
Optimizing Encrypted Neural Networks: Model Design,
Quantization and Fine-Tuning Using FHEW/TFHE

Yu-Te Ku
1,4
, Feng-Hao Liu

2
, Chih-Fan Hsu

1
,

Ming-Ching Chang
3
, Shih-Hao Hung

4,5
, I-Ping Tu

4
,Wei-Chao Chen

1

1
Inventec Corporation, Taipei City, 111059, Taiwan;

2
Washington State University, Pullman, WA, 99164, USA;

3
State University of New York, University at Albany, Albany, NY 12222, USA;

4
Data Science Degree Program, National Taiwan University and Academia Sinica, Taipei City, 115201, Taiwan;

5
High Performance and Scientific Computing Center, National Taiwan University, Taipei City, 10617, Taiwan

d08946006@ntu.edu.tw; feng-hao.liu@wsu.edu; hsu.chih-fan@inventec.com; mchang2@albany.edu;

hungsh@csie.ntu.edu.tw; iping@stat.sinica.edu.tw; chen.wei-chao@inventec.com

Abstract
Third-generation Fully Homomorphic Encryption (FHE), partic-

ularly the FHEW/TFHE schemes, is recognized for its balanced

security requirements, small parameters, and low memory usage,

though the current methods in the scenarios of Deep Neural Net-

work (DNN) inference still have high computational costs, limiting

the practical applicability. This work demonstrates how to improve

practicality of the third-generation technologies for DNN tasks

while preserving its key advantages. Our work focuses on two

main contributions. First, we developed a computational architec-

ture called FHE-Neuron, which reconfigures the parameters and

bootstrapping structure of traditional FHEW/TFHE Boolean opera-

tions. This architecture significantly reducing the cost of encrypted

DNN inference by dynamically switching the precision of encrypted

data during computation—using high precision for cost-effective

linear operations and low precision for computationally expensive

nonlinear operations. Second, we introduced an FHE-aware Quanti-

zation and Fine-tuning framework that optimizes model parameters

to align with FHE-Neuron’s constraints, ensuring high accuracy in

encrypted inference. We validate our approach on various neural

network models across several computing platforms. In our experi-

ments, our method achieves one-image inference time on average

4.5 milliseconds for MNIST and 17 milliseconds for Fashion MNIST,

achieving accuracy rates of 96.52% and 88.57% respectively. For the

CIFAR-10 dataset, our system completes one image inference in 30

seconds with a 90.5% accuracy rate.

Keywords
Encrypted inference, neural networks, Fully Homomorphic En-

cryption, FHEW/TFHE, boostrapping, quantization, approximated

computation, model fine-tuning.

1 Introduction
With the rapid rise of AI and deep learning, the deployment of Deep

Neural Network (DNN) models through various platforms and ser-

vices has advanced significantly [19, 23, 28, 42, 52, 55]. However,

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(4), 1075–1091
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0172

the widespread adoption of these technologies also raises concerns

about data security, privacy, and potential model leaks. Fully Ho-

momorphic Encryption (FHE) allows computations on encrypted

data without the need for decryption, ensuring data security and

privacy. Non-interactive FHE Encrypted DNN Inference [18, 40]

enables users to securely outsource encrypted data for processing

without exposing the data, addressing these challenges.

This work demonstrates that third-generation FHE technologies,

derived or extended from FHEW [15] and TFHE [10], can achieve

performance comparable to the highly optimized fourth-generation

CKKS [8] scheme, despite using smaller parameter settings. This

integration enables the combination the compact ciphertext sizes

and low memory requirements of third-generation solutions with

the enhanced throughput of fourth-generation systems. Currently,

mainstream Fully Homomorphic Encryption (FHE) schemes fall

into two categories: (1) those supporting Single Instruction Multi-

ple Data (SIMD) arithmetic operations, such as second-generation

schemes like BGV [5] and BFV [16], as well as fourth-generation

schemes like CKKS, and (2) those capable of executing arbitrary

Boolean logic, like third-generation schemes such as FHEW and

TFHE. CKKS is widely used for encrypted inference due to its native

support for approximate computations with large floating-point

numbers and efficient SIMD usage. However, it requires larger

ciphertext and key sizes because of its superpolynomial modulus-

to-noise ratio, which is based on the Ring Learning With Errors

(Ring-LWE) problem.

In contrast, third-generation FHE schemes such as FHEW and

TFHE based on moderate assumptions, specifically the Ring-LWE

problem with a polynomial modulus-to-noise ratio. This configura-

tion enables smaller ciphertexts and key sizes, allowing for faster

processing of a single ciphertext compared to fourth-generation

schemes. However, the lack of practical SIMD implementations

for FHEW/TFHE means that fourth-generation FHE often outper-

forms these earlier schemes in many DNN inference applications.

Despite this, third-generation FHE schemes remain important for

their potential to diversify DNN encrypted inference solutions.

Recent theoretical work suggests the feasibility of SIMD in third-

generation FHE schemes [32, 33], although no supporting libraries

have yet been developed. This indicates that third-generation FHE

could eventually achieve efficiencies comparable to those of fourth-

generation SIMD. Despite the absence of SIMD functionality, third-

generation FHE still faces several challenges in DNN inference

1075

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0172

Proceedings on Privacy Enhancing Technologies 2025(4) Ku et al.

Sum

ct1

ct2 …
…

ctk

1

b

w1

w2

wk ctout

Activation Function (FHEW Bootstrapping)

ModSwitch Look-Up Table
𝑓ACT

• ModSwitch converts

the large modulus Q

of LWE ciphertexts to

a small modulus q.

• Bootstrapping to perform

lookup table operations

for activation functions

𝑓ACT on LWE ciphertexts.

ctsum

• Ciphertexts ct1 to ctk are encrypted from the plaintexts m1 to mk, where each
ciphertext cti has a modulus Q and each plaintext mi in a message space of size P.

• ctsum is the ciphertext of the linear computation result msum.

• ctmod is the ciphertext of the ModSwitch result mmod = msum
q

Q
Q.

• ctout is the ciphertext of the FHE-Neuron result mout.
• 𝑒𝑜𝑢𝑡 = 𝑓ACT σi=1

k mi ×wi + b −mout , 𝑒𝑜𝑢𝑡 is FHE Approximate Noise.

ctmod
Fp32 Model Weights

FHE-Aware
Quantization

Encrypted Inference
Verification

Accuracy
Acceptable??

FHE-Aware
Tuning

True

False

Re-verification

(a) FHE-Neuron (b) Process for Our FHE-Aware Quantization
and FHE-Aware Tuning Framework

Output
Qualified

Quantization
Model

Quantization Model

Fine-Tuned
Quantization
Model

Linear Function

Figure 1: Overview of the proposed (a) FHE-Neuron leverages ModSwitch to switch the precision of ciphertexts, employing high precision

for linear computations and low precision for activation functions, thereby enhancing efficiency. (§ 3) and (b) FHE-Aware Quantization
and Fine-tuning Framework quantizes and fine-tunes pre-trained floating-point models to align with the specific usage conditions of

FHE-Neuron. (§ 4).

applications. In the following sections, we explore new insights and

potential solutions to address these challenges.

Challenges: The inherent limitations of weaker Ring-LWE as-

sumption, i.e., small modulus-to-noise ratio, mainly come from the

message space available for computations. For instance, the mes-

sage space of FHEW/TFHE-based DNN inference scheme [26] is

restricted to 6 bits, while CKKS-based [31] can support up to 60

bits. This limitation poses considerable challenges for designing

efficient encrypted DNN computations.

Consequently, FHEW/TFHE-based design have proved effec-

tive only for simpler datasets like MNIST [4, 26], or they involved

low-bit precision neural networks [17, 29], or they require con-

verting computations to Boolean circuits [38]. However, the effi-

ciency of these approaches is notably slower than those based on

CKKS [3, 14, 22, 44, 45]. It remains unclear how to extend third-

generation methods to efficiently handle larger datasets requiring

more complex DNN models, such as CIFAR-10.

To address these challenges, we focus on the following research
question: Can we develop encrypted DNN inference based on the
weaker Ring-LWE assumptions (e.g., polynomial modulus-to-noise
ratio like the FHEW/TFHE schemes), while achieving comparable
accuracy and computation time to highly optimized fourth-generation
FHE schemes?

This question is crucial in determining whether third-generation

FHE schemes can offer a viable DNN inference solution thatmatches

the performance of fourth-generation FHE schemes while utilizing

smaller ciphertext sizes and requiring less memory.

1.1 Our Contributions
We address the aforementioned research question, and present

an effective solution comprising two key components (see Fig-

ure 1). First, we design an efficient FHE-Neuron architecture to

address the limitations of traditional Boolean FHEW/TFHE, which

are unsuitable for DNN inference due to the high cost of message

space. Second, we develop a model quantization and fine-tuning

framework tailored to this architecture, enabling the conversion

of general pre-trained models into ones compatible with our ap-

proach, thereby improving the robustness of encrypted inference.

Finally, we validate our method on multiple datasets, including

MNIST [30], Fashion-MNIST [53], and CIFAR-10 [27]. Experimen-

tal results demonstrate that within third-generation FHE technol-

ogy, our approach significantly outperforms previous methods. We

elaborate our contributions in details as follows.

Contribution 1: We design an efficient encrypted neural archi-

tecture, FHE-Neuron, based on third-generation FHE schemes, as

shown in Figure 1(a). For further details, refer to § 3. The core idea
is to optimize neuron computation efficiency by dynamically adjust-

ing the precision of the ciphertexts. During the linear computation

stage, we use large-modulus ciphertexts to support a larger mes-

sage space. Before applying the activation function, we reduce the

ciphertext modulus via FHEW ModSwitch operation to lower mes-

sage precision. This adjustment is crucial because Bootstrapping,

required for activation, becomes more computationally expensive

with higher precision. Given DNN’s interent tolerance for approxi-

mation errors, our approach maintains accuracy while significantly

improving efficiency. Compared to traditional Boolean-type FHEW,

which performs fully precise computations, our FHE-Neuron bal-

ances efficiency and accuracy through precision-switching strate-

gies.

Contribution 2: We develop the FHE-Aware Quantization and
FHE-Aware Tuning Framework to adapt plaintext-trained DNN

models for efficient encrypted inference with FHE-Neurons. This

framework overcomes key challenges of FHE-based computation,

such as integer-only operations, limited ciphertext message space,

and precision-related approximation errors. As shown in Figure 1(b),

the FHE-Aware Quantization optimizes model precision based

on FHE parameters to prevent overflow errors. The FHE-Aware
Tuning module fine-tunes model weights using FHE parameters

1076

Optimizing Encrypted Neural Networks: Model Design, Quantization and Fine-Tuning Using FHEW/TFHE Proceedings on Privacy Enhancing Technologies 2025(4)

(a) (b) (c)

Figure 2: Performance and efficiency comparison with the State-of-The-Art (SoTA). Using 7 H100 GPUs or 4 RTX 4090 on the VGG9

model and CIFAR-10 dataset; see § 5 for details. (a) FHE-Aware Tuning significantly improves the accuracy of DNN encrypted inference. (b)

Performance comparison of various encrypted DNN inference models on CIFAR-10, highlighting the trade-off between latency and accuracy.

(c) Comparison of model memory usage and accuracy.

and the estimated noise distribution of FHE-Neuron, enhancing

the reliability of encrypted computations. Ultimately, this frame-

work ensures encrypted inference accuracy comparable to plaintext

computation.

Contribution 3: We validate the effectiveness and efficiency of

our approach through extensive experiments on the MNIST, Fash-

ion MNIST, and CIFAR-10 datasets, using the OpenFHE [2] and

GPU-accelerated FHEW/TFHE libraries [54]. The results demon-

strate that after applying FHE-Aware Tuning, encrypted inference

accuracy significantly improves, closely matching the plaintext in-

ference accuracy of the original pre-trained models; see Figure 2(a).

Compared to previous third-generation FHE (FHEW/TFHE)-based

solutions, our method achieves the lowest latency in Figure 2(b).

Additionally, while maintaining efficiency comparable to CKKS-

based solutions, our approach offers lower memory consumption

as in Figure 2(c). These findings confirm that third-generation FHE

can enable practical and efficient encrypted DNN inference under

weaker security assumptions, addressing primary research chal-

lenges.

Our work primarily focuses on improving efficiency of third-

generation FHE in the application of DNN inferences. We notice

that several techniques are also applicable to other FHE generations

as we further elaborate in § 6.

1.2 Related Work
From 2018 to 2024, FHE has driven substantial progress in encrypted

deep neural network (DNN) inference. The following studies specifi-

cally focus on third-generation FHE schemes. FHE-DiNN [4] demon-

strated that FHEW/TFHE could be effectively applied to fully con-

nected NNs on the MNIST dataset, achieving an inference time

of 0.14 seconds per image with negligible accuracy degradation.

FDFB [26] extended TFHE to support convolutional neural net-

works (CNNs) by introducing full-domain bootstrapping, repre-

senting an important step toward practical encrypted inference.

SHE [38] extended TFHE to deep models like ResNet and LSTM,

but inference was still expensive, with ResNet-18 taking about 3.3

hours. REDsec [17] improved runtime efficiency through discretized

ciphertext representations, reducing CIFAR-10 inference time to

approximately 2,000 seconds per image. EFHEPE [29] proposed a

more efficient FHE framework tailored for privacy-enhanced neural

inference in trustworthy AI applications.

Parallel research has explored alternative FHE schemes such as

BGV [5]/BFV [16], and CKKS [8]. Falcon[39] and LoLa[6], both

based on the BFV scheme, enhance encrypted inference efficiency

through spectral-domain acceleration and optimized ciphertext

representations. CKKS, due to its support for approximate arith-

metic, has been widely adopted in privacy-preserving deep learning.

PPML-DNN [31] applied CKKS to encrypted inference on CIFAR-

10 but faced high computational costs—around three hours and

172 GB per image. EVA [13] streamlines FHE development by au-

tomating vectorization and operations. Hybrid-HE DNN frame-

work [35] integrates the strengths of both the FHEW/TFHE and

CKKS schemes to enhance the efficiency of encrypted DNN infer-

ence. OPP-CNN [24] mitigated this using constant-time convolu-

tions, while DACAPO [9] further optimized performance through

a compiler that inserts bootstrapping based on ciphertext scale,

reducing inference time to under 60 seconds. CKKS has also been

extended to encrypted graph convolutional networks (GCNs) [25].

