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Abstract
In a world where financial transactions are primarily performed or

recorded online, protecting sensitive transaction details has become

crucial. Roommates sharing housing costs or friends splitting travel-

ling expenses may use applications such as Splitwise to easily track

debts and minimize the number of individual repayments. How-

ever, these apps reveal potentially sensitive financial transaction

activity to their operators. In this paper, we present Silent Split-

ter, a privacy-preserving payment splitting system which enables

users to securely set up groups, perform transactions within those

groups, and “settle up” without revealing group membership or any

sensitive transaction details (such as the users involved or amount

of money exchanged) to the system itself. Silent Splitter operates in

the two server setting and uses Distributed Point Functions (DPFs)

to securely record transactions. Of independent interest, we also

present new protocols for proving knowledge of properties of DPFs

as part of our system.
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1 Introduction
Many everyday financial transactions, once protected by the anonymity

of cash, are now performed under the watchful eye of credit card

issuers, payment networks, and finance apps. Blurring the lines

between financial services and social media, apps like Venmo and

CashApp learn not only the locations and costs of purchases, but

even the identities of people spending money together and the

nature of social relationships between them.

While a number of privacy preserving technologies, especially

in the blockchain space, seek to add privacy to the payment process,

a combination of market pressures, regulatory requirements, and

the need to prevent abuse mean that privacy preservation has not

yet reached the realm of day-to-day digital financial transactions.

This paper takes a different approach. We seek to bolster the

privacy-preserving properties of payment splitting tools, which

mitigate the need for customers to directly interact with surveil-

lant financial institutions. Payment splitting apps, like Splitwise

and its competitors, maintain records of debts among groups of

friends, eliminating the need for repayments to occur after each

purchase. These apps internally record user debts without etching

a permanent record with financial institutions. Thus, they reduce
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the number of user-to-user repayments, either by allowing debts

to naturally balance out over time, or by allowing groups to settle

accumulated debts at regular intervals. In this way, they reduce the

frequency with which users must interact with financial institutions

and thus reveal potentially sensitive information to them.

This paper presents a privacy-preserving version of payment

splitting apps. That is, we create a system in which users can estab-

lish groups and make transactions without revealing group mem-

bership or transaction amounts to the app infrastructure. Since

these transactions are simply records and not actual money ex-

changes, the internal transactions and social relationships of each

group remain hidden from outside observers. To the best of our

knowledge, the only prior work to consider privacy in payment

splitting apps made strong non-collusion assumptions between

clients and servers and did not hide the membership of groups,

perhaps the most important sensitive information involved in such

apps [43]. With the recent integration of payment splitting group

features into the Venmo app [60], protecting this kind of group

composition information has become all the more important.

Our system, Silent Splitter, combines techniques from single

server and multi-server approaches. Users register their groups

with a primary server who blindly keeps track of group mem-

bership and authenticates transactions using anonymous creden-

tials [20, 21, 25, 26, 29], while the more frequent and computation-

ally intensive transaction and balance retrieval functionalities are

split between the primary server and a secondary server using func-

tion secret sharing techniques [11, 14, 15, 46]. This design results in

strong performance for critical components of the protocol while

conforming to real-world organizational trust relationships.

Given that Silent Splitter combines families of cryptographic

techniques rarely used together, we introduce a number of tech-

niques to bridge the gap between protocols that rely on encrypted or

secret shared data. Along the way, we introduce new protocols for

distributed point functions (DPFs) [15, 46] that are of independent

interest. In particular, we show how a client can provably provide

the Silent Splitter servers with commitments or encryptions to the

non-zero index and value of a DPF. Our techniques can be viewed

as generalizations and improvements over recent work on access

control for function secret sharing schemes [50, 58].

An end-to-end implementation of our system, written in Rust,

is available at https://github.com/mapierce23/psa. We evaluate our

system’s time and communication costs for group setup and balance

retrieval, as well as the end-to-end latency and throughput for

transaction requests. Silent Splitter assigns most of the heavy client-

side computation to a one-time group setup protocol, meaning that

client-side costs are very light for both transaction and retrieval

requests. Meanwhile, transaction latency and throughput scale

linearly with the number of users, and setup costs (both time and
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communication) on both sides scale linearly with the size of each

group.

In summary, this paper makes the following contributions.

• New protocols for verifiable encryptions of secret values

held in DPFs.

• The architecture and cryptographic techniques for Silent

Splitter, a privacy-preserving payment splitting application

that combines single server and multi-server privacy tech-

niques, along with accompanying formal definitions and

security arguments.

• A prototype implementation and evaluation of Silent Splitter

that demonstrates the practicality and efficiency of our new

techniques.

2 Background and Preliminaries
This section presents the cryptographic tools and notation that we

will use throughout the paper. In addition to the tools described

here, we will make use of several standard cryptographic primitives

(MACs, PRFs [47], commitment schemes, zero knowledge proof

systems [48]) and hardness assumptions (hardness of discrete loga-

rithm, DDH [37]). Definitions and descriptions of these primitives

can be found in standard texts (e.g., [13]).

Notation. Let 𝑥 ← 𝐹 (𝑦) denote the assignment of the output of

𝐹 (𝑦) to 𝑥 , and let 𝑥 ←R 𝑆 denote assignment to 𝑥 of an element sam-

pled uniformly random from set 𝑆 . A function negl(𝑥) is negligible
if for all 𝑐 > 0, there is a 𝑥0 such that for all 𝑥 > 𝑥0, negl(𝑥) < 1

𝑥𝑐
.

We omit 𝑥 if the parameter is implicit. Throughout the paper we

also omit an implicit security parameter 𝜆. Finally, we use ⊥ to in-

dicate an empty message or special character indicating failure. We

use bracket notation to denote secret shares of values and vectors

of values. That is, we use [𝑥]1 and [𝑥]2 to refer to values where

[𝑥]1 + [𝑥]2 = 𝑥 , and [𝑥] = ( [𝑥]1, [𝑥]2).
We use the notation

⟨𝐹1 (params), 𝐹2 (params)⟩ → output

to denote an interactive protocol between parties running algo-

rithms 𝐹1 and 𝐹2. If only one party has an output (and this is

clear from context), the value output is the output of that party. If
both parties have an output, then output is replaced by the tuple

(out1, out2).

Proofs of Knowledge. Proofs of knowledge allow a prover to

convince a verifier in zero knowledge that it knows secret values

(𝑥1, ..., 𝑥𝑛) which cause a given statement 𝜙 on those values to

be true [10, 34, 48]. We use the following notation and syntax

to describe proofs of knowledge [22]. The variable 𝑝𝑝 represents

public inputs to a statement that all parties involved in producing

and verifying the proof will know.

• 𝜙 = {(𝑥1, ..., 𝑥𝑛), 𝑝𝑝 : statement about 𝑝𝑝, 𝑥1, ..., 𝑥𝑛}
• PoK.Prove((𝑥1, ..., 𝑥𝑛), 𝜙) → 𝜋

• PoK.Verify(𝜙, 𝜋) → 1/0
Wewill often keep the secret inputs to PoK.Prove implicit, explicitly

writing out the statement 𝜙 and implying that the prover holds the

relevant secret values.

Keyed-verification anonymous credentials (KVACs). A KVAC

scheme is an anonymous credential scheme [20, 21, 29] where

the issuer and verifier of credentials are the same party, and can

therefore use a secret key sk in credential issuance/verification [25,

26].

KVAC schemes allow a credential issuer to produce credentials

that include a number of values/attributes, some set 𝑆 of which are

known to the issuer, and some of which are issued blindly, meaning

the issuer does not learn the attribute associated with the credential.

When presenting a credential to the verifier, a credential holder

can either show an attribute directly, or blindly prove a statement

about the attributes held, proving the statement in zero-knowledge

while keeping the attribute itself secret.

Following the notation of prior work, with slight modifications

to match conventions used here, we will use a KVAC scheme with

the following syntax.

• CredKeyGen(pp) → sk, iparams

• ⟨BlindIssue(sk, 𝑆),BlindObtain(iparams, (𝑚1, ...,𝑚𝑛))⟩ → cred

• ⟨Show(iparams, cred, (𝑚1, ...,𝑚𝑛)), ShowVerify(sk, 𝜙)⟩ → 1/0
For brevity, we will generally leave the parameters iparams implicit

in calls to this functionality.

The security properties that ensure credential can be issued

and verified without the issuer/verifier seeing them are known as

blind issuance and anonymity, respectively, and the property that a

credential can only be proved if it has been issued is called unforge-
ability. An additional security requirement called key-parameter
consistency requires that a malicious credential issuer cannot find

different secret keys that correspond to the same public parame-

ters [25].

Distributed point functions (DPFs). A point function 𝐹𝛼,𝛽 is one

which evaluates to 0 everywhere in its domain, except for at input

𝛼 , where 𝐹𝛼,𝛽 (𝛼) = 𝛽 . We refer to 𝛼 as the index and 𝛽 as the value
of the function. A DPF is a technique for producing secret shares

of evaluations of the function 𝐹𝛼,𝛽 that are more efficient than

simply secret sharing the value of the function at each point in its

domain. A DPF produces keys 𝑘1 and 𝑘2 that can be expanded to the

evaluations of the shared function 𝐹 , but which can be represented

(in the 2 party setting) with size logarithmic in the domain of the

function [14, 15, 46].

Since so many DPF applications require two servers to verify

that they have received well-formed DPF keys 𝑘1, 𝑘2, and many

such schemes exist in the literature [11, 12, 15, 32, 35, 44, 52, 59],

we include a DPF verification protocol in our DPF syntax, shown

below.

• DPF.Share(𝛼, 𝛽) → 𝑘1, 𝑘2, 𝜋1, 𝜋2

• ⟨DPF.S1Verify(𝑘1, 𝜋1),DPF.S2Verify(𝑘2, 𝜋2)⟩ → 1/0
• DPF.Eval(𝑘, 𝑖) → 𝑥

The correctness property of the DPF requires that after using

DPF.Share(𝛼, 𝛽) to produce keys 𝑘1, 𝑘2, it holds that

DPF.Eval(𝑘1, 𝑖) + DPF.Eval(𝑘2, 𝑖) = 𝐹𝛼,𝛽 (𝑖).

While there are a number of ways to formalize the confidentiality

property required of DPFs, we adopt an indistinguishability-based

definition [14]. A DPF is secure if an adversary who is given a strict
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subset of the DPF keys cannot distinguish which of two functions

𝐹𝛼0,𝛽0 and 𝐹𝛼1,𝛽1 has been shared. The DPF verification protocol

requires a zero-knowledge property to ensure that it reveals nothing

about the DPF key used to the other server, as well as a soundness

property that the parties will output 1 only if the function secret

shared by 𝑘1, 𝑘2 is in fact a point function.

3 System Goals
This section gives a high level overview of the functionality and

security goals of the Silent Splitter system, in addition to describing

the overall architecture of the system.

3.1 Design Goals
A payment splitting application allows users to form groups and

track debts among members. Within each group, the application

keeps a balance for each group member representing how much

that member owes other members or is owed by them. Members of

a group may record real world transactions which result in another

member becoming indebted to them by reducing the other group

member’s balance by some amount and increasing their own by the

same amount. This process ensures that the sum total of balances

within a group is always zero. Occasionally, group members will

contact the application to “settle” their debts, asking the application

to produce a list of all the group members’ balances to facilitate

offline repayment. Members of a group are expected to see intra-

group balances of other group members, but only for the groups

they have in common. A single user may be a member of multiple

groups at once, but since the groups operate independently, a user

will have a separate balance with each group.

A payment splitting application, as described here, must support

three core operations:

• Group registration: A user can create a new group within the

application, allocating a list of balances for group members, all

initialized to zero.

• Transaction processing: Any member of a group can notify the

application of a transaction involving another group member,

thereby modifying the two balances to record how much is

owed.

