAR-100, showcasing the effectiveness of

the proposed method. With a 50% sparsity ratio and applying the

optimized teleportation, our approach balances model performance

(detailed in Table 3) and the reduction of resource consumption.

Importantly, the sparsity consideration is unique to TeleSparse
as prior works like [36] are not designed for sparse models and

therefore do not benefit from the associated resource reductions.

For MobileNetv1, TeleSparse reduces average memory usage

by 59.2% and proving time by 54.0% compared to EZKL without

the proposed post-processing. The proof size and verification time

are reduced by 30.0% and 22.9%, demonstrating a comprehensive

improvement in computational and bandwidth usage of the verifier.

For ResNet-20, memory usage decreases by 66.8%, proving time

by 45.6%, proof size by 30.6%, and verification time by 19.4%. The

improvements are due to sparsification (Section 4) and teleportation

(Section 5), with their individual effects analyzed in the ablation

study in Table 4.

In contrast to prior work focusing on small datasets and simpli-

fied model architectures, our experiments utilize the large-scale Im-

ageNet dataset [14] and the ViT transformer-based [18] architecture

for a thorough evaluation. Given that ViT’s computational demands

are substantial—with approximately 31 timesmore FLOPs compared

to Resnet-20 — we employed circuit splitting technique [87] (de-

tailed in F) to make proof generation practical, reducing memory

overhead for the prover while maintaining model integrity. In terms

of splitting the model, we split the model into 𝑀 = 24 parts for

the ViT model. This decision was motivated by two key factors:

Firstly, splitting each layer into two components (self-attention and

MLP) is advantageous as the intermediate model output is relatively

smaller compared to other splitting options, thereby reducing the

overhead of commitment to intermediate results. Secondly, the pri-

mary factor influencing proving resource usage is the logarithm of

the number of rows in the halo2 proving table [65]. By splitting the

model such that it features a roughly similar number of constraints

across all parts, ensuring each component has an identical logarith-

mic number of rows. Consequently, memory usage is distributed

more uniformly across circuit parts, thereby reducing the maxi-

mum memory size required during proof generation. Moreover, if

proof generation exhibits similar time across circuit components,

parallelization becomes more efficient, and the time required is

equivalent to generating only one proof. Although the experimen-

tal results presented do not include parallelization, it’s worth noting

that parallel proof generation could be achieved because each seg-

ment operates with distinct inputs and independently.

Table 2 highlights the effectiveness of TeleSparse in reducing

proving time and memory usage on splitted circuits of the ViT

model. Each column shows the corresponding metric averaged

across𝑀 parts of the model. TeleSparse effectively reduces memory

usage in transformer architectures too, achieving a notable 45.08%

reduction even when applied to model splitting. However, proof

generation for ViT demands 6 times more memory than MobileNet-

v1, likely due to ViT’s computational intensity, with approximately

5.5 GFLOPs, making it unsuitable for resource-constrained devices.

On the positive side, verification time remains efficient, increas-

ing only 1.44 times compared to MobileNet-v1, highlighting the

scalability of the verification process despite the proving overhead.

Existing approaches [21, 75] are not directly applicable with

Transformers and modern CNNs like MobileNet. [75] performed

less favorably compared to ZKML [36], as shown in Table 2 of the
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Model Dataset Framework

Avg Memory Usage

(GB) ± Std

Avg Proving Time

(s) ± Std

Verification Time

(ms)

Proof Size

(KB)

MobileNetv1 CIFAR-10

ZKML (tensorflow) 148.3 ± 10.2 1439 23.8 106

EZKL (pytorch) 139.0 ± 14.2 779 3.5 100

TeleSparse (sparsity=50%) 56.7 ± 3.0 358 2.7 70

Reduction (%) 59.2% 54.0% 22.9% 30.0%

Resnet-20 CIFAR-100

ZKML (tensorflow) 128.0 ± 7.5 1055 20.1 89

EZKL (pytorch) 120.2 ± 5.5 564 3.1 85

TeleSparse (sparsity=50%) 39.8 ± 3.1 307 2.5 59

Reduction (%) 66.8% 45.6% 19.4% 30.6%
Table 1: Comparison of various frameworks across models and datasets, with reduction percentage achieved by TeleSparse
compared to prior work. The standard deviation is computed by repeating the experiment five times.

Framework

Mem. Usage

(GB)

Proving

(s)

Verification

(ms)

Proof Size

(KB)

EZKL (pytorch) 650 1087 4.5 1134

TeleSparse (50%) 357 869 4.1 1076

Reduction (%) 45.08% 20.05% 8.89% 5.12%
Table 2: Comparison of frameworks for Tiny-ViT on Ima-
geNet. Each column represents the average across 𝑀 = 24

model splits, the reduction is calculated relative to EZKL.

ZKML paper, while our results compare favorably. To have a com-

parison with TeleSparse, we tested [75] on LeNet-5 using similar

hardware. Compared to [75] (127.2s) and [21] (11.6s), TeleSparse

achieved 7.4s ± 0.07, demonstrating superior efficiency.