CryptoGCN [46] enabled efficient inference on NTU-RGB+D [34].

Subsequent works such as Penguin [47] and LinGCN [43] improved

scalability via parallel packing and linearized architectures.

2 Preliminary
In this section, we discuss preliminary knowledge necessary for

our method. § 2.1, § 2.2, and § 2.3 cover the foundational aspects of
third-generation FHE schemes, particularly FHEW/TFHE. § 2.4 and
§ 2.5 delve into the prerequisites for fine-tuning and quantizing

DNN models.

2.1 LWE Symmetric Encryption
We begin by recalling the definition of the Learning with Errors

(LWE) encryption scheme, which forms the foundation of many

widely used Fully Homomorphic Encryption (FHE) schemes [15].

Let 𝑞 denote the ciphertext modulus and 𝑃 the message modulus.

In the LWE scheme, a message𝑚 ∈ Z𝑃 is encrypted with a secret

key ®s ∈ Z𝑛𝑞 in the form ct(𝑃,𝑞,𝑛) = (®𝑎, ⟨®𝑎, ®s⟩ + 𝑞

𝑃
𝑚 + 𝑒) = (®𝑎, 𝑏) ∈

1077

Proceedings on Privacy Enhancing Technologies 2025(4) Ku et al.

Z𝑛𝑞 ×Z𝑞 , where 𝑒 ∈ Z𝑞 is a small error term, typically sampled from

a Gaussian distribution. We use LWE(𝑃,𝑞,𝑛)®s
(⌈
𝑚
𝑞

𝑃

⌋)
to denote the

set of ciphertexts that encrypt𝑚 under secret key ®s, with respect

to the moduli 𝑃, 𝑞.

Given an LWE ciphertext (®𝑎, 𝑏), the decrypted message𝑚′ can

be computed as𝑚′ =
⌈
𝑃
𝑞
(𝑏 − ⟨®𝑎, ®s⟩)

⌋
, where ⌈·⌋ denotes a round-

ing function. Decryption remains correct as long as the norm of

error term |𝑒 | does not exceed 𝑞

2𝑃
. This constraint is crucial when

designing homomorphic operations over LWE ciphertexts, as each

operation increases the error, impacting the failure probability of

decryption.

We next present several useful homomorphic operations to pro-

cess the LWE ciphertexts.

• ModSwitch𝑄→𝑞
(
ct(𝑃,𝑄,𝑛)

)
→ ct(𝑃,𝑞,𝑛)

out
: Given a LWE ciphertext,

ct(𝑃,𝑄,𝑛) ∈ LWE(𝑃,𝑄,𝑛)®s

(⌈
𝑚
𝑄

𝑃

⌋)
, moduli 𝑄 , the operation pro-

duces an output ciphertext ct(𝑃,𝑞,𝑛)
out

∈ LWE(𝑃,𝑞,𝑛)®s
(⌈
𝑚
𝑞

𝑃

⌋)
, mod-

uli 𝑞.

• KeySwitch𝑁→𝑛
(
ct(𝑃,𝑞,𝑁)

)
→ ct(𝑃,𝑞,𝑛)

out
: Given LWE ciphertext,

ct(𝑃,𝑞,𝑁) ∈ LWE(𝑃,𝑞,𝑁)®s
(⌈
𝑚
𝑞

𝑃

⌋)
, where ®s ∈ Z𝑁+1𝑞 and ®s′ ∈ Z𝑛+1𝑞 ,

the operation produces an output ciphertext ct(𝑃,𝑞,𝑛)
out

∈ LWE(𝑃,𝑞,𝑛)®s′
(⌈
𝑚
𝑞

𝑃

⌋)
.

KeySwitch converts a ciphertext that is encrypted under the orig-

inal secret key ®s ∈ Z𝑁+1𝑞 into another ciphertext that is encrypted

under a new secret key ®s′ ∈ Z𝑛+1𝑞 .

• ct(𝑃,𝑞,𝑛)
1

+ ct(𝑃,𝑞,𝑛)
2

→ ct(𝑃,𝑞,𝑛)
out

: The operation of adding two

LWE ciphertexts, ct(𝑃,𝑞,𝑛)
1

∈ LWE(𝑃,𝑞,𝑛)®s
(⌈
𝑚1

𝑞

𝑃

⌋)
and ct(𝑃,𝑞,𝑛)

2
∈

LWE(𝑃,𝑞,𝑛)®s
(⌈
𝑚2

𝑞

𝑃

⌋)
, results in an output ciphertext ct(𝑃,𝑞,𝑛)

out
∈

LWE(𝑃,𝑞,𝑛)®s
(⌈
(𝑚1 +𝑚2) 𝑞𝑃

⌋)
.

• ct(𝑃,𝑞,𝑛)
1

+
⌈
𝑚2

𝑞

𝑃

⌋
→ ct(𝑃,𝑞,𝑛)

out
: The operation that adds one LWE

ciphertext ct(𝑃,𝑞,𝑛)
1

∈ LWE(𝑃,𝑞,𝑛)®s
(⌈
𝑚1

𝑞

𝑃

⌋)
to a plaintext𝑚2

𝑞

𝑃
pro-

duces an output ciphertext ct(𝑃,𝑞,𝑛)
out

∈ LWE(𝑃,𝑞,𝑛)®s
(⌈
(𝑚1 +𝑚2) 𝑞𝑃

⌋)
.

• ct(𝑃,𝑞,𝑛)
1

·𝑚2 → ct(𝑃,𝑞,𝑛)
out

: The operation of multiplying a LWE

ciphertext ct(𝑃,𝑞,𝑛)
1

∈ LWE(𝑃,𝑞,𝑛)®s
(⌈
𝑚1

𝑞

𝑃

⌋)
by a scalar factor

𝑚2 ∈ Z produces an output ciphertext ct(𝑃,𝑞,𝑛)
out

∈ LWE(𝑃,𝑞,𝑛)®s(⌈
(𝑚1 ·𝑚2) 𝑞𝑃

⌋)
.

2.2 FHEW/TFHE Functional Bootstrapping
Functional Bootstrapping [12] is a key feature third-generation

FHE schemes, such as FHEW [15] and TFHE [10]. This advanced

capability enables direct execution of specific homomorphic lookup

operations on ciphertexts during the bootstrapping phase, defined

by an extraction function, without incurring additional computa-

tional overhead. Within the FHEW/TFHE frameworks, Functional

Bootstrapping is particularly useful for performing operations in

small integer domains, which are essential for Boolean circuits.

We integrate this technique into our FHEW-style cryptosystems,

following the bootstrappingmethod outlined in [36]. Our implemen-

tation is based on the OpenFHE library [2], incorporating additional

performance optimizations proposed in [21] and [54].

Throughout this paper, we make extensive use of the Functional

Bootstrapping procedure, denoted as Boots[𝑓] for a given nega-

cyclic extraction function 𝑓 . The key properties of Boots[𝑓], essen-
tial to our work, are summarized in the following definition.

Lemma 2.1 (Functional Bootstrapping). For any LWE cipher-
text ct(𝑃,𝑞,𝑛) ∈ LWE(𝑃,𝑞,𝑛)®s

(⌈
𝑚
𝑞

𝑃

⌋)
and a negacyclic extraction func-

tion 𝑓 : Z𝑞 → Z𝑄 , such that 𝑓
(
x + 𝑞

2

)
= −𝑓 (x) (mod 𝑄), the func-

tional bootstrapping procedure Boots[𝑓] (ct(𝑃,𝑞,𝑛)) outputs a new

ciphertext ct(𝑃,𝑄,𝑁) ∈ LWE(𝑃,𝑄,𝑁)®s′

(⌈
𝑚′ 𝑄

𝑃

⌋)
, 𝑚′ =

⌈
𝑓 (𝑚)𝑄

𝑃

⌋
+ 𝑒

(mod 𝑄), with 𝑃 < 𝑞 < 𝑄 . This process transforms a ciphertext
encrypted under the original secret key ®s ∈ Z𝑛+1𝑞 into a ciphertext
encrypted under a new secret key ®s′ ∈ Z𝑁+1

𝑄
. The noise term 𝑒 satisfies

|𝑒 | < 𝛽 , where 𝛽 is a noise bound depending only on the operations
performed by Boots and not on the input ciphertext ct(𝑃,𝑞,𝑛) .

2.3 FHE Parameters of Our FHE-Neuron
We adopt the FHEW/TFHE Functional Bootstrapping notation and

parameter settings from [36] for our FHE-Neuron, as summarized in

Table 1. Notably, we align the modulus of the initial LWE ciphertext,

𝑄in, with the LWE/RLWE modulus used for key switching, 𝑄ks.

The key input parameter for the FHE-Neuron is 𝑄in. Typically,

log𝑄in must exceed log 𝑃 + log 𝑒in, where log 𝑃 represents the bit

precision of the plaintext input, and 𝑒in denotes the error in the input

ciphertext ct
(𝑃,𝑄

in
,𝑛)

in
as defined in Theorem 3.1. We set log𝑄in = 35

and log 𝑃 = 16.

Once 𝑄in is set, we select a modulus 𝑄 larger than 𝑄in to enable

efficient NTT/FFT operations during bootstrapping. The ring di-

mension 𝑁 is chosen based on the desired security level, following

the LWE estimator recommendation in [1]. To achieve 128-bit se-

curity against classical attacks, we set 𝑁 = 2048, with a maximum

log𝑄 of 54 bits. Given 𝑁 , we set 𝑞 = 2𝑁 to optimize performance.

Along with selecting 𝑄 , we must determine 𝐵𝑔 , the gadget base

used for decomposing 𝑄 . Prior studies [36, 41] recommend setting

𝐵𝑔 to the smallest power of two greater than 𝑄1/2
, corresponding

to a decomposition depth of 𝑑𝑔 = 2. This choice is crucial, as 𝐵𝑔
directly influences the growth of bootstrapping noise. To optimize

runtime performance, we set 𝐵𝑔 =
⌈
𝑄1/2⌉

.

Selecting an optimal 𝐵𝑔 is essential for controlling the output

error of the FHE-Neuron, ensuring minimal impact on DNN in-

ference accuracy while maintaining computational efficiency. Our

strategy balances precision and performance, avoiding unnecessary

computational overhead. For example, experimental results show

that setting 𝐵𝑔 =
⌈
𝑄1/3⌉

(with 𝑑𝑔 = 3) increases computation time

by 1.5× compared to 𝐵𝑔 =
⌈
𝑄1/2⌉

(with 𝑑𝑔 = 2), while reducing

noise standard deviation to approximately two-thirds of its original

value.

2.4 Post-Training Quantization
Third-generation FHE schemes support only integer computations,

requiring model weights to be converted from floating-points into

integers. Post-Training Quantization (PTQ) [20] achieves this using

a uniform quantization function 𝑄 (𝑤) defined as:

𝑄 (𝑤) = sign(𝑤) · Δ ·min

(⌊
|𝑤 |
Δ
+ 0.5

⌋
,
𝑀 − 1
2

)
. (1)

1078

Optimizing Encrypted Neural Networks: Model Design, Quantization and Fine-Tuning Using FHEW/TFHE Proceedings on Privacy Enhancing Technologies 2025(4)

Table 1: Main FHE Parameters Related to FHEW/TFHE Func-
tional Bootstrapping

Parameter Description
𝑃 Size of the plaintext message space for the initial LWE

ciphertext.

𝑞 Input the modulus of the LWE ciphertext for Bootstrapping.

𝑛 LWE dimension of the initial LWE ciphertext.

𝑄 RLWE modulus of the Bootstrapping Key

𝑄in LWE Modulus of the initial LWE ciphertext.

𝑄ks LWE/RLWE modulus used for key switching.

𝑁 RLWE dimension of the Bootstrapping Key.

𝐵𝑔 Gadget base for digit decomposition in each accumulator update,

which breaks integers mod Q into 𝑑𝑔 digits.

𝐵ks Gadget base for key switching, which breaks integers mod Q

into 𝑑ks digits.

Here,𝑤 represents the floating-point model weights, and sign(𝑤)
determines its polarity. The quantization step Δ defines the spacing

between quantization levels, while𝑀 denotes the total quantization

levels. For example, with signed 8-bit integer for quantization,𝑀 =

255. This approach ensures a symmetric, uniform distribution of

weights while minimizing quantization errors, making it well-suited

for encrypted deep learning computations.

2.5 Pseudo-Noise Tuning
The primary goal of Pseudo-Noise Tuning (PNT) is to mitigate

the loss of inference accuracy that often follows model quantiza-

tion due to reduced precision. This technique introduces Pseudo-

Quantization Noise (PQN) during the fine-tuning phase, enabling

the model to adapt to and anticipate precision losses caused by

quantization, ultimately improving inference accuracy.

A key component of this process is the noise proxy function,
which adjusts pseudo-noise based on quantized network parameters

and predefined noise distributions. During forward propagation,

pseudo-noise is strategically added after each ReLU layer via this

proxy function. The remaining fine-tuning steps follow standard

procedures, as detailed in [7, 50]. This approach optimizes model

weights to compensate for noise effects introduced by quantized

parameters and pseudo-noise distributions. A more detailed discus-

sion of pseudo-noise tuning can be found in Appendix B.

Our method extends PNT by estimating pseudo-noise distribu-

tions based on FHE theory. The impact of this approach and its

benefits are further explored in § 4.2.

3 The FHE-Neuron
In this section, we present detailed design of our FHE-Neuron to

address the challenges outlined in the Introduction. § 3.1 provides
an overview of FHE-Neuron architecture and compare it with the

traditional Boolean FHEW/TFHE scheme. § 3.2 provides detailed
analysis of the FHE-Neuron.

3.1 Architecture of FHE-Neuron
Our FHE-Neuron process is outlined in Algorithm 1. The algorithm

takes as input a 1×𝑘 ciphertext matrix ®ct, plaintext neuron weights

®𝑤 ∈ Z𝑘 , a bias term 𝑏 ∈ Z, and an activation function 𝑓ACT. The

output ciphertext ctout represents the plaintext𝑚out, computed by

applying a linear operation to the plaintext embedded in ®ct, using
weights ®𝑤 and bias 𝑏, followed by activation 𝑓ACT and scaling by 𝛿 .

Algorithm 1 FHE-Neuron

1: Parameters:
• 𝑄𝑖𝑛 ∈ Z: input LWE modulus.

• 𝑃 ∈ Z: message space modulus of input LWE.