• Balance settling: A group member can obtain the list of balances

within their groups, enabling them to coordinate settling debts

between members.

We build the Silent Splitter system to support these operations, as

any more advanced features offered by payment splitting apps can

be built on top of this core functionality. For example, a transaction

where one person pays for a group dinner with five others can be

recorded as five separate transactions, one with each member of

the group.

At first glance, it might appear that the functionality of Silent

Splitter can easily be built on top of any metadata-hiding communi-

cation system [56], e.g., by having users send each other messages

about how much they have spent without revealing to the plat-

form who is messaging who. Note that in order to meet the strong

security properties described below, the chosen metadata-hiding

communication system needs to provide protection against traffic

analysis attacks by a global passive network adversary, so low-

latency solutions like Tor [38] would not suffice. While it is in

principle possible to build payment splitting functionality on top

of metadata-hiding messaging and have all the payment splitting

logic be handled by the clients, this kind of approach would be less

efficient and has proved unpopular in practice, even for simpler

functionalities. For example, Signal previously used this kind of

client-side management for maintaining private group membership,

but in 2019 they transitioned to a centralized system where the

Signal servers privately maintain group state [26, 54]. While the

Signal app certainly worked fine before, the real-world intricacies

of handling group consensus on the client side led to a worse user

experience than what was provided by competitors with centralized

group management. Thus we anticipate the same or greater benefits

from centralization in the setting of payment splitting. That said,

metadata-hiding messaging can accompany our payment-splitting

functionality to provide human-readable transaction descriptions.

See Section 6.3 for a more detailed comparison between our scheme

and a client-only approach built on top of metadata-hiding messag-

ing.

Security from splitting trust. To realize payment splitting func-

tionality in a privacy-preserving way, the Silent Splitter scheme is

run by two servers, 𝑆1 and 𝑆2. We refer to 𝑆1 as the primary server,

as it manages aspects such as user registration and authentication,

and we rely on 𝑆2 only for operations that require splitting trust. In

this sense, Silent Splitter is a hybrid between single-server and split

trust models. Our aim with this approach is to build a system that

is more compatible with existing single-server payment splitting

services, making it easier deploy the system and take advantage of

existing mechanisms, e.g., for user authentication.

While a two-server split trust setup may be difficult to achieve

in many scenarios, recent large-scale deployments of split-trust

systems for private browser telemetry in Mozilla Firefox [3, 41]

and evaluation of the Apple/Google Covid-19 exposure notification

system [1, 2] indicate that this approach holds promise.

3.2 Security Goals
In order to provide a useful privacy preserving service, Silent Split-

ter must ensure that an adversary cannot learn the details of users’

groups, transactions, or balances. This protection must hold both

against other users and against the servers running the system.

Moreover, the platform must ensure that a malicious user cannot

corrupt the balances of their group, e.g., by making balances within

the group sum to a non-zero amount, which would render the

system inoperable.

At a high level, our attacker model considers malicious server

operators who wish to learn things about users’ groups or trans-

actions as well as malicious users who wish to violate the reliable

bookkeeping of the system. This section discusses each necessary

security property in detail, and Section 3.3 mentions potential secu-

rity considerations that are out of scope for this work. Appendix A

states formal security definitions that correspond to our goals.

Confidentiality.We wish to protect users’ and groups’ confiden-

tiality against an adversary who controls one of the Silent Split-

ter servers and arbitrarily many users. Specifically, neither server
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should learn the membership of any group beyond the identity of

whichever user initially registered the group. Moreover, neither

server should learn which transactions take place within which

group, the identities of the users involved in a transaction, or the

amount of money transferred in a transaction, unless they control

a user who belongs to that group (as group members are expected

to see transactions and balances within their own groups).

When users settle, neither server should learn the retrieved bal-

ances. Although a Silent Splitter deployment may wish to integrate

with some third-party service to facilitate repayment of debts, this

is not part of the core protocol, and we design the protocol to allow

for maximum privacy, e.g., a group of users who only repay each

other offline in cash. Since our settling operation expects users to

see the balances of all group members to facilitate repayment, a

malicious user may see the balances of other users in any group

to which it belongs. This is expected behavior and is therefore not

considered a security violation.

In Appendix A, we present a definition for transaction confiden-
tiality, which captures the notion that users’ transactions should

reveal nothing about what other group memberships they have

(if any) or what monetary amounts or users the transactions in-

volve. The security experiment defined there allows an adversary to

create groups containing a mix of honest and malicious (adversary-

controlled) users and to control one of the two servers. The adver-

sary can then make transactions or settle while playing the role of

malicious users, or compel an honest user to make transactions of

its choosing or settle. At the heart of the experiment is the adver-

sary’s attempt to distinguish between two transactions. Specifically,

the adversary creates two transactions and compels an honest user

to make exactly one of them (with the user’s choice between the

two based on a challenger’s secret input). It then must guess which

transaction occurred. This experiment is subject to the requirement

that this “challenge transaction” is made in a group of all honest

users, so the adversary can’t simply settle to see what transaction

happened. Since the honest user can be a part of multiple groups,

this experiment requires that an adversary cannot tell which groups,

which target user, or what amounts are involved in any transaction.

Transaction confidentiality protects the confidentiality of user

transactions, even when the adversary knows a priori, and can

even dictate, the groups in which a user is a member. Separately, we

require the notion of group confidentiality: that an adversary cannot
learn which groups a user joins. We do not introduce a separate def-

inition for group confidentiality, as the group confidentiality of our

construction follows immediately from the anonymous credential

scheme we employ.

Integrity. We need to ensure that Silent Splitter’s strong confiden-

tiality properties do not impede the system’s ability to provide the

intended payment splitting service. Thus we must prevent mali-

cious clients from producing malformed transactions that corrupt

balances or masquerading as other users in order to make transac-

tions. Silent Splitter’s integrity definition requires that every user’s

transactions are “well-formed,” meaning that transactions run by a

user𝑈 in group 𝐺 only affect the balance of the user 𝑈 in group 𝐺

and another balance within the same group 𝐺 .

We present an integrity definition that captures these require-

ments in Appendix A. As in the confidentiality experiment, the

integrity security experiment allows an adversary to create groups

of its choosing, comprising honest and malicious users. In this ex-

periment, the challenger plays the role of both servers, and the

adversary can interact with the servers as a malicious user. It can

also compel honest users to make transactions of its choosing or

run the settling protocol. For each group that contains only honest

users, the experiment keeps track of the expected balances for each

user based only on transactions compelled by the adversary. When

an honest user settles, we say that the adversary wins the security

game if one of the two following conditions are met.

• The sum of all the balances in the group is nonzero.

• The group members are all honest users, but at least one

user’s balance disagrees with the experiment’s expected bal-

ance for that user.

If the adversary can cause one of these two conditions to be true, it

has successfully induced a transaction that it should not have been

able to create (i.e., in a groupwhere it does not control anymembers)

or in disrupting the necessary relationship among balances within

a group.

Note that the check that balances in a group sums to zero suffices

for groups containing a mix of honest and malicious users because

a malicious user can introduce transactions that arbitrarily shift

balances within one of its groups, so long as the overall sum of

balances still comes out to zero. This means that, as is the case for

non-private payment splitting apps, users should only join groups

with others whom they trust not to abuse the privileges afforded

by the platform. That said, our definition does suffice to rule out

classes of attacks that a malicious user could attempt at the expense

of honest users in its groups, e.g., siphoning money out of one

group to increase its balance in another.

It is important to note that Silent Splitter, while providing strong

integrity protections against malicious users, trusts servers to be

available. This means that we do not protect data integrity against

a server who decides to ignore requests or corrupt data. However,

a malicious server should not be able to use such corruption or

other malicious misbehavior to compromise confidentiality. This

is the same security property provided by a number of private

communication systems that use a similar split trust model [5, 31–

33, 42, 44, 52, 59, 61].

3.3 Limitations and Non-Goals
A crucial limitation of Silent Splitter, shared even with non-private

payment splitting systems, is that the system cannot prevent users

from lying about real-world transactions and submitting fraudulent

charges. It can only make sure that the charges users make are

structurally well-formed. As is the case in any other payment app,

if a user in a group records a fake transaction, other users can

decline it, e.g., by charging back the same amount (this can be made

to look like rejecting a charge on the user interface).

Since Silent Splitter relies on the notion that each group of users

trusts each other enough to spendmoney on each other’s behalf, our

group setup process assumes that one user can privately register a

group on behalf of everyone and communicate this fact to others in

the group. While we do not explore more elaborate group manage-

ment operations, the fact that the group registration component of

Silent Splitter operates in a single-server setting means that we can
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benefit from other work in group management in this setting [26].

Note that since some user needs to contact the servers to initialize

a new group, the servers will learn who creates a new group. The

servers do not learn who else is in that group or when/whether any

users make transactions in that group.

Finally, since Silent Splitter users need to connect to the servers

to make transactions, servers can learn whomakes each transaction,

even if they don’t learn who the transaction charges, how much is

spent in the transaction, or what groups are involved. To prevent

servers from learning anything about which users are actually

making transactions, users can regularly produce cover traffic in the

form of dummy transactions that involve $0 charges. This prevents
servers from learning which users are actually making transactions

and which are simply producing cover traffic. We discuss cover

traffic in detail in Appendix B.

4 New Protocols for DPFs
One of the cornerstones of our protocol is a technique through

which DPF key holders may privately compute commitments to,

and prove knowledge of, the information specified by a DPF. These

techniques are also of independent interest and can be thought of

as extensions and generalizations of recent work on access control

for distributed point functions [50, 58].

Proving knowledge of the DPF value. We begin by showing

a protocol by which a client can send two servers 𝑆1, 𝑆2 shares

(𝑘1, 𝑘2) of a point function 𝐹𝛼,𝛽 : 𝑋 → 𝑌 in addition to verifiably

sending server 𝑆1 a Pedersen commitment 𝑐 = 𝑔𝛽ℎ𝑟 to the value

𝛽 . Here 𝑔 and ℎ are two generators of a cyclic group 𝐺 of prime

order where DDH is hard, and where the discrete log between 𝑔

and ℎ is unknown. Importantly, while evaluating a DPF over the

domain 𝑋 naturally requires 𝑂 ( |𝑋 |) DPF evaluations (or a single
full domain evaluation of size 𝑂 ( |𝑋 |)), our protocol will require
only 𝑂 (1) additional operations in the group 𝐺 .

The protocol consists of the client sending the servers shares

[𝑟 ]1, [𝑟 ]2 of the commitment randomness 𝑟 along with the DPF

shares. The servers verify the DPF and then evaluate it over the

domain 𝑋 , summing the results of all the evaluations. That is, the

servers each compute the value

[𝛽]𝑏 ← Σ𝑛𝑖=1DPF.Eval(𝑘𝑏 , 𝑖), 𝑏 ∈ {1, 2}.

This results in each server holding a share [𝛽]1, [𝛽]2 of 𝛽 , since 𝛽
is the only non-zero value in the distributed point function 𝐹𝛼,𝛽 .

The servers then compute 𝑐𝑖 ← 𝑔[𝛽 ]𝑖ℎ [𝑟 ]𝑖 , 𝑖 ∈ {1, 2}, and server

𝑆2 sends 𝑐2 to 𝑆1. Server 𝑆1 computes

𝑐 ← 𝑐1𝑐2 = 𝑔[𝛽 ]1ℎ [𝑟 ]1𝑔[𝛽 ]2ℎ [𝑟 ]2 = 𝑔𝛽ℎ𝑟 .

Finally, the client also sends 𝑆1 a non-interactive proof of knowledge

𝜋 attesting to the statement {(𝑟, 𝛽), 𝑐 : 𝑐 = 𝑔𝛽ℎ𝑟 }, which server 𝑆1
verifies. This proof can be sent along with the initial secret shares

and commitments, so the client only needs to send a single message

to the servers during the whole protocol.