The quantization applied to weights and activation values within

the ZK proving system, combined with the sparsification techniques

we employed, would decrease model accuracy within the circuit.

To evaluate that, Section 6.4 examines the trade-offs in accuracy.

Additionally, Section 6.5 analyzes the individual contributions of

each component of TeleSparse to the resource reductions presented
in the tables. Notably, the resource usage for teleportation, included

in Tables 1 and 2, remains minimal. Even for ViT, teleportation

requires less than 2% of the memory needed for proof generation,

and the total teleportation time for all MLP parts (to which telepor-

tation exclusively applies) is 50 seconds, constituting less than 0.1%

of the overall proof generation time for the model.

6.4 Accuracy
To assess the impact of quantization and post-processing introduced

by TeleSparse on model performance over the ZKP system, we

evaluate both the original floating-point model accuracy and its

quantized model (and post-processed) accuracy provided by the

ZKP framework in Table 3.

By selecting to be 2
12
, the results show that the model retains

strong performance even with pruning. The difference between the

full-precision model and the ZK model is approximately 0.8% in

accuracy in the dense model and 0.9% in the sparse model, showing

that the ZK framework could maintain accuracy close to the full-

precision model. Although introducing 50% sparsity reduces the

ZK accuracy by about 1.03%, it enables significant resource savings,

Model Dataset Sparsity

Full Precision

Model Accuracy (%)

ZK Accuracy

(%)

ResNet-20 CIFAR-100

0% 68.7 67.9

50% 68.1 67.2

Reduction (%) 0.87% 1.03%

Tiny-ViT ImageNet

0% 72.2 71.4

50% 71.1 70.7

Reduction (%) 1.1% 0.7%

Table 3: Impact of sparsification and ZK circuit quantization
on accuracy.

such as a 66.8% reduction in memory usage as illustrated in Table 1.

This balance between minor accuracy loss and substantial resource

reduction highlights the effectiveness of sparsity and teleportation

in optimizing models for both efficiency and verifiability.

6.5 Ablation Study
To mitigate the computational overhead of ZK proof generation,

particularly for the prover, we incorporated sparsification and tele-

portation into our design. To evaluate the individual contributions

of each module, we present the ablation study results in Table 4.

The initial assumption may be that the main overhead in ZKP

generation stems from either the large number of constraints or the

extensive range of lookup tables. However, the results in Table 4

show that combining teleportation and sparsification yields the

most substantial improvements. In the ResNet-20, the combination

reduces memory usage by 66.9% and proving time by 45.6%. Each

post-processing method alone has a smaller impact, highlighting

the complementary benefits of combining these techniques.

Applying only sparsification reduces memory usage and proving

time, particularly in ResNet-20, with reductions of 49.5% and 34.8%,

respectively, and similar benefits for MobileNetv1. Teleportation,

while providing moderate improvements, is more effective for mod-

els like ResNet-20 with more lookup arguments, reducing its mem-

ory usage by 38.9% and proving time by 23.8%. However, its impact

on MobileNetv1 is negligible, likely because the primary bottle-

neck in that specific model lies in the number of constraints rather

than lookup overhead. Combining teleportation with sparsification

significantly outperforms sparsification alone, further reducing
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Model Dataset

Post-Processing

(Method)

Memory Usage

(GB)

Proving Time

(s)

Verification Time

(ms)

ResNet-20 CIFAR-100

No Post-Processing 120.2 564 3.1

Teleportation 73.4 (38.9%) 430 (23.8%) 2.9 (6.5%)

Sparsification 50% 60.7 (49.5%) 368 (34.8%) 2.5 (19.4%)

Both Sparse and Teleported 39.8 (66.9%) 307 (45.6%) 2.5 (19.4%)

MobileNetv1 CIFAR-10

No Post-Processing 139.0 779 3.5

Teleportation 138.3 (0.5%) 757 (2.8%) 3.4 (2.9%)

Sparsification 50% 85.3 (38.6%) 473 (39.3%) 2.8 (20.0%)

Both Sparse and Teleported 56.7 (59.2%) 358 (54.0%) 2.7 (22.9%)

Tiny-ViT ImageNet

No Post-Processing 1002.2 541 4.2

Teleportation 961.5 (4.1%) 421 (22.2%) 4.2 (0.0%)

Sparsification 50% 838.3 (16.4%) 310 (42.7%) 3.8 (9.5%)

Both Sparse and Teleported 814.5 (18.7%) 256 (52.7%) 3.7 (11.9%)

Table 4: Comparison between the effectiveness of each post-process on the different computation resources and both the prover
and verifier. The reduction percentage is computed relative to the baseline model with no post-processing. The metrics for the
Tiny-ViT model correspond only to the MLP parts, as teleportation affects only the activation functions in these parts.

memory usage by up to 34.4% and proving time by 24.3% compared

to sparsification alone. Verification time, being less computationally

demanding sees smaller reductions across configurations. Neverthe-

less, The combined approach still manages modest improvements,

such as 19.4% for ResNet-20 and 22.9% for MobileNetv1. To demon-

strate the effectiveness of the optimized teleportation, we show the

distribution difference between the teleported and original model

activation ranges in Appendix G.