• 𝑛 ∈ Z: dimension of input LWE.

• 𝑞 ∈ Z: input modulus for bootstrapping.

• 𝑄 ∈ Z: RLWE modulus of the Bootstrapping Key.

• 𝑁 ∈ Z: RLWE dimension of the Bootstrapping Key.

• 𝛿 ∈ R: scale factor.
2: Input:

• ®ct = [ct(𝑃,𝑄𝑖𝑛 ,𝑛)
1

, . . . , ct(𝑃,𝑄𝑖𝑛 ,𝑛)
𝑘

], input FHE LWE ciphertexts.

• ®𝑤 ∈ Z𝑘 , model weights.

• 𝑏 ∈ Z , model bias.

• 𝑓ACT : Z𝑃 → Z𝑃 , an activation function.

3: procedure FHE-Neuron(®ct, ®𝑤,𝑏, 𝑓ACT)

▷ Convert activation function 𝑓ACT : Z𝑃 → Z𝑃 into a nega-

cyclic activation function 𝑓Bt : Z𝑞 → Z𝑄 .
4: function 𝑓Bt(𝑥)

5: if −𝑞
4
≤ 𝑥 <

𝑞

4
then

6: return
⌊
𝛿
𝑄

𝑞
· 𝑓ACT (

⌊
𝑥 2𝑃
𝑞

⌋
) 𝑞
2𝑃

⌋
mod 𝑄

7: else
8: return −𝑓Bt (

⌊
𝑥 − 𝑞

2

⌋
)

9: end if
10: end function

▷ Start FHE Linear Function

11: ct(𝑃,𝑄𝑖𝑛 ,𝑛)
in

← ∑𝑘
𝑖=1 ct

(𝑃,𝑄
in
,𝑛)

𝑖
· w𝑖 +

⌊
𝑏 ·𝑄

in

𝑝

⌋
▷ Start FHE Activation Function (FHE-ACT)

12: ct(𝑞,𝑞,𝑛)
M1

← ModSwitch𝑄
in
→𝑞 (ct(𝑃,𝑄in

,𝑛)
in

)
13: ct(𝑃,𝑄,𝑁)

Bt
← Boots[𝑓Bt] (ct(𝑞,𝑞,𝑛)

M1
)

14: ct(𝑃,𝑄𝑖𝑛 ,𝑁)
M2

← ModSwitch𝑄→𝑄𝑖𝑛 (ct
(𝑃,𝑄,𝑁)
Bt

)
15: ct(𝑃,𝑄𝑖𝑛 ,𝑛)

out
← KeySwitch𝑛→𝑛 (ct

(𝑃,𝑄𝑖𝑛 ,𝑛)
M2

)
16: end procedure
17: Output: ct(𝑃,𝑄𝑖𝑛 ,𝑛)

out
, an LWE ciphertext.

As illustrated in Figure 3(a), our FHE-Neuron architecture uti-

lizes ModSwitch technology to switch ciphertext precision, thus

optimizing computational efficiency. For linear computations, we

employ ciphertexts with larger moduli and higher precision, while

for nonlinear computations, we opt for smaller moduli and lower

precision. This strategy is implemented because linear computa-

tions are more efficient than nonlinear operations executed via

FHEW Bootstrapping in the LWE ciphertext environment. The non-

linear computation is referred to as FHE Activation Function
(FHE-ACT).

To minimize the costs of nonlinear computations, we imple-

mented a simplified form of bootstrapping that supports only lookup

table functionality for negacyclic functions. While more advanced

bootstrapping methods can support lookup tables for any function,

their implementation would significantly increase costs. We define

activation functions like ReLU as negacyclic functions as in Figure 5.

This negacyclic ReLU function effectively operates within ±𝑞
4
of

1079

Proceedings on Privacy Enhancing Technologies 2025(4) Ku et al.

i=1

k

cti
(P,Qin,n)

∙ wi + b(
Qin

P
)

w1… wk

ctin
(P,Qin,n)

b

Model Weights

Model Bias
Encrypted Input

ct1
(P,Qinn)

ctk
(P,Qin,n)

…

Boots 𝑓Bt

(q, q, n) → (Q, P, N)
ctBt

(P,Q,N) ModSwitch 2
(Q → Qin)

KeySwitch
(N → n) ctM2

(P,Qin,N)
ctout

(P,Qin,n)

ctM1
(q,q,n)ModSwitch 1

Qin, P → 𝑞, 𝑞
FHE Activation
Function

FHE Linear Function

output

mM1 = (min

Qin

P
+ ein)

𝑞

Qin
+ eM1

mBt = 𝑓Bt(mM1)
Q

q
+ eBt

mM2 = mBt ∙
Qin

Q
+ eM2

ModSwitch 1 (Qin, P) → (q, q)

Boots (q, q, n) → (Q, P, N)

ModSwitch 2 (Q → Qin)

mout ∙
Qin

P
= mM2 +eks

KeySwitch (N → n)

FHE-ACT: ℤQin
→ ℤQin

(min

Qin

P
+ ein) ∈ ℤQin

mM1 ∈ ℤq

mBt ∈ ℤQ

mM2 ∈ ℤQin

mout

Qin

P
∈ ℤQin

min ∈ ℤP

mout ∈ ℤP

(a) Architecture of FHE-Neuron (b) Plaintext data flow corresponding to the ciphertextes of FHE Activation
Function (FHE-ACT)

Figure 3: (a) Architecture of FHE-Neuron and (b) Noise analysis of FHE Activation Function (FHE Parameters: 𝑞 = 4096, 𝑛 =

1305, 𝑁 = 2048, 𝑃 = 2
16, 𝑄𝑖𝑛 = 2

35, 𝑄 = 2
54
).

ct1
(p′,q,n)

+ ct2
(p′,q,n)

ct3
(p′,q,n)

Encrypted Input

ct1
(p′,q,n)

ct2
(p′,q,n)

Boots 𝑓NAND

(p′, q, n) → (p′, Q, N)

ct6
(p′,𝑄,n) KeySwitch

(N → n)ctout
(p′,q,n)

ct4
(p′,Q,N)

ModSwitch 2
Q, p′ → q, p′

FHEW NAND Lookup Table

output

ct4 = 𝑓NAND(ct3) =
𝑄/8 𝑖𝑓 ct3 ∈ [

−𝑞

8
,
3𝑞

8
]

−𝑄/8 𝑖𝑓 ct3 ∈ [
3𝑞

8
,
7𝑞

8
]

ModSwitch 1
Q, p′ → Qks, p′

ct5
(p′,Qks,n)

Figure 4: Traditional Boolean FHEW: A Case Study with
NAND. (FHE Parameters: 𝑞 = 1024, 𝑛 = 512, 𝑁 = 1024, 𝑝′ =

2
3, 𝑄𝑘𝑠 = 2

14, 𝑄 = 2
27
).

Figure 5: Negacyclic Activation Functions for Bootstrapping
(using ReLU as an Example) 𝑓Bt : Z𝑞 → Z𝑄 .

the ciphertext message space, covering only half of it. Exceeding

this range during processing may lead to inference errors. In line 4

of Algorithm 1, the activation function 𝑓ACT is transformed into the

negacyclic function 𝑓Bt for Bootstrapping. Furthermore, to handle

message scaling in quantized DNNs, we multiply the ciphertext by

a scaling factor 𝛿 during the Bootstrapping operation, adjusting the

ciphertext information, where 0 < 𝛿 ≤ 1.

Our FHE-Neuron employs mixed-precision computation to en-

hance performance, building on extensions of the traditional Boolean

FHEW architecture (see Figure 4). The following paragraph outlines

the key insights behind our approach.

Key Insights of Our New FHE-Neuron. We present the criti-

cal ideas of our extensions to FHE-Neuron, emphasizing the key

differences as follow.

(1) FHE Parameters Settings: The LWE ciphertext moduli differ

between the two architectures. Traditional Boolean FHEW priori-

tizes computational efficiency with a smaller modulus (e.g., 𝑞 = 2
10
),

limiting computations to low-bit values (e.g., 3-bit). In contrast, FHE-
Neuron supports higher precision (e.g., 16-bit) for deep neural net-

works, requiring a larger LWE ciphertext modulus (e.g.,𝑄_𝑖𝑛 = 2
35
)

to store more complex information for linear computations.

(2) Bootstrapping Mechanism: Both approaches use lookup ta-

bles during Bootstrapping after LWE-based linear computations.

The efficiency and precision of Bootstrapping depend on the RLWE

key dimension 𝑁 . To balance security and performance, we set

𝑁 = 2048 and limit the Bootstrapping input modulus to 𝑞 ≤ 2𝑁 .

Increasing 𝑞 would require a larger 𝑁 , significantly raising compu-

tational costs. Consequently, FHE-Neuron optimizes performance

by using a larger modulus (e.g., 235) for linear computations and

reducing it (e.g., to 4, 096) before Bootstrapping, thus minimizing

computational costs. This reduction results in information loss of

log(𝑄𝑖𝑛/𝑞) bits from the ciphertext, but still supports a lookup ta-

ble of log(𝑞) bits. In contrast, traditional Boolean FHEW prevents

information loss by aligning the ciphertext modulus used in linear

computations with that used during bootstrapping. However, this

restriction limits the computations to only Boolean values or small

integers.

(3) LWE Ciphertext Scaling: After Bootstrapping, FHE-Neuron
scales ciphertext messages by multiplying them with 𝛿 ∈ R, which
is important for DNN operations. Traditional Boolean FHEW re-

lies on costly Boolean circuits for numerical scaling, whereas our

1080

Optimizing Encrypted Neural Networks: Model Design, Quantization and Fine-Tuning Using FHEW/TFHE Proceedings on Privacy Enhancing Technologies 2025(4)

approach achieves similar functionality without added cost. How-

ever, this introduces noise due to approximation errors, making it

essential to analyze their impact on accuracy.

These distinctions highlight the advantages of FHE-Neuron in

precision, efficiency, and deep learning adaptability. In § 3.2, we ana-
lyze FHE Activation Function, the primary source of approximation

errors in our architecture.

3.2 Analysis on FHE-Neuron
In this section, we analyze the approximation errors encountered

in Algorithm 1 (FHE-Neuron), with a particular emphasis on the

FHE Activation Function (FHE-ACT) process spanning lines 12

to 15. The errors stemming from the Linear Function on line 11

are negligible. The primary sources of approximation errors are

the changes in ciphertext message precision occurring between

linear and nonlinear computations viaModSwitch, and the noise

introduced by the scaling factor 𝛿 used in Boots[𝑓Bt].
Figure 3 (b) shows the plaintext data flow corresponding to

the ciphertexts of FHE-ACT, highlighting how noise is introduced

through twoModSwitch operations, Bootstrapping, andKeySwitch.
In particular,ModSwitch1 reduce modulus of the ciphertext from

𝑄 = 2
35
to 𝑞 = 2

12
, thus thus preserving only the top 12 bits of infor-

mation in the ciphertext and discarding the lower bits. This effect

is especially significant when the ciphertext message space 𝑃 = 2
16

exceeds 𝑞, as the impact of ModSwitch1 on the message is more

pronounced than in cases where the message space is smaller than

𝑞. Furthermore, Bootstrapping introduces noise during its lookup

operations, where the impact of the noise is inversely proportional

to Bootstrapping scaling factor 𝛿 ; the smaller the scaling factor,

the greater the noise impact. Therefore, meticulous control of the

output range and noise ratio of the ciphertext through the scaling

factor is essential for maintaining accurate inference results.

Theorem 3.1 (Noise Analysis of FHE Activation Function).

Let 𝑄𝑖𝑛, 𝑃, 𝑞,𝑄 denote parameters specified in Algorithm 1, arranged
such that 𝑄 > 𝑄𝑖𝑛 > 𝑃 > 𝑞. Then for ciphertext ct(𝑃,𝑄𝑖𝑛 ,𝑛)

𝑖𝑛
∈

LWE(𝑃,𝑄𝑖𝑛 ,𝑛)®𝑠

(⌊
𝑚𝑖𝑛

𝑄𝑖𝑛
𝑃

⌋)
, where𝑚𝑖𝑛 ∈ Z𝑃 is the plaintext message

and activation function 𝑓ACT : Z𝑃 → Z𝑃 and nega- cyclic activation
function 𝑓Bt : Z𝑞 → Z𝑄 , the output ciphertext satisfies

ct(𝑃,𝑄𝑖𝑛 ,𝑛)𝑜𝑢𝑡 ∈ LWE(𝑃,𝑄𝑖𝑛 ,𝑛)®𝑠

(⌊
𝑚𝑜𝑢𝑡

𝑄𝑖𝑛
𝑃

⌋)
, where𝑚𝑜𝑢𝑡 is the plaintext

message, satisfying

𝑚𝑜𝑢𝑡 ·
𝑄𝑖𝑛

𝑃
=

⌊
𝑓𝐵𝑡

(⌊(⌊
𝑚𝑖𝑛 ·𝑄𝑖𝑛

𝑃

⌋
+ 𝑒𝑖𝑛

)
𝑞

𝑄𝑖𝑛

⌋
+ 𝑒𝑀1

)
𝑄𝑖𝑛

𝑄

⌋
+ 𝑒𝐵𝑡

𝑄𝑖𝑛

𝑄
+ 𝑒𝑀2 + 𝑒𝑘𝑠 ∈ Z𝑄𝑖𝑛 ,

where 𝑒in ∈ Z𝑄𝑖𝑛 , 𝑒𝑀1 ∈ Z𝑞 , 𝑒Bt ∈ Z𝑄 , 𝑒M2 ∈ Z𝑄𝑖𝑛 , 𝑒ks ∈ Z𝑄𝑖𝑛 , and
𝑒out ∈ Z𝑄𝑖𝑛 are defined as shown in Table 2. These terms are the
commonly used noise components in FHEW/TFHE schemes.