Proving knowledge of the DPF index.We now extend our proto-

col to also allow the client to prove knowledge of the DPF index 𝛼 .

Intuitively, the idea is to have servers compute commitments to the

product 𝛾 = 𝛼𝛽 in addition to 𝛽 , and then the client sends separate

commitments to 𝛼, 𝛽 , proving they correspond to the values in the

originally computed commitment.

To facilitate this proof, the client sends two sets of random shares:

[𝑟𝛽 ]1, [𝑟𝛽 ]2, to be used to commit to 𝛽 as before, and new random

shares [𝑟𝛾 ]1, [𝑟𝛾 ]2. The servers modify their DPF evaluation process

to additionally multiply each DPF evaluation by the input index

to the function. That is, the servers now compute the following

values.

[𝛽]𝑏 ← Σ𝑛𝑖=1DPF.Eval(𝑘𝑏 , 𝑖), 𝑏 ∈ {1, 2}
[𝛾]𝑏 ← Σ𝑛𝑖=1𝑖 · DPF.Eval(𝑘𝑏 , 𝑖), 𝑏 ∈ {1, 2}

Since the point function 𝐹𝛼,𝛽 has its only non-zero point at index

𝛼 with value 𝛽 , these values will be shares of 𝛽 and 𝛾 = 𝛼𝛽 . With

these shares in hand, the servers compute the following commit-

ments.

𝑐𝛽𝑖 ← 𝑔[𝛽 ]𝑖ℎ [𝑟𝛽 ]𝑖 , 𝑖 ∈ {1, 2}
𝑐𝛾𝑖 ← 𝑔[𝛾 ]𝑖ℎ [𝑟𝛾 ]𝑖 , 𝑖 ∈ {1, 2}

Server 𝑆2 then sends 𝑐𝛽2, 𝑐𝛾2 to 𝑆1, who computes

𝑐𝛽 ← 𝑐𝛽1𝑐𝛽2, 𝑐𝛾 ← 𝑐𝛾1𝑐𝛾2 .

Finally, the client needs to send a commitment 𝑐𝛼 ← 𝑔𝛼ℎ𝑟𝛼 to

server 𝑆1, along with a proof that the values 𝛼, 𝛽,𝛾 committed to in

𝑐𝛼 , 𝑐𝛽 , 𝑐𝛾 satisfy the relationship 𝛾 = 𝛼𝛽 . To facilitate this, we have

the client additionally send server 𝑆1 the value 𝑐𝑟𝛼 = 𝑔𝑟𝛼 , and the

server 𝑆2 sends 𝑆1 the values 𝑔
[𝑟𝛽 ]2 , 𝑔[𝑟𝛾 ]2 , which 𝑆1 multiplies with

𝑔[𝑟𝛽 ]1 , 𝑔[𝑟𝛾 ]1 to produce 𝑐𝑟𝛽 = 𝑔𝑟𝛽 , 𝑐𝑟𝛾 = 𝑔𝑟𝛾 .

Now the server can use a generic proof of an encrypted DH-triple

(Example 20.4 in v0.6 of the Boneh-Shoup textbook [13], made non-

interactive via Fiat-Shamir in the random oracle model [8, 45]) to

prove the statement

{(𝛼, 𝛽, 𝑟𝛼 , 𝑟𝛽 , 𝑟𝛾 ), 𝑐𝛼 , 𝑐𝛽 , 𝑐𝛾 , 𝑐𝑟𝛼 , 𝑐𝑟𝛽 , 𝑐𝑟𝛾 :

𝑐𝛽 = 𝑔𝛽ℎ𝑟𝛽 , 𝑐𝛼 = 𝑔𝛼ℎ𝑟𝛼 , 𝑐𝛾 =𝑔𝛼𝛽ℎ𝑟𝛾 ,

𝑐𝑟𝛼 = 𝑔𝑟𝛼 , 𝑐𝑟𝛽 = 𝑔𝑟𝛽 ,𝑐𝑟𝛾 = 𝑔𝑟𝛾 }.
The protocol ends with 𝑆1 verifying the proof. As was the case for

proving knowledge of just 𝛽 , the client can send all its contributions

to the protocol in a single non-interactive message.

The confidentiality of this scheme follows from the confidential-

ity of the DPFs, from DDH (since our (𝑐𝑟𝑥 , 𝑐𝑥 ) tuples can be thought
of as El-Gamal encryptions of 𝑔𝑥 under public key ℎ), and from

the zero-knowledge property of the proofs used. The soundness of

the scheme follows from the soundness of DPF verification, from

the binding property of Pedersen commitments, and from the ex-

tractability of the zero-knowledge proof of knowledge scheme used.

Proofs of the confidentiality and soundness of these subprotocols

are contained within our main security proofs in Appendix D.

5 The Silent Splitter Payment Splitting System
This section describes the Silent Splitter payment splitting system in

detail. The Silent Splitter protocol consists of three phases – setup,

transactions, and settling – corresponding to the main operations

supported by a payment splitting service. Here we describe both

the core cryptographic protocols and the higher-level application

design considerations involved in using the protocols.

In Silent Splitter, the servers 𝑆1 and 𝑆2 will hold secret shares of

a database DB of account balances, stored as elements of F𝑞 . We
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Figure 1: Diagram of the setup protocol showing communication
flows.

will refer to the entries in these databases as addresses. Each user

of the system is uniquely identified by a user id uid that is known

to the servers and used for login/authentication to the system (the

details of which are not considered here). Users will have a separate

address for each group to which they belong, and addresses are

allocated in contiguous blocks of𝑀 addresses per group, where𝑀

is a system-wide fixed maximum group size. We use 𝑁 to denote

the total number of groups registered in the system. The protocol

makes use of a group 𝐺 of prime order 𝑞 with generators 𝑔, ℎ ∈ 𝐺 .

5.1 Group Setup
The setup phase allows users to create new groups. At the end of

the setup phase, each member of the new group will hold a group
token gt that can be used to create transactions and settle balances.

Users receive a separate group token for each group to which they

belong, and each user’s group token is distinct from other members’

tokens.

In our current prototype, groupmembership is static, and changes

can only be made by creating a new group. We defer the question of

applying privacy-preserving group management operations to fu-

ture work but note that systems like Signal use the same credential

system as us and are able to support such operations [26].

The setup phase itself consists of two parts. In the initialization

protocol, a group leader 𝑈1 interacts with the servers to create a

new group. The servers necessarily learn who the group leader is

but learns nothing else about the group composition. The leader𝑈1

contacts the other members𝑈2, ...,𝑈𝑀 and gives each its registration
token rt𝑖 , 𝑖 ∈ {1, ..., 𝑀}. Each user then joins the group by interacting
with 𝑆1 in the registration protocol to obtain its group token gt𝑖 .
The full setup process is outlined in Figure 1.

Note that the few steps where 𝑈1 interacts with other group

members must be done without revealing communication metadata

to the servers, lest this reveal group composition. This means the

communication must happen out of band or via some metadata-

hiding communication infrastructure. Moreover, for the overall

system to enjoy the full privacy benefits of Silent Splitter, the mech-

anism used for this communication must provide the same level

of metadata-hiding security as Silent Splitter itself. This is only a

requirement for group setup, as after the setup phase, there is no

longer a need for users to communicate cryptographic key material

to each other.

Initialization protocol. Server 𝑆1 allocates the next 𝑀 available

addresses for the account balances of the newly formed group. The

leader𝑈1 selects two PRF keys ek1 and ek2 for a PRF 𝐹 : K × F𝑞 →
F𝑀𝑞 , to be used during the settling phase. Key ek1 is sent to 𝑆1,

and ek2 is sent to 𝑆2. Server 𝑆2 is not involved in the group setup

process after this step. If there is suitable public key infrastructure

available, this process could be modified so that ek2 is encrypted
under 𝑆2’s encryption key, signed by the group leader, and sent to

𝑆1 to be passed on to 𝑆2, instead of directly sending to each server

separately.

After allocating these𝑀 addresses,𝑈1 and 𝑆1 produce the regis-

tration tokens rt𝑖 for 𝑖 ∈ {1, ..., 𝑀}. While this step logically comes

after allocating addresses for the group, it can be done in parallel,

meaning that the whole group initialization process requires only

one round trip between the group leader and 𝑆1.

The registration token rt𝑖 is an anonymous credential issued

by 𝑆1 on the address aid𝑖 (aid stands for “account id”) and the

corresponding user id uid𝑖 to which that address is assigned. We

employ the keyed-verification anonymous credential protocol by

Chase et al. [24] to blindly issue the credential. This protocol allows

𝑈1 to hide some or all of the attributes on which the credential

is issued; in this case, 𝑈1 sends aid𝑖 in the clear and hides uid𝑖 .
Specifically, 𝑆1 and𝑈1 participate in the protocol

⟨BlindIssue(sk𝑆1 , aid𝑖 ),BlindObtain(aid𝑖 , uid𝑖 )⟩ → rt𝑖 .

After the initialization protocol,𝑈1 sends the other group mem-

bers their registration tokens, as well as the keys ek1 and ek2. If
the group contains fewer than 𝑀 users, the additional registration

tokens can be distributed among group members such that some

members have multiple, but users do not need more than one for

transactions.

Registration protocol. In the registration protocol, each user𝑈𝑖

exchanges a registration token rt𝑖 for a group token gt𝑖 to be used

during the transaction phase. In principle, the setup phase could be

eliminated and the registration protocol repeated as part of each

transaction, but separating setup into a one-time step significantly

reduces the computational cost of the transaction protocol.

To complete registration, a user 𝑈𝑖 sends its user id uid𝑖 and
a commitment comaid ← 𝑔aid𝑖ℎ𝑟aid to its assigned address aid𝑖
to 𝑆1. Using these values and the credential rt𝑖 , received during

initialization, the user completes the Show protocol described in

[24],

⟨Show(rt𝑖 , (aid𝑖 , uid𝑖 )), ShowVerify(sk𝑆1 , 𝜙)⟩,

for the statement 𝜙 defined as

{(aid𝑖 , 𝑟aid, uid𝑖 ), comaid : comaid = 𝑔aid𝑖ℎ𝑟aid , id(𝑈𝑖 ) = uid𝑖 },
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Figure 2: Diagram of the transaction protocol showing communica-
tion flows and the high-level steps of server-side transaction pro-
cessing.

Here, we abuse our notation and use id(·) to denote checking the

user id of the user performing the protocol with 𝑆1. This is a short-

hand for standard user authentication that must occur as part of

the protocol, not a statement to be proved in zero-knowledge, and

uid𝑖 is not kept secret in this step.

After verifying the credential from𝑈𝑖 , 𝑆1 produces a MAC tag 𝜎𝑖
on (uid𝑖 , comaidi ).𝑈𝑖 outputs the group token gt𝑖 ← (uid𝑖 , comaidi , 𝜎𝑖 ).

Observe that the registration protocol reveals nothing to the

server that links the user 𝑈𝑖 to the group created by 𝑈1. The server

𝑆1 learns that the user with uid𝑖 has joined a group, but it learns

nothing about which group has been joined. Moreover, everything

sent from 𝑈𝑖 to 𝑆1 except uid𝑖 is randomized, so 𝑈𝑖 can repeatedly

run the protocol with the same inputs. This allows users to run

redundant instances of the registration protocol to provide cover

traffic for other users who are joining new groups.

5.2 Transactions
In a given transaction, some user (the initiator) wants to request $𝑥

from another user (the target) in its group. Denote the initiator’s

address in the group by 𝑖 , and the target’s address in the group by 𝑗 .

