
Toxic Decoys: A Path to Scaling Privacy-Preserving
Cryptocurrencies

Christian Cachin

University of Bern

Bern, Switzerland

christian.cachin@unibe.ch

François-Xavier Wicht

University of Bern

Bern, Switzerland

francois-xavier.wicht@unibe.ch

Abstract
Anonymous cryptocurrencies attracted much attention over the

past decade, yet ensuring both integrity and privacy in an open

system remains challenging. Their transactions preserve privacy

because they do not reveal on which earlier transaction they de-

pend, specifically which outputs of previous transactions are spent.

However, achieving privacy imposes a significant storage overhead

due to two current limitations. First, the set of potentially unspent

outputs of transactions grows indefinitely because the design hides

cryptographically which one have been consumed; and, second,

additional data must be stored for each spent output to ensure in-

tegrity, that is, to prevent that it can be spent again. We introduce a

privacy-preserving payment scheme that mitigates these issues by

randomly partitioning unspent outputs into fixed-size bins. Once

a bin has been referenced in as many transactions as its size, it is

pruned from the ledger. This approach reduces storage overhead

while preserving privacy. We first highlight the scalability benefits

of using smaller untraceability sets instead of considering the entire

set of outputs, as done in several privacy-preserving cryptocurren-

cies. We then formalize the security and privacy notions required

for a scalable, privacy-preserving payment system and analyze how

randomized partitioning plays a key role in both untraceability and

scalability. To instantiate our approach, we provide a construction

based on Merkle trees, which ensures efficient argument systems

and easy pruning of the state. We finally show the storage benefits

of our scheme and analyze its resilience against large-scale flooding

attacks using empirical transaction data.

1 Introduction
In the cryptocurrency transaction layer, untraceability means that a

transaction hides which funds it transfers or “spends,” in the sense

that the origin of the funds remains hidden among earlier trans-

actions [21, 24, 28, 42]. In other words, untraceability consists in

spending a “coin” anonymously among a group called the untrace-
ability set. Currently there exist two common ways of providing

this feature. One is to actively select a subset of outputs from past

transactions as the untraceability set and prove ownership of a

coin within this subset, usually referred to as a ring [34]. In this

case, the selected outputs explicitly form the untraceability set, one

output is actually spent, and the others are referred to as decoys.
The other way is to prove existence and ownership of the coin in

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(4), 926–943
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0165

zero-knowledge over the whole set of outputs created so far. This

means that all outputs that exist in the ledger implicitly form the

untraceability set. The second technique offers strictly greater pri-

vacy guarantees [18, 37, 39]. The first approach has been adopted by

Monero and the second by Zcash, the two most prominent privacy-

preserving cryptocurrencies.

Both systems nonetheless share at least two current limitations

that impact their scalability and long-term viability.

(1) The set of (potentially) unspent outputs grows indefinitely,

since transactions do not reveal which of earlier transaction

outputs are spent. As a result, the number of outputs included

in the system keeps increasing over time.

(2) Additional cryptographic data must be produced as part

of each transaction to prevent double-spending. This data

that includes the so-called “nullifiers” also grow indefinitely.

Deleting any of this would open the door to double-spending.

However, these limitations hold only for an unstructured set of

past outputs. We now show using an example how structuring the

data mitigates the above limitations. Consider two independent

transactions 𝑡𝑥1 and 𝑡𝑥2 in Figure 1. The first transaction spends

output 𝑜1, and the second one spends 𝑜2. In this example, 𝑜1 and 𝑜2
mutually serve as decoys for each other in 𝑡𝑥2 and 𝑡𝑥1 respectively

(highlighted with dotted edges in the figure).

o1

o2

tx1

o1

o2

tx2

Figure 1. Illustration of two independent transactions with
𝑜1 and 𝑜2 as the sources of transactions 𝑡𝑥1 and 𝑡𝑥2 (linked
with hard edges). Outputs 𝑜1 and 𝑜2 are decoys (linked with
dotted edges) for 𝑡𝑥2 and 𝑡𝑥1.

While 𝑡𝑥1 and 𝑡𝑥2 cannot be traced to 𝑜1 and 𝑜2 directly, they

jointly reveal that both𝑜1 and𝑜2 have been spent, as each output can

only be spent once. Consequently, these outputsmust not be used as
decoys for subsequent transactions. Otherwise, future transactions

that reference these decoys would be partially deanonymized. Such

degradation of privacy through decoy pruning has been previously

studied by Egger et al. [18] and by Vijayakumaran [37]. We refer

to outputs that have exhausted their untraceability potential like

this as toxic, since using them as decoys would poison transactions

by reducing their privacy guarantees.

926

https://orcid.org/0000-0001-8967-9213
https://orcid.org/0009-0005-6090-7901
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0165

Toxic Decoys Proceedings on Privacy Enhancing Technologies 2025(4)

In this paper, we do not see this issue as a challenge but rather

as the key to scalability. By structuring the set of outputs into fixed-

size groups that serve as independent untraceability sets, which we

call bins, we ensure two properties:

(1) bins can be pruned once they have been referenced by 𝑚

transactions,𝑚 being the size of bins; and

(2) pruning does not reveal which of the past transactions has

spent which output, preserving untraceability.

This approach has the potential to limit the growth of the output

set and eliminate the impact of toxic decoys. However, even though

this solution looks benign, several points must be addressed. Those

aspects are best summarized by outlining the weak spots of decoy

sampling. To better understand the risks associated with decoy

selection, we summarize four potential attacks from the literature,

which we classify as passive and active attacks.

(1) Sampling discrepancy (passive): If the sampling algorithm

picks decoys uniformly at random over the whole ledger,

there is a divergence between the actual spending distri-

bution and the decoy-sampling distribution. An adversary

can use this divergence to infer probabilistically that ring

members outside the spending distribution are likely decoys.

Although the spending distribution is unknown, an adver-

sary can approximate it (e.g., using the age of outputs) to

realistically mount attacks [28]. If the partitioning algorithm

simply groups outputs uniformly over the whole set, we face

the same problem.

(2) Graph decomposition (passive): In some cases, an adversary

can exploit the structure of the transaction graph to deter-
ministically prune ring members of past transactions [18, 37].

This attack identifies toxic decoys and removes them from

the untraceability set. While partitioning is a potential so-

lution to this, it is crucial that groups of outputs remain

immutable over their lifespan. If an output is assigned to

a group of toxic decoys, any transaction using that group

would be completely traceable.

(3) Flooding attack (active): An adversary can artificially create

transaction outputs to flood the ledger. Any ring including

adversarial outputs has thus a smaller untraceability set (for

the adversary) [12, 30]. Partitioning the set of outputs greatly

increases this risk since an adversary can simply target a

specific bin and flood it as shown in Figure 2a.

(4) Pattern generation (active): Using the above vulnerabilities,

an adversary can judiciously create transaction outputs to

generate favorable deanonymization patterns, according to

passive attacks.

To address these scalability and privacy challenges, we propose

a privacy-preserving payment scheme based on output partition-

ing. Our approach ensures that outputs are grouped in a way that

minimizes adversarial interference. Specifically, we introduce the

following key ideas:

• Outputs are periodically partitioned into fixed-size groups

that remain unchanged throughout their lifespan. This ap-

proach minimizes probabilistic inferences since outputs pro-

duced in the same period usually share the same spending

distribution.

o4

o3

o2

o1

o8

o7

o6

o5

o12

o11

o10

o9

(a)

o12

o6

o9

o5

o4

o1

o11

o8

o3

o10

o7

o2

(b)

Figure 2. On the left, an adversary targets a bin containing
output 𝑜5 by submitting transactions to the ledger. The trans-
actions produce 𝑜6, 𝑜7, 𝑜8, which belong to the adversary. Thus,
𝑜5 loses untraceability in the adversary’s view. On the right,
after shuffling outputs across bins, the adversary has a uni-
form number of outputs in each bin, reducing its ability to
flood a single bin.

• The partitioning algorithm randomly assigns outputs to bins

as shown in Figure 2b, which prevents an adversary from

predicting the bin assignment of each output. This minimizes

the risk of targeted flooding and deanonymization attacks.

• Once a group has been referenced in as many transactions

as its size, it is considered toxic and may be pruned, reducing

storage overhead without compromising untraceability of

subsequent transactions.

In summary, our contributions are as follows.

• Wehighlight significant scalability benefitswhen using smaller

untraceability sets, as opposed to privacy-preserving cryp-

tocurrencies that consider the entire set of outputs for un-

traceability.

• We formalize the security and privacy properties required

for a scalable, privacy-preserving cryptocurrencies.

• We analyze randomized partitioning schemes and show how

crucial this property is for both untraceability and scalability.

• We provide a construction based on Merkle trees, which

eases scalability over time and allows for efficient argument

systems.

• We quantify the storage savings achieved by our scheme

based on real transaction data.

• We analyze the presumed flooding attack of March 2024 in

Monero using our scheme and show the dynamic resilience

it can offer.

• We discuss open problems in privacy-preserving cryptocur-

rencies and suggest potential solutions using our scheme.

The remainder of this paper is structured as follows. In Section 2,

we review related work. Section 3 introduces the necessary crypto-

graphic primitives and formalizes the system model. In Section 4,

we define the security and privacy properties required for a scalable

privacy-preserving payment scheme. Section 5 presents our main

construction, leveraging partitioning and Merkle-trees to ensure

storage efficiency while maintaining untraceability. In Section 6,

we assess how partitioning and pruning techniques perform on a

live system using Monero transaction data. In Section 7, we ana-

lyze the resilience of our scheme against the presumed flooding

927

Proceedings on Privacy Enhancing Technologies 2025(4) Cachin and Wicht

attack of Monero in March 2024. Section 8 explores practical con-

siderations and potential optimizations. Finally, Section 9 outlines

deployment paths in the two most prominent privacy-preserving

cryptocurrencies – Monero and Zcash.

2 Related work
Previous works have sought to address the scalability challenges of

privacy-preserving cryptocurrencies through various means. Some

approaches focus on reducing the size of individual components [4],

while others leverage compact data structures [5] or even propose

entirely different system designs [7, 17, 19].

One notable example is QuisQuis [19], which introduces a pri-

vate account-based ledger where the ledger size scales linearly with

the number of accounts but remains constant with respect to trans-

actions. However, a significant drawback of this approach is that

clients must scan the entire ledger to determine their account status.

This requirement not only imposes a computational burden but

also exposes the system to denial-of-service attacks. Specifically,

malicious users can repeatedly include honest users’ accounts as

decoys in transactions, effectively preventing them from accessing

their own funds.

Another line of work by Chow et al. [14] presents a sustain-

ability framework for ring-based anonymous systems, addressing

the problem of ever-growing unspent outputs. Their solution inte-

grates a garbage collection mechanism based on transaction graph

structure alongside a sampling strategy that prioritizes outputs of

the same age. Notably, their pruning condition aligns with the ob-

servations made in our introduction, yet they rigorously establish

and prove it through a graph-theoretic argument. Despite these

strengths, their approach suffers from structural weaknesses due to

deterministic partitioning. In particular, an adversary can degrade

anonymity by flooding a partition with their own outputs, effec-

tively isolating honest users and making their transactions easily

distinguishable. Additionally, their scheme lacks a mechanism to

ensure balanced partitions, which can result in skewed anonymity

sets and diminished privacy guarantees.

Möser et al. [28] informally suggest partitioning the set of out-

puts as another way to circumvent attacks that exploit the sampling

discrepancy outlined in the introduction. They propose randomiz-

ing output assignment using the current block header. While this

technique introduces an element of randomness, it remains suscep-

tible to adversarial manipulation, as block headers are predictable

and prone to adversarial bias. Moreover, their approach does not

acknowledge the key benefit of partitioning, namely the possibility

of pruning outputs once all elements in a bin have been spent. In

contrast, our scheme circumvents several issues – sampling dis-

crepancy, storage overhead and flooding attacks – by randomly

partitioning outputs using unbiased randomness.

In a similar vein,Manevich et al. [27] propose a privacy-preserving
scheme based on private ledger partitions. This partitioning mech-

anism leverages verifiable randomness derived from protocol par-

ticipants, enhancing robustness against adversarial influence. This

method enables an operator to distribute operations out-of-band

among participants while recording only an encrypted aggregate

signature and a pseudo-random identifier on the global ledger. By

aggregating participant signatures, encrypting themwith a symmet-

ric key, and deriving partition identifiers through a deterministic

function, this approach prevents non-participants from deducing

transaction details while still allowing authorized parties to verify

integrity.

Finally, another related suggestion of Boneh et al. [6] employs

binning to improve the efficiency of leader election. This work

highlights the crucial role of randomization in partitioning and

underscores its significance in maintaining fairness and security.

3 Preliminaries
Notation. The concatenation of two elements 𝑎 and 𝑏 is denoted

by 𝑎∥𝑏. Sampling a uniformly random element 𝑥 from a set 𝑆 is

denoted by 𝑥 ←$ 𝑆 . Let 𝜆 denote a security parameter. A function

negl(𝜆) : N → R+ is negligible if for every positive polynomial

poly(𝜆), there exists a 𝜆0 ∈ N, such that for all 𝜆 > 𝜆0: 𝜀 (𝜆) <
1

poly(𝜆) . The notation 𝑥 ← A(·) refers to the output of a (potentially
probabilistic) algorithmA. We denote by shuffle

(
𝑙, rnd

)
the random

shuffling of 𝑙 based on randomness rnd.

Standard primitives. We use standard cryptographic tools, in-

cluding commitment schemes, non-interactive argument systems,

and Merkle trees. Definitions of these primitives appear later in

Section 5.

Randomness beacon. Each invocation of the partitioning algo-

rithm uses a fresh public randomness rnd. Various methods exist

to generate such randomness, and extensive research explores dif-

ferent approaches [10, 26, 33]. Surveys on the topic include works

by Choi et al. [13] and Kavousi et al. [22].