Define 𝑒𝑜𝑢𝑡 := |𝑓ACT (𝑚𝑖𝑛) −𝑚𝑜𝑢𝑡 | 𝑄𝑖𝑛𝑃 and then we have:

𝑒𝑜𝑢𝑡 = 𝑒′Bt + 𝑒Bt
𝑃

𝑄
+ 𝑒M2

𝑃

𝑄𝑖𝑛
+ 𝑒ks

𝑃

𝑄𝑖𝑛
(2)

= 𝑒M1
𝑃

𝑞
𝛿 + 𝑒Bt

𝑃

𝑄
+ 𝑒M2

𝑃

𝑄𝑖𝑛
+ 𝑒ks

𝑃

𝑄𝑖𝑛
∈ Z𝑃 , (3)

where the error term:

𝑒′Bt =

����𝑓𝐴𝐶𝑇 (𝑚𝑖𝑛)𝛿 −
⌊
𝑓Bt

(⌊(⌊
𝑚𝑖𝑛 ·𝑄𝑖𝑛

𝑃

⌋
+ 𝑒𝑖𝑛

)
𝑞

𝑄𝑖𝑛

⌋
+ 𝑒M1

)
𝑃

𝑄

⌋����
≈ 𝑒M1

𝑃

𝑞
𝛿,when 𝑃 > 𝑞 and 𝑓ACT, 𝑓Bt are smooth.

Proof. We prove the theorem by tracing the value encrypted

by the input ciphertexts ct(𝑃,𝑄𝑖𝑛 ,𝑛)
𝑖𝑛

∈ LWE(𝑃,𝑄𝑖𝑛 ,𝑛)®𝑠

(⌊
𝑚𝑖𝑛

𝑄𝑖𝑛
𝑃

⌋)
as

depicted in Algorithm 1 and Figure 3(b) . Line 4 executes the con-

version of the activation function lookup table 𝑓ACT : Z𝑃 → Z𝑃
into a negacyclic activation function lookup table for bootstrap-

ping 𝑓Bt : Z𝑞 → Z𝑄 . Line 11 retrieves ct
(𝑃,𝑄𝑖𝑛 ,𝑛)
𝑖𝑛

through the FHE

Linear Function. The noise 𝑒𝑖𝑛 originates within the Learning with

Errors (LWE) scheme of ct(𝑃,𝑄𝑖𝑛 ,𝑛)
𝑖𝑛

, and belongs to the ring of in-

tegers modulo 𝑄𝑖𝑛 . Line 12 introduces noise 𝑒M1 during the initial

Modulus Switch. Line 13 executes the bootstrapping procedure

Boots[𝑓Bt] and incorporates noise 𝑒Bt. Line 14 introduces additional
noise 𝑒M2 during the second Modulus Switch. Line 15 conducts

the Key Switch and adds noise 𝑒ks. Ultimately, the error between

the input and output of the FHE-ACT, denoted as 𝑒out, is given by

Eq. (3).

□

Table 2: Noise Components and Their Descriptions

𝑒in ∈ Z𝑄
in

The original noise of LWE

𝑒𝑀1 ∈ Z𝑞 The noise of ModSwitch1

𝑒Bt ∈ Z𝑄 The noise of Boots

𝑒𝑀2 ∈ Z𝑄
in

The noise of ModSwitch2

𝑒ks ∈ Z𝑄
in

The noise of KeySwitch

𝑒out ∈ Z𝑄
in

The noise of FHE-ACT

Empirical Estimation of FHE-ACT Noise:We now introduce

our method to estimate the noise 𝑒out in FHE-ACT. Based on the

research documented in [36] and [54], we use independent Gauss-

ian models to estimate the noise associated with Bootstrapping as

implemented through the Number Theoretic Transform (NTT) and

the Fast Fourier Transform (FFT).

NTT-based Implementation: According to Section 6.5 of [36],

which discusses the Bootstrapping analysis based on NTT imple-

mentation, the error terms 𝑒𝑀1, 𝑒𝐵𝑡 , 𝑒𝑀2, and 𝑒𝑘𝑠 are approximated

as Gaussian distributions, each characterized by a specific standard

deviation that describes their noise distribution. Their respective

variances are 𝜎2

𝑀1
=
(∥𝑠𝑛 ∥2+1)

3
, 𝜎2

𝑀2
=
(∥𝑠𝑁 ∥2+1)

3
, 𝜎2

𝐵𝑡
=

4𝑑𝑔𝑛𝑁 (𝐵2𝑔)
6𝜎2
𝐵𝐾

,

and 𝜎2

𝑘𝑠
= 𝜎𝐵𝐾𝑁𝑑𝑘𝑠 , for uniform ternary secret keys 𝑠𝑁 with dimen-

sions 𝑁 and 𝑠𝑛 with dimensions 𝑛, ∥𝑠𝑁 ∥ ≤
√︁
𝑁 /2 and ∥𝑠𝑛 ∥ ≤

√︁
𝑛/2,

as estimated in [41]. From this information, we can approximate the

total error 𝑒out = N(0, 𝜎2

out
), which follows a normal distribution

with a mean of zero and a variance

𝜎2

out
≈ 𝜎2

𝑀1

(
𝑃

𝑞
𝛿

)
2

+𝜎2

𝐵𝑡

(
𝑃

𝑄

)
2

+𝜎2

𝑀2
(𝑃

𝑄𝑖𝑛
)2+𝜎2

𝑘𝑠
(𝑃

𝑄𝑖𝑛
)2 ∈ Z𝑃 . (4)

FFT-based Implementation: Compared to NTT, bootstrapping

implemented with FFT requires greater attention to noise issues due

1081

Proceedings on Privacy Enhancing Technologies 2025(4) Ku et al.

to floating point precision losses in polynomial multiplication. We

refer to the detailed analysis of FFT-based bootstrapping provided

in [54]. The error introduced by FFT-based bootstrapping, 𝑒𝐵𝑡−𝐹𝐹𝑇 ,
can be approximated by a normal distribution with a standard devi-

ation of 𝜎𝐵𝑡−𝐹𝐹𝑇 , which incorporates the FFT bias 𝛿FFT, as expressed

below: 𝑒𝐵𝑡−𝐹𝐹𝑇 ∼ N(0, 𝜎2

𝐵𝑡−𝐹𝐹𝑇) where 𝜎
2

𝐵𝑡−𝐹𝐹𝑇 = (𝜎𝐵𝑡 + 𝛿FFT)2.
The FFT bias, 𝛿FFT, originates from ciphertext decryption and

is given by: 𝛿FFT = | (1 − ∥𝑠𝑛 ∥)𝜀FFT |, with ∥𝑠𝑛 ∥ ≤
√︁
𝑛
2
as described

in [41]. The term 𝜀FFT represents the precision loss for each element

in the LWE ciphertext and is defined as: 𝜀FFT =
√
𝑛

⌊√︁
2𝑢 · 𝑑𝑔 ×

𝐵𝑔 ·𝑄 ·
√
𝑁

4
· 𝑒
⌋
,

where 𝑒 is the relative error that depends on 𝑁 and the specific

FFT library used. For error analysis in the context of FFT-based

bootstrapping applied to the FHE-ACT, simply replace 𝜎𝐵𝑡 in the

formula with 𝜎𝐵𝑡−𝐹𝐹𝑇 .

A Case Study: We provide an example to illustrate our estimation

of the output error, 𝑒out, for the NTT based FHE-ACT as defined

in Theorem 3.1. We assume the following parameters for FHE:

𝑞 = 4, 096, 𝑄𝑖𝑛 = 2
35
, 𝑄 = 2

54
, 𝑁 = 2, 048, and 𝑛 = 1, 305. These

parameters also include 𝐵𝑔 =
⌈
𝑄1/2⌉

(where 𝑑𝑔 = 2), 𝑑𝑘𝑠 = 7,

𝜎𝑘𝑠 = 3.19, and a smooth activation function 𝑓ACT such as ReLU.

We calculate 𝜎𝑀1 = 123, 808, 958, 𝜎𝑀2 = 18.4842, 𝜎𝑘𝑠 = 381.9483,

and 𝜎𝐵𝑡 = 808, 239, 676, 731.

When using the FHE-ACT with the activation function 𝑓ACT
set to ReLU, and an input message 𝑚𝑖𝑛 = 20, 000 along with a

scaling factor 𝛿 = 1, the output message’s standard deviation is

approximately 𝜎out ≈ 236.1651. This results in an output mes-

sage of 𝑚𝑜𝑢𝑡 = 20, 000 + N(0, 236.16512). When the scaling fac-

tor is reduced to 𝛿 = 0.002, the output standard deviation drops

to approximately 𝜎out ≈ 2.978, and the output message becomes

𝑚𝑜𝑢𝑡 = 40 + N(0, 2.9782).
After adjusting 𝐵𝑔 to

⌈
𝑄1/3⌉

(where 𝑑𝑔 = 3), 𝜎𝐵𝑡 is updated to

1,933,373,826. This modification leads to a slight adjustment in

the output standard deviation to 𝜎out ≈ 236.1468 when 𝛿 = 1,

updating the output message to𝑚𝑜𝑢𝑡 = 20, 000 + N(0, 236.14682).
With 𝛿 = 0.002, the output standard deviation further decreases

to about 𝜎out ≈ 0.4723, resulting in an output message of𝑚𝑜𝑢𝑡 =

40+N(0, 0.47232). In all scenarios,𝜎out follows a normal distribution

N(0, 𝜎2

out
).

In Eq. (4), the terms 𝜎2

𝑀1
and 𝜎2

𝐵𝑡
are multiplied by the weighting

factors

(
𝑃
𝑞
𝛿

)
2

and

(
𝑃
𝑄

)
2

respectively. When 𝛿 = 1, the primary

source of noise in 𝜎2

out
stems from 𝜎2

𝑀1
, thus reducing 𝐵𝑔 does

not significantly affect 𝜎2

out
. However, when 𝛿 is reduced to 0.002,

the predominant noise contributor becomes 𝜎2

𝐵𝑡
. Consequently,

variations in 𝐵𝑔 and 𝛿 influence the perturbation of the output

message, which is subject to approximate noise 𝑒out ∼ N(0, 𝜎2

out
),

in the FHE Activation Function (FHE-ACT).

4 Model Quantization and Fine-Tuning
Framework

Our framework transforms pretrained models into quantized mod-

els particularly optimized for our FHE-Neuron (§ 3). This quantized
model meets the three specific conditions for using FHE-Neuron

outlined in § 1.1: (1) computation within the integer domain, (2)

adaptation to the limited ciphertext message space, (3) management

of approximation errors caused by changes in the precision of neu-

ron computations. As depicted in Figure 6(a), this process initiates

with the FHE-aware quantization of the plaintext pretrained model,

transitioning it into an integer model and generating scaling fac-

tors that comply with the operational range of FHE-Neuron. If this

integer model reaches the predefined accuracy threshold during

encrypted inference, it is validated and the model is finalized. If

not, due to approximation errors, the model undergoes FHE-aware

adjustments, where it is fine-tuned to enhance accuracy until it

meets the necessary criteria.

4.1 FHE-Aware Quantization

Algorithm 2 Estimate Activation Scaling Factors for FHE-ACT

(EstActScale)

1: Inputs:
• Training data X ∈ Zℎ×𝑚 , where ℎ is the number of features

per input sample, and𝑚 is the batch size, representing the

total number of samples

• Pre-trained model weights W1,W2, . . . ,W𝑛 with 𝑛

layers,Wi ∈ Zℎ×ℎ , where 𝑘 is the number of output features

and ℎ is the number of input features per sample

• The message space size of an FHE ciphertext, 𝑃 ∈ Z
• Activation Function 𝑓ACT (𝑥) such as ReLU

2: procedure EstActScale(X,W1, . . . ,W𝑛, 𝑃)

3: Initialize the sequence of scale factors 𝛿0, . . . , 𝛿𝑛−1 to 1.

4: Compute the initial input Y0 = ⌊X · 𝛿0⌋ ∈ Zℎ×𝑚 .
5: for 𝑖 = 1 to 𝑛 do
6: Y𝑖 =W𝑖 · Y𝑖−1 ∈ Zℎ×𝑚
7: ▷Update 𝛿𝑖−1

8: 𝛿𝑖−1 =

{
𝑃

4· |max(Y𝑖) | if |max(Y𝑖) | ≥ |min(Y𝑖) |
𝑃

4· |min(Y𝑖) | if |min(Y𝑖) | > |max(Y𝑖) |
9: if 𝑖 = 1 then
10: Y0 = ⌊X · 𝛿0⌋ ∈ Zℎ×𝑚
11: end if
12: if 𝑖 < 𝑛 then
13: Y𝑖 =W𝑖 · Y𝑖−1 ∈ Zℎ×𝑚
14: Y𝑖 = ⌊𝑓ACT (Y𝑖) · 𝛿𝑖⌋
15: end if
16: end for
17: end procedure
18: Output: Activation quantization scaling factor 𝛿𝑖 ∈ R, 0 < 𝛿𝑖 ≤

1, 𝑖 = 0, . . . , 𝑛 − 1

FHE-Aware Quantization is designed to address the constrained

message space issue faced in negative cycle lookup table computa-

tions with FHE-ACT. When input values exceed the interval from

−𝑞
4
to +𝑞

4
, lookup errors or overflows can occur, which may com-

promise the accuracy of DNN inference. The quantization process

is depicted in Figure 6(b), where an Fp32 pre-trained model is trans-

formed into an integer model, with scale factors 𝛿𝑖 , 𝑖 = 0, . . . , 𝑛 − 1
assigned for each FHE-ACT. This workflow starts with the post-

training quantization (PTQ) of the Fp32 pre-trained model to con-

vert it into an integer model. Subsequently, this integer model is

processed through our EstActScale design to calculate the scale

1082

Optimizing Encrypted Neural Networks: Model Design, Quantization and Fine-Tuning Using FHEW/TFHE Proceedings on Privacy Enhancing Technologies 2025(4)

Fp32 Model
Weights

Estimate
FHE Noise

Distribution
𝒟FHE

Pseudo FHE
Noise Tuning
(Algorithm 3)

Fp32 Fine-Tuned
Model Weights

FHE-Aware
Quantization

Int Model
Weights

Scaling
Factors

FHE-Aware
Quantization Int Fine-Tuned

Model Weights

New Scaling
Factors

EstActScale
(Algorithm 2)

Scaling
Factors

Post-Training
Quantization

Fp32 Model
Weights

Int Model
Weights

(c) FHE-Aware Tuning

(b) FHE-Aware Quantization

Step1. Quantize the pre-trained model, and then estimate the noise distribution 𝒟FHE for the FHE
Activation Function (FHE-ACT).

Step2 . Fine-tuning the model with simulated FHE-ACT noise distribution 𝒟FHE, re-quantizing, and
estimating scaling factors.

Fp32 Model
Weights

FHE-Aware
Quantization

Int Model
Weights

Scaling
Factors

Encrypted Inference
Verification

Accuracy
Acceptable??