The basic idea. To make a transaction, the initiator produces two

sets of DPF keys for the functions 𝐹𝑖,𝑥 and 𝐹 𝑗,𝑥 , where the domain

of the DPF is the list of𝑀 · 𝑁 registered addresses, and sends the

resulting values to the servers. The servers can verify the DPFs

and then evaluate them for each registered address, add the result

into the balance stored at that address for the first function, and

subtract the result for the second function. This set of operations

results in adding shares of 0 to every address, except 𝑥 is added to

address 𝑖 and subtracted from address 𝑗 . Since the servers hold secret

shares of the values involved, they cannot tell which addresses

𝑖, 𝑗 ∈ {0, ..., 𝑀𝑁 − 1} are affected.

ClientTx(𝑖, 𝑗, 𝑥, gt, (𝑟aid1 , ..., 𝑟aid𝑛 )) :
(gt

1
, ...gt𝑛) ← gt

for ℓ ∈ {1, ..., 𝑛} :
(uidℓ , comaidℓ , 𝜎ℓ ) ← gtℓ

𝑘1, 𝑘2, 𝜋1, 𝜋2 ← DPF.Share(𝑖, 𝑥)
𝑘 ′
1
, 𝑘 ′

2
, 𝜋 ′

1
, 𝜋 ′

2
← DPF.Share( 𝑗, 𝑥)

𝑟𝛼 , [𝑟𝛽 ]1, [𝑟𝛽 ]2, [𝑟𝛾 ]1, [𝑟𝛾 ]2 ←R F5𝑞
𝑟𝛽 ← [𝑟𝛽 ]1 + [𝑟𝛽 ]2
𝑟𝛾 ← [𝑟𝛾 ]1 + [𝑟𝛾 ]2
𝑐𝛼 ← 𝑔𝑖ℎ𝑟𝛼 ; 𝑐𝑟𝛼 ← 𝑔𝑟𝛼

𝑐𝛽 ← 𝑔𝑥ℎ𝑟𝛽 ; 𝑐𝑟𝛽 ← 𝑔𝑟𝛽

𝛾 ← 𝑖 · 𝑥
𝑐𝛾 ← 𝑔𝛾ℎ𝑟𝛾 ; 𝑐𝑟𝛾 ← 𝑔𝑟𝛾

//Prove knowledge of 𝑖, 𝑥 and ownership of address 𝑖

𝜙 ← {(𝑖, 𝑥, 𝑟𝛼 , 𝑟𝛽 , 𝑟𝛾 , 𝑟aid1 , ..., 𝑟aid𝑛 ),
𝑐𝛼 , 𝑐𝛽 , 𝑐𝛾 , 𝑐𝑟𝛼 , 𝑐𝑟𝛽 , 𝑐𝑟𝛾 , comaid1 , ..., comaid𝑛 :

𝑐𝛽 = 𝑔𝑥ℎ𝑟𝛽 , 𝑐𝛼 = 𝑔𝑖ℎ𝑟𝛼 , 𝑐𝛾 = 𝑔𝑖𝑥ℎ𝑟𝛾 ,

𝑐𝑟𝛼 = 𝑔𝑟𝛼 , 𝑐𝑟𝛽 = 𝑔𝑟𝛽 , 𝑐𝑟𝛾 = 𝑔𝑟𝛾 ,

(comaid1 = 𝑔𝑖ℎ
𝑟aid

1

OR comaid2 = 𝑔𝑖ℎ
𝑟aid

2

...

OR comaid𝑛 = 𝑔𝑖ℎ𝑟aid𝑛 )}
𝜋 ← PoK.Prove((𝛼, 𝛽, 𝑟𝛼 , 𝑟𝛽 , 𝑟𝛾 , 𝑟aid1 , ..., 𝑟aid𝑛 ), 𝜙)
S1out← (𝑘1, 𝑘 ′1, 𝜋1, 𝜋 ′1, [𝑟𝛽 ]1, [𝑟𝛾 ]1, gt, 𝑐𝛼 , 𝑐𝑟𝛼 , 𝜋)
S2out← (𝑘2, 𝑘 ′2, 𝜋2, 𝜋 ′2, [𝑟𝛽 ]2, [𝑟𝛾 ]2)
output (S1out, S2out)

Figure 3: Client steps to send a transaction.

Protecting against malicious clients. This simple idea satisfies

our confidentiality requirements, but it does nothing to prevent

misbehavior by one or more malicious clients. To add integrity

protections, we make use of our group tokens and proofs about

DPFs from Section 4.

At a high level, our approach will be to have the client produce

a commitment 𝑐𝑖 to 𝑖 and to also send a list of its group tokens. It

is important that the client send tokens for all its groups so that

servers cannot link transactions to the use of a particular token.

The client will then provide a proof that 𝑐𝑖 is a commitment to the

index of the DPF sent for 𝐹𝑖,𝑥 , and that 𝑖 appears as the address aid
in one of the provided group tokens. The servers verify the MACs

on all provided group tokens as well as the client’s proofs to ensure

that the client is authorized to transfer funds to address 𝑖 and is a

member of the corresponding group.

Next, we need to verify that the addresses 𝑖 and 𝑗 are in the same

group. Observe that if 𝑖 and 𝑗 are in the same group, they must be in

the same consecutive block of𝑀 entries in DB. Thus we can verify
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ServerTx𝑏 (DB𝑏 , 𝑘𝑏 , 𝑘 ′𝑏 , 𝜋𝑏 , 𝜋
′
𝑏
, [𝑟𝛽 ]𝑏 , [𝑟𝛾 ]𝑏 , r,

(𝑘𝑀𝐴𝐶 , gt, 𝑐𝛼 , 𝑐𝑟𝛼 , 𝜋)/⊥) :
//Verify and evaluate DPFs

Ver← ⟨DPF.S1Verify(𝑘1, 𝜋1,DPF.S2Verify(𝑘2, 𝜋2)⟩
Ver′ ← ⟨DPF.S1Verify(𝑘 ′

1
, 𝜋 ′

1
)DPF.S2Verify(𝑘 ′

2
, 𝜋 ′

2
)⟩

if Ver = 0 or Ver′ = 0 : output ⊥
for ℓ ∈ {0, ..., |DB𝑏 | − 1} :

𝑓𝑖ℓ ← DPF.Eval(𝑘𝑏 , ℓ)
𝑓𝑗ℓ ← DPF.Eval(𝑘 ′

𝑏
, ℓ)

//Check client’s proofs and tokens

[𝛽]𝑏 ← Σ
|DB𝑏 |
ℓ=1

𝑓𝑖ℓ

[𝛾]𝑏 ← Σ
|DB𝑏 |
ℓ=1

ℓ · 𝑓𝑖ℓ
𝑐𝛽𝑏 ← 𝑔[𝛽 ]𝑏ℎ [𝑟𝛽 ]𝑏 ; 𝑐𝑟𝛽𝑏 ← 𝑔[𝑟𝛽 ]𝑏

𝑐𝛾𝑏 ← 𝑔[𝛾 ]𝑏ℎ [𝑟𝛾 ]𝑏 ; 𝑐𝑟𝛾𝑏 ← 𝑔[𝑟𝛾 ]𝑏

//Server 𝑆1 does most of the proof verification work

if 𝑏 = 2 : send 𝑐𝛽2, 𝑐𝛾2, 𝑐𝑟𝛽2, 𝑐𝑟𝛾2 to 𝑆1
if 𝑏 = 1 :

receive 𝑐𝛽2, 𝑐𝛾2, 𝑐𝑟𝛽2, 𝑐𝑟𝛾2

𝑐𝛽 ← 𝑐𝛽1𝑐𝛽2; 𝑐𝑟𝛽 ← 𝑐𝑟𝛽1𝑐𝑟𝛽2

𝑐𝛾 ← 𝑐𝛾1𝑐𝛾2; 𝑐𝑟𝛾 ← 𝑐𝑟𝛾1𝑐𝑟𝛾2

(gt
1
, ..., gt𝑛) ← gt

for ℓ ∈ {1, ..., 𝑛} :
(uidℓ , comaidℓ , 𝜎ℓ ) ← gtℓ
if MAC.Verify(𝑘MAC, (uidℓ , comaidℓ ), 𝜎ℓ ) ≠ 1 :

output ⊥
if PoK.Verify(𝜙, 𝜋) ≠ 1 : output ⊥

//Check that both DPFs affect same group

for ℓ ∈ {0, ..., 𝑁 − 1} :
[𝑢ℓ ]𝑏 ← Σℓ𝑀+𝑀−1𝑚=ℓ𝑀 𝑓𝑖𝑚

[𝑣ℓ ]𝑏 ← Σℓ𝑀+𝑀−1𝑚=ℓ𝑀 𝑓𝑗𝑚

[𝑤ℓ ]𝑏 ← ([𝑢ℓ ]𝑏 − [𝑣ℓ ]𝑏 ) · −1𝑏

ℎ𝑏 ← Σ𝑁
𝑖=1𝑟𝑖 [𝑤𝑖 ]𝑏

exchange ℎ𝑏
if ℎ1 + ℎ2 = 0 :

//apply changes to database

for ℓ ∈ {0, ..., |DB𝑏 | − 1} :
DB𝑏 [ℓ] ← DB𝑏 [ℓ] + 𝑓𝑖ℓ + 𝑓𝑗ℓ

else : output ⊥

Figure 4: Server-side transaction processing protocol for server 𝑏 ∈
{1, 2} . Variables 𝑀 and 𝑁 refer to the maximum group size and
the number of registered groups, respectively, so |𝐷𝐵𝑏 | =𝑀𝑁 . The
statement 𝜙 is the same as the one shown in Figure 3.

that 𝑖 and 𝑗 are in the same group by having the servers sum their

shares of each block of𝑀 consecutive evaluations of their shares

of 𝐹𝑖,𝑥 and 𝐹 𝑗,𝑥 and then take the difference between these vectors

of sums.

Let u and v be the length-𝑁 vectors generated by summing

consecutive blocks of 𝑀 addresses in the shares produced by the

servers’ DPF keys. Concretely, the servers hold shares [u]1, [v]1
and [u]2, [v]2, respectively, of the following vectors.

u =
(
Σ𝑀−1ℓ=0 𝐹𝑖,𝑥 (ℓ), Σ2𝑀−1

ℓ=𝑀 𝐹𝑖,𝑥 (ℓ), ..., Σ𝑁𝑀−1
ℓ=(𝑁−1)𝑀𝐹𝑖,𝑥 (ℓ)

)
v =

(
Σ𝑀−1ℓ=0 𝐹 𝑗,𝑥 (ℓ), Σ2𝑀−1

ℓ=𝑀 𝐹 𝑗,𝑥 (ℓ), ..., Σ𝑁𝑀−1
ℓ=(𝑁−1)𝑀𝐹 𝑗,𝑥 (ℓ)

)
.

If addresses 𝑖 and 𝑗 are indeed in the same group of𝑀 contiguous

addresses, then there is only one non-zero index in each of these

vectors, and it is at the same position in both vectors. Thus their

difference is a vector w of all zeros: w = u − v = 0. The servers can
check this property to ensure that 𝑖 and 𝑗 are indeed in the same

group.

Instead of having the servers reveal their shares to each other

directly, we have the servers take a random linear combination of

the entries in their shares of w. Using a random vector r gener-
ated from a pre-shared seed, the servers compute the dot product

⟨r, [w]𝑏⟩ = Σ𝑁
𝑖=1𝑟𝑖 [𝑤𝑖 ]𝑏 . This reduces communication costs com-

pared to sending shares of the entire vector w.

We present an outline of the transaction protocol in Figure 2 and

the full client and server transaction processes in Figures 3 and 4,

respectively.

Human-readable transaction records.We have described how

the Silent Splitter servers store and update user balances, but pay-

ment apps usually also allow users to add human-readable messages

recording, e.g., the purpose of a given transaction. We describe two

ways a Silent Splitter deployment can add support for this feature.

(1) In-person exchange of records. Since many transactions

within a group occur when the relevant group members are

physically present in the same location, the users’ devices

can communicate this additional information to each other

out-of-band, e.g., via messages passed to each other over

Bluetooth, or over a third-party messaging app. This ap-

proach allows users to keep each other’s devices informed of

transactions opportunistically while ensuring that the Silent

Splitter servers always keep an authoritative and consistent

record of balances.