Public ledger. We assume a public ledger Λ, also known as a

blockchain, hosting a privacy-preserving cryptocurrency. Users

freely join the network as:

(1) clients initiating and receiving transactions, and

(2) validators verifying transactions and securing the blockchain.

Transactions transfer cryptocurrency units between users by con-

suming (spending) inputs and producing (creating) new outputs.

Each output is linked to a public key pk, and spending it requires

knowledge of the corresponding secret key sk. We use 𝑜 to denote

inputs and outputs, irrespective of the underlying ledger model

(e.g., UTXOs or account states). Validators order transactions and

maintain the state of the ledger using a Byzantine fault-tolerant [9]

and sybil-resistant [1, 23, 29] atomic broadcast protocol, satisfying:

• Validity: If a correct process 𝑝 broadcasts a transaction 𝑡𝑥 ,

then 𝑝 eventually delivers 𝑡𝑥 .

• No duplication: No correct process delivers the same trans-

action more than once.

• Integrity: If a correct process delivers a transaction 𝑡𝑥 with

sender 𝑝 , and 𝑝 is correct, then 𝑡𝑥 was previously broadcast

by 𝑝 .

• Agreement: If some correct process delivers a transaction

𝑡𝑥 , then every correct process eventually delivers 𝑡𝑥 .

• Total order: If two correct processes deliver transactions

𝑡𝑥1 and 𝑡𝑥2, they do so in the same order.

928

Toxic Decoys Proceedings on Privacy Enhancing Technologies 2025(4)

Moreover, temporarily unordered transactions remain in a buffer

and we assume that an incentive mechanism is embedded in the

protocol to reward honest validators.

Overview. Our scheme proceeds in multiple epochs. Each epoch

consists of the following steps.

(1) At the beginning, several transactions generate new outputs,

which lie in the transaction buffer until the end of the current

epoch.

(2) At that time, outputs are randomly partitioned into 𝑘 distinct

bins.

(3) Users can then spend their outputs by referencing the corre-

sponding bin and proving they know the secret for one of

the outputs in said bin.

(4) Once a bin has been referenced as many times as its size, the

bin can be pruned from the state. A partition expires once

its 𝑘 bins have been pruned.

4 Characterization
A scalable privacy-preserving payment scheme SPS allows secure

and private transactions over the ledger Λ while enabling the prun-

ing of outdated bins, thus improving scalability. It is composed of

algorithms executed by two different types of parties: clients and

validators. The scheme begins with a setup phase, during which

public parameters pp are generated based on a security parame-

ter 𝜆. Users and validators generate key-pairs (sk, pk) for them to

securely identify on the network. The initial state of the system is

also composed of a few outputs, previously created and partitioned

into a single bin, i.e., 𝑘 = 1. A typical transaction is a transfer of

ownership of spent outputs to newly created ones, while revealing

a nullifier that prevents double-spending. For a transaction to be

valid, spenders must provide a proof of ownership 𝜋 of their out-

puts, the value of the spent outputs must match the value of the

created ones, and the nullifiers must not collide with existing ones.

The newly created outputs remain unordered until the next round

of atomic broadcast. At this occasion, validators partition the new

outputs using fresh randomness.

We moreover differentiate between probabilistic and determinis-

tic algorithms. Probabilistic algorithms rely on internally generated

randomness, producing varying outputs for the same input, whereas

deterministic algorithms always yield identical outputs for identi-

cal inputs. Note that the partitioning algorithm is a deterministic

algorithm but it takes randomness as input.

While our design incorporates elements that could be integrated

into existing cryptocurrencies (as we discuss in later sections), we

present it as a complete, standalone scheme for several important

reasons. The pruning mechanism we introduce fundamentally in-

teracts with core security properties including double-spending

prevention and privacy guarantees (untraceability). These inter-

actions require careful formal analysis that would be difficult to

capture if presented merely as an extension or add-on. We now

formally define the syntax and security properties of SPS through

several notions – double-spending, unpredictability, untraceability,

scalability, confidentiality and non-slanderability.

Definition 4.1 (Scalable privacy-preserving payment scheme). A
scalable privacy-preserving payment SPS scheme consists in eight

algorithms:

•
(
𝑝𝑝, st

0

)
← Setup

(
1
𝜆
)
is a probabilistic algorithm that takes

the security parameter 𝜆, returns the public parameters pp
and the initial state st

0
. The public parameters pp are implicit

input to the following algorithms.

•
(
sk, pk

)
← KeyGen(·) is a probabilistic algorithm that re-

turns a private and public key-pair.

•
(
𝑜, nul

)
← CreateOutput(pk, amt) is a probabilistic algo-

rithm that takes as input a public key pk, an amount amt,
returns a nullifier nul, and an output 𝑜 .

• P ← Partition(rnd,𝑂, 𝑘) is a deterministic algorithm that

takes as input a random value rnd, a set of outputs 𝑂 , an in-

teger 𝑘 , and returns a partition of 𝑘 bins P = {bn1, . . . , bn𝑘 }
over 𝑂 .

•
(
𝜋, nul

)
← Spend(sk, 𝑜, bn) is a probabilistic algorithm that

takes as input a secret key sk, an output 𝑜 , a bin bn, returns
a proof 𝜋 , and a nullifier nul.
• {0, 1} ← Link(bn, nul, nul′) is a deterministic algorithm that

takes as input a bin bn, nullifiers nul and nul′, and returns

either 0 or 1.

• {0, 1} ← Verify(st, bn, 𝜋, nul) is a deterministic algorithm

that takes as input the state st, a bin bn, a proof 𝜋 , a nullifier
nul, and returns either 0 or 1.

• {0, 1} ← Prune(bn, {𝜋𝑖 }𝑚𝑖=1, {nul𝑖 }𝑚𝑖=1) → {0, 1} is a deter-

ministic algorithm that takes as input a bin bn, a set of𝑚
proofs {𝜋𝑖 }𝑚𝑖=1, a set of 𝑚 nullifiers {nul𝑖 }𝑚𝑖=1, and returns

either 0 or 1.

The first notion we define is probably the most important in any

cryptocurrency: double-spending. Double-spending occurs when

a user attempts to spend the same output more than once. In a

privacy-preserving payment scheme, preventing double-spending

is challenging since transactions do not explicitly reveal which

output has been spent. Instead, the system must ensure that each

output can only be spent once without compromising privacy. This

is typically achieved using nullifiers, which act as unique, one-

way markers for spent outputs. A secure scheme must guarantee

that no adversary can produce two valid spending proofs for the

same output with two nullifiers that do not link. We formalize this

requirement in the following experiment.

Definition 4.2 (Double-Spending). An SPS scheme prevents double-

spending by ensuring that no output is spent more than once.

Formally, an adversary A wins the double-spending experiment

DSExp(A, 𝜆, 𝑛, 𝑘) if it succeeds in producing two valid proofs by

referencing the same output.

The experiment proceeds as follows:

Setup. The challenger C runs the setup algorithm pp← Setup

(
1
𝜆
)

and creates 𝑛 outputs 𝑂 , partitioned into 𝑘 bins using ran-

domness rnd, i.e.,P := {bn1, . . . , bn𝑘 } ← Partition(rnd,𝑂, 𝑘) .
Double-spending. The adversaryA receives pp,𝑂,P and attempts

to produce two valid spending proofs (𝜋1, nul1) and (𝜋2, nul2)
for the same output 𝑜 in bin bn𝑖 , i.e.,

(𝜋1, nul1), (𝜋2, nul2) ← A(𝑂,P).
929

Proceedings on Privacy Enhancing Technologies 2025(4) Cachin and Wicht

Verification. The adversary A wins if

Verify(bn𝑖 , 𝜋1) = Verify(bn𝑖 , 𝜋2) = 1 ∧ Link(nul1, nul2) = 0.

An SPS is double-spending resistant if no probabilistic polynomial-

time adversary A can win this experiment with greater than negli-

gible probability:

Pr

[
DSExp(A, 𝜆, 𝑛, 𝑘)

]
≤ negl(𝜆).

Furthermore, as mentioned in the preamble of this work, a par-

titioning algorithm must be unpredictable. As we will see more

formally, an SPS is unpredictable, if an adversary cannot predict

to which bin an output is going to get assigned. In more detail, we

say a partitioning algorithm is unpredictable if the adversary has

only a negligible advantage of winning the following experiment.

The game starts with the setup algorithm. The adversary takes as

input the public parameters pp, a set of outputs 𝑂 , the partitioning

parameter rnd 𝑘 , and outputs a partition index 𝑖 and an output

𝑜 ∈ 𝑂 . The partitioning algorithm is ran with the random value

rnd, the set of outputs 𝑂 , and the value 𝑘 . The algorithm outputs a

partition {bn1, . . . , bn𝑘 } and the adversary wins the experiment if

the output, 𝑜 , is in the bin bn𝑖 of the given index 𝑖 .

Definition 4.3 (Unpredictability). We denote the unpredictability

experiment with adversary A, security parameter 𝜆 and for all

𝑛, 𝑐 ∈ N by Unpred(A, 𝜆, 𝑛, 𝑘). The experiment is played between

an adversary A and a challenger C, proceeding as follows:

Setup. The challengerC runs the setup algorithm pp← Setup

(
1
𝜆
)
,

and creates 𝑛 outputs of arbitrary denominations

𝑂 := {𝑜 | 𝑜 ← CreateOutput(pk, ·)}, such that |𝑂 | = 𝑛.

It sends the public parameters pp and the set of outputs 𝑂

to the adversary A.

Prediction. The adversary A takes the security parameter 𝜆, the

public parameters pp, the of outputs 𝑂 , and the partitioning

parameter 𝑘 and outputs an index 𝑖 and an output 𝑜 , i.e.,

(𝑖, 𝑜) ← A(1𝜆, pp,𝑂, 𝑘).
Challenge. The challenger C generates the randomness rnd←$

Z∗𝑞 and runs the partitioning algorithm on 𝑂 using rnd and

the parameter 𝑘 , i.e.,

P := {bn1, . . . , bn𝑘 } ← Partition(rnd,𝑂, 𝑘) .
The adversary A wins if the output 𝑜 is placed in the pre-

dicted bin bn𝑖 , i.e., if 𝑜 ∈ bn𝑖 .
An SPS is 𝑘-unpredictable if no probabilistic polynomial-time adver-

saryA wins this experiment with greater than negligible advantage.

That is, for all A, for any 𝑛 ≥ 𝑘 ≥ 2, we have

Pr

[
Unpred(A, 𝜆, 𝑛, 𝑘)

]
≤ 1

𝑘
+ negl(𝜆),

where negl(𝜆) is a negligible function in the security parameter 𝜆.

The main privacy guarantee provided by our scheme is untrace-
ability – the property that an adversary cannot determine which

output was spent from within a bin. We formalize this notion via

the following experiment.

The adversary begins by corrupting 𝑐 out of the 𝑛 outputs. The

challenger C then runs the partitioning algorithm and provides the

resulting partition P to the adversary. The adversary then selects a

bin with the largest number of corrupted outputs – as to maximize

its chance of guessing which outputs will be spent in the next step –

and thus the smallest number 𝛽 of honest outputs.

If 𝛽 is 1, the adversary immediately wins the experiment. If 𝛽 is 0,

it immediately fails. Otherwise, the challenger uniformly selects one

of the 𝛽 honest outputs in bn, denoted 𝑜 , and spends it, producing

a corresponding proof 𝜋 and nullifier nul.
The adversary receives 𝜋 and nul, and outputs a guess 𝑜 ′ as to

which honest output was spent. It wins the experiment if 𝑜 ′ = 𝑜 .

Definition 4.4 (Untraceability). We denote the untraceability ex-

periment with adversaryA, security parameter 𝜆 and for all𝑛, 𝑐, 𝑘 ∈
N by Untrace (A, 𝜆, 𝑛, 𝑐, 𝑘). The experiment is played between an

adversary A and a challenger C, proceeding as follows:
Setup. The challengerC runs the setup algorithm pp← Setup

(
1
𝜆
)
,

creates 𝑛 outputs of arbitrary denominations 𝑂 , such that

|𝑂 | = 𝑛.

It sends the public parameters pp and the set of outputs 𝑂

to the adversary A.

Corruption. The adversary A corrupts a set of 𝑐 outputs, i.e.,

𝐶 ← A(1𝜆, pp,𝑂, 𝑅, 𝑘), such that |𝐶 | = 𝑐.

Partitioning. The challenger C generates rnd ←$ Z∗𝑞 runs the

partitioning algorithm on 𝑂 , gets the following partition P

P := (bn1, . . . , bn𝑘) ← Partition(rnd,𝑂, 𝑘),

and sends the partition P to the adversary A.

Selection. The adversaryA selects a bin bn𝑖 from the partition P
with 𝛽 honest outputs bn𝑖 ← A(P) where 𝛽 = |bn𝑖 ∩ 𝑂 |.
The adversary immediately wins if 𝛽 = 1 and fails if 𝛽 = 0.

The adversary sends bn𝑖 to the challenger.

Transaction. The challenger selects an honest output uniformly

at random, i.e., 𝑜 ←$ bn𝑖 ∩𝑂. It then conducts a transaction

using the bin bn𝑖 and obtains

(𝜋, 𝑡) ← Spend(sk𝑜 , 𝑜, bn𝑖) .

The challenger sends the partition the bin bn𝑖 , the proof 𝜋 ,
and the nullifier nul to the adversary.

Challenge. The adversaryA attempts to guess which output was

spent by computing 𝑜 ′ ← A(𝜋, bn𝑖 , nul). The adversary

wins if 𝑜 ′ = 𝑜 .