FHE-Aware
Tuning

Int Fine-Tuned
Model Weights

New Scaling
Factors

(a) Process for Our FHE-Aware Quantization and
Fine-Tuning Framework

True

False
• The accuracy of encrypted

inference enhanced
following FHE-Aware Tuning.

• Following FHE-Aware
Quantization, the pre-trained
model performs encrypted
inference.

Re-verification

Quantization Model

Fine-Tuned
Quantization Model

Output
Qualified

Quantization
Model

Figure 6: Details of our model Quantization and Fine-tuning Framework

factors, ensuring that the inputs for FHE-ACT stay within the ±𝑞
4

range, thus effectively preventing information overflow during

neural computations.

EstActScale (as described in Algorithm 2) calculates the scaling

factors for each FHE-ACT within the FHE-DNN framework. It

takes as input the training dataset X ∈ Zℎ×𝑚 , quantized pre-trained
model weights W1,W2, . . . ,W𝑛 where each layer’s weights are

represented as W𝑖 ∈ Zℎ×ℎ , and the message space size 𝑃 ∈ Z of

an FHE ciphertext. The algorithm outputs scaling factors 𝛿𝑖 ∈ R,
which are utilized by the FHE-Neuron (as outlined in Algorithm 1),

where each 0 < 𝛿𝑖 ≤ 1 for 𝑖 = 0, . . . , 𝑛 − 1.
This algorithm determines the scaling factor 𝛿𝑖−1 for the pre-

ceding layer’s FHE-ACT by calculating the absolute values of the

maximum and minimum messages from each layer’s linear compu-

tations, denoted as |max(Y𝑖) | and |min(Y𝑖) |. As outlined in line 8

of Algorithm 2, 𝛿𝑖−1 is calculated as the ratio of
𝑃
4
to the greater of

|max(Y𝑖) | and |min(Y𝑖) |. This method precisely adjusts the scal-

ing ratio for each layer to ensure that the magnitude of plaintext

messages input into the FHE-ACT remains within the ±𝑃/4 range.
This range corresponds to the ciphertext input interval of ±q in

FHE-ACT, which maps to the plaintext message space of ±P. The

scaling factors estimated by EstActScale, in conjunction with the

quantized model weights, ensures that the execution of FHE-DNN

avoids information overflow.

4.2 FHE-Aware Tuning
We perform FHE-aware model fine-tuning to meticulously mitigate

the effects of noise interference 𝑒out generated by FHE-ACT on

the inference performance of DNNs. FHE-Aware Tuning takes a

pre-trained Fp32 model and produces a precisely tuned Int model

along with scaling factors. This output model effectively adapts to

the noise disturbances caused by FHE-ACT, improving accuracy

during encrypted inference. Figure 6 (c) shows that FHE-Aware

Tuning is structured in two steps:

First Step: This process starts by inputting a Fp32 pre-trained

model, a set of FHE parameters, and corresponding training data.

The main goal is to derive the approximate noise distributionDFHE

for each FHE-ACT in the model. Initially, the pre-trained model con-

verts into an integer model through FHE-Aware Quantization, and

we precisely estimate the necessary scaling factors 𝛿𝑖 , 𝑖 = 0, . . . , 𝑛−1
for each FHE-ACT. Ultimately, using Eq. (5), we estimate the FHE-

ACT noise distribution DFHE, which we use to fine-tune the model

in subsequent steps.

Second Step: This process employs the same inputs as the initial

step, utilizing the previously obtained D𝐹𝐻𝐸 noise distribution. Its

objective is to refine a model to significantly reduce the detrimental

effects of FHE-ACT noise on DNN performance. For this purpose,

we have developed a method called Pseudo FHE-Noise Tuning

(see Algorithm 3), which fine-tunes Fp32 pretrained models to ac-

commodate the noise characteristics of D𝐹𝐻𝐸 . Following this, we
apply FHE-Aware Quantization to transform the fine-tuned float32

model into an integer model. We then re-evaluate and adjust the

scaling factors to prevent computational overflow. These modifica-

tions ensure that the model’s accuracy during encrypted inference

substantially surpasses its performance prior to adjustment.

Our Pseudo FHE-Noise Tuning model fine-tuning method is de-

tailed in Algorithm 3, building upon the foundational Pseudo-Noise

Tuning approach presented in Algorithm 4 in Section § B. This algo-
rithm accepts several inputs: training data X ∈ Rℎ×𝑚 , a label matrix

T ∈ R𝑞×𝑚 , pre-trained model weightsW1,W2, . . . ,W𝑛 (where each

layer’s weightsW𝑖 are in Rℎ×ℎ , for a total of 𝑛 layers), quantization

scaling factors for activation functions 𝛿𝑖 ∈ R, where 0 < 𝛿𝑖 ≤ 1 for

𝑖 = 0, . . . , 𝑛 − 1, the message space size 𝑃 ∈ Z for the FHE cipher-

texts, and the noise distribution DFHE associated with FHE-ACT.

The output includes the fine-tuned model weightsW∗
1
,W∗

2
, . . . ,W∗𝑛 ,

which enhance the accuracy of the model on encrypted inference

compared to its performance prior to fine-tuning.

1083

Proceedings on Privacy Enhancing Technologies 2025(4) Ku et al.

Based on the analysis of FHE-ACT in §3.2 for the noise dis-

tribution DFHE, we perform model finetuning as in Algorithm 3.

Additionally, we designed a noise proxy function 𝑓FHE according to

the characteristics of the FHE-Neuron. The corresponding formula

is as follows:

𝑒 ∼ DFHE =N(0, 𝜎2

out
) 𝑃

𝑄𝑖𝑛
∈ Z𝑃 and (5)

𝑓FHE (Y | 𝑃, 𝛿, 𝑒) = (
|max(Y) −min(Y) |

𝑃 · 𝛿 𝑒) + Y ∈ R. (6)

Eq. (5) describes the distributionDFHE which is derived from the

description of 𝜎2

out
in Eq. (4) found in Section 3.2. Eq. (6) outlines

the Noise Proxy function of the FHE-ACT. This function scales the

pseudo FHE-Noise 𝑒 , which is within the integer domain, according

to the FHEmessage space 𝑃 and the scaling factor 𝛿 of the FHE-ACT,

mapping it to the real-number interval for inputs into the 𝑓ACT (·)
function during model fine-tuning, as shown in Figure 7. In § 5, we
further demonstrate that FHE-aware model fine-tuning improves

the inference accuracy of DNNs. For example, Table 5 illustrates

that in the cifar10 experiments, fine-tuning the FHE parameters

can increase the model inference accuracy by 15%.

We note that thismethod is applicable not only to third-generation

FHE but also to other FHE schemes for DNN fine-tuning. For in-

stance, the CKKS scheme uses approximate computation, similar

to our approach. We further discuss these extensions in § 6.

𝐘i = 𝐖i−1𝐘i−1 ReLU

𝐘i−1 ∈ ℝ
ℎ×𝑚

𝐖i−1 ∈ ℝ
ℎ×ℎ

𝐘i ∈ ℝ
ℎ×𝑚

e~𝒟FHE

𝐘i ∈ ℝ
ℎ×𝑚

𝐘i =
max 𝐘i −min 𝐘i

P ∙ δi
e + 𝐘i

Noise Proxy of FHE Activation Function

Figure 7: Model Fine-tuning using simulated FHE Activation
Function (FHE-ACT) noise

5 Evaluation
We perform a comprehensive evaluation and comparison of our

method against several state-of-the-art works. § 5.1 outlines the
experimental settings, including the FHE parameters, hardware,

software,the datasets used, and the network architecture. § 5.2
presents the validation results for the MNIST and Fashion-MNIST

datasets, and § 5.3 describes the validation results for the CIFAR-10

dataset. Tables 3 and 4 present a comparative evaluation of our

work with previous efforts.

5.1 Experimental Settings
Hardware and Software:We implement Encrypted DNN model

inference using the NTT-based OpenFHE library [2] version 1.0.3

and the FFT-based GPU-accelerated FHEW library [54]. We conduct

Algorithm 3 Pseudo FHE-Noise Tuning

1: Inputs:
• Training data X ∈ Rℎ×𝑚 , where ℎ is the number of features

per input sample, and𝑚 is the batch size, representing the

total number of samples.

• The label matrix T ∈ R𝑞×𝑚 where 𝑞 is the number of classes

for multi-class classification and𝑚 matches the batch size in

X.
• Pre-trained model weights W1,W2, . . . ,W𝑛 with 𝑛

layers,Wi ∈ Rℎ×ℎ , where ℎ is the number of output features

and ℎ is the number of input features per sample.

• Activation quantization scaling factor 𝛿𝑖 ∈ R, 0 < 𝛿𝑖 ≤ 1, 𝑖 =

0, . . . , 𝑛 − 1.
• The message space size of an FHE ciphertext, 𝑃 ∈ Z.
• The noise distribution DFHE of FHE-ACT.

• Activation Function 𝑓ACT (𝑥) such as ReLU

2: procedure FineTuning(X,T,W1, . . . ,W𝑛, 𝛿0, . . . , 𝛿𝑛−1, 𝜎, 𝑃)
3: Initialize the input Y0 = X, and new weights

W∗
1
,W∗

2
, . . . ,W∗𝑛 toW1,W2, . . . ,W𝑛 .

4: for 𝑖 = 1 to 𝑛 do
5: Y𝑖 =W∗𝑖 · Z𝑖−1,Y𝑖 ∈ Rℎ×𝑚
6: Y𝑖 = 𝑓ACT (Y𝑖)
7: ▷ Start Noise Proxy

8: 𝑒 ∼ DFHE

9: Y𝑖 = 𝑓FHE (Y𝑖 | 𝑃, 𝛿, 𝑒)
10: ▷ End Noise Proxy

11: end for
12: Compute loss 𝐿(Y𝑛,T) using Cross-Entropy Loss

13: Update weights W∗
1
, . . . ,W∗𝑛 using backpropagation with

SGD

14: end procedure
15: Outputs: Fine-Tuned model weightsW∗

1
,W∗

2
, . . . ,W∗𝑛 with 𝑛

layers,W∗𝑖 ∈ R𝑘×ℎ .

experiments on ten different machine configurations, including

systems with various numbers of RTX 3090, RTX 4090, A100, and

H100 GPUs. We provide details of these configurations in Table 9

in Section A. In the experiments on these ten computing platforms,

less than 20 GB of memory is used. The operating system is Ubuntu

version 20.04.6 LTS.

FHEparameters:The parameters for the FHEWweremeticulously

configured in accordance with [37] to ensure a security level of

128 bits. The specific settings included a message space size of

𝑃 = 2
16
, an input LWE ciphertext modulus of 𝑄𝑖𝑛 = 2

35
, and a

ring dimension for the LWE scheme at 𝑛 = 1, 305. Additionally,

the ring dimension for RLWE/RGSW was set at 𝑁 = 2, 048, with

an RLWE/RGSW modulus (utilized for NTTs or FFTs) of 𝑄 = 2
54
.

The modulus of the LWE ciphertext for bootstrapping was set to

𝑞 = 4096, and the gadget base used for key switching was 𝐵𝑘𝑠 = 2
7
.

The gadget base for digit decomposition, 𝐵𝑔 , directly impacts the

noise level of the FHE-Neuron. A smaller 𝐵𝑔 results in less noise but

increases the computation time. During our experiments, we access

the impacts of 𝐵𝑔 = 2
27, 218, 29 on the accuracy and performance

of DNN inference. FHE-ACT using NTT or FFT impacts noise. As

1084

Optimizing Encrypted Neural Networks: Model Design, Quantization and Fine-Tuning Using FHEW/TFHE Proceedings on Privacy Enhancing Technologies 2025(4)

(a) NTT-based Implementation, 𝐵𝑔 = 227 (b) NTT-based Implementation, 𝐵𝑔 = 218

(c) FFT-based Implementation, 𝐵𝑔 = 227
(d) FFT-based Implementation, 𝐵𝑔 = 218

• Low-density: Purple or blue, fewer points.
• High-density: Yellow or green, more points.

Figure 8: Compare the noise variations in the outputs. The
comparison is conducted at 𝐵 = 2

27
and 𝐵 = 2

18
between two

different FHE-ACT (ReLU) implementations, one based on NTT

and the other on FFT, using a scaling factor of 𝛿 = 0.002.

shown in Figure 8, FFT-based FHE-ACT with 𝐵𝑔 = 2
27
causes exces-

sive noise, making it unsuitable for DNN inference. To minimize

noise, 𝐵𝑔 should not exceed 2
18
.

Benchmark and dataset:Our datasets, which include MNIST [30],

Fashion MNIST [53], and CIFAR-10 [27], are commonly used as

benchmarks in the field of computer vision. Each dataset comprises

images across 10 categories.

Network architecture: We summarize the network architectures

evaluated on various datasets in Appendix (Tables 10 and 11 in

§ A). For the grayscale MNIST and Fashion MNIST datasets, we

experimented with a simple two-layer fully connected neural net-

work to explore the performance of the MNIST dataset under the

same model architecture as EFHEPENN [29] and FHE-DiNN [4].

For the colored CIFAR-10 dataset, we used four types of VGG neural

networks [49] for experiments.

Hyperparameter Settings for Model Fine-Tuning: Our model

fine-tuning uses Stochastic Gradient Descent (SGD) with a mo-

mentum of 0.9 and a weight decay of 5 × 10−4 to enhance stability

and prevent overfitting. Training runs for 150 epochs with a batch

size of 128 and an initial learning rate of 0.01. A StepLR scheduler

reduces the learning rate by 90% every 50 epochs.

5.2 Results on MNIST and Fashion-MNIST
Our method consistently outperforms known (to our knowledge)

third-generation FHE (FHEW/TFHE) solutions in terms of average

computation time. As highlighted in Table 3, our experimental

results surpass those of similar GPU-accelerated technologies, such

as REDsec [17] and PBE [11], as well as CPU-based approaches

like EFHEPENN [29], FDFB [26], and FHE-DiNN [4]. Notably, our

method achieves nearly plaintext-level accuracies on MNIST and

Table 3: Comparison with Prior Works on MNIST and
Fashion-MNIST. The symbol † marks experiments conducted

using an Intel Xeon Processor (Icelake) CPU, 1.23 TB RAM and

seven NVIDIA H100 GPUs.

