
Message Authentication Code with Fast Verification over
Encrypted Data and Applications

Adi Akavia

University of Haifa

adi.akavia@gmail.com

Meir Goldenberg

University of Haifa

meirgold@hotmail.com

Neta Oren

University of Haifa

neta5128@gmail.com

Margarita Vald

Intuit Inc

margarita_vald@intuit.com

Abstract
In common data analytic scenarios, data is produced by a multitude

of data producers (e.g., medical clinics), stored and maintained by

some data keeper (e.g., a centralized repository), and substantial

benefit can be gained from making data accessible to a variety

of data consumers (e.g., researchers); however, making cleartext

data accessible poses a privacy threat and may infringe on privacy

regulation. Computing over data encrypted by fully homomorphic

encryption (HE) enables providing privacy guarantee together with

data mining utility. To ensure that correct insights are extracted, it

is essential to guarantee data authenticity. In this work we present

an authenticity proof for encrypted data:

(1) As a central tool we show how to modify a classical MAC

based on universal hashing to introduce the first MAC with
fast homomorphic verification over the reals (7.37 microsec-

onds amortized runtime).

(2) We then utilize our MAC for guaranteeing data authenticity,

for data provided by an untrusted data keeper in HE en-

crypted form. We implemented our solution, demonstrating

substantial efficiency improvements over the prior art (Chatel
et al. USENIX’21): improving the proof size and generation

time by over 10
4×.

To demonstrate the usefulness of our homomorphic verification in

realistic systems we implemented it in AWS EC2 with S3 storage,

demonstrating it achieves practical performance for fetching and

authenticating HE ciphertexts, as well as smooth integration with

subsequent homomorphic evaluation of decision tree models.

Keywords
message authentication code, homomorphic encryption, authenti-

cated storage

1 Introduction
In common data analytic scenarios, data is collected from multiple

data producers, and significant insights can be gained from analyz-

ing the data in its entirety. Examples include healthcare patients

data that, if made accessible to medical researchers and companies,

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(4), 1092–1111
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0173

can be mined for the development of precision medicine; popula-

tion data collected by a national census bureau that, when made

available, allows gaining insights on population trends; companies

collecting clients data to be accessed by their development teams to

better the services they offer. In all these scenarios, data is produced

by a multitude of data producers (e.g., medical clinics, client facing

applications); data is stored and maintained by some data keeper
(e.g., a centralized repository), possibly relying on third party in-

frastructure such as cloud storage; and substantial benefit can be

gained from making data accessible to a variety of data consumers
(e.g., researchers, data analytic teams).

Despite the potential gain in making data accessible, it is often

not a possibility, e.g., when addressing sensitive data protected

(as it should be) by privacy regulations (e.g., GDPR [28]) or when

hindered by economic incentives to capitalize data for profit. The

secure computing approach [31, 49] offers harnessing cryptographic

techniques such as homomorphic encryption (HE) [30, 45] to com-

pute on data while it is in encrypted form, revealing no information

on the raw data (except the authorized output and what can be

inferred from it). Namely, secure computing enables mining data
while keeping the data itself secret [38]. In the context of scenarios

as considered above, HE can be utilized as follows:

The data keeper can provide data consumers with HE

encrypted records; data consumers can compute over

the encrypted data to produce an encrypted result (to

be decrypted, if authorized).

Data consumers however should be concerned with regards to

the authenticity of data received from the data keeper, who may be

faulty or compromised. Indeed, holding large volumes of sensitive

data makes the data keeper a lucrative attack target. Mitigating

the data consumers concern is the focus of our paper. This entails

ensuring authenticity of encrypted data received from the data

keeper, i.e., ensuring they hold the requested data producers’ data

and are well-formed.

Ciphertexts authenticity, in some scenarios, can be guaranteed

via the standard Encrypt-then-Mac (EtM) approach where data pro-

ducers upload authenticated ciphertexts to the data keeper, and

data consumers verify their authenticity. But the EtM approach

is not applicable when the data keeper is authorized to modify the
ciphertexts, e.g., for routine ciphertext updates that are common

in data lifecycle, such as re-encryption due to key rotation or policy
changes. Likewise, the EtM approach is not applicable when the

data keeper stores data in cleartext, producing HE ciphertexts only

when serving data consumers requests; this is because the data

1092

https://orcid.org/0000-0003-0853-3576
https://orcid.org/0009-0006-2792-5603
https://orcid.org/0009-0003-2004-3534
https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0173

Message Authentication Code with Fast Verification over Encrypted Data and Applications Proceedings on Privacy Enhancing Technologies 2025(4)

keeper cannot authenticate on behalf of the data producers (as this

would completely undermine unforgeability), and the data produc-

ers are not expected to be available for any task beyond uploading

their data. In all such scenarios, the EtM approach is not applicable,

because the data keeper is authorized to provide data in a form that

differs from how data was uploaded by its producers.

The challenge is to guarantee that data remain intact, even when

it is provided in encrypted form and where ciphertexts are created

or processed by the data keeper. This can be achieved utilizing

zero knowledge proofs [31, 32], by having the data keeper prove that
the computations (e.g., encryption, re-encryption) were executed

as prescribed and on the appropriate input and randomness, and

the data consumers verify the proof; see an illustration in Figure 1.

This could be instantiated using generic zero-knowledge proofs

[20], but at a substantial complexity cost (e.g., proof generation

time of 470𝑠 [20, Table 1, last row]).

Figure 1: Data producers upload authenticated data to a cen-
tralized data keeper. The data keeper handles fetch requests,
based on access permissions, providing HE encrypted data to
data consumers, together with a proof for their validity. Data
consumers verify, and compute over the encrypted data.

1.1 Our Contribution
In this work we show how to guarantee the authenticity of data

provided in encrypted form, where the ciphertexts may have been

created or modified by an untrusted data keeper. As a central tool

we propose a message authentication code (MAC) with fast homo-

morphic verification. An open-source implementation is available

in [6].

Contribution 1: MAC with fast homomorphic verification
over the reals. For HE schemes supporting modular plaintext

arithmetic (e.g., BGV [18], B/FV [17, 29], FHEW [26], TFHE [22])

MAC schemes with fast homomorphic tagging and verification

exist; but not for schemes supporting plaintext arithmetic over the

reals (e.g., the popular CKKS [21]). In this work we present:

Result 1: A MAC whose verification algorithm evalu-
ates a linear polynomial over the reals.

Thus supporting fast homomorphic verification over the reals.

Overview of our MAC. Our starting point is the classical (one-

time) MAC based on the universal hashing ℎk (x) =
∑𝑛

𝑖=1 𝑘𝑖𝑥𝑖 +
𝑘0 mod 𝑝 , in which: the MAC key is uniform k ∈ Z𝑛+1𝑝 ; the tag for

message x ∈ Z𝑛𝑝 is ℎk (x); and verification of (x, 𝑦) accepts if-and-
only-if ℎk (x) = 𝑦. This MAC does not support fast homomorphic

verification over the reals, because computing modular reduction
over the reals and testing equality, both require evaluating a high

degree polynomial.

In this work we modify the classical MAC as follows. To avoid
modular reduction during verification, we do the following:

• Our tag augments the hash value ℎk (x) —which is the re-
mainder of

∑
𝑘𝑖𝑥𝑖 + 𝑘0 in division by 𝑝— with a masking of

the quotient in this division. The MAC key is extended to in-

clude the masking randomness. We prove that unforgeability
holds via a reduction to the classical MAC.

• For masking we use a secret sharing scheme for Z𝑝 whose

reconstruction (we which use for unmasking) evaluates a

linear polynomial over the reals. This secret sharing scheme

is constructed via a lifting to Z𝑝 of the secret sharing scheme

for [0, 1] in [8].

• Verification, given a message x and a tag consisting of a

remainder and a masked quotient, operates as follows. The

value 𝑦 :=
∑
𝑘𝑖𝑥𝑖 +𝑘0 is computed over the reals (i.e., with no

modular reduction). A (supposedly identical) value is com-

puted from the tag by unmasking and combining the remain-

der 𝑦r with the (unmasked) quotient 𝑦q into: 𝑦
′
:= 𝑦q · 𝑝 +𝑦r.

Note that computing 𝑦 and 𝑦′ is via evaluating linear polyno-
mials over the reals. Verification accepts if-and-only-if 𝑦 = 𝑦′.

Furthermore, to avoid equality testing, we replace it with subtraction,
i.e., verification outputs𝑦−𝑦′, to be interpreted as accept if it equals
0 (reject otherwise). Combining all aforementioned modifications,

ensures that verification evaluated a linear polynomial over the

reals (in the message and tag as the unknowns).

Contribution 2: Ensuring data authenticity, in the ciphertext
domain, against an untrusted data keeper. Next, we utilize our
MAC as a central tool for instantiating the system in Figure 1. We

implemented our solution, demonstrating significant complexity

improvements compared to utilizing generic proofs [20] (see a

detailed comparison in Table 1):

Result 2:We instantiate the system in Figure 1 utilizing
our MAC as a central tool for ensuring authenticity over
encrypted data; our instantiation exhibits amortized,
per item, authenticity proof size and generation time
of 13.94 bytes and 0.21𝜇s, improving over the prior

state-of-the-art [20] by 10
4
and 10

5
, respectively.

The amortized verification time is 7.36𝜇s, assuming CKKS is fully

composable (see Definition 2.2) w.r.t. the verification circuit; other-

wise it is 0.92𝑚𝑠 (compare with 32𝑚𝑠 in [20]). (The proof size and

generation time are as stated above, regardless of whether CKKS is

fully composable.)

Overview of our approach. We take a Mac-then-Encrypt (MtE)
approach, as follows. Data producers generate authenticity tags

directly on the data (in contrast to authenticating ciphertexts in the

EtM approach). The data and tags are to be provided to data con-

sumers in encrypted form. The data consumers homomorphically

verify authenticity, to obtain an encrypted accept/reject outcome.

Moreover, they can execute any homomorphic computation on the

encrypted data to obtain an encrypted computation outcome. The

1093

Proceedings on Privacy Enhancing Technologies 2025(4) Adi Akavia, Meir Goldenberg, Neta Oren, and Margarita Vald

party receiving the verification and computation results in cleart-

ext,
1
accepts them only if the verification output is “accept” (rejects,

otherwise).

Remarks. (i) On classical attacks on MtE, and their inapplicability
to our settings. In the context of authenticated encryption, there are

well-known attacks on MtE [35] that leverage the accept/reject ver-

ification outcome to break the semantic security of the encryption

scheme. These attacks are not applicable to our settings, because

our data keeper knows the cleartext message, regardless of see-

ing verification outcomes. (ii) On seeing decryption outcomes. The
inherent malleability of HE schemes implies insecurity against ma-

licious adversaries who can access a decryption oracle as modeled

in CCA2-security. In contrast, security against adversaries with

access to decryptions of honest homomorphic computations, as

modeled in IND-CPA𝐷 -security [37], is guaranteed by the leading

HE libraries (under standard cryptographic assumptions and with

a bounded access to decryptions). We recommend employing such

libraries in our solution, to ensure IND-CPA
𝐷
-security.

On the insufficiency of MAC alone, and our additional machinery.
We note that our MAC, although a central tool, is not a sufficient

one. We present an attack demonstrating this insufficiency:

Homomorphic verification alonemay fail to guar-
antee unforgeability: We prove that for every un-
forgeable (Mac,Vrf), and HE E, there exists a HE Ê,
and a ppt adversaryA that produces ciphertexts (𝑐msg, 𝑐tag)
decrypting to (msg, tag) s.t.:

Vrf (msg, tag) = rej

D̂ec�̂�𝑘

(
Êval𝑝𝑘 (Vrf; 𝑐msg, 𝑐tag)

)
= acc.

I.e., homomorphic verification with Êval fails to detect
that (msg, tag) is a forgery.

The attack, in a nutshell, is as follows. The public key of Ê is the

public key of E augmented with a random ciphertext 𝑐∗; encryption
and decryption ignore 𝑐∗ and operate as in E; the homomorphic

evaluation Êval is similar to that of E except that on input con-

taining 𝑐∗ it always outputs Enc𝑝𝑘 (acc). Ê is semantically secure

and correct, whenever E is. The adversary A sets 𝑐msg := 𝑐∗ (𝑐tag
can be arbitrary); this guarantees that homomorphic verification

Êval(Vrf; 𝑐∗, 𝑐tag) outputs a ciphertext that decrypts to acc.

We address this attack by incorporating machinery from [5]

and [40] in our authenticity verification; details follow. Our start-

ing point is to observe that the attack is rooted in the fact that HE

schemes guarantee correct homomorphic evaluation only on cipher-

texts generated by executing the scheme’s encryption algorithm. In

contrast, our attack feeds Êval with a ciphertext 𝑐∗ taken from the

public key, and not the output of encryption. Next, we prove that

we can mitigate this attack, as well as any other attack, provided the

HE scheme is fully composable [40], i.e., it guarantees correct ho-

momorphic evaluation on arbitrary ciphertexts. In case the scheme

is not fully composable, it can be transformed to fully composable

(provided, it is equipped with bootstrapping, i.e., supports homo-

morphic computation of its decryption algorithm), by sanitizing [5]

1
Providing cleartext outcomes only for authorized parties and computations is treated

as part of the outcome disclosure phase utilizing standard techniques.

or bootstrapping [40] ciphertexts prior to homomorphic evaluation.

Such a transformation increases the runtime of homomorphic veri-

fication by the time to sanitize or bootstrap its input ciphertexts;

the proof (tag) size and generation time are unchanged. We note

that full composability guarantees that ciphertexts are well-formed

in the sense of ensuring correctness of homomorphic computation.

System implementation and applications. To demonstrate the

usefulness of our homomorphic verification in realistic systems we

implemented it in AWS EC2 instances (for data producer, keeper and

consumer) with S3 bucket for storage. Our implementation demon-

strates that our solution achieves practical performance for fetching

and authenticating HE ciphertexts, with amortized per data item

runtime of 0.92𝑚𝑠 (on AWS EC2 c5.18xlarge with a single thread

HE implementation). The bulk of this runtime is spent on boot-

strapping CKKS ciphertexts for ensuring full composability w.r.t.

our authentication, whereas the rest of the computation requires

only additive homomorphism. Under the heuristic assumption that

CKKS is fully-composable w.r.t. our computation, the runtime is

considerably faster: amortized per data item runtime of 0.008𝑚𝑠 (in

an execution on 2M 64-bit data items; see Table 2).

To demonstrate that our system supports smooth integration

with subsequent homomorphic computation we integrate it with

the homomorphic decision tree evaluation in [7], using the open

source code from [25], demonstrating it achieves high accuracy and

fast runtime (see details in Section 5.3).

To further demonstrate the usability and flexibility of our system,

we show how to integrate it with the compact storage with HE-
retrieval solution of [8] for enhancing the latter with an authenticity
guarantee (on top of their guarantee for secrecy against a malicious

adversary who may corrupt the data keeper or consumer, but not

both).

Notable, we present for these applications generic protocols (cf.
Figures 5-6). Furthermore, we characterize sufficient properties of

the MAC and HE scheme for use in our protocols (cf. Theorems

4.1-4.2). For example, our protocols can be instantiated with: (i)

HE schemes supporting homomorphism over Z𝑝 together with

the classic universal hashing based MAC, as well as with (ii) HE

schemes supporting homomorphism over the reals together with

our MAC; see Remark 4.4.

1.2 Related Work
Our MAC (cf. Contribution 1) is an adaptation of the universal

hashing based MAC of Figure 2 [47]. Other prior work on universal

hashing based MAC include: UMAC [16, 36] and Poly1305 [44].

A work most closely related to our Contribution 2 is the work

of Chatel et al. [20] that considers data integrity in the context

of fetching HE ciphertexts from an untrusted data keeper. They

consider 3-party settings with a data producer offloading cleartext

data to an untrusted party analogous to our data keeper (called

“user”, there), who providesHE ciphertexts to an honest-but-curious

server who executes homomorphic computations and wishes to be

certainwith regards to the authenticity of the underlying data. Their

approach for ensuring data integrity is as follows: the data producer

hashes the data (using SHA256 in their empirical evaluation) to

produce a short digest, signs the digest using a digital signature,

and sends the data and signed digest to the data keeper. Their

1094

Message Authentication Code with Fast Verification over Encrypted Data and Applications Proceedings on Privacy Enhancing Technologies 2025(4)

data keeper then proves to the server that the provided ciphertexts

are an honest encryption of the data signed by the data producer.

They accomplish the latter using generic zero-knowledge proofs.