An SPS is 𝛽-untraceable if no stateful probabilistic polynomial-

time adversary A can win this experiment with greater than negli-

gible advantage. That is, for all A, for any 𝑛, 𝑐 , and 𝑘 , we have

Pr

[
Untrace (A, 𝜆, 𝑛, 𝑐, 𝑘)

]
≤ 1

𝛽
+ negl(𝜆),

where negl(𝜆) is a negligible function in the security parameter 𝜆.

In the introduction, we have highlighted the importance of unpre-

dictability of the partitioning algorithm, especially with regards to

untraceability. Unpredictability guarantees that even an adversary

corrupting a fraction of the outputs cannot systematically place

corrupted outputs into unfavorable configurations for honest users.

This property prevents the adversary from gaining an advantage

in the untraceability experiment.

We show here formally that, if an adversary cannot predict the

placement of any output with better than negligible advantage,

then the distribution of corrupted outputs across the partitioning

930

Toxic Decoys Proceedings on Privacy Enhancing Technologies 2025(4)

remains sufficiently uniform. This ensures that, except with negli-

gible probability, each bin contains a substantial number of honest

outputs, thus maintaining a lower bound on the untraceability pa-

rameter 𝛽 . The following lemma, proved in Appendix B, quantifies

this relationship by establishing a bound on 𝛽 under the assumption

that the scheme is unpredictable.

Lemma 4.5. If an SPS scheme is 𝑘-unpredictable, then it is at most
𝛽-untraceable for any

𝛽 <
𝑛 − 𝑒𝑐
𝑘

,

with high probability, where 𝑒 is Euler’s number, given security pa-
rameter 𝜆, 𝑛 outputs, 𝑘 bins, and at least 𝑐 ≥ 2𝑘 log

2
(𝑘) corrupted

outputs, against any stateful probabilistic polynomial-time adversary
A.

This first lemma highlights the crucial role of unpredictability

in our scheme. In a predictable partitioning scheme, an adversary

only needs to corrupt outputs based on the size of bins. More specif-

ically, it only needs to corrupt
𝑛/𝑘 − 1 outputs to compromise the

untraceability of a specific bin. However, when the partitioning

scheme is unpredictable, the number of corrupted outputs required

to compromise untraceability is 𝑛 − (𝑘 + 1).
The adversary therefore does not gain a significant advantage as

𝑘 increases. This fundamental shift greatly enhances the resilience

of the system against adversarial corruption. Figure 3 illustrates

this effect, demonstrating how increasing 𝑘 leads to a more pro-

nounced difference between predictable and unpredictable parti-

tioning schemes. Due to this, unpredictability grants the scheme the

0 100 200 300
Number of corrupted outputs (c)

0

50

100

150

200

250

β

k = 4 and n = 1000
β1 (unpredictable)
β2 (predictable)
y = 1

0 100 200 300
Number of corrupted outputs (c)

5

10

15

20

β

k = 50 and n = 1000
β1 (unpredictable)
β2 (predictable)
y = 1

Figure 3. Illustration of the impact of corruption over un-
traceability (𝛽) for an unpredictable scheme (𝛽1 depicted with
a solid blue line) and a predictable one (𝛽2 depicted with a
dashed red line)with varying values of𝑘 ∈ {4, 50} and𝑛 = 1000

outputs. An unpredictable scheme is more robust to adver-
sarial corruptions for higher values of 𝑘 .

flexibility to increase the number of bins without a drastic decrease

in untraceability, thus enabling better scalability as we will see with

the next notion.

Typically, scalability is not framed as a security notion, as it is

commonly assessed through performance measurements in non-

adversarial settings. However, in our case, scalability is directly

influenced by adversarial behavior. Specifically, an adversary can

inject transactions that degrade system performance, leading to

denial-of-service or flooding attacks [7, 12]. Given that such at-

tacks pose a realistic threat in decentralized systems, we argue that

scalability must be treated as a security property.

We define scalability as the ability of the scheme to prune bins

with non-negligible probability while preserving its core security

guarantees. Specifically, scalability ensures that, as transactions

are conducted, bins can be removed efficiently without increasing

the adversary’s ability to trace spent outputs. This property is

crucial for maintaining a practical and lightweight system without

compromising untraceability. We now formalize this notion.

Definition 4.6 (Scalability). We denote the scalability experiment

with security parameter 𝜆 by Scale
(
A, 𝜆, 𝑛, 𝑡, 𝑘

)
. The experiment is

played between an adversary A and a challenger C, proceeding as

follows:

Setup. The challenger C runs the setup algorithm pp← Setup

(
1
𝜆
)

creates 𝑛 outputs 𝑂 of arbitrary denominations, and gen-

erates the partitioning randomness rnd. It then runs the

partitioning algorithm on 𝑂 into 𝑘 bins

P := {bn1, . . . , bn𝑘 } ← Partition(rnd,𝑂, 𝑘)

and sends the adversary A the parameters pp, the set of

outputs 𝑂 , the randomness rnd, and the partition P.
Spending. The adversary A conducts 𝑡 transactions, using oracle

access that selects bins uniformly at random from the set of

partitions. Each transaction produces a proof 𝜋 and nullifier

nul

(𝜋𝑖 , nul𝑖) ← Spend(sk𝑜𝑖 , 𝑜𝑖 , bn𝑖), for 𝑖 ∈ [𝑡] .

The adversary then sends the 𝑡 proofs𝜋1, . . . , 𝜋𝑡 and nullifiers

nul1, . . . , nul𝑡 to the challenger.

Pruning. The experiment returns 1 if there exists a bin bn𝑖 in the

partition P where the pruning algorithm outputs 1 for a

subset of the proofs and nullifiers, i.e.,

∃bn𝑖 : Prune(bn𝑖 , {𝜋 𝑗 , 𝑡 𝑗 } 𝑗∈𝑆) = 1, for 𝑆 ⊆ [𝑡] .

An SPS is then scalable if the following conditions hold

(1) the probability of success in the scalability experiment is

non-negligible in the number 𝑡 of transactions. That is, for

all probabilistic polynomial-time adversaries A, there exists

a constant 𝑐 > 0 such that

Pr

[
Scale

(
A, 𝜆, 𝑛, 𝑡, 𝑘

)
= 1

]
≥ 𝑐.

(2) the probability of success in the double-spending experi-

ment before the scalability experiment, DSExp(A, 𝜆, 𝑛, 𝑘)
and after, DSExp∗ (A, 𝜆, 𝑛, 𝑘), remains negligible for all prob-

abilistic polynomial-time adversaries A, such that

Pr[DSExp(A, 𝜆, 𝑛, 𝑘)] − Pr[DSExp∗ (A, 𝜆, 𝑛, 𝑘)] ≤ negl(𝜆) .

(3) the probability of success in the untraceability experiment

before the scalability experiment, Untrace (A, 𝜆, 𝑛, 𝑘, 𝑐) and
after, Untrace∗

(
A, 𝜆, 𝑛, 𝑘, 𝑐

)
remains negligible for all proba-

bilistic polynomial-time adversaries A, such that

Pr[Untrace (A, 𝜆, 𝑛, 𝑘, 𝑐)] − Pr[Untrace∗
(
A, 𝜆, 𝑛, 𝑘, 𝑐

)
] ≤ negl(𝜆) .

The scalability experiment captures the fundamental require-

ment that bins must be pruned with non-negligible probability in

the number of transactions without compromising double-spending

and untraceability. To analyze this probability formally, we examine

the probability that a given bin reaches the pruning threshold, i.e.,

931

Proceedings on Privacy Enhancing Technologies 2025(4) Cachin and Wicht

is referenced as many times as its size. Since we assume outputs to

be evenly distributed, the size of each bin is simply
𝑛/𝑘.

In what follows, we establish a probabilistic bound on the success

of the pruning condition. This bound is derived under the assump-

tion that transactions reference bins uniformly at random, which is

encapsulated in the above definition. Consequently, we model the

number of times each bin is referenced as a binomially distributed

random variable and derive the probability that at least one bin

reaches the pruning threshold. The following lemma provides the

formal derivation of this result and we give more details on how to

derive this bound in the corresponding proof in Appendix B.

Lemma 4.7 (Probability of successful pruning). Let an SPS
operate with 𝑛 outputs partitioned into 𝑘 bins. Assume that transac-
tions reference bins uniformly at random, with probability 𝑝 = 1/𝑘 for
any bin being referenced in a transaction. We denote by 𝑡 the number
of transactions. Then, the probability that at least one bin becomes
prunable after 𝑡 transactions is given by

Pr

[
∃𝑖 ∈ {1, . . . , 𝑘} : 𝑋𝑖 =

𝑛

𝑘

]
= 1 − 𝑝𝑘 ,

where

𝑝 =

𝑛
𝑘
−1∑︁

𝑚=0

Pr[𝑋 =𝑚], with 𝑋 ∼ 𝐵

(
𝑡,
1

𝑘

)
.

To further illustrate this result, we analyze how the probability

of successful pruning evolves as the size of the partition, 𝑘 , varies.

Figure 4 presents this relationship for different values of 𝑘 , which

showcases the direct impact of partitioning on the scalability of the

scheme. As expected, increasing 𝑘 accelerates the pruning probabil-

ity, allowing bins to reach their threshold for removal more rapidly.

Conversely, smaller values of 𝑘 lead to longer retention times for

each bin, requiring a greater number of transactions before a bin

can be pruned. This result shows the critical trade-off between

untraceability and scalability: increasing 𝑘 enhances efficiency by

accelerating pruning, but at the cost of reducing the untraceability

set size per partition. However, as shown in Lemma 4.5, random-

ization mitigates this drawback by preventing structured attacks

and ensuring that each output’s placement remains resistant to

adversarial inference. Randomization is thus a crucial requirement

for output partitioning and the optimal choice of 𝑘 must strike a bal-

ance between maintaining strong privacy guarantees and achieving

a scalable ledger.

Another aspect that has an impact on untraceability is confiden-
tiality, i.e., hiding the transacted amounts. The SPS scheme works

with outputs of different denominations. However, without confi-

dentiality, that means that the partitioning should group outputs

with the same denomination in the same bin. This can become

challenging for outputs of rare or unique denomination. Knowing

this, an adversary could attempt to conduct transactions to produce

unique amounts to isolate a target. A workaround is to obfuscate

the amount of each output.

We call this notion confidentiality and define it under an experi-

ment, in which the adversary outputs two distinct denominations

𝑑0 and𝑑1. The challenger picks a random bit 𝑏 and creates an output

with denomination 𝑑𝑏 . The adversary wins this experiment if it is

able to guess which of the two denominations has been chosen.

200 300 400 500 600 700 800 900 1000

Number of Transactions (t)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
un

in
g

pr
ob

ab
ili

ty

Scalability over t transactions

k = 8, R = 125
k = 10, R = 100
k = 20, R = 50
k = 25, R = 40
k = 40, R = 25
k = 50, R = 20
k = 100, R = 10

Figure 4. Scalability impact of varying the number of bins
𝑘 (and thus the pruning threshold 𝑅) for a fixed number of
outputs 𝑛 = 1000. Each curve corresponds to a different value
of 𝑘 ∈ {8, 10, 20, 25, 40, 50, 100}, and shows how the probability
of a bin becoming prunable evolve as transactions occur. Re-
ducing 𝑘 leads to greater retention time with curves shifting
to the right.

Definition 4.8 (Confidentiality). We denote the confidentiality

experiment with security parameter 𝜆 by Confid(A, 𝜆). The ex-

periment is played between an adversary A and a challenger C,
proceeding as follows:

Setup. The challenger runs the setup algorithm pp← Setup

(
1
𝜆
)

and sends the public parameters pp to the adversary A.

Choice. The adversary A selects two distinct denominations

amt0, amt1 ← A(pp)
and submits them to the challenger.

Selection. The challenger flips a random bit 𝑏 ←$ {0, 1} and cre-

ates an output with denomination amt𝑏

𝑜 ← CreateOutput(pk, amt𝑏).
The challenger provides 𝑜 to the adversary A.

Challenge. The adversary A outputs a guess 𝑏′ ← A(𝑜, pp) . It
wins this experiment if 𝑏′ = 𝑏.

An SPS is confidential if no probabilistic polynomial-time adver-

saryA wins this experiment with greater than negligible advantage.

That is, for all A, we have:

Pr

[
Confid(A, 𝜆) = 1

]
≤ 1

2

+ negl(𝜆),

where negl(𝜆) is a negligible function in the security parameter 𝜆.

Finally, a widespread notion in the literature for linkable ring

signatures is non-slanderability. Informally, this means that an

adversary cannot produce a nullifier that links to an output it does

not know the secret of. In this experiment, the challenger sends an

output 𝑜 to the adversary. A then attempts to produce a nullifer

for 𝑜 . In the end, the challenger spends the output with nullifier

nul′ and the adversary wins if Link(nul′, nul) = 1.

Definition 4.9 (Non-Slanderability). Wedenote the non-slanderability

experiment with security parameter 𝜆 by NonSland(A, 𝜆). The
experiment proceeds as follows between an adversary A and a

challenger C:
Setup. The challenger C generates the public parameters pp ←

Setup

(
1
𝜆
)
and creates an output of arbitrary denomination

amt: 𝑜 ← CreateOutput(pk, amt) . C sends the public pa-

rameters pp and the output 𝑜 to the adversary A.

932

Toxic Decoys Proceedings on Privacy Enhancing Technologies 2025(4)

Challenge. The adversary A produces a nullifier nul for the out-
put 𝑜 : nul← A(𝑜, pp).

Spend. The challenger C spends the output 𝑜 and produces a proof

𝜋 and a nullifier nul′: (𝜋, nul′) ← Spend(sk, 𝑜). The adver-
sary wins this experiment if both nullifiers nul′ and nul are
linked: 1← Link(nul′, nul) .

An SPS is non-slanderable if no probabilistic polynomial-time adver-

saryA wins this experiment with greater than negligible advantage.