Method Eval Dataset Scheme FHE Acc. Time Sec.
Ours† GPU F-MNIST FHEW 88.42% 17 ms 128-bit

Ours† MNIST FHEW 96.52% 4.5 ms 128-bit

REDsec [17] MNIST TFHE 99% 8.2 s 128-bit

PBE [11] MNIST TFHE 97.1% 7.53 s 128-bit

EFHEPENN [29] CPU MNIST FHEW 94.04% 140 ms 80-bit

REDsec [17] MNIST TFHE 99% 18.4 s 128-bit

FDFB [26] MNIST FHEW 95% 2736 s 100-bit

FHE-DiNN [4] MNIST TFHE 93.71% 490 ms 80-bit

Table 4: Comparative Analysis on CIFAR-10. The symbols † is
described in Table 3. Note that REDsec [17], DaCapo [9], SHE [38],

and TFHE-DNN[51] do not provide information on memory usage

in their papers.

Method Eval Scheme FHE Acc. Time Memory
Ours† GPU FHEW 90.5% 30 s 19.6 GB

REDsec [17] TFHE 88.5% 1769.4 s -

DaCapo [9] CKKS 93.8% 53 s -

OPP-CNN [24] CPU CKKS 94.12% 544 s 100 GB

PPML-DNN [31] CKKS 92.43% 10,602 s 176 GB

EVA [13] CKKS 79.34% 72.7s 190 GB

Falcon [39] BFV 76.5% 107 s 32 GB

LoLa [6] BFV 74.1% 730 s 12 GB

SHE [38] TFHE 94.62% 12,041 s -

TFHE-DNN [51] TFHE 87.5% 18,000 s -

Table 5: Evaluation on CIFAR-10 Using CPU (1,000 test sam-

ples).

Network PL Acc. 𝐵𝑔 Fine-tuned FHE Acc. Time
VGG6-32 85.6% 2

27
Yes 75.6% 638 s

2
27

No 58% 638 s

2
18

Yes 85% 803 s

2
18

No 81.8% 803 s

VGG6-24 83.8% 2
27

Yes 75% 476 s

2
27

No 60% 476 s

2
18

Yes 83% 617 s

2
18

No 76.8% 617 s

Fashion-MNIST, with scores of 96.86% and 89% respectively, without

the need for FHE-Aware Tuning.

5.3 Results on CIFAR-10
The evaluation of the CIFAR-10 dataset provides a comprehensive

insight into the robustness and scalability of our method under

complex task conditions. Tables 4 compares different methods on

the CIFAR-10 dataset in terms of FHE accuracy, time, and memory

usage. Our FHE-DNN approach achieved 90.5% accuracy using a

GPU, slightly lower than the 93.8% of DaCapo [9] (CKKS) but higher

1085

Proceedings on Privacy Enhancing Technologies 2025(4) Ku et al.

Table 6: Evaluation on CIFAR-10 Using GPU. Only the VGG9

experiment uses 10,000 test samples; all others use 5,000 samples.

Experiments are performed using an Intel Xeon Processor (Icelake)

CPU, 1.23 TB RAM and seven NVIDIA H100 GPUs.

Network PL Acc. 𝐵𝑔 Fine-tuned FHE Acc. Time
VGG9 91.5% 2

18
Yes 90.5% 30 s

2
18

No 85.8% 30 s

VGG6-96 86.5% 2
18

Yes 86% 16 s

2
18

No 78% 16 s

2
9

No 79% 26 s

VGG6-32 85.6% 2
18

Yes 84.2% 6 s

2
18

No 79.2% 6 s

2
9

No 80.5% 10 s

VGG6-24 83.7% 2
18

Yes 82.35% 5 s

2
18

No 78.2% 5 s

2
9

No 80.7% 8 s

than the 88.5% of REDsec [17]. Our inference time is a mere 30

seconds, dramatically faster than REDsec’s (TFHE) 1769.4 seconds,

and comparable to DaCapo’s 53 seconds. Moreover, our method

only utilizes 19.6 GB of memory, a stark contrast to the 176 GB and

190 GB required by PPML-DNN [31] and EVA [13], respectively,

both of which use the CKKS scheme. This showcases our significant

advantage in memory efficiency. Note that REDsec and DaCapo did

not report memory usage. Overall, our GPU-accelerated method is

significantly faster than other third-generation FHE methods and

uses notably less memory compared to CKKS-based methods.

5.4 Our Method’s Verification in Various GPUs
To fairly compare our work with previous studies and facilitate

future researchers in benchmarking our results, we provide exper-

imental data obtained from testing our method on systems with

different GPU models and numbers of GPUs, as shown in Table 7.

On an RTX 3090 GPU, the average processing times for MNIST

and CIFAR-10 images using our method are 104 ms and 765 s,

respectively. This outperforms REDsec [17], which also uses third-

generation FHE but runs on 8 NVIDIA T4 GPUs, with processing

times of 8.2 s and 1769.4 s for the same tasks. Additionally, our

method achieves a faster MNIST processing time (104 ms) com-

pared to PBE [11], which uses 8 NVIDIA A100 GPUs and records a

processing time of 7.53 s.

Although our method is still slower than the CKKS-based Da-

Capo [9] under RTX 3090 GPU, our experimental results highlight

strong potential of our approach towards practical deployments,

with enhanced computational power and further optimizations.

5.5 Gadget Base Size 𝐵𝑔 Balances Accuracy and
Time in Encrypted DNN Inference

The gadget base size 𝐵𝑔 plays a key role in encrypted DNN in-

ference, affecting both accuracy and computation time. Reducing

𝐵𝑔 can improve accuracy, but it also increases computation time

(see Table 5). However, when 𝐵𝑔 drops below 2
18
, the accuracy

gains become minimal, and the additional computation time is not

worthwhile (see Table 6).

Our FHE-aware fine-tuningmethod improves encrypted DNN

accuracy without adding extra computation time. As shown in

Table 5, with 𝐵𝑔 = 2
27
, a single fine-tuning session boosts the

accuracy of VGG6-32 and VGG6-24 by 17.6% and 15%, respectively.

Additionally, Table 6 shows that with 𝐵𝑔 = 2
18
, the fine-tunedmodel

achieves encrypted inference accuracy close to plaintext inference.

5.6 Activation Functions as Performance
Bottlenecks in Encrypted DNN Inference

For applications using third-generation FHE, Bootstrapping often

becomes a performance bottleneck. We design an FHE-Neuron

with adjustable ciphertext precision to reduce the reliance on Boot-

strapping. However, Bootstrapping still remains the main source of

time consumption. For example, in experiments with the CIFAR-10

dataset on four NVIDIA RTX 4090 GPUs, the time for all models

to perform linear computations does not exceed 2 seconds (see

Tables 12 in Appendix § A), but most of the time is spent during

the Bootstrapping stage of the FHE activation functions. There-

fore, speeding up Bootstrapping through hardware or algorithm

improvements, or reducing the use of activation functions in the

model, could help enhance the performance of encrypted inference.

5.7 Time Cost of FHE-Aware Quantization and
Fine-Tuning

Table 8 summarizes the execution time of the proposed FHE-aware
quantization (Algorithm 2) and FHE-aware fine-tuning (Algo-

rithm 3) across various datasets and network architectures. All

experiments were conducted on a workstation equipped with an

AMD Ryzen Threadripper PRO 5975WX (32 cores, 64 threads) and

an NVIDIA RTX 4090 GPU. The quantization stage is performed

entirely on the CPU, estimating quantization parameters using a

randomly sampled subset of 128 training examples.

The fine-tuning stage operates over the full training dataset. We

report the time cost for 50 training epochs. As shown in Table 8, the

cost of fine-tuning is comparable to that of standard training, and

in most cases, 50 epochs of fine-tuning are sufficient to compensate

for the inference degradation caused by encryption-induced noise.

Crucially, both quantization and fine-tuning are offline, one-time

procedures conducted during model preparation, and thus do not

affect the runtime latency during encrypted inference.

For lightweight datasets such as MNIST and FashionMNIST, the

impact of FHE-induced noise on inference accuracy is minimal.

Consequently, quantization alone is typically sufficient to maintain

high accuracy, and fine-tuning can often be skipped entirely.

6 Extending Our Method to Other FHE Schemes
Our computing paradigm significantly improves efficiency in third-

generation FHE for DNN encrypted inference. We also observe that

the underlying ideas may be extended to other FHE schemes. Below,

we illustrate this potential using the CKKS scheme as an example.

Neuron Design: CKKS-based DNNs typically rely on larger FHE

parameters to tolerate noise throughout the computation, which

results in substantial computational, memory, and storage over-

head. By applying the design principles of FHE-Neuron (see § 3), it
1086

Optimizing Encrypted Neural Networks: Model Design, Quantization and Fine-Tuning Using FHEW/TFHE Proceedings on Privacy Enhancing Technologies 2025(4)

Table 7: Average Computation Time per Image for Encrypted DNN Execution on Different GPU Server Configurations. The
results indicate model performance across various network architectures with the FHE parameter 𝐵𝑔 .

Dataset Network 𝐵𝑔 RTX 3090 x1 RTX 4090 x1 RTX 4090 x2 RTX 4090 x4 RTX 4090 x12 A100 x1 H100 x1 H100 x4 H100 x7

MNIST Net-30 2
18

104 ms 43 ms 24 ms 12.6 ms 5.8 ms 33 ms 23 ms 8 ms 4.5 ms

FashionMNIST Net-128 2
18

440 ms 187 ms 95 ms 50 ms 21 ms 129 ms 90 ms 24 ms 17 ms

CIFAR-10 VGG9 2
18

765 s 325 s 162 s 85 s 34 s 217 s 146 s 43 s 30 s

2
9

1,738 s 793 s 400 s 206 s 77 s 473 s 323 s 89 s 48 s

CIFAR-10 VGG6-96 2
18

436 s 186 s 91 s 49 s 20 s 126 s 89 s 25 s 16 s

2
9

988 s 464 s 227 s 117 s 43 s 274 s 186 s 52 s 26 s

CIFAR-10 VGG6-32 2
18

147 s 61 s 32 s 17 s 8 s 43 s 29 s 9 s 6 s

2
9

338 s 154 s 78 s 40 s 16 s 91 s 62 s 18 s 10 s

CIFAR-10 VGG6-24 2
18

112 s 45 s 25 s 13 s 6 s 33 s 23 s 6 s 5 s

2
9

254 s 119 s 59 s 30 s 12 s 69 s 47 s 13 s 8 s

Table 8: Timing Analysis of FHE-Aware Quantization and
Fine-Tuning across Different Datasets and Neural Architec-
tures. Quant. denotes FHE-aware quantization, executed solely

on the CPU. Both training and fine-tuning are conducted for 50

epochs.

Dataset Network Quant. Training Tuning
MNIST Net-30 0.44 s 249 s 270 s

FashionMNIST Net-128 2.73 s 275 s 286 s

CIFAR-10 VGG9 1,301 s 4,474 s 4,683 s

CIFAR-10 VGG6-96 438 s 2,504 s 2,675 s

CIFAR-10 VGG6-32 28 s 1,188 s 1,265 s

CIFAR-10 VGG6-24 19 s 1,108 s 1,129 s

becomes feasible to use smaller FHE parameters while maintain-

ing similar accuracy, thereby reducing computational costs. We

elaborate on this approach below.

Model Quantization: Reducing FHE parameters in CKKS-DNNs

naturally decreases the precision of the underlying plaintext, in-

creasing the risk of overflow. Our quantization method (see § 4.1)
directly addresses this issue by converting models from full preci-

sion (e.g., FP32) to low precision (e.g., FP4), while carefully estimat-

ing appropriate Activation Scaling Factors. This enables stable and

reliable inference performance in encrypted settings.

Model Fine-Tuning: Lowering FHE parameters in CKKS makes

the system less error-tolerant, amplifying the impact of relative

error during computation and potentially degrading inference ac-

curacy. Our fine-tuning strategy (see § 4.2) mitigates this by first

conducting a theoretical analysis to identify key error sources spe-

cific to the FHE (e.g., CKKS in this example) computations. Guided

by this analysis, we fine-tune the model weights to maintain high

inference accuracy, even in the presence of scheme-specific noise

characteristics.

We leave concrete optimization of parameters and performances

(for CKKS and others) as an interesting research direction.

7 Conclusion
This work advances the practicality of third-generation Fully Ho-

momorphic Encryption (FHE) for deep neural network (DNN) infer-

ence by addressing the high computational costs that have limited

its real-world applicability. We propose FHE-Neuron, an optimized

encrypted neural architecture that dynamically adjusts ciphertext

precision to balance efficiency and accuracy. To further enhance

performance, we introduce an FHE-Aware Quantization and Fine-

Tuning Framework, which adapts pre-trained models for encrypted

inference by optimizing precision and mitigating noise-related er-

rors. Our extensive experiments on MNIST, Fashion MNIST, and

CIFAR-10 demonstrate that our method significantly reduces in-

ference latency while maintaining high accuracy, outperforming

previous FHE-based approaches. By leveraging the efficiency of

FHEW/TFHE with precision-switching strategies, our approach

paves the way for more scalable, cost-effective encrypted deep

learning solutions.

Future research can explore several key directions to further

enhance the practicality and efficiency of encrypted deep learning.

First, extending our approach to a broader range of model architec-

tures, such as Transformers and Graph Neural Networks (GNNs),

could enable privacy-preserving computations in more complex

tasks, including natural language processing and graph-based data

analysis. Second, integrating our method with advanced perfor-

mance optimization techniques in third-generation FHE, such as

Single Instruction Multiple Data (SIMD), could significantly im-

prove computational efficiency by enabling parallel encrypted op-

erations. These advancements would not only accelerate encrypted

inference but also broaden the applicability of FHE-based deep

learning across diverse domains, including secure federated learn-

ing, biomedical data analysis, and encrypted financial modeling.

Acknowledgments
The content of this paper is entirely the original work of the authors,

with only the English grammar polished by ChatGPT4. This work

was primarily conducted at Inventec Corporation. We gratefully

acknowledge the support of the National Science and Technology

Council, Taiwan, under grant NSTC 112-2221-E-002 -159 -MY3

and 113-2634-F-002-001 -MBK. Feng-Hao Liu would like to thank

NSF Career Award CNS-2402031. I-Ping Tu would like to thank

Academia Sinica Investigator Award AS-IA-110-M05. Their support

was instrumental in developing critical preliminary results for this

work.

1087

Proceedings on Privacy Enhancing Technologies 2025(4) Ku et al.