6.6 Granular Sparsity
To analyze the impact of the sparsity ratio on prover computations,

we conduct experiments varying the sparsity ratio from 0% to 75%

on the ResNet model, as shown in Figure 4.

Figure 4: Effect of sparsity ratio on memory usage, proving
time, and top-1 accuracy (equal to average accuracy due to
balanced classes) for ResNet20 on CIFAR-100.

Table 2 demonstrates the impact of sparsity on memory usage,

proving time, and accuracy for ResNet20 on CIFAR-100. Sparsifi-

cation leads to a significant reduction in memory usage, with a

decrease from 120.2 GB at 0% sparsity to 28.7 GB at 75%. Prov-

ing time also reduces, dropping from 564 seconds to 304 seconds,

though the reduction is less substantial compared to memory usage.

Interestingly, at 25% sparsity, the top-1 accuracy improves to 68.1%

from 67.9% in the dense model, likely due to reduced quantization

error as weights and activations with larger magnitudes, which

are more robust to quantization, are preserved [39, 69]. However,

accuracy decreases at higher sparsity levels, reaching 66.3% at 75%.

These results highlight that sparsification not only optimizes re-

source efficiency but can also enhance accuracy under moderate

sparsity levels, though trade-offs emerge as sparsity increases.

7 Privacy Analysis
To conclude our analysis, we prove security of our approach against

a malicious verifier that observes the model inference outputs. Our

method for proving security is based on the standard secure com-

putation framework of the real-/ideal-world paradigm. Specifically,

we construct an indistinguishable (polynomial-time) simulation of

the real protocol, given access only to an ideal functionality 𝐹 that

on model input 𝑋 , computes the corresponding inference output

𝑦. Our proof requires that the simulator has access to the sparsity

ratio of model weights, which can be observed via the sparsifi-

cation process in the verification key, and is therefore a form of

leakage. In Section 7.3, we examine the possibility of removing this

leakage through additional privacy measures that could form the

basis of future work. In the following, we represent the original

model weights before pruning (sparsification) as𝑊 𝑡
and the model

weights after applying the pruning algorithm as𝑊 𝑡
sparse

.

7.1 Verifier View
The verifier has access to the neural network’s input𝑋 , output𝑦, ZK

circuit embedded in the verification key (containing commitments
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to fixed columns 𝑄 in Halo2), and the proof 𝜋 (with commitments

to advice columns 𝐴). However, the actual weight values𝑊 𝑡
sparse

remain fully hidden, regardless of whether the model is sparse or

dense. Moreover, each fixed column in Halo2 mixes weights, selec-

tors, and other constants, concealing individual weight locations.

Although Figure 3 illustrates the weights in an ordered manner

for clarity, in practice, their positions are neither predefined nor

known to the verifier.

Impact of sparsification on verification key. As part of the

sparsification process, certain constraints are removed to reduce

proving costs and improve efficiency. This affects the circuit (veri-

fication key) and thus the generated proof, as shown in Figure 3,

where the sparse case (B) has fewer constraints than the dense case

(A). Since the verification key is visible to the verifier, they observe

a commitment to𝑄𝐹0 in the proof and commitments to columns𝐴0,

𝐴1, 𝐴2 in the verification key, which shrink with sparsification. An

adversarial verifier can distinguish between the verification keys

of the dense and sparsified models by comparing their sizes, po-

tentially estimating the sparsity ratio. Therefore, we must provide

the sparsity ratio (𝑅𝑙 ) as known leakage to the simulator algorithm

when eventually constructing our proof of security. Potential mea-

sures for weakening this assumption are covered in Section 7.3.

Note that reducing activation ranges via teleportation (Section 5)

does not provide additional leakage. Teleportation only restricts

the input domain of neurons without altering the network function,

thus not revealing additional information about the model weights.

7.2 Proof of Privacy
We now proceed to prove the privacy of the construction against a

malicious verifier, who is trying to learn the values of the model

weights𝑊 𝑡
. Our proof follows as a consequence of the security

properties of the underlying ZK proof system.

Formal privacy guarantee. The main privacy guarantee of our

system is given in Theorem 7.1; the proof follows in Appendix H.

Theorem 7.1. For any witness𝑊 𝑡
sparse produced by the TeleSparse

algorithm with sparsity ratio 𝑅𝑙 and for any given input 𝑋 , there
exists a simulator S which, given the sparsity ratio 𝑅𝑙 , the input 𝑋 ,
and access to the ideal functionality 𝐹 (without knowledge of the
original witness𝑊 𝑡

sparse), constructs a simulated view view′ that is
indistinguishable from the real protocol view view. In particular, the
simulated view view′ is computationally indistinguishable from the
view produced during an execution of the real protocol with witness
𝑊 𝑡

sparse.