That is, for all A, we have:

Pr

[
NonSland(A, 𝜆)

]
≤ negl(𝜆),

where negl(𝜆) is a negligible function in the security parameter 𝜆.

5 Constructions
In this section, we first present cryptographic building blocks and

second our tree-based construction. We prove its security in Appen-

dix D. Finally, we discuss other potential instantiations and their

weaknesses compared to our main construction.

5.1 Building blocks
Our construction in Section 5.2 leverages three fundamental cryp-

tographic primitives: commitment schemes, argument systems, and

Merkle trees. We present each of these building blocks briefly below

and defer their formal security properties to Appendix C.

A commitment scheme allows users to commit to a message

while keeping it hidden to others. They can later reveal the com-

mitted value, which cannot be changed once it is committed to.

Definition 5.1 (Commitment scheme). A commitment scheme is

a tuple of two algorithms (Setup,Commit):
• (pk, sk) ← Com.KeyGen(1𝜆) is a probabilistic algorithm

that takes as input the security parameter 1
𝜆
, outputs a public

and private key (pk, sk).
• Com← Com.Commit(pk,𝑚, 𝑟) is a deterministic algorithm

that takes as input a public key pk, a message𝑚, a blinding

factor 𝑟 , and outputs a commitment 𝑐 .

• {0, 1} ← Com.Open(sk,𝑚, 𝑟) is a deterministic algorithm

that takes as input a secret key sk, a message𝑚, a blinding

factor 𝑟 , and returns either 0 or 1.

We furthermore require commitments to be binding and hiding.

Binding means that it must be hard to find two distinct messages

𝑚0 and𝑚1 that open to the same commitment Com. Hiding means

that the commitment does not reveal any information about the

message 𝑚. We also use non-interactive argument system for a

language LR with witness relation R.

Definition 5.2 (Non-Interactive Argument System). Anon-interactive

argument system ARG for (𝑥,𝑤) ∈ RL , where 𝑥 is a public state-

ment about an NP language LR defined by the relation R and𝑤 is

the witness, consists of the following algorithms:

• pp← ARG.Setup(1𝜆) is a probabilistic algorithm that takes

as input the security parameter 1
𝜆
and outputs the public

parameters pp.
• 𝜋 ← ARG.Prove(𝑥,𝑤) is a probabilistic algorithm that takes

as input the statement 𝑥 and the witness 𝑤 and outputs a

proof 𝜋 .

• {0, 1} ← ARG.Verify(𝑥, 𝜋) is a deterministic algorithm that

takes as input the statement 𝑥 and the proof 𝜋 and returns

either 0 or 1.

We require ARG to satisfy three standard properties. Complete-

ness ensures that any valid statement 𝑥 with a corresponding wit-

ness 𝑤 always yields a proof 𝜋 such that ARG.Verify(𝑥, 𝜋) = 1.

Knowledge soundness guarantees that no probabilistic polynomial-

time (PPT) adversary can produce a valid proof 𝜋 for a statement

without knowing a corresponding witness. Zero-knowledge re-

quires that the proof 𝜋 does not reveal any information about the

witness𝑤 , beyond the validity of the statement 𝑥 . Finally, we use

Merkle trees to authenticate data and enable efficient membership

proofs.

Definition 5.3 (Merkle tree). AMerkle treeMT is an authenticated
data structure that consists in three algorithms:

• rt ← MT.Init(1𝜆, 𝑋) takes the security parameter 𝜆 and a

list of elements 𝑋 = (𝑥1, . . . , 𝑥𝑛) as inputs, constructs a tree
that stores 𝑥1, . . . , 𝑥𝑛 in the leaves, and finally outputs a root

rt.
• path← MT.Prove(𝑥, 𝑋) takes as input an element 𝑥 , a list𝑋 ,

and outputs the proof path, which can prove that 𝑥 is in 𝑋 .

• {0, 1} ← MT.Verify(𝑥, rt, path) takes as input an element 𝑥 ,

the root rt, a proof path, and outputs either 0 or 1.

5.2 Tree-based construction
In our construction, we use the above standard cryptographic prim-

itives and demonstrate how they effectively accommodate the bin-

ning and pruning logic. First, the partitioning algorithm shuffles the

list of outputs by randomly choosing a permutation using unbiased

randomness rnd. Second, it arranges the shuffled list of outputs

as the leaves of a Merkle tree 𝑇 . Each output is assigned a Merkle

subtree 𝑇 ′
log(𝑘) ⊆ 𝑇 which lies at height log(𝑘) of 𝑇 . Spending an

output involves showing in zero-knowledge that one knows the

opening of a commitment in the path of a Merkle subtree𝑇 ′
log(𝑘) and

disclosing the nullifier nul. Preventing double-spending requires

checking the past nullifiers of the same bin for potential conflicts.

Once𝑚 proofs for a bin of size𝑚 with𝑚 distinct nullifiers have

been recorded, pruning of the𝑚 outputs, proofs and nullifiers is

allowed. We illustrate the partitioning of four outputs with 𝑘 = 2,

using an example. At epoch 𝑒1, four outputs 𝑜1, 𝑜2, 𝑜3 and 𝑜4 are

partitioned and arranged as the leaves of a Merkle tree with root

rt1. As shown in Figure 5, by epoch 𝑒2, both outputs 𝑜1 and 𝑜2 have

been spent. Since this bin has been referenced twice, these two

outputs can be pruned from the ledger (depicted as dashed and

grayed out). Simultaneously, new outputs 𝑜5, 𝑜6, 𝑜7 and 𝑜8 form a

new Merkle tree with root rt2. In this construction, we present

a formal description of our scalable privacy-preserving payment

scheme. Below, we describe the eight core algorithms that consti-

tute our instantiation of the SPS scheme. We assume that the global

state of the system st is initially empty and is subsequently updated

through the consensus mechanism to incorporate newly minted

outputs and nullifiers of spent outputs.

Setup and key generation. The setup algorithm initializes the

system parameters. The key generation algorithm produces public

and secret keys for users, as shown in Figure 6.

933

Proceedings on Privacy Enhancing Technologies 2025(4) Cachin and Wicht

o1 o2 o3 o4

H(o1, o2) H(o3, o4)

rt1

o5 o6 o7 o8

H(o5, o6) H(o7, o8)

rt2

Figure 5. Illustration of our pruning mechanism across
epochs. Initially at epoch 𝑒1, a Merkle tree with root rt1 con-
tained four commitments𝑜1, 𝑜2, 𝑜3 and𝑜4. By epoch 𝑒2, outputs
𝑜1 and 𝑜2 have been pruned (depicted as dashed and grayed
out), leaving only commitments 𝑜3 and 𝑜4 in the original tree,
while a new Merkle tree with root rt2 contains fresh commit-
ments 𝑜5, 𝑜6, 𝑜7 and 𝑜8.

Setup

(
1
𝜆
)

1 : pp
1
← ARG.Setup(1𝜆)

2 : pp← (1𝜆, pp
1
)

3 : st
0
← ∅

4 : return (pp, st
0
)

KeyGen(pp)
1 : parse 1𝜆 from pp

2 : (pk, sk) ← Com.KeyGen(1𝜆)
3 : return (pk, sk)

Figure 6. Algorithms for system initialization and user key
generation.

Creating and spending outputs. Users generate outputs by com-

mitting to a secret key (by passing the public key pk to the commit-

ment scheme), an amount and a randomly chosen nullifier. Spending

an output involves proving in zero-knowledge that one knows the

secret key sk corresponding to the public key pk, the amount amt
and the nullifier nul of a commitment, the amount is in the valid

range, and that the output is contained in the subtree (the bin). The

nullifier is revealed and not kept secret to prevent double-spending.

These algorithms are detailed in Figure 7.

CreateOutput(pk, amt)
1 : nul←$ Z∗𝑞
2 : 𝑜 ← Com.Commit(pk, amt, nul)
3 : return (𝑜, nul)
Spend(sk, 𝑜, nul, bn)
1 : parse bn as

(
𝑇, rt

)
2 : arg← {Com.Open(sk, amt, nul) = 1

3 : ∧ amt ∈ [range]
4 : ∧ path =MT.Prove(𝑜,𝑇)
5 : ∧MT.Verify(𝑜, rt, path)}
6 : 𝜋 ← ARG.Prove((sk, amt) : arg)
7 : return (𝜋, nul)

Figure 7. Algorithms for creating and spending outputs in
the system.

Verification and linking. Verification guarantees the validity of

a proof and ensures that no previously spent nullifier is reused.

Nullifiers are extracted from the global state st. Both verification and
linking, which identifies double-spending by comparing nullifiers,

are depicted in Figure 8.

Verify(st, bn, 𝜋, nul) → {0, 1}
1 : parse {nul𝑖 }𝑛𝑖=1 from st

2 : if ∃nul𝑖 ∈ {nul𝑖 }𝑛𝑖=1 : 1← Link(nul, nul𝑖)
3 : return 0

4 : return ARG.Verify(𝑜, bn, 𝜋)
Link(bn, nul, nul′) → {0, 1}
1 : return nul = nul′

Figure 8. Verification and linking algorithms for ensuring
transaction validity.

Partitioning and pruning. Partitioning involves randomly shuf-

fling outputs and placing them as the leaves of a Merkle tree. In turn,

each bin is a Merkle subtree. Once𝑚 valid proofs and𝑚 nullifiers

corresponding to a bin bn have been recorded, this bin along with

all its outputs and nullifiers can be pruned. At this point, the prun-

ing algorithm returns 1 and the corresponding node can choose

to discard it from its locally replicated state. Figure 9 presents the

formal algorithms for these operations.

Partition(rnd,𝑂, 𝑘)
1 : 𝑙 ← shuffle

(
𝑂, rnd

)
2 : 𝑇 ← MT.Init(𝑙)

3 : {𝑇𝑖 }𝑘𝑖=1 ← for 𝑇𝑖 at height log2 (𝑘)
4 : bn𝑖 ←

(
𝑇𝑖 , rt𝑖

)
,𝑇𝑖 with root rt𝑖

5 : return {bn𝑖 }𝑘𝑖=1
Prune(st, bn, {𝜋𝑖 }𝑚𝑖=1, {nul𝑖 }𝑚𝑖=1)
1 : parse bn as

(
𝑇, rt

)
2 : if |{𝜋𝑖 }𝑚𝑖=1 | ≠ |bn| : return 0

3 : if |{nul}𝑚𝑖=1 | ≠ |bn| : return 0

4 : if ∃𝑖 ∈ [𝑚], Verify(st, bn, 𝜋𝑖) = 0 : return 0

5 : if ∃𝑖, 𝑗 ∈ [𝑚], 𝑖 ≠ 𝑗, Link(bn, nul𝑖 , nul𝑗) = 1 : return 0

6 : return 1

Figure 9. Algorithms for partitioning outputs into bins and
pruning completed bins.

5.3 Other constructions
One can explore alternative authenticated data structures for our

scheme, for example cryptographic accumulators or vector com-

mitments.

934

Toxic Decoys Proceedings on Privacy Enhancing Technologies 2025(4)

Cryptographic accumulators. This data structure is particularly
attractive since accumulators allow each bin to be represented as

a constant-size digest. Yet, when employing accumulators, we en-

counter several challenges. Consider the RSA-based accumulator,

originally introduced by Camenisch and Lysyanskaya [11] and

later refined by Boneh et al. [5] for trustless environments like

blockchains. To ensure its security, the accumulator must be instan-

tiated with a 2048-bit security parameter, which means that each

bin and its associated witness will also be 2048 bits in size. As a

result, its scalability advantage over a Merkle tree (instantiated with

SHA-256) only becomes apparent when bins contain more than

256 outputs. Moreover, RSA accumulators are secure only when

they accumulate primes, which requires additional proofs to verify

the primality of the outputs – a requirement that increases the

proof overhead. Furthermore, to this day, no efficient post-quantum

accumulator constructions are currently known. Finally, despite

mitigations via class-group instantiation [38], RSA accumulators

typically rely on a trusted setup to initialize the RSA modulus.

Vector commitments. Vector commitments (VC) offer a structured

way to authenticate the bins by committing to the randomly shuffled

list of outputs. One possible approach is to commit to the entire

list at once, but doing so would make the pruning of individual

bins difficult and offer little advantage in terms of storage. Another

approach is to instantiate each bin as a separate vector commitment,

allowing outputs within a bin to be referenced more efficiently.

However, this comes with the same drawback as cryptographic

accumulators: the size of each bin would be dictated by the security

parameter, making them quite large. Moreover, most known VC

constructions require a trusted setup unless instantiated using a

class-group of unknown order, which adds further complexity.

6 Performance simulation
We conduct a simulation to evaluate the partitioning and prun-

ing mechanisms in practice. For this purpose, we analyze Monero

transactions over a complete year, spanning the period from May

1, 2024, to April 30, 2025. This section presents our methodology

and findings.

Preliminary storage savings. Monero currently uses ring signa-

tures with a fixed ring size of 16, which sets 𝛽 = 16 in the absence

of corruption, i.e., 𝑐 = 0. Each transaction must explicitly reference

all 16 ring members. In contrast, our scheme requires only one

reference to the bin. Assuming the bin is identified by a 32 B Merkle

tree root as in Section 5, this results in a 480 B saving per trans-

action. Moreover, the transaction size depends only on the proof

size, which grows logarithmically with the bin size under current

zero-knowledge argument techniques [8]. In contrast, using explicit

decoy references leads to a linear growth in transaction size with

the number of decoys. Notably, despite the reduction in transaction

size, the computational cost is about the same, as the underlying

cryptographic operations remain largely similar and are not signif-

icantly affected by the switch from explicit decoy references to bin

references.