(2) In-app activity log. We augment the group setup phase

to include selection of a group secret 𝑠 . Users upload a mes-

sage encrypted under 𝑠 with each transaction and receive a

message index 𝑖 in return from the servers. These messages

identify the relevant group id and include human-readable

descriptive text. The app makes available a log of all recently

received transactions. Users can receive message indices for

relevant messages out-of-band from other members of their

groups, or they can scan the transaction log to find relevant

messages that their secret 𝑠 can decrypt correctly. This ap-

proach is more costly in terms of computation and storage,

but it serves as a backup method for exchanging transaction

messages when in-person exchange is not possible.

We note that this aspect of private payment splitting closely

resembles general-purpose anonymous group messaging. Whereas
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Figure 5: Diagram of settling protocol showing communication flows
between parties. The servers can compute the encrypted DB once
and reuse it for multiple settling operations.

the core payment splitting protocol requires additional structure to

make security guarantees about the semantic content of messages

sent to the group, i.e., that a transaction is well-formed, there is

no comparable requirement of a text description of a transaction’s

real-world purpose.

5.3 Retrieving and Settling Balances
Settling balances in Silent Splitter requires a user to download the

list of account balances for users in their group. Once a user has the

balances for their group, they can compute how much to pay which

users to settle balances, e.g., in cash or via a third-party payment

service. We discuss various possibilities for real-world repayment

of balances in Appendix C.

Since the servers cannot learn which group’s balances a user

is requesting, users cannot just ask for a given group’s balances.

Instead, we use a PIR approach. Unfortunately, we cannot directly

use PIR on the secret-shared database of account balances, as PIR

requires the database to be replicated across two servers, and simply

merging the shares before running PIR would reveal account bal-

ances. Our solution is to have the servers use the keys ek1 and ek2,
generated during the setup of each group, to mask balances before

merging them. Since each server holds only one of the keys, neither

will see the account balances when merged, but group members

can remove the masks and read the balances. This mechanism dou-

bles as an access control protection, preventing users from reading

others’ balances. A similar idea has been used for access control in

the private messaging space [44].

To enable settling, the servers convert their shares DB1 and DB2

of DB into a masked database DB′ by sharing a secret random seed

𝑟 ←R Z𝑞 and using it as an input to the PRF 𝐹 , keyed separately for

each group. That is, the servers separately encrypt each group’s bal-

ances in CTR-mode before merging their shares. More formally for

𝑏 ∈ {1, 2}, and using bracket notation to denote access to addresses,

ServerSettleSetup𝑏 (DB𝑏 , ek𝑏1, ..., ek𝑏𝑁 , 𝑟 ) :
for 𝑖 ∈ {0, ..., |DB| − 1} :

𝑗 ← ⌊𝑖/𝑀⌋
DB′

𝑏
[𝑖] ← DB𝑏 [𝑖] + 𝐹 (ek𝑏,𝑗 , 𝑟 + (𝑖 mod𝑀))

exchange DB′
𝑏

DB′ ← DB′
1
+ DB′

2

output DB′

ClientSettleRequest(aid) :
𝑗 ← ⌊aid/𝑀⌋
𝑓1, 𝑓2 ← DPF.Share( 𝑗, 1) //Domain is 0, ..., 𝑁 − 1
output (𝑓1, 𝑓2)

ServerSettle𝑏 (DB′, 𝑓𝑏 , 𝑟 ) :
for ℓ ∈ {0, ..., 𝑀 − 1} :

resp[ℓ] ← ΣN−1
𝑖=0

(
DPF.Eval(𝑓𝑏 , 𝑖) · DB′ [𝑖𝑀 + ℓ]

)
output (resp, 𝑟 )

ClientSettle(i, ek1, ek2, resp1, resp1, r) :
for 𝑖 ∈ {0, ..., 𝑀 − 1} :

resp[𝑖] ← resp
1
[𝑖] + resp

2
[𝑖]

bals[𝑖] ← resp[𝑖] − 𝐹 (ek1, 𝑟 + 𝑖) − 𝐹 (ek2, 𝑟 + 𝑖)
output bals

Figure 6: Settling protocol for client and server 𝑏 ∈ {1, 2}. Variables
𝑀 and 𝑁 refer to the maximum group size and number of regisered
groups, respectively. We omit the DPF verification proofs from the
DPF output because they are not used in this protocol. The SettleSetup
input 𝑟 can be selected by the servers at random or, if only one client
will settle, by that client.

the server 𝑏 computes, for each 𝑖 ∈ {0, ..., |DB| − 1},

DB′
𝑏
[𝑖] ← DB𝑏 [𝑖] + 𝐹 (ek𝑏,𝑗 , 𝑟 + (𝑖 mod𝑀)),

where ek𝑏,𝑗 is the key ek𝑏 for the 𝑗 = ⌊𝑖/𝑀⌋th group.

The servers then merge DB′ ← DB′
1
+ DB′2 . This operation

could be computed repeatedly each time a user requests to settle,

but it can also be precomputed on a regular basis to allow multiple

users to retrieve data from the same instance of DB′. If the database
DB′ is generated for a single client to settle, the value of 𝑟 ←R Z𝑞
could equivalently be sampled by the client instead of the servers.

When a user wishes to retrieve balances for their group, they

first compute the group index 𝑗 ← ⌊aid/𝑀⌋ for the value of aid
from their registration token. The user then produces a DPF keys

𝑓1, 𝑓2 for a point function defined over the domain {0, ...,N− 1} that
evaluates to 1 at index 𝑗 . It sends this DPF to the servers, who (for

𝑏 ∈ {1, 2}) compute and return the masked balance vectors

resp[ℓ] ← ΣN−1
𝑖=0

(
DPF.Eval(𝑓𝑏 , 𝑖) · DB′ [𝑖𝑀 + ℓ]

)
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for ℓ ∈ {0, ..., 𝑀 − 1}. This is the vector of masked balances for all

𝑀 addresses in the group. The result of this operation is equivalent

to the client simultaneously making separate DPF PIR queries for

each of the𝑀 balances in their group, but this approach improves

performance by reducing the DPF domain by a factor of 𝑀 . The

servers also send the user the choice of 𝑟 that was used to form DB′.
Note that since all entries in DB′ are masked with secret keys,

the servers do not need to verify that the DPF keys 𝑓0, 𝑓1 are well-

formed, making the generation and evaluation of the DPF in the

settling phase slightly more efficient.

Having retrieved its DPF PIR response resp ∈ F𝑀𝑞 and 𝑟 , the

receiving user computes the balance vector bals as

bals[𝑖] ← resp[𝑖] − 𝐹 (ek1, 𝑟 + 𝑖) − 𝐹 (ek2, 𝑟 + 𝑖)

for 𝑖 ∈ {0, ..., 𝑀 − 1}.
All the steps of the settling protocol are summarized in Figure 6

with the communication patterns outlined in Figure 5.

5.4 Security
Intuitively, the group and transaction confidentiality of our scheme

follow from the fact that the view of an adversary at every stage

of the protocol cannot be distinguished from random. Group reg-

istration uses a KVAC scheme with a zero-knowledge property,

transactions are made using DPFs to privately write into an address,

supported by a zero-knowledge proof over a number of group ele-

ments, which act as an El-Gamal encryption of the client’s secrets.

The settling protocol masks the databases held by the servers with

the output of a PRF on a key unknown to the servers and uses a

DPF to privately retrieve the contents of a user’s group. The only

information visible to the servers in the course of the protocol is

the list of group tokens of a user making a transaction, which al-

lows identifying the user making a transaction, but does not reveal

anything about the user’s groups or transactions. We discuss how

to use cover traffic to minimize this leakage in Appendix B.

Likewise, integrity largely follows from the various integrity

properties of the tools used to build the protocol. An additional

argument is needed, however, to show that the statements we prove

via DPF verification and zero-knowledge proofs of knowledge suf-

fice to show that an adversary cannot disrupt groups’ balances.

We provide proof sketches for the following theorems in Appen-

dix D.

Theorem 5.1 (Transaction Confidentiality). Assuming the security
of the underlying KVAC scheme, the zero-knowledge property of the
proof system, the confidentiality of the DPF scheme, the security of
the PRF 𝐹 , and the hardness of DDH in 𝐺 , our scheme satisfies the
transaction confidentiality definition for payment splitting schemes
(Definition A.1).

Theorem 5.2 (Integrity). Assuming the unforgeability of the under-
lying KVAC scheme, the extractability of the zero-knowledge proof
system, the existential unforgeability of the MAC scheme, the sound-
ness of the DPF verification proofs, and the hardness of discrete log in
𝐺 , our scheme satisfies the integrity definition for payment splitting
schemes (Definition A.2).

Table 1: Group setup computation time. Initialization is a
one-time process between a single user and server to create
a group, followed by each groupmember registering to join
the group.

Group Size Initialization Registration

10 0.44𝑠 0.08𝑠

15 0.55𝑠 0.08𝑠

20 0.62𝑠 0.08𝑠

35 0.89𝑠 0.08𝑠

50 1.24𝑠 0.08𝑠

100 2.16𝑠 0.08𝑠

6 Implementation and Evaluation
This section describes our implementation of Silent Splitter, inclu-

sive of the setup, transaction, and settling protocols, as well as our

evaluation of the system’s performance and a comparison to a naïve

approach where payment splitting groups are maintained by clients

on top of a metadata-hiding messaging system.

6.1 Implementation
We implemented our system in 4000 lines of Rust, publicly avail-

able at https://github.com/mapierce23/psa. We utilized the Rust

implementation of verifiable, incremental DPFs created for [11],

extending their sketching protocol to provide support for DPF val-

ues other than 0 or 1. For efficiency, we also added an optimized

full-domain DPF evaluation function. For the keyed-verification

anonymous credentials in the registration protocol, we utilized

cmz, Ian Goldberg’s implementation of [25], publicly available at

https://git-crysp.uwaterloo.ca/iang/cmz.git. All group operations

are performed in the Ristretto group, built on the elliptic curve

Curve25519. The DPFs are evaluated over the field 𝐹𝑞 , where 𝑞 is

the order of the Ristretto group. In the settling phase, the database

is encrypted using AES in counter mode, with Rust’s aes128 crate.
We also utilized Henry de Valence’s zkp create for ease in producing
and verifying our system’s non-interactive zero knowledge proofs.

6.2 Evaluation
We ran our implementation on Google Cloud compute instances,

using two instances with 32 vCPUs, 16 cores, and 128GB memory

each. These instances simulated the two servers; S1 was located in

the western US and S2 was located in the central US, with the round-

trip time between them 38.6 ms. An HP Laptop (Intel® Core™ i7-

10510U CPU @ 1.80GHz, 2304 Mhz, 4 Cores, 8 Logical Processors)

running Windows 10.0.19045 with 16GB memory played the role

of the clients. Round-trip time between the client and servers was

found to be 74.4 ms (𝑆1) and 38.4 ms (𝑆2), while round-trip time

between the two servers was 38.67 ms. Bandwidth between the

servers was 602 Mb/s and from client to servers was 230 Mb/s (𝑆1)

and 296 Mb/s (𝑆2). We measured client and server communication

costs, defined as the bytes sent by each party during the protocol,

the latency and throughput of transactions, and the costs of group

setup and settling.

6.2.1 Setup The setup protocol consists of two parts: group ini-

tialization, where a leader interacts with 𝑆1 to obtain registration
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Table 2: Setup communication costs for clients [C] and
servers [S]. Initialization costs increase linearly with group
size, while registration remains constant.