7.3 Preventing Sparsification Ratio Leakage
As previously discussed in Section 7, privacy loss occurs if the at-

tacker accesses the original model’s architecture and the proving

system fails to protect the number of removed constraints corre-

sponding to the pruned weights (sparsity ratio). To mitigate this

privacy leakage, we propose adding dummy constraints to the cir-

cuit. The idea is to provide a noisy approximation of the number of

constraints in the sparsified model. Such constraints would have

no impact on the eventual computation, and thus the accuracy of

the model inference procedure would go unharmed.

On the other hand, the drawback is that the proof overhead

increases proportionally with the number of added dummy con-

straints, and thus the proving and verification time would be com-

putationally more expensive to execute. Furthermore, analysis of

the optimal number of dummy constraints to add while still main-

taining both high performance and reducing privacy leakage would

require careful consideration of the noise introduced. This would

likely require incorporating some notion of differential privacy

into the security model, and would also require a method for al-

lowing the PPT simulator to sample from the noisy distribution of

sparsification ratios when constructing the security proof.

While the current privacy analysis provides strong justifica-

tion — and that knowing the sparsification ratio is highly unlikely

to impact privacy — we believe that investigating these directions

further would be valuable future work. In particular, such inves-

tigation would explore the extent to which the approximation of

the sparsity ratio is feasible, and to quantify how beneficial the

proposed mitigation is in maintaining high performance.

8 Conclusion and Future Work
In this paper, we make substantial progress toward reducing the

computational overhead of applying ZK-SNARKs to large-scale

neural networks. By focusing on post-processing techniques, we in-

troduce methods that improve ZK compatibility without modifying

model architecture or training pipelines. Through neural network

sparsification and an innovative adaptation of neural teleportation,

TeleSparse reduces both the number of circuit constraints and the

size of lookup tables for non-linear functions. The method reduces

prover memory usage by 67% and proof generation time by 54%,

with minimal accuracy loss, making ZK-SNARK verification more

practical for modern deep learning models. We conducted exten-

sive experiments demonstrating the applicability of TeleSparse
across various datasets and model architecture, including CNNs

and transformers, to validate effectiveness in diverse settings.

Future research could extend our sparsification and activation

optimization techniques for compatibility with other ZK proving

systems, beyond Halo2 [82], thereby expanding their applicability

across a broader range of ZK systems. Furthermore, although our

experiments involve splitting the model and generating ZK-SNARK

proofs for each part separately, we focus on selecting the split point

based on the structure of transformers. However, determining the

optimal split point is essential for minimizing the computational

overhead of the prover. Additionally, exploring nested proof aggre-

gation could significantly enhance scalability, especially in resource-

constrained environments like edge devices. Other paths forward

include exploring methods to quantify DNN operation costs in

ZK systems and better understand the interplay between sparsity,

memory usage, and proof generation time for various DNN opera-

tions. This would enable more targeted sparsification, addressing

the operations with the highest computational overhead in ZKP

systems. Finally, while we discuss the privacy implications of spar-

sification (Section 7), further research into the detected leakage risk

and mitigation strategies in Section 7.3 is needed.
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A ZK Properties of Halo2 In the proposed
System

TeleSparse, based on the Halo2 protocol, inherits its security prop-

erties including:

• Succinctness: Since the generated proof is sent over the in-

ternet network, the succinctness of the generated proof is

crucial to reduce the overhead of communication costs of ver-

ifiable DNN inference. The size of the Halo2 generated proof

remains sub-linear relative to the complexity of 𝑓 . Therefore,

as the layers of the model grow, the size of the proof does

not change drastically.

• Knowledge Soundness: A prover (computationally bounded)

is unable to generate proofs for incorrect executions of 𝑓 .

• Completeness: If the prover possesses a valid𝑊 and gener-

ates the proof based on that, the proof will be successfully

verified by the verifier.
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• Zero-knowledge: The generated proof 𝜋 does not reveal

any information about the private input (𝑊 ) except that

𝑦 = 𝑓 (𝑋 ;𝑊 ).

B Applications
The threat model considered in this work is suitable for various

real-world applications:

• Verifiable Model Accuracy: A model provider may want to

demonstrate the accuracy of their model on a public dataset

without revealing the model weights. The model provider can

use ZK-SNARK to prove the accuracy of the model on the dataset,

without disclosing any information about the model weights [36,

65]. This ensures transparency and trustworthiness, particularly

in scenarios where model reliability is critical, such as insurance.

For example, insurance companies could apply ZKPs to verify the

accuracy of their models in determining premiums or assessing

risks [15], while keeping proprietary data (used for training the

model) and model confidential.

• Model Predictions as a Service:Amodel provider can offer pre-

dictions as a service, where users submit input data and receive

the model’s output along with a ZK-SNARK proof, demonstrating

that the prediction was generated correctly using the committed

model weights [36, 58]. This protects the provider’s intellectual

property while assuring users of the prediction’s integrity.

• Auditing ML Models: ZK-SNARK can be employed to audit

ML models for fairness and compliance with regulations [25].

An auditor can use ZK-SNARK to verify that a model does not

discriminate against certain groups, without needing access to the

model weights or the training data. This enables accountability

and promotes trust in AI systems.