Setup. We extract transaction data from the Monero blockchain

using the monerorpc library and export it as a structured CSV file

for analysis. We segment the chain into epochs of 5 blocks each,

corresponding to approximately 10 minutes. This approach strikes

a practical balance: it allows sufficient outputs to accumulate for

effective partitioning, while minimizing the delay during which

newly created outputs remain in the buffer and thus unavailable

for spending. We discuss different strategies and their respective

benefits in Section 8. For this initial simulation, we assume 𝑐 =

0, deferring the analysis of a system under attack to Section 7.

Figure 10 displays the number of outputs observed per epoch across

the simulation period. We enforce a strict untraceability threshold

of 𝛽 ≥ 16 for every epoch, matchingMonero’s current ring size. This

parameter determines the number of bins 𝑘 used for partitioning.

To maintain this threshold as transaction volume fluctuates, we

adjust 𝑘 dynamically by setting 𝑘 = ⌊𝑛/𝛽⌋, in line with Lemma 4.5

for the case 𝑐 = 0. The resulting values of 𝑘 are plotted in Figure 10,

on the 𝑦-axis on the right.

0 5253 10506 15759 21012 26265 31518 36771 42024 47277 52530
Epoch

0

200

400

600

800

1000

1200

1400

N
um

be
ro

fo
ut

pu
ts

(n
)

25

30

35

40

45

50

55

60

N
um

be
ro

fb
in

s
(k

)

Outputs and bins per 5-blocks interval (epoch) with a hard restriction on β = 16

Number of outputs (n)
Number of bins (k)

Figure 10. Distribution of outputs (𝑛) and corresponding
number of bins (𝑘) per 5-blocks interval over the simula-
tion period. The left 𝑦-axis shows the number of outputs,
while the right 𝑦-axis shows the dynamically adjusted num-
ber of bins required to maintain 𝛽 ≥ 16.

Transaction simulation. To simulate realistic transaction spend-

ing patterns, we analyze the Monero dataset chronologically by

epoch. Since Monero’s ring signatures conceal which outputs are

actually spent, we need to simulate which output from previous

epochs is actually spent. We thus create a simulation model that

preserves the authentic structure of Monero transactions using the

real number of inputs per transaction, but that randomly select

outputs from the ledger. The random selection is based on a gamma

distribution that closely aligns with the spending behavior, char-

acterized by a shape parameter of 19.28 and a rate parameter of

1.61, as detailed by Möser et al. [28]. Similarly, the default wallet

application of Monero employs a gamma distribution with the same

parameters for its decoy-sampling distribution. Our simulation ran-

domly selects outputs from previous epochs as inputs and tracks

spent outputs and their corresponding bins. Our approach focuses

on tracking individual outputs rather than sampling bins directly.

This distinction is crucial as it allows us to differentiate between

outputs that are spent and those that become prunable when their

bin reaches the reference threshold. In summary, for each transac-

tion with𝑚 inputs from the dataset, our simulation executes the

following steps:

(1) Randomly selects𝑚 outputs from previous epochs as inputs,

using the true number of inputs from the dataset;

935

Proceedings on Privacy Enhancing Technologies 2025(4) Cachin and Wicht

(2) Marks these outputs as spent;

(3) Updates the reference count for each corresponding bin; and

(4) Marks outputs as prunable once their bin reaches the refer-

ence threshold of 16.

Pruning over time. Figure 11 shows the evolution of the cumula-

tive number of spent outputs and prunable outputs across the 52530

epochs. The gap between the two curves corresponds to outputs

that have been spent but cannot be pruned because their bins have

not been referenced in 16 transactions. This gap remains significant

at the beginning since the random sampling picks outputs that are

close to the current epoch due to the gamma distribution. By the

0 5253 10506 15759 21012 26265 31518 36771 42024 47277 52530
Epoch

0

1

2

N
um

be
ro

fo
ut

pu
ts

×107

0

50

100

150

200

250

N
um

be
ro

ft
ra

ns
ac

tio
nsTransaction count

Number of prunable outputs
Number of spent outputs
Not prunable

Figure 11. Cumulative number of spent and prunable out-
puts over time. The widening gap reflects spent outputs that
cannot yet be pruned because their bin has not reached the
reference threshold of 16.

end of our simulation period, approximately 85% of outputs are

spent. This number aligns with Bitcoin’s statistics, where only a

small portion of outputs remain in the UTXO set [16]. Our results

further indicate that roughly 60% of outputs are prunable. The re-

maining 15 percentage points correspond to spent outputs whose

bins have not yet reached the pruning threshold, and thus cannot be

discarded. As shown in Figure 12, without pruning the number of

outputs would grow to about 779MB, with spent outputs account-

ing for more than 1.5 GB with nullifiers included. By contrast, our

pruning mechanism allows discarding 1.1 GB (nullifiers included),

implying that non-prunable outputs with their nullifiers account

for a mere 446.4MB. This gap illustrates the substantial storage

savings enabled by pruning. Overall, these results demonstrate

that our pruning strategy offers significant scalability gains. This

holds especially for privacy-preserving cryptocurrencies that lack

pruning mechanisms and would have to store over 1.6 GB of data

(896.4+779.1MB) against 349.5MB with pruning. More importantly,

binning and pruning did not have to compromise on privacy in this

case since we were able to maintain an untraceability level of 16.

Discussion. Our simulation results confirm that partitioning and

pruning enable scalable deployment while maintaining the same

level of untraceability as currently set in Monero. First, the system

lets itself naturally partitionned over the multiple epochs while

providing enough outputs to guarantee untraceability to the given

threshold. The adjustment of 𝑘 ensures that the required threshold

𝛽 is consistently enforced without manual tuning. This is easily

enforceable at the protocol level during the consensus mechanism,

a validator would simply compute 𝑘 = ⌊𝑛/𝛽⌋ with 𝛽 being a system

parameter. Second, our simulation shows that pruning enables a 60%

drop in retained outputs and demonstrates the value of integrating

partitioning to enable the pruning logic. Lastly, the partitioning

Total outputs Spent outputs Prunable outputs0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
um

be
ro

fo
ut

pu
ts

×107

100.0%

896.4 MB

86.9%

779.1 MB
62.0%

555.9 MB

Unspent
117.3 MB

Not prunable
223.2 MB

Unspent
117.3 MB

Figure 12. Storage impact of pruning at the end of the simu-
lation period. The blue bar (left) represents the total number
of outputs, the green bar (middle) the subset that has been
spent, and the orange bar (right) those that are prunable. The
difference between the blue and green bars corresponds to
unspent outputs, while the difference between the green and
orange bars reflects spent outputs that are not prunable yet.

of the output set eliminates the need for explicit decoy references

in transactions, yielding substantial bandwidth savings all while

maintaining similar computational costs.

7 Attack resilience
In this section, we extend the simulation to adversarial settings

with 𝑐 > 0. We show how dynamic adjustment of 𝑘 , based on

an estimated number of corrupted outputs, continues to enforce

privacy even under worst-case corruption scenarios.

Estimating the number of corrupted outputs 𝑐 allows setting 𝑘

to maintain a threshold on the untraceability of the scheme, i.e., 𝛽 ,

while ensuring scalability over time. This parameter is particularly

useful as it can be adjusted to mitigate flooding attacks. For instance,

to maintain a minimum untraceability level of 16 one should ensure

that 𝑘 = ⌊𝑛 − 𝑒𝑐/16⌋.
In March 2024, Monero likely suffered a flooding attack. As de-

picted in Figure 13, the number of transactions surged dramatically

within a short period of several weeks. This anomaly suggests the

presence of a malicious actor generating an excessive volume of

transactions [32]. We use this event as a case study to assess the

robustness of the partitioning mechanism in handling adversarial

conditions. To estimate the number of corrupted outputs, we apply

Figure 13. Plot of the number of transactions in Monero: the
sharp increase in March 2024 suggests a flooding attack.

a simple and rather conservative metric. Specifically, we define the

estimated corruption 𝑐 as the number of outputs exceeding the arith-

metic mean number of outputs over a window of 100 days observed

prior to the attack. This method, while straightforward, provides an

936

Toxic Decoys Proceedings on Privacy Enhancing Technologies 2025(4)

upper-bound approximation of corruption. Figure 14 illustrates the

daily evolution of 𝑐 during March 2024, showing a significant spike

aligning with the transaction surge. This estimation provides a cru-

01 Mar 2024

05 Mar 2024

09 Mar 2024

13 Mar 2024

17 Mar 2024

21 Mar 2024

25 Mar 2024

29 Mar 2024

01 Apr 2024
0

100

200

300

400

500

N
um

be
ro

fo
ut

pu
ts

pe
rd

ay Number of outputs per day

Daily number of outputs (n)

Estimated corrupted outputs (ĉ)

Mean Outputs

Figure 14. Plot of estimated number of corrupted outputs 𝑐
duringMonero flooding attack of March 2024: the estimation
of the number of corrupted outputs 𝑐 is the positive difference
between the number of outputs and the average number of
outputs.

cial insight into the potential scale of corruption. Without dynamic

adaptation based on 𝑐 , the effective untraceability level 𝛽 would

decrease during flooding attacks. Our estimation approach can

be compared with the analysis presented by Rucknium [35]. That

study applies a slightly more sophisticated metric to estimate cor-

ruption levels during the attack, but our approach yields a roughly

similar number of corrupted outputs. Our estimation metric is also

lightweight, which aligns with an on-chain dynamic adjustment of

𝑘 . Figure 15 presents a hypothetical adaptation of 𝑘 as a function

of 𝑐 . Note that here 𝑘 should be rounded down, since the num-

ber of bins is a discrete number. By adjusting 𝑘 accordingly, the

scheme mitigates the impact of a flooding attack while preserving

its scalability and privacy guarantees to the expense of increasing

the size of spending proofs. The flexibility of 𝑘 therefore presents

01 Mar 2024

05 Mar 2024

09 Mar 2024

13 Mar 2024

17 Mar 2024

21 Mar 2024

25 Mar 2024

29 Mar 2024

01 Apr 2024
2
3
4
5
6
7

k
va

lu
e

Adaptation of k to maintain β ≥ 16

k̂ = n−eĉ
β

k = bk̂c

Figure 15. Plot of potential adaptation of 𝑘 based on the es-
timated corruption 𝑐: this adjustment ensures a controlled
level of untraceability despite adversarial interference. The
value 𝑘 should be rounded down since it represents the num-
ber of bins in the partition.

an effective countermeasure against adversarial flooding. Future

research could explore alternative estimation techniques to further

refine the accuracy of 𝑐 and dynamic on-chain adjustment of 𝑘 to

enhance the resilience of the system. The next section discusses

practical considerations, including alternative methods to mitigate

flooding attacks.

8 Practical considerations
This section discusses improvement ideas, clarifies some technical

details and addresses some practical concerns of our scheme.

Flooding attacks. As discussed earlier, shuffling outputs ensures

an even distribution of adversarial outputs across partitions, thus

limiting the impact of flooding attacks. However, a well-resourced

adversary can still attempt to overflood each partition, corrupting

𝑛/𝑘 − 1 adversarial outputs per bin. A natural defense mechanism

is to increase transaction fees, which will raise the cost of such an

attack. Yet, an adversary with sufficient financial resources may still

scale the attack despite elevated fees. Another approach is requiring

proof of work for transaction submissions, but this could exclude

low-resource clients and increase the chain’s ecological footprint.

As seen before, a built-in countermeasure is reducing𝑘 , which limits

the adversary’s control over partitions at the cost of increasing the

size of spending proofs. However, this adjustment impacts long-

term scalability because of the increased proof size and the lower

𝑘-value. Ultimately, no perfect solution exists against a well-funded

adversary, as even membership proofs over the entire set of coins

may prove insufficient if the adversary’s monetary resources are

substantial.

Account-based models. In Section 4, we established that our for-

malization of inputs and outputs remains ledger-model agnostic.

We recognize, however, that our terminology and formalization

bears stronger resemblance to UTXO-basedmodels, thuswe provide

clarification on integration with account-based models. Account-

based models supporting confidentiality typically use commitments

to account balances. Transactions involve recomputing two com-

mitments while proving that the sum of old and the sum of new

commitments preserve balance equality. This approach appears

in privacy-preserving cryptocurrencies (e.g., Quisquis [19] and

Nopenena [2]) and numerous CBDC prototypes (e.g., PRCash [40],

Platypus [41], UTT [36] and presumably others). In Quisquis and

Nopenena, untraceability is achieved by selecting decoy accounts

for randomization without impeding owners’ spending capabili-

ties. Upon account randomization by another user, owners must

retrieve their account’s updated cryptographic representation from

the ledger. This technique is particularly appealing as the ledger

need only maintain the most current version of these commitments,

yielding extremely compact storage requirements. However, any

user can designate any account as a decoy, potentially preventing

slower owners from accessing their accounts – as highlighted by

Bünz et al. [7]. To address this vulnerability, accounts can be im-

plemented as commitments to balances augmented with nullifiers.

Spending from an account requires releasing said nullifier, with

untraceability enforced by selecting decoy accounts and proving

knowledge of one commitment’s opening. Mitigating the aforemen-

tioned availability issue thus necessitates compromising on ledger

representation succinctness, as we cannot discard previous account

representations that may remain valid. Here our partitioning and

pruning techniques become relevant. Each account commitment

would be assigned to a bin alongside𝑚 − 1 similar commitments.

Once a bin has been used in𝑚 transactions, the ledger can prune

these𝑚 commitments and their corresponding nullifiers.