Concretely, they employ ZKB++ [19] with BDOP commitment [12]

to simultaneously verify a custom circuit that checks the integrity of

the data and its correct encryption. Their proof size and generation

time is 10,000× and 100,000× larger than ours.

The Akavia et al. [8] solution that we integrated into our system

supports compact storage with fast and secure retrieval of HE

ciphertexts, and data confidentiality guarantee against both data

keeper and consumer (in the two server model, where the adversary

can corrupt the data keeper or consumer, but not both). However,

their protocol offers no authenticity guarantee. Our integrated

system enhances the former with an authenticity guarantee by

utilizing our MAC. Our integrated protocol can be viewed as an

authenticated transciphering protocol, in the two server model.

Transciphering symmetric cipher to HE was first proposed in

Naehrig et al. [43], with AES as the symmetric cipher. Subsequent

works proposed replacing AES with other symmetric ciphers (e.g.,

LowMC [9], Chaghri [10], Rubato [33], Fasta [23], Elisabeth [24])

supporting faster transciphering runtime than from AES. Nonethe-

less, our solution is at least 10
4× faster in runtime (more, if no

bootstrapping is needed) and 10× lighter in storage space. Au-

thenticated transciphering was first presented by Bendoukha et

al. [13, 14], transciphering Grain128 to TFHE [22]. Their reported

runtime is over 10
4× slower than ours. Aharoni et al. [3] presented

authenticated transciphering from Ascon and AES-GCM to CKKS.

Our runtime is 4.33× faster, despite executing our system of a

significantly weaker hardware (CPU vs. GPU). When comparing

the monetary cost of the computation, our solution exhibits 55×
reduction in cost.

Another relevant line of work addresses homomorphic evaluation
of hash functions as means to provide data authenticity guarantee

over encrypted data (and other applications). Homomorphic evalu-

ation of SHA-256 hash function was first proposed by Mella and

Susella [39] who proposed homomorphic evaluation of SHA-256

over data encrypted with BGV HE scheme. Bendoukha et al. [15]

homomorphic evaluated, over data encryptedwith TFHE, hash func-

tions that were adapted from HE-friendly block ciphers (PRINCE,

SPECK, SIMON, LowMC) with runtime ranging from 1.28 minutes

to 17.32 minutes. Wei et al. [48] homomorphically evaluated SHA-

256 and SM3 (motivated by their standardized status), on TFHE

encrypted data, with runtime ranging from 7.41 minutes to 12 min-

utes per block (in the 1-core execution, and still over 1.5 minutes

even when executing on 12-core machines). All cited results are for

hashing 1-block. In contrast, our homomorphic MAC verification

has amortized runtime of 7.37 microseconds.

Paper Organization
The rest of this paper is organized as follows: preliminary defini-

tions and facts appear in Section 2; our MAC scheme in Section 3;

its applications in Section 4; our empirical evaluation in Section 5;

and conclusions in Section 6.

2 Preliminaries
Notations. We denote by [0..𝑝 − 1] the set of integers in the in-

terval [0, 𝑝 − 1]. We denote vectors by boldface letters, and index

them starting from 1 unless explicitly specified otherwise, e.g.,

x = (𝑥1, . . . , 𝑥𝑛). We denote [𝑛] = {1, . . . , 𝑛}. Single-Instruction-
Multiple-Data (SIMD) operations operate on vectors entry-by-entry,

e.g., SIMD multiplication of x and y produces their point-wise prod-

uct (𝑥1𝑦1, . . . , 𝑥𝑛𝑦𝑛). The operations returning the quotient and

remainder in integer division are denoted by ÷ and mod, respec-

tively; and we extend them to be applied to vectors of integers

entry-by-entry, i.e., x ÷ 𝑝 = (𝑥1 ÷ 𝑝, . . . , 𝑥𝑛 ÷ 𝑝) and x mod 𝑝 =

(𝑥1 mod 𝑝, . . . , 𝑥𝑛 mod 𝑝). We use |𝑧 | to denote the binary repre-

sentation length of 𝑧. We denote by 𝑠 ←𝑅 𝑆 a uniformly random

sample 𝑠 from a set 𝑆 .

We use standard definitions for functions being negligible and
polynomial with respect to a system parameter 𝜆 called the secu-
rity parameter ; for probability ensembles and for computationally
indistinguishability; see formal definitions, e.g., in [34]. We use the

notation neg(𝜆) to denote a function that is negligible in 𝜆; use the

shorthand notation “ppt” for algorithms that run in probabilistic
polynomial time (in 𝜆); use ≡ (resp. ≈𝑐) to denoted that two distri-

butions are identical (resp. computationally indistinguishable).

We defer to Appendix B the formal definitions of MAC, homo-

morphic encryption, pseudo-random functions, and secret sharing.

We bring here only the construction of the affine MAC which we

adapt to our settings, the definition of full composability, and es-

tablish some terminology we use in the context of secret sharing.

ConstructingMAC from universal hashing. Wegman andCarter [47]

presented a one-time (information theoretically) unforgeable MAC

construction using a family of (strongly) universal hash functions

{ℎ𝑘 : A→ B}𝑘∈K , i.e., functions that satisfy the following: for all

distinct messages 𝑥, 𝑥 ′ ∈ A and all 𝑦,𝑦′ ∈ B,

Pr[ℎ𝑘 (𝑥) = 𝑦 ∧ ℎ𝑘 (𝑥 ′) = 𝑦′] = 1

|B|2
(where the probability is over the choice of 𝑘 ∈ K). Their MAC

construction is as follows: Gen samples a uniformly random 𝑘 ∈ K ;

Mac𝑘 (𝑥) outputs ℎ𝑘 (𝑥); and Vrf𝑘 (𝑥,𝑦) outputs acc if-and-only-

if ℎ𝑘 (𝑥) = 𝑦 (rej otherwise). Unforgeability follows by the fact

that even after seeing one message-tag pair: (𝑥, ℎ𝑘 (𝑥)), still the
correct tag ℎ𝑘 (𝑥 ′) for any other message 𝑥 ′ is uniformly distributed

in B (from the point of view of an adversary), and therefore the

adversary’s probability of forging is the probability of randomly

guessing the tag, i.e., probability 1/|B|. So the scheme is unforgeable

as long as 1/|B| is negligible in the security parameter. (A formal

proof can be found, e.g., in [34, Theorem 4.25].)

The above can be instantiated with any universal hashing. Fig-

ure 2 presents an instantiation with the universal hash function

ℎ : Z𝑛+1𝑝 ×Z𝑛𝑝 → Z𝑝 (for 𝑝 a prime) defined over keys k = (𝑘0, . . . , 𝑘𝑛)
and messages x = (𝑥1, . . . , 𝑥𝑛) by:

ℎk (x) = 𝑘0 +
𝑛∑︁
𝑖=1

𝑘𝑖𝑥𝑖 mod 𝑝. (1)

Theorem 2.1. Figure 2 is a 1

𝑝
-one-time unforgeable MAC.

A HE is fully composable if C-homomorphism (cf. Definition B.3)

holds not only w.r.t well-formed ciphertexts but w.r.t all ciphertexts

1095

Proceedings on Privacy Enhancing Technologies 2025(4) Adi Akavia, Meir Goldenberg, Neta Oren, and Margarita Vald

(1) Gen
𝑛,𝑝 (). Output k = (𝑘0, . . . , 𝑘𝑛) ←𝑅 Z𝑛+1𝑝

(2) Mac
𝑛,𝑝

k (x), given 𝑥 ∈ Z
𝑛
𝑝 , output tag := 𝑘0 +

∑𝑛
𝑖=1 𝑘𝑖𝑥𝑖 mod

𝑝 .

(3) Vrf
𝑛,𝑝

k (x, 𝑦), given (𝑥,𝑦) ∈ Z𝑛𝑝 × Z𝑝 , output acc iff 𝑦 =

𝑘0 +
∑𝑛

𝑖=1 𝑘𝑖𝑥𝑖 mod 𝑝 .

Figure 2: MAC for Z𝑛𝑝 via universal hashing

[40]. This property can be guaranteed by bootstrapping prior to

homomorphic evaluation [40].

Definition 2.2 (Fully composable [40]). A HE scheme E =

(Gen, Enc,Dec, Eval) is fully composable with respect to a circuit
family C if for all circuits 𝐶 ∈ C and all c := (𝑐1, . . . , 𝑐ℓ) where 𝑐𝑖
are in the ciphertext space of E and ℓ in the number of inputs to C,
letting (𝑝𝑘, 𝑠𝑘) ← Gen(1𝜆) it holds that:

Pr

[
Dec𝑠𝑘

(
Eval𝑝𝑘 (𝐶; c)

)
≠ 𝐶 (Dec𝑠𝑘 (𝑐1), . . . ,Dec𝑠𝑘 (𝑐ℓ))

]
≤ neg(𝜆)

Definition 2.3 (secret sharing properties (adapted from [8])).

Let S = (Shr,Rec) be a secret sharing scheme for a domain A. De-
note the set of possible values for share 𝑖 = 1, 2, by S𝑖 = {𝑠𝑖 | 𝑥 ∈
A, (𝑠1, 𝑠2) ← Shr(𝑥)}. For every 𝑠1 ∈ S1, denote by Shr𝑠1 and Rec𝑠1
the algorithms Shr and Rec respectively with the 1st share hardwired
to be 𝑠1. We say that S has a random 1st share if for all 𝑥 ∈ A,
{(𝑠1, 𝑠2) ← Shr(𝑥)} ≡ {(𝑠1, 𝑠2) | 𝑠1 ←𝑅 S1, 𝑠2 ← Shr𝑠1 (𝑥)}.

We say that S has a uniform 𝑖th share (𝑖 = 1, 2) if for all 𝑥 ∈ A,
{𝑠𝑖 } (𝑠1,𝑠2)←Shr(𝑥) ≡ {𝑠𝑖 }𝑠𝑖←𝑅S𝑖 . Let E be a C-homomorphic public-
key encryption scheme. We say that S is E-friendly if the following
holds: Rec𝑠1 ∈ C for all 𝑠1 ∈ S1, and S2 is in the message space of E.

3 Our Message Authentication Code
We present our Message Authentication Code (MAC) in Figure 4. Its

key novel property is that verification is by computing a linear poly-

nomial over the reals (with no modular reduction). This property

makes our MAC HE-friendly for HE schemes supporting additive

homomorphism over the reals, e.g., CKKS [21]. In the following we

present our MAC (Section 3.1), and its HE-friendliness (Section 3.2).

3.1 MAC with Linear Verification over Reals
We present our MAC in Figure 4 and Theorem 3.2.

Our MAC employs (as a black-box) a secret sharing scheme for

integer vectors with the following properties: a random 1st share,

a uniform 2nd share, and reconstruction by evaluating a linear

polynomial over the reals. Our MAC can employ any secret sharing

scheme with these properties; we present one such scheme –which

is an adaptation of the secret sharing scheme for [0, 1] in [8] to our

domain of integer vectors– in Figure 3 and Theorem 3.1.

Theorem 3.1 (secret sharing). The scheme (Shrℓ,𝑝 , Recℓ,𝑝) in
Figure 3 is a 2-out-2 perfect secret sharing for [0..𝑝 − 1]ℓ , provided
S1 ←𝑅 {0, 1}ℓ × [0..𝑝 − 1]ℓ , with a random 1st share, uniform 1st
and 2nd shares, and shares size |si | = ℓ · (

⌊
log

2
𝑝
⌋
+ 2) . Moreover,

Recℓ,𝑝 evaluates a linear polynomial over the reals (in the 2nd share
as the unknown).

Shr
ℓ,𝑝
s1 (𝑥). Given s1 := (b, t) ∈ {0, 1}ℓ × [0..𝑝 − 1]ℓ , and number

𝑥 represented in base-𝑝 as (𝑥1, . . . , 𝑥ℓ) ∈ [0..𝑝 − 1]ℓ , output s2 :=
(s⊕

q
, sr) ∈ {0, 1}ℓ × [0..𝑝 − 1]ℓ defined by:

𝑠⊕
q, 𝑗 :=

[
(𝑥 𝑗 + 𝑡 𝑗) ÷ 𝑝

]
+ 𝑏 𝑗 mod 2

𝑠r, 𝑗 := 𝑥 𝑗 + 𝑡 𝑗 mod 𝑝

Rec
ℓ,𝑝
s1 (s2). Given s1 := (b, t) and s2 := (s⊕q , sr), both in {0, 1}ℓ ×

[0..𝑝−1]ℓ , output a number 𝑥 in base-𝑝 representation (𝑥1, . . . , 𝑥ℓ)
defined by:

𝑥 𝑗 :=

[
(−1)𝑏 𝑗 (𝑠⊕

q, 𝑗 − 𝑏 𝑗)
]
· 𝑝 + 𝑠r, 𝑗 − 𝑡 𝑗

(with arithmetic over the reals)

Figure 3: Secret sharing for numbers given in base-𝑝 repre-
sentation (𝑥1, . . . , 𝑥ℓ). We denote by “𝑢 ÷ 𝑝” and “𝑢 mod 𝑝” the
quotient and remainder in division of a number𝑢 by 𝑝 (where
numbers in base 𝑝 are interpreted as integers).

Gen
𝑛,𝑝 (). Output (k, s1) ←𝑅 [0..𝑝 − 1]𝑛+1 ×S1 (where entries of

k and s1 are indexed from 0 and 1, respectively).

Mac
𝑛,𝑝

k,s1
(𝑥).. Given a key (k, s1) ∈ [0..𝑝−1]𝑛+1×S1 and a number

in base-𝑝 representation (𝑥1, . . . , 𝑥𝑛) ∈ [0..𝑝 − 1]𝑛 , do:
(1) 𝑦 := 𝑘0 +

∑𝑛
𝑖=1 𝑘𝑖𝑥𝑖 and (𝑦q, 𝑦r) := (𝑦 ÷ 𝑝,𝑦 mod 𝑝)

(2) s2 ← Shr
ℓ,𝑝
s1 (𝑦q)

(3) Output tag := (s2, 𝑦r)

Vrf
𝑛,𝑝

k,s1
(𝑥, (s2, 𝑦r)).. Given a key (k, s1) ∈ [0..𝑝 − 1]𝑛+1 × S1, a

number in base-𝑝 representation (𝑥1, . . . , 𝑥𝑛) ∈ [0..𝑝 − 1]𝑛 , and a

tag (s2, 𝑦r) ∈ S2 × [0..𝑝 − 1], do:
(1) 𝑦q ← Rec

ℓ,𝑝
s1 (s2) and 𝑦 := 𝑦q · 𝑝 + 𝑦r

(2) 𝑦′ := 𝑘0 +
∑𝑛

𝑖=1 𝑘𝑖𝑥𝑖
(3) Output diff := 𝑦′ − 𝑦, interpreted as acc if diff = 0

Figure 4: MAC for numbers given in base-𝑝 representation
(𝑥1, . . . , 𝑥𝑛). The MAC employs (as a black box) a 2-out-of-2
perfect secret sharing scheme (Shrℓ,𝑝s1 ,Rec

ℓ,𝑝
s1) for [0..𝑝 − 1]ℓ ,

where ℓ :=

⌊
log𝑝 (𝑛𝑝2)

⌋
, that has a random 1st share in S1

and a uniform 2nd share in S2; e.g., the scheme specified in
Figure 3. We denote by “𝑢÷𝑝” and “𝑢 mod 𝑝” the quotient and
remainder in division of a number 𝑢 by 𝑝 (where numbers in
base 𝑝 are interpreted as integers).

Proof. The proof is straightforward from [8, Theorem 3.2]. □

Now, we are ready to present our MAC – see Figure 4.

Theorem 3.2 (MAC). For every positive integer 𝑛 and prime 𝑝 , the
scheme (Gen𝑛,𝑝 ,Mac

𝑛,𝑝 ,Vrf𝑛,𝑝) in Figure 4 satisfies the following.

• It is a 1

𝑝
-one-time unforgeable MAC.

• The tag is in S2 × [0..𝑝 − 1]. The tag’s size is 𝑂 (log2 (𝑛𝑝2)),
when instantiated with the secret sharing scheme of Figure 3.