• Proof of Ownership: In cases of model theft or extraction, the

true model owner can use ZK-SNARK to prove ownership by

committing to the dataset used for training and demonstrating

that their model was trained on that specific dataset. This deters

theft and helps resolve ownership disputes.

• Proof of Model Ownership in Generative AI: In cases where

generative AI models create content (e.g., images or text), the

model provider can use ZK-SNARKs to verify that specific out-

puts are indeed generated by their model. By committing to the

model’s weights, the provider can produce a ZKP confirming

that a given output, such as an image, was generated by their

model. This proof of generation, without revealing model weight,

reinforces ownership and helps discourage unauthorized use of

generative AI models [60].

C Notation Table
For a comprehensive list of mathematical notations used throughout

this paper, please refer to the notation table provided in Table 5.

D Formal Halo2 and Commitment Schema
Properties

Let 𝜅 be a security parameter, and let 𝜈 (𝜅) be a negligible func-

tion. The formal ZK-SNARK properties guaranteed by Halo2 are as

follows:

Soundness: A proving system is sound if a cheating prover cannot

convince the verifier of a false statement except with negligible

probability.

Formally, for any efficient prover P∗ and any statement 𝜙 not in

the language 𝐿, the probability that P∗ convinces the verifierV to

accept 𝜙 is negligible:

Pr[⟨P∗,V⟩(𝜙) = 1 | 𝜙 ∉ 𝐿] ≤ 𝜈 (𝜅) (21)

Correctness: A proving system is correct if an honest prover can

convince the verifier of a true statement. Formally, for any statement

𝜙 ∈ 𝐿 and witness 𝑤 , the verifier accepts with overwhelming

probability:

Pr[⟨P,V⟩(𝜙,𝑤) = 1] = 1 − 𝜈 (𝜅) (22)

Zero-Knowledge: A proving system is zero-knowledge if the

verifier learns nothing beyond the validity of the statement. For-

mally, for every probabilistic polynomial-time verifier V∗, there
exists a simulator S such that:

View(P(𝑤),V∗ (𝜙)) ≈ S(𝜙) (23)

Polynomial commitment schemes, such as KZG commitments,

are cryptographic primitives used to ensure the integrity and pri-

vacy of polynomial evaluations in ZKP systems. These schemes

satisfy two crucial security properties: binding and hiding.
Binding Property: A commitment scheme is binding if it is com-

putationally infeasible for the prover to open a commitment to two

different values. Formally, let Comm : F𝑛 → C be a commitment

function. The binding property ensures that for any v, v′ ∈ F𝑛

with v ≠ v′, it is computationally infeasible to find 𝑟, 𝑟 ′ such that

Comm(v; 𝑟 ) = Comm(v′; 𝑟 ′).

∀ PPT algorithms A, Pr

[
(𝑐, v, v′) ← A()

��
Comm(v; 𝑟 ) = 𝑐 = Comm(v′; 𝑟 ′) ∧ v ≠ v′

]
≤ 𝜈 (𝜅), (24)

Hiding Property: A commitment scheme is hiding if the com-

mitted value remains indistinguishable to any adversary without

knowledge of the opening randomness. Formally, for any v, v′ ∈
F𝑛 and independent randomness 𝑟, 𝑟 ′ ∈ R, the distributions of

Comm(v; 𝑟 ) and Comm(v′; 𝑟 ′) are computationally indistinguish-

able. Specifically, for any PPT adversary A, it holds that:

��
Pr

[
A(Comm(v; 𝑟 )) = 1

]
− Pr

[
A(Comm(v′; 𝑟 ′)) = 1

] �� ≤ 𝜈 (𝜅)
(25)

E Formal Proof of Sparsification Soundness
We aim to prove that excluding constraints for zero-valued en-

tries does not allow a cheating prover to convince the verifier of a

false statement, i.e., that O′ ≠𝑊𝐼 . This proof relies on the formal

properties of Halo2 and commitments, as detailed in Appendix D.

Define support for each 𝑖:

𝑆𝑖 = { 𝑗 ∈ {1, . . . , 𝑑2} |𝑊𝑖, 𝑗 ≠ 0}
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The constraint for each 𝑖 should represent the following equation:

𝑂𝑖 =
∑︁
𝑗∈𝑆𝑖

𝑊𝑖, 𝑗 𝐼 𝑗

Based on the circuit representation in equation 4, the rows which

𝐹0𝑖 is zero will be discarded as shown in Figure 3 so the polyno-

mials 𝐴0, 𝑄𝐹0 , 𝐴1, 𝐴2 in equation 5 only interpolate remained cells.

Consequently the commitments is computed based on the new

polynomial functions. In other words, in the verification key only

the commitments to the non-zero weights exist.

To prove the soundness, we consider all possible cheating strate-

gies by the prover to somehow change the output of the linear layer

(𝑂𝑖 ).