Group Size Init. [C] Init. [S] Registration [C + S]

10 2698B 4120B 265B

15 4023B 6080B 265B

20 5348B 8040B 265B

35 9323B 13920B 265B

50 13298B 19800B 265B

100 26548B 39400B 265B

Table 3: Transaction communication (KB sent) for clients
in 1 or 3 groups. Each group token adds 136B to client cost,
and costs increase logarithmically in database size.

DB Size Client [1 Gp] Client [3 Gps] Servers

1000 2.83KB 3.10KB 1.17KB

2000 2.87KB 3.14KB 1.17KB

4000 2.91KB 3.18KB 1.17KB

8000 2.94KB 3.21KB 1.17KB

16000 2.98KB 3.25KB 1.17KB

32000 3.02KB 3.29KB 1.17KB

tokens, and user registration, where a user interacts with 𝑆1 to

exchange its registration token for a group token. We tested group

sizes from𝑀 = 10 to𝑀 = 100. Group setup times, measuring total

computation across all parties involved, are listed in Table 1. Note

that even for large groups of size 100, this one-time creation of reg-

istration tokens takes only 2.16 seconds. We found that individual

user registration takes 0.08 seconds independent of all parameters.

These costs are due to the proofs that need to be created and verified

when using anonymous credentials.

We also recorded communication costs for clients and servers

in the setup phase, shown in Table 2. Group initialization requires

265B sent per group member on the client side and 392B per group

member on the server side in addition to the small fixed cost of

sending the PRF keys and server public key. This is again due to the

proofs required by anonymous credentials. Thus, communication

costs for setup scale linearly with the size of 𝑀 , requiring tens

of kilobytes of communication both ways when 𝑀 = 100. For

user registration, communication costs are modest at 265B on both

the client-side and the server-side. These protocols are the most

expensive part of the system and are only run during the setup

phase.

6.2.2 Transactions We anticipate that transactions will account

for the vast majority of requests in Silent Splitter. Unlike the setup

costs, transaction costs are independent of the group size; instead,

they scale with the database size, i.e., the total number of registered

addresses.

Client-side costs. Our results show that client-side computa-

tion and communication costs are essentially constant, irrespective

of the database size. Computation costs are modest: generating the

DPF keys and preparing the proof took approximately 14ms. Com-

munication costs from client to server are on the order of 2-3KB,

depending on the server in question (recall that the client’s group

tokens and the zero-knowledge proof are sent only to Server 1). We

present the specific communication costs in Table 3, where we list

the Server 1 costs because those are larger.

We also note that in our current implementation, the client gen-

erates and sends the Beaver multiplication triples needed for the

DPF sketching protocol outlined in [11] (though our extension re-

quires more triples). As mentioned in that paper, these triples can be

compressed, although they do not include this optimization in their

implementation, upon which ours is based. Such a compression

would significantly lessen our communication costs, as the triples

currently account for about 600B of our transaction requests.
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Server-side costs. Server communication is constant: each server

sends 1KB to the other while verifying the validity of a transaction.

Meanwhile, server computation costs during a transaction are the

most intensive part of the protocol. This is primarily due to the

cost of evaluating and verifying the DPFs, but it also involves the

verification time of the zero-knowledge proof. Our trials show that

the proof verification time is independent of database size and is

only slightly impacted by the number of group tokens the client

sends (since the zero-knowledge proof involves an OR-proof over

the group tokens). When a client belongs to 3 groups, for example,

proof verification takes 4.5 ms, versus 3.1 ms when it belongs to

only one group.

Latency and Throughput. We report the latency and through-

put of our end-to-end implementation of Silent Splitter in Figures 7

and 8. Since database size is the primary factor impacting computa-

tion time, we report these numbers for a wide range of database

sizes, where the database size is the number of registered addresses

in the system (number of groups times group size). As stated previ-

ously, the other factor impacting computation time is how many

groups to which the client belongs, as this affects proof verification

time. We report the latency and throughput for cases where users

belong to 1 or to 10 groups.

To establish a baseline for comparison, we note that every trans-

action requires the servers to run the DPF Private Information

Writing (PIW) protocol once for each key. This consists of a full-

domain DPF evaluation, the production and verification of sketches,

and the actual write to the database. Thus, at minimum, transac-

tions in Silent Splitter are as expensive as the DPF PIW protocol. We

tested a version of our system where transactions consisted only

of the DPF PIW components and report the results in Figures 7 and

8. Our results show that Silent Splitter itself adds little overhead

to this baseline demanded by the DPF PIW protocol. Moreover,

increasing the number of groups to which users belong has an al-

most imperceptible impact on performance because each additional

group adds one more MAC verification and one more commitment

to the proof of knowledge.

6.2.3 Settling In the settling protocol, the client simply prepares

and sends two DPF keys, which are lightweight and fast to compute.

The heavyweight computation and communication belongs to the

servers, which first encrypt each address of the database using

AES in counter mode, then merge their encrypted database shares

before completing the the rest of the protocol. As a result, server-

side communication and computation costs both grow linearly with

the size of the database. Specifically, balance retrieval latency is

bounded by the speed with which the servers can perform AES

evaluations for each address. We report this latency in Figure 9.

To optimize this step, the servers can store an encrypted version

of the database which they re-compute periodically rather than

on-demand after each request. Then, when a settling request is

received, the servers could simply use the most recently encrypted

version of the database rather than encrypting it from scratch. This

would save time as well as minimize the communication costs of

the servers having to send each other their encrypted vectors. To

demonstrate the improvement this would incur, we have included

the cost of computing only the encrypted database as a baseline in

Figure 9.

6.3 Discussion: Client-Side vs Server-Side
Payment Splitting Groups

Having described the performance properties of the Silent Splitter

system, we now revisit a possible alternative approach described in

Section 3.1. Instead of using Silent Splitter, clients could use group

messages on top of a metadata-hiding communication system to

broadcast transactions to group members, and each client could

keep its own local record of what transactions have happened in

the group. As mentioned earlier, this approach may run into issues

resulting from a lack of a single, centralized, and authoritative

source of the true set of balances within a group, but we will now

explore the performance properties such a scheme may exhibit, as

compared to Silent Splitter.

Since many metadata-hiding messaging schemes that provide

the correct level of security for comparison to Silent Splitter make

use of DPFs [32, 44, 52, 59], we can use the performance of our DPF

implementation as a rough estimate of the performance of such a

scheme, although in reality performance would be worse due to the

additional overhead needed to support messaging. Next, we need

clients to have a way to form groups on top of the metadata-hiding

messaging scheme. Fortunately, standards likeMLS [7], or metadata-

hiding variants thereof [49], provide more than sufficient support

for this. With these pieces in place, users can send MLS messages of

the form, “Alice charges Bob $x” over the metadata-hiding system

to represent transactions.

Such an approach supports balance retrieval “for free” because

clients can just check their own local transaction records to recover

balances within each group. Latency would remain comparable to

the performance shown in Figure 8, modulo any additional over-

head due to messaging on top of the DPF. On the other hand, trans-

action throughput would become significantly worse. Since each

transaction needs to be sent to every member of the group, this

approach incurs an𝑀× overhead per transaction. Loosely speaking,
this would result in an 𝑀× shift down of each point in the DPF

line in the throughput graph in Figure 7. Given that Silent Split-

ter’s throughput is so close to that of just running a DPF without

considering any other messaging-related overhead, this client-side

approach would exhibit considerably worse throughput, regardless

of the chosen group size.

In light of this comparison, Silent Splitter’s design can be thought

of as an approach that collapses themetadata-hiding, groupmanage-

ment, and transaction processing layers of the client-only approach

in order to dramatically improve transaction throughput in the

resulting system. While a naïve implementation of the payment

splitting functionality would have an order of magnitude additional

overhead compared to metadata-hiding messaging, Silent Split-

ter closely tracks the performance of metadata-hiding messaging

alone, despite the additional constraints that the payment splitting

problem places on message structure and content. An interesting

direction for future work would be to consider how to build pay-

ment splitting functionality over other forms of metadata-hiding

messaging with potentially weaker privacy guarantees. This could

allow for different tradeoffs between performance and security than

the one offered by Silent Splitter.
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7 Additional Related Work
To our knowledge, the only prior work to directly consider the

question of privacy-preserving payment splitting is a system of

Eskandarian et al. [43]. That work ismotivated by the same payment

splitting problem addressed here, but it focused exclusively on

hiding information about transactions within a group, revealing

all group membership information to the server and requiring that

each transaction explicitly identifies the group to which it belongs.

Our problem is closely related to privacy-preserving digital cur-

rencies and general-purpose anonymous communication. The rest

of this section briefly discusses these areas.

Private digital currency. An extensive body of work – beginning

with Chaum’s blind signature techniques [27, 28] – proposes vari-

ous schemes for private digital currencies [6, 16–19, 23, 30, 53, 62].

More recently, Bitcoin [51] and other decentralized currencies, es-

pecially those targeting private transactions, starting with zero-

cash [9], have also become a focus for research on private transac-

tions. While they sometimes use similar techniques to our work,

these systems operate in a very different setting, and solutions for

general-purpose private currencies, decentralized or not, cannot

directly be applied as backends for payment splitting apps.

Anonymous communication. Payment splitting can be thought

of as an augmented form of anonymous communication, and anony-

mous messaging in particular. The Tor system is the best known

system in this area [38], but the DPF techniques used here have also

formed the basis of a number of anonymous messaging schemes,

e.g., Riposte [32], Express [44], Blinder [4], Sabre [59], and Spec-

trum [52]. These systems use DPFs for private writing, much like

Silent Splitter, and each offers a unique mechanism to either verify

DPFs directly or otherwise validate DPF writing transactions end-

to-end. An important distinction between payment splitting and

general-purpose anonymous messaging is that payment splitting

places additional restrictions on the content and structure of mes-

sages compared to messaging. From this perspective, our scheme

can be thought of as combining the techniques of DPF-based anony-

mous messaging with a generalization of recent work on access

control for function secret sharing schemes [50, 58] and anony-

mous credential techniques used for private currencies or group

management in messaging systems [25, 26].

8 Conclusion
We have presented Silent Splitter, a private payment splitting sys-

tem that allows groups of users to keep track of what they owe

each other without the application infrastructure learning anything

about the groups they interact with, the people involved in their

transactions, or the amounts of money they spend with their friends.

Silent Splitter relies on split trust techniques and introduces mini-

mal additional overhead compared to standard private writing with

DPFs. This combination of functionality and performance is made

possible by new techniques for proving knowledge of properties of

DPFs, allowing users to efficiently prove that they are only mak-

ing transactions in groups to which they belong, and only using

public-key cryptography and zero-knowledge proofs on statements

that do not scale with the number of users or groups in the overall

system.
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A Security Definitions
This section formalizes security definitions for the confidentiality

and integrity properties described in Section 3.

Definition A.1 (Transaction Confidentiality). The transaction con-
fidentiality experiment TCONF[A, 𝜆, 𝑀, 𝑛, 𝑏] is conducted between
an adversaryA who controls one server and a number of malicious

users, and a challenger C who controls the other server and any

honest users and receives secret input bit 𝑏. The experiment be-

gins with the adversary selecting a server 𝑆𝑎 , 𝑎 ∈ {1, 2}, to control

during the experiment, and outputting 𝑛 distinct user identifiers

uid1, ..., uid𝑛 to identify honest users. We will refer to the set of

honest user ids as Hon. During the experiment, the group size is

set to𝑀 , and the adversary is given access to a number of oracles,

specified below. At the end of the experiment, the adversary out-

puts a distinguishing bit 𝑏′, which is passed on as the output of the

experiment.

During the course of the experiment, the challenger maintains a

table𝑈 that maps user ids to a list of corresponding addresses.

• HonSetup(uid𝑖1 , ..., uid𝑖𝑀 ): The challenger plays the role of
honest users uid𝑖1 , ..., uid𝑖𝑀 interacting with the servers to

set up a group. The challenger adds the new aid value to

𝑈 [uid𝑖 ] for each user and does the necessary bookkeeping to
record tokens held by each user throughout the experiment.