1096

Message Authentication Code with Fast Verification over Encrypted Data and Applications Proceedings on Privacy Enhancing Technologies 2025(4)

• Vrf
𝑛,𝑝 evaluates a linear polynomial over the reals (in message

and tag as the unknowns).
• For every 𝑥1, 𝑥2 ∈ [0..𝑝 − 1]𝑛 it holds that:

{Mac
𝑛,𝑝

k,s1
(𝑥1)} (k,s1)←Gen

𝑛,𝑝 () ≡ {Mac
𝑛,𝑝

k,s1
(𝑥2)} (k,s1)←Gen

𝑛,𝑝 ()

Proof. The proof appears in Appendix C.1.2. □

Remark 3.3 (Extension to reals in fixed-point representa-

tion). The schemes in Figures 3-4 can be applied on any number
(𝑥1, . . . , 𝑥𝑛) in base-𝑝 representation, e.g., integers 𝑥 =

∑𝑛
𝑖=1 𝑥𝑖𝑝

𝑖−1;
real numbers in fixed-point precision 𝑥 = Δ−1 ·∑𝑛

𝑖=1 𝑥𝑖𝑝
𝑖−1 where the

scale Δ specified by the format. More generally, they can be applied
to any data (not necessarily a number) that is encoded to [0..𝑝 − 1]𝑛 .

Remark 3.4 (Amplification to negligible forging probabil-

ity). To guarantee that the forging probability is negligible in the
security parameter 𝜆, either set 𝑝 ≥ 2

𝜆 or execute 𝑘 := 𝜆/
⌈
log

2
𝑝
⌉

independent repetition (as detailed in Figure 10 in Appendix C.1.1).
The key generation in the amplified scheme is denoted by Gen(1𝜆).

3.2 HE-Friendliness of our MAC
In this section we first formally define HE-friendliness for MAC

schemes, and show that our MAC is HE-friendly. Next, we extend

the correctness and unforgeability definitions to verification over

encrypted data (HE-correctness and HE-unforgeability). We then

prove that our MAC is HE-correct. Finally we prove that our MAC

HE-unforgeable when evaluated with an HE scheme that is fully-

composable w.r.t its verification algorithm (cf. Definition 2.2).

We call a MAC HE-friendly, if its verification algorithm can be

homomorphically evaluated over encrypted message and tag.

Definition 3.5 (HE-friendly MAC). Let Q = (Gen,Mac,Vrf)
be a MAC for message space A; denote its tag space by Tgs. Let E be
a C-homomorphic public-key encryption scheme. We say that Q is
E-friendly, if

(1) Vrfk (·, ·) ∈ C for all keys k in the range of Gen, and
(2) A and Tgs are in the message space of E.

OurMAC (Figure 4, Remark 3.4) is friendly w.r.t.HE schemes that

support additive homomorphism over the reals, e.g., CKKS [21].

Proposition 3.1 (Our MAC is friendly). The MAC in Figure 4
is E-friendly w.r.t. any HE scheme E supporting additive homomor-
phism over the reals and whose message space contains the integers.

Proof. The proof follows from Theorem 3.2, where we prove

that Vrf evaluates a linear polynomial over the reals. □

The correctness of the MAC in homomorphic verification (HE-

correctness) is straightforward to define; moreover, it follows im-

mediately from the correctness of homomorphic computation. The

formal details appear in Appendix C.2.

Next, we extend the definition of (one-time) unforgeability to

the ciphertexts domain (HE-unforgeability). I.e., we define unforge-
ability in settings where the adversary submits message and tag in

encrypted form. The unforgeability requirement is that homomor-

phic verification decrypts to reject, whenever the messages and tag

are rejected in cleartext form.

Definition 3.6 (HE-unforgeability). LetQ = (MAC.Gen,Mac,Vrf)
be aMAC scheme formessage spaceA, and E = (HE.Gen, Enc,Dec, Eval)
a C-homomorphic public-key encryption scheme. We say that Q is
(one-time) E-unforgeable if for every ppt adversary A,

Pr[Mac-Forgeone-time
A,Q,E (𝜆) = 1] ≤ neg(𝜆)

where Mac-Forgeone-time
A,Q,E is the following extension of the experiment

described in Definition B.1:

The Mac-Forgeone-time
A,Q,E (𝜆) experiment.

(1) Keys k ← MAC.Gen(1𝜆) and (𝑝𝑘, 𝑠𝑘) ← HE.Gen(1𝜆) are
generated, and 𝑝𝑘 are given to A.

(2) A chooses amessagemsg
′ ∈ A, and is given tag′ ← Mack (msg

′).
(3) A outputs a pair ciphertexts (𝑐msg, 𝑐tag).
(4) The experiment’s output is 1 if-and-only-if:
• Dec𝑠𝑘 (𝑐msg) ≠ msg

′, and
• Dec𝑠𝑘

(
Eval𝑝𝑘 (Vrfk; 𝑐msg, 𝑐tag)

)
= acc.

Two remarks. First, the above definition easily extends to adver-

saries receiving arbitrarily many (msg
′, tag′) pairs (rather than a

single pair) in the standard way; in this case we denote the experi-

ment byMac-ForgeA,Q,E (𝜆). Second, the definition can easily be

adapted to concrete security settings, where the MAC initialize with

concrete (public) parameters pp rather than a security parameter.

We call such a scheme 𝜌-one-time HE-unforgeable, if for every ppt

adversary A, Pr[Mac-Forge
one-time

A,Q,E = 1] ≤ 𝜌 (cf. Remark B.2).

We show that unforgability in cleartext domain does not imply

unforgability in ciphertext domain. We remark that although we fo-

cus here on one-time MAC, the attack easily extends to adversaries

receiving arbitrarily many valid (msg
′, tag′) pairs.

Proposition 3.2 (Unforgability ≠⇒ HE-unforgeability).

For every CPA-secure HE scheme E, and every (E-friendly, one-time)
unforgeable MAC Q, there exists a CPA-secure HE scheme Ê and a
ppt adversary A s.t.:

Pr[Mac-Forgeone-time
A,Q,Ê

(𝜆) = 1] ≥ 1 − neg(𝜆)

Proof. The proof appears in Appendix C.2. □

In contrast, we prove that unforgeability impliesHE-unforgeability

if the HE scheme is fully composable w.r.t. {Vrf}. Looking ahead,
this result is essential for the security of our protocols.

Proposition 3.3 (Unforgability =⇒ HE-unforgeability,

if the HE is fully composable). For every HE scheme E and
E-friendly MAC scheme Q = (MAC.Gen,Mac,Vrf), if E is fully
composable w.r.t. {Vrf}, then unforgeablility of Q implies that it is
HE-unforgeable. Moreover, security does not deteriorate: if Q is 𝜌-
unforgeablility then it is 𝜌-HE-unforgeable.

Proof. The proof appears in Appendix C.2. □

HE-correctness and HE-unforgeability w.r.t. approximate HE. In
approximate HE schemes, like CKKS, the homomorphic computa-

tion preserves only the most significant digits, while corrupting

the lower digits with noise. To address this we scale up the in-

put, to ensure that the data content throughout the homomorphic

computation resides in the preserved digits; upon decryption, we

round the output to the preserved digits, and scale back down. This

1097

Proceedings on Privacy Enhancing Technologies 2025(4) Adi Akavia, Meir Goldenberg, Neta Oren, and Margarita Vald

ensures that HE-correctness and HE-unforgeability hold also in

approximate HE schemes, like in exact ones.

4 Applications of our MAC
Weutilize ourMAC as a central tool for authenticatingHE-encrypted

values received from a (possibly compromised) data keeper, who

is authorized to modify ciphertexts (but not the data). We present

two protocols, denoted oneSidedPriv and twoSidedPriv. Both proto-

cols guarantee privacy against the data consumer, and authenticity

against the data keeper; they differ w.r.t. the privacy guarantee

against the data keeper:

• oneSidedPriv: does not guarantee privacy against that data

keeper (cf. Section 1, Result 2).

• twoSidedPriv: guarantees privacy against the data keeper.

This protocol is an integration of our MAC with the protocol

of [8].

Both protocols are comprised of three phases: a trusted setup, store

and retrieve.

The entities in our protocols are denoted as follows: data produc-
ers are denoted dataProd, the data keeper is denoted dataKeeper,

the data consumer is denoted dataConsmr. In [8] these entities

are denoted data producers, auxiliary service and computing server
respectively.

As an optimization we employ (two, independent) PRFs (with

security against all ppt adversaries) to replace the uniform genera-

tion of the 1st share in Figure 3 and the MAC key in Figure 4. In

the following we first discuss the system architecture within which

our protocols are intended to be executed, and then provide the

details of the protocols and their properties.

System architecture and protocol flow. Similarly to [8], our

protocol is intended to be executedwithin a larger system, including:

applications requesting the computation over encrypted data and

a persistent storage resource. The keys used in the protocols are

generated by a trusted setup during a preliminary execution phase,

and are then distributed to the relevant entities (as specified in

Figures 5 and 6).

The store protocol is initiated by a data producer dataProd with

input (𝑖𝑛𝑑𝑒𝑥, 𝑥), and terminates with authenticated data uploaded

to storage (in twoSidedPriv: authenticated and encrypted).

The retrieve protocol (cf. Figure 7) is initiated by a request from

an application specifying the data location 𝑖𝑛𝑑𝑒𝑥 to compute on

and the requested computation. Both dataKeeper and dataConsmr

hold the HE public key associated with the application; in addi-

tion, dataConsmr holds the PRF key (keys, in twoSidedPriv) asso-

ciated with the data at 𝑖𝑛𝑑𝑒𝑥 . The retrieve protocol terminates with

dataConsmr holding HE ciphertexts for the requested data as well

as one extra ciphertexts 𝑐𝜎 that decrypts to acc if-and-only-if all

that data verifies (rej otherwise). Subsequently, dataConsmr exe-

cutes the requested homomorphic computation on the retrieved

ciphertexts for the data, and sends to the application the outcome

ciphertext 𝑐res together with 𝑐𝜎 . The application accepts 𝑐res only if

𝑐𝜎 decrypts to acc.

For simplicity, we present the protocols w.r.t a single 𝑖𝑛𝑑𝑒𝑥 and

HE key. More generally, the application can specify a vector of

indices together with a batching pattern of which data items should

be packed in each ciphertext for further homomorphic computation

in a single-instruction-multiple-data (SIMD) fashion. Moreover, the

application can specify theHE key identifier indicating under which

public key the retrieval and computation should be executed.

Description of the oneSidedPriv protocol (cf. Figure 5). The
trusted setup phase entails sampling HE keys (𝑝𝑘, 𝑠𝑘) and a PRF

key; providing 𝑝𝑘 to dataConsmr and dataKeeper; and the PRF key

to dataProd and dataConsmr (the secret key 𝑠𝑘 is only accessible

to authorized applications). In store, dataProd derives a MAC key

k← 𝑃𝑅𝐹 (𝑖𝑛𝑑𝑒𝑥) and tag← Mack (𝑥), and uploads (𝑖𝑛𝑑𝑒𝑥, 𝑥, tag)
to storage. In retrieve, dataKeeper fetches (𝑖𝑛𝑑𝑒𝑥, 𝑥, tag) from stor-

age, HE-encrypts 𝑥 and tag, and sends the ciphertexts 𝑐𝑥 and 𝑐tag
to dataConsmr; dataConsmr performs homomorphic verification

over encrypted data and tag to obtain the encrypted authenticity in-

dicator 𝑐𝜎 ← Eval𝑝𝑘 (Vrf; 𝑐𝑥 , 𝑐tag). If the HE is not fully composable

w.r.t Vrf, dataConsmr bootstraps 𝑐𝑥 , 𝑐tag prior to Eval.

Description of the twoSidedPriv protocol (cf. Figure 6). The
protocol is similar, but more involved.

The trusted setup entails sampling the HE keys (𝑝𝑘, 𝑠𝑘) and two
independent PRFs, denoted 𝑓 , 𝑔; providing 𝑝𝑘 to dataConsmr and

dataKeeper; and the two PRFs to dataProd and dataConsmr (the

secret key 𝑠𝑘 is only accessible to authorized applications).

In store, dataProd encrypts the data using the symmetric cipher

based on secret sharing specified below; computes an authentic-

ity tag for that ciphertext; and uploads the ciphertext and tag to

storage. The symmetric cipher is a HE-friendly 2-out-of-2 secret

sharing scheme with a pseudo-random 1st share 𝑠1 ← 𝑓 (𝑖𝑛𝑑𝑒𝑥)
(the symmetric key), and a 2nd share 𝑠2 ← Shr𝑠1 (𝑥) derived from

the data and the 1st share (the symmetric ciphertext). The mac

key and tag are k← 𝑔(𝑖𝑛𝑑𝑒𝑥) and tag← Mack (𝑠2), respectively;
uploading to storage (𝑖𝑛𝑑𝑒𝑥, 𝑠2, tag).

In retrieve, dataKeeper fetches (𝑖𝑛𝑑𝑒𝑥, 𝑠2, tag) from storage, HE-

encrypts 𝑠2 and tag, and sends the ciphertexts 𝑐2, 𝑐tag to dataConsmr.

dataConsmr derives the keys 𝑠1 and k using the PRFs; performs

homomorphic verification 𝑐𝜎 ← Eval𝑝𝑘 (Vrf; 𝑐2, 𝑐tag) and homomor-

phic reconstruction 𝑐𝑥 ← Eval𝑝𝑘 (Rec𝑠1 ; 𝑐2). If the HE is not fully

composable w.r.t. {Vrf,Rec}, dataConsmr bootstraps 𝑐2, 𝑐tag prior

to Eval.

Threat model and security guarantee. The threat model con-

sists of honest dataProd; dataKeeper that may be compromised

by a ppt adversary mounting any attack strategy (aka, malicious);

dataConsmr that may be compromised by a ppt adversary that

follows the protocol specification (aka, semi-honest). The adversary

cannot control both dataKeeper and dataConsmr simultaneously

(two-server model). Capturing malicious dataConsmr is discussed

in Remark D.4.

Theorem 4.1. The oneSidedPriv protocol (cf. Figure 5), for every
input (𝑖𝑛𝑑𝑒𝑥, 𝑥) ∈ {0, 1}∗ × A and the corresponding output (𝑐𝑥 , 𝑐𝜎),
satisfies the following w.r.t. the keys (𝑝𝑘, 𝑠𝑘) and 𝑧 generated in its
trusted setup phase:

ppt & Correct. dataConsmr, dataKeeper and the party execut-
ing the trusted setup are all ppt, and

Pr[Dec𝑠𝑘 (𝑐𝑥 , 𝑐𝜎) = (𝑥, acc)] ≥ 1 − neg(𝜆)
Private. For every ppt dataConsmr

∗, ppt distinguisher D who
chooses 𝑖𝑛𝑑𝑒𝑥 and 𝑥0, 𝑥1 ∈ A s.t. |𝑥0 | = |𝑥1 |, and denoting

1098

Message Authentication Code with Fast Verification over Encrypted Data and Applications Proceedings on Privacy Enhancing Technologies 2025(4)

by view(𝑥𝑖) the input, randomness and messages received by
dataConsmr

∗ in the protocol, the following holds:��
Pr[D(view(𝑥0) = 1] − Pr[D(view(𝑥1) = 1]

�� ≤ neg(𝜆)

Sound. For every ppt dataKeeper∗ and every 𝑥 ′ ≠ 𝑥 ,

Pr[Dec𝑠𝑘 (𝑐𝑥 , 𝑐𝜎) = (𝑥 ′, acc)] ≤ neg(𝜆)

Theorem 4.2. The twoSidedPriv protocol (cf. Figure 6 is ppt, cor-
rect and sound as specified in Theorem 4.1, as well as:

Private. For every ppt 𝑃∗ ∈ {dataConsmr
∗, dataKeeper∗}, ppt

distinguisher D who chooses 𝑖𝑛𝑑𝑒𝑥 and 𝑥0, 𝑥1 ∈ A s.t. |𝑥0 | =
|𝑥1 |, and denoting by view𝑃∗ (𝑥𝑖) the input, randomness and
messages received by 𝑃∗ in the protocol, the following holds:��

Pr[D(view𝑃∗ (𝑥0) = 1] − Pr[D(view𝑃∗ (𝑥1) = 1]
�� ≤ neg(𝜆)

Remark 4.3 (Optimization: a single authenticity indicator

in retrieval of multiple data items). For simplicity, we have pre-
sented our protocols w.r.t. retrieving a HE-ciphertext for a single data
item. More generally, dataConsmr can retrieve HE-ciphertexts for
multiple data items stored by dataProd. In this case, to minimize the
work load of the entity obtaining the (encrypted) authenticity indica-
tor, our protocol compresses all authenticity indicators 𝑐𝜎1 , 𝑐𝜎2 , . . . to a
single indicator: 𝑐𝜎 =

∑
𝑖 𝑐

2

𝜎𝑖
. We note thatDec𝑠𝑘 (𝑐𝜎) = 0 (interpreted

as acc) if-and-only-if Dec𝑠𝑘 (𝑐𝜎𝑖) = 0 for all 𝑖 .