References
[1] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On The ConcreteHardness

Of Learning With Errors. Cryptology ePrint Archive, Report 2015/046. https:

//eprint.iacr.org/2015/046

[2] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja

Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo

Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov, Saraswathy R.

V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod

Vaikuntanathan, and Vincent Zucca. 2022. OpenFHE: Open-Source Fully Ho-

momorphic Encryption Library. Cryptology ePrint Archive, Report 2022/915.

https://eprint.iacr.org/2022/915

[3] Maya Bakshi and Mark Last. 2020. CryptoRNN - Privacy-Preserving Recur-

rent Neural Networks Using Homomorphic Encryption. In CSCML, Vol. 12161.
Springer, 245–253. https://doi.org/10.1007/978-3-030-49785-9_16

[4] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. 2018. Fast

Homomorphic Evaluation of Deep Discretized Neural Networks. In CRYPTO 2018,
Part III (LNCS, Vol. 10993), Hovav Shacham and Alexandra Boldyreva (Eds.).

483–512. https://doi.org/10.1007/978-3-319-96878-0_17

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) Fully

Homomorphic Encryption without Bootstrapping. ACM Trans. Comput. Theory
6, 3 (2014), 13:1–13:36. https://doi.org/10.1145/2633600

[6] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. 2019. Low Latency

Privacy Preserving Inference. In Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Califor-
nia, USA (Proceedings of Machine Learning Research, Vol. 97). PMLR, 812–821.

http://proceedings.mlr.press/v97/brutzkus19a.html

[7] Zhicheng Cai and Chenglei Peng. 2021. A study on training fine-tuning of

convolutional neural networks. In 13th International Conference on Knowledge
and Smart Technology, KST 2021, Bangsaen, Chonburi, Thailand, January 21-24,
2021. IEEE, 84–89. https://doi.org/10.1109/KST51265.2021.9415793

[8] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homomor-

phic Encryption for Arithmetic of Approximate Numbers. In ASIACRYPT 2017,
Part I (LNCS, Vol. 10624), Tsuyoshi Takagi and Thomas Peyrin (Eds.). 409–437.

https://doi.org/10.1007/978-3-319-70694-8_15

[9] Seonyoung Cheon, Yongwoo Lee, Dongkwan Kim, Ju Min Lee, Suncheul Jung,

Taekyung Kim, Dongyoon Lee, and Hanjun Kim. 2024. DaCapo: Automatic

Bootstrapping Management for Efficient Fully Homomorphic Encryption. In

USENIX Security Symposium. USENIX Association.

[10] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016.

Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds.

In ASIACRYPT 2016, Part I (LNCS, Vol. 10031), Jung Hee Cheon and Tsuyoshi

Takagi (Eds.). 3–33. https://doi.org/10.1007/978-3-662-53887-6_1

[11] Ilaria Chillotti, Marc Joye, and Pascal Paillier. 2021. Programmable Bootstrapping

Enables Efficient Homomorphic Inference of Deep Neural Networks. In Cyber
Security Cryptography and Machine Learning - 5th International Symposium,
CSCML 2021, Be’er Sheva, Israel, July 8-9, 2021, Proceedings (Lecture Notes in
Computer Science, Vol. 12716). Springer, 1–19. https://doi.org/10.1007/978-3-030-

78086-9_1

[12] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. 2021. Im-

proved Programmable Bootstrapping with Larger Precision and Efficient Arith-

metic Circuits for TFHE. In ASIACRYPT 2021, Part III (LNCS, Vol. 13092), Mehdi

Tibouchi and Huaxiong Wang (Eds.). 670–699. https://doi.org/10.1007/978-3-

030-92078-4_23

[13] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine,

and Madan Musuvathi. 2020. EVA: an encrypted vector arithmetic language

and compiler for efficient homomorphic computation. In Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15-20, 2020. ACM, 546–561.

https://doi.org/10.1145/3385412.3386023

[14] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E. Lauter, Saeed

Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing

compiler for fully-homomorphic neural-network inferencing. In ACM SIGPLAN
PLDI. ACM, 142–156. https://doi.org/10.1145/3314221.3314628

[15] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic

Encryption in Less Than a Second. In EUROCRYPT 2015, Part I (LNCS, Vol. 9056),
Elisabeth Oswald and Marc Fischlin (Eds.). 617–640. https://doi.org/10.1007/978-

3-662-46800-5_24

[16] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-

morphic Encryption. IACR Cryptol. ePrint Arch. (2012), 144. http://eprint.iacr.

org/2012/144

[17] Lars Folkerts, Charles Gouert, and Nektarios Georgios Tsoutsos. 2023. RED-

sec: Running Encrypted Discretized Neural Networks in Seconds. In 30th
Annual Network and Distributed System Security Symposium, NDSS 2023,
San Diego, California, USA, February 27 - March 3, 2023. The Internet Soci-

ety. https://www.ndss-symposium.org/ndss-paper/redsec-running-encrypted-

discretized-neural-networks-in-seconds/

[18] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In 41st
ACM STOC, Michael Mitzenmacher (Ed.). ACM Press, 169–178. https://doi.org/

10.1145/1536414.1536440

[19] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative

Adversarial Nets. In NeurIPS. 2672–2680.
[20] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Com-

pressing Deep Neural Network with Pruning, Trained Quantization and Huff-

man Coding. In 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. http:

//arxiv.org/abs/1510.00149

[21] Ming-Chien Ho, Yu-Te Ku, Yu Xiao, Feng-Hao Liu, Chih-Fan Hsu, Ming-Ching

Chang, Shih-Hao Hung, and Wei-Chao Chen. 2024. Invited Paper: Efficient

Design of FHEW/TFHE Bootstrapping Implementation with Scalable Parameters.

In 2024 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
[22] Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. 2018. Secure

Outsourced Matrix Computation and Application to Neural Networks. In SIGSAC.
ACM, 1209–1222. https://doi.org/10.1145/3243734.3243837

[23] Leonardo Rezende Juracy, Rafael Garibotti, and Fernando Gehm Moraes. 2023.

From CNN to DNN Hardware Accelerators: A Survey on Design, Exploration,

Simulation, and Frameworks. Found. Trends Electron. Des. Autom. 13, 4 (2023),
270–344. https://doi.org/10.1561/1000000060

[24] Dongwoo Kim and Cyril Guyot. 2023. Optimized Privacy-Preserving CNN Infer-

ence With Fully Homomorphic Encryption. IEEE Trans. Inf. Forensics Secur. 18
(2023), 2175–2187. https://doi.org/10.1109/TIFS.2023.3263631

[25] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[26] Kamil Kluczniak and Leonard Schild. 2021. FDFB: Full Domain Functional Boot-

strapping Towards Practical Fully Homomorphic Encryption. Cryptology ePrint

Archive, Report 2021/1135. https://eprint.iacr.org/2021/1135

[27] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. ,

32–33 pages. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

U. Toronto Tech Report.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-

fication with Deep Convolutional Neural Networks. In NeurIPS. 1106–1114.
[29] Kwok-Yan Lam, Xianhui Lu, Linru Zhang, Xiangning Wang, Huaxiong Wang,

and Si Qi Goh. 2023. Efficient FHE-based Privacy-Enhanced Neural Network for

AI-as-a-Service. Cryptology ePrint Archive, Paper 2023/647. https://eprint.iacr.

org/2023/647 https://eprint.iacr.org/2023/647.

[30] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit

database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).
[31] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim

Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, and

Jong-Seon No. 2021. Privacy-Preserving Machine Learning with Fully Homomor-

phic Encryption for Deep Neural Network. Cryptology ePrint Archive, Report

2021/783. https://eprint.iacr.org/2021/783

[32] Feng-Hao Liu and Han Wang. 2023. Batch Bootstrapping I: A New Framework

for SIMD Bootstrapping in Polynomial Modulus. In EUROCRYPT 2023, Part III
(LNCS). 321–352. https://doi.org/10.1007/978-3-031-30620-4_11

[33] Feng-Hao Liu and Han Wang. 2023. Batch Bootstrapping II: Bootstrapping in

Polynomial Modulus only Requires �̃� (1) FHE Multiplications in Amortization.

In EUROCRYPT 2023, Part III (LNCS). 353–384. https://doi.org/10.1007/978-3-

031-30620-4_12

[34] Jun Liu, Amir Shahroudy, Mauricio Perez, GangWang, Ling-Yu Duan, and Alex C.

Kot. 2020. NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity

Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42, 10 (2020), 2684–2701.
https://doi.org/10.1109/TPAMI.2019.2916873

[35] Tzu-Li Liu, Yu-Te Ku, Ming-Chien Ho, Feng-Hao Liu, Ming-Ching Chang, Chih-

Fan Hsu, Wei-Chao Chen, and Shih-Hao Hung. 2023. An Efficient CKKS-

FHEW/TFHE Hybrid Encrypted Inference Framework. In Computer Security.
ESORICS 2023 International Workshops - CPS4CIP, ADIoT, SecAssure, WASP, TAU-
RIN, PriST-AI, and SECAI, The Hague, The Netherlands, September 25-29, 2023,
Revised Selected Papers, Part II (Lecture Notes in Computer Science, Vol. 14399).
Springer, 535–551. https://doi.org/10.1007/978-3-031-54129-2_32

[36] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. 2021. Large-Precision Homo-

morphic Sign Evaluation using FHEW/TFHE Bootstrapping. Cryptology ePrint

Archive, Report 2021/1337. https://eprint.iacr.org/2021/1337

[37] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. 2022. Large-Precision Homo-

morphic Sign Evaluation Using FHEW/TFHE Bootstrapping. In ASIACRYPT 2022,
Part II (LNCS, Vol. 13792), Shweta Agrawal and Dongdai Lin (Eds.). 130–160.

https://doi.org/10.1007/978-3-031-22966-4_5

[38] Qian Lou and Lei Jiang. 2019. SHE: A Fast and Accurate Deep Neural Network

for Encrypted Data. In NeurIPS. 10035–10043.
[39] Qian Lou, Wen-jie Lu, Cheng Hong, and Lei Jiang. 2020. Falcon: Fast Spectral In-

ference on Encrypted Data. In Advances in Neural Information Processing Systems

1088

https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2022/915
https://doi.org/10.1007/978-3-030-49785-9_16
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1145/2633600
http://proceedings.mlr.press/v97/brutzkus19a.html
https://doi.org/10.1109/KST51265.2021.9415793
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1145/3385412.3386023
https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://www.ndss-symposium.org/ndss-paper/redsec-running-encrypted-discretized-neural-networks-in-seconds/
https://www.ndss-symposium.org/ndss-paper/redsec-running-encrypted-discretized-neural-networks-in-seconds/
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1561/1000000060
https://doi.org/10.1109/TIFS.2023.3263631
https://openreview.net/forum?id=SJU4ayYgl
https://eprint.iacr.org/2021/1135
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://eprint.iacr.org/2023/647
https://eprint.iacr.org/2023/647
https://eprint.iacr.org/2023/647
https://eprint.iacr.org/2021/783
https://doi.org/10.1007/978-3-031-30620-4_11
https://doi.org/10.1007/978-3-031-30620-4_12
https://doi.org/10.1007/978-3-031-30620-4_12
https://doi.org/10.1109/TPAMI.2019.2916873
https://doi.org/10.1007/978-3-031-54129-2_32
https://eprint.iacr.org/2021/1337
https://doi.org/10.1007/978-3-031-22966-4_5

Optimizing Encrypted Neural Networks: Model Design, Quantization and Fine-Tuning Using FHEW/TFHE Proceedings on Privacy Enhancing Technologies 2025(4)

33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual. https://proceedings.neurips.cc/paper/2020/

hash/18fc72d8b8aba03a4d84f66efabce82e-Abstract.html

[40] Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli, Frank H. P.

Fitzek, and Najwa Aaraj. 2022. Survey on Fully Homomorphic Encryption,

Theory, and Applications. Cryptology ePrint Archive, Report 2022/1602. https:

//eprint.iacr.org/2022/1602

[41] Daniele Micciancio and Yuriy Polyakov. 2021. Bootstrapping in FHEW-like

Cryptosystems. InWAHC. ACM, 17–28. https://doi.org/10.1145/3474366.3486924

[42] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari

with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602

http://arxiv.org/abs/1312.5602

[43] Hongwu Peng, Ran Ran, Yukui Luo, Jiahui Zhao, Shaoyi Huang, Kiran

Thorat, Tong Geng, Chenghong Wang, Xiaolin Xu, Wujie Wen, and Cai-

wen Ding. 2023. LinGCN: Structural Linearized Graph Convolutional

Network for Homomorphically Encrypted Inference. In Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, De-
cember 10 - 16, 2023. http://papers.nips.cc/paper_files/paper/2023/hash/

41bd71e7bf7f9fe68f1c936940fd06bd-Abstract-Conference.html

[44] Robert Podschwadt and Daniel Takabi. 2020. Classification of Encrypted Word

Embeddings using Recurrent Neural Networks. In PrivateNLP WSDM (CEUR
Workshop Proceedings, Vol. 2573). CEUR-WS.org, 27–31. https://ceur-ws.org/Vol-

2573/PrivateNLP_Paper3.pdf

[45] Robert Podschwadt and Daniel Takabi. 2021. Non-interactive Privacy Preserving

Recurrent Neural Network Prediction with Homomorphic Encryption. In CLOUD.
IEEE, 65–70. https://doi.org/10.1109/CLOUD53861.2021.00019

[46] Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie

Wen. 2022. CryptoGCN: Fast and Scalable Homomorphically Encrypted

Graph Convolutional Network Inference. In Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022. http://papers.nips.cc/paper_files/paper/2022/hash/

f5332c8273d02729730a9c24dec2135e-Abstract-Conference.html

[47] Ran Ran, Nuo Xu, Tao Liu, WeiWang, Gang Quan, andWujieWen. 2023. Penguin:

Parallel-Packed Homomorphic Encryption for Fast Graph Convolutional Net-

work Inference. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023. http://papers.nips.cc/paper_files/paper/
2023/hash/3cc685788a311fa35d8d41df93e288ca-Abstract-Conference.html

[48] Juncheol Shin, Junhyuk So, Sein Park, Seungyeop Kang, Sungjoo Yoo, and Eun-

hyeok Park. 2023. NIPQ: Noise proxy-based Integrated Pseudo-Quantization.