We refer to groups set up via this oracle as honest groups.
• MalSetup(uid𝑖1 , ..., uid𝑖𝑀′ ): The adversary plays the role of a
malicious user interacting with the servers to set up a group,

of which𝑀 ′ members are honest. The challenger plays the

role of the honest users in the setup process, and the experi-

ment aborts if the honest users fail to correctly set up their

group credentials. The challenger adds the new aid value to
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𝑈 [uid𝑖 ] for each user and does the necessary bookkeeping

to record tokens held by each honest user throughout the

experiment.

• MalTx() : The adversary plays the role of a malicious user

interacting with the servers to make a transaction.

• HonTx(uid, aid𝑖 , aid𝑡 , 𝑥) : If any of the following conditions

are violated, the oracle aborts and outputs ⊥.
(1) uid ∈ Hon
(2) aidi ∈ 𝑈 [uid]
(3) ⌊aid𝑖/𝑀⌋ = ⌊aid𝑡/𝑀⌋
Otherwise, the challenger plays the role of honest user uid
making a transaction using aid𝑖 of value𝑥 with target address
aid𝑡 in the same group.

• HonChalTx(uid, (aid𝑖0, aid𝑡0, 𝑥0), (aid𝑖1, aid𝑡1, 𝑥1)) : If any of
the following conditions are violated, the oracle aborts and

returns ⊥.
(1) uid ∈ Hon
(2) aid𝑖0 and aid𝑖1 both belong to honest groups.

(3) aidi0, aidi1 ∈ 𝑈 [uid]
(4) ⌊aid𝑖0/𝑀⌋ = ⌊aid𝑡0/𝑀⌋
(5) ⌊aid𝑖1/𝑀⌋ = ⌊aid𝑡1/𝑀⌋
Otherwise, the challenger plays the role of honest user uid
making a transaction using aid𝑖𝑏 of value 𝑥𝑏 with target

address aid𝑡𝑏 .
• HonSettle(aid) : The challenger plays the role of the honest
user who controls aid to perform the settling protocol with

the servers. If aid is not controlled by an honest user, this

oracle aborts and returns ⊥.
• MalSettle() : The adversary plays the role of a malicious user

interacting with the servers to perform the settling protocol.

We say that a payment splitting scheme satisfies transaction

confidentiality if for all efficient adversariesA and any 𝜆,𝑀,𝑛 ∈ N,
it holds that���Pr[TCONF[A, 𝜆, 𝑀, 𝑛, 0] = 1

]
− Pr

[
TCONF[A, 𝜆, 𝑀, 𝑛, 1] = 1

] ���
≤ negl(𝜆).

DefinitionA.2 (Integrity). The integrity experiment INT[A, 𝜆, 𝑀, 𝑛]
is conducted between an adversaryA who controls a number𝑚 < 𝑛

of malicious users, denoted by the setMal, and a challenger C who

controls the servers and the remaining 𝑛 −𝑚 honest users, denoted

by the set Hon. The group size for the system is set to𝑀 .

During the course of the experiment, the challenger maintains a

table 𝑇 that records the transactions the adversary requests honest

users to make in groups of all honest users. For honest users in any

group, the challenger does the necessary bookkeeping to record

which users control which addresses, including mapping each uid
to the set of associated addresses aid and the corresponding secrets.

The experiment provides the adversary access to the following

oracles.

• AddGroup(uid1, ..., uid𝑀 ): This oracle allows the adversary
to create new groups. If all of uid1, ..., uid𝑀 ∈ Hon, we refer
to the newly created group as an honest group, and the chal-

lenger sets 𝑇 [aid] ← 0 for each aid allocated to the newly

formed group. Otherwise, the challenger plays the role of

any uid𝑖 ∈ Hon and the adversary plays the role of any user

uid𝑖 ∈ Mal. If a group contains users from both Hon and

Mal, we refer to it as a mixed group.

• MalTx(uid): this oracle allows the adversary to make a trans-

action with the servers while playing the role of malicious

user uid ∈ Mal. If uid ∉ Mal, the call to the oracle aborts

and outputs ⊥.
• HonTX(aid𝑖 , aid𝑗 , 𝑥) : this oracle allows the adversary to

compel an honest user who controls aid𝑖 – call this user uid𝑖
– to make a transaction. If uid𝑖 ∉ Hon or if aid𝑖 and aid𝑗 are

not in the same group (i.e., ⌊aid𝑖/𝑀⌋ ≠ ⌊aid𝑗/𝑀⌋), the oracle
aborts and outputs ⊥. Otherwise, the challenger plays the
role of honest user uid𝑖 interacting with the servers to make

a transaction of value 𝑥 with aid𝑗 . The challenger sends the

transcript of the interaction to the adversary and sets

𝑇 [aid𝑖 ] ← 𝑇 [aid𝑖 ] + 𝑥, 𝑇 [aid𝑗 ] ← 𝑇 [aid𝑗 ] − 𝑥 .
• Settle(aid): This oracle allows the adversary to run the set-

tling operation with the servers. Let uid be the user id asso-

ciated with aid. There are three cases.

uid ∈ Mal. In this case, the adversary plays the role of the

user uid and interacts with the challenger, playing the role

of the servers, to run the settling protocol.

uid ∈ Hon and aid belongs to amixed group. In this case, the

the challenger plays the role of of user uid and the servers

interacting to perform the settling protocol, and the adver-

sary is sent the transcript of communications between the

parties. As a result of settling, the user uid recovers a vector

of group balances Bals, |Bals| =𝑀. The experiment aborts

and outputs 1 if Σ𝑀𝑖=1Bals[𝑖] ≠ 0.

uid ∈ Hon and aid belongs to an honest group. In this case,

the the challenger plays the role of of user uid and the servers
interacting to perform the settling protocol, and the adver-

sary is sent the transcript of communications between the

parties. As a result of settling, the user uid recovers a vector

of group balances Bals, |Bals| =𝑀. The experiment aborts

and outputs 1 if any balance does not match the correspond-

ing balance recorded by the challenger in 𝑇 . That is, the

experiment aborts if there exists some 𝑖 ∈ {1, ..., 𝑀} where
Bals[𝑖] ≠ 𝑇 [⌊aid/𝑀⌋ ·𝑀 + 𝑖] .

If the experiment ends without aborting and outputting 1 in

one of the calls to Settle, the experiment’s output will be 0. We

say that a payment splitting scheme has integrity if for all efficient

adversaries A and parameters 𝜆,𝑀,𝑛 ∈ N, it holds that

Pr[INT[A, 𝜆, 𝑀, 𝑛] = 1] ≤ negl(𝜆).

B Cover Traffic
While Silent Splitter’s security properties require that a given trans-

action reveal nothing about a user’s groups, transaction partners,

or transaction amounts, repeated transactions between a given user

and the Silent Splitter system can be linked, both at the applica-

tion and network layers. That is, the servers learn who the user

initiating a given transaction is, even if they don’t learn anything

about what the transaction contains (dollar amount or recipient
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user/group). Additional effort to directly obfuscate this information

is of little value, as any application that runs the Silent Splitter pro-

tocol will likely require some kind of user login and authentication

functionality anyway.

Unfortunately, the Silent Splitter servers could use this user

identification metadata to observe patterns in when users make

transactions, join groups, or settle balances to infer relationships

among users, even if the transactions themselves hide this infor-

mation. Silent Splitter requires using cover traffic to eliminate this

form of leakage.

Silent Splitter supports cover traffic messages at each stage of

the protocol. In order to allow even users who are not yet members

of any group to participate in generating cover traffic, the Silent

Splitter servers create an additional “dummy group” when the sys-

tem is first set up, running the initialization protocol for this group

themselves and distributing a registration token for this group to all

clients. This is not necessary to support cover traffic, but it allows

clients to start generating cover traffic independently of the time

that they start joining real groups.

We now briefly discuss how to support cover traffic at each stage

of the Silent Splitter protocol.

(1) Group registration. The Silent Splitter protocol does leak
the identity of users who initialize new groups, but cover

traffic can be used to hide timing information that could

otherwise link other users to the group creator. Since the

group registration protocol run by each group member sim-

ply involves presenting an anonymous credential, this step

can be done repeatedly for the same group. Thus users can

“re-join” their existing groups or the dummy group as a way

to create cover for other users really joining new groups.

Note that this step does not involve the servers allocating

new storage for cover transactions, as only group initializa-

tion triggers allocation of storage for a new group. Thus the

Silent Splitter design allows for cover traffic in group setup

without bloating the server-maintained databases beyond

the single dummy group created at system setup.

(2) Transactions. Cover traffic transactions can be made within

a group by simply setting the value 𝑥 of a transaction to be 0.

For users who are not in any group, they can join and make

transactions in the system-generated dummy group.

(3) Settling. There is no in-protocol requirement for servers to

authenticate or verify client requests to settle because access

control for settling is determined by who holds the group’s

keys ek1 and ek2. Thus any client can make settling requests

at any time, regardless of whether or not the system pro-

vides a dummy group. Moreover, since the settling protocol

setup step, where the servers merge their database shares,

is request-independent, this part of the protocol cost can

be amortized over a number of settle requests generated by

cover traffic.

After determining how to generate cover traffic for each step

of the protocol, we need to also decide how much cover traffic

to generate. At one extreme, Silent Splitter clients can operate on

a lock-step schedule, where time is split up into a series of fixed

“rounds” and each client makes one operation, either real or dummy,

for each round. At another extreme, there can be no automatic cover

traffic generation, and the app can rely on users to generate traffic

naturally or by manual effort. Differential privacy techniques [39,

40] or other statistical approaches can also be used to determine

how much cover traffic each client should generate. The Silent

Splitter design is compatible with any of these options. We do not

discuss each of these approaches further, as the issue of how much

cover traffic to generate for payment splitting is identical to cover

traffic questions in other anonymous communication settings.

C Repaying Balances
Our settling protocol allows a user to see the list of balances for

each user in their group. From this point, a number of different

approaches can be taken to repay members in the real world.

(1) No explicit repayment. Perhaps the simplest way to handle

settling balances is to not explicitly repay them at all. Users

can occasionally check the balances in a group and adjust

real-world behavior so that balances eventually even out.

This approach, while slow, is easy to implement and requires

no additional in-app functionality.

(2) Out-of-band repayment. Using the balance information

available to each user in the group through the settling pro-

tocol, a client-side computation can compute a “repayment

plan” that minimizes the number of real-world transactions

needed in order bring balances for all group members (or

some user-selected subset of the group) back to zero. When

the plan is executed, these transactions can be entered into

the system to record the updated state of user balances.

(3) In-app repayment via third-party processor. The most

convenient option for users would be to integrate Silent

Splitter with a third party payment processor who can settle

transactions on users’ behalf. Using in-app repayment nec-

essarily comes with compromises compared to out-of-band

repayment, e.g., repayment cannot happen in cash, but offers

increased convenience. In this setting, computing a minimal

repayment plan for the group before settling balances offers

the additional benefit of hiding social graph information

among members of the group in the aggregated transaction

information of all its members. However, the application and

the payment processor will necessarily be made aware of

the final balances of users using this method of repayment.

D Deferred Proofs

Proof of Theorem 5.1 (Transaction Confidentiality).

Proof (sketch). The proof proceeds via a series of hybrids. We

elide the details of reductions between hybrids and note places

where a full proof would break a hybrid into a series of subhybrids.

Without loss of generality, we present our proof as if the adversary

chooses to corrupt server 𝑆1 . The case where the adversary corrupts

𝑆2 is almost identical except that we no longer need to invoke the

blind issuance property of the KVAC scheme because 𝑆2 is not

involved in that protocol step.