937

Proceedings on Privacy Enhancing Technologies 2025(4) Cachin and Wicht

Further optimizing pruning. Pruning can only occur once𝑚 out-

puts within a bin have been spent, this is known only when a bin

has been referenced𝑚-many times. This can create a bottleneck

where unspent outputs indefinitely delay scalability because a bin

has been referenced less than𝑚 times. A natural approach to mit-

igate this issue is to encourage users to spend their outputs by

offering incentives such as reduced fees or minor rewards in newly

minted coins. However, introducing such mechanisms could alter

spending patterns in unpredictable ways, potentially shaping a new

transaction economy that warrants further investigation. A more

aggressive yet straightforward solution is to impose an expiration

date on bins. Once a bin surpasses this expiration threshold, it

would be pruned unconditionally, regardless of whether all outputs

have been spent. Users willing to preserve their funds could trans-

fer their outputs to themselves, and a notification in their wallet

application could alert them of a bin soon expiring. This approach

guarantees a steady pruning rate, but it also introduces concerns.

In particular, if a bin is pruned while it still contains some unspent

outputs, these outputs would be permanently burnt from the ledger.

If the ledger is confidential – output values are hidden – this could

result in a loss of transparency about the total money in circulation,

which may affect estimations such as the market capitalization of

the cryptocurrency.

Generating randomness. A key component of our scheme is the

generation of unbiased randomness to ensure unpredictability in

partitioning. While we have assumed access to such randomness,

producing it in an open setting requires care. The source must

be publicly verifiable and resistant to manipulation. Blockchain-

derived variables, such as block hashes or timestamps, are often in-

sufficient, as adversaries can influence them. Several existing chains

embed protocol-level randomness mechanisms that meet these re-

quirements. For instance, Ethereum 2.0 uses RanDAO [15], the In-

ternet Computer includes onchain randomness in every block [20],

and SUI provides native randomness [25]. These examples demon-

strate that secure randomness generation is feasible and already

deployed in practice. External solutions like drand [31] can also be

used if the protocol does not embed randomness directly. However,

randomness must be available at each epoch and synchronized with

the protocol to avoid safety or liveness issues. We discuss concrete

deployment options in the next section.

Scheduling epochs and choosing 𝑘 . In the simulation outlined in

Section 6, we implemented a fixed epoch schedule with a 5-block

interval. This approach effectively provides sufficient outputs for

partitioning the set while adhering to a strict constraint on the un-

traceability level, denoted as 𝛽 . However, this fixed scheduling may

not be optimal for systems experiencing low transaction volumes.

In such scenarios, a dynamic scheduling approach could be more

beneficial, initiating a new epoch as soon as the number of available

outputs exceeds 𝛽 .

Furthermore, it is possible to maintain a single bin per epoch

by setting 𝑘 = 1 until the system reaches sufficient inertia. In this

scenario, there is no need to generate randomness. The choice

of 𝑘 should otherwise primarily depend on the desired level of

untraceability, 𝛽 , which is a crucial system parameter. The value of

𝑘 will naturally vary based on the number of outputs in the current

epoch, denoted as𝑛, and the estimated number of corrupted outputs,

𝑐 . Adjustments to 𝛽 and the estimation metric for 𝑐 are managed

by a mechanism within the consensus protocol. Increasing 𝛽 will

result in a smaller 𝑘 and a longer bin retention time, which can

affect scalability. Similarly, adopting amore conservative estimation

metric for 𝑐 will also reduce 𝑘 . Therefore, system designers should

carefully consider the selection of 𝛽 and the estimation metric to

effectively balance these trade-offs.

9 Deployment
Deploying the scheme in existing privacy-preserving cryptocur-

rencies would probably require significant modifications to their

protocol. We sketch a deployment path using Monero and Zcash

as examples. In both systems, miners operate in pools, which are

naturally suited to run a distributed random beacon (DRB). Partici-

pants should contribute entropy to the DRB, which remains secure

as long as one participant is honest. The DRB runs concurrently

with transaction collection and finalizes at the end of the epoch.

Once the DRB is released, no new transactions should be accepted

in the current epoch. This prevents adversaries from reacting to

the revealed randomness and flooding bins accordingly.

The block producer then uses the generated randomness to par-

tition outputs and broadcasts the sealed block with the necessary

information. This includes the epoch number, the randomness bea-

con, and potentially any auxiliary data required for verification.

In Monero, this step can follow the process described in Section 6.

Untraceability is preserved as long as there are enough outputs to

at least fill a bin. In Zcash, however, partitioning weakens privacy.

The current model requires proving ownership over the full set

of shielded outputs, and restricting this set to a partition – even a

large one – reduces the size of the untraceability set.

Pruning requires no additional signaling from the block producer

or the validators. Once all outputs in a bin are spent and the corre-

sponding nullifiers appear on-chain, the bin becomes obsolete and

can be discarded locally. If an adversary attempts to double-spend

from a pruned bin, two outcomes are possible. Either the validator

has pruned the bin and rejects the transaction because the bin is

missing, or has retained it and rejects it upon detecting a duplicated

nullifier. The pruning logic is thus implicit in the ledger state and

does not require coordination.

Despite requiring substantial protocol-level modifications, the

deployment reuses core components of Monero and Zcash and

remains compatible with their consensus and transaction logic.

10 Conclusion
In this work, we presented a scalable privacy-preserving payment

scheme that directly addresses the challenge of ledger growth and

graph-based attacks in privacy-focused cryptocurrencies. By parti-

tioning the set of outputs into immutable, fixed-size groups using

verifiable randomness, our approach mitigates both passive and

active adversarial attacks while enabling efficient pruning of spent

outputs. Our formalization of key security notions provides a robust

framework for analyzing privacy guarantees in such systems and

shows how randomized partitioning plays a key role in both privacy

and scalability. Finally, our evaluation and analysis using a dataset

of real transactions shows the storage benefits and resilience of our

scheme against large-scale flooding attacks.

938

Toxic Decoys Proceedings on Privacy Enhancing Technologies 2025(4)

Acknowledgments
Wewould like to express our sincere gratitude to JayamineAlupotha

for the insightful discussions that greatly contributed to the develop-

ment of this work. We also extend our appreciation to Christian Sil-

laber and Mirjam Eggen for their engaging and thought-provoking

discussions, which enriched our perspective on the subject. Ad-

ditionally, we thank the anonymous reviewers for their valuable

suggestions and constructive comments, which have significantly

enhanced the quality and clarity of this paper. This work has been

supported by the Initiative for Cryptocurrencies and Contracts

(IC3).

References
[1] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak,

and Leonid Reyzin. 2017. Beyond Hellman’s Time-Memory Trade-Offs with

Applications to Proofs of Space. In Advances in Cryptology - ASIACRYPT 2017 -
23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
II (Lecture Notes in Computer Science, Vol. 10625), Tsuyoshi Takagi and Thomas

Peyrin (Eds.). Springer, 357–379. https://doi.org/10.1007/978-3-319-70697-9_13

[2] Jayamine Alupotha, Mathieu Gestin, and Christian Cachin. 2024. Nopenena

Untraceable Payments: Defeating Graph Analysis with Small Decoy Sets. IACR
Cryptol. ePrint Arch. (2024), 903. https://eprint.iacr.org/2024/903

[3] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. 1999. Balanced

Allocations. SIAM J. Comput. 29, 1 (1999), 180–200. https://doi.org/10.1137/

S0097539795288490

[4] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014. IEEE Computer Society, Berkeley, CA, USA,

459–474. https://doi.org/10.1109/SP.2014.36

[5] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching Techniques for Ac-

cumulators with Applications to IOPs and Stateless Blockchains. In Advances
in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 11692), Alexandra Boldyreva and Daniele Micciancio

(Eds.). Springer, Santa Barbara, CA, USA, 561–586. https://doi.org/10.1007/978-

3-030-26948-7_20

[6] Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. 2020. Single

Secret Leader Election. In AFT ’20: 2nd ACM Conference on Advances in Financial
Technologies, New York, NY, USA, October 21-23, 2020. ACM, New York, NY, USA,

12–24. https://doi.org/10.1145/3419614.3423258

[7] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:

Towards Privacy in a Smart Contract World. In Financial Cryptography and
Data Security - 24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10-14, 2020 Revised Selected Papers (Lecture Notes in Computer Science,
Vol. 12059), Joseph Bonneau and Nadia Heninger (Eds.). Springer, Kota Kinabalu,

Malaysia, 423–443. https://doi.org/10.1007/978-3-030-51280-4_23

[8] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Gregory Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions

and More. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA. IEEE Computer Society, 315–334.

https://doi.org/10.1109/SP.2018.00020

[9] Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. 2011. Introduction
to Reliable and Secure Distributed Programming (2. ed.). Springer. https://doi.org/

10.1007/978-3-642-15260-3

[10] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random Oracles in

Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptogra-

phy. J. Cryptol. 18, 3 (2005), 219–246. https://doi.org/10.1007/S00145-005-0318-0

[11] Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic Accumulators and Ap-

plication to Efficient Revocation of Anonymous Credentials. In Advances in
Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18-22, 2002, Proceedings (Lecture Notes in
Computer Science, Vol. 2442), Moti Yung (Ed.). Springer, Santa Barbara, CA, USA,

61–76. https://doi.org/10.1007/3-540-45708-9_5

[12] João Otávio Massari Chervinski, Diego Kreutz, and Jiangshan Yu. 2021. Analysis

of transaction flooding attacks against Monero. In IEEE International Conference
on Blockchain and Cryptocurrency, ICBC 2021, Sydney, Australia, May 3-6, 2021.
IEEE, Sydney, Australia, 1–8. https://doi.org/10.1109/ICBC51069.2021.9461084

[13] Kevin Choi, Aathira Manoj, and Joseph Bonneau. 2023. SoK: Distributed Ran-

domness Beacons. In 44th IEEE Symposium on Security and Privacy, SP 2023,
San Francisco, CA, USA, May 21-25, 2023. IEEE, 75–92. https://doi.org/10.1109/

SP46215.2023.10179419

[14] Sherman S. M. Chow, Christoph Egger, Russell W. F. Lai, Viktoria Ronge, and

Ivy K. Y. Woo. 2023. On Sustainable Ring-Based Anonymous Systems. In 36th
IEEE Computer Security Foundations Symposium, CSF 2023, Dubrovnik, Croatia,
July 10-14, 2023. IEEE, Dubrovnik, Croatia, 568–583. https://doi.org/10.1109/

CSF57540.2023.00035

[15] RanDAO contributors. 2025. RanDAO: Decentralized Random Number Generator.

https://github.com/randao/randao. Accessed: 2025-05-14.

[16] Sergi Delgado-Segura, Cristina Pérez-Solà, Guillermo Navarro-Arribas, and Jordi

Herrera-Joancomartí. 2018. Analysis of the Bitcoin UTXO Set. In Financial
Cryptography and Data Security - FC 2018 International Workshops, BITCOIN,
VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 10958), Aviv Zohar, Ittay Eyal, Vanessa

Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala

(Eds.). Springer, 78–91. https://doi.org/10.1007/978-3-662-58820-8_6

[17] Benjamin E. Diamond. 2021. Many-out-of-Many Proofs and Applications to

Anonymous Zether. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021. IEEE, San Francisco, CA, USA, 1800–1817.

https://doi.org/10.1109/SP40001.2021.00026

[18] Christoph Egger, Russell W. F. Lai, Viktoria Ronge, Ivy K. Y. Woo, and Hoover H. F.

Yin. 2022. On Defeating Graph Analysis of Anonymous Transactions. Proc. Priv.
Enhancing Technol. 2022, 3 (2022), 538–557. https://doi.org/10.56553/POPETS-

2022-0085

[19] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. 2019.

Quisquis: A New Design for Anonymous Cryptocurrencies. In Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe, Japan, Decem-
ber 8-12, 2019, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11921),
Steven D. Galbraith and Shiho Moriai (Eds.). Springer, Kobe, Japan, 649–678.

https://doi.org/10.1007/978-3-030-34578-5_23

[20] DFINITY Foundation. 2025. Internet Computer Consensus: Onchain ran-

domness. https://internetcomputer.org/docs/building-apps/network-features/

randomness. Accessed: 2025-05-14.

[21] Daira Hopwood, Sean Bow, Taylor Hornby, and Nathan Wilcox. 2021. Zcash

Protocol Specification. https://zips.z.cash/protocol/protocol.pdf.

[22] Alireza Kavousi, Zhipeng Wang, and Philipp Jovanovic. 2024. SoK: Public Ran-

domness. In 9th IEEE European Symposium on Security and Privacy, EuroS&P
2024, Vienna, Austria, July 8-12, 2024. IEEE, 216–234. https://doi.org/10.1109/

EUROSP60621.2024.00020

[23] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.). Springer,

Santa Barbara, CA, USA, 357–388. https://doi.org/10.1007/978-3-319-63688-7_12

[24] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. 2017. A Trace-

ability Analysis of Monero’s Blockchain. In Computer Security - ESORICS 2017 -
22nd European Symposium on Research in Computer Security, Oslo, Norway, Septem-
ber 11-15, 2017, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10493),
Simon N. Foley, Dieter Gollmann, and Einar Snekkenes (Eds.). Springer, Oslo,

Norway, 153–173. https://doi.org/10.1007/978-3-319-66399-9_9

[25] Mysten Labs. 2025. Sui: On-Chain Randomness. https://docs.sui.io/guides/

developer/advanced/randomness-onchain. Accessed: 2025-05-14.

[26] Arjen K. Lenstra and Benjamin Wesolowski. 2015. A random zoo: sloth, unicorn,

and trx. IACR Cryptol. ePrint Arch. (2015), 366. http://eprint.iacr.org/2015/366

[27] YacovManevich, Jason Karl Yellick, andAngelo DeCaro. 2024. Privacy-Preserving

Payment Scheme. https://patents.google.com/patent/US11968307/en. https:

//patents.google.com/patent/US11968307/en

[28] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat

Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan,

and Nicolas Christin. 2018. An Empirical Analysis of Traceability in the Monero

Blockchain. Proc. Priv. Enhancing Technol. 2018, 3 (2018), 143–163. https://doi.

org/10.1515/POPETS-2018-0025

[29] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System.