Remark 4.4 (Generic protocols). The protocol in Figure 5 (re-
spectively, Fig. 6) is generic: it can be instantiated with any HE and
MAC (resp., HE, MAC and secret sharing) satisfying the requirement
specified there. The protocols can be instantiated, for example, with:
• Any HE that supports additive homomorphism over the reals
and is fully composable w.r.t {Vrf} (resp., {Rec,Vrf}) together
with our MAC specified in Figure 4 (resp. our MAC and secret
sharing scheme of Figure 3).
• Any HE that supports additive homomorphism over Z𝑛𝑝 and is
fully composable w.r.t {Vrf} (resp., {Rec,Vrf}), together with
the classic MAC for Z𝑛𝑝 specified in Figure 2 (resp. together with
that MAC and the classic 2-out-of-2 additive secret sharing
scheme (Shr, Rec) for Z𝑛𝑝 defined by (𝑠1, 𝑠2) ← Shr(𝑥) for
uniformly random s1 ∈ Z𝑛𝑝 and s2 := x − s1 mod 𝑝 , and
s1 + s2 mod 𝑝 ← Rec(s1, s2)).

5 Empirical Evaluation
We implemented the MAC (Fig. 4), secret sharing (Fig. 3) and the

protocols oneSidedPriv and twoSidedPriv (cf. Section 4) into a sys-

tem named authCSHER, supporting authenticated Compact Storage
with HE-Retrieval. We mounted authCSHER on AWS EC2 com-

puting instances using S3 buckets for storage, and ran extensive

experiments to test its performance and scalability, using a compre-

hensive set of benchmarks for real-world scenarios. In the following

we present implementation details (Section 5.1), experimental setup

(Section 5.2) and results (Section 5.3).

5.1 The Implemented System

Software. For the HE scheme we use CKKS [21] implementation in

Microsoft SEAL version 4.1.1 [46]. The PRF is based on HKDF with

SHA-512 using Crypto++ version 8.9.0. HKDF keys are kept in cache

Common parameters: HE E = (HE.Gen, Enc,Dec, Eval) and
MAC Q = (MAC.Gen,Mac,Vrf) s.t. Q is E-friendly and E is

fully composable w.r.t Vrf, C-homomorphic, and CPA-secure. A

PRF {𝑓𝑧 : {0, 1}∗ → K}𝑧∈{0,1}𝜆 .
Parties: dataProd, dataConsmr and dataKeeper.

Trusted setup: Sample independent keys (𝑝𝑘, 𝑠𝑘) ←
HE.Gen(1𝜆) and 𝑧 ←𝑅 {0, 1}𝜆 . Give 𝑝𝑘 to dataConsmr

and dataKeeper; and 𝑓𝑧 to dataProd and dataConsmr.

Storage: store is executed by dataProd on input (𝑖𝑛𝑑𝑒𝑥, 𝑥) ∈
{0, 1}∗ × A, as follows.

(1) Compute k← 𝑓𝑧 (𝑖𝑛𝑑𝑒𝑥)
(2) Compute tag← Mack (𝑥)
(3) Upload to storage (𝑖𝑛𝑑𝑒𝑥, 𝑥, tag) with access authorized to

dataKeeper

Retrieval: retrieve is executed by dataConsmr and dataKeeper,

where dataConsmr has input 𝑖𝑛𝑑𝑒𝑥 (dataKeeper has no input),

as follows.

(1) dataConsmr sends 𝑖𝑛𝑑𝑒𝑥 to dataKeeper;

(2) dataKeeper does the following:

(a) Downloads from storage (𝑖𝑛𝑑𝑒𝑥, 𝑥, tag),
(b) Compute 𝑐𝑥 ← Enc𝑝𝑘 (𝑥) and 𝑐tag ← Enc𝑝𝑘 (tag)
(c) Send (𝑐𝑥 , 𝑐tag) to dataConsmr;

(3) dataConsmr computes k ← 𝑓𝑧 (𝑖𝑛𝑑𝑒𝑥) and 𝑐𝜎 ←
Eval𝑝𝑘 (Vrfk; 𝑐𝑥 , 𝑐tag), and outputs (𝑐𝑥 , 𝑐𝜎)

Figure 5: The oneSidedPriv protocol.

memory of the relevant parties and are reused across executions of

the protocol. The system is implemented in C++17, compiled with

g++ version 11.4.0 on Ubuntu 22.04 flavored machines.

Hardware. Experiments are executed on AWS EC2 computing

instances using an AWS S3 buckets storage. For each of the en-

tities dataProd, dataKeeper, dataConsmr we allocated a separate

machine, all under the same AWS subnet. The dataKeeper and

dataConsmr communicate via TCP/IP socket. Data is stored in a

single S3 bucket, in the same AWS region as the EC2 machines.

The EC2 instances are of type m5.2xlarge with 8 Intel(R) Xeon(R)

Platinum 8175M 2.5GHz CPUs, 32GB RAM and up to 10Gbps of

network bandwidth.

Parallel processing. Our implementation for the data producer

dataProd and the data keeper dataKeeper entities is single threaded.

The data consumer dataConsmr uses two threads, one for receiving

data from dataKeeper and one for processing it.

oneSidedPriv vs. twoSidedPriv execution modes. Our system
can be executed in either oneSidedPriv of twoSidedPriv mode (cf.

Section 4). In oneSidedPriv mode, dataProd uploads to storage au-

thenticated data in cleartext. In twoSidedPriv mode, dataProd first

encrypts the data (using a symmetric cipher based on the secret

sharing scheme), and uploads authenticated ciphertexts; these ci-

phertexts are securely transciphered to HE during retrieval.

Unbatched vs. batched execution modes. Our tag generation

algorithm (Mac) can be executed on a varying number of data items

1099

Proceedings on Privacy Enhancing Technologies 2025(4) Adi Akavia, Meir Goldenberg, Neta Oren, and Margarita Vald

Common parameters: A C-homomorphic CPA-secure HE

scheme E = (HE.Gen, Enc,Dec, Eval) that is fully composable

w.r.t the reconstruction and verification algorithms {Rec,Vrf}
of the secret-sharing and MAC schemes specified next. An E-
friendly 2-out-of-2 secret sharing scheme S = (Shr𝑠1 ,Rec𝑠1)
for a domain A with a random 1st share 𝑠1 ∈ S1 and a uni-

form 2nd share 𝑠2 ∈ S2 (cf. Definition 2.3). An E-friendly
MAC Q = (MAC.Gen,Mac,Vrf) for message space S2. PRFs
{𝑓𝑧 : {0, 1}∗ → S1}𝑧∈{0,1}𝜆 and {𝑔𝑧 : {0, 1}∗ → K}𝑧∈{0,1}𝜆 .
Parties: dataProd, dataConsmr and dataKeeper.

Trusted setup: Sample independent keys (𝑝𝑘, 𝑠𝑘) ←
HE.Gen(1𝜆) and 𝑧, 𝑧′ ←𝑅 {0, 1}𝜆 . Give 𝑝𝑘 to dataConsmr

and dataKeeper; and 𝑓𝑧 and 𝑔𝑧′ to dataProd and dataConsmr.

Storage: store is executed by dataProd on input (𝑖𝑛𝑑𝑒𝑥, 𝑥) ∈
{0, 1}∗ × A, as follows.

(1) Compute 𝑠1 ← 𝑓𝑧 (𝑖𝑛𝑑𝑒𝑥) and k← 𝑔𝑧′ (𝑖𝑛𝑑𝑒𝑥)
(2) Compute 𝑠2 ← Shr𝑠1 (𝑥) and tag← Mack (𝑠2)
(3) Upload to storage (𝑖𝑛𝑑𝑒𝑥, 𝑠2, tag) with access authorized

to dataKeeper

Retrieval: retrieve is executed by dataConsmr and dataKeeper,

where dataConsmr has input 𝑖𝑛𝑑𝑒𝑥 (dataKeeper has no input):

(1) dataConsmr computes 𝑠1 ← 𝑓𝑧 (𝑖𝑛𝑑𝑒𝑥), k ← 𝑔𝑧′ (𝑖𝑛𝑑𝑒𝑥),
and sends 𝑖𝑛𝑑𝑒𝑥 to dataKeeper

(2) dataKeeper does the following:

(a) Download from storage (𝑖𝑛𝑑𝑒𝑥, 𝑠2, tag)
(b) Compute 𝑐2 ← Enc𝑝𝑘 (𝑠2), 𝑐tag ← Enc𝑝𝑘 (tag)
(c) Send (𝑐2, 𝑐tag) to dataConsmr

(3) dataConsmr computes 𝑐 ← Eval𝑝𝑘 (Rec𝑠1 ; 𝑐2) and 𝑐𝜎 ←
Eval𝑝𝑘 (Vrfk; 𝑐2, 𝑐tag), and output (𝑐, 𝑐𝜎)

Figure 6: The twoSidedPriv protocol.

𝑛 (for 𝑛 the parameter used in our MAC, Fig. 4). When the tag is

computed for the data items one-by-one, i.e., setting 𝑛 = 1, we call

the execution unbatched. When a tag is computed for each batch

of 𝑛 > 1 data items, we call the execution batched. We note that in

unbatched mode, retrieve includes the optimization described in

Remark 4.3 for authenticity indicator aggregation.

Parameters. We instantiate our system with the following param-

eters for our MAC and for the CKKS HE. Our MAC is set to at

least 64-bits information-theoretic security (following the recom-

mendations for universal hashing based MAC from RFC 4418 [36]),

using amplification (cf. Remark 3.4): in unbatched mode, we employ

18-bit prime 𝑝 and perform 4 independent repetition of our MAC,

whereas in batched mode, we employ 12-bits prime 𝑝 and perform 6

MAC repetitions, achieving in both cases 72-bits statistical security.

The values for 𝑝 were set as to provide sufficiently high precision in

all our experiments. We note that the choice of 𝑝 does not limit the

input space, as inputs can be represented in base-𝑝 for any 𝑝 ≥ 2.

The CKKS parameters are set to 128-bits security parameter, cyclo-

tomic polynomial of degree 32768, with 60-bits of precision for the

plaintext moduli at each level of homomorphic computation with

(60, 60, 60, 60) in batched mode, and (60, 60, 60, 60, 60) in unbatched

mode). We note that we set the precision to be sufficiently large so

that the noise introduced by CKKS does not influence the integral

part of the computed value. The number of slots for data items that

can be packed in each ciphertext, denoted slots, is half the degree

of the cyclotomic polynomial.

Optimizations and complexity of our system. The implementa-

tion of our system performs storage and communication optimiza-

tions as described in Appendix D.2.

Treatment of non fully-composable HE. Our experimental re-

sults executed using the SEAL HE library are under the heuristic as-

sumption that CKKS is fully-composablew.r.t. {Vrf} in oneSidedPriv
protocol ({Vrf,Rec} in twoSidedPriv). In the following we denote

this by Composability heuristic.

In case Composability does not hold, we bootstrap the cipher-

texts given as input to Eval(Vrf; ·, ·) (resp., Eval(Rec; ·, ·)) prior to
their homomorphic evaluation; this guarantees full composability

w.r.t Vrf (resp., Rec,Vrf) by [41].

For bootstrapping we utilize the openFHE library [11] CKKS im-

plementation (because SEAL does not currently support bootstrap-

ping for CKKS). We implemented, in openFHE, our oneSidedPriv

pipeline entailing encrypting with CKKS the (message,tag) pair

uploaded by dataProd, bootstrapping the ciphertexts, and then per-

forming homomorphic tag verification. with 2
17
cyclotomic polyno-

mial and 64K slots available. We executed this implementation in

AWS c5.18xlarge instance. The runtime to encode, encrypt and boot-

strap one ciphertext with 2
16
data slots, was under 38.33𝑠 (amortized,

per data item, runtime of 0.58𝑚𝑠).

5.2 The Experimental Setup

Data.We ran our system for storing and HE-retrieving up to 2M

data items. Our experiments are executed with four different num-

bers of data items: 16384, 98304, 507904 and 2031616. Each data

item is synthetically generated, from the domain [0..𝑝 − 1] (for
𝑝 the parameter with which we execute our MAC, cf. Figure 4),

represented as double-precision numbers according to the IEEE 754

standard [2].

Experiments executing our system. We executed our system in

both oneSidedPriv and twoSidedPrivmodes; and in both unbatched

and batched modes. Each experiment is repeated 10 times, taking

the average. We ran both end-to-end and microbenchmarks experi-

ments. We measured storage size, runtime and communication.

EtM baseline experiments. For comparison purposes we imple-

mented the EtM solution, where dataProd uploads (compressed)

authenticated HE ciphertexts, and dataConsmr verifies ciphertexts

authenticity at retrieval. We use HMAC with SHA-256 for authen-

tication, and Zstandard library for compression. We executed this

EtM baseline in the same AWS with S3 bucket computing environ-

ment as our system; employing the same CKKS Microsoft SEAL

implementation for the HE scheme, as in our system, and with

the same parameters. Performance is evaluated in both unbatched

and batched modes, corresponding to the unbatched and batched

experiments on our system. In unbatched mode, we place a single

data item in each HMACed ciphertext; in batched mode, slots data

items are packed in each HMACed ciphertext.

1100

Message Authentication Code with Fast Verification over Encrypted Data and Applications Proceedings on Privacy Enhancing Technologies 2025(4)

Figure 7: System architecture for oneSidedPriv retrieve protocol

Comparing our system to other solutions.We compare our sys-

tem against the four following alternative solutions: (1) [20]’s data

authenticity proof component, which offers the same authenticity

and privacy guarantee as when executing our system in oneSid-

edPriv mode. (2) [8]’s compact storage with HE-retrieval system,

which offers the same privacy guarantee as when executing our

system in twoSidedPriv mode, but provides no authenticity guar-

antee. (3) The Encrypt-then-MAC (EtM) approach of storing and

downloading authenticated data directly in HE-encrypted form. (4)

[3]’s authenticated transciphering from AES-GCM to CKKS, which

offers authenticity and privacy guarantee as when executing our

system in twoSidedPriv mode (see Table 5 and Paragraph 5.3). For

the EtM, we executed experiments to measure performance. For

the other three we report figures from their publications [3, 8, 20].

5.3 Results

Performance of our MAC (cf. Section 1, Result 1). The per-
formance of our MAC scheme is as follows, when reporting amor-

tized performance, per data item (derived from an execution over

2,031,616 data items). Key generation plus tag generation takes

1.17𝜇𝑠 in batched mode (10.03𝜇𝑠 in unbatched mode). Key gener-

ation plus homomorphic verification takes, under Composability

heuristic, 7.37𝜇𝑠 in batched mode (20.11𝜇𝑠 in unbatched mode). Oth-

erwise, verification takes 0.33𝑚𝑠 and 4.68𝑚𝑠 in batch and unbatched

mode, respectively. We note that key generation, in the unbatched

mode, was conducted item-by-item using HMAC – which takes the

bulk of the runtime; in batched mode, key generation is computed

in bulk, using HKDF, which is considerably faster. The tag size is

smaller than 1 byte in batched mode (32 bytes in unbatched mode).

Performance of our system in oneSidedPriv mode and com-
parison to [20] (cf. Section 1, Result 2). The generation of our

authenticity proof for encrypted data consists of encrypting, with

HE, the (cleartext) tag that was uploaded by dataProd. Verification

consists of homomorphic tag verification. We report amortized per-

formance, per data item, derived from an execution over 2,031,616

data items. Under Composability heuristic, proof generation time,

verification time and proof size are 0.21𝜇𝑠 , 7.36𝜇𝑠 and 13.94 bytes,

respectively, in batched mode (14.01𝜇𝑠 , 20.10𝜇𝑠 and 1024 bytes, re-

spectively, in unbatched mode). In case Composability does not

hold, proof size and generation time are unchanged; whereas veri-

fication time becomes 0.92𝑚𝑠 and 5.26𝑚𝑠 in batch and unbatched

mode, respectively.

We compare the performance of our authenticity proof to [20]

(where both ours and [20] are in batched mode). Performance are

those reported in their usecase that is closest to ours in terms of the

encryption parameters (cf. location based activity tracking there).

We note that the performance of [20] reported here, incorporates all

their proposed optimizations, including their batching optimizations
and Random Integrity Checks; the latter entails verifying authentic-

ity only on a random subset of data points, which protects against

covert adversaries – i.e., weaker than the malicious adversary ad-

dressed in our solution. [20] provides another solution that does

protect against malicious adversaries, albeit with a performance

penalty (i.e., larger proof size and proof and verification times).