In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023,
Vancouver, BC, Canada, June 17-24, 2023. IEEE, 3852–3861. https://doi.org/10.

1109/CVPR52729.2023.00375

[49] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. In ICLR. http://arxiv.org/abs/1409.1556
[50] Daniel Sonntag, Michael Barz, Jan Zacharias, Sven Stauden, Vahid Rahmani,

Áron Fóthi, and András Lörincz. 2017. Fine-tuning deep CNN models on specific

MS COCO categories. CoRR abs/1709.01476 (2017). arXiv:1709.01476 http:

//arxiv.org/abs/1709.01476

[51] Andrei Stoian, Jordan Fréry, Roman Bredehoft, Luis Montero, Celia Kherfal-

lah, and Benoît Chevallier-Mames. 2023. Deep Neural Networks for Encrypted

Inference with TFHE. In Cyber Security, Cryptology, and Machine Learning -
7th International Symposium, CSCML 2023, Be’er Sheva, Israel, June 29-30, 2023,
Proceedings (Lecture Notes in Computer Science, Vol. 13914). Springer, 493–500.
https://doi.org/10.1007/978-3-031-34671-2_34

[52] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence

Learning with Neural Networks. In NeurIPS. 3104–3112.
[53] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image

Dataset for Benchmarking Machine Learning Algorithms. CoRR abs/1708.07747

(2017). arXiv:1708.07747 http://arxiv.org/abs/1708.07747

[54] Yu Xiao, Feng-Hao Liu, Yu-Te Ku, Ming-Chien Ho, Chih-Fan Hsu, Ming-Ching

Chang, Shih-Hao Hung, and Wei-Chao Chen. 2025. GPU Acceleration for

FHEW/TFHE Bootstrapping. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2025, 1, 314–339.

[55] Xun Zhou, A. Kai Qin, Maoguo Gong, and Kay Chen Tan. 2021. A Survey on

Evolutionary Construction of Deep Neural Networks. IEEE Trans. Evol. Comput.
25, 5 (2021), 894–912. https://doi.org/10.1109/TEVC.2021.3079985

1089

https://proceedings.neurips.cc/paper/2020/hash/18fc72d8b8aba03a4d84f66efabce82e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/18fc72d8b8aba03a4d84f66efabce82e-Abstract.html
https://eprint.iacr.org/2022/1602
https://eprint.iacr.org/2022/1602
https://doi.org/10.1145/3474366.3486924
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://papers.nips.cc/paper_files/paper/2023/hash/41bd71e7bf7f9fe68f1c936940fd06bd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/41bd71e7bf7f9fe68f1c936940fd06bd-Abstract-Conference.html
https://ceur-ws.org/Vol-2573/PrivateNLP_Paper3.pdf
https://ceur-ws.org/Vol-2573/PrivateNLP_Paper3.pdf
https://doi.org/10.1109/CLOUD53861.2021.00019
http://papers.nips.cc/paper_files/paper/2022/hash/f5332c8273d02729730a9c24dec2135e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/f5332c8273d02729730a9c24dec2135e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3cc685788a311fa35d8d41df93e288ca-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3cc685788a311fa35d8d41df93e288ca-Abstract-Conference.html
https://doi.org/10.1109/CVPR52729.2023.00375
https://doi.org/10.1109/CVPR52729.2023.00375
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1709.01476
http://arxiv.org/abs/1709.01476
http://arxiv.org/abs/1709.01476
https://doi.org/10.1007/978-3-031-34671-2_34
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://doi.org/10.1109/TEVC.2021.3079985

Proceedings on Privacy Enhancing Technologies 2025(4) Ku et al.

A Experimental Settings and Detail Supplement
This section supplements the experimental details and settings.

Tables 9, 10, 11 and 12 provide supplemental information to the

experimental settings and results. Table 9 details the four types of

machine specifications used in our experiments. Tables 10 and 11

describe the model architectures and corresponding datasets used

in the experiments. Finally, We conduct a detailed analysis of the

computation times for linear calculations and activation functions

during the encrypted inference process in Table 12 to identify per-

formance bottlenecks.

Table 9: Experiment Computing Platforms Specifications

Platform Type CPU Memory GPU
CPU-only AMD Ryzen Threadripper

PRO 5975WX (32 cores, 64

threads)

256GB None

RTX 3090 x1 AMD EPYC 7552 48-Core

Processor

256GB One

NVIDIA

RTX

3090

RTX 4090 x1 AMD Ryzen Threadripper

PRO 5975WX (32 cores, 64

threads)

256GB One

NVIDIA

RTX

4090

RTX 4090 x2 AMD Ryzen Threadripper

PRO 5975WX (32 cores, 64

threads)

256GB Two

NVIDIA

RTX

4090

RTX 4090 x4 AMD Ryzen Threadripper

PRO 5975WX (32 cores, 64

threads)

256GB Four

NVIDIA

RTX

4090

RTX 4090 x12 AMD Ryzen Threadripper

PRO 5995WX (64 cores,

128 threads)

378GB Twelve

NVIDIA

RTX

4090

A100 x1 AMD EPYC 7643 (48 cores,

96 threads)

1.008TB One

NVIDIA

A100

H100 x1 Intel Xeon Processor (Ice-

lake) (24 cores, 48 threads)

1.23TB One

NVIDIA

H100

H100 x4 Intel Xeon Processor (Ice-

lake) (24 cores, 48 threads)

1.23TB Four

NVIDIA

H100

H100 x7 Intel Xeon Processor (Ice-

lake) (24 cores, 48 threads)

1.23TB Seven

NVIDIA

H100

B Pseudo-Noise Tuning
The primary objective of Pseudo-Noise Tuning (PNT) [48] is to bol-

ster the stability of model training and enhance the performance of

DNN models post-quantization. This enhancement is achieved by

introducing Pseudo-Quantization Noise (PQN) during the model’s

fine-tuning phase. The strategic integration of PQN allows the

Table 10: Network Topology. In the network topology descrip-

tions, ’C’ represents a convolutional layer, ’A’ stands for an activa-

tion layer (ReLU), ’P’ denotes a pooling layer (average pooling), and

’F’ indicates a fully connected layer. The sequence and grouping

of these letters describe the arrangement of layers in each model.

For instance, "[C-A-C-A-P] x 2" means two consecutive blocks each

containing two convolutional layers with ReLU activation followed

by a pooling layer.

Dataset Model Name Network Topology

CIFAR-10 VGG9 [C-A-C-A-P] x 2 - [C-A-C-A-P] x 1 - F-F-F

CIFAR-10 VGG6-96 [C-A-P] - [C-A-P] - [C-A] - F - F - F

CIFAR-10 VGG6-32 [C-A-P] - [C-A-P] - [C-A] - F - F - F

CIFAR-10 VGG6-24 [C-A-P] - [C-A-P] - [C-A] - F - F - F

FashionMNIST Net-128 F-F

MNIST Net-30 F-F

Table 11: Input/Output Channels. In the input/output channel

specifications, the format "xx/yy" indicates the number of input and

output channels for each layer or block of layers. ’xx’ represents

the number of input features to the layer, and ’yy’ denotes the

number of output features produced by the layer. This format helps

in understanding the dimensionality transformation at each stage

of the network.

Dataset Model Name Input/Output Channels

CIFAR-10 VGG9 [3/64, 64/64, 64/128, 128/128,128/256,

256/256] - [4096/512, 512/256, 256/10]

CIFAR-10 VGG6-96 [3/96, 96/96, 96/64]

- [4096/2048, 2048/1024, 1024/10]

CIFAR-10 VGG6-32 [3/32, 32/32, 32/32]

- [2048/1024,1024/512, 512/10]

CIFAR-10 VGG6-24 [3/24, 24/24, 24/24]

- [1536/768, 768/384, 384/10]

FashionMNIST Net-128 [784/128, 128/10]

MNIST Net-30 [784/30, 30/10]

Table 12: Compare the computation times of linear com-
putations and activation function. This experiment performs

encrypted inference on an image from the CIFAR-10 dataset. We

use a computer equipped with an AMD Ryzen Threadripper PRO

5975WX processor , 256 GB of RAM and Four NVIDIA RTX 4090

GPUs.

Model ReLU CNN/FC Total
VGG9 83 s 2 s 85 s

VGG6-96 47 s 2 s 49 s

VGG6-32 15 s 2 s 17 s

VGG6-24 12 s <1 s 13 s

model to more effectively adapt to and anticipate errors stemming

1090

Optimizing Encrypted Neural Networks: Model Design, Quantization and Fine-Tuning Using FHEW/TFHE Proceedings on Privacy Enhancing Technologies 2025(4)

from the quantization process, thus optimizing its overall effective-

ness.

The noise proxy function, 𝑓𝑁𝑜𝑖𝑠𝑒 (𝑥 | 𝛾,Δ, 𝑒), plays an integral

role in the Pseudo-Noise Tuning. This function is tasked with quan-

tizing network parameters, where it determines the quantized out-

put based on the input parameter 𝑥 , the truncation boundary 𝛾 , and

the bit width 𝜃 . In this context, 𝑒 denotes the Pseudo-Quantization

Noise that influences the quantization process. The quantization

step, Δ, is defined using the formula: Δ =
𝛾

2
𝜃−1−1 , as visualized in

Figure 9 which shows the 2-bit quantization with hyper parameters

for symmetric distribution. The rules for quantization are described

as follows:

𝑓𝑁𝑜𝑖𝑠𝑒 (𝑥 | 𝛾,Δ, 𝑒) =

0, if 𝑥 ≤ 0

𝑥 + 𝑒 · Δ, if 0 < 𝑥 < 𝛾

𝛾, if 𝑥 ≥ 𝛾
(7)

Algorithm 4 details the procedure for Pseudo-Noise Tuning. The

inputs include training data X ∈ Rℎ×𝑚 , label matrix T ∈ R𝑞×𝑚 ,
pre-trained model weightsW1,W2, . . . ,W𝑛, truncation boundaries

𝛾1 ∼ 𝛾𝑛 , quantization steps Δ1 ∼ Δ𝑛 , along with the noise proxy

function 𝑓𝑁𝑜𝑖𝑠𝑒 and the pseudo-noise distributionD𝑁𝑜𝑖𝑠𝑒 . This fine-
tuning method involves adding noise using the proxy function

𝑓𝑁𝑜𝑖𝑠𝑒 after each ReLU layer during the forward pass. The rest

of the process follows the same steps as standard fine-tuning as

described in references [50] [7]. The final output of Pseudo-Noise

Tuning is a model with weights adapted to the noise characteristics

of the D𝑁𝑜𝑖𝑠𝑒 distribution.
In the FHEWApprox-DNN inference process, the accuracy losses

from quantized models and activation values increase due to the

noise from the FHEW Approx-Neuron. To address these challenges,

we use a method similar to Pseudo-Noise Tuning, which signifi-

cantly enhances the model’s resilience to the typical noise of the

FHEW Approx-Neuron. We elaborate on the methodology and its

effects in § 4.2.

Figure 9: Visualization of the 2-bit quantization with hyper
parameters (e.g., 𝛾 for truncation boundary and 𝜃 for bit-
width) for symmetric distribution.

Algorithm 4 Pseudo-Noise Tuning (PNT)

1: Inputs:
• Training data X ∈ Rℎ×𝑚 , where ℎ is the number of features

per input sample, and𝑚 is the batch size, representing the

total number of samples.

• The label matrix T ∈ R𝑞×𝑚 where 𝑞 is the number of classes

for multi-class classification and𝑚 matches the batch size in

X.
• Pre-trained model weights W1,W2, . . . ,W𝑛 with 𝑛

layers,Wi ∈ Rℎ×ℎ , where 𝑘 is the number of output features

and ℎ is the number of input features per sample.

• Truncation Boundary of each layer 𝛾1 ∼ 𝛾𝑛 .
• Quantization Step of each layer Δ1 ∼ Δ𝑛 .
• Pseudo-Noise Distribution D𝑁𝑜𝑖𝑠𝑒 .
• Noise Proxy Function 𝑓𝑁𝑜𝑖𝑠𝑒 .

2: Outputs: Fine-Tuned model weightsW1,W2, . . . ,W𝑛 with 𝑛

layers,W𝑖 ∈ R𝑘×ℎ .

3: procedure PNT(X,T,W1 ∼ W𝑛, 𝛾1 ∼ 𝛾𝑛,Δ1 ∼ Δ𝑛,D𝑁𝑜𝑖𝑠𝑒)→
W1,W2, . . . ,W𝑛

4: Initialize the input Y0 = X.
5: for 𝑖 = 1 to 𝑛 do
6: Y𝑖 =W𝑖 · Y𝑖−1
7: Y𝑖 = ReLU(Y𝑖)
8: ▷ Start Noise Proxy /////

9: 𝑒 ∼ D𝑁𝑜𝑖𝑠𝑒
10: Y𝑖 ← 𝑓𝑁𝑜𝑖𝑠𝑒 (Y𝑖 | 𝛾𝑖 ,Δ𝑖 , 𝑒)
11: ▷ End Noise Proxy /////

12: end for
13: Compute loss 𝐿(Y𝑛,T) using Cross-Entropy Loss

14: Update weights W1, . . . ,W𝑛 using backpropagation with

SGD

15: ReturnW1,W2, . . . ,W𝑛

16: end procedure

1091

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminary
	2.1 LWE Symmetric Encryption
	2.2 FHEW/TFHE Functional Bootstrapping
	2.3 FHE Parameters of Our FHE-Neuron
	2.4 Post-Training Quantization
	2.5 Pseudo-Noise Tuning

	3 The FHE-Neuron
	3.1 Architecture of FHE-Neuron
	3.2 Analysis on FHE-Neuron

	4 Model Quantization and Fine-Tuning Framework
	4.1 FHE-Aware Quantization
	4.2 FHE-Aware Tuning

	5 Evaluation
	5.1 Experimental Settings
	5.2 Results on MNIST and Fashion-MNIST
	5.3 Results on CIFAR-10
	5.4 Our Method's Verification in Various GPUs
	5.5 Gadget Base Size Bg Balances Accuracy and Time in Encrypted DNN Inference
	5.6 Activation Functions as Performance Bottlenecks in Encrypted DNN Inference
	5.7 Time Cost of FHE-Aware Quantization and Fine-Tuning

	6 Extending Our Method to Other FHE Schemes
	7 Conclusion
	Acknowledgments
	References
	A Experimental Settings and Detail Supplement
	B Pseudo-Noise Tuning