Whitepaper. http://bitcoin.org/bitcoin.pdf.

[30] S. Noether, S. Noether, and A. Mackenzie. 2014. A note on chain reactions in

traceability in cryptonote 2.0. Research Bulletin (2014). https://www.getmonero.

org/resources/research-lab/pubs/MRL-0001.pdf

[31] League of Entropy. 2019. drand - Distributed Randomness Beacon. https://drand.

love/. Accessed: 2025-02-28.

[32] Luke "Kayaba" Parker. 2024. Full-Chain Membership Proofs Development. https:

//www.getmonero.org/2024/04/27/fcmps.html Accessed: 2025-05-27.

[33] Krzysztof Pietrzak. 2019. Simple Verifiable Delay Functions. In 10th Innovations in
Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego,
California, USA (LIPIcs, Vol. 124), Avrim Blum (Ed.). Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 60:1–60:15. https://doi.org/10.4230/LIPICS.ITCS.2019.60

[34] Ronald L. Rivest, Adi Shamir, and Yael Tauman. 2001. How to Leak a Secret.

In Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on

939

https://doi.org/10.1007/978-3-319-70697-9_13
https://eprint.iacr.org/2024/903
https://doi.org/10.1137/S0097539795288490
https://doi.org/10.1137/S0097539795288490
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1145/3419614.3423258
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/S00145-005-0318-0
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1109/ICBC51069.2021.9461084
https://doi.org/10.1109/SP46215.2023.10179419
https://doi.org/10.1109/SP46215.2023.10179419
https://doi.org/10.1109/CSF57540.2023.00035
https://doi.org/10.1109/CSF57540.2023.00035
https://github.com/randao/randao
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1109/SP40001.2021.00026
https://doi.org/10.56553/POPETS-2022-0085
https://doi.org/10.56553/POPETS-2022-0085
https://doi.org/10.1007/978-3-030-34578-5_23
https://internetcomputer.org/docs/building-apps/network-features/randomness
https://internetcomputer.org/docs/building-apps/network-features/randomness
https://zips.z.cash/protocol/protocol.pdf
https://doi.org/10.1109/EUROSP60621.2024.00020
https://doi.org/10.1109/EUROSP60621.2024.00020
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-66399-9_9
https://docs.sui.io/guides/developer/advanced/randomness-onchain
https://docs.sui.io/guides/developer/advanced/randomness-onchain
http://eprint.iacr.org/2015/366
https://patents.google.com/patent/US11968307/en
https://patents.google.com/patent/US11968307/en
https://patents.google.com/patent/US11968307/en
https://doi.org/10.1515/POPETS-2018-0025
https://doi.org/10.1515/POPETS-2018-0025
http://bitcoin.org/bitcoin.pdf
https://www.getmonero.org/resources/research-lab/pubs/MRL-0001.pdf
https://www.getmonero.org/resources/research-lab/pubs/MRL-0001.pdf
https://drand.love/
https://drand.love/
https://www.getmonero.org/2024/04/27/fcmps.html
https://www.getmonero.org/2024/04/27/fcmps.html
https://doi.org/10.4230/LIPICS.ITCS.2019.60

Proceedings on Privacy Enhancing Technologies 2025(4) Cachin and Wicht

the Theory and Application of Cryptology and Information Security, Gold Coast,
Australia, December 9-13, 2001, Proceedings (Lecture Notes in Computer Science,
Vol. 2248), Colin Boyd (Ed.). Springer, Gold Coast, Australia, 552–565. https:

//doi.org/10.1007/3-540-45682-1_32

[35] Rucknium. 2024. March 2024 Suspected Black Marble Flooding Against

Monero: Privacy, User Experience, and Countermeasures. https:

//github.com/Rucknium/misc-research/blob/main/Monero-Black-Marble-

Flood/pdf/monero-black-marble-flood.pdf. https://github.com/Rucknium/misc-

research/blob/main/Monero-Black-Marble-Flood/pdf/monero-black-marble-

flood.pdf

[36] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta,

Benny Pinkas, and Avishay Yanai. 2022. UTT: Decentralized Ecash with Account-

able Privacy. IACR Cryptol. ePrint Arch. (2022), 452. https://eprint.iacr.org/2022/

452

[37] Saravanan Vijayakumaran. 2023. Analysis of CryptoNote Transaction Graphs

Using the Dulmage-Mendelsohn Decomposition. In 5th Conference on Advances
in Financial Technologies, AFT 2023, October 23-25, 2023, Princeton, NJ, USA (LIPIcs,
Vol. 282), Joseph Bonneau and S. Matthew Weinberg (Eds.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, Princeton, NJ, USA, 28:1–28:22. https://doi.org/

10.4230/LIPICS.AFT.2023.28

[38] Benjamin Wesolowski. 2019. Efficient Verifiable Delay Functions. In Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May
19-23, 2019, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 11478),
Yuval Ishai and Vincent Rijmen (Eds.). Springer, 379–407. https://doi.org/10.

1007/978-3-030-17659-4_13

[39] François-Xavier Wicht, Zhipeng Wang, Duc Viet Le, and Christian Cachin. 2024.

A Transaction-Level Model for Blockchain Privacy. In Financial Cryptography
and Data Security - 28th International Conference, FC 2024, Willemstad, Curaçao,
March 4-8, 2024, Revised Selected Papers, Part II (Lecture Notes in Computer Science,
Vol. 14745), Jeremy Clark and Elaine Shi (Eds.). Springer, 293–310. https://doi.

org/10.1007/978-3-031-78679-2_16

[40] Karl Wüst, Kari Kostiainen, Vedran Capkun, and Srdjan Capkun. 2019. PRCash:

Fast, Private and Regulated Transactions for Digital Currencies. In Financial
Cryptography and Data Security - 23rd International Conference, FC 2019, Frigate
Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers (Lecture Notes
in Computer Science, Vol. 11598), Ian Goldberg and Tyler Moore (Eds.). Springer,

158–178. https://doi.org/10.1007/978-3-030-32101-7_11

[41] Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan Capkun. 2022. Platypus:

A Central Bank Digital Currency with Unlinkable Transactions and Privacy-

Preserving Regulation. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, Novem-
ber 7-11, 2022, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.).

ACM, 2947–2960. https://doi.org/10.1145/3548606.3560617

[42] Zuoxia Yu, Man Ho Au, Jiangshan Yu, Rupeng Yang, Qiuliang Xu, and Wang Fat

Lau. 2019. New Empirical Traceability Analysis of CryptoNote-Style Blockchains.

In Financial Cryptography and Data Security - 23rd International Conference, FC
2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 11598), Ian Goldberg and Tyler Moore

(Eds.). Springer, Frigate Bay, St. Kitts and Nevis, 133–149. https://doi.org/10.

1007/978-3-030-32101-7_9

A Generalization
The binning structure introduced in this work can be extended to a

broader class of privacy-preserving mechanisms in which a set of

agents perform anonymous actions. Specifically, this generalization

applies to any setting where:

(1) The action benefits from privacy by being indistinguishable

among a set of other agents performing the same action.

(2) Each agent is limited in the number of times they can conduct

the action.

(3) A mechanism ensures that the prescribed limit is not ex-

ceeded.

By leveraging these properties, we can construct an efficient

privacy-preserving execution model based on partitions that re-

duces data overhead while maintaining strong anonymity guaran-

tees.

The benefit of this approach becomes particularly evident in

long-running systems with a large number of agents. Without par-

titioning, privacy-preserving mechanisms often require accumulat-

ing and storing data for all past actions, leading to monotonically

growing overhead. Instead, the binning structure ensures that some

data can be pruned once a set of conditions is fulfilled. This abstrac-

tion demonstrates that binning is a general technique applicable

beyond our specific payment scheme and thus extends to a vari-

ety of privacy-preserving actions in decentralized and regulated

systems.

B Proofs of theorems
Proof of Lemma 4.5. This proof takes elements of typical occu-

pancy problems as for instance given by Azar et al. [3]. Based on

Untrace (A, 𝜆, 𝑛, 𝑐, 𝑘), the adversary may corrupt 𝑐 out of 𝑛 outputs.

If the scheme is unpredictable, then each corrupted output 𝑗 falls in

bin 𝑖 with probability
1

𝑘
+ negl(𝜆). We analyze here the maximum

number of corrupted outputs in a bin. Let 𝑋𝑖 denote the number of

corrupted outputs in bin 𝑖 . Our goal is to analyze max𝑋𝑖 . We omit

the negligible term in the following and deem it implicit. Clearly,

we have

𝐸 [𝑋𝑖] =
𝑐

𝑘
.

By the union bound, for every 𝐶 > 0, we have

Pr[𝑋𝑖 ≥ 𝐶] ≤
𝑘∑︁
𝑖=1

Pr[𝑋𝑖 ≥ 𝐶] .

Therefore to estimate the probability that the maximum number of

corrupted outputs is larger than some value, it is enough to focus

on a single bin and show that for this bin, the probability that the

number of corrupted outputs in bin 𝑖 exceeding 𝐶 is very small.

We analyze the probability distribution of the number of corrupted

outputs in a fixed bin 𝑖 using a Chernoff bound. We thus obtain

Pr[𝑋𝑖 ≥ (1 + 𝛿) · 𝐸 [𝑋𝑖]] ≤
(

𝑒𝛿

(1 + 𝛿)1+𝛿

) 𝑐
𝑘

.

Assuming 𝛿 ≥ 𝑒 − 1, this gives

𝑒𝛿

(1 + 𝛿)1+𝛿
=

1

1 + 𝛿 ·
(𝑒

1 + 𝛿

)𝛿
≤ 1

1 + 𝛿 ≤
1

2

.

For 𝑐 ≥ 2𝑘 log
2
𝑘 , this simplifies to

Pr[𝑋𝑖 ≥ (1 + 𝛿) · 𝐸 [𝑋𝑖]] ≤
(

𝑒𝛿

(1 + 𝛿)1+𝛿

) 𝑐
𝑘

≤ 2
− 𝑐
𝑘 ≤ 1

𝑘2
.

Using the union bound, we obtain

Pr[𝐶 ≥ 𝑒 · 𝑐
𝑘
] = Pr[𝑋𝑖 ≥

𝑒 · 𝑐
𝑘
] ≤

𝑐∑︁
𝑖=1

Pr[𝑋𝑖 ≥
𝑒 · 𝑐
𝑘
] ≤ 𝑘 · 1

𝑘2
=

1

𝑘
.

Thus, using the complement event we conclude that

Pr[𝐶 <
𝑒𝑐

𝑘
] ≥ 1 − 1

𝑘
.

Consequently, for every 𝑐 ≥ 2𝑘 log
2
𝑘 , the minimum number of

honest outputs per bin satisfies

𝛽 <
𝑛

𝑘
− 𝑒𝑐

𝑘
=
𝑛 − 𝑒𝑐
𝑘

940

https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://github.com/Rucknium/misc-research/blob/main/Monero-Black-Marble-Flood/pdf/monero-black-marble-flood.pdf
https://github.com/Rucknium/misc-research/blob/main/Monero-Black-Marble-Flood/pdf/monero-black-marble-flood.pdf
https://github.com/Rucknium/misc-research/blob/main/Monero-Black-Marble-Flood/pdf/monero-black-marble-flood.pdf
https://github.com/Rucknium/misc-research/blob/main/Monero-Black-Marble-Flood/pdf/monero-black-marble-flood.pdf
https://github.com/Rucknium/misc-research/blob/main/Monero-Black-Marble-Flood/pdf/monero-black-marble-flood.pdf
https://github.com/Rucknium/misc-research/blob/main/Monero-Black-Marble-Flood/pdf/monero-black-marble-flood.pdf
https://eprint.iacr.org/2022/452
https://eprint.iacr.org/2022/452
https://doi.org/10.4230/LIPICS.AFT.2023.28
https://doi.org/10.4230/LIPICS.AFT.2023.28
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-031-78679-2_16
https://doi.org/10.1007/978-3-031-78679-2_16
https://doi.org/10.1007/978-3-030-32101-7_11
https://doi.org/10.1145/3548606.3560617
https://doi.org/10.1007/978-3-030-32101-7_9
https://doi.org/10.1007/978-3-030-32101-7_9

Toxic Decoys Proceedings on Privacy Enhancing Technologies 2025(4)

with probability at least 1− 1

𝑘
, which establishes the desired bound,

i.e.,

Pr[𝛽 <
𝑛 − 𝑒𝑐
𝑘
] ≥ 1 − 1

𝑘
.

□

Proof of Lemma 4.7. Assuming that transactions reference bins

uniformly at random, a bin is referenced by a transaction with

probability 𝑝 = 1

𝑘
. At most 𝑡 ≤ 𝑛 transactions may take place over

𝑘 bins. Every bin contains 𝑅 = 𝑛
𝑘
outputs and can be pruned once it

has been referenced 𝑅 times, i.e., is prunable. We want to compute

the probability that a bin is prunable after 𝑡 transactions. Let 𝑋𝑖 be

the random variable denoting the number of times a bin 𝑖 has been

referenced. Furthermore, we can express 𝑋𝑖 as the sum of random

variables 𝑋𝑖1 + . . . + 𝑋𝑖𝑡 , where

𝑋𝑖 𝑗 =

{
1 if output 𝑗 falls in bin 𝑖,

0 otherwise.

The variables 𝑋𝑖 has thus binomial probability distribution 𝑋𝑖 ∼
𝐵
(
𝑡, 1

𝑘

)
.

The probability that bin 𝑖 is not prunable, i.e., Pr[𝑋𝑖 < 𝑅] can
thus be computed using the following observation

Pr[𝑋𝑖 < 𝑅] =
𝑅−1∑︁
𝑚=0

Pr[𝑋𝑖 =𝑚]

where Pr[𝑋𝑖 =𝑚] is given by the binomial probability mass func-

tion with 𝑝 = 1

𝑘

Pr[𝑋𝑖 =𝑚] =
(
𝑡

𝑚

)
𝑝 (1 − 𝑝)𝑡−𝑚 .