• Hyb
0
: This is the transaction confidentiality game with𝑏 = 0,

i.e., TCONF[A, 𝜆, 𝑀, 𝑛, 0] .
• Hyb

1
: This hybrid replaces all interactions with 𝑆1 during

group setup with simulated blind issuance and credential
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showing proofs. Formally, this step requires three subhy-

brids, where each is indistinguishable from the preceding

one by the blind issuance, key-parameter consistency, and

anonymity properties, respectively, of the KVAC scheme

used. Since this aspect of the protocol is not closely inter-

twined with the remaining parts, we skip the details of these

hybrids.

• Hyb
2
: This hybrid replaces the proof 𝜋 sent by clients to

𝑆1 during the transaction protocol with a simulated zero-

knowledge proof. It is indistinguishable from the preceding

hybrid by the zero-knowledge property of the proof system.

Formalizing this hybrid requires one subhybrid to change

the proof for each invocation of the HonChalTx oracle.
• Hyb

3
: This hybrid replaces evaluations of the PRF 𝐹 (ek2𝑗 , ·)

with evaluations of a random function 𝑓 (·) for all honest
groups 𝑗 ∈ {1, ..., 𝑁 }, rendering the contents ofDB′

2
for those

groups uniformly random. This hybrid is indistinguishable

from the preceding one by the security of the PRF 𝐹 and can

be formalized by a series of subhybrids equal to the number

of honest groups, where each subhybrid replaces invocations

of 𝐹 with one key ek2𝑗 with a random function.

• Hyb
4
: This hybrid replaces ℎ𝑟𝛾 in the client’s computation of

𝑐𝛾 during the transaction protocol with a uniformly random

element of the group 𝐺 . This results in 𝑐𝛾 being masked via

multiplication by a random value. This hybrid is indistin-

guishable from the preceding one by the hardness of DDH

in 𝐺 because the values of ℎ, 𝑐𝑟𝛾 = 𝑔𝑟𝛾 , and ℎ𝑟𝛾 form a

DDH triple. A reduction would re-randomize the DDH chal-

lenge for each run of the protocol, resulting in independent-

looking values for each call to the protocol.

• Hyb
5
: This client replaces ℎ [𝑟𝛽 ]2 and ℎ [𝑟𝛾 ]2 computed by

𝑆2 during the transaction protocol with uniformly random

elements of the group𝐺 . This results in 𝑔[𝛽 ]2 and 𝑔[𝛾 ]2 being
being masked via multiplication by a random value. This

hybrid is indistinguishable from the preceding one by the

hardness of DDH in 𝐺 because the values (ℎ,𝑔[𝑟𝛽 ]2 , ℎ [𝑟𝛽 ]2 )
and (ℎ,𝑔[𝑟𝛾 ]2 , ℎ [𝑟𝛾 ]2 ) form DDH triples. A reduction would

re-randomize the DDH challenge for each run of the protocol

and for each of 𝛽 and 𝛾 , resulting in independent-looking

values for each call to the protocol.

• Hyb
6
: This hybrid switches the experiment from 𝑏 = 0 to

𝑏 = 1. Since proofs are simulated, settling returns random

values, and all the group elements sent between parties are

independently random, the only change in the adversary’s

view is the change in the values of 𝛼, 𝛽 used for the DPF.

Thus this hybrid is indistinguishable from the preceding one

by the confidentiality of the DPF.

• Hyb
7
: This hybrid undoes the changes made in Hyb

5
, re-

placing the random group elements from 𝐺 with the values

computed according to the protocol. It is indistinguishable

from the preceding hybrid by the same argument relying on

the hardness of DDH in 𝐺 .

• Hyb
8
: This hybrid undoes the changes made in Hyb

4
, re-

placing the random group elements from 𝐺 with the values

computed according to the protocol. It is indistinguishable

from the preceding hybrid by the same argument relying on

the hardness of DDH in 𝐺 .

• Hyb
9
: This hybrid undoes the changes made in Hyb

3
, re-

placing calls to the random function 𝑓 with calls to the PRF

𝐹 (ek2𝑗 , ·). It is indistinguishable from the preceding hybrid

by the security of the PRF 𝐹 .

• Hyb
10
: This hybrid undoes the changes made inHyb

2
, replac-

ing the simulated proofs 𝜋 sent to 𝑆1 during the transaction

protocol with real proofs. It is indistinguishable from the

preceding hybrid by the zero-knowledge property of the

proof system.

• Hyb
11
: This hybrid undoes the changes made in Hyb

1
, re-

placing the simulated credential issuance and presentation

protocols with real ones. It is indistinguishable from the

preceding hybrid by the security of the KVAC scheme.

Observe that hybrid Hyb
11
is identical to the transaction confiden-

tiality experiment with 𝑏 = 1, i.e., TCONF[A, 𝜆, 𝑀, 𝑛, 1] . Thus the
theorem follows from the indistinguishability of the pairs of hybrids

and the triangle inequality. □

Proof of Theorem 5.2 (Integrity).

Proof (sketch). The proof proceeds via a series of hybrids. We

elide the details of reductions between hybrids.

• Hyb
0
: this hybrid is the integrity experiment INT[A, 𝜆, 𝑀, 𝑛].

• Hyb
1
: In this hybrid, the experiment runs the extractor for

the proof system used in the KVAC scheme and aborts if

the extractor fails. This event occurs with at most negligi-

ble probability, so the hybrid is indistinguishable from the

preceding one. Formalizing this hybrid would require one

subhybrid per interaction with a malicious user.

• Hyb
2
: In this hybrid, the experiment aborts if the extracted

aid from any user uid ∈ Mal belongs to an honest group. This
event occurs with negligible probability by the unforgeability

of the KVAC scheme, so this hybrid is indistinguishable from

the preceding one.

• Hyb
3
: In this hybrid, the experiment runs the extractor for

the zero knowledge proof system used to generate the proofs

𝜋 during the transaction protocol and aborts if the extractor

fails. The abort condition occurs with negligible probability,

so this hybrid is indistinguishable from the preceding one.

Formalizing this hybrid would require one subhybrid per

transaction from a malicious user.

• Hyb
4
: In this hybrid, the experiment keeps a table 𝑇MAC of

messages it has MACed. If ever a client sends a message,

MAC pair (uidℓ , comaidℓ )𝜎ℓ which verifies successfully but

does not appear in 𝑇MAC, the experiment aborts. This event

occurs with negligible probability because of the existential

unforgeability of the MAC scheme, so this hybrid is indistin-

guishable from the preceding one.

• Hyb
5
: In this hybrid, the two servers merge their shares

of the evaluations of each DPF after completing all their

evaluations. If a DPF passed verification but has more than

a single non-zero entry, the experiment aborts. This event

occurs with negligible probability by the soundness of the

DPF verification protocol, so this hybrid is indistinguishable

from the preceding one.
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• Hyb
6
: In this hybrid, the servers reconstruct the values of

𝛼, 𝛽,𝛾 from their secret shares, and the experiment aborts if

these values do not match the corresponding values (𝑖, 𝑥, 𝑖𝑥)
extracted from the proof 𝜋 . Observe that if these values

disagree, then they offer two different openings of the com-

mitments 𝑐𝛼 , 𝑐𝛽 , 𝑐𝛾 . The reduction from different openings

of the commitments to discrete log is identical to that of the

binding property of the Pedersen commitment scheme [55].

Thus this hybrid is indistinguishable from the preceding

one by the hardness of discrete log in 𝐺 because the abort

criterion is triggered with negligible probability.

• Hyb
7
: In this hybrid, the experiment augments the table

𝑇MAC to record the values aid𝑖 , 𝑟aid extracted from the KVAC

presentation protocol when issuing group tokens. Then, the

experiment aborts if it ever extracts values of 𝑖, 𝑟aid𝑖 from

the transaction proof 𝜋 that do not match any of the values

of (aid𝑖 , 𝑟aid) in 𝑇MAC for the provided tags 𝜎1, ...𝜎ℓ . This

hybrid is indistinguishable from the preceding one by the

hardness of discrete log in 𝐺 because this event means that

𝑖, 𝑟aid𝑖 is a valid second opening for one of the commitments

comaid1 , ..., comaidℓ .

• Hyb
8
: In this hybrid, the two servers directly compare their

shares of w after completing each successful transaction. If

the transaction modified the database, butw ≠ 0
𝑁 , the exper-

iment aborts. Since the elements of w have been multiplied

by a uniformly random vector r, this can be thought of as

evaluating a multilinear polynomial with coefficients deter-

mined by w at a random point r. By the Schwartz-Zippel-

DeMillo-Lipton Lemma [36, 57, 63], ifw ≠ 0
𝑁
, Σ𝑁

𝑖=1𝑟𝑖 [𝑤𝑖 ]𝑏 =

0 with at most negligible probability (unconditionally). Thus

this hybrid is statistically indistinguishable from the preced-

ing one.

We now show that no adversary can win the integrity game in

Hyb
8
. To do this we will prove two claims:

(1) Each transaction affects exactly 1 group and does not change

the sum of balances in that group.

(2) No malicious user can make a transaction that affects bal-

ances in an honest group.

Observe that since each group begins with balances that sum to zero

(because all balances start at zero), claim 1 shows that this invariant

is maintained after each transaction. This rules out the possibility

of the adversary winning the experiment because settling some

mixed or honest group results in Σ𝑀𝑖=1Bals[𝑖] ≠ 0. Moreover, if no

malicious user can make a transaction that affects balances in an

honest group, then the balances recorded in the table𝑇 will exactly

match the balances returned by settling, because 𝑇 records the

balances resulting from transactions made by honest users in an

honest group. But this means that both cases where the experiment

can output 1 have become unreachable, so the adversary can never

win. We conclude the proof by proving the two claims.

Claim D.1. Each transaction affects exactly 1 group and does not
change the sum of balances in that group.

Proof sketch. We know from DPF verification that the vectors

fi and fj each have a single non-zero entry. Since u and v are formed

by taking sums of consecutive blocks of𝑀 entries in these vectors

(corresponding to the addresses in the same group), it must also

be the case that u and v each have a single non-zero entry. We

also know that u − v = w = 0
𝑁 . Then it follows that u and v

must have the same non-zero entry and the same value in that

entry, otherwise we would have that u − v ≠ 0
𝑁 , a contradiction.

The claim follows because each entry in u, v,w corresponds to the

values for addresses in one group. □

Claim D.2. No malicious user can make a transaction that affects
balances in an honest group.

Proof sketch. Consider a transaction made by the adversary

via theMalTx oracle. Since the value of 𝛽 computed by the servers is

a sum of all the entries in f𝑖 , it must be that 𝛽 is the value of the one

non-zero entry in f𝑖 . But by construction, then, 𝛾 is the product of 𝛽

and the non-zero index 𝛼 at which that value occurs. Also, we know

that these values of 𝛼 and 𝛽 match the values of 𝑖 and 𝑥 extracted

from the proof 𝜋, and that the value of 𝑖 corresponds to the opening

of one of the commitments comaid1 , ..., comaidℓ presented by the

adversary when making the transaction. But since the experiment

would have aborted if any honest group index were extracted from

a malicious user’s registration, it must be the case that 𝑖 is not

an address located in an honest group. But since, by Claim 1, a

transaction only affects one group, and the DPF f𝑖 does not affect
the balance of an honest group, it must be that the transaction does

not affect the balance of an honest group. □

□

1013


	Abstract
	1 Introduction
	2 Background and Preliminaries
	3 System Goals
	3.1 Design Goals
	3.2 Security Goals
	3.3 Limitations and Non-Goals

	4 New Protocols for DPFs
	5 The Silent Splitter Payment Splitting System
	5.1 Group Setup
	5.2 Transactions
	5.3 Retrieving and Settling Balances
	5.4 Security

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Evaluation
	6.3 Discussion: Client-Side vs Server-Side Payment Splitting Groups

	7 Additional Related Work
	8 Conclusion
	Acknowledgments
	References
	A Security Definitions
	B Cover Traffic
	C Repaying Balances
	D Deferred Proofs