In terms of proof generation time, we demonstrate a significant

improvement over [20], with a reduction in generation time of

more than four orders of magnitude; concretely, 1.37𝜇𝑠 in ours solu-

tion vs. 6.1×104𝜇𝑠 in theirs. Verification time also follows a similar

trend, with our implementations requiring 7.36𝜇𝑠 (0.092·104𝜇𝑠 if
Composability does not hold), compared to 3.2×104𝜇𝑠 . Our system
has a significantly lower proof size requiring 13.94 bytes per data

item whereas [20] requires approximately 1.65 · 105 bytes per data
item. See Table 1.

Performance of our system in twoSidedPriv mode and com-
parison to [8], EtM and [3]. Our system’s amortized perfor-

mance per data item, in an execution with 2M data items in batched

mode (i.e., one tag) is: 8.43 bytes storage, 1.66𝜇s store time, and

1101

Proceedings on Privacy Enhancing Technologies 2025(4) Adi Akavia, Meir Goldenberg, Neta Oren, and Margarita Vald

Polynomial Modulus Proof generation Verify time Proof size
Ring log q time (𝜇𝑠) (𝜇𝑠) (bytes)

Chatel et al. [20] 2
13

184 6.1 ×104 3.2 ×104 1.65 ×105
Ours (Batched) 2

15
240 0.21 7.36 13.94

Table 1: Comparison of Our vs. [20] authenticity proof. The proofs are over batched data, with batch sizes of 16K and 2K data
items in Our and [20] respectively. The table reports time and size performance amortized per data item. Our reported Verify
time assumes Composability (otherwise, we bootstrap data and tag, which increases the amortized verification runtime to
0.09×104𝜇𝑠 (the proof size and its generation time are not affected).

8.3𝜇s retrieve time under Composability heuristic (1.5𝑚𝑠 other-

wise); cf. Table 2, Batched. In unbatched mode with 2M data items

and 2M tags, our system’s amortized performance per data item is:

40bytes storage, 10.91𝜇s store time, and 28.91𝜇s retrieve time under

Composability heuristic (5.85𝑚𝑠 otherwise); cf. Table 2, Unbatched.

Microbenchmarks detailing are reported in Tables 3-4.

Comparison to [8]. Table 6 presents a detailed comparison be-

tween the unauthenticated solution [8, Tables 2 and 4]), called

CSHER, and our authenticated solution (with figures derived from

our Table 4), under Composability heuristic. In high level, our

batched solution demonstrates superiority over CSHER in most

metrics, whereas the overhead introduced by the MAC per-item is

more evident in our unbatched solution. In terms of storage size,
our batched solution offers a slight advantage over CSHER, likely

due to minor implementation differences. However, our unbatched

mode requires larger storage to accommodate the MAC repetitions

per item necessary to achieve the target statistical security. The

store runtime of our batched solution is 1.5×-slower than CSHER

in batched mode (10×, in unbatched mode) due to the tag computa-

tion. Retrieve times for both our batched and unbatched solutions

benefit significantly from parallel execution, as outlined in Section

5.1 and the optimizations detailed in Appendix D.2. Despite requir-

ing MAC repetitions, our batched mode (four MAC repetitions),

achieves performance comparable to CSHER, and our unbatched

mode (six MAC repetitions) is within a factor of three and a half

compared to CSHER. Communication in our batched mode, is 20%

larger than CSHER (7.5× larger, in unbatched mode). Notably, the

communication time in our batched mode is 33% faster thanCSHER

(and only 3.58× slower, in unbatched mode). This improvement is

primarily due to the use of TCP sockets and parallel processing

in our implementation, in contrast to the single-threaded HTTP

communication utilized by CSHER. Crucially, our solution provides

data integrity which is absent in CSHER.

Comparison to EtM. The comparison (cf. Table 2 and Figure 8)

to the EtM baseline shows that, under Composability heuristic,

our system offers a substantial improvement in storage size with a

minor degradation in runtime:

• Compact storage size: 11× better than the baseline in batched

mode, and 5.2·104× better in unbatched mode.

• Fast end-to-end store-then-retrieve runtime: only 2× slower
than the baseline in batched mode, and 2.3·103× faster than

the unbatched baseline time.

In further details, our storage runtime and size are always faster

and smaller than the EtM baseline. Our retrieval runtime is faster

than the baseline in batched mode, but slower in unbatched mode.

Essentially, our storage is faster because we store items of double

datatype (rather than encrypting and storing HE ciphertexts in

the baseline); whereas our retrieval is slower because it includes

HE encryption, as well as homomorphic evaluation of Vrf and

Rec (rather than fetching from storage previously encrypted HE

ciphertexts in the baseline).

Comparison to [3]. Table 5 presents the comparison to Aharoni et

al. [3]’s transciphering from AES-GCM-128 to CKKS. The compari-

son shows that our system offers runtime improvement and signif-

icant monetary savings, albeit the two-server model. Concretely,

[3] are running on an A100 SXM4 80GB GPU with 6912 CUDA

cores hardware compared to our much cheaper and commonly

used c5.18xlarge hardware (M5.2xlarge in our experiments under

Composability heuristic). Their runtime per 8-bytes data item is 6.5

milliseconds (cf. 1.5𝑚𝑠 in our experiment on c5.18xlarge that include

bootstrapping to guarantee that Composability holds), i.e., 4.33×
slower than our runtime with bootstrapping (7,386× slower than
our runtime when executing our system under the Composability

heuristic). In terms of monetary cost –the product of hardware

cost times runtime– we achieve a 55× cost reduction compared to

Aharoni et al. [3] by our solution that includes bootstrapping (and

nearly 10
5× reduction in cost by our solution executed under the

Composability heuristic).

Monetary cost. We illustrate in Figure 9 the monetary implica-

tions of using our solution compared to the EtM baseline, in batched

and unbatched setting respectively, by extrapolating our empiri-

cal measurements to massive amounts of data. We rely on AWS

pricing [1] for M5.2xlarge EC2 machine and S3 bucket as used in

our system ($0.384 per computing hour, and $0.021 for 1GB storage

per month). Consider a data lake of 25PB of data. AWS storage

cost for our batched solution is approximately $0.55M per month;

so our solution saves roughly $5.45M per month in storage costs

compared to the baseline solution of directly storingHE ciphertexts.

Moreover, even if the data is stored unbatched our solution saves

roughly $3.25M per month in storage costs compared to the base-

line solution. Furthermore, even when accounting for the overhead

in HE-retrieval compared to directly retrieving HE ciphertexts –

our solution is cost effective for HE-retrieval of almost 10
16
data

items in batched mode per month if bootstrapping is not required

and 10
13

with bootstrapping. Furthermore, even for data in the

unbatched mode our solution outperforms the batched baseline

cost up to 10
14

without bootstrapping and 10
12

if bootstrapping

is required. This is because, initially, the storage cost dominates

the overall cost – and so, our solution offers substantial savings;

but, gradually, the runtime cost becomes the dominating factor

1102

Message Authentication Code with Fast Verification over Encrypted Data and Applications Proceedings on Privacy Enhancing Technologies 2025(4)

Batched Unbatched
Storage size Runtime (𝜇s) Storage size Runtime (𝜇s)

(bytes) Store Retrieve (bytes) Store Retrieve

EtM Baseline 96.01 3.29 1.48 2,097,514.16 59,205.02 33,300.46
Ours 8.43 1.66 8.30 40.00 10.91 28.91

Table 2: Runtime time (microseconds) and storage (bytes) per data item, in execution on 2031616 data items

Data Producer Data Keeper Data Consumer Communication
Benchmark Share + Upload Download Encrypt Serialize Desrialize Derive Reconstruct Square Time Size
Operations MAC and Verify diff (bytes)
Step # 1, 2 3 2a 2b – – 3 3 4.3 2c 2c

Table 3: Microbenchmarks mapping to steps in the protocol as specified in Figure 6

Data Producer Data Keeper Data Consumer Comm.
Benchmark Share + Upload Download Encrypt Serialize Deserialize Derive Reconstruct Square Time Size
Operations MAC Data Data and Verify diff (bytes)
Ours (Batched) 1.32 0.34 0.16 3.08 0.46 0.12 1.29 7.02 0.07 206

Ours (Unbatched) 10.21 0.69 0.73 17.50 2.94 0.76 8.85 12.60 4.76 0.43 1279

Table 4: Microbenchmarks. Runtime(𝜇s), storage(bytes) and communication per data item, in execution on 2031616 data items

16,384 98,304 507,904 2,031,616
number of data items

0

25

50

75

100

125

150

175

200

sto
ra

ge
 (M

B)

0.971.50 1.599.00 4.72

46.51

16.34

186.02Our Batched Storage
Baseline Batched Storage

16,384 98,304 507,904 2,031,616
number of data items

0

5

10

15

20

tim
e (

s)

1.69
0.29

2.37
0.63

6.12

2.59

20.25

9.71

Our Batched Store
Our Batched Retrieve
Baseline Batched Store
Baseline Batched Retrieve

Figure 8: Storage and runtime of our solution vs. EtM baseline on varying batch sizes

Storage (bytes) Runtime (𝑚s) Hardware Spec (Cores\Memory) Cost (USD×10−6)
Aharoni et al. [3] 8.000 6.500 GPU 6912 CUDA\80GB 73.830

Ours (Batched) 8.430 0.001 CPU 8 vCPUs\32 GB 0.001

Ours + bootstrap (Batched) 8.430 1.500 CPU 72 vCPUs\144 GB 1.500

Table 5: Comparison of Ours vs. Aharoni et al. [3]. Performance is amortized per 8-byte data item. [3] transcipher from AES-
GCM-128 to CKKS with batched authentication. Our reported runtime include bootstrapping (under Composability heuristic
our runtime is 0.0083𝑚𝑠).

(as storage is constant in our experiment, whereas the runtime is

linearly increasing in the number of retrieved data items), leading

to a linear cost overhead in our solution.

HE-Retrieve then HE-Eval Decision Tree. As an application

example, we applied homomorphic evaluation of a decision trees

prediction on the retrieved ciphertexts. That is, dataConsmr ho-

momorphically verified the authenticity of the retrieved secret

1103

Proceedings on Privacy Enhancing Technologies 2025(4) Adi Akavia, Meir Goldenberg, Neta Oren, and Margarita Vald

0 5 10 15 20 25
log10(#retrieved data items)

6

8

10

12

14

16

18

log
10

(U
SD

 co
st)

Our Batched Solution without Bootstrapping
Our Batched Solution with Bootstrapping
Baseline Batched Solution

0 5 10 15 20 25
log10(#retrieved data items)

6

8

10

12

14

16

18

20

log
10

(U
SD

 co
st)

Our Unbatched Solution without Bootstrapping
Our Unbatched Solution with Bootstrapping
Baseline Unbatched Solution

Figure 9: AWS cost (USD) for storing 25PB and retrieving up to 10
25 data items, in log-log scale.

Storage Size Runtime (𝜇s) Communication Integrity
(bytes) Store Retrieve Time (𝜇s) Size (bytes)

Akavia et al. [8] 8.25 0.98 8.76 0.12 170.83 ×
Ours (Batched) 8.43 1.66 8.30 0.08 206.04

✓
Ours (Unbatched) 40.00 10.91 28.91 0.43 1279.77

Table 6: Comparison of Ours vs. Akavia et al. [8]. Figures are amortized per data item, in execution on 2031616 data items.

shared, homomorphically reconstructed the data from them, and

then homomorphically evaluated a decision tree model on that

data. We utilized for the latter the homomorphic decision tree eval-

uation algorithm from [7], using the open source code from [25],

executed with their degree 8 polynomial approximating the step

function (aka, soft-if, their), on (full) decision trees of depth 3 and

4. The tree is evaluating on 16,384 data samples, with 46 features

each; for this purpose we HE-retrieved 753,664 data items (secret

shares to homomorphically verified and reconstructed), packed in

46 ciphertexts (a ciphertext for each feature). The accuracy in the

homomorphic computation is similar to that of computing over

cleartext (less than 10
−6

difference in the produced class likelihood

scores). The amortized runtime (under Composability heuristic)

for the homomorphic tree evaluation on all samples is 10.55𝑠 , i.e.,

0.64𝑚𝑠 amortized runtime per data sample.

Treatment of HE that do not satisfy Composability. In our

results that avoid Composability heuristic, we bootstrap the cipher-

texts given as input to Eval(Vrf; ·, ·) (resp., Eval(Rec; ·, ·)) prior to
their homomorphic evaluation. This guarantees full composability

w.r.t Vrf (resp., Rec,Vrf) (by [41]). Our experiments on OpenFHE

library show that the process of encryption, bootstrapping, and ho-

momorphic verification takes under 38.33𝑠 per ciphertext. Moreover,

this pipeline achieves the required accuracy by our verification algo-

rithm, as well as by applications such as the homomorphic decision

tree evaluation.

We note that although bootstrapping adds a substantial overhead

to the verification runtime, nevertheless, our HE-retrieval time is

still minor compared to common HE-computation runtimes. For

example, homomorphic training of a logistic regression model [42]

on a mortality dataset from [27] (containing 46𝑘 examples with

2-features) takes 25.5hrs; retrieving the data using ourHE-retrieval

(with bootstrapping) adds to the former less than 1% overhead

(concretely, the overhead is 0.47% and 0.78% in batched and un-

batched modes, respectively). Likewise, homomorphic training of

decision tree models [7], and homomorphic features selection [4]

have runtime in the scale of hours; so, our HE-retrieval runtime is

comparatively a minor part of the total retrieve-then-evaluation

computation.

6 Conclusions
We showed how to modify the classical affine MAC to support

fast homomorphic verification over the reals, with application for

guaranteeing data authenticity when retrieving HE ciphertexts

from a, possibly faulty or compromised, data keeper who is au-

thorized to generate and modify ciphertexts, but not their content.

We then showed how to enhance the authenticity guarantee with

the guarantee for compact storage and secrecy against the data

keeper (on top of the data consumers) via integrating our solu-

tion with [8]. We implemented our solution into a system name

authCSHER and empirically evaluated it on AWS EC2 instances

and S3 storage, showing it attains nearly zero overhead over stor-

ing unauthenticated cleartext data, and fast amortized end-to-end

running time (microseconds if full composability holds w.r.t. our

computation, milliseconds otherwise). This provides a practical and

scalable approach to authenticated, secure and efficient retrieval of

HE-ciphertexts, making it well-suited for real-world applications.

7 Acknowledgment
This work was supported in part by the Center for Cyber Law &

Policy at the University of Haifa in conjunction with the Israel

1104

Message Authentication Code with Fast Verification over Encrypted Data and Applications Proceedings on Privacy Enhancing Technologies 2025(4)

National Cyber Directorate in the Prime Minister’s Office. We are

deeply grateful to the anonymous reviewers and the revision editor

for their valuable feedback, which helped improve the clarity and

presentation of our contributions.

References
[1] AWS EC2 pricing. https://aws.amazon.com/ec2/pricing/on-demand/. Accessed:

2024-31-05.

[2] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70, 2008.
[3] Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and Omri

Soceanu. Poster: Efficient aes-gcm decryption under homomorphic encryption. In

Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pages 3567–3569, 2023.

[4] Adi Akavia, Ben Galili, Hayim Shaul, Mor Weiss, and Zohar Yakhini. Privacy

preserving feature selection for sparse linear regression. Proc. Priv. Enhancing
Technol., 2024(1):300–313, 2024.

[5] Adi Akavia, Craig Gentry, Shai Halevi, and Margarita Vald. Achievable CCA2

relaxation for homomorphic encryption. In Eike Kiltz and Vinod Vaikuntanathan,

editors, Theory of Cryptography - 20th International Conference, TCC 2022, Chicago,
IL, USA, November 7-10, 2022, Proceedings, Part II, volume 13748 of Lecture Notes
in Computer Science, pages 70–99. Springer, 2022.

[6] Adi Akavia, Meir Goldenberg, Neta Oren, and Margarita Vald. Authenticated

HE retrieval. https://github.com/ASEC-lab/auth-HE-retrieval, 2025. [Online;

accessed 14-Jun-2025].

[7] Adi Akavia, Max Leibovich, Yehezkel S. Resheff, Roey Ron, Moni Shahar, and

Margarita Vald. Privacy-preserving decision trees training and prediction. ACM
Trans. Priv. Secur., 25(3), may 2022.