Since bins are independent, we obtain the probability that no bin

has been referenced 𝑅 times with

Pr[∀𝑖 ∈ {1, . . . , 𝑘} : 𝑋𝑖 < 𝑅] =
𝑘∏
𝑖=1

Pr[𝑋𝑖 < 𝑅] = Pr[𝑋𝑖 < 𝑅]𝑘 .

This gives us

Pr[∃𝑖 ∈ {1, . . . , 𝑘} : 𝑋𝑖 ≥ 𝑅] = 1 − Pr[𝑋𝑖 < 𝑅]𝑘 .

However, a bin cannot be referenced more than 𝑅 times. Taking

that into account the above probability becomes

Pr[∃𝑖 ∈ {1, . . . , 𝑘} : 𝑋𝑖 = 𝑅] = 1 − Pr[𝑋𝑖 < 𝑅]𝑘 .

□

C Standard cryptographic primitives
We recall the standard definitions of cryptographic primitives used

in this work, including commitment schemes, argument systems,

and Merkle trees and include their formal security properties.

A commitment scheme allows users to commit to a message

while keeping it hidden to others. They can later reveal the com-

mitted value, which cannot be changed once it is committed to.

Definition C.1 (Commitment scheme). A commitment scheme is

a tuple of two algorithms (Setup,Commit):
• (pk, sk) ← Com.KeyGen(1𝜆) is a probabilistic algorithm

that takes as input the security parameter 1
𝜆
, outputs a public

and private key (pk, sk).

• Com← Com.Commit(pk,𝑚, 𝑟) is a deterministic algorithm

that takes as input a public key pk, a message𝑚, a blinding

factor 𝑟 , and outputs a commitment 𝑐 .

• {0, 1} ← Com.Open(sk,𝑚, 𝑟) is a deterministic algorithm

that takes a public key pk, a message𝑚, a blinding factor 𝑟 ,

and returns either 0 or 1.

A commitment is furthermore binding and hiding. Bindingmeans

that it must be hard to find two distinct messages𝑚0 and𝑚1 that

open to the same commitment Com. Hiding means that the com-

mitment does not reveal any information about the message𝑚.

Definition C.2 (Binding). A commitment scheme is binding for

all adversary if,

Pr

[
𝑚

0
≠𝑚

1
∧ Com.Commit(pk,𝑚

0
, 𝑟
0
) = 𝑐 pp := (pk, sk) ← Com.KeyGen(1𝜆)

∧ 𝑟
0
≠ 𝑟

1
∧ Com.Commit(pk,𝑚

1
, 𝑟
1
) = 𝑐 (𝑐,𝑚

0
, 𝑟
0
,𝑚

1
, 𝑟
1
) ← A(1𝜆)

]
≤ negl(𝜆) .

Definition C.3 (Hiding). A commitment scheme is hiding for all

adversary if,

Pr

pp := (pk, sk) ← Com.KeyGen(1𝜆)

(𝑚0,𝑚1) ← A(1𝜆, pp)
𝑏′ = 𝑏 𝑏 ←$ {0, 1}

𝑐 ← Com.Commit(pk,𝑚𝑏 , 𝑟)
𝑏′ ← A(𝑐)

≤ negl(𝜆).

We define a non-interactive argument system for a language LR
with witness relation R.

Definition C.4 (Non-Interactive Argument System). Anon-interactive

argument system ARG for (𝑥,𝑤) ∈ RL , where 𝑥 is a public state-

ment about an NP language LR defined by the relation R and𝑤 is

the witness, consists of the following algorithms:

• pp← ARG.Setup(1𝜆) is a probabilistic algorithm that takes

as input the security parameter 1
𝜆
and outputs the public

parameters pp.
• 𝜋 ← ARG.Prove(𝑥,𝑤) is a probabilistic algorithm that takes

as input the statement 𝑥 and the witness 𝑤 and outputs a

proof 𝜋 .

• {0, 1} ← ARG.Verify(𝑥, 𝜋) is a deterministic algorithm that

takes as input the statement 𝑥 and the proof 𝜋 and returns

either 0 or 1.

We now define the required properties for a non-interactive

argument system.

Definition C.5 (Completeness). A non-interactive argument sys-

tem ARG is complete if for any 𝜆 ∈ N, any public parameters

pp← ARG.Setup(1𝜆), and any valid pair (𝑥,𝑤) ∈ R, it holds that:

ARG.Verify(𝑥, 𝜋) = 1, for 𝜋 ← ARG.Prove(𝑥,𝑤).

Definition C.6 (Knowledge Soundness). A non-interactive argu-

ment system ARG is knowledge-sound if for any PPT adversary 𝐴,

there exists an expected polynomial-time knowledge extractor Ext
such that:

Pr

[
ARG.Verify((𝑥, 𝜋)) = 1 ∧ (𝑥,𝑤) ∉ R |(
𝑥,𝑤, 𝜋

)
← Ext(pp)

]
≤ negl(𝜆).

where pp← ARG.Setup(1𝜆).
941

Proceedings on Privacy Enhancing Technologies 2025(4) Cachin and Wicht

Definition C.7 (Zero-Knowledge). A non-interactive argument

system ARG is zero-knowledge if there exists a PPT simulator

Sim = (Sim0, Sim1) such that for any PPT adversary 𝐴,��
Pr[𝐴𝑂0 (pp)] − Pr[𝐴𝑂1 (pp)]

�� ≤ negl(𝜆) (𝜆),
where:

• 𝑂0 (𝑥,𝑤) returns ARG.Prove(𝑥,𝑤) if (𝑥,𝑤) ∈ R.
• 𝑂1 (𝑥) returns Sim1 (𝑡𝑑, 𝑥) where (pp, 𝑡𝑑) ← Sim0 (1𝜆).

Definition C.8 (Merkle tree). AMerkle treeMT is an authenticated
data structure that consists in three algorithms:

• rt ← MT.Init(1𝜆, 𝑋) takes the security parameter 𝜆 and a

list of elements 𝑋 = (𝑥1, . . . , 𝑥𝑛) as inputs, constructs a tree
that stores 𝑥1, . . . , 𝑥𝑛 in the leaves, and finally outputs a root

rt.
• path← MT.Prove(𝑥, 𝑋) takes as input an element 𝑥 , a list𝑋 ,

and outputs the proof path, which can prove that 𝑥 is in 𝑋 .

• {0, 1} ← MT.Verify(𝑥, rt, path) takes as input an element 𝑥 ,

the root rt, a proof path, and outputs either 0 or 1.

D Security
In this section, we prove the security of the construction presented

in Section 5; we refer to this construction with Π.

TheoremD.1. Our construction of the SPS scheme is𝑘-unpredictable
if the randomness used in partitioning is unbiased, meaning that no
PPT adversary A can predict the bin of an output with probability
better than 1

𝑘
+ negl(𝜆).

Proof. (Sketch.) We prove this theorem using a sequence of

hybrid arguments.

𝐻0: The real security experiment where the adversary attempts

to predict the bin assignment of an output.

𝐻1: We replace the randomness used in partitioning with a truly

random value. Since the randomness used is assumed to be unbiased,

this change only alters the distribution of outputs in a negligible

factor with 𝐻0.

𝐻2: We replace the partitioning algorithm with a random selec-

tion from the set of permutations of outputs. This change in the

experiment does not alter the distribution with 𝐻1. Each output is

thus placed in any of the 𝑘 bins with probability exactly
1

𝑘
.

Thus, the adversary’s advantage in predicting the bin remains

at most
1

𝑘
+ negl(𝜆). Therefore, our construction of SPS is unpre-

dictable. □

TheoremD.2. Our construction of the SPS scheme is 𝛽-untraceable,
meaning that no probabilistic polynomial-time (PPT) adversary A
can win the untraceability game Untrace (A, 𝜆, 𝑛, 𝑐, 𝑘) with an ad-
vantage greater than 1

𝛽
+ negl(𝜆), where 𝛽 is the number of honest

outputs in the chosen bin.

Proof. (Sketch.) We prove this theorem using a sequence of

hybrid arguments.

𝐻0: The real security experiment where the adversary attempts

to distinguish the spent output.

𝐻1: We replace the spending proof 𝜋 with a simulated proof gen-

erated by the zero-knowledge simulator. By the zero-knowledge

property of the proof system, the adversary’s view remains compu-

tationally indistinguishable.

𝐻2: We replace the partitioning function with a truly random

assignment. Since the partitioning function is unpredictable, this

change introduces at most a negligible advantage.

Since in 𝐻2, the adversary has no information to distinguish the

spent output beyond guessing, their probability of success is at most

1

𝛽
+ negl(𝜆). Thus, our construction of SPS is 𝛽-untraceable. □

Theorem D.3. Our construction of the SPS scheme is scalable,
meaning that, with non-negligible probability, bins are pruned while
preserving untraceability. The probability of pruning a bin after 𝑡
transactions is 1 − 𝑝𝑘 , where 𝑝 =

∑𝑅−1
𝑚=0 Pr[𝑋 =𝑚] with 𝑋 ∼ 𝐵(𝑡, 1

𝑘
).

Proof. (Sketch.) We proceed with a sequence of hybrid argu-

ments.

𝐻0: The real execution of the scalability experiment, where trans-

actions occur over time, bins accumulate spending proofs, and prun-

ing is performed once a bin has been referenced as many times as

its size.

𝐻1: We modify the experiment so that, instead of performing

pruning directly, bins are marked as prunable once all outputs

within them have been referenced. Since pruning depends only on

the deterministic state of transactions, this change is indistinguish-

able from 𝐻0.

𝐻2: We analyze the system before pruning occurs and consider

double-spending resistance. In this hybrid, an adversary who suc-

ceeds in spending the same output twice without linkable nullifiers

must break the linkability function (for two distinct nullifiers) or

the binding property of commitments. Since the system satisfies

double-spending resistance before pruning, this change does not

alter the adversary’s success probability, and this hybrid remains

indistinguishable from 𝐻1.

𝐻3: We execute the pruning process and remove spent outputs

while retaining their corresponding nullifiers. Since all outputs that

were referenced have unique nullifiers, and pruning only affects

spent bins, double-spending resistance remains intact. The adver-

sary cannot claim an output was not spent, nor can they introduce

a new valid proof for a previously spent output. Since pruning does

not modify the linkability function, this change is indistinguishable

from 𝐻2.

𝐻4: We consider the untraceability guarantee before pruning. An

adversary’s probability of linking a transaction to a specific output

is at most
1

𝛽
+ negl(𝜆). Since no additional information is revealed

about which outputs were spent before pruning, the adversary’s

advantage in the untraceability experiment remains unchanged.

This change does not increase the adversary’s success probability,

making this hybrid indistinguishable from 𝐻3.

𝐻5: We analyze the system after pruning and consider the im-

pact on untraceability. The system removes references to spent

outputs while keeping the structure necessary for future transac-

tions. Since pruning does not introduce new information about

which outputs were spent, the adversary’s advantage in the un-

traceability experiment remains at most
1

𝛽
+ negl(𝜆). Thus, this

change is indistinguishable from 𝐻4.

𝐻6: We allow the system to continue executing transactions and

pruning bins over multiple rounds. Since bins are pruned only once

all their outputs have been referenced, the probability of at least one

bin reaching the pruning condition after 𝑡 transactions larger than

942

Toxic Decoys Proceedings on Privacy Enhancing Technologies 2025(4)

a constant 𝑐 as shown in Lemma 4.7. Moreover, since all previous

hybrids establish that security properties remain unchanged before

and after pruning, the scheme maintains its guarantees over time.

□

Theorem D.4. Our construction of the SPS scheme is confidential,
meaning that no PPT adversaryA can distinguish between two differ-
ent denominations 𝑑0 and 𝑑1 with probability better than 1

2
+negl(𝜆)

in the confidentiality experiment Confid(A, 𝜆).

Proof. (Sketch.) We use a sequence of hybrid games to prove

confidentiality.

𝐻0: The real security experiment where the adversary tries to

distinguish 𝑑0 and 𝑑1.

𝐻1: Replace the commitment to the amount with a commitment

to a random value. The hiding property of the commitment scheme

ensures that the adversary’s advantage only varies with a negligible

factor.

𝐻2: Replace the zero-knowledge proof with a simulated proof.

Since the proof does not reveal any information, this transition is

indistinguishable.

At the final hybrid, the adversary’s advantage is bounded by

1

2
+ negl(𝜆). Thus, our construction of SPS is confidential. □

Theorem D.5. Our construction of the scalable privacy-preserving
payment scheme SPS is non-slanderable, meaning that no PPT adver-
sary A can produce a tag 𝑡 for an output 𝑜 it does not control such
that Link(𝑡 ′, 𝑡) = 1, where 𝑡 ′ is the tag of the actual spender.

Proof. (Sketch.) We prove non-slanderability using a sequence

of hybrid games.

𝐻0: The real experiment where the adversary tries to produce a

linkable tag for an unknown output.

𝐻1: Replace the tag-generation function with a random function.

Since the tag function is collision-resistant, this change does not

increase the adversary’s advantage.

𝐻2: Replace the adversary’s view of previously generated tags

with simulated values. The security of the commitment scheme

ensures indistinguishability.

At the final step, the adversary’s success probability remains

negligible. Thus, our construction of SPS is non-slanderable. □

943

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Characterization
	5 Constructions
	5.1 Building blocks
	5.2 Tree-based construction
	5.3 Other constructions

	6 Performance simulation
	7 Attack resilience
	8 Practical considerations
	9 Deployment
	10 Conclusion
	Acknowledgments
	References
	A Generalization
	B Proofs of theorems
	C Standard cryptographic primitives
	D Security