Step 1, Altering the Matrix𝑊 : Assume we construct an adver-

sary A against the binding property of the commitment scheme,

utilizing an adversary B that attempts to alter𝑊 while generating

a valid proof (accepted by the verifier). Since𝑊 is stored in fixed

column 𝐹0, and commitments Commit(𝑄𝐹0 (𝑋 )) are included in the

verification key, any attempt to alter 𝑊 by adversary B would

require finding a new matrix𝑊 ′ such that

Commit(𝑊, 𝑟 ) = Commit(𝑊 ′, 𝑟 ′).

If adversary B could successfully alter𝑊 by finding𝑊 ′ and 𝑟 ′,
adversary A could utilize B to break the binding property of the

commitment scheme. This contradicts the assumption that the

commitment scheme is secure under standard cryptographic as-

sumptions. Therefore, B cannot alter𝑊 .

Step 2, Altering the Witness Vector I: Given that𝑊 cannot be

altered, the only remaining strategy for adversary B is to modify

the witness vector I to I′ in a way that affects the output O. Again,
we construct an adversary A against the soundness of the copy

constraints in Halo2. Adversary A utilizes B, which attempts to

modify the witness vector I to I′.
However, the circuit copy constraints enforce consistency be-

tween layer inputs and outputs. These constraints ensure that the

input 𝐼 𝑗 of the current layer 𝑙 must exactly match the output 𝑂 𝑗

from the previous layer 𝑙 − 1. If adversary B attempts to modify

the values of I corresponding to zero entries in the matrix𝑊 , this

will not affect the output O, as those terms contribute nothing to

the summation in Equation (3). Thus, the adversary cannot achieve

an invalid output 𝑂 ′𝑖 through these modifications. To have any ef-

fect, adversary B attempt must involve changing values in I that
correspond to the non-zero entries in𝑊 . Assume that adversary

B successfully modifies 𝐼 𝑗 to 𝐼
′
𝑗 corresponding to non-zero entries

(modifies a value 𝐼 𝑗 where 𝑗 ∈ 𝑆𝑖 ) and then generates a valid proof

based on this. Therefore, adversary A could exploit adversary B
to construct a strategy to break the copy constraints of Halo2. This

would lead to a contradiction, as the copy constraints of Halo2

are enforced by the soundness property of the ZK-SNARK system.

Consequently, B cannot successfully alter I without being detected
by the verifier.

Conclusion: If adversary B cannot alter𝑊 due to the binding

property of the commitment scheme, and cannot modify I without
violating the copy constraints, then no cheating strategy remains.

As a result, eliminating constraints for zero entries in fixed columns

does not compromise the soundness of the proving system.

Figure 5: Transformer architecture contains two parts of
attention and MLP. We split each part to generate proof in a
separate ZK circuits.

F Proof Splitting
To ensures that the ZK-SNARK system remains scalable for use on

devices with limited resources, we could leverage Halo2’s recursive

proof composition capabilities, allowing complex proofs to be split

and incrementally verified. The splitting not only reduces the load

on constrained devices but also enhances the overall scalability of

the ZK-SNARK verification process.

The total number of constraints regarding a model like a vision

transformer is significantly huge. However, by splitting the layers

of a DNN (e.g., ViT shown in Figure 5), each part could be proved

separately. In particular, we could split a ViT into our desired 𝑀

parts such that the output of the (𝑖−1)-th part is the input of the 𝑖-th
part. It is easy to do that in most DNN models including ViT, which

consists of 12 layers, and each layer has two main components:

self-attention and MLP. For instance, given a sparse ViT, we split

the model into𝑀 = 24 parts, which are non-overlapping. For each

part, the corresponding proving key 𝑝𝑘𝑖 and the corresponding

verification key 𝑣𝑘𝑖 are generated by halo2. Also, we should contain

the commitment to the output of the (𝑖 − 1)-th part as the public

input to the circuit corresponding to the 𝑖-th part. Proof generation

for each partition can proceed either in parallel or sequentially, with

specific advantages in each approach that impact the scalability of

ZK-SNARKs in deep learning contexts. In a parallel setup, proof gen-

eration time remains fixed, regardless of the number of partitions M

, as each segment can be processed concurrently without increasing

overall latency. This parallel configuration is especially beneficial

in distributed systems, where multiple nodes can simultaneously

handle each partition’s proof, thus minimizing total proving time

for large models. Conversely, in a sequential setup, memory require-

ments remain constant and independent of 𝑀 , as each partition

can be processed one at a time with minimal memory overhead.

This sequential approach is particularly advantageous for memory-

constrained environments, where a single proof can be generated

step-by-step through the partitions, thus avoiding the exponen-

tial memory growth that would typically accompany large models

in ZK-SNARK-based proofs for deep networks. This flexibility in

proof generation pathways ensures scalability and practicality of

ZK-SNARKs for complex architectures like ViTs, where constraint
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management is critical. Detailed performance measurements of this

partitioning approach, specifically on the Vision Transformer (ViT),

are provided in the Table 2.

In the verification step, the verification of the 𝑖-th part, the veri-

fier should check that the committed output of the (𝑖 − 1)-th part

is equal to the commitment of the input of the 𝑖-th part.