[8] Adi Akavia, Neta Oren, Boaz Sapir, and Margarita Vald. CSHER: A system for

compact storage with HE-Retrieval. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 4751–4768, Anaheim, CA, August 2023. USENIX Association.

[9] Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. Ciphers formpc and fhe. InAdvances in Cryptology–EUROCRYPT
2015: 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34,
pages 430–454. Springer, 2015.

[10] Tomer Ashur, Mohammad Mahzoun, and Dilara Toprakhisar. Chaghri-a fhe-

friendly block cipher. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 139–150, 2022.

[11] Ahmad Al Badawi, Andreea Alexandru, Jack Bates, Flavio Bergamaschi,

David Bruce Cousins, Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish

Hunt, Andrey Kim, Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Carlo Pas-

coe, Yuriy Polyakov, Ian Quah, Saraswathy R.V., Kurt Rohloff, Jonathan Saylor,

Dmitriy Suponitsky, Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca.

OpenFHE: Open-source fully homomorphic encryption library. Cryptology ePrint

Archive, Paper 2022/915, 2022. https://eprint.iacr.org/2022/915.

[12] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris

Peikert. More efficient commitments from structured lattice assumptions. In

International Conference on Security and Cryptography for Networks, pages 368–
385. Springer, 2018.

[13] Adda-Akram Bendoukha, Aymen Boudguiga, and Renaud Sirdey. Revisiting

stream-cipher-based homomorphic transciphering in the tfhe era. In International
Symposium on Foundations and Practice of Security, pages 19–33. Springer, 2021.

[14] Adda-Akram Bendoukha, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud

Sirdey. Optimized stream-cipher-based transciphering by means of functional-

bootstrapping. In IFIP Annual Conference on Data and Applications Security and
Privacy, pages 91–109. Springer, 2023.

[15] Adda Akram Bendoukha, Oana Stan, Renaud Sirdey, Nicolas Quero, and Luciano

Freitas. Practical homomorphic evaluation of block-cipher-based hash functions

with applications. In International Symposium on Foundations and Practice of
Security, pages 88–103. Springer, 2022.

[16] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway.

Umac: Fast and secure message authentication. In Proceedings of the 19th Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO ’99,

page 216–233, Berlin, Heidelberg, 1999. Springer-Verlag.

[17] Zvika Brakerski. Fully homomorphic encryptionwithoutmodulus switching from

classical gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, pages 868–886, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[18] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-

morphic encryption without bootstrapping. In ITCS, pages 309–325, 2012.
[19] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-

macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-

quantum zero-knowledge and signatures from symmetric-key primitives. In

Proceedings of the 2017 acm sigsac conference on computer and communications
security, pages 1825–1842, 2017.

[20] Sylvain Chatel, Apostolos Pyrgelis, Juan Ramón Troncoso-Pastoriza, and Jean-

Pierre Hubaux. Privacy and integrity preserving computations with {CRISP}. In
30th USENIX Security Symposium (USENIX Security 21), pages 2111–2128, 2021.

[21] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic

encryption for arithmetic of approximate numbers. In ASIACRYPT, 2017.
[22] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe:

Fast fully homomorphic encryption over the torus. J. Cryptol., 33(1):34–91, jan
2020.

[23] Carlos Cid, John Petter Indrøy, and Håvard Raddum. Fasta–a stream cipher

for fast fhe evaluation. In Cryptographers’ Track at the RSA Conference, pages
451–483. Springer, 2022.

[24] Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and François-Xavier Stan-

daert. Towards case-optimized hybrid homomorphic encryption: Featuring the

elisabeth stream cipher. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 32–67. Springer, 2022.

[25] Decision trees training and prediction over encrypted data using fully homo-

morphic encryption. https://github.com/intuit/Decision-Trees-over-FHE, March

2023. Max Leibovich, Omer Sadeh, Boaz Sapir and Margarita Vald.

[26] Léo Ducas and Daniele Micciancio. Fhew: bootstrapping homomorphic encryp-

tion in less than a second. In Annual international conference on the theory and
applications of cryptographic techniques, pages 617–640. Springer, 2015.

[27] Danielle M. Ely, Anne K. Driscoll, and T. J. Matthews. Infant mortality rates in
rural and urban areas in the United States, 2014. NCHS data brief ; v no. 285. U.S.
Department of Health and Human Services, Centers for Disease Control and

Prevention, National Center for Health Statistics, 2017., Hyattsville, MD, 2017.

[28] European Parliament and Council of the European Union. Regulation (EU)

2016/679 of the European Parliament and of the Council, 2016.

[29] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic

encryption. Cryptology ePrint Archive, Paper 2012/144, 2012.

[30] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

[31] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game,

or a completeness theorem for protocols with honest majority. In Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pages 307–328. 2019.

[32] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity

of interactive proof-systems. In Oded Goldreich, editor, Providing Sound Founda-
tions for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages
203–225. ACM, 2019.

[33] Jincheol Ha, Seongkwang Kim, Byeonghak Lee, Jooyoung Lee, and Mincheol Son.

Rubato: Noisy ciphers for approximate homomorphic encryption. In Advances
in Cryptology – EUROCRYPT 2022: 41st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May
30 – June 3, 2022, Proceedings, Part I, page 581–610, Berlin, Heidelberg, 2022.

Springer-Verlag.

[34] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC
press, 2020.

[35] Hugo Krawczyk. The order of encryption and authentication for protecting

communications (or: How secure is ssl?). In Annual International Cryptology
Conference, pages 310–331. Springer, 2001.

[36] Ted Krovetz. UMAC: Message Authentication Code using Universal Hashing.

RFC 4418, March 2006.

[37] Baiyu Li and Daniele Micciancio. On the security of homomorphic encryption

on approximate numbers. In Anne Canteaut and François-Xavier Standaert,

editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17-21, 2021, Proceedings, Part I, volume 12696 of Lecture Notes in
Computer Science, pages 648–677. Springer, 2021.

[38] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Annual
international cryptology conference, pages 36–54. Springer, 2000.

[39] SilviaMella and Ruggero Susella. On the homomorphic computation of symmetric

cryptographic primitives. In Cryptography and Coding: 14th IMA International
Conference, IMACC 2013, Oxford, UK, December 17-19, 2013. Proceedings 14, pages
28–44. Springer, 2013.

[40] Daniele Micciancio. Fully composable homomorphic encryption. Cryptology

ePrint Archive, Paper 2024/1545, 2024.

[41] Daniele Micciancio. Fully composable homomorphic encryption. IACR Commu-
nications in Cryptology, 2(1), 2025.

[42] Luis Montero, Jordan Frery, Celia Kherfallah, Roman Bredehoft, and Andrei

Stoian. Machine learning training on encrypted data with TFHE. In Proceedings
of the 10th ACM International Workshop on Security and Privacy Analytics, IWSPA

’24, page 71–76, New York, NY, USA, 2024. Association for Computing Machinery.

[43] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic

encryption be practical? In ACM CCSW, 2011.

[44] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC

7539, May 2015.

[45] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and

privacy homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

1105

https://aws.amazon.com/ec2/pricing/on-demand/
https://eprint.iacr.org/2022/915
https://github.com/intuit/Decision-Trees-over-FHE

Proceedings on Privacy Enhancing Technologies 2025(4) Adi Akavia, Meir Goldenberg, Neta Oren, and Margarita Vald

[46] Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL, January 2023.

Microsoft Research, Redmond, WA.

[47] Mark N Wegman and J Lawrence Carter. New hash functions and their use

in authentication and set equality. Journal of computer and system sciences,
22(3):265–279, 1981.

[48] Benqiang Wei and Xianhui Lu. Improved homomorphic evaluation for hash

function based on tfhe. Cybersecurity, 7(1):14, 2024.
[49] Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS. IEEE,

1986.

A Supplemental Material
In the following we provide details omitted from the paper body

due to space limitations.

B Supplemental Material: Preliminaries
B.1 Message Authentication Codes
Message authentication codes (MAC) enable detecting whether an

adversary modified a stored message. This is formally defined as

follows.

Definition B.1 (message authentication code (MAC)). A
message authentication code for message-space A, and tag-space Tgs
consists of three ppt algorithms Q = (Gen,Mac,Vrf):
• Gen (key generation) takes as input the security parameter
𝜆 and outputs a key k with |k| > 𝜆; denoted k ← Gen(1𝜆).
Without loss of generality, Gen outputs a uniformly random
key from the key space, denoted k←𝑅 K .
• Mac (tag generation) takes as input a key k and a message
msg ∈ A, and outputs a tag ∈ Tgs; denoted tag← Mack (msg).
• Vrf (verification) takes as input a key k, a message 𝑥 , and a tag
and outputs acc or rej (meaning valid and invalid, respectively);
denoted 𝜎 ← Vrfk (msg, tag).

The correctness requirement is that for every 𝜆 ∈ N, k← Gen(1𝜆)
and msg ∈ A, Vrfk (𝑥,Mack (𝑥)) = acc. The scheme is existentially
unforgeable under a one-time adaptive chosen-message attack (one-
time unforgeable, in short) if for every ppt adversary A, there is a
negligible function neg, such that:

Pr[Mac-Forgeone-time
A,Q (𝜆) = 1] ≤ neg

whereMac-Forgeone-time
A,Q is as defined below. (If unforgeability holds

also even against unbounded adversaries, then the scheme is called
information theoretically unforgeable.)

The Mac-Forgeone-time
A,Q (𝜆) experiment:

(1) A key k← Gen(1𝜆) is generated.
(2) A chooses amessagemsg

′, and is given a tag tag′ ← Mack (msg
′).

(3) A outputs a pair (msg, tag).
(4) The experiment’s output is 1 if-and-only-if: Vrfk (msg, tag) =

acc and msg ≠ msg
′.

Remark B.2 (MAC with concrete security). It sometime sim-
plifies our presentation to discuss concrete security. I.e., to consider
MAC schemes indexed by public parameters pp, denoted Qpp

:=

(Genpp,Mac
pp,Vrfpp). In this case Genpp () and the forging experi-

ment receive no input, and we call the scheme 𝜌-one-time unforgeable

if for every ppt adversary A, Pr[Mac-Forgeone-time
A,Q = 1] ≤ 𝜌 (where

𝜌 can be a function of the parameters pp).

B.2 Homomorphic Encryption
Definition B.3 (homomorphic encryption (HE)). A homomor-

phic public-key encryption (HE) scheme E = (Gen, Enc,Dec, Eval)
with message spaceM is a quadruple of ppt algorithms as follows:
• Gen (key generation) takes as input the security parameter 1𝜆 ,
and outputs a pair (𝑝𝑘, 𝑠𝑘) consisting of a public key 𝑝𝑘 and
a secret key 𝑠𝑘 ; denoted: (𝑝𝑘, 𝑠𝑘) ← Gen(1𝜆).
• Enc (encryption) is a randomized algorithm that takes as in-
put a public key 𝑝𝑘 and a message 𝑚 ∈ M, and outputs a
ciphertext 𝑐 ; denoted: 𝑐 ← Enc𝑝𝑘 (𝑚).
• Dec (decryption) is a deterministic algorithm that takes as
input a secret key 𝑠𝑘 and a ciphertext 𝑐 , and outputs a decrypted
message𝑚′; denoted:𝑚′ ← Dec𝑠𝑘 (𝑐).
• Eval (homomorphic evaluation) takes as input the public key
𝑝𝑘 , a circuit 𝐶 : Mℓ → M, and ciphertexts 𝑐1, . . . , 𝑐ℓ , and
outputs a ciphertext �̂� ; denoted: �̂� ← Eval𝑝𝑘 (𝐶; 𝑐1, . . . , 𝑐ℓ).

The correctness requirement is that for every (𝑝𝑘, 𝑠𝑘) in the range of
Gen(1𝜆) and every message𝑚 ∈ M,

Pr[Dec𝑠𝑘 (Enc𝑝𝑘 (𝑚)) =𝑚] ≥ 1 − neg(𝜆).
The scheme is C-homomorphic for a circuit family C if for all𝐶 ∈ C
and for all inputs 𝑥1, . . . , 𝑥ℓ to 𝐶 , letting (𝑝𝑘, 𝑠𝑘) ← Gen(1𝜆) and
𝑐𝑖 ← Enc𝑝𝑘 (𝑥𝑖) it holds that:

Pr[Dec𝑠𝑘 (Eval𝑝𝑘 (𝐶; 𝑐1, . . . , 𝑐ℓ)) ≠ 𝐶 (𝑥1, . . . , 𝑥ℓ)] ≤ neg(𝜆)
(the probability is over all randomness in the experiment).
The scheme is CPA-secure (aka, semantically secure), if no ppt ad-
versaryA can distinguish between the encryption of two equal length
messages 𝑥0, 𝑥1 of his choice.

B.3 Pseudorandom Functions

Psedudorandom functions (PRF). We call an efficiently com-

putable family of keyed functionsF = {𝑓𝑘 : {0, 1}∗ → B}
𝑘∈{0,1}𝜆 ,𝜆∈N

pseudorandom if for all 𝜆, a uniformly random function 𝑓𝑘 from F
s.t. |𝑘 | = 𝜆 is computationally indistinguishable from a uniformly

random function from the set of all functions having the same

domain and range. See a formal definition in [34, Definition 3.25].

B.4 Secret Sharing
We write the standard definition of a 2-out-of-2 secret sharing

scheme, and set some terminology.

Definition B.4 (secret sharing). A 2-out-of-2 secret sharing

scheme for A is a pair of ppt algorithms (Shr, Rec) such that:
• Shr is a randomized algorithm that given 𝑥 ∈ A outputs a pair
of shares (𝑠1, 𝑠2).
• Rec is a deterministic algorithm that given a pair of shares
(𝑠1, 𝑠2) outputs an element in A.

The correctness requirement is that for all 𝑥 ∈ A, Rec(Shr(𝑥)) = 𝑥 .

The (perfect) security requirement is that for every 𝑥, 𝑥 ′ ∈ A and 𝑖 ∈
{1, 2}, the following two distributions are identical: {𝑠𝑖 } (𝑠1,𝑠2)←Shr(𝑥) ≡
{𝑠′𝑖 } (𝑠′

1
,𝑠′
2
)←Shr(𝑥 ′) .

1106

https://github.com/Microsoft/SEAL

Message Authentication Code with Fast Verification over Encrypted Data and Applications Proceedings on Privacy Enhancing Technologies 2025(4)

C Supplemental Material: Section 3
C.1 Supplemental Material for Section 3.1
C.1.1 Amplifying Security. For completeness of the presentation

we present in Figure 10 the standardmethod how to amplify security

via repetition.

Gen(1𝜆).. Given the security parameter 𝜆, output (k𝑖)𝑖∈[𝑘] ,
where 𝑘 := 𝜆/

⌈
log

2
𝑝
⌉
and k𝑖 ← Gen

𝑛,𝑝 ().

Mac(k𝑖)𝑖∈ [𝑘] (𝑥).. Given a key (k𝑖)𝑖∈[𝑘] and a message 𝑥 output

(tag𝑖)𝑖∈[𝑘] , where tag𝑖 ← Mac
𝑛,𝑝

k𝑖
(𝑥) for each 𝑖 ∈ [𝑘].

Vrf (k𝑖)𝑖∈ [𝑘] (𝑥, (tag𝑖)𝑖∈[𝑘]).. Given a key (k𝑖)𝑖∈[𝑘] , a message 𝑥 ,

and a tag (tag𝑖)𝑖∈[𝑘] , compute tag
′
𝑖 ← Mac

𝑛,𝑝

k𝑖
(𝑥) and diff𝑖 :=

tag𝑖 − tag
′
𝑖 for each 𝑖 ∈ [𝑘], and output (diff𝑖)𝑖∈[𝑘] to be inter-

preted as acc if-and-only-if it is 0
𝑘
.

An optional optimization: output
∑

𝑖∈[𝑘] diff
2

𝑖 to be interpreted as

acc if-and-only-if it is 0.

Figure 10: Amplifying the scheme from Figure 4 to have a
negligible forging probability.

C.1.2 Proof of Theorem 3.2. The formal analysis of our MAC is

presented next.

Proof of Theorem 3.2, Correctness. Fix (k, s1) ← Gen
𝑛,𝑝 ()

and x := (𝑥1, . . . , 𝑥𝑛) ∈ [0..𝑝 − 1]𝑛 (where k ∈ [0..𝑝 − 1]𝑛+1, s1 ∈
[0..𝑝 − 1]ℓ for ℓ :=

⌊
log𝑝 (𝑛𝑝2)

⌋
, and x ∈ [0..𝑝 − 1]𝑛 , and where

entries of k indexed from 0, and all other vectors are indexed starting

from 1). Let tag := (s2, 𝑦r) ← Mac
𝑛,𝑝

k,s1
(x) and diff ← Vrf

𝑛,𝑝

k,s1
(x, tag).

We show that diff = 0, (interpreted as acc).

Let 𝑦,𝑦′ be as computed in Vrf𝑝 ; since diff = 𝑦′ −𝑦, it suffices to

show that 𝑦 = 𝑦′. To prove the latter we show that both 𝑦 and 𝑦′

are equal to

ℎk (x) := 𝑘0 +
∑︁
𝑖

𝑘𝑖𝑥𝑖

(where the arithmetic is over the reals, i.e., with no modular reduc-

tion). The fact that 𝑦′ = ℎk (x) follows immediately by inspection

of Vrf
𝑛,𝑝

k,s1
. The fact that 𝑦 = ℎk (x) is argued next. By inspection of

Vrf
𝑛,𝑝

k,s1
, 𝑦 = 𝑦q𝑝 + 𝑦r where 𝑦q := Rec

ℓ,𝑝
s1 (s2), where (s2, 𝑦r) are as

provided in tag, which –by inspection of Mac
𝑛,𝑝

k,s1
(x)– satisfy the

following:

• s2 ← Shr
ℓ,𝑝
s1 (ℎk (x) ÷ 𝑝) and

• 𝑦r = ℎk (x) mod 𝑝

Moreover, by correctness of the secret sharing scheme, we see that

𝑦q = ℎk (x) ÷ 𝑝 . So, by the Quotient-Remainder Theorem, indeed

𝑦 = 𝑦q𝑝 + 𝑦r is equal to ℎk (x). □

Proof of Theorem 3.2, tag size. Fix𝑛, 𝑝 . The tag tag = (s2, 𝑦r)
outputted by Mac

𝑛,𝑝
resides in S2 × [0..𝑝 − 1] for S2 as specified

by the secret sharing scheme with which the MAC is instantiated.

When instantiated with the secret sharing scheme in Figure 3,

S2 = {0, 1}ℓ × [0..𝑝 − 1]ℓ , for ℓ =
⌊
log𝑝 (𝑛𝑝2)

⌋
, and its size is

|s2 | = ℓ · (|𝑝 | + 1)

where |𝑝 | =
⌊
log

2
𝑝
⌋
+ 1 is the binary representation length of an

element in [0..𝑝 − 1]. So, the tag size is:

|tag| = ℓ · (|𝑝 | + 1) + |𝑝 |

=

⌊
log𝑝 (𝑛𝑝2)

⌋ (⌊
log

2
𝑝
⌋
+ 2

)
+
⌊
log

2
𝑝
⌋
+ 1

≈ log𝑝 (𝑛𝑝2)
(
log

2
𝑝 + 2

)
+ log

2
𝑝 + 1 (ignoring ⌊·⌋)

= log
2
(𝑛𝑝2)

(
1 + 2

log
2
𝑝
+

log
2
𝑝 + 1

log
2
𝑛 + 2 log

2
𝑝

)
≤ log

2
(𝑛𝑝2)

(
1 + 1 + 2

2

)
(assigning 𝑝 = 2, 𝑛 = 1)

= 3 · log
2
(𝑛𝑝2)

The message is in [0..𝑝 − 1]𝑛 so its size is

|x| = 𝑛 · |𝑝 |
so the size ratio of tag vs. message goes to zero as 𝑛 goes to infinity:

|tag|
|x| =

ℓ · (|𝑝 | + 1) + |𝑝 |
𝑛 · |𝑝 |

≤
3 log

2
(𝑛𝑝2)

𝑛 · log
2
𝑝

𝑛→∞→ 0

□

Proof of Theorem 3.2, unforgeability. Fix𝑛, 𝑝 .We prove that

our MAC (Figure 4) is a
1

𝑝
-one-time unforgeable MAC. The proof

is via a reduction to the
1

𝑝
-one-time unforgeability of the MAC in

Figure 2. The reduction proceeds in three steps, gradually modify-

ing the latter scheme (denoted Q0 in the following), going through

two intermediateMAC schemes (denotedQ1,Q2), until reaching our

MAC (denotedQ3
), andwhile proving that Pr[Mac-Forge

one-time

A,Q𝑖 (𝜆) =
1] is non-increasing when reducing from one scheme Q𝑖 to the next
Q𝑖+1. Details follow.
Q0 is the MAC specified in Figure 2. That is:

• Q0 .Gen outputs k←𝑅 Z𝑛+1𝑝 .

• Q0 .Mack (x), given x ∈ Z𝑛𝑝 , outputs𝑦r := ℎk (x) forℎk : Z𝑛𝑝 →
Z defined, as in Equation 1, by ℎk (x) = 𝑘0 +

∑𝑛
𝑖=1 𝑘𝑖𝑥𝑖 mod

𝑝 .

• Q0 .Vrfk (x, 𝑦r), given (x, 𝑦r) ∈ Z𝑛𝑝 × Z𝑝 ,outputs acc if-and-

only-if 𝑦r = ℎk (x) (rej otherwise).
By Theorem 2.1,Q0 is (information theoretically)

1

𝑝
-one-time

unforgeable. That is, for every adversary A,

Pr[Mac-Forge
one-time

A,Q0 (𝜆) = 1] ≤ 1

𝑝
(2)

Q1 is similar to Q0 except that the tag is augmented with a

uniformly random element in S2 (for S2 being the space of
the 2nd share in the secret sharing scheme). That is:

• Q1 .Gen outputs k← Q0 .Gen().
• Q1 .Mack (x), given x ∈ Z𝑛𝑝 , samples uniformly random

s2 ←𝑅 S2, computes 𝑦r ← Q0 .Mack (x), and outputs

(s2, 𝑦r).
• Q1 .Vrfk (x, (s2, 𝑦r)), given (x, 𝑦r) ∈ Z𝑛𝑝 ×Z𝑝 , ignores s2 and
outputs the output of Q0 .Vrfk (𝑦r)

1107

Proceedings on Privacy Enhancing Technologies 2025(4) Adi Akavia, Meir Goldenberg, Neta Oren, and Margarita Vald

We show that the probability of forging remains the un-

changed. For this purpose we show that, given any adversary

A1 for Q1, we can construct an adversary A0 for Q0 with

the same forging probability. The adversary A1 is defined

as follows:

(1) Upon receiving a message x′ ∈ Z𝑛𝑝 from A1, A0 queries

the oracle Q0 .Mac on x′ to receive a tag 𝑦′
r
, samples uni-

formly random s2′ ←𝑅 S2 and providesA1 with the tuple

(s2′, 𝑦′r).
(2) Upon receiving a tuple (x, (s2, 𝑦r)) from A1, A0 outputs

the received tuple.

Observe that the view of A1 when executed by A0 is iden-

tical to its view in Mac-Forge
one-time

A,Q1,F (𝜆) (because the tags

are identically distributed). Moreover, any (msg, tag) pair
that passes Q1 .Vrf also passes Q0 .Vrf (because verification

ignores the additional values in the tag). Therefore,

Pr[Mac-Forge
one-time

A,Q1 (𝜆) = 1] = 𝑃𝑟 [Mac-Forge
one-time

A,Q0 (𝜆) = 1]
(3)

Q2 is similar to Q1 except thatMac does not output random s2
but rather sets them to be the 2nd share in a secret sharing of

𝑦q = (𝑘0+
∑𝑛

𝑖=1 𝑘𝑖𝑥𝑖) ÷𝑝 using a random 1st share s1 ←𝑅 S1.
That is:

• Q2 .Gen outputs k← Q1 .Gen().
• Q2 .Mack (x) samples uniformly random s1 ←𝑅 S1; com-

putes:

𝑦 = 𝑘0 +
𝑛∑︁
𝑖=1

𝑘𝑖𝑥𝑖 (over the reals)

𝑦q := 𝑦 ÷ 𝑝
𝑦r := 𝑦 mod 𝑝

s2 ← Shrs1 (𝑦q), where s1 ←𝑅 S1;
and outputs (s2, 𝑦r).
• Q2 .Vrf is identical to Q1 .Vrf.

TheMac-Forge
one-time

A,Q𝑖 experiments 𝑖 = 1, 2 are identical ex-

cept for theway s2 is generated inQ𝑖 .Mac: inQ1 it is sampled

uniformly at random in S2, whereas in Q2 it is the outputs

of Shrs1 on a uniformly random s1 ∈ S1. By the premise that

the secret sharing scheme has a uniform 2nd share, these

distributions are identically, and so the output of the forging

experiments is identically distributed, implying:

Pr[Mac-Forge
one-time

A,Q2 (𝜆) = 1] = Pr[Mac-Forge
one-time

A,Q1 (𝜆) = 1] .
Q3 is the MAC specified in Figure 4. Q3 is similar to Q2 except

that: (1) sampling of s1 ∈ S1 is done in Gen (rather than

in Mac), and (2) Vrf verifies also that s2 is consistent with
the key and message (rather than only verifying that 𝑦r is

consistent). That is:

• Q3 .Gen samples k ← Q2 .Gen() and s1 ←𝑅 S1, and out-

puts (k, s1).
• Q3 .Mack,s1 (x) executes Q2 .Mack (𝑥) while hardwiring the
random values s1 to be the one provided as the 2nd part

of the key.

• Q3 .Vrfk,s1 (x, (s2, 𝑦r)) outputs acc if-and-only-if both the

following holds for 𝑦 := 𝑘0 +
∑𝑛

𝑖=1 𝑘𝑖𝑥𝑖 :

Recs1 (s2) = (𝑦 ÷ 𝑝)
𝑦r = 𝑦 mod 𝑝

Observe that the only difference in logic between Q3 and Q2

is that, in Q3, (msg, tag) pair given to Q3 .Vrf must satisfy

an additional constraint on top of the constraint required in

Q2 (specifically, they must satisfy also they verification of s2
components in the tag). Therefore, the probability of forging

can only decrease, namely:

Pr[Mac-Forge
one-time

A,Q3 (𝜆) = 1] ≤ Pr[Mac-Forge
one-time

A,Q2 (𝜆) = 1]
We conclude that our scheme of Figure 4 (denoted Q3) satisfies that:

Pr[Mac-Forge
one-time

A,Q3 (𝜆) = 1]

≤ Pr[Mac-Forge
one-time

A,Q0 (𝜆) = 1]

≤ 1

𝑝

That is, the scheme is
1

𝑝
-one time unforgeable. □

C.2 Supplemental Material for Section 3.2
We prove Proposition 3.2.

Proof. Let E = (Gen, Enc,Dec, Eval) andQ = (Q .Gen,Mac,Vrf).
We define Ê = (Ĝen, Ênc,Dec, Êval) as follows:
• Ĝen(1𝜆) samples (𝑝𝑘, 𝑠𝑘) ← Gen(1𝜆) and a uniform mes-

sage𝑚∗ in the message space, computes 𝑐∗ ← Enc𝑝𝑘 (𝑚∗),
and outputs (𝑝𝑘, �̂�𝑘) = ((𝑝𝑘, 𝑐∗), 𝑠𝑘).
• Ênc𝑝𝑘 (𝑚), where 𝑝𝑘 = (𝑝𝑘, 𝑐∗), outputs Enc𝑝𝑘 (𝑚).
• Êval𝑝𝑘 (𝑓 ; 𝑐1, . . . , 𝑐𝑛), where 𝑝𝑘 = (𝑝𝑘, 𝑐∗), if 𝑐1 ≠ 𝑐∗, outputs
Eval𝑝𝑘 (𝑓 ; 𝑐1, . . . , 𝑐𝑛); otherwise outputs Enc𝑝𝑘 (acc).

It is easy to show that Ê is semantically secure via a reduction to

the semantic security of E.
We define A as follows: given 𝑝𝑘 = (𝑝𝑘, 𝑐∗), it submits the pair

(𝑐msg, 𝑐tag) defined by:

𝑐msg := 𝑐∗ and 𝑐tag = Enc𝑝𝑘 (0) .
Clearly A is ppt. We next show that A succeeds in the homomor-

phic forging experiment, i.e.,Mac-ForgeA,Q,Ê = 1. By definition of

Êval, Êval𝑝𝑘 (Vrf; 𝑐msg, 𝑐tag) outputs Enc𝑝𝑘 (acc) (because 𝑐msg = 𝑐∗).
So,

Dec𝑠𝑘 [Êval𝑝𝑘 (Vrf; 𝑐msg, 𝑐tag)] = acc.

Namely,Mac-ForgeA,Q,Ê = 1 (where the 1 − neg probability in the

theorem addresses schemes E with a negligible decryption failure

probability, where the probability is over the randomness in Gen

and Enc). □

Proof of Proposition 3.3

Proof. By definition, full composability guarantees correctness

of homomorphic evaluation over arbitrary ciphertexts (rather than

only the output of an honest execution of the encryption algorithm);

cf. Definition 2.2. So, the full homomorphism of E w.r.t {Vrf} guar-
antees that for all ciphertexts 𝑐msg, 𝑐tag in the ciphertext space, with

probability 1 − neg(𝜆) over the choice of k← MAC.Gen(1𝜆) and
(𝑝𝑘, 𝑠𝑘) ← HE.Gen(1𝜆), the following holds:

Dec𝑠𝑘

(
Eval𝑝𝑘

(
Vrfk; 𝑐msg, 𝑐tag

))
= Vrfk

(
Dec𝑠𝑘 (𝑐msg),Dec𝑠𝑘 (𝑐tag)

)
.

(4)

1108

Message Authentication Code with Fast Verification over Encrypted Data and Applications Proceedings on Privacy Enhancing Technologies 2025(4)

This contradicts the (cleartext) unforgeability of Q (details follow).

Given any adversary A for the HE-unforgeability experiment,

we construct an adversary A′ for the (cleartext) unforgeability ex-

periment, as follows. The adversary A′, given k← MAC.Gen(1𝜆),
generates (𝑝𝑘, 𝑠𝑘) ← HE.Gen(1𝜆), and provides 𝑝𝑘 to A. Upon re-

ceiving msg
′
from A, A′ forwards it to the challenger to receive a

valid tag
′
, and forwards the latter toA. Upon receiving (𝑐msg, 𝑐tag)

from A, A′ decrypts using 𝑠𝑘 to obtain msg← Dec𝑠𝑘 (𝑐msg) and
tag← Dec𝑠𝑘 (𝑐tag), and forwards (msg, tag) to the challenger. Then
the following holds.

Pr[Mac-Forge
one-time

A,Q (𝜆) = 1]
= Pr[Vrfk

(
Dec𝑠𝑘 (𝑐msg),Dec𝑠𝑘 (𝑐tag)

)
= acc]

= Pr[Dec𝑠𝑘
(
Eval𝑝𝑘

(
Vrfk; 𝑐msg, 𝑐tag

))
= acc]

= Pr[Mac-Forge
one-time

A,Q,E (𝜆) = 1]
(where the first equality follows from the definition of the forg-

ing experiment; the second – from full composability (cf. Equa-

tion 4); the third from the the definition of the HE-forging ex-

periment; and the last step follows from the definition of A). By

the unforgeability of Q, we conclude that 𝜌 = neg(𝜆). Therefore,
Pr[Mac-Forge

one-time

A,Q,E (𝜆) = 1] = neg(𝜆) for every adversary A.

Namely, Q is HE-unforgeable. □

HE-correctness says that homomorphic evaluation of Vrf on

freshly encrypted ciphertexts, yields the same result as evaluation

in cleartext.

DefinitionC.1 (HE-correctness). Let E = (HE.Gen, Enc,Dec, Eval)
be a HE scheme, and Q = (MAC.Gen,Mac,Vrf) an E-friendly MAC
for domain A. Q is E-correct, if for every msg ∈ A and 𝜆 ∈ N,
Dec𝑠𝑘

(
Eval𝑝𝑘

(
Vrfk; Enc𝑝𝑘 (msg), Enc𝑝𝑘 (Mack (msg))

))
= acc.

with probability 1 − neg(𝜆) over the choice of k ← MAC.Gen(1𝜆)
and (𝑝𝑘, 𝑠𝑘) ← HE.Gen(1𝜆).

Proposition C.1 (HE-correctness). For everyHE scheme E and
HE- friendly MAC scheme Q, if Q is correct then it is HE-correct.

Proof. The proof follows immediately from the homomorphism

of E (cf. Definition B.3, C-homomorphism). □

D Supplemental Material: Section 4
D.1 Protocols: Further Details
Next, we explain how to extend our protocols for addressing HE

schemes that are not fully composable; how to instantiate our pro-

tocol to support either real value data or elements in a finite field Z𝑛𝑝
(rather than integers); finally we discuss extensions for addressing

malicious data consumers.