Building on this partitioned proof generation, Halo2 enables

proof composition via Nested Amortization [10] and an Accumula-

tion Scheme [82], allowing individual proofs from each partition to

be combined into a single recursive proof with constant verification

cost. This makes the proof size independent of the partition count.

This means that only a single verification check is required, leverag-

ing Halo2’s recursive ZK-SNARKs to verify all parts efficiently. In

verification, a single recursive check confirms that the final proof

upholds commitments across all partitions 1 to𝑀 , implicitly ver-

ifying alignment of inputs and outputs between partitions. Proof

Composition in Halo2 is completely beneficial for DNNs by keep-

ing the verification cost and proof size constant with respect to𝑀 .

Proof aggregation is particularly advantageous for applications like

on-chain verification, where constant proof size and verification

cost significantly reduce computational overhead. However, our ex-

periments focused on partitioned proof generation and generating

proof for each part separately, excluding recursive composition, as

it lies beyond the scope of this work.

G Effect of Teleportation on Activation Range
Distribution

To demonstrate the effectiveness of the proposed optimized telepor-

tation in reducing activation function range values, as discussed in

Section 5 and the experiments in Table 4, we present the distribution

of activation ranges for 300 CIFAR-100 samples on ResNet-20 in Fig-

ure 6. The original network’s activation range is long-tailed, with

some outliers exceeding a range of 70. After applying teleportation,

the distribution narrows considerably, with reduced variance with-

out extreme values, indicating the success of the teleportation in

minimizing the activation range. Specifically, the Mean Activation

Loss is reduced from 27.39 (Original) to 16.98 (Teleported), show-

ing a reduction of approximately 38.01%. Similarly, the Standard

Deviation of Activation Loss decreases from 5.99 (Original) to 2.64

(Teleported), a reduction of 55.9%, indicating a more compact and

consistent distribution after teleportation. As mentioned in Table

4, eliminating outlier values is crucial for reducing the prover’s re-

source overhead. Outliers can significantly increase the complexity

of the lookup constraints in ZK-SNARK proof generation, leading

to higher CPU and RAM costs. By minimizing these outliers, the

activation range distribution becomes more compact, thus optimiz-

ing the prover’s resource utilization and improving the efficiency

of the verification process.

H Proof of Theorem 7.1
To prove Theorem 7.1, we must show that the simulator S can

reconstruct all elements of view
′
such that the verifier cannot dis-

tinguish view
′
from view. Let 𝜅 be the security parameter, and let

poly(𝜅) and 𝜈 (𝜅) denote polynomial and negligible functions, re-

spectively. As defined in Section 7.1, the simulated verifier view is:

view
′ = (𝜋 ′, 𝑋,𝑦, 𝑣𝑘 ′, 𝑅𝑙 ), where the verification key 𝑣𝑘 ′ contains

Figure 6: Activation range distribution of 300 CIFAR100 sam-
ples on ResNet-20: Red represents the original model’s acti-
vation range with outliers, and green shows the distribution
after optimized teleportation

commitments to the fixed columns represented by 𝑄 (as shown

in Equation (1)). Recall that the simulator has access to an ideal

functionality 𝐹 , which, given the input data 𝑋 sent by the verifier,

outputs the corresponding label 𝑦. The simulator does not have

access to the true model weights𝑊 𝑡
sparse

but can generate model

weights, denoted as𝑉 𝑡
sparse

, that produce𝑦 given𝑋 , with the weights

randomly pruned according to the given layer-wise sparsity ratio

𝑅𝑙 .

The simulator S constructs view
′
as following steps:

(1) Verification Key Simulation: The simulator first generates a

verification key 𝑣𝑘 ′ by committing to model weights 𝑉 𝑡
sparse

following the defined sparsity ratio, without any knowl-

edge of𝑊 𝑡
𝑖 . The simulator then sends 𝑣𝑘 ′ to the verifier. For

simplicity, assume that the commitment of weights is per-

formed layer-wise. Specifically, for layer 𝑙 , the commitment

to the polynomial 𝑓𝑙 (𝑋 ), which interpolates the remaining

weights 𝑉
𝑡,(𝑙 )
sparse

, is included in the verification key. The po-

sition of each weight is not included in the commitment

as only the commitment is made to the polynomial 𝑓𝑙 (𝑋 )
of degree ∥𝑉 𝑡,(𝑙 )

sparse
∥0 − 1, derived via Lagrange interpolation

of the remaining weights. Since the number of values in

𝑉
𝑡,(𝑙 )
sparse

matches those in𝑊
𝑡,(𝑙 )
sparse

, resulting in equal polyno-

mial degrees, and given the hiding property of the com-

mitment scheme (Equation (25)), the probability that the

verifier distinguishes between the simulator and TeleSparse

weight commitments are less than 𝜈 (𝜅), demonstrating the

computational indistinguishability of the verification keys

corresponding to the two weights.