Remark D.1 (full composability via bootstrapping). Our
proof of soundness against malicious dataKeeper requires that the HE
to be fully composable w.r.t {Rec,Vrf}. We can guarantee the latter
via bootstrapping (cf. [41]) by modifying Step 3 in retrieve to output
(𝑐, 𝑐𝜎) computed by:

𝑐 ← Eval𝑝𝑘 (Rec𝑠1 ; bootstrap𝑝𝑘 (𝑐2))
𝑐𝜎 ← Eval𝑝𝑘 (Vrfk; 𝑐2, bootstrap𝑝𝑘 (𝑐tag)) .

Our protocol is generic and can be instantiated with any secret

sharing, MAC and HE schemes that satisfy the properties listed in

Figure 6, Common Parameters. Examples follow.

Corollary D.2 (our protocol for reals). The protocol in Fig-
ure 6 can be instantiated with our secret sharing scheme and MAC
schemes (cf. Figures 3-4) together with any HE that supports additive
homomorphism over the reals and is fully composable or bootstrap-
pable w.r.t {Rec,Vrf}. E.g., CKKS [21] is bootstrappable (and might be
fully composable, to the best of our knowledge). In this instantiation,
the storage size for storing 𝑥 ∈ [0..𝑝 − 1]𝑛 is:

|storage(𝑥 ; 𝑖𝑛𝑑𝑒𝑥, 𝜆) | = |𝑥 | +𝑂
(
log

2
(𝑛𝑝2)

)
i.e., the asymptotic authentication overhead approaches zero:

lim

𝑛→∞
|storage(𝑥 ; 𝑖𝑛𝑑𝑒𝑥, 𝜆) | − |𝑥 |

|𝑥 | = lim

𝑛→∞

𝑂
(
log

2
(𝑛𝑝2)

)
𝑂 (𝑛 log

2
𝑝) = 0

Corollary D.3 (our protocol for Z𝑛𝑝). The protocol in Fig-
ure 6 can be instantiated with additive secret sharing. In additive
secret sharing for Z𝑛𝑝 ; Shr(𝑥) outputs uniformly random s1 ∈ Z𝑛𝑝 and
s2 = x−s1 mod 𝑝 ; and Rec(s1, s2) outputs s1+s2 mod 𝑝 . Clearly, this
scheme has a random 1st share, uniform 2nd share, and is friendly with
respect to any additive-homomorphic encryption over Z𝑛𝑛 . and MAC
for Z𝑛𝑝 (cf. Figure 2) together with any HE that supports additive ho-
momorphism over Z𝑛𝑝 and is fully composable or bootstrappable w.r.t
{Rec,Vrf}. E.g., BGV [18], B/FV [17, 29] and TFHE [22] are bootstrap-
pable (and might be fully composable, to the best of our knowledge).
In this instantiation, the storage size for storing 𝑥 ∈ Z𝑛𝑝 is:

|storage(𝑥 ; 𝑖𝑛𝑑𝑒𝑥, 𝜆) | = |𝑥 | + (
⌊
log

2
𝑝
⌋
+ 1)

i.e., the asymptotic authentication overhead approaches zero:

lim

𝑛→∞
|storage(𝑥 ; 𝑖𝑛𝑑𝑒𝑥, 𝜆) | − |𝑥 |

|𝑥 | = lim

𝑛→∞

𝑂
(
log

2
𝑝
)

𝑂 (𝑛 log
2
𝑝) = 0

For simplicity of exposition, we present our protocol (Figure 6)

for the case of storing of a single (msg, tag) (albeit, msg can be

a vector of data items). Our protocol extends to retrieve many

messages and tags, while compressing the verification outputs to

a single authenticity indicator ciphertext decrypting to acc if-and-

only-if all pairs are verified. This extension is explained below.

Remark D.4 (Correctness with Malicious Data Consumer.).

Throughout this work our focus is addressingmalicious data keeper to
guarantee data integrity. In this remark we discuss protection against
malicious data consumers, to ensure that they execute only autho-
rized computations on authorized data, can be provided using generic
proof techniques for verifiable homomorphic computation (vFHE).
Concretely, data consumers will generate a proof that they performed
the intended homomorphic computation, including MAC verification,
on the inputs provided by the data keeper. The proof together with the
ciphertexts containing the computation result and the authenticity
indicator, are submitted to the decrypting entity and verified prior to
decryption.

1109

Proceedings on Privacy Enhancing Technologies 2025(4) Adi Akavia, Meir Goldenberg, Neta Oren, and Margarita Vald

D.2 Protocols: Complexity and Optimizations
The implementation of our system performs storage and communi-

cation optimizations as described below.

Denote by 𝑢 =
⌈

𝑛
slots

⌉
.

In the unbatched mode for 72-bits information theoretic security

we generate the tag 4 times, using independent randomness with

the following overall complexity:

• Storage size: dataProd stores 𝑠2 = 𝑠⊕
q
· 𝑝 + 𝑠r and tag = 𝑠

tag

q
⊕ ·

𝑝2 + 𝑠tag
r
· 𝑝 +𝑦0 for each tag, where eachMAC is computed

on (𝑠⊕
q
, 𝑠r). Overall, we store a single double for each data

item and another double for each tag of each data item.

• Communication size: dataKeeper downloads the stored 𝑠2 and
tags and computes: (𝑠⊕

q
, 𝑠r), and tag

r
= 𝑠

tag

r
· 𝑝 + 𝑦0 and 𝑠tag

q
⊕

for each tag, and HE-encrypts the computed values. Overall,

10 ciphertexts are transmitted to dataConsmr. For retrieval

of 𝑛 (unbatched) data items we utilize the ciphertexts’ slots,

resulting in 10·𝑢 ciphertexts transmitted to dataConsmr.

• HE-operations: dataConsmr performs overall 14·𝑢 multipli-

cations:𝑢 in Rec, 3 ·𝑢 in each Vrf, and another𝑢 for squaring

the output of each Vrf to obtain the compressed correctness

indicator. Since Rec and Vrf are degree-1 polynomials overall

it requires HE parameters to support a multiplicative depth

2 due to the squaring done for the correctness indicator

aggregation (square diff).

In the batched mode, we compute batched tags for 𝑛 data items. To

achieve at 72 bits information theoretic security we generate a tag

6 times, using independent randomness, obtaining the following

overall complexity:

(1) Storage size: dataProd computes MAC on batches of size 𝑢

on {(𝑠
q
⊕ ,𝑖 , 𝑠r,𝑖)}𝑖∈[𝑛] and stores:

• ∀𝑖 ∈ [𝑛]: 𝑠2,𝑖 = 𝑠
q
⊕ ,𝑖 · 𝑝 + 𝑠r,𝑖

• ∀𝑗 ∈ [slots]: tag
r, 𝑗 = 𝑠

tag

r,2, 𝑗
· 𝑝2 + 𝑠tag

r,1, 𝑗
· 𝑝 + 𝑦0 and

tag
q
⊕ , 𝑗 = (𝑠

tag

q
⊕ ,2, 𝑗

, 𝑠
tag

q
⊕ ,1, 𝑗
)

That is, in each tagging repetition we produce slots tags and

store a single double plus two bits incorporated into a single

stored per tag, overall done 6 times. In addition, we store a

single double for each data item.

(2) Communication size: dataKeeper downloads the stored {𝑠2,𝑖 }𝑖∈[𝑛]
and the corresponding tags it computes {(𝑠

q
⊕ ,𝑖 , 𝑠r,𝑖)}𝑖∈[𝑛] and

HE-encrypts each element (of each share and of each tag)

with full utilization of the ciphertext slots. Overall, 3 cipher-

texts are required for the components batched tag generated

in each repetition, and thus, for 𝑛 batched data items 2 ·𝑢+18
ciphertexts are transmitted to dataConsmr.

(3) HE-operations: dataConsmr performs overall 13·𝑢+12 HE

multiplications : 𝑢 in Rec, and 2 ·𝑢 + 2 in each Vrf. Since Rec

and Vrf are degree-1 polynomials the overall computation

only requires HE parameters to support multiplicative depth

1.

D.3 Proof of Theorems 4.1 and 4.2
First, we prove Theorem 4.1 .

Proof. Let 𝜆 be a security parameter andE = (HE.Gen, Enc,Dec, Eval)
be a C-homomorphic CPA-secure HE scheme that is fully compos-

able w.r.t the verification algorithm Vrf of the MAC scheme Q spec-

ified next. A PRF family {𝑓𝑧 : {0, 1}∗ → K}𝑧∈{0,1}𝜆 and a random

key MAC Q = (MAC.Gen,Mac,Vrf) that is E-friendly.
The polynomial-time complexity of dataConsmr, dataKeeper

and the party executing the trusted setup is straightforward as

all the components and computations are polynomial time.

The correctness property stems from Q being HE-correct accord-

ing to Proposition C.1, pseudorandomness of {𝑓𝑧 : {0, 1}∗ → K},
and from the correctness of E. More formally, by definition

Pr[Dec𝑠𝑘 (𝑐𝑥 , 𝑐𝜎) ≠ (𝑥, acc)]
= Pr[Dec𝑠𝑘 (Enc𝑝𝑘 (𝑥), Eval𝑝𝑘 (Vrfk; Enc𝑝𝑘 (𝑥), Enc𝑝𝑘 (tag)) ≠ (𝑥, acc)]

Where the probability is taken over the choice of 𝑧 ←𝑅 {0, 1}𝜆 ,
k← 𝑓𝑧 (𝑖𝑛𝑑𝑒𝑥) and (𝑝𝑘, 𝑠𝑘) ← HE.Gen(1𝜆)

Then it holds,

Pr[Dec𝑠𝑘 (𝑐𝑥 , 𝑐𝜎) ≠ (𝑥, acc)]
≤ neg(𝜆)+
Pr[Dec𝑠𝑘 (Enc𝑝𝑘 (𝑥), Eval𝑝𝑘 (Vrfk; Enc𝑝𝑘 (𝑥), Enc𝑝𝑘 (tag)) ≠ (𝑥, acc)]
< neg(𝜆)

Where the probability is taken over the choice of k← MAC.Gen(1𝜆)
and (𝑝𝑘, 𝑠𝑘) ← HE.Gen(1𝜆).

The privacy for any ppt adversary dataConsmr
∗
relies on its

view being independent of 𝑥 (and presumably only depending on

its size). Concretely, due to CPA-security of E and k depending only

on 𝑓𝑧 (·) (i.e., independent of 𝑥), we have for any 𝑖𝑛𝑑𝑒𝑥 and 𝜆,

(Enc𝑝𝑘 (𝑥), Enc𝑝𝑘 (tag), 𝑖𝑛𝑑𝑒𝑥, 𝜆) ≈𝑐 (Enc𝑝𝑘 (𝑥∗), Enc𝑝𝑘 (tag∗), 𝑖𝑛𝑑𝑒𝑥, 𝜆)
for any 𝑥∗ ∈ A and tag

∗ ∈ Tgs s.t |𝑥 | = |𝑥∗ | ∧ |tag| = |tag∗ |.
Moreover, since view

dataConsmr
∗ (𝑥) consists exactly of

(Enc𝑝𝑘 (𝑥), Enc𝑝𝑘 (tag), 𝑖𝑛𝑑𝑒𝑥, 𝜆)
we obtain the desired for any ppt distinguisher D.

The soundness property against any ppt dataKeeper∗ stems from

theHE-unforgeability ofQ and the pseudorandomness of {𝑓𝑧 : {0, 1}∗ →
K}. More formally, given that E is C-homomorphism ,and fully

composable w.r.t. verification algorithm {Vrf} and Q is E-friendly
it follows from Proposition 3.3 that Q is HE-unforgeable. First,

we note that since Q is HE-unforgeable w.r.t random key k ←
MAC.Gen(1𝜆) the it is also HE-unforgeable w.r.t pseudorandom

key k← 𝑓𝑧 (𝑖𝑛𝑑𝑒𝑥) for 𝑧 ←𝑅 {0, 1}𝜆 .
Next we assume towards contradiction that soundness does not

hold and construct an adversary that violates the HE-unforgeable

of Q. That is, assume there exists a ppt dataKeeper
∗
and (𝑥, 𝑖𝑛𝑑𝑒𝑥)

tuple such that,

Pr[Dec𝑠𝑘 (𝑐𝑥 , 𝑐𝜎) = (𝑥 ′, acc)] >
1

𝑝 (𝜆)
for some polynomial 𝑝 (·) and any 𝑥 ′ ≠ 𝑥 . We construct an adver-

sary A for the Mac-Forge
one-time

A,Q,E experiment that runs internally

dataKeeper
∗
and proceeds as follows:

(1) upon receiving 𝑝𝑘 it submits to the challenger 𝑥 and receives

tag on 𝑥 .

(2) it forwards to dataKeeper
∗
the tuple (𝑥, tag)

(3) once dataKeeper
∗
outputs (𝑐𝑥 , 𝑐tag) it forwards then to the

challenger.1110

Message Authentication Code with Fast Verification over Encrypted Data and Applications Proceedings on Privacy Enhancing Technologies 2025(4)

Since the view of dataKeeper
∗
is identical when executed internally

by A to its run in oneSidedPriv we obtain the following,

Pr[Mac-Forge
one-time

A,Q,E (𝜆) = 1]
= Pr

A coins

[Dec𝑠𝑘 (𝑐𝑥 , 𝑐𝜎) = (𝑥 ′, acc)]

= Pr

dataKeeper
∗
coins

[Dec𝑠𝑘 (𝑐𝑥 , 𝑐𝜎) = (𝑥 ′, acc)]

>
1

𝑝 (𝜆)
as desired.

□

For the proof of Theorem 4.2 we specify the required exten-

sions from the proof of Theorem 4.1 for the common properties of

correctness, polynomial time complexity, soundness and privacy

against any ppt dataConsmr
∗
. In the protocol twoSidedPriv we are

utilizing in addition an E-friendly 2-out-of-2 secret sharing scheme

S = (Shr𝑠1 ,Rec𝑠1) for a domain A with a random 1st share 𝑠1 ∈ S1
and a uniform 2nd share 𝑠2 ∈ S2 (cf. Definition 2.3).

Proof sketch. All entities are polynomial time correctness holds

by the same reasoning as in oneSidedPriv, combined with the secret

sharing scheme S being polynomial time and correct.

The soundness against dataKeeper
∗
holds due to the full compos-

ability of E on Eval𝑝𝑘 (Rec𝑠1 ; 𝑐2). That is, ifDec𝑠𝑘 (Eval𝑝𝑘 (Rec𝑠1 ; 𝑐2)) ≠
𝑥 then it impliesDec𝑠𝑘 (𝑐2) ≠ 𝑠2 and hence the same argument as in

oneSidedPrivcan be applied with respect to the success probability

of any dataKeeper
∗
providing an encrypted tag that homomorphi-

cally verifies on 𝑐2 w.r.t the MAC key k.

The privacy against dataConsmr
∗
holds similarly to oneSidedPriv

with only difference of dataConsmr
∗
receiving an encrypted secret

share 𝑐2 and a cleartext share 𝑠1. From the CPA-security of E and

𝑠1 being independent of 𝑥 , the same argument as in oneSidedPriv

applies here.

First note that the pseudorandomness property of 𝑓𝑧 guarantees

that for every x, the shares (s1,s2) produced by 𝑓𝑧 (·) are distributed
computationally close to shares produced MAC.Gen(·). Therefore,
privacy against dataKeeper

∗
stems from the latter together with

the perfect security property of S and the fact that tag calculated

only on 𝑠2 and is independent of 𝑠1.

1111

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Our Message Authentication Code
	3.1 MAC with Linear Verification over Reals
	3.2 HE-Friendliness of our MAC

	4 Applications of our MAC
	5 Empirical Evaluation
	5.1 The Implemented System
	5.2 The Experimental Setup
	5.3 Results

	6 Conclusions
	7 Acknowledgment
	References
	A Supplemental Material
	B Supplemental Material: Preliminaries
	B.1 Message Authentication Codes
	B.2 Homomorphic Encryption
	B.3 Pseudorandom Functions
	B.4 Secret Sharing

	C Supplemental Material: Section 3
	C.1 Supplemental Material for Section 3.1
	C.2 Supplemental Material for Section 3.2

	D Supplemental Material: Section 4
	D.1 Protocols: Further Details
	D.2 Protocols: Complexity and Optimizations
	D.3 Proof of Theorems 4.1 and 4.2