(2) Output Simulation: Given the input data 𝑋 provided by the

adversarial verifier, the simulator uses the ideal functionality

𝐹 to compute the corresponding output label 𝑦. Therefore,

𝑋 and 𝑦 are identical in 𝑣𝑖𝑒𝑤 and 𝑣𝑖𝑒𝑤 ′.
(3) Proof Simulation: Using the simulated proof generation pro-

cedure (afforded by the zero-knowledge property of the NIZK
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proof system):

SimProve(trap, 𝑋,𝑦, 𝑣𝑘 ′) → 𝜋 ′

the simulator generates the proof 𝜋 ′ and provides is to the

verifier. Since 𝜋 ′ is a simulated proof constructed using the

trapdoor trap, it is computationally indistinguishable from a

real proof 𝜋 . This follows from the fact that Halo2 (the under-

lying ZK proof system) is a valid NIZK proof system [82] (via

the zero-knowledge property, Appendix D). Notably, as the

sparsity ratio of 𝑉 𝑡
sparse

is the same as𝑊 𝑡
sparse

in each layer,

the number of constraints in both cases is exactly equal,

resulting in the same proof size. □
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Symbol Description
𝑋 Public input data to the DNN

𝑦 Public output from the DNN computation

𝑊 Weight matrix

𝜋 Proof generated by the prover

𝑊𝑖, 𝑗 Element at the 𝑖-th row and 𝑗-th column of weight matrix𝑊

𝑓 (𝑋,𝑊 ) The DNN computation function, taking input 𝑋 and weights𝑊 to produce output 𝑦

𝐿 Number of layers in the DNN

𝑊 𝑡
Original model weights before applying the sparsification algorithm

𝑊𝑠𝑝𝑎𝑟𝑠𝑒 Sparse weight matrix after sparsification algorithm

𝑊 𝑡
𝑠𝑝𝑎𝑟𝑠𝑒 Sparse and teleported weight matrix

𝐿 Number of layers in the DNN

𝑊 (𝑖 )
Original model weights in 𝑖-th layer (or block)

𝑊 (𝑖 )
Transformed (sparsified or teleported) model weights in 𝑖-th layer (or block)

𝜌𝑖 Importance of the 𝑖-th weight in a block of a neural network,

used in the CAP method.

𝛿𝑤 Optimal update for the remaining weights in a block after pruning

H𝑖 Hessian matrix for block 𝑖 in a neural network, used in the CAP method.

𝐻−1 Inverse of the Hessian matrix

𝑒𝑖 The i-th standard basis vector in R𝑑
,

where 𝑑 is the dimensionality of the vector space.

𝑅 Targeted sparsity ratio of the entire network in the sparsification algorithm

𝐴𝑖, 𝑗 Value in the 𝑗-th row and 𝑖-th advice column of the Halo2 table

𝐹𝑖, 𝑗 Value in the 𝑗-th row and 𝑖-th fixed column of the Halo2 table

𝐴 Set of commitments to the advice columns in Halo2

𝑄 Set of commitments to the fixed columns in Halo2

𝑎𝑖 (𝑋 ) Lagrange polynomial for the 𝑖-th advice column

𝑞𝑖 (𝑋 ) Lagrange polynomial for the 𝑖-th fixed column

𝑄𝐹0 (𝑋 ) Polynomial representing the fixed column containing model weights (𝐹0).

𝑆𝑖 Support set for the 𝑠𝑖s-th row, containing indices of non-zero elements

Pr[...] The probability of the event described within the brackets.

⟨𝑃∗,𝑉 ⟩(𝜙) The interaction between a cheating prover, 𝑃∗, and the verifier, 𝑉 , on a statement 𝜙 .

soutput is either 1 (accept) or 0 (reject).

𝜙 Statement of the ZK proof generation

𝜅 Security parameter

𝜈 (𝜅) A negligible function, which approaches zero faster than any inverse polynomial.

≈ Computational indistinguishability

(two distributions are so similar that no efficient algorithm can distinguish them).

𝑆 (𝜙) The output of a simulator 𝑆 , an algorithm that generates a view indistinguishable

from the real view without knowing the witness

𝑝𝑝𝑡 Probabilistic Polynomial-Time

𝐼 Input vector to a layer

𝑂 Output vector from a layer

𝑂 𝑗 𝑗-th element of the output vector 𝑂

𝜏 Change of Basis (CoB) scalar

{𝜏 (𝑖 ) } Set of CoB scalars for layer 𝑖

𝜏
(𝑖 )
𝑗

CoB scalar for the 𝑗-th neuron in the 𝑖-th layer

𝜏∗ Optimal set of CoB scalars obtained through optimization.

𝑔
(𝑖 )
𝑗

Pre-activation input to the 𝑗-th neuron in layer 𝑖

𝑧
(𝑖 )
𝑗

Activation output of the 𝑗-th neuron in layer 𝑖

𝜙 (𝑥) Activation function in the DNN model

𝑙 (𝜏) Objective function for teleportation optimization

𝜇 Small perturbation scalar used in zero-order gradient approximation methods.

𝜆 Regularization hyperparameter balancing input range minimization and function preservation.

Table 5: Notation Table containing symbols used in the equations
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